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Abstract

We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total
parameters with 37B activated for each token. To achieve efficient inference and cost-effective
training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architec-
tures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers
an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training
objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and
high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to
fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms
other open-source models and achieves performance comparable to leading closed-source
models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours
for its full training. In addition, its training process is remarkably stable. Throughout the entire
training process, we did not experience any irrecoverable loss spikes or perform any rollbacks.
The model checkpoints are available at https://github.com/deepseek-ai/DeepSeek-V3.
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Figure 1 | Benchmark performance of DeepSeek-V3 and its counterparts.
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1. Introduction

In recent years, Large Language Models (LLMs) have been undergoing rapid iteration and
evolution (Anthropic, 2024; Google, 2024; OpenAI, 2024a), progressively diminishing the gap to-
wards Artificial General Intelligence (AGI). Beyond closed-source models, open-source models,
including DeepSeek series (DeepSeek-AI, 2024a,b,c; Guo et al., 2024), LLaMA series (AI@Meta,
2024a,b; Touvron et al., 2023a,b), Qwen series (Qwen, 2023, 2024a,b), and Mistral series (Jiang
et al., 2023; Mistral, 2024), are also making significant strides, endeavoring to close the gap with
their closed-source counterparts. To further push the boundaries of open-source model capa-
bilities, we scale up our models and introduce DeepSeek-V3, a large Mixture-of-Experts (MoE)
model with 671B parameters, of which 37B are activated for each token.

With a forward-looking perspective, we consistently strive for strong model performance
and economical costs. Therefore, in terms of architecture, DeepSeek-V3 still adopts Multi-head
Latent Attention (MLA) (DeepSeek-AI, 2024c) for efficient inference and DeepSeekMoE (Dai
et al., 2024) for cost-effective training. These two architectures have been validated in DeepSeek-
V2 (DeepSeek-AI, 2024c), demonstrating their capability to maintain robust model performance
while achieving efficient training and inference. Beyond the basic architecture, we implement
two additional strategies to further enhance the model capabilities. Firstly, DeepSeek-V3 pi-
oneers an auxiliary-loss-free strategy (Wang et al., 2024a) for load balancing, with the aim of
minimizing the adverse impact on model performance that arises from the effort to encourage
load balancing. Secondly, DeepSeek-V3 employs a multi-token prediction training objective,
which we have observed to enhance the overall performance on evaluation benchmarks.

In order to achieve efficient training, we support the FP8 mixed precision training and
implement comprehensive optimizations for the training framework. Low-precision training
has emerged as a promising solution for efficient training (Dettmers et al., 2022; Kalamkar et al.,
2019; Narang et al., 2017; Peng et al., 2023b), its evolution being closely tied to advancements in
hardware capabilities (Luo et al., 2024; Micikevicius et al., 2022; Rouhani et al., 2023a). In this
work, we introduce an FP8 mixed precision training framework and, for the first time, validate
its effectiveness on an extremely large-scale model. Through the support for FP8 computation
and storage, we achieve both accelerated training and reduced GPU memory usage. As for
the training framework, we design the DualPipe algorithm for efficient pipeline parallelism,
which has fewer pipeline bubbles and hides most of the communication during training through
computation-communication overlap. This overlap ensures that, as the model further scales up,
as long as we maintain a constant computation-to-communication ratio, we can still employ
fine-grained experts across nodes while achieving a near-zero all-to-all communication overhead.
In addition, we also develop efficient cross-node all-to-all communication kernels to fully utilize
InfiniBand (IB) and NVLink bandwidths. Furthermore, we meticulously optimize the memory
footprint, making it possible to train DeepSeek-V3 without using costly tensor parallelism.
Combining these efforts, we achieve high training efficiency.

During pre-training, we train DeepSeek-V3 on 14.8T high-quality and diverse tokens. The
pre-training process is remarkably stable. Throughout the entire training process, we did not
encounter any irrecoverable loss spikes or have to roll back. Next, we conduct a two-stage
context length extension for DeepSeek-V3. In the first stage, the maximum context length is
extended to 32K, and in the second stage, it is further extended to 128K. Following this, we
conduct post-training, including Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL)
on the base model of DeepSeek-V3, to align it with human preferences and further unlock its
potential. During the post-training stage, we distill the reasoning capability from the DeepSeek-
R1 series of models, and meanwhile carefully maintain the balance between model accuracy
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Training Costs Pre-Training Context Extension Post-Training Total

in H800 GPU Hours 2664K 119K 5K 2788K
in USD $5.328M $0.238M $0.01M $5.576M

Table 1 | Training costs of DeepSeek-V3, assuming the rental price of H800 is $2 per GPU hour.

and generation length.

We evaluate DeepSeek-V3 on a comprehensive array of benchmarks. Despite its economical
training costs, comprehensive evaluations reveal that DeepSeek-V3-Base has emerged as the
strongest open-source base model currently available, especially in code and math. Its chat
version also outperforms other open-source models and achieves performance comparable to
leading closed-source models, including GPT-4o and Claude-3.5-Sonnet, on a series of standard
and open-ended benchmarks.

Lastly, we emphasize again the economical training costs of DeepSeek-V3, summarized in
Table 1, achieved through our optimized co-design of algorithms, frameworks, and hardware.
During the pre-training stage, training DeepSeek-V3 on each trillion tokens requires only 180K
H800 GPU hours, i.e., 3.7 days on our cluster with 2048 H800 GPUs. Consequently, our pre-
training stage is completed in less than two months and costs 2664K GPU hours. Combined
with 119K GPU hours for the context length extension and 5K GPU hours for post-training,
DeepSeek-V3 costs only 2.788M GPU hours for its full training. Assuming the rental price of
the H800 GPU is $2 per GPU hour, our total training costs amount to only $5.576M. Note that
the aforementioned costs include only the official training of DeepSeek-V3, excluding the costs
associated with prior research and ablation experiments on architectures, algorithms, or data.

Our main contribution includes:

Architecture: Innovative Load Balancing Strategy and Training Objective

• On top of the efficient architecture of DeepSeek-V2, we pioneer an auxiliary-loss-free
strategy for load balancing, which minimizes the performance degradation that arises
from encouraging load balancing.

• We investigate a Multi-Token Prediction (MTP) objective and prove it beneficial to model
performance. It can also be used for speculative decoding for inference acceleration.

Pre-Training: Towards Ultimate Training Efficiency

• We design an FP8 mixed precision training framework and, for the first time, validate the
feasibility and effectiveness of FP8 training on an extremely large-scale model.

• Through the co-design of algorithms, frameworks, and hardware, we overcome the
communication bottleneck in cross-node MoE training, achieving near-full computation-
communication overlap. This significantly enhances our training efficiency and reduces the
training costs, enabling us to further scale up the model size without additional overhead.

• At an economical cost of only 2.664M H800 GPU hours, we complete the pre-training of
DeepSeek-V3 on 14.8T tokens, producing the currently strongest open-source base model.
The subsequent training stages after pre-training require only 0.1M GPU hours.

Post-Training: Knowledge Distillation from DeepSeek-R1

• We introduce an innovative methodology to distill reasoning capabilities from the long-
Chain-of-Thought (CoT) model, specifically from one of the DeepSeek R1 series models,
into standard LLMs, particularly DeepSeek-V3. Our pipeline elegantly incorporates the
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verification and reflection patterns of R1 into DeepSeek-V3 and notably improves its
reasoning performance. Meanwhile, we also maintain control over the output style and
length of DeepSeek-V3.

Summary of Core Evaluation Results

• Knowledge: (1) On educational benchmarks such as MMLU, MMLU-Pro, and GPQA,
DeepSeek-V3 outperforms all other open-source models, achieving 88.5 on MMLU, 75.9
on MMLU-Pro, and 59.1 on GPQA. Its performance is comparable to leading closed-source
models like GPT-4o and Claude-Sonnet-3.5, narrowing the gap between open-source
and closed-source models in this domain. (2) For factuality benchmarks, DeepSeek-V3
demonstrates superior performance among open-source models on both SimpleQA and
Chinese SimpleQA. While it trails behind GPT-4o and Claude-Sonnet-3.5 in English factual
knowledge (SimpleQA), it surpasses these models in Chinese factual knowledge (Chinese
SimpleQA), highlighting its strength in Chinese factual knowledge.

• Code, Math, and Reasoning: (1) DeepSeek-V3 achieves state-of-the-art performance on
math-related benchmarks among all non-long-CoT open-source and closed-source models.
Notably, it even outperforms o1-preview on specific benchmarks, such as MATH-500,
demonstrating its robust mathematical reasoning capabilities. (2) On coding-related tasks,
DeepSeek-V3 emerges as the top-performing model for coding competition benchmarks,
such as LiveCodeBench, solidifying its position as the leading model in this domain. For
engineering-related tasks, while DeepSeek-V3 performs slightly below Claude-Sonnet-3.5,
it still outpaces all other models by a significant margin, demonstrating its competitiveness
across diverse technical benchmarks.

In the remainder of this paper, we first present a detailed exposition of our DeepSeek-V3
model architecture (Section 2). Subsequently, we introduce our infrastructures, encompassing
our compute clusters, the training framework, the support for FP8 training, the inference
deployment strategy, and our suggestions on future hardware design. Next, we describe our
pre-training process, including the construction of training data, hyper-parameter settings, long-
context extension techniques, the associated evaluations, as well as some discussions (Section 4).
Thereafter, we discuss our efforts on post-training, which include Supervised Fine-Tuning (SFT),
Reinforcement Learning (RL), the corresponding evaluations, and discussions (Section 5). Lastly,
we conclude this work, discuss existing limitations of DeepSeek-V3, and propose potential
directions for future research (Section 6).

2. Architecture

We first introduce the basic architecture of DeepSeek-V3, featured by Multi-head Latent Atten-
tion (MLA) (DeepSeek-AI, 2024c) for efficient inference and DeepSeekMoE (Dai et al., 2024)
for economical training. Then, we present a Multi-Token Prediction (MTP) training objective,
which we have observed to enhance the overall performance on evaluation benchmarks. For
other minor details not explicitly mentioned, DeepSeek-V3 adheres to the settings of DeepSeek-
V2 (DeepSeek-AI, 2024c).

2.1. Basic Architecture

The basic architecture of DeepSeek-V3 is still within the Transformer (Vaswani et al., 2017)
framework. For efficient inference and economical training, DeepSeek-V3 also adopts MLA
and DeepSeekMoE, which have been thoroughly validated by DeepSeek-V2. Compared with
DeepSeek-V2, an exception is that we additionally introduce an auxiliary-loss-free load balancing
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Figure 2 | Illustration of the basic architecture of DeepSeek-V3. Following DeepSeek-V2, we
adopt MLA and DeepSeekMoE for efficient inference and economical training.

strategy (Wang et al., 2024a) for DeepSeekMoE to mitigate the performance degradation induced
by the effort to ensure load balance. Figure 2 illustrates the basic architecture of DeepSeek-V3,
and we will briefly review the details of MLA and DeepSeekMoE in this section.

2.1.1. Multi-Head Latent Attention

For attention, DeepSeek-V3 adopts the MLA architecture. Let 𝑑 denote the embedding dimen-
sion, 𝑛ℎ denote the number of attention heads, 𝑑ℎ denote the dimension per head, and h𝑡 ∈ R𝑑

denote the attention input for the 𝑡-th token at a given attention layer. The core of MLA is the
low-rank joint compression for attention keys and values to reduce Key-Value (KV) cache during
inference:

c𝐾𝑉𝑡 =𝑊𝐷𝐾𝑉h𝑡, (1)

[k𝐶
𝑡,1; k𝐶

𝑡,2; ...; k𝐶
𝑡,𝑛ℎ] = k𝐶

𝑡 =𝑊𝑈𝐾c𝐾𝑉𝑡 , (2)

k𝑅
𝑡 = RoPE(𝑊𝐾𝑅h𝑡), (3)

k𝑡,𝑖 = [k𝐶
𝑡,𝑖; k𝑅

𝑡 ], (4)

[v𝐶𝑡,1; v𝐶𝑡,2; ...; v𝐶𝑡,𝑛ℎ] = v𝐶𝑡 =𝑊𝑈𝑉c𝐾𝑉𝑡 , (5)

7



where c𝐾𝑉𝑡 ∈ R𝑑𝑐 is the compressed latent vector for keys and values; 𝑑𝑐 (≪ 𝑑ℎ𝑛ℎ) indicates the KV
compression dimension; 𝑊𝐷𝐾𝑉 ∈ R𝑑𝑐×𝑑 denotes the down-projection matrix; 𝑊𝑈𝐾 ,𝑊𝑈𝑉 ∈ R𝑑ℎ𝑛ℎ×𝑑𝑐

are the up-projection matrices for keys and values, respectively; 𝑊𝐾𝑅 ∈ R𝑑𝑅
ℎ
×𝑑 is the matrix used

to produce the decoupled key that carries Rotary Positional Embedding (RoPE) (Su et al., 2024);
RoPE(·) denotes the operation that applies RoPE matrices; and [·; ·] denotes concatenation. Note
that for MLA, only the blue-boxed vectors (i.e., c𝐾𝑉𝑡 and k𝑅

𝑡 ) need to be cached during generation,
which results in significantly reduced KV cache while maintaining performance comparable to
standard Multi-Head Attention (MHA) (Vaswani et al., 2017).

For the attention queries, we also perform a low-rank compression, which can reduce the
activation memory during training:

c𝑄𝑡 =𝑊𝐷𝑄h𝑡, (6)

[q𝐶
𝑡,1; q𝐶

𝑡,2; ...; q𝐶
𝑡,𝑛ℎ] = q𝐶

𝑡 =𝑊𝑈𝑄c𝑄𝑡 , (7)

[q𝑅
𝑡,1; q𝑅

𝑡,2; ...; q𝑅
𝑡,𝑛ℎ] = q𝑅

𝑡 = RoPE(𝑊𝑄𝑅c𝑄𝑡 ), (8)

q𝑡,𝑖 = [q𝐶
𝑡,𝑖; q𝑅

𝑡,𝑖], (9)

where c𝑄𝑡 ∈ R𝑑′𝑐 is the compressed latent vector for queries; 𝑑′𝑐 (≪ 𝑑ℎ𝑛ℎ) denotes the query
compression dimension;𝑊𝐷𝑄 ∈ R𝑑′𝑐×𝑑 ,𝑊𝑈𝑄 ∈ R𝑑ℎ𝑛ℎ×𝑑′𝑐 are the down-projection and up-projection
matrices for queries, respectively; and 𝑊𝑄𝑅 ∈ R𝑑𝑅

ℎ
𝑛ℎ×𝑑′𝑐 is the matrix to produce the decoupled

queries that carry RoPE.

Ultimately, the attention queries (q𝑡,𝑖), keys (k 𝑗,𝑖), and values (v𝐶
𝑗,𝑖) are combined to yield the

final attention output u𝑡:

o𝑡,𝑖 =
𝑡∑︁
𝑗=1

Softmax 𝑗 (
q𝑇
𝑡,𝑖k 𝑗,𝑖√︃
𝑑ℎ + 𝑑𝑅ℎ

)v𝐶𝑗,𝑖, (10)

u𝑡 =𝑊
𝑂 [o𝑡,1; o𝑡,2; ...; o𝑡,𝑛ℎ], (11)

where 𝑊𝑂 ∈ R𝑑×𝑑ℎ𝑛ℎ denotes the output projection matrix.

2.1.2. DeepSeekMoE with Auxiliary-Loss-Free Load Balancing

Basic Architecture of DeepSeekMoE. For Feed-Forward Networks (FFNs), DeepSeek-V3
employs the DeepSeekMoE architecture (Dai et al., 2024). Compared with traditional MoE
architectures like GShard (Lepikhin et al., 2021), DeepSeekMoE uses finer-grained experts and
isolates some experts as shared ones. Let u𝑡 denote the FFN input of the 𝑡-th token, we compute
the FFN output h′

𝑡 as follows:

h′
𝑡 = u𝑡 +

𝑁𝑠∑︁
𝑖=1

FFN(𝑠)
𝑖

(u𝑡) +
𝑁𝑟∑︁
𝑖=1

𝑔𝑖,𝑡 FFN(𝑟)
𝑖

(u𝑡), (12)

𝑔𝑖,𝑡 =
𝑔′
𝑖,𝑡∑𝑁𝑟

𝑗=1 𝑔
′
𝑗,𝑡

, (13)

𝑔′𝑖,𝑡 =

{
𝑠𝑖,𝑡, 𝑠𝑖,𝑡 ∈ Topk({𝑠 𝑗,𝑡 |1 ⩽ 𝑗 ⩽ 𝑁𝑟}, 𝐾𝑟),
0, otherwise,

(14)

𝑠𝑖,𝑡 = Sigmoid
(
u𝑡

𝑇e𝑖
)

, (15)
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where 𝑁𝑠 and 𝑁𝑟 denote the numbers of shared experts and routed experts, respectively; FFN(𝑠)
𝑖

(·)
and FFN(𝑟)

𝑖
(·) denote the 𝑖-th shared expert and the 𝑖-th routed expert, respectively; 𝐾𝑟 denotes

the number of activated routed experts; 𝑔𝑖,𝑡 is the gating value for the 𝑖-th expert; 𝑠𝑖,𝑡 is the
token-to-expert affinity; e𝑖 is the centroid vector of the 𝑖-th routed expert; and Topk(·, 𝐾) denotes
the set comprising 𝐾 highest scores among the affinity scores calculated for the 𝑡-th token and
all routed experts. Slightly different from DeepSeek-V2, DeepSeek-V3 uses the sigmoid function
to compute the affinity scores, and applies a normalization among all selected affinity scores to
produce the gating values.

Auxiliary-Loss-Free Load Balancing. For MoE models, an unbalanced expert load will lead to
routing collapse (Shazeer et al., 2017) and diminish computational efficiency in scenarios with
expert parallelism. Conventional solutions usually rely on the auxiliary loss (Fedus et al., 2021;
Lepikhin et al., 2021) to avoid unbalanced load. However, too large an auxiliary loss will impair
the model performance (Wang et al., 2024a). To achieve a better trade-off between load balance
and model performance, we pioneer an auxiliary-loss-free load balancing strategy (Wang et al.,
2024a) to ensure load balance. To be specific, we introduce a bias term 𝑏𝑖 for each expert and
add it to the corresponding affinity scores 𝑠𝑖,𝑡 to determine the top-K routing:

𝑔′𝑖,𝑡 =

{
𝑠𝑖,𝑡, 𝑠𝑖,𝑡 + 𝑏𝑖 ∈ Topk({𝑠 𝑗,𝑡 + 𝑏 𝑗 |1 ⩽ 𝑗 ⩽ 𝑁𝑟}, 𝐾𝑟),
0, otherwise.

(16)

Note that the bias term is only used for routing. The gating value, which will be multiplied with
the FFN output, is still derived from the original affinity score 𝑠𝑖,𝑡. During training, we keep
monitoring the expert load on the whole batch of each training step. At the end of each step,
we will decrease the bias term by 𝛾 if its corresponding expert is overloaded, and increase it by
𝛾 if its corresponding expert is underloaded, where 𝛾 is a hyper-parameter called bias update
speed. Through the dynamic adjustment, DeepSeek-V3 keeps balanced expert load during
training, and achieves better performance than models that encourage load balance through
pure auxiliary losses.

Complementary Sequence-Wise Auxiliary Loss. Although DeepSeek-V3 mainly relies on the
auxiliary-loss-free strategy for load balance, to prevent extreme imbalance within any single
sequence, we also employ a complementary sequence-wise balance loss:

LBal = 𝛼

𝑁𝑟∑︁
𝑖=1

𝑓𝑖𝑃𝑖, (17)

𝑓𝑖 =
𝑁𝑟

𝐾𝑟𝑇

𝑇∑︁
𝑡=1

1
(
𝑠𝑖,𝑡 ∈ Topk({𝑠 𝑗,𝑡 |1 ⩽ 𝑗 ⩽ 𝑁𝑟}, 𝐾𝑟)

)
, (18)

𝑠′𝑖,𝑡 =
𝑠𝑖,𝑡∑𝑁𝑟
𝑗=1 𝑠 𝑗,𝑡

, (19)

𝑃𝑖 =
1
𝑇

𝑇∑︁
𝑡=1

𝑠′𝑖,𝑡, (20)

where the balance factor 𝛼 is a hyper-parameter, which will be assigned an extremely small
value for DeepSeek-V3; 1(·) denotes the indicator function; and 𝑇 denotes the number of tokens
in a sequence. The sequence-wise balance loss encourages the expert load on each sequence to
be balanced.
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Figure 3 | Illustration of our Multi-Token Prediction (MTP) implementation. We keep the
complete causal chain for the prediction of each token at each depth.

Node-Limited Routing. Like the device-limited routing used by DeepSeek-V2, DeepSeek-V3
also uses a restricted routing mechanism to limit communication costs during training. In short,
we ensure that each token will be sent to at most 𝑀 nodes, which are selected according to
the sum of the highest 𝐾𝑟

𝑀
affinity scores of the experts distributed on each node. Under this

constraint, our MoE training framework can nearly achieve full computation-communication
overlap.

No Token-Dropping. Due to the effective load balancing strategy, DeepSeek-V3 keeps a good
load balance during its full training. Therefore, DeepSeek-V3 does not drop any tokens during
training. In addition, we also implement specific deployment strategies to ensure inference load
balance, so DeepSeek-V3 also does not drop tokens during inference.

2.2. Multi-Token Prediction

Inspired by Gloeckle et al. (2024), we investigate and set a Multi-Token Prediction (MTP)
objective for DeepSeek-V3, which extends the prediction scope to multiple future tokens at each
position. On the one hand, an MTP objective densifies the training signals and may improve
data efficiency. On the other hand, MTP may enable the model to pre-plan its representations
for better prediction of future tokens. Figure 3 illustrates our implementation of MTP. Different
from Gloeckle et al. (2024), which parallelly predicts 𝐷 additional tokens using independent
output heads, we sequentially predict additional tokens and keep the complete causal chain at
each prediction depth. We introduce the details of our MTP implementation in this section.

MTP Modules. To be specific, our MTP implementation uses 𝐷 sequential modules to predict 𝐷
additional tokens. The 𝑘-th MTP module consists of a shared embedding layer Emb(·), a shared
output head OutHead(·), a Transformer block TRM𝑘 (·), and a projection matrix 𝑀𝑘 ∈ R𝑑×2𝑑 . For
the 𝑖-th input token 𝑡𝑖, at the 𝑘-th prediction depth, we first combine the representation of the 𝑖-th
token at the (𝑘 − 1)-th depth h𝑘−1

𝑖
∈ R𝑑 and the embedding of the (𝑖 + 𝑘)-th token 𝐸𝑚𝑏(𝑡𝑖+𝑘) ∈ R𝑑
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with the linear projection:

h′𝑘
𝑖 = 𝑀𝑘 [RMSNorm(h𝑘−1

𝑖 ); RMSNorm(Emb(𝑡𝑖+𝑘))], (21)

where [·; ·] denotes concatenation. Especially, when 𝑘 = 1, h𝑘−1
𝑖

refers to the representation given
by the main model. Note that for each MTP module, its embedding layer is shared with the
main model. The combined h′𝑘

𝑖
serves as the input of the Transformer block at the 𝑘-th depth to

produce the output representation at the current depth h𝑘
𝑖
:

h𝑘
1:𝑇−𝑘 = TRM𝑘 (h′𝑘

1:𝑇−𝑘), (22)

where 𝑇 represents the input sequence length and 𝑖: 𝑗 denotes the slicing operation (inclusive of
both the left and right boundaries). Finally, taking h𝑘

𝑖
as the input, the shared output head will

compute the probability distribution for the 𝑘-th additional prediction token 𝑃𝑘
𝑖+1+𝑘 ∈ R𝑉 , where

𝑉 is the vocabulary size:
𝑃𝑘𝑖+𝑘+1 = OutHead(h𝑘

𝑖 ). (23)

The output head OutHead(·) linearly maps the representation to logits and subsequently applies
the Softmax(·) function to compute the prediction probabilities of the 𝑘-th additional token.
Also, for each MTP module, its output head is shared with the main model. Our principle of
maintaining the causal chain of predictions is similar to that of EAGLE (Li et al., 2024b), but its
primary objective is speculative decoding (Leviathan et al., 2023; Xia et al., 2023), whereas we
utilize MTP to improve training.

MTP Training Objective. For each prediction depth, we compute a cross-entropy loss L𝑘
MTP:

L𝑘
MTP = CrossEntropy(𝑃𝑘2+𝑘:𝑇+1, 𝑡2+𝑘:𝑇+1) = −1

𝑇

𝑇+1∑︁
𝑖=2+𝑘

log 𝑃𝑘𝑖 [𝑡𝑖], (24)

where 𝑇 denotes the input sequence length, 𝑡𝑖 denotes the ground-truth token at the 𝑖-th position,
and 𝑃𝑘

𝑖
[𝑡𝑖] denotes the corresponding prediction probability of 𝑡𝑖, given by the 𝑘-th MTP module.

Finally, we compute the average of the MTP losses across all depths and multiply it by a
weighting factor 𝜆 to obtain the overall MTP loss LMTP, which serves as an additional training
objective for DeepSeek-V3:

LMTP =
𝜆

𝐷

𝐷∑︁
𝑘=1

L𝑘
MTP. (25)

MTP in Inference. Our MTP strategy mainly aims to improve the performance of the main
model, so during inference, we can directly discard the MTP modules and the main model can
function independently and normally. Additionally, we can also repurpose these MTP modules
for speculative decoding to further improve the generation latency.

3. Infrastructures

3.1. Compute Clusters

DeepSeek-V3 is trained on a cluster equipped with 2048 NVIDIA H800 GPUs. Each node in
the H800 cluster contains 8 GPUs connected by NVLink and NVSwitch within nodes. Across
different nodes, InfiniBand (IB) interconnects are utilized to facilitate communications.
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Computation MLP(B)▲ MLP(W)▲ MLP(F)△ ATTN(B)▲ ATTN(W)▲ ATTN(F)△
Communication DISPATCH(F)△ DISPATCH(B)▲ COMBINE(F)△ PP COMBINE(B)▲

Time ➔

△ Forward chunk ▲ Backward chunk

Figure 4 | Overlapping strategy for a pair of individual forward and backward chunks (the
boundaries of the transformer blocks are not aligned). Orange denotes forward, green denotes
"backward for input", blue denotes "backward for weights", purple denotes PP communication,
and red denotes barriers. Both all-to-all and PP communication can be fully hidden.

3.2. Training Framework

The training of DeepSeek-V3 is supported by the HAI-LLM framework, an efficient and
lightweight training framework crafted by our engineers from the ground up. On the whole,
DeepSeek-V3 applies 16-way Pipeline Parallelism (PP) (Qi et al., 2023a), 64-way Expert Paral-
lelism (EP) (Lepikhin et al., 2021) spanning 8 nodes, and ZeRO-1 Data Parallelism (DP) (Rajb-
handari et al., 2020).

In order to facilitate efficient training of DeepSeek-V3, we implement meticulous engineering
optimizations. Firstly, we design the DualPipe algorithm for efficient pipeline parallelism.
Compared with existing PP methods, DualPipe has fewer pipeline bubbles. More importantly, it
overlaps the computation and communication phases across forward and backward processes,
thereby addressing the challenge of heavy communication overhead introduced by cross-node
expert parallelism. Secondly, we develop efficient cross-node all-to-all communication kernels
to fully utilize IB and NVLink bandwidths and conserve Streaming Multiprocessors (SMs)
dedicated to communication. Finally, we meticulously optimize the memory footprint during
training, thereby enabling us to train DeepSeek-V3 without using costly Tensor Parallelism (TP).

3.2.1. DualPipe and Computation-Communication Overlap

For DeepSeek-V3, the communication overhead introduced by cross-node expert parallelism
results in an inefficient computation-to-communication ratio of approximately 1:1. To tackle this
challenge, we design an innovative pipeline parallelism algorithm called DualPipe, which not
only accelerates model training by effectively overlapping forward and backward computation-
communication phases, but also reduces the pipeline bubbles.

The key idea of DualPipe is to overlap the computation and communication within a pair of
individual forward and backward chunks. To be specific, we divide each chunk into four compo-
nents: attention, all-to-all dispatch, MLP, and all-to-all combine. Specially, for
a backward chunk, both attention and MLP are further split into two parts, backward for
input and backward for weights, like in ZeroBubble (Qi et al., 2023b). In addition, we
have a PP communication component. As illustrated in Figure 4, for a pair of forward and
backward chunks, we rearrange these components and manually adjust the ratio of GPU SMs
dedicated to communication versus computation. In this overlapping strategy, we can ensure
that both all-to-all and PP communication can be fully hidden during execution. Given the
efficient overlapping strategy, the full DualPipe scheduling is illustrated in Figure 5. It employs
a bidirectional pipeline scheduling, which feeds micro-batches from both ends of the pipeline
simultaneously and a significant portion of communications can be fully overlapped. This
overlap also ensures that, as the model further scales up, as long as we maintain a constant
computation-to-communication ratio, we can still employ fine-grained experts across nodes
while achieving a near-zero all-to-all communication overhead.
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Device 0 0 1 2 3 4 5 6 7 0 8 1 9 2 3 4 5 6 6 7 7 8 8 9 9
Device 1 0 1 2 3 4 5 6 0 7 1 8 2 9 3 4 5 6 7 8 7 9 8 9
Device 2 0 1 2 3 4 5 0 6 1 7 2 8 3 9 4 5 6 7 8 7 9 8 9
Device 3 0 1 2 3 4 0 5 1 6 2 7 3 8 4 9 5 6 7 8 9 8 9
Device 4 0 1 2 3 0 4 1 5 2 6 3 7 4 8 5 9 6 7 8 9 8 9
Device 5 0 1 2 0 0 3 1 4 2 5 3 6 4 7 5 8 6 9 7 8 9 9
Device 6 0 1 0 0 2 1 1 3 2 4 3 5 4 6 5 7 6 8 7 9 8 9 9
Device 7 0 0 0 1 1 1 2 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

Time ➔

Forward Backward Backward for input Backward for weights Overlapped forward & Backward

Figure 5 | Example DualPipe scheduling for 8 PP ranks and 20 micro-batches in two directions.
The micro-batches in the reverse direction are symmetric to those in the forward direction, so
we omit their batch ID for illustration simplicity. Two cells enclosed by a shared black border
have mutually overlapped computation and communication.

Method Bubble Parameter Activation

1F1B (𝑃𝑃 − 1) (𝐹 + 𝐵) 1× 𝑃𝑃

ZB1P (𝑃𝑃 − 1) (𝐹 + 𝐵 − 2𝑊) 1× 𝑃𝑃

DualPipe (Ours) ( 𝑃𝑃2 − 1) (𝐹&𝐵 + 𝐵 − 3𝑊) 2× 𝑃𝑃 + 1

Table 2 | Comparison of pipeline bubbles and memory usage across different pipeline parallel
methods. 𝐹 denotes the execution time of a forward chunk, 𝐵 denotes the execution time of a
full backward chunk, 𝑊 denotes the execution time of a "backward for weights" chunk, and 𝐹&𝐵

denotes the execution time of two mutually overlapped forward and backward chunks.

In addition, even in more general scenarios without a heavy communication burden, Du-
alPipe still exhibits efficiency advantages. In Table 2, we summarize the pipeline bubbles and
memory usage across different PP methods. As shown in the table, compared with ZB1P (Qi
et al., 2023b) and 1F1B (Harlap et al., 2018), DualPipe significantly reduces the pipeline bubbles
while only increasing the peak activation memory by 1

𝑃𝑃
times. Although DualPipe requires

keeping two copies of the model parameters, this does not significantly increase the memory
consumption since we use a large EP size during training. Compared with Chimera (Li and
Hoefler, 2021), DualPipe only requires that the pipeline stages and micro-batches be divisible by
2, without requiring micro-batches to be divisible by pipeline stages. In addition, for DualPipe,
neither the bubbles nor activation memory will increase as the number of micro-batches grows.

3.2.2. Efficient Implementation of Cross-Node All-to-All Communication

In order to ensure sufficient computational performance for DualPipe, we customize efficient
cross-node all-to-all communication kernels (including dispatching and combining) to conserve
the number of SMs dedicated to communication. The implementation of the kernels is co-
designed with the MoE gating algorithm and the network topology of our cluster. To be specific,
in our cluster, cross-node GPUs are fully interconnected with IB, and intra-node communications
are handled via NVLink. NVLink offers a bandwidth of 160 GB/s, roughly 3.2 times that of IB
(50 GB/s). To effectively leverage the different bandwidths of IB and NVLink, we limit each
token to be dispatched to at most 4 nodes, thereby reducing IB traffic. For each token, when its
routing decision is made, it will first be transmitted via IB to the GPUs with the same in-node
index on its target nodes. Once it reaches the target nodes, we will endeavor to ensure that it is
instantaneously forwarded via NVLink to specific GPUs that host their target experts, without
being blocked by subsequently arriving tokens. In this way, communications via IB and NVLink
are fully overlapped, and each token can efficiently select an average of 3.2 experts per node
without incurring additional overhead from NVLink. This implies that, although DeepSeek-V3
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selects only 8 routed experts in practice, it can scale up this number to a maximum of 13 experts
(4 nodes × 3.2 experts/node) while preserving the same communication cost. Overall, under
such a communication strategy, only 20 SMs are sufficient to fully utilize the bandwidths of IB
and NVLink.

In detail, we employ the warp specialization technique (Bauer et al., 2014) and partition
20 SMs into 10 communication channels. During the dispatching process, (1) IB sending, (2)
IB-to-NVLink forwarding, and (3) NVLink receiving are handled by respective warps. The
number of warps allocated to each communication task is dynamically adjusted according to the
actual workload across all SMs. Similarly, during the combining process, (1) NVLink sending,
(2) NVLink-to-IB forwarding and accumulation, and (3) IB receiving and accumulation are also
handled by dynamically adjusted warps. In addition, both dispatching and combining kernels
overlap with the computation stream, so we also consider their impact on other SM computation
kernels. Specifically, we employ customized PTX (Parallel Thread Execution) instructions and
auto-tune the communication chunk size, which significantly reduces the use of the L2 cache
and the interference to other SMs.

3.2.3. Extremely Memory Saving with Minimal Overhead

In order to reduce the memory footprint during training, we employ the following techniques.

Recomputation of RMSNorm and MLA Up-Projection. We recompute all RMSNorm op-
erations and MLA up-projections during back-propagation, thereby eliminating the need to
persistently store their output activations. With a minor overhead, this strategy significantly
reduces memory requirements for storing activations.

Exponential Moving Average in CPU. During training, we preserve the Exponential Mov-
ing Average (EMA) of the model parameters for early estimation of the model performance
after learning rate decay. The EMA parameters are stored in CPU memory and are updated
asynchronously after each training step. This method allows us to maintain EMA parameters
without incurring additional memory or time overhead.

Shared Embedding and Output Head for Multi-Token Prediction. With the DualPipe strategy,
we deploy the shallowest layers (including the embedding layer) and deepest layers (including
the output head) of the model on the same PP rank. This arrangement enables the physical
sharing of parameters and gradients, of the shared embedding and output head, between the
MTP module and the main model. This physical sharing mechanism further enhances our
memory efficiency.

3.3. FP8 Training

Inspired by recent advances in low-precision training (Dettmers et al., 2022; Noune et al., 2022;
Peng et al., 2023b), we propose a fine-grained mixed precision framework utilizing the FP8
data format for training DeepSeek-V3. While low-precision training holds great promise, it
is often limited by the presence of outliers in activations, weights, and gradients (Fishman
et al., 2024; He et al.; Sun et al., 2024). Although significant progress has been made in in-
ference quantization (Frantar et al., 2022; Xiao et al., 2023), there are relatively few studies
demonstrating successful application of low-precision techniques in large-scale language model
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Figure 6 | The overall mixed precision framework with FP8 data format. For clarification, only
the Linear operator is illustrated.

pre-training (Fishman et al., 2024). To address this challenge and effectively extend the dynamic
range of the FP8 format, we introduce a fine-grained quantization strategy: tile-wise grouping
with 1 × 𝑁𝑐 elements or block-wise grouping with 𝑁𝑐 × 𝑁𝑐 elements. The associated dequantiza-
tion overhead is largely mitigated under our increased-precision accumulation process, a critical
aspect for achieving accurate FP8 General Matrix Multiplication (GEMM). Moreover, to further
reduce memory and communication overhead in MoE training, we cache and dispatch activa-
tions in FP8, while storing low-precision optimizer states in BF16. We validate the proposed FP8
mixed precision framework on two model scales similar to DeepSeek-V2-Lite and DeepSeek-
V2, training for approximately 1 trillion tokens (see more details in Appendix B.1). Notably,
compared with the BF16 baseline, the relative loss error of our FP8-training model remains
consistently below 0.25%, a level well within the acceptable range of training randomness.

3.3.1. Mixed Precision Framework

Building upon widely adopted techniques in low-precision training (Kalamkar et al., 2019;
Narang et al., 2017), we propose a mixed precision framework for FP8 training. In this frame-
work, most compute-density operations are conducted in FP8, while a few key operations
are strategically maintained in their original data formats to balance training efficiency and
numerical stability. The overall framework is illustrated in Figure 6.

Firstly, in order to accelerate model training, the majority of core computation kernels, i.e.,
GEMM operations, are implemented in FP8 precision. These GEMM operations accept FP8
tensors as inputs and produce outputs in BF16 or FP32. As depicted in Figure 6, all three GEMMs
associated with the Linear operator, namely Fprop (forward pass), Dgrad (activation backward
pass), and Wgrad (weight backward pass), are executed in FP8. This design theoretically doubles
the computational speed compared with the original BF16 method. Additionally, the FP8 Wgrad
GEMM allows activations to be stored in FP8 for use in the backward pass. This significantly
reduces memory consumption.

Despite the efficiency advantage of the FP8 format, certain operators still require a higher
precision due to their sensitivity to low-precision computations. Besides, some low-cost opera-
tors can also utilize a higher precision with a negligible overhead to the overall training cost. For
this reason, after careful investigations, we maintain the original precision (e.g., BF16 or FP32)
for the following components: the embedding module, the output head, MoE gating modules,
normalization operators, and attention operators. These targeted retentions of high precision
ensure stable training dynamics for DeepSeek-V3. To further guarantee numerical stability, we
store the master weights, weight gradients, and optimizer states in higher precision. While
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these high-precision components incur some memory overheads, their impact can be minimized
through efficient sharding across multiple DP ranks in our distributed training system.

3.3.2. Improved Precision from Quantization and Multiplication

Based on our mixed precision FP8 framework, we introduce several strategies to enhance low-
precision training accuracy, focusing on both the quantization method and the multiplication
process.

Fine-Grained Quantization. In low-precision training frameworks, overflows and underflows
are common challenges due to the limited dynamic range of the FP8 format, which is constrained
by its reduced exponent bits. As a standard practice, the input distribution is aligned to the
representable range of the FP8 format by scaling the maximum absolute value of the input
tensor to the maximum representable value of FP8 (Narang et al., 2017). This method makes low-
precision training highly sensitive to activation outliers, which can heavily degrade quantization
accuracy. To solve this, we propose a fine-grained quantization method that applies scaling
at a more granular level. As illustrated in Figure 7 (a), (1) for activations, we group and
scale elements on a 1x128 tile basis (i.e., per token per 128 channels); and (2) for weights, we
group and scale elements on a 128x128 block basis (i.e., per 128 input channels per 128 output
channels). This approach ensures that the quantization process can better accommodate outliers
by adapting the scale according to smaller groups of elements. In Appendix B.2, we further
discuss the training instability when we group and scale activations on a block basis in the same
way as weights quantization.

One key modification in our method is the introduction of per-group scaling factors along
the inner dimension of GEMM operations. This functionality is not directly supported in the
standard FP8 GEMM. However, combined with our precise FP32 accumulation strategy, it can
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be efficiently implemented.

Notably, our fine-grained quantization strategy is highly consistent with the idea of mi-
croscaling formats (Rouhani et al., 2023b), while the Tensor Cores of NVIDIA next-generation
GPUs (Blackwell series) have announced the support for microscaling formats with smaller
quantization granularity (NVIDIA, 2024a). We hope our design can serve as a reference for
future work to keep pace with the latest GPU architectures.

Increasing Accumulation Precision. Low-precision GEMM operations often suffer from un-
derflow issues, and their accuracy largely depends on high-precision accumulation, which is
commonly performed in an FP32 precision (Kalamkar et al., 2019; Narang et al., 2017). However,
we observe that the accumulation precision of FP8 GEMM on NVIDIA H800 GPUs is limited to
retaining around 14 bits, which is significantly lower than FP32 accumulation precision. This
problem will become more pronounced when the inner dimension K is large (Wortsman et al.,
2023), a typical scenario in large-scale model training where the batch size and model width
are increased. Taking GEMM operations of two random matrices with K = 4096 for example, in
our preliminary test, the limited accumulation precision in Tensor Cores results in a maximum
relative error of nearly 2%. Despite these problems, the limited accumulation precision is still
the default option in a few FP8 frameworks (NVIDIA, 2024b), severely constraining the training
accuracy.

In order to address this issue, we adopt the strategy of promotion to CUDA Cores for
higher precision (Thakkar et al., 2023). The process is illustrated in Figure 7 (b). To be specific,
during MMA (Matrix Multiply-Accumulate) execution on Tensor Cores, intermediate results
are accumulated using the limited bit width. Once an interval of 𝑁𝐶 is reached, these partial
results will be copied to FP32 registers on CUDA Cores, where full-precision FP32 accumulation
is performed. As mentioned before, our fine-grained quantization applies per-group scaling
factors along the inner dimension K. These scaling factors can be efficiently multiplied on the
CUDA Cores as the dequantization process with minimal additional computational cost.

It is worth noting that this modification reduces the WGMMA (Warpgroup-level Matrix
Multiply-Accumulate) instruction issue rate for a single warpgroup. However, on the H800
architecture, it is typical for two WGMMA to persist concurrently: while one warpgroup
performs the promotion operation, the other is able to execute the MMA operation. This design
enables overlapping of the two operations, maintaining high utilization of Tensor Cores. Based
on our experiments, setting 𝑁𝐶 = 128 elements, equivalent to 4 WGMMAs, represents the
minimal accumulation interval that can significantly improve precision without introducing
substantial overhead.

Mantissa over Exponents. In contrast to the hybrid FP8 format adopted by prior work
(NVIDIA, 2024b; Peng et al., 2023b; Sun et al., 2019b), which uses E4M3 (4-bit exponent and
3-bit mantissa) in Fprop and E5M2 (5-bit exponent and 2-bit mantissa) in Dgrad and Wgrad,
we adopt the E4M3 format on all tensors for higher precision. We attribute the feasibility of
this approach to our fine-grained quantization strategy, i.e., tile and block-wise scaling. By
operating on smaller element groups, our methodology effectively shares exponent bits among
these grouped elements, mitigating the impact of the limited dynamic range.

Online Quantization. Delayed quantization is employed in tensor-wise quantization frame-
works (NVIDIA, 2024b; Peng et al., 2023b), which maintains a history of the maximum absolute
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values across prior iterations to infer the current value. In order to ensure accurate scales and
simplify the framework, we calculate the maximum absolute value online for each 1x128 acti-
vation tile or 128x128 weight block. Based on it, we derive the scaling factor and then quantize
the activation or weight online into the FP8 format.

3.3.3. Low-Precision Storage and Communication

In conjunction with our FP8 training framework, we further reduce the memory consumption
and communication overhead by compressing cached activations and optimizer states into
lower-precision formats.

Low-Precision Optimizer States. We adopt the BF16 data format instead of FP32 to track the
first and second moments in the AdamW (Loshchilov and Hutter, 2017) optimizer, without
incurring observable performance degradation. However, the master weights (stored by the
optimizer) and gradients (used for batch size accumulation) are still retained in FP32 to ensure
numerical stability throughout training.

Low-Precision Activation. As illustrated in Figure 6, the Wgrad operation is performed in FP8.
To reduce the memory consumption, it is a natural choice to cache activations in FP8 format
for the backward pass of the Linear operator. However, special considerations are taken on
several operators for low-cost high-precision training:

(1) Inputs of the Linear after the attention operator. These activations are also
used in the backward pass of the attention operator, which makes it sensitive to
precision. We adopt a customized E5M6 data format exclusively for these activations.
Additionally, these activations will be converted from an 1x128 quantization tile to
an 128x1 tile in the backward pass. To avoid introducing extra quantization error,
all the scaling factors are round scaled, i.e., integral power of 2.

(2) Inputs of the SwiGLU operator in MoE. To further reduce the memory cost, we
cache the inputs of the SwiGLU operator and recompute its output in the backward
pass. These activations are also stored in FP8 with our fine-grained quantization
method, striking a balance between memory efficiency and computational accuracy.

Low-Precision Communication. Communication bandwidth is a critical bottleneck in the
training of MoE models. To alleviate this challenge, we quantize the activation before MoE
up-projections into FP8 and then apply dispatch components, which is compatible with
FP8 Fprop in MoE up-projections. Like the inputs of the Linear after the attention operator,
scaling factors for this activation are integral power of 2. A similar strategy is applied to the
activation gradient before MoE down-projections. For both the forward and backward combine
components, we retain them in BF16 to preserve training precision in critical parts of the training
pipeline.

3.4. Inference and Deployment

We deploy DeepSeek-V3 on the H800 cluster, where GPUs within each node are interconnected
using NVLink, and all GPUs across the cluster are fully interconnected via IB. To simultaneously
ensure both the Service-Level Objective (SLO) for online services and high throughput, we
employ the following deployment strategy that separates the prefilling and decoding stages.
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3.4.1. Prefilling

The minimum deployment unit of the prefilling stage consists of 4 nodes with 32 GPUs. The
attention part employs 4-way Tensor Parallelism (TP4) with Sequence Parallelism (SP), com-
bined with 8-way Data Parallelism (DP8). Its small TP size of 4 limits the overhead of TP
communication. For the MoE part, we use 32-way Expert Parallelism (EP32), which ensures that
each expert processes a sufficiently large batch size, thereby enhancing computational efficiency.
For the MoE all-to-all communication, we use the same method as in training: first transferring
tokens across nodes via IB, and then forwarding among the intra-node GPUs via NVLink. In
particular, we use 1-way Tensor Parallelism for the dense MLPs in shallow layers to save TP
communication.

To achieve load balancing among different experts in the MoE part, we need to ensure that
each GPU processes approximately the same number of tokens. To this end, we introduce a
deployment strategy of redundant experts, which duplicates high-load experts and deploys them
redundantly. The high-load experts are detected based on statistics collected during the online
deployment and are adjusted periodically (e.g., every 10 minutes). After determining the set
of redundant experts, we carefully rearrange experts among GPUs within a node based on the
observed loads, striving to balance the load across GPUs as much as possible without increasing
the cross-node all-to-all communication overhead. For the deployment of DeepSeek-V3, we set
32 redundant experts for the prefilling stage. For each GPU, besides the original 8 experts it
hosts, it will also host one additional redundant expert.

Furthermore, in the prefilling stage, to improve the throughput and hide the overhead of
all-to-all and TP communication, we simultaneously process two micro-batches with similar
computational workloads, overlapping the attention and MoE of one micro-batch with the
dispatch and combine of another.

Finally, we are exploring a dynamic redundancy strategy for experts, where each GPU hosts
more experts (e.g., 16 experts), but only 9 will be activated during each inference step. Before
the all-to-all operation at each layer begins, we compute the globally optimal routing scheme
on the fly. Given the substantial computation involved in the prefilling stage, the overhead of
computing this routing scheme is almost negligible.

3.4.2. Decoding

During decoding, we treat the shared expert as a routed one. From this perspective, each token
will select 9 experts during routing, where the shared expert is regarded as a heavy-load one
that will always be selected. The minimum deployment unit of the decoding stage consists
of 40 nodes with 320 GPUs. The attention part employs TP4 with SP, combined with DP80,
while the MoE part uses EP320. For the MoE part, each GPU hosts only one expert, and 64 GPUs
are responsible for hosting redundant experts and shared experts. All-to-all communication
of the dispatch and combine parts is performed via direct point-to-point transfers over IB to
achieve low latency. Additionally, we leverage the IBGDA (NVIDIA, 2022) technology to further
minimize latency and enhance communication efficiency.

Similar to prefilling, we periodically determine the set of redundant experts in a certain
interval, based on the statistical expert load from our online service. However, we do not need
to rearrange experts since each GPU only hosts one expert. We are also exploring the dynamic
redundancy strategy for decoding. However, this requires more careful optimization of the
algorithm that computes the globally optimal routing scheme and the fusion with the dispatch
kernel to reduce overhead.

19



Additionally, to enhance throughput and hide the overhead of all-to-all communication,
we are also exploring processing two micro-batches with similar computational workloads
simultaneously in the decoding stage. Unlike prefilling, attention consumes a larger portion
of time in the decoding stage. Therefore, we overlap the attention of one micro-batch with
the dispatch+MoE+combine of another. In the decoding stage, the batch size per expert
is relatively small (usually within 256 tokens), and the bottleneck is memory access rather
than computation. Since the MoE part only needs to load the parameters of one expert, the
memory access overhead is minimal, so using fewer SMs will not significantly affect the overall
performance. Therefore, to avoid impacting the computation speed of the attention part, we
can allocate only a small portion of SMs to dispatch+MoE+combine.

3.5. Suggestions on Hardware Design

Based on our implementation of the all-to-all communication and FP8 training scheme, we
propose the following suggestions on chip design to AI hardware vendors.

3.5.1. Communication Hardware

In DeepSeek-V3, we implement the overlap between computation and communication to hide
the communication latency during computation. This significantly reduces the dependency
on communication bandwidth compared to serial computation and communication. However,
the current communication implementation relies on expensive SMs (e.g., we allocate 20 out of
the 132 SMs available in the H800 GPU for this purpose), which will limit the computational
throughput. Moreover, using SMs for communication results in significant inefficiencies, as
tensor cores remain entirely under-utilized.

Currently, the SMs primarily perform the following tasks for all-to-all communication:

• Forwarding data between the IB (InfiniBand) and NVLink domain while aggregating IB
traffic destined for multiple GPUs within the same node from a single GPU.

• Transporting data between RDMA buffers (registered GPU memory regions) and in-
put/output buffers.

• Executing reduce operations for all-to-all combine.
• Managing fine-grained memory layout during chunked data transferring to multiple

experts across the IB and NVLink domain.

We aspire to see future vendors developing hardware that offloads these communication
tasks from the valuable computation unit SM, serving as a GPU co-processor or a network
co-processor like NVIDIA SHARP Graham et al. (2016). Furthermore, to reduce application
programming complexity, we aim for this hardware to unify the IB (scale-out) and NVLink
(scale-up) networks from the perspective of the computation units. With this unified interface,
computation units can easily accomplish operations such as read, write, multicast, and
reduce across the entire IB-NVLink-unified domain via submitting communication requests
based on simple primitives.

3.5.2. Compute Hardware

Higher FP8 GEMM Accumulation Precision in Tensor Cores. In the current Tensor Core
implementation of the NVIDIA Hopper architecture, FP8 GEMM (General Matrix Multiply)
employs fixed-point accumulation, aligning the mantissa products by right-shifting based on
the maximum exponent before addition. Our experiments reveal that it only uses the highest 14

20



bits of each mantissa product after sign-fill right shifting, and truncates bits exceeding this range.
However, for example, to achieve precise FP32 results from the accumulation of 32 FP8×FP8
multiplications, at least 34-bit precision is required. Thus, we recommend that future chip
designs increase accumulation precision in Tensor Cores to support full-precision accumulation,
or select an appropriate accumulation bit-width according to the accuracy requirements of
training and inference algorithms. This approach ensures that errors remain within acceptable
bounds while maintaining computational efficiency.

Support for Tile- and Block-Wise Quantization. Current GPUs only support per-tensor
quantization, lacking the native support for fine-grained quantization like our tile- and block-
wise quantization. In the current implementation, when the 𝑁𝐶 interval is reached, the partial
results will be copied from Tensor Cores to CUDA cores, multiplied by the scaling factors, and
added to FP32 registers on CUDA cores. Although the dequantization overhead is significantly
mitigated combined with our precise FP32 accumulation strategy, the frequent data movements
between Tensor Cores and CUDA cores still limit the computational efficiency. Therefore, we
recommend future chips to support fine-grained quantization by enabling Tensor Cores to
receive scaling factors and implement MMA with group scaling. In this way, the whole partial
sum accumulation and dequantization can be completed directly inside Tensor Cores until the
final result is produced, avoiding frequent data movements.

Support for Online Quantization. The current implementations struggle to effectively support
online quantization, despite its effectiveness demonstrated in our research. In the existing
process, we need to read 128 BF16 activation values (the output of the previous computation)
from HBM (High Bandwidth Memory) for quantization, and the quantized FP8 values are
then written back to HBM, only to be read again for MMA. To address this inefficiency, we
recommend that future chips integrate FP8 cast and TMA (Tensor Memory Accelerator) access
into a single fused operation, so quantization can be completed during the transfer of activations
from global memory to shared memory, avoiding frequent memory reads and writes. We also
recommend supporting a warp-level cast instruction for speedup, which further facilitates the
better fusion of layer normalization and FP8 cast. Alternatively, a near-memory computing
approach can be adopted, where compute logic is placed near the HBM. In this case, BF16
elements can be cast to FP8 directly as they are read from HBM into the GPU, reducing off-chip
memory access by roughly 50%.

Support for Transposed GEMM Operations. The current architecture makes it cumbersome
to fuse matrix transposition with GEMM operations. In our workflow, activations during the
forward pass are quantized into 1x128 FP8 tiles and stored. During the backward pass, the
matrix needs to be read out, dequantized, transposed, re-quantized into 128x1 tiles, and stored
in HBM. To reduce memory operations, we recommend future chips to enable direct transposed
reads of matrices from shared memory before MMA operation, for those precisions required
in both training and inference. Combined with the fusion of FP8 format conversion and TMA
access, this enhancement will significantly streamline the quantization workflow.
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4. Pre-Training

4.1. Data Construction

Compared with DeepSeek-V2, we optimize the pre-training corpus by enhancing the ratio
of mathematical and programming samples, while expanding multilingual coverage beyond
English and Chinese. Also, our data processing pipeline is refined to minimize redundancy
while maintaining corpus diversity. Inspired by Ding et al. (2024), we implement the document
packing method for data integrity but do not incorporate cross-sample attention masking during
training. Finally, the training corpus for DeepSeek-V3 consists of 14.8T high-quality and diverse
tokens in our tokenizer.

In the training process of DeepSeekCoder-V2 (DeepSeek-AI, 2024a), we observe that the
Fill-in-Middle (FIM) strategy does not compromise the next-token prediction capability while
enabling the model to accurately predict middle text based on contextual cues. In alignment with
DeepSeekCoder-V2, we also incorporate the FIM strategy in the pre-training of DeepSeek-V3. To
be specific, we employ the Prefix-Suffix-Middle (PSM) framework to structure data as follows:

<|fim_begin|> 𝑓pre<|fim_hole|> 𝑓suf<|fim_end|> 𝑓middle<|eos_token|>.

This structure is applied at the document level as a part of the pre-packing process. The FIM
strategy is applied at a rate of 0.1, consistent with the PSM framework.

The tokenizer for DeepSeek-V3 employs Byte-level BPE (Shibata et al., 1999) with an extended
vocabulary of 128K tokens. The pretokenizer and training data for our tokenizer are modified
to optimize multilingual compression efficiency. In addition, compared with DeepSeek-V2,
the new pretokenizer introduces tokens that combine punctuations and line breaks. However,
this trick may introduce the token boundary bias (Lundberg, 2023) when the model processes
multi-line prompts without terminal line breaks, particularly for few-shot evaluation prompts.
To address this issue, we randomly split a certain proportion of such combined tokens during
training, which exposes the model to a wider array of special cases and mitigates this bias.

4.2. Hyper-Parameters

Model Hyper-Parameters. We set the number of Transformer layers to 61 and the hidden
dimension to 7168. All learnable parameters are randomly initialized with a standard deviation
of 0.006. In MLA, we set the number of attention heads 𝑛ℎ to 128 and the per-head dimension 𝑑ℎ
to 128. The KV compression dimension 𝑑𝑐 is set to 512, and the query compression dimension 𝑑′𝑐
is set to 1536. For the decoupled queries and key, we set the per-head dimension 𝑑𝑅

ℎ
to 64. We

substitute all FFNs except for the first three layers with MoE layers. Each MoE layer consists of 1
shared expert and 256 routed experts, where the intermediate hidden dimension of each expert
is 2048. Among the routed experts, 8 experts will be activated for each token, and each token
will be ensured to be sent to at most 4 nodes. The multi-token prediction depth 𝐷 is set to 1, i.e.,
besides the exact next token, each token will predict one additional token. As DeepSeek-V2,
DeepSeek-V3 also employs additional RMSNorm layers after the compressed latent vectors,
and multiplies additional scaling factors at the width bottlenecks. Under this configuration,
DeepSeek-V3 comprises 671B total parameters, of which 37B are activated for each token.

Training Hyper-Parameters. We employ the AdamW optimizer (Loshchilov and Hutter, 2017)
with hyper-parameters set to 𝛽1 = 0.9, 𝛽2 = 0.95, and weight_decay = 0.1. We set the maximum
sequence length to 4K during pre-training, and pre-train DeepSeek-V3 on 14.8T tokens. As for
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the learning rate scheduling, we first linearly increase it from 0 to 2.2 × 10−4 during the first
2K steps. Then, we keep a constant learning rate of 2.2 × 10−4 until the model consumes 10T
training tokens. Subsequently, we gradually decay the learning rate to 2.2 × 10−5 in 4.3T tokens,
following a cosine decay curve. During the training of the final 500B tokens, we keep a constant
learning rate of 2.2 × 10−5 in the first 333B tokens, and switch to another constant learning rate
of 7.3 × 10−6 in the remaining 167B tokens. The gradient clipping norm is set to 1.0. We employ
a batch size scheduling strategy, where the batch size is gradually increased from 3072 to 15360
in the training of the first 469B tokens, and then keeps 15360 in the remaining training. We
leverage pipeline parallelism to deploy different layers of a model on different GPUs, and for
each layer, the routed experts will be uniformly deployed on 64 GPUs belonging to 8 nodes.
As for the node-limited routing, each token will be sent to at most 4 nodes (i.e., 𝑀 = 4). For
auxiliary-loss-free load balancing, we set the bias update speed 𝛾 to 0.001 for the first 14.3T
tokens, and to 0.0 for the remaining 500B tokens. For the balance loss, we set 𝛼 to 0.0001, just to
avoid extreme imbalance within any single sequence. The MTP loss weight 𝜆 is set to 0.3 for the
first 10T tokens, and to 0.1 for the remaining 4.8T tokens.
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Figure 8 | Evaluation results on the ”Needle In A Haystack” (NIAH) tests. DeepSeek-V3
performs well across all context window lengths up to 128K.

4.3. Long Context Extension

We adopt a similar approach to DeepSeek-V2 (DeepSeek-AI, 2024c) to enable long context
capabilities in DeepSeek-V3. After the pre-training stage, we apply YaRN (Peng et al., 2023a)
for context extension and perform two additional training phases, each comprising 1000 steps,
to progressively expand the context window from 4K to 32K and then to 128K. The YaRN
configuration is consistent with that used in DeepSeek-V2, being applied exclusively to the
decoupled shared key k𝑅

𝑡 . The hyper-parameters remain identical across both phases, with the
scale 𝑠 = 40, 𝛼 = 1, 𝛽 = 32, and the scaling factor

√
𝑡 = 0.1 ln 𝑠 + 1. In the first phase, the sequence

length is set to 32K, and the batch size is 1920. During the second phase, the sequence length is
increased to 128K, and the batch size is reduced to 480. The learning rate for both phases is set
to 7.3 × 10−6, matching the final learning rate from the pre-training stage.
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Through this two-phase extension training, DeepSeek-V3 is capable of handling inputs up to
128K in length while maintaining strong performance. Figure 8 illustrates that DeepSeek-V3,
following supervised fine-tuning, achieves notable performance on the "Needle In A Haystack"
(NIAH) test, demonstrating consistent robustness across context window lengths up to 128K.

4.4. Evaluations

4.4.1. Evaluation Benchmarks

The base model of DeepSeek-V3 is pretrained on a multilingual corpus with English and Chinese
constituting the majority, so we evaluate its performance on a series of benchmarks primarily
in English and Chinese, as well as on a multilingual benchmark. Our evaluation is based
on our internal evaluation framework integrated in our HAI-LLM framework. Considered
benchmarks are categorized and listed as follows, where underlined benchmarks are in Chinese
and double-underlined benchmarks are multilingual ones:

Multi-subject multiple-choice datasets include MMLU (Hendrycks et al., 2020), MMLU-
Redux (Gema et al., 2024), MMLU-Pro (Wang et al., 2024b), MMMLU (OpenAI, 2024b), C-Eval
(Huang et al., 2023), and CMMLU (Li et al., 2023).

Language understanding and reasoning datasets include HellaSwag (Zellers et al., 2019),
PIQA (Bisk et al., 2020), ARC (Clark et al., 2018), and BigBench Hard (BBH) (Suzgun et al., 2022).

Closed-book question answering datasets include TriviaQA (Joshi et al., 2017) and Natu-
ralQuestions (Kwiatkowski et al., 2019).

Reading comprehension datasets include RACE Lai et al. (2017), DROP (Dua et al., 2019),
C3 (Sun et al., 2019a), and CMRC (Cui et al., 2019).

Reference disambiguation datasets include CLUEWSC (Xu et al., 2020) and WinoGrande
Sakaguchi et al. (2019).

Language modeling datasets include Pile (Gao et al., 2020).

Chinese understanding and culture datasets include CCPM (Li et al., 2021).

Math datasets include GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021), MGSM
(Shi et al., 2023), and CMath (Wei et al., 2023).

Code datasets include HumanEval (Chen et al., 2021), LiveCodeBench-Base (0801-1101) (Jain
et al., 2024), MBPP (Austin et al., 2021), and CRUXEval (Gu et al., 2024).

Standardized exams include AGIEval (Zhong et al., 2023). Note that AGIEval includes both
English and Chinese subsets.

Following our previous work (DeepSeek-AI, 2024b,c), we adopt perplexity-based eval-
uation for datasets including HellaSwag, PIQA, WinoGrande, RACE-Middle, RACE-High,
MMLU, MMLU-Redux, MMLU-Pro, MMMLU, ARC-Easy, ARC-Challenge, C-Eval, CMMLU,
C3, and CCPM, and adopt generation-based evaluation for TriviaQA, NaturalQuestions, DROP,
MATH, GSM8K, MGSM, HumanEval, MBPP, LiveCodeBench-Base, CRUXEval, BBH, AGIEval,
CLUEWSC, CMRC, and CMath. In addition, we perform language-modeling-based evaluation
for Pile-test and use Bits-Per-Byte (BPB) as the metric to guarantee fair comparison among
models using different tokenizers.
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Benchmark (Metric) # Shots DeepSeek-V2 Qwen2.5 LLaMA-3.1 DeepSeek-V3
Base 72B Base 405B Base Base

Architecture - MoE Dense Dense MoE
# Activated Params - 21B 72B 405B 37B
# Total Params - 236B 72B 405B 671B

English

Pile-test (BPB) - 0.606 0.638 0.542 0.548
BBH (EM) 3-shot 78.8 79.8 82.9 87.5
MMLU (EM) 5-shot 78.4 85.0 84.4 87.1
MMLU-Redux (EM) 5-shot 75.6 83.2 81.3 86.2
MMLU-Pro (EM) 5-shot 51.4 58.3 52.8 64.4
DROP (F1) 3-shot 80.4 80.6 86.0 89.0
ARC-Easy (EM) 25-shot 97.6 98.4 98.4 98.9
ARC-Challenge (EM) 25-shot 92.2 94.5 95.3 95.3
HellaSwag (EM) 10-shot 87.1 84.8 89.2 88.9
PIQA (EM) 0-shot 83.9 82.6 85.9 84.7
WinoGrande (EM) 5-shot 86.3 82.3 85.2 84.9
RACE-Middle (EM) 5-shot 73.1 68.1 74.2 67.1
RACE-High (EM) 5-shot 52.6 50.3 56.8 51.3
TriviaQA (EM) 5-shot 80.0 71.9 82.7 82.9
NaturalQuestions (EM) 5-shot 38.6 33.2 41.5 40.0
AGIEval (EM) 0-shot 57.5 75.8 60.6 79.6

Code

HumanEval (Pass@1) 0-shot 43.3 53.0 54.9 65.2
MBPP (Pass@1) 3-shot 65.0 72.6 68.4 75.4
LiveCodeBench-Base (Pass@1) 3-shot 11.6 12.9 15.5 19.4
CRUXEval-I (EM) 2-shot 52.5 59.1 58.5 67.3
CRUXEval-O (EM) 2-shot 49.8 59.9 59.9 69.8

Math
GSM8K (EM) 8-shot 81.6 88.3 83.5 89.3
MATH (EM) 4-shot 43.4 54.4 49.0 61.6
MGSM (EM) 8-shot 63.6 76.2 69.9 79.8
CMath (EM) 3-shot 78.7 84.5 77.3 90.7

Chinese

CLUEWSC (EM) 5-shot 82.0 82.5 83.0 82.7
C-Eval (EM) 5-shot 81.4 89.2 72.5 90.1
CMMLU (EM) 5-shot 84.0 89.5 73.7 88.8
CMRC (EM) 1-shot 77.4 75.8 76.0 76.3
C3 (EM) 0-shot 77.4 76.7 79.7 78.6
CCPM (EM) 0-shot 93.0 88.5 78.6 92.0

Multilingual MMMLU-non-English (EM) 5-shot 64.0 74.8 73.8 79.4

Table 3 | Comparison among DeepSeek-V3-Base and other representative open-source base
models. All models are evaluated in our internal framework and share the same evaluation
setting. Scores with a gap not exceeding 0.3 are considered to be at the same level. DeepSeek-
V3-Base achieves the best performance on most benchmarks, especially on math and code tasks.

4.4.2. Evaluation Results

In Table 3, we compare the base model of DeepSeek-V3 with the state-of-the-art open-source base
models, including DeepSeek-V2-Base (DeepSeek-AI, 2024c) (our previous release), Qwen2.5 72B
Base (Qwen, 2024b), and LLaMA-3.1 405B Base (AI@Meta, 2024b). We evaluate all these models
with our internal evaluation framework, and ensure that they share the same evaluation setting.
Note that due to the changes in our evaluation framework over the past months, the performance
of DeepSeek-V2-Base exhibits a slight difference from our previously reported results. Overall,
DeepSeek-V3-Base comprehensively outperforms DeepSeek-V2-Base and Qwen2.5 72B Base,
and surpasses LLaMA-3.1 405B Base in the majority of benchmarks, essentially becoming the
strongest open-source model.
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From a more detailed perspective, we compare DeepSeek-V3-Base with the other open-source
base models individually. (1) Compared with DeepSeek-V2-Base, due to the improvements in
our model architecture, the scale-up of the model size and training tokens, and the enhancement
of data quality, DeepSeek-V3-Base achieves significantly better performance as expected. (2)
Compared with Qwen2.5 72B Base, the state-of-the-art Chinese open-source model, with only
half of the activated parameters, DeepSeek-V3-Base also demonstrates remarkable advantages,
especially on English, multilingual, code, and math benchmarks. As for Chinese benchmarks,
except for CMMLU, a Chinese multi-subject multiple-choice task, DeepSeek-V3-Base also shows
better performance than Qwen2.5 72B. (3) Compared with LLaMA-3.1 405B Base, the largest
open-source model with 11 times the activated parameters, DeepSeek-V3-Base also exhibits
much better performance on multilingual, code, and math benchmarks. As for English and
Chinese language benchmarks, DeepSeek-V3-Base shows competitive or better performance,
and is especially good on BBH, MMLU-series, DROP, C-Eval, CMMLU, and CCPM.

Due to our efficient architectures and comprehensive engineering optimizations, DeepSeek-
V3 achieves extremely high training efficiency. Under our training framework and infrastruc-
tures, training DeepSeek-V3 on each trillion tokens requires only 180K H800 GPU hours, which
is much cheaper than training 72B or 405B dense models.

Benchmark (Metric) # Shots Small MoE Small MoE Large MoE Large MoE
Baseline w/ MTP Baseline w/ MTP

# Activated Params (Inference) - 2.4B 2.4B 20.9B 20.9B
# Total Params (Inference) - 15.7B 15.7B 228.7B 228.7B
# Training Tokens - 1.33T 1.33T 540B 540B

Pile-test (BPB) - 0.729 0.729 0.658 0.657
BBH (EM) 3-shot 39.0 41.4 70.0 70.7
MMLU (EM) 5-shot 50.0 53.3 67.5 66.6
DROP (F1) 1-shot 39.2 41.3 68.5 70.6
TriviaQA (EM) 5-shot 56.9 57.7 67.0 67.3
NaturalQuestions (EM) 5-shot 22.7 22.3 27.2 28.5
HumanEval (Pass@1) 0-shot 20.7 26.8 44.5 53.7
MBPP (Pass@1) 3-shot 35.8 36.8 61.6 62.2
GSM8K (EM) 8-shot 25.4 31.4 72.3 74.0
MATH (EM) 4-shot 10.7 12.6 38.6 39.8

Table 4 | Ablation results for the MTP strategy. The MTP strategy consistently enhances the
model performance on most of the evaluation benchmarks.

4.5. Discussion

4.5.1. Ablation Studies for Multi-Token Prediction

In Table 4, we show the ablation results for the MTP strategy. To be specific, we validate the
MTP strategy on top of two baseline models across different scales. At the small scale, we train
a baseline MoE model comprising 15.7B total parameters on 1.33T tokens. At the large scale,
we train a baseline MoE model comprising 228.7B total parameters on 540B tokens. On top
of them, keeping the training data and the other architectures the same, we append a 1-depth
MTP module onto them and train two models with the MTP strategy for comparison. Note that
during inference, we directly discard the MTP module, so the inference costs of the compared
models are exactly the same. From the table, we can observe that the MTP strategy consistently
enhances the model performance on most of the evaluation benchmarks.
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Benchmark (Metric) # Shots Small MoE Small MoE Large MoE Large MoE
Aux-Loss-Based Aux-Loss-Free Aux-Loss-Based Aux-Loss-Free

# Activated Params - 2.4B 2.4B 20.9B 20.9B
# Total Params - 15.7B 15.7B 228.7B 228.7B
# Training Tokens - 1.33T 1.33T 578B 578B

Pile-test (BPB) - 0.727 0.724 0.656 0.652
BBH (EM) 3-shot 37.3 39.3 66.7 67.9
MMLU (EM) 5-shot 51.0 51.8 68.3 67.2
DROP (F1) 1-shot 38.1 39.0 67.1 67.1
TriviaQA (EM) 5-shot 58.3 58.5 66.7 67.7
NaturalQuestions (EM) 5-shot 23.2 23.4 27.1 28.1
HumanEval (Pass@1) 0-shot 22.0 22.6 40.2 46.3
MBPP (Pass@1) 3-shot 36.6 35.8 59.2 61.2
GSM8K (EM) 8-shot 27.1 29.6 70.7 74.5
MATH (EM) 4-shot 10.9 11.1 37.2 39.6

Table 5 | Ablation results for the auxiliary-loss-free balancing strategy. Compared with the
purely auxiliary-loss-based method, the auxiliary-loss-free strategy consistently achieves better
model performance on most of the evaluation benchmarks.

4.5.2. Ablation Studies for the Auxiliary-Loss-Free Balancing Strategy

In Table 5, we show the ablation results for the auxiliary-loss-free balancing strategy. We
validate this strategy on top of two baseline models across different scales. At the small scale,
we train a baseline MoE model comprising 15.7B total parameters on 1.33T tokens. At the
large scale, we train a baseline MoE model comprising 228.7B total parameters on 578B tokens.
Both of the baseline models purely use auxiliary losses to encourage load balance, and use the
sigmoid gating function with top-K affinity normalization. Their hyper-parameters to control
the strength of auxiliary losses are the same as DeepSeek-V2-Lite and DeepSeek-V2, respectively.
On top of these two baseline models, keeping the training data and the other architectures the
same, we remove all auxiliary losses and introduce the auxiliary-loss-free balancing strategy for
comparison. From the table, we can observe that the auxiliary-loss-free strategy consistently
achieves better model performance on most of the evaluation benchmarks.

4.5.3. Batch-Wise Load Balance VS. Sequence-Wise Load Balance

The key distinction between auxiliary-loss-free balancing and sequence-wise auxiliary loss lies
in their balancing scope: batch-wise versus sequence-wise. Compared with the sequence-wise
auxiliary loss, batch-wise balancing imposes a more flexible constraint, as it does not enforce
in-domain balance on each sequence. This flexibility allows experts to better specialize in
different domains. To validate this, we record and analyze the expert load of a 16B auxiliary-
loss-based baseline and a 16B auxiliary-loss-free model on different domains in the Pile test set.
As illustrated in Figure 9, we observe that the auxiliary-loss-free model demonstrates greater
expert specialization patterns as expected.

To further investigate the correlation between this flexibility and the advantage in model
performance, we additionally design and validate a batch-wise auxiliary loss that encourages
load balance on each training batch instead of on each sequence. The experimental results show
that, when achieving a similar level of batch-wise load balance, the batch-wise auxiliary loss
can also achieve similar model performance to the auxiliary-loss-free method. To be specific,
in our experiments with 1B MoE models, the validation losses are: 2.258 (using a sequence-
wise auxiliary loss), 2.253 (using the auxiliary-loss-free method), and 2.253 (using a batch-wise
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Figure 9 | Expert load of auxiliary-loss-free and auxiliary-loss-based models on three domains in
the Pile test set. The auxiliary-loss-free model shows greater expert specialization patterns than
the auxiliary-loss-based one. The relative expert load denotes the ratio between the actual expert
load and the theoretically balanced expert load. Due to space constraints, we only present the
results of two layers as an example, with the results of all layers provided in Appendix C.

auxiliary loss). We also observe similar results on 3B MoE models: the model using a sequence-
wise auxiliary loss achieves a validation loss of 2.085, and the models using the auxiliary-loss-free
method or a batch-wise auxiliary loss achieve the same validation loss of 2.080.

In addition, although the batch-wise load balancing methods show consistent performance
advantages, they also face two potential challenges in efficiency: (1) load imbalance within
certain sequences or small batches, and (2) domain-shift-induced load imbalance during infer-
ence. The first challenge is naturally addressed by our training framework that uses large-scale
expert parallelism and data parallelism, which guarantees a large size of each micro-batch. For
the second challenge, we also design and implement an efficient inference framework with
redundant expert deployment, as described in Section 3.4, to overcome it.

5. Post-Training

5.1. Supervised Fine-Tuning

We curate our instruction-tuning datasets to include 1.5M instances spanning multiple domains,
with each domain employing distinct data creation methods tailored to its specific requirements.

Reasoning Data. For reasoning-related datasets, including those focused on mathematics,
code competition problems, and logic puzzles, we generate the data by leveraging an internal
DeepSeek-R1 model. Specifically, while the R1-generated data demonstrates strong accuracy, it
suffers from issues such as overthinking, poor formatting, and excessive length. Our objective is
to balance the high accuracy of R1-generated reasoning data and the clarity and conciseness of
regularly formatted reasoning data.
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To establish our methodology, we begin by developing an expert model tailored to a specific
domain, such as code, mathematics, or general reasoning, using a combined Supervised Fine-
Tuning (SFT) and Reinforcement Learning (RL) training pipeline. This expert model serves as a
data generator for the final model. The training process involves generating two distinct types
of SFT samples for each instance: the first couples the problem with its original response in
the format of <problem, original response>, while the second incorporates a system prompt
alongside the problem and the R1 response in the format of <system prompt, problem, R1
response>.

The system prompt is meticulously designed to include instructions that guide the model
toward producing responses enriched with mechanisms for reflection and verification. During
the RL phase, the model leverages high-temperature sampling to generate responses that
integrate patterns from both the R1-generated and original data, even in the absence of explicit
system prompts. After hundreds of RL steps, the intermediate RL model learns to incorporate
R1 patterns, thereby enhancing overall performance strategically.

Upon completing the RL training phase, we implement rejection sampling to curate high-
quality SFT data for the final model, where the expert models are used as data generation
sources. This method ensures that the final training data retains the strengths of DeepSeek-R1
while producing responses that are concise and effective.

Non-Reasoning Data. For non-reasoning data, such as creative writing, role-play, and sim-
ple question answering, we utilize DeepSeek-V2.5 to generate responses and enlist human
annotators to verify the accuracy and correctness of the data.

SFT Settings. We fine-tune DeepSeek-V3-Base for two epochs using the SFT dataset, using the
cosine decay learning rate scheduling that starts at 5 × 10−6 and gradually decreases to 1 × 10−6.
During training, each single sequence is packed from multiple samples. However, we adopt a
sample masking strategy to ensure that these examples remain isolated and mutually invisible.

5.2. Reinforcement Learning

5.2.1. Reward Model

We employ a rule-based Reward Model (RM) and a model-based RM in our RL process.

Rule-Based RM. For questions that can be validated using specific rules, we adopt a rule-
based reward system to determine the feedback. For instance, certain math problems have
deterministic results, and we require the model to provide the final answer within a designated
format (e.g., in a box), allowing us to apply rules to verify the correctness. Similarly, for LeetCode
problems, we can utilize a compiler to generate feedback based on test cases. By leveraging
rule-based validation wherever possible, we ensure a higher level of reliability, as this approach
is resistant to manipulation or exploitation.

Model-Based RM. For questions with free-form ground-truth answers, we rely on the reward
model to determine whether the response matches the expected ground-truth. Conversely, for
questions without a definitive ground-truth, such as those involving creative writing, the reward
model is tasked with providing feedback based on the question and the corresponding answer
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as inputs. The reward model is trained from the DeepSeek-V3 SFT checkpoints. To enhance its
reliability, we construct preference data that not only provides the final reward but also includes
the chain-of-thought leading to the reward. This approach helps mitigate the risk of reward
hacking in specific tasks.

5.2.2. Group Relative Policy Optimization

Similar to DeepSeek-V2 (DeepSeek-AI, 2024c), we adopt Group Relative Policy Optimiza-
tion (GRPO) (Shao et al., 2024), which foregoes the critic model that is typically with the same
size as the policy model, and estimates the baseline from group scores instead. Specifically, for
each question 𝑞, GRPO samples a group of outputs {𝑜1, 𝑜2, · · · , 𝑜𝐺} from the old policy model
𝜋𝜃𝑜𝑙𝑑 and then optimizes the policy model 𝜋𝜃 by maximizing the following objective:

J𝐺𝑅𝑃𝑂(𝜃) = E[𝑞 ∼ 𝑃(𝑄), {𝑜𝑖}𝐺𝑖=1 ∼ 𝜋𝜃𝑜𝑙𝑑 (𝑂|𝑞)]

1
𝐺

𝐺∑︁
𝑖=1

(
min

(
𝜋𝜃(𝑜𝑖 |𝑞)
𝜋𝜃𝑜𝑙𝑑 (𝑜𝑖 |𝑞)

𝐴𝑖, clip
(
𝜋𝜃(𝑜𝑖 |𝑞)
𝜋𝜃𝑜𝑙𝑑 (𝑜𝑖 |𝑞)

, 1 − 𝜀, 1 + 𝜀
)
𝐴𝑖

)
− 𝛽D𝐾𝐿

(
𝜋𝜃 | |𝜋𝑟𝑒 𝑓

) )
,

(26)

D𝐾𝐿

(
𝜋𝜃 | |𝜋𝑟𝑒 𝑓

)
=
𝜋𝑟𝑒 𝑓 (𝑜𝑖 |𝑞)
𝜋𝜃(𝑜𝑖 |𝑞)

− log
𝜋𝑟𝑒 𝑓 (𝑜𝑖 |𝑞)
𝜋𝜃(𝑜𝑖 |𝑞)

− 1, (27)

where 𝜀 and 𝛽 are hyper-parameters; 𝜋𝑟𝑒 𝑓 is the reference model; and 𝐴𝑖 is the advantage, derived
from the rewards {𝑟1, 𝑟2, . . . , 𝑟𝐺} corresponding to the outputs within each group:

𝐴𝑖 =
𝑟𝑖 − mean({𝑟1, 𝑟2, · · · , 𝑟𝐺})

std({𝑟1, 𝑟2, · · · , 𝑟𝐺})
. (28)

We incorporate prompts from diverse domains, such as coding, math, writing, role-playing,
and question answering, during the RL process. This approach not only aligns the model more
closely with human preferences but also enhances performance on benchmarks, especially in
scenarios where available SFT data are limited.

5.3. Evaluations

5.3.1. Evaluation Settings

Evaluation Benchmarks. Apart from the benchmark we used for base model testing, we
further evaluate instructed models on IFEval (Zhou et al., 2023), FRAMES (Krishna et al.,
2024), LongBench v2 (Bai et al., 2024), GPQA (Rein et al., 2023), SimpleQA (OpenAI, 2024c), C-
SimpleQA (He et al., 2024), SWE-Bench Verified (OpenAI, 2024d), Aider 1, LiveCodeBench (Jain
et al., 2024) (questions from August 2024 to November 2024), Codeforces 2, Chinese National
High School Mathematics Olympiad (CNMO 2024)3, and American Invitational Mathematics
Examination 2024 (AIME 2024) (MAA, 2024).

Compared Baselines. We conduct comprehensive evaluations of our chat model against sev-
eral strong baselines, including DeepSeek-V2-0506, DeepSeek-V2.5-0905, Qwen2.5 72B Instruct,
LLaMA-3.1 405B Instruct, Claude-Sonnet-3.5-1022, and GPT-4o-0513. For the DeepSeek-V2
model series, we select the most representative variants for comparison. For closed-source
models, evaluations are performed through their respective APIs.

1https://aider.chat
2https://codeforces.com
3https://www.cms.org.cn/Home/comp/comp/cid/12.html
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Detailed Evaluation Configurations. For standard benchmarks including MMLU, DROP,
GPQA, and SimpleQA, we adopt the evaluation prompts from the simple-evals framework4.
We utilize the Zero-Eval prompt format (Lin, 2024) for MMLU-Redux in a zero-shot setting.
For other datasets, we follow their original evaluation protocols with default prompts as pro-
vided by the dataset creators. For code and math benchmarks, the HumanEval-Mul dataset
includes 8 mainstream programming languages (Python, Java, Cpp, C#, JavaScript, TypeScript,
PHP, and Bash) in total. We use CoT and non-CoT methods to evaluate model performance
on LiveCodeBench, where the data are collected from August 2024 to November 2024. The
Codeforces dataset is measured using the percentage of competitors. SWE-Bench verified is
evaluated using the agentless framework (Xia et al., 2024). We use the “diff” format to evaluate
the Aider-related benchmarks. For mathematical assessments, AIME and CNMO 2024 are
evaluated with a temperature of 0.7, and the results are averaged over 16 runs, while MATH-500
employs greedy decoding. We allow all models to output a maximum of 8192 tokens for each
benchmark.

Benchmark (Metric)
DeepSeek DeepSeek Qwen2.5 LLaMA-3.1 Claude-3.5- GPT-4o DeepSeek

V2-0506 V2.5-0905 72B-Inst. 405B-Inst. Sonnet-1022 0513 V3

Architecture MoE MoE Dense Dense - - MoE
# Activated Params 21B 21B 72B 405B - - 37B
# Total Params 236B 236B 72B 405B - - 671B

English

MMLU (EM) 78.2 80.6 85.3 88.6 88.3 87.2 88.5
MMLU-Redux (EM) 77.9 80.3 85.6 86.2 88.9 88.0 89.1
MMLU-Pro (EM) 58.5 66.2 71.6 73.3 78.0 72.6 75.9
DROP (3-shot F1) 83.0 87.8 76.7 88.7 88.3 83.7 91.6
IF-Eval (Prompt Strict) 57.7 80.6 84.1 86.0 86.5 84.3 86.1
GPQA-Diamond (Pass@1) 35.3 41.3 49.0 51.1 65.0 49.9 59.1
SimpleQA (Correct) 9.0 10.2 9.1 17.1 28.4 38.2 24.9
FRAMES (Acc.) 66.9 65.4 69.8 70.0 72.5 80.5 73.3
LongBench v2 (Acc.) 31.6 35.4 39.4 36.1 41.0 48.1 48.7

Code

HumanEval-Mul (Pass@1) 69.3 77.4 77.3 77.2 81.7 80.5 82.6
LiveCodeBench (Pass@1-COT) 18.8 29.2 31.1 28.4 36.3 33.4 40.5
LiveCodeBench (Pass@1) 20.3 28.4 28.7 30.1 32.8 34.2 37.6
Codeforces (Percentile) 17.5 35.6 24.8 25.3 20.3 23.6 51.6
SWE Verified (Resolved) - 22.6 23.8 24.5 50.8 38.8 42.0
Aider-Edit (Acc.) 60.3 71.6 65.4 63.9 84.2 72.9 79.7
Aider-Polyglot (Acc.) - 18.2 7.6 5.8 45.3 16.0 49.6

Math
AIME 2024 (Pass@1) 4.6 16.7 23.3 23.3 16.0 9.3 39.2
MATH-500 (EM) 56.3 74.7 80.0 73.8 78.3 74.6 90.2
CNMO 2024 (Pass@1) 2.8 10.8 15.9 6.8 13.1 10.8 43.2

Chinese
CLUEWSC (EM) 89.9 90.4 91.4 84.7 85.4 87.9 90.9
C-Eval (EM) 78.6 79.5 86.1 61.5 76.7 76.0 86.5
C-SimpleQA (Correct) 48.5 54.1 48.4 50.4 51.3 59.3 64.8

Table 6 | Comparison between DeepSeek-V3 and other representative chat models. All models
are evaluated in a configuration that limits the output length to 8K. Benchmarks containing
fewer than 1000 samples are tested multiple times using varying temperature settings to derive
robust final results. DeepSeek-V3 stands as the best-performing open-source model, and also
exhibits competitive performance against frontier closed-source models.

4https://github.com/openai/simple-evals
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5.3.2. Standard Evaluation

Table 6 presents the evaluation results, showcasing that DeepSeek-V3 stands as the best-
performing open-source model. Additionally, it is competitive against frontier closed-source
models like GPT-4o and Claude-3.5-Sonnet.

English Benchmarks. MMLU is a widely recognized benchmark designed to assess the perfor-
mance of large language models, across diverse knowledge domains and tasks. DeepSeek-V3
demonstrates competitive performance, standing on par with top-tier models such as LLaMA-
3.1-405B, GPT-4o, and Claude-Sonnet 3.5, while significantly outperforming Qwen2.5 72B.
Moreover, DeepSeek-V3 excels in MMLU-Pro, a more challenging educational knowledge
benchmark, where it closely trails Claude-Sonnet 3.5. On MMLU-Redux, a refined version of
MMLU with corrected labels, DeepSeek-V3 surpasses its peers. In addition, on GPQA-Diamond,
a PhD-level evaluation testbed, DeepSeek-V3 achieves remarkable results, ranking just behind
Claude 3.5 Sonnet and outperforming all other competitors by a substantial margin.

In long-context understanding benchmarks such as DROP, LongBench v2, and FRAMES,
DeepSeek-V3 continues to demonstrate its position as a top-tier model. It achieves an impressive
91.6 F1 score in the 3-shot setting on DROP, outperforming all other models in this category.
On FRAMES, a benchmark requiring question-answering over 100k token contexts, DeepSeek-
V3 closely trails GPT-4o while outperforming all other models by a significant margin. This
demonstrates the strong capability of DeepSeek-V3 in handling extremely long-context tasks.
The long-context capability of DeepSeek-V3 is further validated by its best-in-class performance
on LongBench v2, a dataset that was released just a few weeks before the launch of DeepSeek
V3. On the factual knowledge benchmark, SimpleQA, DeepSeek-V3 falls behind GPT-4o and
Claude-Sonnet, primarily due to its design focus and resource allocation. DeepSeek-V3 assigns
more training tokens to learn Chinese knowledge, leading to exceptional performance on the
C-SimpleQA. On the instruction-following benchmark, DeepSeek-V3 significantly outperforms
its predecessor, DeepSeek-V2-series, highlighting its improved ability to understand and adhere
to user-defined format constraints.

Code and Math Benchmarks. Coding is a challenging and practical task for LLMs, encom-
passing engineering-focused tasks like SWE-Bench-Verified and Aider, as well as algorithmic
tasks such as HumanEval and LiveCodeBench. In engineering tasks, DeepSeek-V3 trails behind
Claude-Sonnet-3.5-1022 but significantly outperforms open-source models. The open-source
DeepSeek-V3 is expected to foster advancements in coding-related engineering tasks. By pro-
viding access to its robust capabilities, DeepSeek-V3 can drive innovation and improvement
in areas such as software engineering and algorithm development, empowering developers
and researchers to push the boundaries of what open-source models can achieve in coding
tasks. In algorithmic tasks, DeepSeek-V3 demonstrates superior performance, outperforming
all baselines on benchmarks like HumanEval-Mul and LiveCodeBench. This success can be
attributed to its advanced knowledge distillation technique, which effectively enhances its code
generation and problem-solving capabilities in algorithm-focused tasks.

On math benchmarks, DeepSeek-V3 demonstrates exceptional performance, significantly
surpassing baselines and setting a new state-of-the-art for non-o1-like models. Specifically, on
AIME, MATH-500, and CNMO 2024, DeepSeek-V3 outperforms the second-best model, Qwen2.5
72B, by approximately 10% in absolute scores, which is a substantial margin for such challenging
benchmarks. This remarkable capability highlights the effectiveness of the distillation technique
from DeepSeek-R1, which has been proven highly beneficial for non-o1-like models.
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Model Arena-Hard AlpacaEval 2.0

DeepSeek-V2.5-0905 76.2 50.5
Qwen2.5-72B-Instruct 81.2 49.1

LLaMA-3.1 405B 69.3 40.5
GPT-4o-0513 80.4 51.1

Claude-Sonnet-3.5-1022 85.2 52.0
DeepSeek-V3 85.5 70.0

Table 7 | English open-ended conversation evaluations. For AlpacaEval 2.0, we use the length-
controlled win rate as the metric.

Chinese Benchmarks. Qwen and DeepSeek are two representative model series with robust
support for both Chinese and English. On the factual benchmark Chinese SimpleQA, DeepSeek-
V3 surpasses Qwen2.5-72B by 16.4 points, despite Qwen2.5 being trained on a larger corpus
compromising 18T tokens, which are 20% more than the 14.8T tokens that DeepSeek-V3 is
pre-trained on.

On C-Eval, a representative benchmark for Chinese educational knowledge evaluation, and
CLUEWSC (Chinese Winograd Schema Challenge), DeepSeek-V3 and Qwen2.5-72B exhibit
similar performance levels, indicating that both models are well-optimized for challenging
Chinese-language reasoning and educational tasks.

5.3.3. Open-Ended Evaluation

In addition to standard benchmarks, we also evaluate our models on open-ended generation
tasks using LLMs as judges, with the results shown in Table 7. Specifically, we adhere to
the original configurations of AlpacaEval 2.0 (Dubois et al., 2024) and Arena-Hard (Li et al.,
2024a), which leverage GPT-4-Turbo-1106 as judges for pairwise comparisons. On Arena-Hard,
DeepSeek-V3 achieves an impressive win rate of over 86% against the baseline GPT-4-0314,
performing on par with top-tier models like Claude-Sonnet-3.5-1022. This underscores the
robust capabilities of DeepSeek-V3, especially in dealing with complex prompts, including
coding and debugging tasks. Furthermore, DeepSeek-V3 achieves a groundbreaking milestone
as the first open-source model to surpass 85% on the Arena-Hard benchmark. This achievement
significantly bridges the performance gap between open-source and closed-source models,
setting a new standard for what open-source models can accomplish in challenging domains.

Similarly, DeepSeek-V3 showcases exceptional performance on AlpacaEval 2.0, outperform-
ing both closed-source and open-source models. This demonstrates its outstanding proficiency in
writing tasks and handling straightforward question-answering scenarios. Notably, it surpasses
DeepSeek-V2.5-0905 by a significant margin of 20%, highlighting substantial improvements in
tackling simple tasks and showcasing the effectiveness of its advancements.

5.3.4. DeepSeek-V3 as a Generative Reward Model

We compare the judgment ability of DeepSeek-V3 with state-of-the-art models, namely GPT-4o
and Claude-3.5. Table 8 presents the performance of these models in RewardBench (Lambert
et al., 2024). DeepSeek-V3 achieves performance on par with the best versions of GPT-4o-0806
and Claude-3.5-Sonnet-1022, while surpassing other versions. Additionally, the judgment ability
of DeepSeek-V3 can also be enhanced by the voting technique. Therefore, we employ DeepSeek-
V3 along with voting to offer self-feedback on open-ended questions, thereby improving the
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Model Chat Chat-Hard Safety Reasoning Average

GPT-4o-0513 96.6 70.4 86.7 84.9 84.7
GPT-4o-0806 96.1 76.1 88.1 86.6 86.7
GPT-4o-1120 95.8 71.3 86.2 85.2 84.6

Claude-3.5-sonnet-0620 96.4 74.0 81.6 84.7 84.2
Claude-3.5-sonnet-1022 96.4 79.7 91.1 87.6 88.7

DeepSeek-V3 96.9 79.8 87.0 84.3 87.0
DeepSeek-V3 (maj@6) 96.9 82.6 89.5 89.2 89.6

Table 8 | Performances of GPT-4o, Claude-3.5-sonnet and DeepSeek-V3 on RewardBench.

Model
LiveCodeBench-CoT MATH-500
Pass@1 Length Pass@1 Length

DeepSeek-V2.5 Baseline 31.1 718 74.6 769
DeepSeek-V2.5 +R1 Distill 37.4 783 83.2 1510

Table 9 | The contribution of distillation from DeepSeek-R1. The evaluation settings of Live-
CodeBench and MATH-500 are the same as in Table 6.

effectiveness and robustness of the alignment process.

5.4. Discussion

5.4.1. Distillation from DeepSeek-R1

We ablate the contribution of distillation from DeepSeek-R1 based on DeepSeek-V2.5. The
baseline is trained on short CoT data, whereas its competitor uses data generated by the expert
checkpoints described above.

Table 9 demonstrates the effectiveness of the distillation data, showing significant improve-
ments in both LiveCodeBench and MATH-500 benchmarks. Our experiments reveal an inter-
esting trade-off: the distillation leads to better performance but also substantially increases the
average response length. To maintain a balance between model accuracy and computational
efficiency, we carefully selected optimal settings for DeepSeek-V3 in distillation.

Our research suggests that knowledge distillation from reasoning models presents a promis-
ing direction for post-training optimization. While our current work focuses on distilling data
from mathematics and coding domains, this approach shows potential for broader applications
across various task domains. The effectiveness demonstrated in these specific areas indicates
that long-CoT distillation could be valuable for enhancing model performance in other cogni-
tive tasks requiring complex reasoning. Further exploration of this approach across different
domains remains an important direction for future research.

5.4.2. Self-Rewarding

Rewards play a pivotal role in RL, steering the optimization process. In domains where verifica-
tion through external tools is straightforward, such as some coding or mathematics scenarios, RL
demonstrates exceptional efficacy. However, in more general scenarios, constructing a feedback
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mechanism through hard coding is impractical. During the development of DeepSeek-V3, for
these broader contexts, we employ the constitutional AI approach (Bai et al., 2022), leveraging
the voting evaluation results of DeepSeek-V3 itself as a feedback source. This method has
produced notable alignment effects, significantly enhancing the performance of DeepSeek-V3
in subjective evaluations. By integrating additional constitutional inputs, DeepSeek-V3 can
optimize towards the constitutional direction. We believe that this paradigm, which combines
supplementary information with LLMs as a feedback source, is of paramount importance. The
LLM serves as a versatile processor capable of transforming unstructured information from
diverse scenarios into rewards, ultimately facilitating the self-improvement of LLMs. Beyond
self-rewarding, we are also dedicated to uncovering other general and scalable rewarding
methods to consistently advance the model capabilities in general scenarios.

5.4.3. Multi-Token Prediction Evaluation

Instead of predicting just the next single token, DeepSeek-V3 predicts the next 2 tokens through
the MTP technique. Combined with the framework of speculative decoding (Leviathan et al.,
2023; Xia et al., 2023), it can significantly accelerate the decoding speed of the model. A natural
question arises concerning the acceptance rate of the additionally predicted token. Based on
our evaluation, the acceptance rate of the second token prediction ranges between 85% and 90%
across various generation topics, demonstrating consistent reliability. This high acceptance rate
enables DeepSeek-V3 to achieve a significantly improved decoding speed, delivering 1.8 times
TPS (Tokens Per Second).

6. Conclusion, Limitations, and Future Directions

In this paper, we introduce DeepSeek-V3, a large MoE language model with 671B total pa-
rameters and 37B activated parameters, trained on 14.8T tokens. In addition to the MLA and
DeepSeekMoE architectures, it also pioneers an auxiliary-loss-free strategy for load balancing
and sets a multi-token prediction training objective for stronger performance. The training of
DeepSeek-V3 is cost-effective due to the support of FP8 training and meticulous engineering op-
timizations. The post-training also makes a success in distilling the reasoning capability from the
DeepSeek-R1 series of models. Comprehensive evaluations demonstrate that DeepSeek-V3 has
emerged as the strongest open-source model currently available, and achieves performance com-
parable to leading closed-source models like GPT-4o and Claude-3.5-Sonnet. Despite its strong
performance, it also maintains economical training costs. It requires only 2.788M H800 GPU
hours for its full training, including pre-training, context length extension, and post-training.

While acknowledging its strong performance and cost-effectiveness, we also recognize that
DeepSeek-V3 has some limitations, especially on the deployment. Firstly, to ensure efficient
inference, the recommended deployment unit for DeepSeek-V3 is relatively large, which might
pose a burden for small-sized teams. Secondly, although our deployment strategy for DeepSeek-
V3 has achieved an end-to-end generation speed of more than two times that of DeepSeek-V2,
there still remains potential for further enhancement. Fortunately, these limitations are expected
to be naturally addressed with the development of more advanced hardware.

DeepSeek consistently adheres to the route of open-source models with longtermism, aiming
to steadily approach the ultimate goal of AGI (Artificial General Intelligence). In the future, we
plan to strategically invest in research across the following directions.

• We will consistently study and refine our model architectures, aiming to further improve
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both the training and inference efficiency, striving to approach efficient support for infinite
context length. Additionally, we will try to break through the architectural limitations of
Transformer, thereby pushing the boundaries of its modeling capabilities.

• We will continuously iterate on the quantity and quality of our training data, and explore
the incorporation of additional training signal sources, aiming to drive data scaling across
a more comprehensive range of dimensions.

• We will consistently explore and iterate on the deep thinking capabilities of our models,
aiming to enhance their intelligence and problem-solving abilities by expanding their
reasoning length and depth.

• We will explore more comprehensive and multi-dimensional model evaluation methods to
prevent the tendency towards optimizing a fixed set of benchmarks during research, which
may create a misleading impression of the model capabilities and affect our foundational
assessment.
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B. Ablation Studies for Low-Precision Training

Figure 10 | Loss curves comparison between BF16 and FP8 training. Results are smoothed by
Exponential Moving Average (EMA) with a coefficient of 0.9.

B.1. FP8 v.s. BF16 Training

We validate our FP8 mixed precision framework with a comparison to BF16 training on top of
two baseline models across different scales. At the small scale, we train a baseline MoE model
comprising approximately 16B total parameters on 1.33T tokens. At the large scale, we train a
baseline MoE model comprising approximately 230B total parameters on around 0.9T tokens.
We show the training curves in Figure 10 and demonstrate that the relative error remains below
0.25% with our high-precision accumulation and fine-grained quantization strategies.

B.2. Discussion About Block-Wise Quantization

Although our tile-wise fine-grained quantization effectively mitigates the error introduced
by feature outliers, it requires different groupings for activation quantization, i.e., 1x128 in
forward pass and 128x1 for backward pass. A similar process is also required for the activation
gradient. A straightforward strategy is to apply block-wise quantization per 128x128 elements
like the way we quantize the model weights. In this way, only transposition is required for
backward. Therefore, we conduct an experiment where all tensors associated with Dgrad are
quantized on a block-wise basis. The results reveal that the Dgrad operation which computes
the activation gradients and back-propagates to shallow layers in a chain-like manner, is highly
sensitive to precision. Specifically, block-wise quantization of activation gradients leads to
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model divergence on an MoE model comprising approximately 16B total parameters, trained for
around 300B tokens. We hypothesize that this sensitivity arises because activation gradients are
highly imbalanced among tokens, resulting in token-correlated outliers (Xi et al., 2023). These
outliers cannot be effectively managed by a block-wise quantization approach.

C. Expert Specialization Patterns of the 16B Aux-Loss-Based and Aux-Loss-
Free Models

We record the expert load of the 16B auxiliary-loss-based baseline and the auxiliary-loss-free
model on the Pile test set. The auxiliary-loss-free model tends to have greater expert specializa-
tion across all layers, as demonstrated in Figure 10.
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Figure 10 | Expert load of auxiliary-loss-free and auxiliary-loss-based models on three domains
in the Pile test set. The auxiliary-loss-free model shows greater expert specialization patterns
than the auxiliary-loss-based one. The relative expert load denotes the ratio between the actual
expert load and the theoretically balanced expert load.
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