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Series Editor’s Preface

Approach your problems from the It isn’t that they can’t see the solution.

right end and begin with the answers. It is that they can’t see the problem.

Then one day, perhaps you will find
the final question. G.K. Chesterton. The Scandal of

Father Brown ‘The point of a Pin’.

‘The Hermit Clad in Crane Feathers’

in R. van Gulik’s The Chinese Maze

Murders.

Growing specialization and diversification have brought a host of mono-
graphs and textbooks on increasingly specialized topics. However, the
“tree’’ of knowledge of mathematics and related fields does not grow
only by putting forth new branches. It also happens, quite often in fact,
that branches which were thought to be completely disparate are suddenly
seen to be related.

Further, the kind and level of sophistication of mathematics applied in
various sciences has changed drastically in recent years: measure theory
is used (nontrivially) in regional and theoretical economics; algebraic
geometry interacts with physics; the Minkowski lemma, coding theory
and the structure of water meet one another in packing and covering
theory; quantum fields, crystal defects and mathematical programming
profit from homotopy theory; Lie algebras are relevant to filtering;
and prediction and electrical engineering can use Stein spaces. And in
addition to this there are such new emerging subdisciplines as “‘experi-
mental mathematics’’, ‘““CFD”’,“completely integrable systems”, “chaos,
synergetics and large-scale order’’, which are almost impossible to fit
into the existing classification schemes. They draw upon widely different
sections of mathematics. This programme, Mathematics and Its Appli-
cations, is devoted to new emerging (sub) disciplines and to such (new)
interrelations as exempla gratia:
—a central concept which plays an important role in several different

mathematical and/or scientific specialized areas;
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— new applications of the results and ideas from one area of scientific

endeavour into another;

—influences which the results, problems and concepts of one field of

enquiry have and have had on the development of another.
The Mathematics and Its.Applications programme tries to make available

a careful selection of books which fit the philosophy outlined above. With

such books, which are stimulating rather than definitive, intriguing rather
than encyclopaedic, we hope to contribute something towards better
communication among the practitioners in diversified fields.

Because of the wealth of scholarly research being undertaken in the

Soviet Union, Eastern Europe, and Japan, it was decided to devote spe-

cial attention to the work emanating from these particular regions. Thus

it was decided to start three regional series under the umbrella of the

main MIA programme.

Progress in mathematics, as in other sciences, thrives on the kind of
questions and/or results which, so to speak, require one to twist one’s
mind upside down and out of shape a couple times in order to see that
the solutions are both natural and beautiful. Paradoxes, i.e. counterintui-
tive but true results, are perhaps the purest manifestations of such prob-
lems. And probability theory, the science of random events, has always
been and still is particularly rich in paradoxes.

Studying and understanding a field through paradoxes is probably
one of the better ways of gaining real intuition. For probability theory
this would be an ideal book to do so.

As long as algebra and geometry pro-

ceeded along separate paths, their ad-

vance was slow and their applications

The unreasonable effectiveness of ma-

thematics in science ...

Eugene Wigner

Well, if you know of a better ’ole, go

toit.

Bruce Bairnsfather

What is now proved was once only ima-
gined.

William Blake

Bussum, March 1986

limited.

But when these sciences joined com-

pany they drew from each other fresh
vitality and thenceforward marched

on at a rapid pace towards perfection.

Joseph Louis Lagrange.

Michiel Hazewinkel



Introduction

“The fairest thing we can experience is

the mysterious. It is the fundamental

emotion which stands at the cradle of

true art and science. He who knows it

not and can no longer wonder, no long-

er feel amazement, is as good as dead,

a snuffed-out candle.”

Albert Einstein; Mein Weltbild,

“It is remarkable that a science which

began with the considerations of games

of chance should have become the most
important object of human knowl-

edoer.

Pierre Simons, Marquis de Laplace;

Théorie Analytique des Probabilités,

1812
1934 Engl. translation: Ideas and

Opinions, by S. Bargmann

Just like any other branch of science, mathematics also describes the
contrasts of the world we live in. It is natural therefore that the history
of mathematics has revealed many interesting paradoxes some of which
have served as starting-points for great changes. The mathematics of
randomness is especially rich in paradoxes. According to Charles Sanders
Peirce no branch of mathematics is as easy to slip up in as. probability
theory. This book aims to show how this rapidly progressing and widely
used branch of knowledge has developed from paradoxes. It tries to show
those exciting moments that preceded or followed the solution of some
outstanding paradoxical problems which are rarely mentioned in mono-
graphs. The book deals not only with interesting but not very important
“gems” of probability theory, far from the main stream of development;
on the contrary it emphasizes the contradictions that have done the
most to clear up fundamental crises in the mathematics of randomness.
The book also deals with problems that were not originally regarded as
paradoxes. A book on paradoxes must naturally have a historical
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framework and so this book begins with the oldest paradoxes of proba-

bility theory.
It is important to distinguish paradoxes from fallacies. The first one

is a true though surprising theorem while the second one is a false

result obtained by reasoning that seems correct. Both paradoxes and
fallacies are very interesting and instructive but this book deals mainly
with paradoxes (exceptions are, e.g., the ‘“‘paradoxes” of IV/1). In for-

mulating the paradoxes my aim was that each paradox should be clear
by itself. It is obvious though that the reader who does not play bridge,

or is not familiar with normal distributions, will have more difficulty
when these particular notions are the basis of the paradoxes. However,

by reading the book straight through from the beginning, he will discover
the definitions of the most important notions. (The rules of bridge are

not discussed in the book but those which are necessary to understand

the paradox can also be found out.)
The book consists of four main chapters. Each paradox will be dis-

cussed in five parts: the history, formulation, explanation of the paradox,
remarks, and, finally, references. Each chapter finishes with quickies.
These are not discussed in detail, not because they are of less importance

or interest, but because they do not fit into the main line of the book.
The initial inspiration for a book on the paradoxes of probability

theory came from my late professor, Alfréd Rényi. A. N. Kolmogorov

also encouraged me when we met in Budapest in 1972. In 1976, I spent
a semester at the University of Amsterdam, where Professor A. A. Bal-
kema drew my attention to several interesting paradoxes. Further inspira-

tions came from the discussions following my lectures at Johns Hopkins’,
Columbia, Yale University and at MIT. I was also fortunate to have the

opportunity to meet and discuss probabilistic problems with George
Polya at Stanford University and in Budapest. I would like to thank
him for his advice. Special thanks must be given to several colleagues

of mine at the L. Eétvés University and the Mathematical Institute of

the Hungarian Academy of Sciences. Their names will occur frequently.

Finally, it should be emphasized that this English edition of the book
is a revised and updated version of the Hungarian one.



Chapter 1

Classical paradoxes of probability theory

“A classic is something that everybody “Experience is the name everybody

wants to have read and nobody wants gives to his mistakes.”
to read.”

Mark Twain Oscar Wilde

“’,.the true logic for this world is the

calculus of Probabilities, which takes

account of the magnitude of the proba-

bility which is, or ought to be, in a rea-

sonable man’s mind.”
J. Clerk Maxwell

Considerations on probabilities (such as the old golden rules of gamblers)
can be traced back to ancient times but mathematical calculations on
probabilities and probabilitistic paradoxes have been put in writing only
since the beginning of modern times. Though probability theory today
has about as much to do with games of chance as geometry has to do
with land surveying, the first paradoxes nevertheless arose from popular
games of chance.

1. THE PARADOX OF DICE. *‘GAMES OF CHANCE”’

IN THE WORLD OF PARTICLES

a) The history of the paradox

Dice was the most popular game of chance up until the end of the Middle

Ages. The word hazard refers to dice as well, for it comes from the

Arabic “al-zar” meaning ‘‘the dice’. Card games became popular in
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Europe only in the 14th century, while dice had already been in fashion

in ancient Egypt during the Ist dynasty and later in Greece, as well as

in the Roman Empire. (According to Greek tradition it was Palamedeo
who invented dice in order to entertain the bored Greek soldiers waiting
for the battle of Troy. A 2nd century writer, Pausanias, mentions a pic-

ture painted by Polygnotos in the 5thcentury BC whichshowed Palamedeo
and Thersites playing dice.) The earliest book on probability theory is a

book by Gerolamo Cardano (1501—1576) called ‘“‘De Ludo Aleae”’
which is devoted mostly to dice. This short book was published only

in 1663 about 100 years after it had been written. It might have been
the reason why Galileo began to deal with the same dice-problem, al-
though it had already been solved in Cardano’s work. Galileo also

wrote a study on this theme sometime between 1613 and 1624. Its original

title was ‘“‘Soprale Scoperte dei Dadi” but in the 1718 edition of Galileo’s
collected works, the title was changed to “‘Consideratione sopra il Giuoco

dei Dadi’.

b) The paradox

A fair dice, when thrown, has an equal chance of falling on any of the

numbers 1, 2, 3, 4, 5 or 6. In the case of two dice the sum of the numbers

thrown is between 2 and 12. Both 9 and 10 can be made up in two differ-

ent ways out of the numbers 1, 2, ...6.9=3+6=4+5 and 10=4+6=

=5+5. In the 3 dice problem, both 9 and 10 can be made up in six

ways. Why then is 9 more frequent if we throw two dice, and 10 if we

throw three?

c) The explanation of the paradox

The problem is so simple to solve that it is really surprising that people

at that time found it so shocking. Both Cardano and Galileo pointed out

that the order of the cast must be taken into consideration. (Otherwise

not all results would be equally probable.) In the case of 2 dice, 9 and

10 can be made up as follows: 9=34+6=6+3=4+5=5+4+4 and 10=

=4+6=6+4=5+5. This means that in the 2 dice problem we can

throw 9 in four ways but 10 only in three ways. Therefore the chance
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of getting 9 is more likely. (Since 2 dice can make 6-6=36 different
: a } ee

number pairs of the same probability, the chance of getting a 9 is 36

: : 3 ;
while that of for 10 is only =] In the case of 3 dice it is just the other

way round. 9 can be obtained only 25 ways but 10 26 ways. So 10 is

more probable than 9.

d) Remarks

(i) In spite of the simplicity of the dice problem, several great mathema-
ticians failed to solve it because they forgot about the order of the cast.
(This mistake is made quite frequently, even today.) Leibniz, one of the
creators of the differential and integral calculus, and D’Alembert, one
of the greatest authors of the famous French Encyclopedia, were both
mistaken. D’Alembert was once asked the following question: What
is the probability of a coin falling at least once heads if it is tossed twice?
The scientist’s answer was 2/3, because he thought that there were only
three possible outcomes (heads-heads, heads-tails, tails-tails) and among
these only one is unfavourable, i.e., when we toss two tails. He neglected
that the three possible outcomes are not equally probable. The correct
answer is 3/4, because tossing heads-heads, heads-tails, tails-heads and
tails-tails have the same chance and only the last one is unfavourable.
D’Aiembert’s opinion was even published in the Encyclopedia 1754
at the entry “Croix on pile’’.

(ii) The dice problem has some links with 19th and 20th century
microphysics. Suppose that we play with particles instead of dice. Each
face of the dice represents a phase cell on which the particles appear
randomly and which characterizes the state of the particles. Here dice is
equivalent to the Maxwell—Boltzmann model of particles. In this model
(used mostly for gas molecules) every particle has the same chance of
reaching any cell, so in a list of equally probable events, the order must
be taken into account, just as in the dice problem. There is another model
in which the particles are indistinguishable, and for this reason the order
must be left out of consideration when counting the equally possible
outcomes. This model is named after Bose and Einstein. Using this
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terminology the point of our paradox is that dice are not of the Bose—

Einstein but of Maxwell—Boltzmann type. It is worth mentioning that

none of these models are correct for bound electrons because in this

case, only one particle may occupy any cell. In dice-language it means

that after having once thrown a 6 with one of the dice, we cannot get

another 6 on the other dice. This is the Fermi—Dirac model. Now the

question is which model is correct in a certain situation. (Beside these

three models, there are many others not mentioned here.) Generally we

cannot choose any of the models only on the basis of pure logic. In most

cases it is experience or observation that settles the question. But in the

case of dice, it is obvious that the Maxwell—Boltzmann model is the

correct one and at this moment that is all we need.

e) References

A classical monograph on the history of the classical probability theory is:

Todhunter, I., History of the Mathematical Theory of Probability, which was firstly

published in 1865 and republished in 1949 by the Publishing House Chelsea.
The description of the prehistory and earliest periods of probability theory can be

found in:

David, F. N., Games, Gods and Gambling. Griffin, London, 1962.

The following books point out the historical and philosophical aspects of early prob-
ability theory:

Hacking, I., The Emergence of Probability. Cambridge University Press, 1973.

Maistrov, L. E., The Development of the Notion of Probability (in Russian). Nauka,
Moscow, 1980.

Readers interested in the history of early probability theory may find further details

in the periodicals Biometrika and Archive for the History of Exact Sciences.

The English translation of the first monograph on the problems of dice as well as the

detailed biography of its author Gerolamo Cardano can be found in
Ore, @., Cardano, the Gambling Scholar. Princeton University Press, Princeton, 1953.
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2. DE MERE’S PARADOX

a) The history of the paradox

There is an old story (probably from Leibniz) that the well-known 17th

century French gambler Chevalier de Méré was on his way to his estate
in Poitou when he met Blaise Pascal, one of the most famous scientists

of the century. De Méré posed two problems to Pascal, both connected

with games of chance. The first problem was the paradox in question (the

second one is the next paradox). In 1654 Pascal corresponded with

Pierre de Fermat, another highly gifted scientist living in Toulouse, about
these two questions. They both came tothe same result, which pleased

Pascal very much. He writes ina letter: ‘‘I see that the truth is the same
in Toulouse and in Paris.” Oystein Ore, professor at Yale University, has

pointed out that the paradoxes attributed to de Méré had, in fact, been

common knowledge much earlier, it was just that Pascal had not known
about them. Nor is it true that the chevalier was a passionate gam-
bler. He was interested in paradoxes theoretically rather than practically,

which is why he was not satisfied that Pascal had ‘‘only” solved the
problem, confirming the answer he already knew was right He could

not see from the solution how the contradiction was solved.

6) The paradox

In four throws of a single dice the probability that we get at least one ace

is more than 1/2, whereas in 24 throws of 2 dice the probability that we

get a double ace (at least once) is less than 1/2. This seems surprising since

the chance of getting one ace is six times as much as the chance of a double

ace, and 24 is exactly 6 times as great as 4.

c) The explanation of the paradox

If one true dice is thrown k times, then the number of possible (and
equally likely) outcomes is 6*. In 5* cases out of these 6*, the dice does not

turn up a six, hence the probability of throwing at least one ace in k

2 Székely
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throws is

6* —5k 5)"<= (3).

and that is greater than 1/2 if k=4. On the other hand, the quantity
35 \k or akes

1- (=| , which we can obtain in the same way, is still smaller than

1/2 for kK=24 and only exceeds 1/2 for k=25. So the “critical value”

is 4 for a single dice and 25 for a pair of dice. This undoubtedly correct
solution did not in fact satisfy de Méré as he had known the answer
itself; it was just that he did not understand why it was incompatible
with the “‘proportionality rule of critical values”, which says that if the

probability decreases one sixth times, then the critical value increases
six times (4:6=24:36). Abraham de Moivre (1667—1754) proved in his
book ‘‘Doctrine of Chances”, published in 1718, that the “proportion-
ality rule of critical values” was not far from the truth. For if p is the prob-
ability of an event (for example, the probability of throwing an ace
is p=1/6), then the critical value k can be calculated by solving the
equation

(py =>
(the equation can be solved if p is strictly between 0 and 1). The critical
value k is the smallest integer which is greater than x. The solution of

the above equation is:

at de Sade In2
In(l—p) =p+p?/2+...’

where In denotes natural logarithm (base e=2.71...). It is apparent from

this solution that if p? is negligibly small, then p decreases approximately
in proportion to the increase in the critical value, just as de Méré thought.

In2 0.69
y

(*)

De Moivre used the approximation formula x~ to ex-
P p ,

amine the Royal Oaks Lottery (the London Lottery). In that case the value
1

of p was 1/32 and for Lan the correct value is x=22.135..., while
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the above formula gives the approximation 22.08, which is very near to

the correct value. De Méré’s paradox occurred because for p=1/6,
p?/2 (and other terms in the denominator of formula (*)) are not small

enough to neglect. Thus the “proportionality rule of critical values” is

just an approximate rule, the error of which increases as p increases.
This is the real solution of the paradox.

d) Remarks

(i) A typically incorrect solution of de Méré’s problem goes back to

Cardano. He reasoned as follows: the probability that we get a double

ace is 1/36 so we have to throw the dice exactly 18 times to get a double

ace at least once with probability 1/2. According to this reasoning, in

more than 36 throws the probability that we get a double ace is more than

1, which is, of course, nonsense.

(ii) There aresome ‘random quantities” which obey the ‘‘proportion-
ality rule”. (We shall discuss these random quantities in Paradox 8.)
Some of these random quantities are very important in atomic physics,
where the critical value is called half-life. This is inversely proportional
to the decay constant, which corresponds to p.

(iii) The number of throws of a true dice necessary to turn up the first
ace is a quantity depending on chance, a random variable. Let us denote
this random variable by vy.The possible values of v are 1, 2, 3, 4,....
The probability that v=k (where k is a positive integer) is (=) =.

So the mean or expected value of v, (defined as the weighted average of
its possible values, the weights being the corresponding probabilities), is:

es Sa (ee Fae 4BeeresTeavgeaeWsBease
Somewhat more generally, if p is the probability of the realization of an

event A, and we repeat independent trials until A occurs, the expected

value of the number of necessary trials is 1/p. Thus these kinds of expect-

ed values obey the ‘‘proportionality rule’’: we need six times as many

throws on average to get a double ace as to get one ace.

7%
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(iv) Up till now an intuitive term of probabilistical independence has

been used. We shall return to this later.
(v) The explanation of de Méré’s paradox did not become widely

known. In 1693, nearly forty years after Pascal had solved the problem.
Samuel Pepys (President of the Royal Society from 1684) proposed
almost the same problem to Newton. Newton also found the right

answer, but he could not satisfy Pepys either.
(vi) “Dreydel’’ or “‘draydl’’ is an ancient game similar to dice. (It

also resembles the English game put-and-take.) Dreydel is played by
Jews at the Chanukah festival. Quite recently Feinerman discovered
(see reference below) that this game is unfair if the number of players

is more than two, though, paradoxically, nobody had observed this
fact for over 2000 years!

The dreydel is a four-sided top whose sides are denoted by the letters

N, G, H and S (corresponding to the Hebrew letters Nun, Gimel, Hay

and Shin). The game is played with any number of players, each of whom
contributes one unit to the pot to start the game. The players continue

to take turns spinning the dreydel until some mutually agreed stopping
point. The payoffs (to the spinning player) corresponding to each of the

four equally likely outcomes are, N: no payoff, H: half the pot, G:
entire pot, S: put one unit into the pot. When one player spins a G, he

collects the entire pot, and all the players then contribute one unit to
form the new pot. If the number of players is denoted by m then the

expected value of the payoff of the n-th spin is E,=m/4+(5/8)"~*(m—2)/8.

(A) (B) (C)

Figure 1. The faces of a regularly and two irregularly spotted dice. Rolling the
two true dice which are irregularly marked by spots (B and C), the probability that
the sum of the numbers we score is 2, 3, ..., 12 is the same as in the case of two
regularly spotted dice.
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We thus see that if m>2 then E, is a strictly decreasing sequence. There-
fore the first player (whose spins correspond to n=1, m+1,2m+1, ...)
has a term-for-term greater expected payoff than the second play-

e) References

Ore, @., ‘Pascal and the invention of probability theory”, The American Math.
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Rényi, A., Letters on Probability, Akadémiai Kiad6, Budapest, 1972. This book intro-
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Fermat was published in
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3. THE DIVISION PARADOX

a) The history of the paradox

This paradox was first published in Venice in 1494 in asummary of the
mathematics of the Middle Ages. The author, Fra Luca Paccioli (1445—
1509), entitled his book ‘Summa de arithmetica, geometria, proportioni

et proportionalita”. This book uses the word million and explains the

rules of double entry for the first time. It is interesting to note that Fra
Luca and Leonardo da Vinci became close friends in Milan and, due

to this friendship, Leonardo illustrated Fra Luca’s work ‘‘De Divina
Proportione”, which was published in Venice in 1509. Oystein Ore
recently found an Italian manuscript dating from 1380 which also men-
tions the paradox of division. Many a thing indicates that the problem

is of Arabic origin, or at least reached Italy through Arabic teaching.
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However old this problem may be, it is a fact that it still took a very long
time the question to be correctly solved. Paccioli himself did not even
realize its connection with probability theory, for he considered it simply
a problem in proportions. An incorrect solution was given by Niccolo
Tartaglia (1499—1557), though he was such a genius that he discov-
ered the formula to solve cubic equations in one night in a mathe-

matical duel. After several unsuccessful attempts, Pascal and Fermat
eventually gave the right answer to the problem independently of each
other in 1654. It was suchan important discovery that this date is consid-
ered by many people to be the birth of probability theory, and all the
previous results to belong only to its prehistory.

5) The paradox

Two players are playing a fair game (i.e., both of them have the same

chance of winning) and they have agreed that whoever wins 6 rounds

first gets the whole prize. Let us suppose that the game actually stops

before one of them wins the prize (e.g., the first player has won 5, the

second 3 rounds). How could the prize be divided fairly? Though this

problem is not, in fact, a paradox, the unsuccessful attempts of some of

the greatest scientists to solve it, and the wrong, contradictory answers

created the legend of a paradox. One of the answers was to divide the

prize at the rate of the rounds won, i.e., 5:3. Tartaglia suggested a divi-

sion at the rate of 2:1. (Most probably he thought that the first player

had won two rounds more than the other, which is one third of the

necessary 6 rounds, so the first player should get one third of the prize

and the rest should be divided fifty-fifty.) As a matter of fact the fair

rate is 7:1 which is far from the previous results.

c) The explanation of the paradox

Both Pascal and Fermat considered it a problem of probabilities. So

the fair division is a rate of the chance of the first player to win against

the second one. We shall calculate that in a case where the first player

needs only one round to win while the second player needs three, the
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fair rate is 7:1. Following Fermat’s idea we shall continue the game with
3 fictitious rounds even if some of them seem to be superfluous (i.e.
when one of the players has already won the game). This extension makes
all the possible 2-2-2=8 outcomes equally probable. Since there is

only one outcome when the second player gets the prize (i.e., when he
wins all the 3 rounds) while in the other cases the first player wins, the
fair rate is 7:1.

c) Remarks

(i) The general solution for the case when the first player needs n and

the second player needs m more rounds to win was also due to Pascal

and Fermat. The chance that the first player gets the prize is

l ntm-1oe)n+m—1 ;2 j=n 4)

(Here the number of fictitious rounds is n-+m—1 and all the possible
2"+™—1outcomes are equally probable.) In 1654 the whole of Paris was

talking about the discovery of a new science, i.e., the probability theory.

Some months later a young genius, Christian Huygens arrived there from

Holland to discuss with either Pascal or Fermat the problems of probabil-
ity which he was also concerned with. As it happened he was unable to

meet either of them. (Pascal was in ecstasy over religion and did not receive
guests and Fermat lived far from Paris.) Nevertheless he heard of the

most interesting results. He soon returned to Holland and began to write
his book on probability theory. This excellent work, which also contains
the solution of the problem of division for 3 players, was published in

1657 under the title of ‘‘De Ratiociniis in Aleae Ludo” as a part (the

fifth book) of Schooten’s ‘‘Exercitationes Mathematicarum’’. Huygens’s
work totals 16 pages and consists of a short preface and 14 propositions

on gambling.
(ii) Fermat’s beautiful idea of extending the play was applied by

Anderson (see the reference below) in 1977! He reached the following
striking theorem: Whether ‘‘service”’ is altered or the winner of one game

serves next, the initial server will still have the same probabilities of win-

ning N games before his opponent does.
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e) References
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dapest, 1972.

4. THE PARADOX OF INDEPENDENCE

a) The history of the paradox

First of all the independence of two random events A and B is defined.
Let us denote their probabilities by P(A) and P(B) and let P(AB) be
the probability that both A and B occur. (The symbol P is widely used
to denote the probability of an event, since not only in English but in
many other languages the initial letter of the word “probability” is
P— probabilitas in Latin, probabilité in French, probabilidad in Spanish,
probabilita in Italian etc.) Let A be an arbitrary event and B an event
with a positive probability. The probability of A, given that B has oc-
curred, i.e., the conditional probability of A on the hypothesis B, will
be denoted by P(A|B) and defined by the ratio

P(AB)
P(A|B) = Bay

Two events A and B are said to be independent if equation

P(A|B) = P(A)

holds, that is, if the conditional probability equals the unconditional one.
If we write the above equation in the form

P(AB) = P(A) +P(B) (*)

we get a simple equation symmetric in A and B, where we do not even
have to assume that P(B) is positive. It is therefore preferable to start
from the following definition: two events A and B are independent if
equation (*) holds.

The mathematical definition of independence and what we generally
think about independence are in harmony. For example, throwing two
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dice, the events “‘acewith first dice” and ‘‘ace with second dice” are clearly

independent in an everyday sense and also in a mathematical sense. The

harmony however did not seem to be perfect. It was S. N. Bernstein who
called attention to the following paradox.

56) The paradox

When tossing two true coins, let A be the event ‘“‘thefirst coin falls heads”,

B the event ‘“‘the second coin falls heads” and C the event ‘‘one (and

only one) of the coins falls heads”. Then the events A, B and C are pair-

wise independent but any two of them uniquely determine the third one.

c) The explanation of the paradox

First of all it is obvious that A and B are independent since the result

of the first throw is independent of the second one. The events 4 and C

(and also B and C), however, do not seem to be independent at first

1
sight, but, since P(AC)=P(A) FAN and similarly P(BC)=

= P(B) -P(C), they are really independent. It is also true that any two
of the events determine the third one because each event (A, B and C)
occurs exactly when one and only one of the other two events occurs.
This paradoxical phenomenon shows that pairwise independence does

not mean that events are independent as a whole. If we want to express
the latter, we have to assume more than pairwise independence. A set
of events is called mutually independent if for an arbitrary choice of
finitely many events A,, Ag, ..., A,, the multiplication rule

P(Ay A, ... A,) = P(Ay) +P(Ag)> ... P(An) Ce)

holds, i.e., if the joint probability of the events is equal to the product
of the individual (marginal) probabilities.
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d) Remarks

(i) If the events A,, Ao, ..., A, are not necessarily independent then we

can only state that

1 npe) = (P(A,Ay dle

—P(A,)+P(As)+...+P(A,)S (n—Dn-/O-D,
(ii) Several simple paradoxes can be solved only with the help of the

notion of independence. Let us examine the following problem. A boy

is going to play three tennis matches against his mother and father, and
he has to win twice in succession. The possible orders of matches are
“‘father-mother-father” or ‘“‘mother-father-mother’’. The boy has to de-

cide which order is more favourable to him knowing that his father

plays better than his mother. At first one might think that the second or-
der is preferable to the boy as he plays twice with his mother in this
version. Yes, but in this case the boy has to win the only match he plays

against his father, otherwise he will not win twice in succession. Is it
perhaps preferable to choose the first variation? If the boy wins against
his father with probability p and with probability g against his mother,

then p<q since his father plays better than his mother. Choosing the
first variation the boy has to win either the first and second matches, the
probability of which is pq or the second and third ones, the probability

of which is gp. Thus the probability that one of these two events will

occur is pg+qp—pgap (pgp has to be subtracted or else the probability
of the boy winning three times is taken into account twice). Similarly if

the boy chooses the second possible variation then the probability that
he wins twice in succession is gy-+pq—gpq. Since p<q, it follows that
pq+qp —pap>49p+P4q—qgpq, which means that it is preferable for the

boy to choose the ‘‘father-mother-father” version!

(iii) We can also define the independence of random variables. Let
X,, X2,... be arbitrary random variables assuming real values. The
variables are called mutually independent (or independent, for short),
if the events

A,, = {X,=<x AS =>{X. <<Xe},mete
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are mutually independent for arbitrary real values of x,, x2, ..... The
function F(x)=P(X<x) is the distribution function of the random

variable X, and the function F(x, y, ...,w)=P(X<x, Y<y, ..., W=<w)
is called the joint distribution function for the random variables X, Y, ...

...» W). Now we can define the mutual independence of any (finite of
infinite) set of random variables in the following way: a set of random

variables is called independent if for any finite subset S of this set, the
joint distribution function of the random variables in S is equal to the

product of their individual (marginal) distribution functions. If the distri-
bution function F(x) and the joint distribution function F(x, y, ... w)

can be written in the following form
\

F(x) = if f(%) dx

and Ey

F(x,y,...5W)= if jie f AGI,5) day...dW,
—°co —0O

then we call the functions f(x) and f(x, y, ..., W)density functions. If
these density functions exist, independence means that the joint density
function is equal to the product of the individual density functions.

(iii) If the density function f(x) of the random variable X exists
then its expectation is

co

E(X)= if xf(x)dx.

The expectation of (X¥—E(X))? is called the variance of X. Its positive
square root is the standard deviation, which is a measure of the disper-

sion of X around its mean value. (There exist other measures of spread
but standard deviation is undoubtedly the most important one. The
first use of terms ‘‘standard deviation” and ‘‘variance” is due to K.
Pearson (1895) and R. Fisher (1920), respectively.) If the density

function of X is f(x), then its variance

co

D(X)= f (X-E(X))Pf()de.
=60
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If X and Y are independent, then E(XY)=E(X)E(Y) and D(X+Y)=
=D(X)+D*(Y) (provided that the variances of X and Y exist). The
equation E(X+Y)=E(X)+E(Y) holds without assuming the inde-

pendence of X and Y.

e) References
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5. THE PARADOX OF BRIDGE AND LOTTERY

a) The history of the paradox

The history of games of chance can be traced back to ancient times.
They became so widespread that certain states and religions considered

it their duty to suppress them. Frederick II, emperor of the Holy Roman
Empire, banned dice in 1232. (At that time it was probably the only popu-

lar game of chance.) Louis 1X, King of France, decreed in 1255 that even

dice making was illegal. In the Jewish Talmud a gambler was considered

a thief and the Church pursued hazarders as well.
Among modern games of chance card games are undoubtedly the

most widespread. The word ‘‘card” comes from the Greek word

yaotns=paper, however card games per se date back to times preceding

the invention of paper. Though we do not know where card games come

from, they seem to have reached Europe through Venice via China—

Persia—Syria—Palestine in the 13th century, at the time of the Cru-

sades. The facts are as follows. According to a 17th century Chinese

Encyclopedia, card type games were already known in China about

1120 AD. Parts of a 13th century Arabic card can be seen in the Istambul
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Topkapi Serai Museum. A Florentine decree banned a card game called

“naibi” in 1376. According to a 1377 manuscript, kept in the British

Museum, card games became popular about that time in Switzerland.

The Bibliothéque Nationale in Paris has 17 Tarot cards which were made

for Charles IV in 1392. Johannes Gutenberg printed Tarot cards the

same year as his famous Bible. The modern deck is derived from Guten-

berg’s Tarot cards. In the Tarot deck there were 78 cards; the 22 high-

ranking cards were known as “atouts” (i.e., ‘‘above all”; later, these

“atouts” were called ‘‘trump”’). Some decades later the French dropped

the 22 ‘‘atouts” and the 4 ‘‘Knights” the remaining 52 cards became the

modern deck. Since then the number of the popular card games has risen

to several hundred, while the number of the card sharpers has also in-

creased. This fact is reflected in Caravaggio’s famous painting “The Card-

sharps’”’ which was painted in 1593. In 1765 a Paris police lieutenant,

Gabriel de Sartine, introduced roulette in order to reduce the influence

of the sharpers. It became the most glamorous casino game and the oldest

still in operation. Since the 17th century, lottery type games organized

by the state have also become more and more popular. The first public

lottery awarding money prizes, the Lotto de Firenze, was established in

Florence in 1530. Another variation came into being in 1620 when the

council of Genova needed five more members to be complete. These

members were chosen from among 90 citizens whose names were put

in an urn and the five names were pulled out. The citizens of Genova

were allowed to bet on the five lucky citizens. Even today card games,

roulette, lottery and other games of chance are very popular. Sometimes

certain winning strategies appear claiming to be ‘‘absolutely reliable”

but in tact they have no scientific background. On the other hand, exact

scientific theories are only known by the very small society of mathema-

ticians. These theories generally support the empirical rules used in

practice. However, mathematical theorems may contradict common

sense and become the source of the paradoxes. Here we only deal with

two of them.
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6) The paradox

(i) The paradox of bridge

Let us suppose that in a two-hand coalition of 26 cards there are 6

trumps altogether. Then the most probable distribution of trumps is the

following: 4in one hand and 2 in the other. The exact probability of this

78 1 ‘32
distribution is aT which isa little less than > while the probability

1 286
of the 3—3 distribution is just a little more than 3° exactly 305" Now

suppose we have to throw trumps twice and in the coalition both hands

can do so. In this case in the two-hand coalition there remain only 2

trumps. Either one hand has both cards or each of them has one. If 2

trumps and 20 other cards are distributed between two hands then the

10
chance that one of them will get both trumps is 57° while the probability

11
of the other case is oe So the latter is more probable, i.e., the more

probable distribution 1—1 comes from the /ess probable distribtuion 3—3.

Is this not a contradiction?

(ii) The paradox of lottery

Most lottery players would not give a ‘‘too symmetrical” tip though every
tip has the same chance. The reason is very simple. They know from
experience that generally an irregular tip wins. In fact it is more advan-

tageous to give a very symmetrical tip just because it is avoided by most
of the other players.

c) The explanation of the paradoxes

(i) The chance that we get a 3—3 distribution of the trumps is:

(3}(to)286
26) +805"
13
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Similarly for the 2—4 and 4—2 distribution it makes

6) (20 6) (20
2) ei 4)\9 78

26 26 161’

13 13

so the second distribution is more probable. If we have 2 trumps and 20

other cards the 1—1 trump distribution has a chance of

oy) Oe

11
me d 10

The probability for the complementer event is of course Ti as stated.

But then where is the mistake? First of all we will show where it cannot
be. It is natural to think that after trumping (and seeing that both hands

have thrown 2 trumps) the probabilities have changed due to the in-
formation we have acquired meanwhile. It is true that the conditional

probabilities (the condition is that both hands had at least 2 trumps)
are different from those without condition but both probabilities are

multiplied by the same number when we calculate the conditional prob-

abilities. Consequently, their rate does not change and so the paradox
286 78 676

+— =— thus the conditional probabilities areminataolved(==isnotsolved.| >=+ 3 305
5 a

S6 times more than the ones without conditions.) The real source of

error is the following. If the original distribution was 3—3 trumps, then

both hands can throw their trumps in 3-2=6 different ways. That gives
6-6=36 possible events altogether. If the distribution was 4—2 or 2—4,

then they could throw their trumps only in 4-3-2-1=24 ways. As we

can see now the original distribution of trumps before trumping is very
important. If we take the original situation into consideration then we

24 2
get a rate which is only rma of the rate calculated above. Really

286 78 11 2 LiOp et '
—_ :—_—_-=>—_ is —ofth te —:—=—. Now the paradoxisNOx BTA eat) ie mesoe) eTESI(I ¢

solved entirely.
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(ii) It is not at all suprising that symmetrical or regular tips very sel-
dom win. If the tip consists of 5 numbers then the possibilities by 90
numbers are about 44 million (exactly 43,949,268), while regular fives
make only a few thousand. In the case of a regular 5-number-tip which
is very seldom given by others, (though the chance of winning remains
the same) the prize would actually increase. The player would certainly

see it after a while if he played with a lot of lottery tickets.

d) Remarks

(i) Rarely given 5-number-tips can be traced back easily as it is always
in the news how many players have got 2, 3, 4 or 5 hits and how much
the prizes were. (If a more frequent 5-number-tip is drawn, prizes are
less.) In case of football pools mathematical analysis is a bit more compli-
cated because there are no fixed tips. Calculations may rely upon the
tips of certain newspapers and the number of people taking their advice.

(ii) Works on games of chance (from roulette which is basicly hazard

to bridge where the influence of randomness is reduced to minimum) must

fill several libraries. In the 20th century the general theory of games was

also developed mainly due to the work of John von Neumann. We will

come to it later.

(iii) The following paradox appeared in 1693(!) in the Philosophical

Transaction of the Royal Society (17, 677—681). ‘‘An Arithmetic Para-
dox, concerning the Chances of Lotteries” by the Honourable Francis
Roberts, Esq; Fellow of the R. S.

“As some Truth (like the Axioms of Geometry and Metaphysics)

are self-evident at the first View, so there are others no less certain in

their Foundations, that have a very different Aspect, and without a

strict and careful Examination rather seem repugnant. We may find

Instances of this kind in most Sciences. ... I shall add one Instance in

Arithmetic, which perhaps may seem as great a Paradox as any of the

former.

There are two Lotteries, at either of which a Gamester paying a Shilling
for a Lot or Throw; the First Lottery Upon a just Computation of the
Odds has 3 to 1 of the Gamester, the Second Lottery but 2 to 1; neverthe-
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less the Gamester has the very same disadvantage (and no more) in
playing at the First Lottery as the Second.”

The example following this problem points out (we use here modern

terminology) as follows. Let X denote our prize depending on randomness

in a game. (In case we lose X is negative.) Let Xt=X if X is positive

and otherwise 0, X-=X if X is negative and otherwise 0. Let Y, Y*,Y~
denote the same random values in another game. Though the expected
value of X and Y are the same according to the example the rate of the

expected value of X+ and X~ may differ from that of Y*+ and Y~-.
This means that from E(X)=E(Y) it does not follow that E(X*)/

E(X~)=E(Y*)/E(Y—). Hardly anybody would wonder about this re-

sult. (Obviously, if the expected value of both X and Y is 0 then the
above rates are equal for both take the value 1.) If the problem is
nevertheless considered a paradox, it should rather be called the para-

dox of expected value than “‘an arithmetic paradox”’.
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6. THE PARADOX OF GIVING PRESENTS; HORSE KICKINGS;

TELEPHONE CALLS; MISPRINTS

a) The history of the paradox

Classical probability theory dealt mainly with combinatorial questions

(connected with games of chance). In these problems random events
usually had a finite number of possible outcomes and all outcomes had
the same probability. In this simple case the probability of an event
(A) is the ratio of the number of ‘‘favourable”’ cases to the ‘‘total num-
ber of cases”. The first detailed monograph on probability theory also
dealt with such probabilities. This was a book by Rémond de Montmort
published in Paris 1708. The ‘‘Paradox of Giving Presents” is a variant
of a problem discussed in Montmort’s book in the language of card-

games.

b) The paradox

The members of a company decide to give each other presents in the

following way. Everybody brings a present, which is put with the others,
mixed and distributed at random to the people. This is a fair way of
distributing presents and is usually applied in the belief that the proba-
bility of a match, i.e., somebody getting his own present, is very small
if the company is large. Paradoxically, the probability of at least one

match is much larger than the probability of no matches (except if the

company consists of exactly two members, when the chance of no matches
is 50%).

c) The explanation of the paradox

Consider a company of n people; then the number of presents is also n.

The presents can be distributed in n! different ways. (This is the total

number of cases.) The number of cases when nobody gets his own pre-

sentis (0)nt—(T}@—v1+(3}@—21-
={3)(n—3)!+...+(—1)"0!,
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thus the ratio of favourable cases to the total number of cases is:

: 1
and p, is really smaller than es if n>2.

7 1
At the gathering of at least 6 people for example (n=6), p,~—~

e
«0.3679 accurate to four decimal places. The probability of a certain

; J
match, i.e., that a certain person gets his own present, is clearly —,

n
1 : :

and — converges to 0 as n increases. This paradox shows that ‘‘many
n

a little makes a mickle”’: in spite of the small probabilites (-) of certain
n

matches, the probability of having at least one match is roughly 2/3.

d) Remarks

(i) The probability p, converges to e~! as n increases. If n is at least 6

then p,=e7! accurate to four decimal places. More generally the prob-
-1

ability of having exactly k matches is (in the above sense).
k!

(ii) We shall examine another problem connected with the paradox

of giving presents. Consider again a company of n people and 7 presents.

Now the presents are distributed such that every person may get every

present with the same probability independently of the distribution of

other presents. Thus it may happen that somebody gets more than one

present and others do not get any presents at all. Presents can be distrib-

uted now in n” different ways (" is the total number of cases). Let A be

the event that a certain person does not get any present. Then all the

presents are distributed among the remaining (n—1) people and this

can be done in (n—1)" different ways. Therefore the probability of event

Ais
agli. Jasieee" n" n

3*
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The sequence q, also tends to e~! just like p, did. Generalizing our result:

the probability that a certain person gets exactly k presents converges to
eal

k!
is not necessarily equal to the number of presents (m). In this case the

as noo, Consider now the case where the number of people (7)

i : ])m :probability we seek is a=(1 -—] . If the ratio = tends to a param-

n n

eter A (i.e., if the average number of presents per person is A or tends
to A) then q, converges to e~* (where A can be an arbitrary positive
real number). Finally the probability that a certain person gets exactly k

presents converges to

Jke-4Peeaa
We say that a random variable taking only non-negative integer values
has the Poisson distribution if it assumes the value k with probability 7,.

Tk MK
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Figure 2, Poisson distribution with parameters A=2 and A4=53.

As we have seen above the random number of presents that a certain

person gets approximately follows the Poisson distribution with param- -

eter A, if the average number (expected value) of presents per person

is A. Returning to the “Paradox of Giving Presents’ the number of

people who get their own presents also follows the Poisson distribution



Classical paradoxes of probability theory 25

with parameter A=1, and this is quite natural since on the average there
is only one person who gets his own present. (The probability that a

Mer: ;
certain person gets his own present is — and for n people it adds to

n
unity whatever the value of n.)

(iii) The notion of Poisson distribution appeared first in a book by the
French scientist Simeon Denis Poisson (1781—1840). (Section 81 of

“Recherces sur la Probabilité des Jugements en Matiére Criminelle et

en Matiére Civile, Précédées des Régles Génerales du Calcul des Probabi-
lités”, published in 1837, deals with the application of probability theory

in trials.) Poisson discussed the following problem. Consider an experi-

ment in which the same phenomenon is repeatedly observed. It is assumed
that the trials in this experiment are independent, there are only two

possible outcomes for each trial and their probabilities remain the same

throughout the trials. (An experiment of this type is called a sequence
of Bernoulli trials.) It is usual to refer to the outcome with probability p

as a “‘success” and the other as “failure”. An example of Bernoulli trials
is provided by successive tosses of an unbalanced coin. Let b, be the
probability that n (Bernoulli) trials result in k successes (e. g., the proba-

bility of exactly k heads in 7 tosses of an unfair coin). Then

bh(i)*a-ay-#,iON18on:
Thus the number of successes S, in n Bernoulli trials is a random var-

iable, which takes the value k with probability b,. A random variable

with possible values 0, 1, 2, ..., 1 is said to have binomial distribution if

it assumes the value k with probability b,. The attribute “‘binomial”

refers to the fact that b, is just the kth term of the binomial expansion
of (p+(1--p))", since by the binomial formula (p+(1—p))"=bo+b,+

+b,+...+b,. Poisson discovered that if p is made smaller and smaller

at the same time that is made larger and larger, so that the product

np=A is fixed, then b, tends to r,. Thus the Poisson distribution is an

approximation to the binomial distribution. The wide applicability and

great importance of the Poisson distribution was not realized in the

middle of the last century; moreover it almost completely fell into

- oblivion. After 1894, however, it was applied to a very strange phenome-



26 Chapter 1 ;

non. Statistics were made of how many soldiers had been killed by horse

kicks during the 20 years between 1875 and 1894 in 14 different corps

of the German Army. According to the 280 data, 196 soldiers had died

this way, that is, 2=0.7 on average. If the number of fatal horse-kicks

followed the Poisson distribution with the parameter A=0.7, then we

would expect no death in 139 cases, 1 death in 97 cases, 2 deaths in 34

cases, etc. out of the 280 cases. And what did the statistics show? The

actual data were 140, 91, 32 etc., respectively; practice and theory are in

such close agreement that we would have hardly expected more.

This comparison appeared in 1898 in the famous monograph by

L. Bortkiewicz. The title of his book ‘‘Law of Small Numbers”’ refers
to the fact that in the Poisson approximation p tends to 0 as n increases.
(The title is quite misleading since it suggests that the Poisson approxima-

tion is in contrast in some way with the laws of large numbers, which will
be discussed later on). The Poisson distribution only began to be applied

widely in the 20th century. For example, the number of certain kinds of
goods sold on a given day approximately follows the Poisson distribu-

tion, or the number of hemoglobins visible under the microscope, the

number of strikes and wars in a year, the number of misprints in a text,
or the number of telephone connections to a certain number on a certain

day also follow approximately the Poisson distribution. If the average

number of hemoglobins or misprints or telephone connections is 2 then
they follow the Poisson distribution with parameter 4. If N telephone
lines are available in a telephone exchange then the number of busy lines

has approximately the Poisson distribution. Problems of this type were

studied by the Danish mathematician A. K. Erlang (1878—1929). He

pointed out, in 1906, that a better approximation can be obtained by
using the following truncated Poisson distribution:

aka=s wherek=0,1,...,N,
and

bordie
c= —| .Akl

Since that time this has been called the Erlang distribution.
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7. ST. PETERSBURG PARADOX

a) The history of the paradox

Probability theory, which originally described exepriences connected
with games of chance, developed into a theory of great universality and
gained ground in many fields of life. Thus it was not surprising that
almost every notable scientific journal followed the example of the
English ‘“‘Philosophical Transactions” and published articles on proba-
bility theory regularly. More and more scientists thought that probability
was none other than the very guide of life, reason in terms of figures.
However, in the early 1700s the Academy of St. Petersburg published an
article in which the mathematical calculation did not seem to be in har-
mony with reason. Daniel Bernoulli wrote the article and made the
Petersburg paradox known, but it was his cousin Nicolaus Bernoulli
who had first raised the problem and mentioned the paradox in a letter
written to Montmort in September 1713. (The Bernoullis were a renowned
family of mathematicians, several members of which dealt with proba-
bility theory, especially James Bernoulli, who will be mentioned later in

connection with the laws of large numbers.)

b) The paradox

A single trial in the Petersburg game consists of tossing a fair coin until

it falls heads; if this occurs at the rth throw the player receives 2” dollars

from the bank. Thus the gain redoubles at each toss. The question is the
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following: how much money should the player pay as an entrance fee so

that the game will become fair? The Petersburg game was considered fair

in the classical sense, if the mean (or expected) value of the net profit is 0,

but surprisingly we cannot fulfill this natural requirement no matter how

much (finite) money we pay.

c) The explanation of the paradox

The loss of the bank has infinite expectation since the probability that

the game ends at the kth toss is 1/2* and in this case the player receives

2* dollars. Then the bank has to pay

1 1 1Gx MAR arta |e Reetesee

dollars on average which is an infinite quantity of money, so an infinite

amount of money would be a fair entrance fee. Though this calculation
is mathematically correct, the result was unacceptable, therefore several

mathematicians suggested more acceptable modifications.

(i) Buffon, Cramer and others suggested accepting the natural assump-
tion of limited resources (i.e., only limited amount of money available

for the bank). Let this amount of money be one million dollars. Then the
expected value of the player’s gain is

1 1 Coeuy Weeae ea

‘meal+(e+or+Aa)10°=19+1.90...=21,
(taking into consideration that 2*°>10°). Therefore if the player pays a

21 dollar entrance fee then the game becomes somewhat favourable to

the bank.

(ii) W. Feller pointed out that it is possible to determine entrance fees _ -

which would make the Petersburg game fair. Denoting by n the number

of games the player played, the game can be considered fair if the ratio
of the accumulated gain N,, to the accumulated entrance fees R, con-
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verges to 1 as n tends to infinity, more precisely if for every e>0

raMei]<a}+1asnN+o, (*)
Feller proved that the Petersburg game becomes fair if we put R,=

=n-log.n. By the paradox the game cannot be fair for R,=cn, where
c is any finite constant. If, however, entrance fees may depend on the

number of games the player played then (according to Feller’s theorem)

the Petersburg paradox vanishes.

d) Remarks

(i) The relation (*) expresses a stability property of N,,. Similar stabilities
will appear with R,=cn in ‘‘The paradox of Bernoulli’s law of large

numbers’’.
(ii) On the results of 2084 games, Buffon found that the game becomes

fair with about 10 dollars entrance fee.

(iii) The following paradox is acompanion to the St. Petersburg para-
dox. (I heard it from Sam Gutmann after my talk in Dudley’s seminar at
MIT in 1983.) Say you are given an opportunity to win (—2)" dollars
with probability 2—",n=1, 2, 3, ... Are you happy or sad? The answer
is you are both happy and sad. You are happy because the given lottery
is equivalent to acompound lottery in which you receive one of a list of
lotteries, each of which is favorable (has positive expectation). That is,
you receive with probability (2-!+2-%+2-*) the lottery which awards
you (—2)/ dollars with probability

Dad

7-1-8 Dt (j =1,2,4)

or, with probability (2—?+2-°®+2-°)you receivethe lottery which awards
you (—2)*dollars with probability

=e
peaey rey omens)

etc. Each of these individual three-award lotteries has positive expecta-
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tion. So you are happy. Of course you can also rewrite the original lottery
into three-award lotteries each of which has negative expectation. The
first has rewards (—2)!, (—2)?, (—2)8, the second has rewards (—2)*,
(—2)°, (—2)’, etc. So you are sad, too. [Here is a restatement for those
who are familiar with the notion of conditional expectation. Imagine
that the conditional expectation E(X|Y) is defined, not as usual, but
rather as f xP(dx|Y) where P(dx|Y) is defined as usual. Then there
exist random variables X,Y, and Z such that E(X|Y)>0>£(X|Z)
with probability 1! Simply let X be the ultimate reward in the lottery,
i.e., X=(—2)" with probability 2—".Let Y=1 if we receive the first
positive lottery (i.e., X¥=(—2), (—2)?, or (—2)’), let Y=2 if we receive
the second (i.e, X=(—2)?,(—2)*, or (—2)*), etc. Let Z=1 if we
receive the first negative lottery (ie., X=(—2),(—2)?, (—2)), Z=2
if we receive the second (i.e., X=(—2)*, (—2)°, (—2)") ete.]
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8. THE PARADOX OF HUMAN MORTALITY.

THE AGELESS WORLD OF ATOMS AND WORDS

a) The history of the paradox

The mathematical research on human mortality and life span began in
the early days of capitalism due to the demands of the insurance compa-
nies. Foilowing the results obtained by John Graunt (1662), van Hudden
and John de Witt (1671) in the 1660s, Edmond Halley (the discoverer of
the comet named after him) published a paper in 1693 on mortality tables
establishing the mathematical theory of life insurance. The following

paradox (raised by d’Alembert) shows one of the “teething troubles”
of the new theory.
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b) The paradox

In Halley’s table the average life span is 26 years, and yet one still has
an equal chance of dying before the age of 8 or living beyond the age of 8.

c) The explanation of the paradox

It is true that according to Halley’s table one has an equal chance of
surviving more than 8 years and dying before 8, but once he has already
lived for 8 years he can still live for several decades. Therefore it is not
surprising that the average life span is much more than 8. Supposing
that out of a thousand people only one attains the life span of Methuse-
lah, the average age will increase a lot but their probable age (which
they survive at a chance of 50%) will not change significantly.

d) Remarks

(i) Let F(x) denote the probability that in a population the life span of
a randomly choosen person is less than x time units. (F(x) is the distribu-
tion function of life span.) Suppose that F(x) has a density function

f(x). The average life span is M=f xf (x)dx. On the other hand the
0

1
probable life span m is defined by the equation F(m) Fz. In other words,

during the time period m half of the population dies out. It is clear from

these formulas that generally M and m are of quite different values.

While M is the expected value of life span, m is called its median.

(ii) The notion of human mortality can easily be extended. If we
consider the amortization of industrial products or the decay of the atoms
as death then we obtain a widely applicable mathematical theory devel-
oped from the study of human mortality. However, in this more extend-
ed field rather paradoxical phenomena may arise as well. While human
beings are neither immortal nor ageless, we can find ageless beings both
in nature and society. Let us define the notion of agelessness. Consider a
being ageless if the chance that it will survive a certain fixed time interval
is independent of the time it has already ‘‘lived”’. Naturally, man does not
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possess this feature for the longer he lives the more probably he will die

in a given period of time. It is interesting that not every being imitates us.
For example radioactive atoms are ageless beings. If the average life
span of an ageless being is T then the probability that it will not die in
the following time period x is e~*/", where x is a positive number. The
ageless property of radioactive particles follows from the fact that

their speed of decay is in proportion to the number of undecayed par-
ticles. The factor of proportionality is called the decay constant and is
denoted by J. If there were No undecayed particles at the moment t=0
then (as the speed of decay is constant we get by integration that) at
the moment x the number of the undecayed particles is N,=Ne~*.
It means that the survival probability for the moment x is e~**. Conse-
quently, the radioactive particles are really ageless and their average

1
life span is ar In other words, the life span of radioactive particles

follows an exponential distribution with parameter A, i.e., its density
function is Ae~**.The half-life of ageless beings (the period during which
half of the beings die out) is the root of the following equation:

eee ee namely x= ne
pe ro

(iii) The half-life of ageless beings has become a fundamental idea
in several fields of science. The radiocarbon method, worked out by the
American chemist Willard Frank Libby, is still the most applied dating
method in the field of archeological chronology. (The scientist was award-
ed the Nobel Prize for this discovery in 1960.) In 1950, following Libby’s
ideas, M. Swadesh applied his method to linguistics assuming that not
only radioactive atoms but lingual atoms, i.e., words can also be consid-
ered ageless. The ancient basic vocabulary of languages dies out at a sup-
posed half-life of 2000 years. With the help of this idea we can determine
the date when two related languages (e.g., Latin and Sanskrit) separated.
We only have to know the amount of basic vocabulary still existing in
both languages to be able to figure out the date they separated. A. Raun

and FE.Kangsmaa-Minn compared Hungarian and Finnish. They found
that the identical elements make 21% and 27%, resp. (The calculations

were made by other methods.) On the basis of this, Hungarian and
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Finnish are thought to have separated some 4—5000 years ago. Swa-
desh’s 30-year-old method is very often used and is known as lexicosta-

tistics or glottochronology. (Swadesh’s original article was published in
the International Journal of American Linguistics.)

(iv) Suppose the decay constant is 4. Then the probability that exactly
k particles will decay in a time period f is

Gites
CVS ji

This means that the number of decays is a Poissonian random variable

already known from the paradox of giving presents. The expected value

of this distribution is At, which is quite natural.

(v) We have seen that there exist ageless beings. What is even more
surprising is the existence of beings growing younger, e.g., machines
during their running in time, when the probability that they will not go
wrong for a certain period increases with the passing time. It can easily
be seen that mathematically this means that, using the notations of (i),

f(x)

1—F(x)
of this rate is fundamentally important in reliability theory and in stor-

age problems.
(vi) Finally we mention a fascinating question related to human mor-

tality. Can the total number of people who ever lived on the Earth be
estimated by some probabilistic methods? The background of the follow-
ing surprising statement is explained in Goldberg’s book (see below).
“9 percent of everyone who ever lived is alive now.” This sentence was
also the title of an article in The New York Times (Oct. 6, 1981. p. 61).

(the failure rate) is a decreasing function of x. The examination
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9. THE PARADOX OF BERNOULLI’S LAW OF LARGE NUMBERS

a) The history of the paradox

There are only few other laws in mathematics that have been as much
misunderstood as the laws of large numbers. (It is not even generally
known that several such laws exist.) The first law of large number was
proved by Jacob Bernoulli (1654—1705) in his book entitled ‘‘Ars con-
jectandi” (Art of Guessing) which was published only after his death
in 1713. Bernoulli himself did not use the notion “‘law of large numbers’”’,
it was introduced only by Poisson in 1837. According to Bernoulli’s
law, if we toss a fair coin n times and it falls k times heads, then, by in-
creasing the number of tosses (n), the rate k/n (the relative frequency for
tossing heads) will approach the value 1/2. More precisely if ¢and 6 are
arbitrary small positive numbers and n (depending on ¢ and 4) is great
enough then |k/n—1/2| is less than ¢witha probability of at least 1—6. This
theorem is not nearly as complicated as one might think from the number
of misunderstandings and paradoxes it caused. The most typical is as
follows.

6b) The paradox

Gamblers often believe that, according to the law of large numbers, if a

fair coin falls heads many times then the probability of tossing tails

will necessarily increase. (Otherwise it would not be true that after a

great many tosses the number of heads and tails are approximately the
same.) On the other hand, it is obvious that coins cannot remember and
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so they do not know how many times they have already fallen tails or

heads. For this reason in every toss the chance of heads is 1/2 even if

the coin has already fallen heads a thousand times in a row. Is this not

in contradiction with Bernoulli’s law?

c) The explanation of the paradox

According to Bernoulli’s law, the number of heads and tails must be

approximately equal in the case of a great many tosses, but here the

point is what is meant by ‘‘approximately”. The gambler who believes

that the difference between the number of heads and tails must be very

small is mistaken for Bernoulli’s law only states that the rate of the num-

1
ber of heads and the total number of tosses is approximately Zi (with

a probability close to 1) or equivalently, the rate of the number of heads
and tails approximates 1, in other words, the difference of their logarithms
approximates 0 (provided that the number of tosses increases). If the
difference itself should remain small, it would contradict the lack of

memory property of coins.

d) Remarks

(i) It is clear now that no matter how many times we observe heads
successively at the next toss the chance of tails will by no means be
greater. The following question now arises. Let us suppose that we toss
a coin n times. What is the longest run of heads only we can expect?
Tossing a coin n times if n=100 then we can expect 6—7 heads succes-
sively, if n=1000 then we can expect 9—10, and 19—20 for n=10°.
The following theorem was proved by Paul Erdés and Alfréd Rényi.
If we toss a coin n times then there occurs a ‘‘pure head” run of length
log, n with a probability converging to 1 as n>co. This fact is very
useful in deciding whether a sequence of two signs describes the result
of coin tosses or somebody has created it “carefully” avoiding long runs.
Owing to the ingrained misunderstanding of Bernoulli’s law of large
numbers, most people would not write the same sign consecutively 7 or

* more times in a sequence of 100 signs.
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(ii) According to the above remark pure runs (heads or tails) may be
rather long. On the other hand, it is easy to calculate that the expected
length of the Ist, 2nd, 3rd, etc. pure runs is always equal to 2. If your
coin is not fair and the probability of tossing heads is 0<p<1 then

the expected length of the Ist, 3rd, ... (every odd) pure run is Le
q-<P

while the expected length of the 2nd, 4th, ... (every even purerun)is always

2 (independently of p(!)). The sum ee cannot be less than 2, which
alee

means that the odd runs are at least as long as the even runs. This fact

is by no means surprising because it is more probable for a coin to fall
on its more probable side first. Thus the first run has a greater chance
for being long than short, so on the average it is long or at least longer

than the second run where the expected length is only 2. What is surpris-

ing is its independence of p.

(iii) Bernoulli’s law of large numbers can be expressed concisely by
the help of the notion of convergence in probability. We say that a series
of random variables X,, X3,... converges in probability to a random
variable X, if the probability of |X,—X|>e converges to 0 for every
positive ¢, i.e., if P(|X,—X|=>«)~0. (Paradoxically, it may occur that a
series of random variables X,, X2, ... converges in probability to 0 but

bas Cees

n
does not.) Bernoulli’s law says that the relative frequency k/n of an event
converges in probability to its probability. To prove convergence in
probability we generally use the Cebyshev—Bienaymé inequality, accord-
ing to which if the expected value of X is E and its variance is D? then

D2P(|X—E|>) =:

It is interesting that the Russian P. L. Cebyshev and the French J. Bie-
naymé published their inequality which they had discovered indepen- -
dently in the very same number of a French journal. (J. Math. Pures et.
Appl. XII. 1867). From this inequality it follows at once that if the distri-
bution of the independent random variables X,, X3, ... is the same and
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their variance D? is finite then the arithmetical mean

eh) Ceeeeee
n

converges in probability to the common expected value of X; (the vari-
2

ance of this arithmetical mean is =, which converges to 0 if m-o).

This is one of the general (weak) laws of large numbers. The weak laws

of large numbers examine convergence in probability while strong laws
describe convergence with probability 1. The next remark concerns the

latter.

(iv) Among strong laws of large numbers the best known is Kolmo-

gorov’s theorem: if X,, X2, ... are mutually independent random vari-
ales with the same probability distribution function having a (common)

finite expected value E then the arithmetical mean

Pa eeghee
n

converges to Eas n-co with probability 1. If the random variables are
positive and S® denotes the elementary symmetric polynomial

s aysSys ys, Z 5 Bi Meets| Jk
15J, <Jq...<J,=n

1/ sw | (7ys» / (2)

also converges to E (with probability 1) provided k=k(n) is a natural
number so that k/n-+0 as n><o. The limit exists with probability 1
even if k/n tends to a positive number c. Then this limit is a constant
depending on c (if 0<c<1 then it is enough to suppose that the expected
value of log (1+X;) is finite, and the same holds for |log X;| if c=1;
see the paper by Haldsz and Székely). If the random variables can take
both positive and negative values then the problem is more complicated.

(v) The ‘‘law of large numbers” is false in the sense of category (see

the paper by Méndez).

then

4 Székely
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10. DE MOIVRE’S PARADOX; ENERGY SAVING

a) The history of the paradox

One of the most outstanding figures of probability theory is Abraham de

Moivre (1667—1754). He was a mathematician of French origin but
after the revocation of the Edict of Nantes (which provided the Hugue-

not’s freedom of religion), he moved to England. His fundamental work
“The Doctrine of Chances” was published there in 1718. In the third
edition of the book (1756), de Moivre himself writes enthusiastically

about his epoch-making discovery (already communicated to some of
his friends in 1733), which proves much more than Bernoulli’s law of

large numbers: “‘... I’ll take the liberty to say, that this is the hardest
problem that can be posed on the subject of Chance...’’. There is no

doubt that de Moivre’s discovery, the normal distribution, has become a
pillar of the science of chance. (Curiously enough, de Moivre did not

incorporate it in the second edition (1738).)
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b) The paradox

According to Bernoulli’s law of large numbers, in the coin tossing game the
probability that the number of heads the player scores is approximately
equal to the number of tails tends to 1 as the number of tosses increases
(approximate equality means that the ratio of the two numbers tends
to 1). On the other hand, the probability that the number of heads is

exactly equal to the number of tails tends to zero. For example, in 6
tosses of a coin the probability of scoring 3 heads is 5/16; in 100 tosses
the probability of scoring 50 heads is 8%; in 1000 tosses the probability
of scoring 500 heads is less than 2%. Generally, when tossing 2n times, the

the probability that it falls heads exactly n times is p=(7"] / 2°" and,

for sufficiently large n, p is approximately 1///2n, which really tends to

zero as n increases. In sum: the probability that the number of heads
approximately equals the number of tails tends to one, whereas the prob-
ability that the number of heads is exactly equal to the number of tails
tends to zero. The gulf between the two facts was surrounded by a
“‘paradoxical atmosphere” till de Moivre succeeded in building a mathe-
matical bridge over the gulf.

c) The explanation of the paradox

Let H,, and T,, denote the number of heads and tails, respectively, in n
tosses of a coin. According to Bernoulli’s law of large numbers, the
probability that H,,—T,, becomes negligibly small compared to 7 tends
to one (what is not at all surprising). De Moivre, however, noticed that

the term |H,,—T,| is not negligible compared to /n. He calculated, for
example, for n=3600 that the probability that |H,—T,,| is at most 60
is 0.682688.... Let x be an arbitrary positive number and let A,(x)

denote the probability that |H,—T,|<x Vn. According to de Moivre,

A,(x) tends to a value A(x) which is between 0 and | as n increases. When
x begins to increase from zero to infinity, A(x) also increases steadily

_ from zero to one (see Remark (i)). This function A(x) is the above-men-
tioned bridge over the gulf. To determine A(x), de Moivre used Stirling’s

4*
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formula, which he had also discovered independently of Stirling. (James
Stirling’s formula was proved in 1730 and states that n! is asymptotically

equalto V2nn4 )
d) Remarks

(i) The exact form of the function A(x) is:

4@=|/2f ee dy.
0Using this formula, de Moivre’s theorem can be written is the following

form:

limP(\H,—T,|<xVn)=A(), if x>0,

or
lim P(H, —T,< xVn) = (x),

where
1 x

@ x) = en" du.( V2n 2h

A random variable which assumes values smaller than x with probability
(x) (where x is an arbitrary real value) is said to obey a standard normal

distribution. According to de Moivre’s result, (H,—T,)/ Vn approxi-

mately obeys a standard normal distribution (if n is large enough).
[Table 1 at the back of the book gives the values of ®(x).]
(ii) Since H,+T,=n, the above result can be reformulated in the

following way:
nel aJim (w, = Saxtt) = @(x).

De Moivre also examined the case where the coin was a biased one (not
fair) and it fell heads with probability p, and fell tails with probability

1—p. Then

lim P(H, < np+xVnp(1—p)) = ©(x),

which is known as the ‘‘de Moivre—Laplace limit theorem’’. This theo-
rem can be widely applied in a whole range of plannings, e.g., energetics.
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Figure 3. The standard normal distribution function.

expectation

standard deviation standard deviation

|

|215% | 34.13% | 34.13%
| '13.59 °%

68.26%

Figure 4. The normal density function.

Example: Consider 300 similar machines in a factory. If, on average,

70% of the machines work and 30% of them are under repair then power

has to be provided for 210 machines, on average. Sometimes, however,

all the 300 machines may be working. How much power has to be pro-
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vided to be 99.9% sure that every machine will have enough power to

work? (It is assumed that every good machines go wrong independently
of each other.) In the above formula, H,, now stands for the number of

working machines, n=300 and p=0.7. According to Table 1, @(x)=
~0.999 if x=3. Using these values, np+x Vnp(1—p)=210+3 63,

so it is enough to take into account 234 machines. (In practice, however,
nearly all the 300 machines are taken into account, being unnecessarily

overcautious.)
(iii) The de Moivre—Laplace theorem, discussed above, can be gener-

alized in many ways. The members of the St. Petersburg mathematical
school, led by P. L. Cebyshev (1821—1894), especially A. M. Liapunov

(1857—1918) and A. A. Markov (1856—1922), gained great distinction
for generalizing the de Moivre—Laplace theorem. Let X,, X2,... be

mutually independent random variables with a common distribution
(i.e., with acommon distribution function). Suppose that the expectation
and the standard deviation of the random variables exist and are finite.

Let M denote the common expectation and D the standard deviation

of the random variables X,, X2,... and let S,=X,+X,+...+X,.

Then

lim P(S, <1M+xD Vn)= ®(x).

This is the central limit theorem, the most important of all limit theo-
rems (it is because of its importance that it is called ‘“‘central’’, adenomi-
nation first used by George Poélya). In general, limit theorems discuss

the asymptotic distributions of different functions (e.g., the sum, product,

maximum, etc.) of random components. The central limit theorem —
and its generalizations — explains why we meet the normal distribution

in nature so often, especially in connection with quantities which can be
composed from many (‘‘nearly”’) identically distributed (‘‘nearly”’) inde-

pendent random components. However, it is worth emphasizing that the
“composition” of random variables in nature is not always their sum, so

the investigation of the behaviour of other functions of random vari-

ables is very important. The known limit theorems do not explain com-

pletely the frequent occurrence of the normal distribution. According to

Poincaré’s sarcastic remark, everybody believes in the universality of
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normal distribution: physicists believe in it because they think that

mathematicians have proved its logical necessity, and mathematicians
believe in it because they think that physicists have verified it by labo-

ratory experiments.

e) References

Gnedenko, B. V., Kolmogorov, A. N., Limit Distributions of Sums of Independent
Random Variables (in Russian), Gostehizdat, M.-L., 1949. English edition: Read-

ing, Mass.: Addison-Wesley, 1954.
Ostrowski, A., “On the remainder term of the de Moivre—Laplace formula (To the

70th birthday of Eugene Lukacs)”’, Aequa. Math., 20, 263—277, (1980).

Petrov, V. V., Sums of Independent Random Variables, Academie-Verlag, Berlin,
1975.

Székely, G. J., ““A limit theorem for elementary symmetric polynomials of independ-

ent random variables”, Z. Wahrscheinlichkeitstheorie verw. Geb., 59, 355—359,

(1982).

11. BERTRAND’S PARADOX

a) The history of the paradox

Georges Buffon (1707—1788), the famous French scientist, founded a
new branch of probability theory with a paper written in 1733 (but pub-
lished in 1777). The solution of the celebrated “needle problem”’ dis-
cussed in this paper required a geometrical (rather than combinatorical)
method. In these sort of problems the random points considered are
supposed to be uniformly distributed in a given domain. (E.g., the
bullets on a score-card.) The probability of falling into any part of a
given domain is in proportion to its area (length or volume). Thus to
calculate the probability we only have to compute the quotient of the
“favourable” and the “‘total’ area (length or volume). These kinds of
probabilities also resulted in several paradoxes. E.g., the chance of hitting
the very middle (or any other fixed point) of a score-card is obviously 0.
On the other hand, it is not impossible to hit this point and therefore we
must distinguish an event of probability 0 from the impossible event
(the probability of the impossible event is 0 but the opposite is not true).
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It also sounds very strange that both hitting at least one of finitely many
points and hitting only one of them have the same probability. (Both
probabilities are equal to 0. See the paradox of zero probability.) Another
curiosity: a one-to-one transformation may completely change the

chances. E.g., if we choose a point in (0, 1) at random then the chance

that the chosen number is less than 1/2 is 50%, while if all the numbers in

(0, 1) are squared and we choose from among these squares uniformly,

the chance will be only 25%. Of course, the first answer, i.e., 50% is more
reasonable. However, in other problems it might be more difficult to
choose between reasonable and unreasonable. We have already mentioned

(in the last remark to the first paradox) that such a choice is not always
possible on the basis of pure logic excluding experience. Exactly this is

the essence of the following paradox published in the book ‘‘Calcul des
probabilités” (1889) by Joseph Louis Bertrand.

b) The paradox

Choose a random chord of a given circle and calculate the probability

that this chord is longer than the side of the equilateral triangle inscribed
in the circle. The paradox claims that this probability is not determined
uniquely, i.e., different methods lead to different results.

First method:

Choose a point at random, uniformly in the given circle. This random
point determines a unique chord whose midpoint is the randomly chosen
point. This chord is longer than the side of our equilateral triangle if
and only if the point is interior to the inscribed circle of the triangle.
The radius of this circle is half of the original one, that is, its area is 1/4
of the other. Consequently the probability that the randomly chosen
point is in the inside of the inscribed circle is 1/4. So this method gives
the answer 1/4.

Second method:

Due to symmetry, one end of the chord can be any fixed point on the

circumference of the circle. So fix it to a vertex of the inscribed triangle.

Choose the other end at random with uniform distribution. The vertices

of the triangle divide the circumference of the circle into 3 equal arcs
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and the random chord is longer than the side of the equilateral triangle

if the random chord intersects the triangle. So the probability in question
is now 1/3.

Figure 5. Three ways for choosing the random chord.

Third method:

Choose a point at random, uniformly on a radius of the circle and take
the chord which is perpendicular to the radius at this point. Then the
random chord is longer than the side of the inscribed equilateral triangle
if the random point belongs to the half of the radius which is closer to the
centre. Due to symmetry, it does not matter which radius was originally
chosen, therefore the probability is 1/2.

c) The explanation of the paradox

The different results were considered a paradox since it was believed that
“the uniform random choice” uniquely determines the probability in

question. The paradox points out that there can be different uniform
choices, all of which are “‘natural” in a sense. Each of the 3 methods
above uses a uniform distribution (in the circle, on the circumference of

the circle, and on a radius of the circle). In Poincaré’s opinion (Calcul

des probabilités, Paris, 1912) if we do not have any preliminary informa-
tion then we should accept the third method (were the result is 1/2)

because this is the method which assures that if two sets of chords are
geometrically congruent then there is the same probability that a ran-

domly chosen chord belongs to one set or the other. The study of this

kind of invariance led to a very interesting branch of mathematics called
integral geometry. (This term was coined by Wilhelm Blaschke in 1934.)
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The following invariance requirements also lead to probability 1/2
(see Janes, E. T., ‘“‘TheWell-posed problem”, Foundations of Physics, 3,
477—493, (1973)). Let the circle have radius R. The position of the chord

is determined by giving the polar coordinates (r, 9) of its center. We seek
to answer a more detailed question than Bertrand’s: What probability
density f(r, 9)dA=f(r, 9)rdr9 should we assign over the interior
area of the circle? Since the distribution of chord length depends only
on the radial distribution, f(r, 9)=f(r). Thus the problem is reduced,
determining a function f(r), normalized according to

2

a Gimimwee11 som(ieee Ws

The scale invariance (i.e., the invariance under the change of scale)

leads to the equation

a*f(ar) = 277?) f f(wudu,y O=za=1, O0Sr=R.

Differentiating with respect to a, setting a=1, and solving the resulting
differential equation, we find that the most general solution (satisfying
the above mentioned normalizing condition) is

where g is a constant in the range not further determined by scale in-
variance. Finally, if we translate the circle by a distance b the transfor-
mation (r, 9)>(7’, 9’) is given by r’=|r—bcos 9| and

; f ieee ==COS S

 (Q+n if r=<b-cos9,

The translational invariance gives q=1.

Thus we get

I ‘IQ, 9) = ses QO<cres rR, = Sa 2
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corresponding to the third method. Since a chord whose midpoint is at
(r, 9) has a length L=2(R?—7?)!/*, the probability density function of

Lockers xX= 1S Cx? Q=x=1

in agreement with Borel’s conjecture (Elements de ia théorie des proba-
bilités, Paris, 1909).

d) Remarks

(i) In discussing Bertrand’s paradox, we have dealt with three methods
of choosing a random chord but there exist many other natural methods
as well. E.g., if we pick a point in the given circle at random and draw
a chord of any direction through the chosen point (the direction is uni-
formly distributed in the whole angular domain and independent of the
choice of the point) then the probability in question is

It is not surprising that the result is more than 1/2 because this kind
of selection prefers the longer chords. The probability is even greater

(0.7449) if the random chord connects two random points of the circle.
Another, less natural, method of choice is the following. Draw a con-

centric circle (with radius r) to the given circle (of radius R) and choose
a random point (uniformly distributed) in the circle of radius r. Draw

a line through this chosen point with a direction uniformly distributed
in the whole angular domain and independent of the chosen point. Now

the question is the following. If the line intersects the circle of radius R

what is the probability that the chord which was cut out of the circle of
radius R is longer than the frequently mentioned side of the inscribed

equilateral triangle? The answer comes easily. If r is increased gradually
R er WY

from Aire to r=oo, the probability in question decreases from 1 to

© 1/2.
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(ii) The integral geometry developed from geometric probability has
an increasing importance in many fields, e.g., in stereology, in the re-
construction of 3-dimensional forms from their 2-dimensional sections
or projections. Stereology is usefully employed in minerology, metallurgy,
and biology (especially in tomography in the 3-dimensional reconstruc-

tion of tumours).
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12. A PARADOX OF GAME THEORY.

THE GLADIATOR PARADOX

a) The history of the paradox

Though gambling has flourished in various forms from the time of
Paleolithic men and the mathematical study of various games goes back
to the Renaissance, it was only in the 20th century that the general theory
of games (and its connection with other sciences like economics) evolved.
In 1921 a mathematical theory of game strategies was first attempted by
Emile Borel, but it was John von Neumann, the father of game theory, who
proved the minimax principle, the fundamental theorem in game theory
in 1928. (Earlier even Borel had doubted its validity.)

The following paradox helps to understand the essence of the mini-
max theorem.
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b) The paradox

Two children, R and Q, play the following wellknown children’s game.

They both put up one or two of their fingers at the same time; if the
number of fingers they raised altogether is even, Q pays R, and if it is
odd, R pays QOthe same amount as the number of fingers raised altogether.

The table (payoff matrix) below indicates the sum of money Q has to
give to R. Though this game is generally considered to be fair [perhaps

because the numbers shown in the table add up 0: 2+(—3)+(—3)+4=
=0], it is not fair at all: it is definitely favourable for Q.

] 2
finger fingers

|ee ee

Sac | S-3

Figure 6.

c) The explanation of the paradox

Obviously, if one of the players always puts up one finger or always two,
then, having observed this, his opponent can play so that he always
wins. Therefore only a “mixed strategy” can be advantageous, that is,
in each trial the player has to choose at random, but with fixed probabili-
ties, from the two possibilities (one or two of his fingers). Let us suppose
that we have already determined the optimal strategies of both players,
i.e., we know that the best strategy for R is to put up one finger with
probability p, and put up two fingers with probability p, (clearly p,+p.=
=1) and similarly for Q the most favourable is to lift up one finger with
probability g, and two fingers with probability g, (q¢,+9,=1). Since the
two players decide independently of each other, the average amount of
money Q pays R (if both players have chosen the optimal strategy)

is
Ve= 2710)—3192-3 P21+402492- )
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The game would be fair if V=0. We shall show, however, that py=q1=

y! 5 1
=—., p.=q,=—~ andthen V= ——, whichmeans that Q wins, on theD P2=Qe 2 and then D Ww at O

1 4 : :
average, ret dollars in each trial even if R follows his optimal strategy.

Substitute g,=1,q,=0 in (*). Then V=Q,=2p,—3p,. Similarly if

g2=1 and g,=0, then V=Q,=—3p,+4p,. Using this notation V=
=q,0,:+92,0,. As Vis the average loss of Q, if he follows his optimal
strategy, Q,=V and Q,=V, hence V=q,0,+9.0.2=4q,V+qV=

=(1+4,)V=V.

Since neither g, nor g_ can be equal to zero, it follows from the above
relation that V=Q,=Q,, i.e., 2p;—3p.=—3pi+4p2, so (using p,+

7 ) 1 oeP2=1) Dime: pt ree and ery Similarly2q¢,—3q.=—3q,+

57
+4q2 (¢1+q4,=1), and consequently is vest G5.

Thus we have proved that the game is certainly not fair, and we have
also obtained the optimal strategy. For both players it is advantageous

7
to raise one finger with probability 7°

Substituting 1—p, for p, and 1—q, for q, in the formula (*): V=
7 c

=12p,9q,—7p,—79,+4. For Pi=55° V= m5 regardless of the value

Sate 7 1
of q,; similarly for arr V= Srey regardless of the value of p,.

Accordingly, it makes no difference to a player how he plays if he knows
that his opponent has chosen his optimal strategy.

d) Remarks

(i) The principal aim of Neumann’s research in game theory was to
find the optimal strategy of a game in which m players take part. We
assume for simplicity that m=2 (i.e., only two players play against each

other) and that the game has the zero-sum property (i.e., the loss of
the first player is equal to the gain of the second player). Let S, and S,
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denote the sets of the first and the second player’s pure strategies, re-

spectively (a pure strategy is a rule which determines the first player’s
first step and the replies to all the possible steps of the opponent). Let
L(s,, 5g) be a bivariate function which gives the loss of the second player
if he follows the pure strategy s.¢€S, and the first player follows s,€S,
(the table on page 49 shows a function of this type). For a cautious
player the best strategy is the one which minimizes his maximum loss

(which occurs at optimal defence). The first player can manage to win
a gain

Vis max (min L(s,, 53)
1 Sg

anyway, and the second player

ete min(maxDis),

(Naturally V, or V2may also take negative values indicating actual loss.)
In the case where V,=V, and the sets of possible strategies are finite, it
is useful for both players to choose the strategies s{, s; for which V,=
=V,=L(s{, sz). A strategy-pair such as (sj, 53) is the saddle-point of

the game, but it does not always exist. Neumann, however, had the
brilliant idea of extending the set of possible strategies and introduced
“mixed-strategies”” which choose randomly from pure strategies. Thus a
mixed strategy is a probability distribution on the set of pure strategies.
(In the children’s game example the mixed strategies of the two players
were P;, Pz and g,, gz, respectively.) Mixed strategies eliminate the possi-
bility of a player “seeing through his opponent’’, but it introduces chance,
even in games where the rules themselves do not depend on chance. Nat-
urally, if we want to find the optimal mixed strategies then we have to
define the loss function on the set of pairs (7,, z,) of mixed strategies.
Let L(z,, m2)be the average loss that the second player pays the first
one if they choose the mixed strategies 7,¢€P, and 7,¢P,. Neumann’s
minimax theorem (the fundamental theorem of game theory) states that

if S, and S, are finite sets, then

max min L(7,, 7%)= min ses L(m, Ta)s
1,€Py7,€P.2 2€P,7,€P
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i.e., there always exists a saddle-point in mixed strategies, thus optimal

mixed strategies exist for both players.
The general model of game theory can be used to examine conflicts

appearing in other fields of life, too. E.g., from a mathematical point
of view commercial competition can be considered a ‘‘game”’ in which
both players want to find their optimal strategies. Since it is less and
less likely that rivals could swindle each other permanently, compromises

(corresponding to saddle points) are becoming more and more important
in many fields. Game theory brought a new aspect into mathematical
statistics, too, mainly due to Abraham Wald. The following remark
shows a few applications of game theory in statistics.

(ii) A typical problem in statistics is the estimation of the unkown

parameter 9¢€O of a probability distribution F,, on the basis of the

(usually independent) Fy distributed observations Xy, Xo, ..., X,, i.e.,
the sample (0 is an arbitrary set usually consisting of numbers or vec-

tors). Consider a bivariate function L(9, c) the values of which mean our
loss in the case where we estimate the unknown parameter $ with the

value c. It is quite natural to assume that the greater the deviation

|9—c| is, the greater the loss becomes, thus L(9, c) is typically a mono-
tone increasing function of |9—c|, for example, L(9,c)=|9—c|°,

where 5>0. Anestimator 9=f(X,, Xo, ..., X,) is good if the average
loss is small, i.e., if the risk function R(9, 9)=E(L(9, 9)) is small.

Comparing two estimators, however, the value of the risk function of

the first estimator at particular values of @ can be smaller than
that of the second estimator, while at other values of 9 the situa-
tion is quite the opposite. Acomparatively wide range of estimators have

a risk function which can be decreased at some values of 9 only if at

other values of 9 it increases. These kinds of estimators are called admis-

sible estimators, that is, an estimator 99 is admissible if the inequality
R(9, §)=R(9, 90) holds for all 9€@ if and only if R(9, 9)=R(9, 9)

for all 2€0. Only admissible estimators are worth using because for a

non-admissible estimator we can always find another estimator the risk

function of which is nowhere larger and definitely smaller at certain’

points than the risk function of the non-admissible estimator. If we want

to find an admissible estimator which minimizes the average loss at the

“worst” actual parameter value (where the risk function takes its maxi-
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mum), then we obtain the minimax estimator. This cautious estimator

is defined as follows: an estimator 9* is called minimax if

sup R(9, 9*) = inf sup R(S, 9),
9EO0 § 3¢€0

where 9 runs through all the possible estimators. The ‘“minimax-aspect”

of mathematical statistics considers estimation a game in which Nature

“chooses” a parameter 9 and we choose an estimator 9. The aim of the

game is to make the average loss as small as possible. The average loss

can be made less by allowing mixed strategies, when Nature chooses the

parameter 9 randomly from © with distribution t and we also choose

the estimator randomly with distribution « from the set of all possible

estimators. In this case the risk function is r(t,a)=E(R(T, A)), where

T is a t distributed random variable on the parameter set © and A has

the distribution « on the set of all possible strategies. The minimax

theorem remains valid for risk functions of this kind under quite

general conditions:

sup inf r(t, «) = inf sup r(t, a).

Since the distribution t is unknown, it is useful to choose a mixed mini-

max strategy a* as an estimator for which the equation

sup rt, o) = inf sup r(t, a)

holds.
(iii) The following gladiator paradox comes from K. S. Kaminsky,

E. M. Luksand P. 1.Nelson. In acontest, called the gladiator game, suppose
that two teams of gladiators are to do battle in the arena. In successive

rounds a gladiator is selected from team A=(A,, Ag, ..., A,) to meet a
gladiator selected from team B=(B,, Bo, ..., B,). The victor returns

to his team with undiminished vigour to fight again, if needed. The looser,
presumably disabled, is removed from the tournament. Individual match-

es are assumed to have a stochastic component and represent mutually
independent trials where we let 0O<P(A;, B;)<1, denote the proba-
bility that gladiator A; defeats gladiator B,. The matches continue
until one team is eliminated. We investigate the existence of strategies S
which are optimal in the sense of maximizing P,(A, B), the probability

that team A defeats team B when strategy S is used. A strategy here is a

5 Székely
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rule which decides the order in which gladiators from both teams enter
the arena. (Only the current composition of the teams can be used

in formulating the strategy at each stage of the game.) In a special glad-
iator game let a,, dg, ...5 Gq,b1, be, ..., b, be positive strengths assigned
to A,, Ag, ...,A,, By, Bz, ...,B,, respectively, such that for all contests
A, vs B;, P(A;, B;)=a;/(a,+b;). Then the probability Ps(A, B) is the
same for all S! This is the gladiator paradox. Another paradox of this
game is the following. Say that Adominates B if P(A, B)>1/2. Now if
A dominates B and B dominates C then A does not necessarily dominate
C. There are examples showing that m=min {(P(A, B), PBC),
PICs A))\> 1/2, though the upper limit of m is an intriguing open ques-
tion. (A related paradox is I/13f.)

(iv) A game theoretical paradox is the famous ‘‘prisoner’s dilemma”.

Here we only refer to the paper by Brams, Straffin, and Hofstadter.
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13. QUICKIES

a) The paradox of “almost sure’’ events

Consider two random events with probabilities of 99% and 99.99%, :

respectively. One could say that the two probabilities are nearly the same,
both events are almost sure to occur. Nevertheless the difference may
become significant in certain cases. Consider, for instance, independent
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events which may occur on any day of the year with probability p=99%;

then the probability that it will occur every day of the year is less than

P=3%, while if p=99.99% then P=97%.

b) The paradox of probability and relative frequency

The following story, from George Polya, shows how not to interpret
the frequency concept of probability. D. Tel (doctor of teleopathy)
shook his head as he finished examining his patient. “You have a very
serious disease,” he said, ‘‘of ten people who have got this disease only

one survives’’. As the patient was sufficiently scared by this information,
D. Tel began to console him: “But you are very lucky sir, because you
came to me. I have already had nine patients who all died of it, so you
will survive.”

(Ref.: Polya, G., Patterns of Plausible Inference, Vol. 11, Princeton Univ. Press,
1954, p. 101.)

c) Coin paradoxes

(i) We toss a fair coin until we score two heads (HH) or a head and a tail

(HT) in succession. Obviously the probability that (HH) will occur sooner
than (HT) is equal to the probability that (HT) will occur sooner since
after tossing a A the coin still falls H or T with equal probability. In
spite of this fact more tosses are necessary, on average, for (HH) than
for (HT) to turn up. (HA) occurs in 6 tosses and (HT) in 4 tosses, on
average. [Let M,, denote the expected value of the number of tosses we
need to score (HH) assuming that H has occurred in the first toss, and

let 4,denote the expected value of number of tosses necessary to score
(HA) assuming that T has occurred in the first toss. Then My=1+
+(1+M;)/2 and M;=1+(My4+M,)/2, and it follows that (My+M7)/
/2=6, i.e., the average number of tosses necessary to score (HH) is

indeed 6.] The contrast is sharper if we compare the sequences (HTHT)
and (THTT). The probability that (HTHT) will appear sooner than

ae |
. (THTT) is rset but the average number of tosses we need to score

5*



56 Chapter 1

(HTHT) is still greater than that of the tosses necessary to get (THTT).

(The former is 20 whereas the latter is only 18.) Thus even if the proba-

bility that the event A will occur sooner than B is larger than the

probability that B will occur sooner, we may still have to wait more,

on average, for A than for B.

Incidently, it can be proved that among the H—Tsequences of length
n the pure sequence has the longest expected waiting time (i.e., which

consists either of n H’s of n T’s). In this case the expected number of
tosses is 2"**—2. The smallest possible (average) number of tosses is 2”,
which occurs when we want a sequence consisting of n—1 H’s in succes-

sion followed by one 7, or n—1 T’s followed by one H. (Thus we have
to wait almost twice as long for the head run of length than for the
sequence of n—1 H’s and one T, although the probability that the former
will appear sooner equals the probability that the latter will appear

sooner.)
Determining the length of the time-interval, we have to wait for a giv-

en H—T sequence of length n to appear, usually requires cumbersome
calculation (solving multivariate linear system of equations) for large n.
Calculations can be considerable simplified by using the “‘magic”’?Con-
way algorithm, which is discussed in the article by Li quoted below.
We shall give it now in a more general form not only for fair H—T

sequences. Let X, X,, X2,..., be independent, identically distributed
random variables assuming only a finite or countably infinite number of
values with positive probabilities. Denote the set of these values by
V and let A=(q, dy, ...,a,) and B=(b,, be, ...,b,) be two (finite)
sequences whose elements are from V. Introduce the following notation:

0 otherwise

and A -B=dyy dye ... Ginmt+ oid ++Im,m—1t++++d. Let T, and Ts '

denote, respectively, the number of X-variables until the first occurrence

of the seqeunce A and B in Xj, X2, .... Then the expected value of T,
is A -A, while the probability that T, is smaller than T, (assuming that



Classical paradoxes of probability theory 57

neither A nor B contains the other as a connected block) is

B-B-—B-A

A-A+B-B-—A-B-—B-A’

For example, in a fair H—Tsequence d,;=0 or d,,=2; if A=(HTHT)
and B=(THTT), then A-A=20,B-B=18,A-B=10 and B-A=0,

at MLS > 49
so the probability that A occurs sooner than B is ona Gea as we have

mentioned above.

Finally we state a more sophisticated (still unpublished) theorem. If
we wait until all the possible 2” H—Tsequences of length n occur (tossing
a fair coin) and t, denotes the (random) waiting time then

lim P(r,/2"—l6g 2" < x).=e-*™.

(ii) A fair coin has to be tossed, on average, at least 8 times if we want

a given sequence of length 3 (e.g., HHT). The number of necessary
tosses is the smallest if we want to score any of the following sequences:

(HHT), (THA), (TTH), (HTT). (In each case the average number of
necessary throws is 8, whereas in any other case it is more than 8.)

Compare these sequences in the following way:
1

a) the probability that (HHT) will occur sooner than (THA) is vi

1
B) (THB) will appear sooner than (TTH) with probability Ze

1
y) (TTH) will occur sooner than (HTT) with probability Sait and finally

1
6) the probability that (HTT) will occur sooner than (HHT) is 3"

Thus, having started from the sequence (HHT), we have reached (HAT)
again, though in each step the comparative probabilities were strictly

less than 1/2.

(Ref.: Li, Shou-Yen R. “A martingale approach to the study of occurrence
of sequence patterns in repeated experiments’’, Annals of Probability, 8, 1171-

1176, (1980).)
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d) The paradox of conditional probability

Events A, B and C exist such that

«) the conditional probability of A given B is smaller than the condi-
tional probability of A given that B has not occurred;

B) the conditional probability of A given that both B and C have occurred
is larger than the conditional probability of A given C has occurred
but B has not occurred;

y) the conditional probability of A given B and the complement of C is
larger than that of A given that neither B nor C have occurred.

Using symbols the three statements can be written as follows:

P(A|B) < P(A|B), P(A|BC) > P(A|BC)
and

P(A|BC) > P(A|BC).

This seems to be paradoxical because one might think that P(A|B)
is the average of P(A|BC) and P(A|BC) and, similarly, that P(A|B)
is the average of P(A|BC) and P(A|BC), and the average of two smaller

values must be smaller than the average of two larger values. The expla-
nation of this misconclusion is that P(A|B) and P(A|B) are the weighted

average of the above mentioned probabilities but the respective weights
are different in the two cases:

P(A|B) = P(C|B) P(A|BC)+P(C |B) P(A|BC),
whereas 4 " dhe ap

P(A|B) = P(C|B)P(A|BC)+P(C|B) B(A|BC).

Nevertheless if the events B and C are independent then P(C|B)=
=P(C|B) and P(C|B)=P(C|B), so in this case the paradoxical phenom-
enon cannot occur.

(Ref.: Blyth. C. R. “On Simpson’s paradox and the sure thing principle.” J.

Amer Statist. Assoc. 67. 364-366. (1972).)

e) The paradox of random waiting times

Two random events occur after a (random) time X and Y. Paradoxically,
it may happen, that X>Y with a probability of at least 99%, but X
is stochastically smaller than Y, i.e., the probability of X<t is larger
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than the probability of Y<t for any fixed time ¢ (or, in other words,
the distribution function of X is everywhere larger than that of Y). E.g.,
if Y is uniformly distributed in the interval [0, 1], X=¥Y+(1—Y)/1000
with probability 99% and X=Y/1000 with probability 1%. [This para-
doxical situation cannot occur if X and Y are independent: let F and
G denote their distribution functions; for simplicity assume that G is
continuous and its inverse function G~ exists. Then the distribution
function of the random variable Z=G~1(F(X)) is also G. Since F>G,
Z> X, hence

P(X>Y) = P(Z>Y)=5

as Z and ¥ are identically distributed independent random variables, i.e.,
P(X>Y) must be much smaller than 99%, in fact, not more than 50%].

The following paradox is similar to the preceding one. Let X¥and Y
be two independent random variables such that X is stochastically smal-
ler than Y. Then one might think that max (X, X+ Y) is also stochastically
smaller than max (Y, X+Y), but that is not true, for example, in the
case where X and Y both may assunie only the values —1, 0 and 1 with

1 ‘eyBa| 1
obabilities —, —, — and—, —, —, ctively.pr abilities 7 : 5 an ane respectively

(Ref.: Blyth, C. R., “Some probability paradoxes in choice from among random

alternatives” (with comments by D. V. Lindley, I. J. Good, R. L. Winkler, and

J. W. Pratt), J. Amer. Stat. Assoc., 67, 366—388, (1972). See also SIAM Rev.,

April 1970.)

Jf) The paradox of transitivity

Two players, A and B, are playing the following game. In the first step
A numbers 3 dice to his taste, writing one of the numbers 1, 2, 3, ..., 18

on each face of the 3 dice (he must use each number only once.)
In the second step B scrutinizes the 3 dice (numbered by A) and

chooses one of them.
In the third step A chooses one of the remaining 2 dice. In the last

step both A and B throw their dice and the player who scores the larger

number wins.
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One might think that this game is more favourable to B, because no

matter how A numbers the 3 dice B can always choose the best one (or

one of the best ones), thus B has the chance of at least 50% of winning.

But, paradoxically, just the opposite is true: A can number the dice so

2h)
that he wins with probability 36 (which is more than 50%), no matter

which dice B chooses. This is because of the “round defeat”? numbering

system where each dice defeats exactly one of the other two, which means

there is no ‘“‘best” among the dice. Let I, II and III denote the three

dice and suppose that A numbered the dice in the following way. He

wrote the numbers

1eet I SE a fais on the faces of dice I,

17PohNopeWee. Bae)a on the faces of dice II,

and 14013. 12811 61 on the faces of dice III.

It can be easily calculated that we get a larger number with dice I than

with dice II with probability 36° similarly, a larger number is scored

21
with dice II than with dice III with probability aa and the probability

21
that a larger number appears on dice III than on dice I is also aa

at
therefore the ‘“‘round defeat”’ probability is a: So if A numbers the dice

this way, he is in a more favourable position than B. (If B chooses the

dice I, II or III and, accordingly, A chooses the dice III, I or II, A has

more chance of winning.) It can also be proved that the probability of

21
“round defeat”’ cannot exceed re The point of this paradox is that ran-

dom quantities may not be ordered according to which one is larger

than the other with a probability of more than 50%, because the transi-

tivity does not hold. If the same number may be written on more than

one face of the dice, e.g.,
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1, 4, 4, 4, 4, 4 on dice I,

ATERigdhsae es on dice II,

and 3, Osrons ee on dice III,

ay ; 21
then the probability of ‘‘round defeat” is also 36° Formulate the para-

dox more generally. Let X;, X2, ..., X, be arbitrary numbers depending
on chance (i.e., random variables). Denote the probabilities of the
events X,<X,; Xo<X,3 ...; X,<%,, bY Pi; Do, +--+Pe, respectively,
then min (7p, Po, ..-,P,) is the probability of “round defeat’. Let k,,
denote this probability. The larger k,, is the sharper the paradox becomes;
: n—1 oar
it can easily be shown than k, can never exceed and this is the

least upper bound. The calculation of the least upper bound of k,
is more difficult if the random variables X,, X., ..., X, are supposed to

be independent as the outcomes of rolling dice. Let f, denote the least
upper bound in this case. Usiskin calculated (Annals of Statist., 35,

y5—1
5 (the ratio of golden section),

1857—862, 1964) that Lele cS

2
f=: etc. The sequence {f,} increases monotonically and converges

3 :
to re One can also show that the speed of convergence is of order n~?,

g) The paradox of measurement for regularity of dice

In dice throwing the same face will appear twice in succession in 7 throws,

on average, and three times in succession in 43 throws (see the end of

this paradox). If the dice were biased (i.e., different faces appeared with

different probabilities), the average number of necessary throws to get

the same face twice or three times in succession would be smaller. We

shall call dice I more regural than dice II if dice I has to be thrown more

times on the average to get the same face twice (or three times) in succes-

sion than dice II. Paradoxically, more throws may be necessary on aver-

age with dice I than with dice II to score the same face twice in succes-
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sion, but to score the same face three times in succession, dice II has to

be thrown more times.

The following simple example comes from T. F. Méri. Suppose that

each face of dice I can be scored with probabilities 0.03; 0.03; 0.19; 0.19;

0.28; 0.28 and let the corresponding probabilities with dice II be 0.04;

0.04; 0.17; 0.17; 0.29; 0.29. Then dice I has to be thrown 5.41 times and

dice II 5.47 times on the average to score a face twice in succession, whereas

if we want to score a face three times in succession then we have to

throw dice J 22.54 times and dice II 22.35 times on an average. This par-

adox shows that it is not expedient to define the ‘‘regularity” of a dice

as we did. (In general it can be proved that if a particular face of a dice

appears with positive probability p, then the average number of necessary

throws to score this face k-times in succession is m,=p~*+p~?+...+p—*.

Consider a dice whose faces appear with probabilities p,, pz, ... and let

M,, denote the average number of throws we need to score the same face

k-times in succession. Then M;*=m,*+m;*+.... If we put pi=p2=..-

1
eee then M,=7 and M,;=43 as we have already mentioned.)

h) The birthday paradox

If not more than 365 people come together, it is possible that everybody
has a different birthday, while with 366 persons it is certain (100%) that
at least two of them were born on the same day of the year. (Let us
ignore the existence of leap years here.) However, if we aim at 99% cer-
tainty, then, surprisingly, 55(!) people are enough to claim that there
will be two among them having the same birthday, while for 68 people
the probability that at least two of them have the same birthday is 99.9%.
It is almost unbelievable that such a small difference between the proba-

bilities 99% and 100% can lead to such a big difference between the num-
ber of people. This paradoxical phenomenon is one of the main reasons
why probability theory is so wide-ranging in its application. (A similar
phenomenon was mentioned in I. 10 Remark (ii).)

Denote by n the number of days in a year and by x (<n) the number
of people in a group. The probability that no two people in this group
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have the same birthday is then

n(n—1)(n—2)...(n—x+1)
n* :

Therefore if

n(n—1)(n—2)...(n—x+1)
ie

n

then p is the probability that among x people there are some having
the same birthday. The approximate solution of this equation (provided
that 0<p<1) is

So NYibe ; 5| tap

Hence the order of magnitude of x is /n for any value of p in the open
interval (0, 1), while for p=1x=n+1. A generalization of the birthday
problem is the following. Calculate the lower bound x so that in a group
of x people there be at least kKwho have their birthday on the same day
of the year with probability p. Here the result is

eens to

wherec is a constantdependingonlyonp andk (morepreciselyc=
] 1k=(k In |

Lp

i) The paradox of heads and tails

Suppose we are playing heads or tails with a fair coin and we toss it 100
times .Then, surprisingly, the probability of the event A= {we toss exactly
50 heads} is bigger than the probability of B={we toss at least 60 heads}.

[As we have mentioned in I.10, P(A)~8%, while according to the
Moivre—Laplace theorem P(B)=1—6(2)~3%. The chance of tossing
at least 55 heads, however, increases to about 16%, which is the double

of P(A).]
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J) The edge of the coin

Generally the occurrence of a coin falling on its edge is left out of consid-

eration since this event almost never occurs. Calculate now the size of a

1
coin that ensures the same (5) probability for falling heads, tails, and

edge. For simplicity, consider the coin a flat cylinder whose bases are the

heads and tails and the nappe is the edge. If the coin is spun around an

axis which goes through the centre of the coin and is parallel to its bases

it is enough to consider a planar section of the coin which contains the

centre of the coin and is perpendicular to both bases. This section is a

rectangle. Draw a circle around this rectangle and choose a landing

point at random onits circumference.

It is reasonable to suppose that the

coin falls on its edge with a proba-

bility which is equal to the chance

that the radius connecting the centre

and the random point on the cir-

cumference intersects the side of the

Figure 7. When does a coin fall on rectangle which corresponds to the
its edge? nappe of the coin. In this model the

coin falls on its edge with probabil-

ity of 1/3 if the rate of its thickness and diameter is equal to tg 30° ~ 0.577.

The problem is not reduced to a planar one if the coin may turn round

freely, more precisely, if the random point is chosen on the surface of

the sphere drawn around the coin and we suppose that the coin falls

on its edge if the radius connecting the random point and the centre

intersects the nappe of the coin. In this model, tossing an edge will have

the same probability as tossing heads or tails if the rate of the thickness

and the diameter is 0.354.... There are, of course, more realistic models,

too. The most surprising of them is the one where the above rate is the

least (i.e., where the coin is the flattest).



Classical paradoxes of probability theory 65

k) Borel’s paradox

Let a random point be chosen uniformly on the surface of a sphere (e.g.,
on the Earth, supposing its form is a sphere). The position of a point is
generally given by its longitude and latitude. Given a latitude, the longi-
tude is uniformly distributed, but given a longitude the distribution of the
latitude is not uniform. (Its density function is proportional to the cosine
of the latitude.) Consequently, the distribution of the random point is

not the same if we suppose that it is on the equator or on the Greenwich
meridian, though both the equator and the meridian are great circles
on the globe and therefore their role seems to be symmetric.

Figure 8. Though both the equator
and a meridian are great circles on
the globe, when calculating con-
ditional probabilities, one should
take into account the fact that
while the equator is surrounded
by spherical zones, a meridian is
surrounded by biangles.

*

The next problemisa similar paradox. Let ¥ and Y denote two independ-
ent normal distributions. (XY,Y) can be considered a random point on
the plane. Let R and @ be its polar coordinates. Supposing that XY=Y
the distribution of R?=2X? is the same as the distribution of the square
of a standard normal random variable multiplied by 2. At the same time,

1 5underthecondition@rig or Cae thedistributionof R?=X?+Y?
is the same as that of the sum of the squares of two independent standard

normal random variables (since R and @ are independent). Hence we

get completely different distributions for R® in the case X=Y and in

Tt Sx ;
the case SR or @=— which seems to be a paradox, because the

two conditions mean just the same, only in the first case it is formulated
by usual coordinates and in the second case by polar coordinates.

(Ref.: Billingsley, P., Probability and Measure, Wiley, New York—Chichester—

Brisbane—Toronto, 1979).
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1) A paradox of conditional distributions

Let Xand Y be random variables and f(x, y) a function of two variables
such that for any fixed y the variable f(X, y) is independent of Y. Is it
true that in this case f(X, Y) is also independent of Y? The following
simple example shows that the answer is negative. Let X=Y be uniformly
distributed on the interval (0, 1).And let f(x, y)=y if x=y and f(x, y)=0
otherwise. Now /(X, y) is indetically 0 (with probability 1), therefore
it does not depend on Y, while f(X, Y)=Y obviously depends on Y.

(Ref.: Perlman, N. D. Wichura M. J. A note on substitution in conditional
distribution,, Annals of Statist. 3, 1175-1179.(1975).)

m) Winning a losing game

Suppose that in a game the number of trials (m) is always even. The first
player A has a chance p=0.45 to get a point; for B, itis p=0.55. To

win the game, one of them has to collect more than half of the points.
If A has the privilege of fixing nmthen paradoxically n=2 is not the
best choice. (This would be the best choice if p were very small, i.e.,

less than 1/3). If p=0.45 and n=2 then the probability that A wins
is only 0.45?=0.2025, but if A has more trials he gets in a more favour-
able position. It is easy to prove that the optimal choice is n=10. This

seems to contradict the general “‘principle” that the sooner we get out
of a losing game the better. Suppose, e.g., that we need 20 dollars

and have only 10. We want to win the missing sum by playing roulette.
Since roulette is a losing game, it is adviceable to have as few tries as

possible, i.e., we have to stake all of our money, e.g., on red. In this

case the chance of winning is 18/38 (in American Roulette there are two

zeros: 0 and 00). At the same time if we bet only one dollar in every
trial we reach our aim with probability 0.11. For further details see

Dubins, L. E., Savage, L. J., How to Gamble if You Must, New York,
McGraw-Hill, 1965.

(Ref.: Mosteller, F., Fifty Challenging Problems in Probability with Solutions, Read-
ing, Addison-Wesley, 1965.)
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n) The paradox of insurance

A client, whose property is V, wants to insure a bV part of this property

(0<b<1) against a damage occurring with probability p each year.
The annual premium is cV (0O<c<1). The insurance is effected by

the company only if the expected value of its profit is positive, i.e.,
if c is greater than pb. Why do clients still insure if they know that it is

profitable for the company and not for them. If the client insures and pays

the money for 7 years, but the insurance company never has to pay then
the client’s initial property (V) will decrease to V(1—c)". And what

happens if he does not insure? Let X, denote the random variable which
is equal to 1 if the client suffers a loss in the kth year and let X,=0

otherwise. In this case his property in the (k+1)th year will be V,4,=
=V,(1—bX,4;), therefore after n years

=os VAT Us bYe var 22

k=1
Since the expected value of In (1—bX;,) is pIn (1—b),

V,, = VerrPinGQ->)— V(1—b)"?

with great probability. Thus the insurance is favourable for the client
if V(1—b)”” is less than V(1—c)", i.e., (using the expansion in power
series) if c is less than

PUSP) y PURDR= Py gh

2 6

It means that the insurance is favourable for both the client and the
company if c is greater than pb but less than the above sum. It is easy to
see that the less bis (i.e., the smaller part of the client’s property is insured)
the less is the freedom in the choice of c, i.e., the possibility of compromise
decreases. (In a sense, lottery is an insurance too; if somebody tips always

the same numbers but stops playing after a while and his numbers
were drawn afterwards, he would probably die of apoplexy. From this
point of view, the prize of the tickets is really favourable. Football
pools are another case for there are very few people who always give

the same tips and therefore it is not obvious what he missed when he

did not play.)

pb+ +
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o) Absurdities, Lewis Carrol

We will finish the series of quickies with absurdities and fallacies. We

will mention problems together with their nonsense solutions, but to
find the mistake in the reasoning may cause some brain beating. Lewis

Carrol, the famous writer, was very fond of absurdities both in mathemat-
ics and literature. (The Absurd Literature by Nicolae Balote considers
Carrol the number one forerunner of modern absurdity.) In his last 10

years, Carrol was attracted by mathematical absurdities (see the collec-

tion of Curiosa Mathematica 1888 or the article of the Mind published
in April 1895). In his Pillow Problems (1894) the following absurdity

can be read.
There are two balls in a bag, they are either red or white. Let us guess

their colour without looking into the bag. According to Carrol, the

only correct answer is that one of them is red and the other is white. He

gave the following reasoning. If there were 2 red (R) and 1 white (W)

balls in the bag then the probability of drawing a red one would be 2/3.

On the other hand, if there were 3 balls in the bag, and the probability

of drawing a red one were 2/3, then there would be 2 R and 1 W balls

in the bag.

Now put an R ball into the bag that originally contained only two balls.
1

In this case there are four equally probable (=) ball combinations: RRR,

RWR, RRWand RWW. If the first combination is the actual one then

the probability of drawing a R ball is 1, in the second and the third cases

7 : oe
this probability is 2/3, and in the last one it is wi Therefore the proba-

| ee | recs LesPee pe
bilityof drawinRball 1 -—+—-—+—-—4—-—=—Thility awinga all is ene pe 3. a 3 ri 3° us
there must be 2 R and 1 W balls in the bag, consequently there must
have been 1 R and | W balls in the bag before we put a R ball into it.
This result is obviously nonsense, so the reasoning must be false. But

where is the mistake?

The following reasoning results in an absurdity as well. Two of three
prisoners, denoted by A, B,C, will be executed. They know this, too,

but cannot be sure who the lucky third will be. A says: ‘the probability
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that only I will not be executed is 1/3. If I ask the warder to tell me one

of the 2 prisoners’ names (different from mine) who will be executed

then there remain only two possibilities. Either I am the other one to be

executed or not, and therefore my chance for survival will increase to

1/2.” However, it is also true that A knows even before the warder an-

swers that one of his companions will certainly be executed and therefore

the warder has not told him any essential information concerning his

own execution. Why then has the probability of his execution changed?

(The answer is very simple: the probability has not changed at all, it

has remained 1/3. The prisoner failed to take into account that the warder
says, e.g., Bwith the probability of 1/2 if BandC are going to be executed,

while if A and B are the victims, this probability is 1. Consequently, A’s
actual chance for escaping execution equals the ratio of the probability

1
ome

in the former case and that of the two cases together: Tapes

on 3

6 Székely
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Paradoxes in mathematical statistics

“Statistics is the physics of numbers.”

P. Diaconis

“Everything of importance has been “If one can tell ahead of time what

said before by somebody who did not one’s research is going to be, the re-

discover it.” search problem cannot be very deep

A. N. Whitehead and may be said to be almost nonexis-

tent.”

A. Schild

Originally statistics was ‘‘state arithmetics’’. (The word statistics comes

from the Latin status=state.) Since ancient times statistics have been

applied to inform state leaders about the amount of taxes they can levy

on their people and about the number of soldiers they can count on in

war time. In China, a census was taken more than four thousand years

ago. According to the Bible, Moses also counted all the men over 20 in

his tribe. The result was 603,550. The fourth book of Moses (Book of

Numbers) contains many other census data, but they seem to be exagger-

ated, as are the date of Athenaios giving the number of slaves in the Greek

polices at the time of the Roman Empire. It is rather unlikely that there

were 400,000 slaves in Athens and 460,000 in Corinth. We do not

know how these census data have swollen, but it is a fact that, according

to the census, the first city with more than a million inhabitants was

Rome. England’s first statistical document, the Domesday Book written

in the 11th century, was also for purposes of taxation and the army.

This is the reason why women have always been disregarded during a

census right up until modern times. Statistics became a science only in
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the 17th century. Its pioneers were John Graunt (1620—1674) and Sir

William Petty (1623—1687). Graunt’s ‘Natural and Political Observa-

tions made upon the Bills of Mortality” (1662) was ademographic study.
In 1669 Huygens published a life table based on Graunt’s data. Petty’s

“Treatise on Taxes” (1662) and ‘Observation upon the Dublin Bills of
Mortality” (1681) also used Graunt’s results and ideas. In his ‘‘The Poli-
tical Arithmetic” (published posthumously in 1689) Petty compared

England, Holland, and France on their population, trade, and shipping.

The term “‘political arithmetics”’ can be considered as the forerunner of
the word “statistics”. As capitalism advanced, not only state leaders

but also capitalists became interested in statistical tables. More and more

complicated mathematical means were used to process data, and their
profit also increased, e.g., in the insurance business. Lloyd’s, one of the

outstanding insurance companies in the world, was founded in the

17th century, though at that time it was only a coffee-house in Tower
Street in London. Good insurance is based on exact surveys and proper
mathematical conclusions. Since the 17th century, mathematical statistics

have gradually developed into an independent branch of mathematics.
Its main purpose is to obtain as much correct and useful information
as possible from the data, observations or measurements, in short from

the statistical sample. (Measuring the amount of information apart from
its concrete content developed into a new branch of mathematics only

in the 20thcentury, and is called nowinformation theory. It is very close-
ly related to mathematical statistics.) Not to write satire, at least in

Juvenalis’ opinion, is hard, but not to find paradoxes in mathematical
Statistics is even harder. According to a joke, in 1901, 33% of the women
students of Harvard University married their tutors. Actually, at that

time only 3 girls studied at the university, and one of them did marry her
professor. The statement is true, though misleading. Suppose that in a

certain country 20% more boys than girls are admitted to the universities.

If all the candidates are equally qualified for entry and the number of
boy candidates is the same as the number of girl candidates then the

obvious conclusion is that admission committees give preference to boys.

However, since more girls than boys want to study at the more popular
faculties, where the refusal rate is higher, the result may be that despite

proportional admittance, there will be more boys studying at university

6*
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than girls. L. P. Ayres’ 1913 text analysis is similarly misleading or at

least it is easy to misinterpret it. He states that the 50 most frequent words

make up about 50% of a typical text, the 300 most frequent words make

up 75%, while the 1000 most frequent words make up 90% of the text.
In spite of this fact we should not conclude that if we know 50 or 100
words of a language we already understand half of it, for the knowledge
of articles, though they are frequently used, can hardly help in under-
standing a text. No wonder many people believe there are three kinds

of lies: white lies, damned lies, and statistics. We hope that the explana-
tions of paradoxes in mathematical statistics will help us to see through

statistical absurdities and to understandt the useful and essential conclu-
sions of statistics as well as to find the most fundamental information.

1. BAYES’ PARADOX

a) The history of the paradox

A student of de Moivre, Thomas Bayes, was one of the most outstanding
pioneers of mathematical statistics. His theorem discovered about 1750

but published only after his death was the root of several controversies
in statistics. Even today, the heat of the debate has not decreased. More-

over, the theoretical gulf between Bayesianism and anti-Bayesianism is
widening. A simple formulation of Bayes’ theorem is the following. Let

A and B be arbitrary events with probability P(A)>0 and P(B)=0,
resp.; denote by P(AB) the probability of the joint occurrence of A and

B and by P(A|B) the conditional probability of A if it is known that
B has already been observed. Then

P(AB)
P(A) ae IER

P(A|B)P(B)P(B|A) = aeP(BlA) =

Therefore, if By, By, ... are disjoint events with positive probability and
one of them always occurs (or at least with probability 1) then

P(A|B,) P(B,)

PBA)=SCAT)P(B)+P AB)PB)
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This is the Bayes’ formula. It shows how a priory probabilities P(B,)

(the probabilities of B, before A was observed) determines the a posteriori
probabilities (after A was observed). If the events B, are considered the

reasons, then Bayes’ formula is a theorem on the probability of reasons.
The theorem itself is indisputable but in most applications the proba-
bilities P(B,) are unknown. In this case, it is typical, though generally not
acceptable, to think that the absense of previous information on the
reasons B, implies the equality of the probabilities P(B,). Bayes applied
his theorem in cases when a priori probabilities were of continuous

distribution, especially when they were of uniform distribution on the
interval (0, 1). According to the Bayes’ theorem, if an event of unknown
probability p occurs n times out of n+mobservations then the probability
for p to belong to a subinterval (a, b) of the interval (0, 1) is

fra —x)"dx

fea —x)"dx|
0

Bayes set out the idea that if we do not have any previous information

about p then the a priory probability density of p is uniform on the whole

interval (0, 1). If, e.g., n=1, m=0,a=1/2 and b=1, according to the
above formula, the chance is 3/4 that the event in question has a proba-
bility more than 1/2. Still, few people would bet on the basis of this

result partly because they doubt that the a priori distribution is uniform.

The lack of knowledge of a priori distributions had such a damag-
ing effect on the statistical conclusions of Bayes’ theorem that it has
been almost excluded from the main line of statistics. In the second
third of the 20th century, however, Bayesian conclusions were revived
partly because of their essential role in finding admissible and minimax
estimators (see J.12. Remarks and Ferguson’s book). The opinion also
gained ground that successive applications of the Bayes’ formula (after

each observation the a posteriori probabilities are calculated and used as
a priori probabilities next time) reduce the importance of the original
a priori distribution since after many repetitions the original distribution

can hardly influence the final a posteriori distribution. (Obviously, cer-
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tain degenerated cases are disregarded, e.g., when the value of p is 1/10,
and the a priori distribution is uniformly distributed on the interval

[1/2, 1] which does not cover the point 1/10.)

b) The paradox

Let the possible values of a random variable X be the integers and suppose

that the probability distribution of X depends on a paramter p belonging

to an interval [a,b]. If independent observations X,, X2, X3,... are

made on the unknown distribution of X (i.e., on the unknown parameter

p of the distribution; X; are of the same distribution as X) then one can

expect that the series of a posteriori distributions (calculated from the

originally uniform a priori distribution) concentrates more and more

on the true value of p. Paradoxically, this is not always true. The true

value of p may be, e.g., 1/4 but the series of a posteriori distributions (as

more observations are made) concentrates more and more, e.g., on 3/4.

c) The explanation of the paradox

The paradox seems to be surprising because the a posteriori density
function is expected to be the highest in the neighbourhood of the true
value, i.e., around 1/4. This idea, however, does not contradict the fact

that the a posteriori density functions can concentrate more and more

around 3/4. What should be achieved is only that the density function

which is too high at 1/4 should very quickly decrease but remain high
around 3/4. If the number of possible values of X is finite then this
situation cannot be achieved, whereas if X can take any integer number

then the paradoxical situation may really occur. Let the a priori distri-

bution of p be uniform over the interval [1/8, 7/8]. Now let us define a

function f(p) on this interval in such a way that f(p) is always a natural

number except if p=1/4 or p=3/4 where f(1/4)=f3/4=+-.

Let the distribution of the random variable X (depending on p) be the
following:

P(X =i) =c(1—p) p', i=0,1,2,...,f(p)
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where c=c, is a constant for which

S(p) ;

2 c(l—p)p'= 1.
By a suitable choice of f(p), the above mentioned paradoxical situation

becomes achievable. For further details see Freedman’s paper.

dad)Remarks

(i) S. Bernstein and R. Mises had already pointed out before 1920 that,
under some conditions, when applying Bayes’ theorem successively, the
series of a posteriori distributions always converge to the actual distribu-
tion whatever the a priori distribution was. That is why the a priori
distribution has no significance asymptotically. According to the paradox,
this conclusion cannot hold without any condition.

(ii) The subjective selection of a priori distributions 1aise the general
question of whether unknown probabilities and probability distributions
are objectively determined at all, independently of our observations and
measurements, or they make sense only through our subjective informa-
tion. In his monograph Bruno de Finetti, the head of the Italian school
of probability theory, expresses that probability does not exist objec-
tively, just as absolutespace and time, the cosmic ether, or the phlogiston
do not either. “Objective probability” is nothing else than an attempt to
exteriorize and materialize our probabilistic beliefs. In his opinion an
event (e.g., tomorrow it will rain) either occurs or not (this is objective),
and on the basis of the information available we can figure out its ‘‘sub-
jective” probability. The personal or subjective probability indicates the:
ratio of the bet we are willing to pay on the occurrence of the event.
We can speak about subjective probability even if ‘‘randomness”’ is not
objective. It has to be underlined, however, that the group of scientists
claiming the existence of objective randomness and objective probability
is much larger. Their conviction is the following: the objective probabili-
ties of future events are encoded in the present state of the world. This
kind of objective existence of probability has been expressed by the
Nobel prize winner Max Born, who is famous for introducing objective

probability into quantum physics.



76 Chapter 2

e) References

Bayes, T., “An essay towards solving a problem in the doctrine of chances”, 1763,

Reprint: Biometrika, 45, 293—315, (1958).
Berkson, J., “My encounter with neo-Bayesianism”’, [nternat., Statist. Rev., 45, 1—9,

(1977).
Born, M., Natural Philosophy of Cause and Chance, Dover, New York, 1964.

David, A. P., Stone, M., Zidek, J. V., ‘““Marginalization paradoxes in Bayesian and

structural inference’’, J.Roy Statist. Soc., Ser. B., 35, 189—233, (1973).
Ferguson, T. S., Mathematical Statistics, ADecision Theoretic Approach., Academic

Press, New York—London, 1967.

de Finetti, B., Theorie Delle Probabilita, Einaudi, Torino, 1970.

de Finetti, B., ‘““Bayesianism”’, Internat. Statist. Rev., 42, 117—130, (1974).

Freedman, D. F., ‘‘On the asymptotic behavior of Bayes’ estimates in the discrete
case’’, Annals of Math., Statist. 34, 1386—1403, (1963).

Holland, J. D., “‘The reverend Thomas Bayes F.P.S. (1702—1761)”, J. Roy. Statist.
Soc. (A), 125, 451—461, (1962).

Lindley, D. V., “The use of prior probability distributions in statistical inference and

decision”, Proc. 4th Berkeley Symp. on Math. Statistist. and Prob., 1, 453—468,

(1960).
Lindely, D. V., ‘“‘Thefuture of statistics —aBayesian 21th century”, Advances in Appl.

Prob., 106—115, (1975).
Lindley, D. V., ‘“‘Aproblem in forensic science’’, Biometrika, 64, 207—213, (1977).

Lindley, D. V., “The Bayesian approach’’, Scand. J. Statist., 5, 1—26, (1978). (3rd

point: Marginalization paradoxes)

Pearson, E. S. (ed.), The History of Statistics in the 17th and 18th Centuries Against the
Changing Background of Intellectual, Scientific and Religious Thought, Lectures by

K. Pearson given at University College London during the academic sessions

1921—1933. Griffin, London, 1978.
Pflug, G., Decision Theoretic Paradoxes in Decision Making under Uncertainty, (ed.

R. W. Sholtz). Elsevier, 375—383, 1983.

Savage, L. J., The foundations of Statistics, Dover, New York, 1972.

Stone, M., Springer, B. G. F., ““A paradox involving quasi prior distributions’’,

Biometrika, 52, 623—627, (1965).

Shafer, G., “‘Lindley’s paradox”, J. Amer. Statist. Assoc., 77, 325—334, (1982).



Paradoxes in mathematical statistics 77

2. PARADOX ESTIMATORS OF THE EXPECTATION

a) The history of the paradox

Equalization of contrasts and deviations in the ‘‘mean”’, i.e., summariz-
ing the observations into a single value has long traditions. Aeschylus
writes in the Eumenides: ‘“To moderation in every form God giveth the
victory, but his other dispensation he directeth in varying wise...”’,
and the followers of the Chinese philosopher Confucius said that “the
immobility of the mean (=Chung Yung) is the greatest perfection’’.
Mathematically, the notion of ‘“‘mean”’can be interpreted in many ways
(arithmetical mean, geometrical mean, median, etc.). In the practice
of statistics, however, arithmetical mean was extremely important for a
very long time. The first outstanding results in probability theory and in
mathematical statistics also explored and reinforced the importance of
the arithmetical mean of statistical samples.

Consider a set {F,} 9€0 of probability distributions with finite expec-

tation, where the parameter 9 is just the expected value of F,. We want
to estimate the value of the unknown parameter 9 on the basis of the

observed data (i.e., sample), X,, X2,...,X,, (the sample elements X;
are supposed to be independent, F, distributed random variables). The

arithmetical mean

VADCORRESts
n

$=X =

as the estimator of §has many good properties, e.g., it is always unbiased,
that is, E($)=9 for all 9€O (i.e., the estimate fluctuates around the
actual value). The laws of large numbers state that the estimator 9=X

is consistent, i.e., for any s>0 we have

limP(\9—9|<e)=1 forall 9¢0,

so the error of the estimate can be made as small as desired by taking a
sufficiently large sample. Nevertheless there may exist many unbiased,
consistent estimators of a parameter and it is useful to give preference
to estimators (among these) which have smaller variance. The paradoxes
here reveal that (except in the case of normal distributions) the arithmet-
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ical mean of the sample is not the minimum variance unbiased estimator

of the expected value. Moreover, if we do not insist on unbiasedness,

then, even in the case of multivariate normal distributions, it is not

always useful to estimate its expected value by the sample mean, because

this estimator is not admissible with respect to the quadratic loss-func-

tion. [For the definition of admissible estimation see I.12. Remark (i).]

A similar paradox will be discussed in 13/q.

b) The paradoxes

(i) (Kagan—Linnik—Rao) Let F(x) be an arbitrary distribution func-
tion with zero expectation and finite standard deviation and let F,(x)=
=F(x—9) where the parameter 9 is an arbitrary real value. If the ele-

ments of the sample X,, X2, ...,X, are random variables with distri-
bution Fy, then the sapmle mean X is a consistent and unbiased estimator

of the unknown parameter 9 (which is obviously the expected value of
the distribution F,). The estimator X, however, is not very efficient

(except in the case of normal distribution): for any n>2, there exist an
unbiased estimator the standard deviation of which is smaller than that
of X (to be more precise, for all 9 its standard deviation is at least as
small as that of X and for at least one 9 it is definitely smaller).

(ii) (C. Stein) X is an “exemplary good” estimator of the expectation
of normal distributions: it is a minimum variance unbiased, consistent
estimator, admissible in respect of the quadratic loss-function L(9, c)=
=(8—c)*, and also minimax. This is exactly why, some 20 years ago,
C. Stein’s discovery—claiming that in the case of multivariate normal
distributions the estimator corresponding to X is not admissible—came
as a surprise. More specifically, consider probability distributions defined
on the k-dimensional Euclidean space the coordinates of which are
(for simplicity) independent normal distributions N(9,o), where the
standard deviation o is known. We seek an admissible estimator $
of the vector 9=(9,, 92, ..., 9.) whose quadratic loss

—~ i k ~
LO, 3) = 19-9 = Oey

i=1
is, on the average, minimal. Then the vector §$=X (the k-dimensional
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vector of the sample average) is admissible only in 1 and 2 dimensions
but not in higher dimensions (although the minimax property of X
remains valid). Stein’s recognition shows that even if we consider the
classical estimating problem (that is, estimating the expected value of a
normal distribution), X is not the only estimator we have to take into

account.

c) The explanation of the paradox

(i) The interesting result of Kagan, Linnik, and Rao calls for proof
rather than explanation. Instead of reproducing the proof, here is a
method for finding asymptotically optimal estimators. First of all con-
sider the example of a uniform distribution function F(x) on the interval
(—c,c), (where c is an arbitrary positive number), and let F;(x)=
=F(x—9); then D(X)=c?/3n. If Xf=minX, and X*=max X;,
i.e., Xf is the smallest and X,* the largest sample element (they are both
uniquely defined with probability 1 since the distribution is continuous)
then

pe?tee % 2c?

2 (n+1)(n+4+2)’

which is far smaller than D?(X) for large n. Since

AGa Xe

Z

is also a simple unbiased and consistent estimator of 9, it is preferable to
the ‘‘customary” X. Turning to the general case let XfSX{S...=X;

be the ordered sample (i.e., X* is the smallest from X1, Xo, ..., X,, etc.)

and

nX= ee Ge
i=]

where a;, (i=1, 2, ...,.n;n=1,2,...) are real numbers depending on F.
One can show that under some mild conditions the following choice of

a;, leads to a minimum variance unbiased estimator of 9 (at least asymp-

totically as n—-co), Let a(x) be a real valued function on [0, 1] and
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Q;,=a(i/n)/n. If F is 3 times differentiable then the optimal choice of

a(x) is defined by

a(F(x)) =—[(A+Bx)(logf(x)
where

= Le a Re Ly =
Lobe Li UoHe Li

JAX Vike &
= dx, = xdxAE TIC) fam pees

and
ae Gy ae

pf, = Fox) x?dx—1

(the primes denote the derivatives, F’=f denotes the density function).
This formula for a(x) can be applied even if the expectation of F does
not exist and 9 denotes the center of symmetry of /,(x). E.g., let fQ(x)=

Sa eee ayeon (the Cauchy density; see the history of II/4). Then,

surprisingly enough, a(x)=—A cos 2nx sin? xx is the optimal choice
which is negative (!) when x is close to 0 or 1. In this case the “customary”
X estimator is not even consistent. (For a detailed analysis of this topic

see T. F. Méri—G. J. Székely, ‘“‘Howto estimate location and scale param-
eters”, Technical report, Edtvés L. Univ. 1986, see also H. Chernoff,
J. L., Gastwirth and M. V. Johns, Jr. “Asymptotic distribution of linear
combinations of order statistics with applications to estimation’’,
Annals of Math. Statistics, 38, 52—72, (1967).)

(ii) After Stein’s article, which was published in 1956, James and
Stein suggested the following simple estimator for the expectation of a
multivariate normal distribution in 1961:

x = (1), where k>2.

Then £||X*—9\?<k, whereas E||X—S\]?=k, hence the estimator X

is really not admissible. The estimator X* contracts the vector X towards
the origin of the coordinate system, and as the origin can be chosen



Paradoxes in mathematical statistics 81

arbitrary, the estimator

(k —2)o?
|x —Q|*

is also better than X for any Q. Thus the James—Stein estimator depends

on how we choose the origin Q, whereas X is independent of Q. (It can
be shown that the estimator

X=max{1-S o|
is even slightly better than X*.)

Now we shall turn our attention to the heuristic explanation of why
the estimator X* is better than X. Consider the samples of k independent
estimator problems together. The dispersion of the scalar sample elements
is due, partly, to a (common) standard deviation o of the k distributions
and partly to the (generally) unequal expectations 9;. Although these
unknown expectations may be quite different, the combined sample
may still show a dispersion which indicates that the values 9; actually
do not differ considerably. For example, in the case where o=1 and
about 16% of the observations are greater than 1, and 16% of them are
smaller than —1, it is reasonable to think that all the expectations 9;
are near to zero. In this case, if X;=0.8, the usual estimate of the ith
parameter is 0.8, whereas—according to the more “rational” conception
of the James—Stein estimator—the expectation 9; is nearly zero. Though
this explanation may convince us of the “‘rationality” of the James—
Stein type estimations, it still seems extraordinary if we want to estimate,
for example the expected values of the (normally distributed) body height,
velocity of light and that of the price of a product, there can be any kind
of connection between these problems.

0+(1-527) @-o

><

d) Remarks

(i) The following inequality due to Cramér and Rao gives useful infor-
mation concerning both paradoxes. Let f(x, 3) be the common density
function (depending on the parameter 9) of the sample elements X;,
i=1,2,...,n and let B(S) denote the bias E(§,—9) of the estimator
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9 of 9. Then the Cramér—Rao inequality claims that

(1+B’(9))?
E(§,—9)= B(9)?+—7)

holds under certain regularity conditions, where the function B’(9)

is the derivative of B(9) and

—4 Inf(Xi,9)1(9) = E55

is the Fisher information. Thus the rate of convergence of E(§,—9)?
to zero cannot exceed 1/n. However, in the example of the first paradox
(uniform distribution, B(9)=0 and therefore E(9,—9)?=D%§,)) the

rate of convergence is 1/n?.This is not acontradiction because the example
in question is a typical case where the above mentioned regularity
conditions do not hold. (The following condition, for example, would

be a sufficient regularity condition: the set of the numbers x where f(x, 9)
is positive does not depend on 93.)Concerning our second paradox, the
Cramér—Rao inequality points out that allowing biased estimators, i.e.,
if we drop the condition B($)=0, and if B’(9) happens to be negative,
E(§,—9)? might decrease considerably compared to the variance of the
minimum variance unbiased estimator.

(iii) Let X{<Xf<...<X; denote an ordered sample and let X’
denote the sample median, i.e., X’=X¢,,). ifn is odd and

Xia +Xijo+1
X= 5

if n is even. If we take the sample from a normal distribution then

Vy 2 ? ,
D(z) = = DX ) = 0.63D2(X),

i.e., the efficiency of the estimator X’ is (asymptotically) only 63% of that

of X. The situation changes, however, if we slightly “perturb” the normal

distribution: consider a random variable which is the mixture of two
normal distributions, namely 91% is a normal distribution with expecta-

tion 8 and variance 1, and 9% is a normal distribution with the same
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expectation 9 and variance 9. In this case the median X’ is a better

estimator of 9 than X.

(ii) The following paradox of admissible estimate is due to S. M.

Masani. Let X,, X2 be two independent random variables with expecta-
tions m,, mz. Masani gives two examples (one binomial, one normal)
in which an estimator, depending only on X,, is admissible for esti-

mating m,. Here we mention only the binomial case. Let X,, Xo, ..., Xm
be independent binomial random variables with parameters n,, p;.

One can prove that a necessary and sufficient condition for the linear
estimator

mP,(X4, Xe, seesx) = > 4,X;,/n;+c
Tt

to be admissible for p,, when the loss function is the quadratic loss
L(p;, p)=(pi—p)”,_ is that either

0=a, <1, CSa=
and

0= Date=l, 08 Datesl
i=2 t=1

or 4,=1 and a,=a,—...=a,,—c=0. If we put -2,=0 then we get a
large class of admissible estimators for p, not depending on X,.

e) References

Efron, B., ‘Biased versus unbiased estimation”, Advances in Math., 16, 259—277,

(1975).

James, W., Stein, C., “Estimation with quadratic loss”, Proc. 4th Berkeley Symp. on

Math. Statist. and Prob., 1, 361—380. Univ. California Press, Berkeley, (1961).

Kagan, A. M., Linnik, Yu. V., Rao, C. R., “On a characterization of the normal law

based on a property of the sample average’’, Sankhya, Ser. A, 27, 3—4, 405—406,

(1965).
Masani, S. M., “A paradox in admissibility”, Annals of Statist., 5, 544—546, (1977).

Stein, C., ‘‘Inadmissibility of the usual estimator for the mean of a multivariate normal

distribution”, Proc. 3rd Berkeley Symp. on Math. Statist. and Prob., 1, 197—206,

Univ. California Press, Berkeley, (1956).
Tukey, J. W., “A survey of sampling from contaminated distributions”, Contrib. to

Prob. and Statist, (Ed. I. Olkin) 448—485), Stanford Univ. Press, 1960.

Zacks, S., The Theory of Statistical Inference, Wiley, New York, 1971.



84 Chapter 2

3. PARADOX ESTIMATORS OF THE VARIANCE

a) The history of the paradox

Besides expected value, variance is the other most important characteris-

tic of random variables and their distributions. Estimate the unknown

variance D? of the random variable X from the sample X,, Xo, ..., X,

(these are independent observations and have the same distribution as X).

If the expected value E is known then the estimator

is unbiased. The situation changes if E is unknown and is replaced (in
the above formula) by its unbiased estimator X. Then the estimator

is no longer unbiased. Since unbiasedness has been one of the most

required good properties of estimators (since Gauss’ time) the estimator
DB?was modified to make it unbiased. (Several parameters do not have
unbiased estimators at all. In these cases only asymptotic unbiasedness,
L€.,

a
for all 9€© is required. This property holds for D2.) Besides unbiasedness

other important properties of good estimators were crystallized. A para-

dox appears when different properties of good estimators do not lead
to the same estimator.

b) The paradox

Multiplying BD?by the Bessel factor we get
n —

2 1 7 Vv
DS aay

n= 131

which is an unbiased estimator of the variance.
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Suppose that X is normally distributed (with unknown expectation and

variance) and we prefer minimax estimators (see I.12. Remarks) with
loss function L(D?, D*?)=(D*—D?)/D*; then D? must be modified in

just the other direction: it has to be multiplied by to obtain a
n+

minimax estimator:

eas
ntl GQ! ;

(is risk is eal | Thus the minimax principle and unbiasedness led to

n
different estimators.

c) The explanation of the paradox

Thesum
3 (%-a)
i)

is minimal only if a=X. However, the expected value E is generally
not equal to X (only near it), therefore D? showing the real deviation

is greater than D®.That is why the Bessel correction is needed. On the
other hand there is no reason why minimax or admissible estimators
should be unbiased. (We have already seen in JJ.2. that the James—Stein
estimator of the expected value is better than the usual unbiased estima-
tor X.) Since the unbiased and minimax estimators of the variance of
normal distributions do not coincide, we have to decide with each practi-
cal problem which one to choose. Fortunately, there is only a slight
difference between the two estimators even at small values of v. (In other

problems the difference, however, can be significant.)

d) Remarks

Though surprising, it can be proved that the above mentioned minimax

estimator is not admissible. (See Stein’s article or Zacks’ book.) On the

other hand, if the expected value of the normal distribution is known,

7 Székely



86 Chapter 2

the estimator

1

n+2 2 (X,-E)?
2 ;

but also admissible regarding
n+2

the mentioned loss function. (See Zack’s book.)

is not only minimax (with a risk of
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4. THE PARADOX OF LEAST SQUARES

a) The history of the paradox

Due to the inevitable errors of observed measurements, theoretical for-

mulas and empirical data frequently seem to be in contradiction. Legendre,
Gauss, and Laplace elaborated an efficient method to diminish the effect

of measurement errors early in the last century. (Legendre, for instance,
worked out and applied it in 1805 to determine the orbits of comets.)

The pioneers of this theory were Galileo (1632), Lambert (1760), Euler
(1778), and others. The new procedure, called the method of least

squares was discussed in detail by Gauss in his work “‘Theoria Motus”

(1809). It was also Gauss who pointed out the probabilistic background
of the method. (Though Legendre accused Gauss of plagiarism, Le-

gendre could not properly substantiate his repeated accusations. Gauss

claimed priority only in the use of the method and not in its publication.)
Laplace published his fundamental book on probability theory in 1812

which he dedicated to “Napoleon the Great’. The entire fourth chapter

is devoted to the calculus of error. Since then the method of least squares
has developed into a new branch of mathematics. It is sometimes ‘‘over-

mystified” and often used when other methods would be more expedient.
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This problem was emphasized even by Cauchy (Comptes Rendus, 1853)
during his ‘“‘debate” with Bienaymé (in the course of this dispute Cauchy
used the probability density function 1/z(1+.x?), which was later named
after him, though he was not the first scientist to use the ‘Cauchy
density’).

6) The paradox

Let ae~*l*-#l be the density function of our observations subject to

random measurement errors; the constants a and b are known and p
has to be estimated. We make independent observations X,, Xo, ..., X,-
According to the method of least squares, has to be estimated by the
value @which minimizes the sum

(X;,—f° +(X2— A)?+... +X, —By.

It is easy to calculate that this sum is minimal if f is the arithmetical

mean of the observed data:

— X4Xy+...4+X,

ere aeaef

However, if we prefer the estimator # for which the probability (more
precisely the probability density) that the results of n observations are
just X,, Xo, ..., X, is maximal, i.e., if { maximizes

qe 1X,—ul+...+1X,—H))

or, equivalently, { minimizes

[Xi —H+ |X2—Al +...+1X,—H,

then we get a contradiction since the sum of squares and the sum of
absolute values do not take their minimum at the same value of pn,

i.e., 2 and ji are different. Which one is better?

c) The explanation of the paradox

If the measurement errors were normally distributed (i.e., if their density

function were of the form

ae~>—H)2

BFfeud
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the above mentioned contradiction would not appear since ff maximizes

ae (Xy— HP+... +(X,- 2),

Gauss based the method of least squares on normally distributed errors,

and in practice this is the most frequent case. However, if the distribu-

tion of errors is known to be different from normal, then using the least

squares estimator is not always advantageous. In the case of the above

mentioned paradox, the use of the estimator ff is more reasonable (see

also the previous section).

Using the customary notions of mathematical statistics, the paradox

can be formulated in brief as follows: the least squares estimator is not

always compatible with the maximum-likelihood estimator (for maximum
likelihood estimation see Section 8). In fact if f(x) is a positive semi-con-
tinuous density function at x=0 (from below), and the density of the

observations is f(x—$) and

VY, ee
n

x =

is a maximum likelihood estimator of 9 for n=2,3, then f(x) is the den-

sity function of a normal distribution with zero expectation. This remark

is the Gaussian law of error, and it can be proved as follows: if for

simplicity the existence of the derivative f’ is supposed and

IL-9)
is maximal for 9=X then

sLu,-x =0,
i=1

i.e., (with the notation 4;=X;—X)

> 4; =9 implies
i=1

and this can be valied for n=2,3 (when f’/f is measurable) only if
7

| ix)=ex, and it follows that f=de~°* where c and d are positive
v
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numbers (otherwise f would not be a density function). So the least

square estimator of the location parameter can coincide with its maxi-
mum likelihood estimator only for normal distributions.

d) Remark

The arithmetic mean f= X and the median fi are the only “simple”

maximum likelihood estimators of the parameter ywhaving the form
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5. CORRELATION PARADOXES

a) The history of the paradox

By the last third of the previous century, several sciences (e.g., molec-
ular physics) had reached such a level of development that the adaptation
of probability theory and mathematical statistics became indispensable
in these fields too. In 1859 Darwin’s book revolutionized biology, and
shortly afterwards his cousin Francis Galton established human genetics.
(Mendel’s study on genetics was only “‘rediscovered” at the turn of the
century, and the word genetics has only been used since 1905; but Gal-
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ton’s results had already aroused great interest in the last century.)

Galton and his students (especially Karl Pearson) introduced many im-
portant notions such as correlation and regression which became funda-
mental ideas of both probability theory and mathematical statistics (as

well as of other related sciences). Aman’s weight and height are, natu-

rally, in close connection though they do not determine each other
uniquely. Correlation measures this connection by a single number the

absolute value of which is not more than 1. The correlation of two ran-
dom values X and Y is defined as follows. Let E, and D,, E, and D,

denote the expected value and the standard deviation of X and Y, resp.
Then the correlation coefficient (in brief: correlation) of X and Y is

ve _ El(X—-E,)(Y —6,)]
r=ar(x,y)= pad, le ee

The absolute value of the correlation is maximal (i.e.,=1) if there is a

linear relationship between X and Y, i.e. Y=aX+b (where a0).
If Xand Y are independent (and their variance is finite) then their corre-

lation is 0, i.e., they are uncorrelated. In mathematical statistics the
correlation r is usually estimated from the generally independent sample
(X,, Yi), (Xe, Yo), ..., (X,, Y,) by the following sample correlation coeffi-

cient

2 G&-X)H-¥)
~» II

(XX) 3% YY
t=]

In several cases r gives a good characterization of the relationship be-

tween X and Y but even at the turn of the century several senseless correla-

tions were calculated, e.g., the correlation of the number of stork nests
and that of infants. Correlations have gradually been mistificated and

several “‘internal’’, generally casual, connections were thought to exist

in the case of close (near to 1 in absolute value) correlation. This is why

totally absurd results were created which nearly succeeded in discrediting
statistics as a whole. It generally was ignored that close correlation of X

and Y might be caused by a third quantity. E.g., it was observed in

England and Wales that when the number of radio licences was increased
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there was a corresponding increase in the number of insane and mentally
handicapped people. This interpretation is, however, completely false
because listening to the radio does not bring about mental illness; it is
simply that as time passes the number of radio listeners as well as the
number of mental cases increase though there is no causal connection
between them whatsoever. Unfortunately, misinterpretations are not
always so simple to discover, e.g., in technical or economical applica-
tions. The comparison of religion and height is another senseless corre-
lation, which claims that going from Scotland in the direction of Sicily
the rate of Roman-Catholics gradually increases while the average height
of people decreases gradually; but of course any causal interpretation
is absolute nonsense. (Even more farcical ideas were claimed to be
causal relationships and even science by Fascist racial theory.) We will
mention only some of the existing correlation paradoxes.

b) The paradoxes

(i) Let X be uniformly distributed over the interval (—1, 1) and Y=|X].

Obviously, there is a very close relationship between X and Y, but their
correlation r(X, Y)=0. (The correlation of ¥ and Y=|X| is always

O when X is a random variable with finite variance and has a symmetric

distribution around 0.)
(ii) Let X,, Xo, ..., X, be the temperature of a room in n different

moments and Yj, Yo,..., Y, be the quantity of the fuel used up for

heating in the same moments (more precisely during a given period,

e.g., 1 hour before these moments). It is logical to think that the more

fuel used the warmer the room will be. It means that the correlation of

X and Y is strictly positive. In spite of this the correlation may be nega-

tive, which can be interpreted as the more we heat the colder it will be.

(iii) Let (X, Y) be normally distributed, i.e., let the density function

Oh(AT be

I(x, y) =

pe em Coeee a,
2xD,D,yi-P
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where E,, D,, E, and D, are the expected values and variances of X
and Y, and r is their correlation. Now we suppose that the absolute value

of the correlation is strictly less than 1. If r is unknown we can estimate
it by # from a sample of n elements. If E, and E, are known then it is
advisable to modify the formula of f so that X and Y are replaced by E,

and £,, resp. In this way we obtain a new estimate r. As fFuses more
information (namely the knowledge of E, and £,) we might think that

its variance is less than that of #. However, A. Stuart calculated that

Deh) = =( —r*)? while D?(r) = =( +r?)

consequently the latter is the bigger.

c) The explanation of the paradoxes

(i) If X and Y are independent then r(X, Y)=0O but the inverse asser-
tion is false. Uncorrelated values may be strongly dependent as in the
above example where Y=|X|. Therefore ‘‘being uncorrelated” must

not be interpreted simply as being independent. On the other hand,
it can be proved that if Xand Y are uncorrelated under the restrictions

X1<X<x2,¥;<Y<y, whatever the number x,<x, and y,<y, be,
X and Y are independent.

(ii) We must not forget the disturbing effect of the temperature out-

side!
We often obtain completely unbelievable correlations because the ex-

pected correlation coefficient of two random variables had been twisted

by a third, “‘exterior disturbing variable”’. It is precisely to avoid such
distrubing effects that the notion of partial correlation has been introduced.
If the correlation of X and Y is calculated only after having filtered

out the disturbing effect of the variable Z then the result will no longer

be a paradox. Let ry, 713and r,3 denote the correlations r(X, Y), r(X, Z)

and r(Y, Z), resp. Then the partical correlation of ¥ and Y after having
filtered out the effect of Z is

"12—113193
Vd —r3,)(1—r3s)
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In the special case when r,3=7r.3=0, the partial correlation of X¥ and
Y is equal to the simple correlation rj. If 712,713,723are not known then

they can be estimated from the sample just like r. By the help of these
estimators, we shall obtain an estimator for the partial correlation
coefficient.

Figure 9. Considering the random variables X, Y, and Z as vectors, the correlation
of random variables X and Y is the cosine of the angle between the vectors X
and Y, and their partial correlation is the cosine of the angle between their images
under projection onto the plane perpendicular to vector Z.

(iii) Stuart’s paradox can be shown from many aspects. The main

point is that f and 7 are not unbiased estimators of r, i.e., the identities

E(#)=r and E(r)=r are not valid, and if so, it is not advisable to

consider an estimator better if its variance is less. At the same time neither
f nor 7 is very biased (asymptotically unbiased), therefore the explana-

tion of the paradox needs further analysis. (See the Remarks and Stuart’s

article.)

d) Remarks

(i) The bias of the estimator r (in case of bivariate normal distribution)
is the following

r2 a +o(n-)
E(f—r) = 5
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where o(n-1) denotes an expression which converges to 0 even if mul-

tiplied by n. Thus bias converges rather fast to 0 (as the sample size n
increases). On the other hand, it is interesting that arcsin / is an unbiased
estimate of arcsinr, and if E(g(f))=E(g(r)) for some function g inde-

pendent ofnthen g(r)=a -arcsinr+b, where a, b are arbitrary constants.
In 1958 J. Olkin and J. W. Pratt proved: if the estimator of the correla-

tion coefficient r may directly depend on 7 then one can find an unbiased
estimator for r itself, namely

=aFy. _ i 1-F)

where F is the hypergeometric function given by

F(x, a, b, c) =

_. &a(att)...(a+k—1)b(b+1)...(b+k-1)
The kic@ua)a (ee) 2

where a,b,c (c#0, —1, —2,...) are parameters. Among unbiased
estimators it is already worth preferring those of minimal variance. It

can be shown that r* is not only unbiased but of minimal variance, too.
However, r* is rather complicated in practice, therefore it is advisable to
apply the following approximation of it:

(ii) It is not a paradox but it is nevertheless surprising that in choosing
m numbers randomly from 1, 2, ...,m (sampling without replacement,

i.e., the number of equally probable choices is (",)} the correlation

: ee. (> ee
coefficient of the smallest and greatest number chosen is —, i.e., it is

m
independent of n (m=1, 2, ...,n—1). More generally, if X,, Xo, ..., Xm
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denote the increasing series of the m values selected, then

i(m+1—)j)rt Xm)LOEIED.
which is independent of n, too.

[The following result is due to T. F. Mori. Take a sample of n elements
from 1, 2, ...,m-+1 with replacement and denote by Y; the number of
sample elements the value of which is not greater thani. Then r(¥;, Yj=
=r(X;, X;).] Another related problem is the following. If Z,=Z,=...
,..=Z,, iS an increasing sequence of independent uniformly distributed
random variables (“ordered sample”) then r(Z;,Z,)=r(X;, Xj); if
the uniform distribution is replaced by any other distribution for which
r(Z;, Z;) exists then r(Z;, Z;)=r(X;, Xj), i.¢., this is an extremal prop-
erty of uniform distributions (see the paper by Méri—Székely). In
fact we can prove more. Let the maximal correlation of two random
variables U and V be defined as the supremum of r(f(U),g(V)) where
f and g run over the set of square integrable real functions of U and V,

resp.:
maxcorr(U, V) = aap r(f(U), g(V)).

9
Using this notion, we can prove that

max corr (Z;, Z;) = r(X;, X)).

This follows from the fact that max corr (U,V)=r(U,V) if both the
regression of U on V (for the definition of regression see the next para-
dox) and the regression of V on U is linear (and not identically constant).
It is precisely this case when correlation is a good measure of closeness.
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6. REGRESSION PARADOXES

a) The history of the paradoxes

The correlation coefficient measures the dependence between two random

variables by a single number, whereas regression expresses this depend-
ence by a function-like relation and thus gives more precise information.
For example, the average body weights as a function of body heights

is a regression. The name ‘‘regression” comes from Galton, who, at
the end of the past century, compared the heights of parents with that
of their children. He found that the heights of children with tall (or

small) parents are usually above (or below) the average but not as much

as their parents’ heights. The line which showed to what extent the

The extent of “regression” (return) of height through subsequent

generations, by Galton

Height If the parents Distance
(inch) mean is above the (inch )

average height.

the children
usually are shorter

than their parents

If the parents’

mean is below the

average height,
the childrer
usually are taller
than their parents

Figure 10. Galton’s regression line.
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heights (and other properties as it later turned out) regressed (returned)
to the average through subsequent generations was called a regression
line by Galton. Later any function-like relation between random vari-
ables were called regression. Regression analysis was applied first in

biology, and the most important scientific journal which dealt with this
topic was the Biometrika, published since October 1901. In the years
between 1920 and 1930, its economic applications also became very im-
portant and a new branch of science sprang up: econometrics (the term
is due to R. Frisch, 1926, who was later awarded the Nobel prize), with
its own journal, Econometrica, first published in 1933. From examining
special regression problems, researchers gradually came to the regression
analysis of the intrinsic structure of global economic systems (J. M.
Keynes, J. Tinbergen and others as, e.g., R. L. Klein, who won the Nobel
prize for economics in 1980). The journal Technometrics has been pub-
lished since 1959 and mainly deals with technical applications. The re-
gression analysis of a quantity X on another quantity Y—where X is dif-

ficult to measure and Y can be measured quite easily—is very important.
Nowadays almost every branch of science applies regression analysis,
which is a good thing in itself, but unfortunately regression analysis has
also become one of the chief means of ‘‘facile scientific successes’,
slipshod analyses and glossing over (scientific) problems. Regression
never substitutes scientific conceptions and theoretical background,

though it can help to find them.

b) The paradoxes

Suppose the dependence of two variables is given by a function of the

following type:

Y =Hf(%3G1, dg, ---yAm), (C8. Y= 44X44),

where only the parameters aj, dp, ..., Gy ate unknown, (the type of func-

tion, e.g., linear, quadratic, etc. is known). If we can measure the values

of y only with random observational errors, i.e., instead of y,=f(x;;

15 zs -++5Am)We Observe the values Y;subject to errors, then, according

to the method of least squares, the unknown a,’s minimize the sum of
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squares

n2 (Y;—f(%i3.41,Gg,.-., An))*.

(i) Accordingly, if f(x)=e%* then the estimator of a minimizes

(Yi—eroe
i=1

In this case the problem of calculating the regression-curve f is usually
simplified by taking the logarithm of both terms of the difference in
brackets and minimizing the quantity

2, (In Y;—ax,)?,
t
Ma

which can be easily performed by finding the minimum of a quadratic
polinomial. However, the two minimizing methods give different estima-
tors. What is the solution of this paradoxical situation?

(ii) Suppose we have only an alternative idea about the type of f,
for example, f, is a polinomial and /2 is an exponential function. It seems
natural to accept the type for which the above sum of squares is smaller
(under optimal choice of the parameters). Though this principle is often
followed in practice, usually it is not reasonable (sometimes even the
theoretical possibility of this choice must be questioned).

(iii) Let y=ax be the theoretical regression line and let Y;=ax;+6¢;,
where ¢; (i=1, 2, ...,) are independent normally distributed random
errors with expectation 0 and variance D(e,)\=cy (c is a known con-

stant). Now suppose that the observations happen to fit the regression
line perfectly, i.e., Y;=a x; for some do, thus

Ms(Yj—ax;)’ = 0.
1ir

Then the least squares estimator of a is a, but, paradoxically, this is

not the ‘‘best” estimator (in the sense of maximum-likelihood; cf.
definition in paradox 8).
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c) The explanation of the paradoxes

(i) Undoubtedly the method of least squares corresponds to the first

method, nevertheless it is useful to consider not only the letter but also
the spirit of this principle, since the qualitative meaning of least squares

is the minimization of the total effect of errors. This purpose can also be

achieved by minimizing the sum of squares

ZSUOD)—hSGsaayda,5dy)!
where h(x) is a monotone increasing function (e.g., h(x)=In x).

A good choice of h “‘linearizes”’, i.e., makes the formula h(f (x1; a1, ds, ..-
.++;Qm))a linear function of the unknown parameters a; (in this case the
optimal value of a,’s can be easily determined). If we want to determine
the unknown parameters in the spirit of least squares principle, it is
clearly better to choose the second method. However, the original sum
of squares, for example, may have to be minimized if we know that the
errors result in a financial loss which is proportional to this sum of
squares, though this possibility is far from typical.

(ii) The first part of the question is very simple: the sum of squares
may besmaller for f, than for /2, but, taking some more sample elements
into consideration, the sum of squares becomes smaller if we choose fg.
Mathematical statistics tries to avoid such unstable situations. There are
some decision methods available in certain cases, which decide with
given, e.g., 99% certainty, (i.e., if f, is rejected then the probability that

j; is the right choice is 1%). In Plackett’s book, for instance, a method is
discussed which enables the proper degree of regression polynomials to
be chosen (in case of independent, normally distributed observetional
errors). Unfortunately, many typical alternative regression problems
cannot be properly handled. For example, the Weber—Fechner rule

states that there is a logarithmic relation between stimulus and sensation,
especially between volume and sound intensity, or between frequency
and pitch. Nowadays this rule is considered only an approximate one
both theoretically and experimentally, because a power-function rela-

tion seems to be closer to the truth. (In fact, the problem is more compli-
cated as the sensation of loudness depends not only on intensity but also
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on frequency and the spectrum of sound as well as on the duration of

the experiment.)

(iii) The estimator G=ay is not satisfactory since the estimator of
D*(e;) would than be zero which contradicts the condition Lies cy.

The estimator

[(V1+4c—1)/(2c?)]ay

is more reasonable (maximum-likelihood).

d) Remarks

(i) The logit-probit alternative is also very typical—especially in pharma-
cology and market research. In logit analysis, the function

e941t 43x
Le i + e941+4,

isfittedtothedatabythemethodofleastsquares,minimizing
n ¥ 2Be(in re ~a,—a,x;).

[Here the transformation function which linearizes the problem is

xh(x)=In i | In probit analysis a normal distribution function is fitted
x

to the data (by an appropriate choice of the parameters). The shapes of
the two types of curves may be quite similar, so it is not always easy
to decide which one to choose, but the theoretical background may be
a great help.

(ii) If we increase the number of regression parameters then obviously
we obtain a better fitting but then the variances of parameter estimators
increase, so the estimators become less stable and less reliable.

(iii) For the ‘‘paradox of the two regressions” see Kalman (1982).
In this paper (following the pioneering work by Gini (1921) and Frisch
(1934)) it is assumed that there are random (additive) errors in both

variables: X=x+xX and Y=y+f (£,f are the errors or ‘“‘noise”).
Supposing y=ax, the ‘“‘unprejudice estimate’ of a can be given only
in terms of an interval: a,Sasa,. Here one of the limits is the classical
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regression coefficient (when y is regressed on x), and the other limit is
the reciprocal regression coefficient (when x is regressed on y). The choice
of either limits a, or a, implies the prejudice that the regressor variable
is noise-free. (This gives a solution for the “paradox of the two regres-
sions”’.
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7. PARADOXES OF SUFFICIENCY

a) The history of the paradox

Sufficiency is one of the most important concepts in mathematical sta-

tistics. Its use was introduced by R. A. Fisher in the 1920s. He set out of

the idea that, for statistical inference concerning unknown parameters,

we do not always need to know all the sample elements one by one. It

8 Székely
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is enough to know some functions of the sample called sufficient statis-
tic. E.g., in the case of a one dimensional normal distribution all the

information concerning its expected value is contained in the arithmetical
mean X of the sample elements X,, X2,..., X,. This follows from the
fact that the distribution of (X,;—X, X,—X, ..., X,—X) is independent

of the unknown expected value and if so, no further information can be
obtained about it from the random variables ¥,—X, X,—X, ..., X,—X.

The mathematical definiton for sufficiency is as follows. The functions
T, =F Cis Xs, X oleae Tl Xa Aas ves Ap eve pe a Aa ee
are called sufficient statistic for the parameter 3 of the common distribu-
tion of X; if the joint distribution of X,, Xo, ..., X, with given T,, To, ...
..-» 7, is independent of 9. Returning to the above example, the joint
conditional density function of the independent variables X,, Xo, ..., X,
given X=X is

] eaeb5 (x;—x)?
202 <1—— ee 0(V2n00)"*Vn

(where o denotes the standard deviation of X;) and this density does
not depend on &.

6) The paradox

It was Fisher who pointed out the following paradox of sufficiency in
1934. Hestudied a two-dimensional normal distribution whose coordinates
were independent (for simplicity) with variance 1. Only their expected
values were unknown. The arithmetical mean X=(X,, X,) of the two-

dimensional sample is a sufficient statistic for the unknown pair of
expected values. Suppose that the distance between the expected value

(considered a vector) and the origin, i.e., /9?+92 is known, say 3.
Then

(9,, 9.) = 3(cos 9, sin 9),

where 9 is the only unknown parameter. It can be estimated by

P xX$= arctg.
at
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This is an unbiased estimator: E(9)=9 and its variance is E(9—9)?=

=0.12. It is easy to prove that the distribution of r=) X?+ X2 is inde-
pendent of 9 (since the distribution of (X,, X,) has a rotational symmetry
around (9, 92)) therefore, due to sufficiency, no information concerning
8 can be gained by taking r into account. This is, however, anything but
true. The expected value of (§—9)? (i.e., the efficiency of the estimator)
is strongly influenced by the knowledge of r. E.g., E((9—9)*|r=1.5)=
=0.26, E((9—9)?\r=3)=0.12, and E((9- 9)?|r=4.5)=0.08.

c) The explanation of the paradox

Fisher’s paradox points out that “‘having all information” can be inter-
preted different ways. In calculating the efficiency of estimations, the
ancillary statistics (like r) may have an important role. Unfortunately,
it is not always easy to decide what to take for ancillary statistic. Ob-
viously, taking the whole sample as ancillary statistic is not worth-while.
If Fisher’s problem is considered from a Bayesian point of view and $
is supposed to be uniformly distributed on the interval (—7, 2) then

E((9—9)*|X,,X2)= E((9—9)*|r).

d) Remarks

The modern theory of sufficiency is due to P. R. Halmos and C. L.
Savage (1949). Several interesting paradoxes were brought up in this

field too. E.g., Burkholder (see the References) presented some patholog-
ical examples showing that if we add some more information to a suffi-
cient statistic then sufficiency may get spoiled. This example totally

contradicts our general view of sufficiency. In the past decade several
deep papers were published in this field introducing some “regularity
conditions”; these ensure the non-paradoxical (non-pathological)

behaviour of sufficient statistics.

8*
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8. PARADOXES OF THE MAXIMUM-LIKELIHOOD METHOD

a) The history of the paradoxes

One of the most efficient methods of estimating unknown parameters is
the maximum-likelihood estimation. It gained ground in the twenties

through the work of the English statistician R. A. Fisher. Though Fisher
had predecessors, it was his article that made the decisive breakthrough
in 1912. In order to elucidate the method, suppose, for simplicity,

that the density function of the probability distribution (depending on

the unknown parameter 9) exists and denote it by f,(u). If the sample
elements X,, X2, ..., X, are independent, their joint density function is

ILfol).
Let the numbers x,, x2, ...,.x, be the observed values of the sample.
Then 9 is the maximum-likelihood estimator of 9, if §maximizes

I So(xi)
as the function of 8 (supposing the maximum exists and is unique). In
the case of discrete random variables X;, we maximize the joint proba-

bility Py (X,;=x,, X.=X2, .... X,=X,). If we estimate 9 by the method
of maximum likelihood then the probability (or probability density)

that we observe x1, X2, ...,.X, becomes maximal. The maximum-likeli-
hood estimator has several good properties, this is why it is awidespread
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method. If, for example, 9 is the maximum-likelihood estimator of 9,
then g(9) is the maximum-likelihood estimator of g(9). It can also be
proved that under quite general conditions the maximum-likelihood
estimator 9 behaves asymptotically as a normally distributed variable

with mean9 and variance (see Paradox2. Remark(i)); thus 9
1

nl(9)
is consistent and its asymptotic variance is minimal, (i.e., it is asymptot-
ically efficient). Moreover if a sufficient estimator exists (cf. ‘Paradoxes
of Sufficiency”’), then the maximum-likelihood method gives a function
of this sufficient estimator.

5) The paradoxes

(i) Let X,, X2,..., X, be independent, uniformly distributed random
variables on the interval (9, 29). The maximum-likelihood estimator of
the unknown parameter 3 is max X;/2. Its slight modification.

2n+2

2n+1
= max X;/2

: E : pS 1
is an unbiased estimator of 9 with variance Daas On the other

n
hand, the variance of the estimator

uae (min X;+2max X;)

is asymptotically 1/5n?, hence this estimator is more efficient than the
maximum-likelihood estimator, whose asymptotic efficiency is maximal.

(ii) A very simple example can be found to illustrate that amaximum-
likelihood estimator is not always consistent. Let A be the set of rational

numbers between 0 and 1, and B a set of countably many irrational num-
bers between 0 and 1. Suppose the independent sample elements X,, Xo...
..., X, take only the values 0 and 1, and they take the value 1 with proba-
bility 9 if 9 is an element of A, and with probability 1—9 if 9 is an ele-
ment of B. Then the maximum-likelihood estimator of 2 is not consistent.
(Though there exists asomewhat more complicated consistent estimator

of 9.)
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c) The explanation of the paradoxes

(i) The statistics E=min X, and y=max X, together contain all the
information concerning 9, more precisely, given € and the joint density
function of X,, X2, ..., X, does not depend on 9 (i.e., € and n together
are sufficient). Thus it is natural that both the maximum-likelihood esti-
mator and the one which turned out to be a better estimator depends only
on & and y. Since the maximum-likelihood estimator depends only on
n, which is not sufficient by itself (it does not contain all the information
concerning 9), it is not very surprising that we could find a better estima-
tor. This does not contradict the asymptotic efficiency of maximum-
likelihood estimators since, in case of uniform distributions, the “general
conditions” that assure this efficiency do not hold.

(ii) The explanation is quite simple: the maximum-likelihood estimator
of 9 is the relative frequency

Alt
and it tends to 1— if 9 is irrational.

Though this problem is somewhat pathological, it is at least easy to
understand. (The paper of D. Basu gives a consistent estimator of 9.)
There exist other examples of non-consistent maximum-likelihood esti-
mators which are less artificial, but more complicated (cf. the papers
by Neyman—Scott, Kiefer— Wolfowitz and Ferguson).

d) Remarks

(i) There are numerous ‘‘maximum-likelihood” estimators in the statis-
tical literature where no real maxima were found (just saddle-points)
or only one of the local maxima was considered.* Though the frequent
appearance of these examples is rather interesting, they cannot be consid-
ered paradoxes, only ‘‘oversights”, even if they are published in first
rate journals by the best mathematicians.

* One of the simplest and most important example where the local maximum is
not unique is the normal distribution with unknown expectation 9 and variance
proportional to 9?.
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(ii) Examples of J. L. Hodges and others raised the paradox problem

of superefficiency. Here we only refer to the dissertation by L. Le Cam
and the paper by H. Chernoff. (An estimator of 9 is superefficient if its
distribution is asymptotically normal with mean 9 and variance not

; a 1 :
more than the asymptotically minimal 1) and strictly less for at least

nt
one value of 9.)
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9. THE PARADOX OF INTERVAL ESTIMATIONS

a) The history of the paradox

The theory of interval estimation was developed basically by R. A. Fisher
and J. Neyman between 1925 and 1935. Neyman’s confidence interval
contains the unknown parameter 9 with a prescribed probability a.
Let X,, X2, ..., X, denote the sequence of sample elements and let A=
=A(X,, Xo, 2: X54) and B=B(X,, X5,X,, 4) be’such that 7P(4—
<9<B)=«a. Then (A, B) is called the a-confidence interval for 9. If 9
denotes the unknown expectation of a normal distribution with standard
deviation o, then

P(X—20/Vn< 9 <X+20/V/n)= 0.95,

a (X—20/V'n,X+20/Vn)

is a 95% confidence interval for 9. Another type of interval estimation

considers not the sample but the unknown parameter 9 as a random

variable. In this case the interval (4, B) does not depend on chance, and

P(A<93<B)=a

means simply that 9 falls into the interval (A, B) with probability «.

E.g., if 9 denotes the unknown expected value of a normal distribution

then 9 is not determined completely by the sample mean X due to random
errors in measurement, this 9 can be considered a normally distributed

random variable with expected value X and standard deviation o/ Vn.

Hence

P(X—20//n<9 <X+20/Vn) = 0.95.
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This kind of interval estimates called fiducial intervals was introduced

by Fisher. As we can see in case of normal distribution, confidence and
fiducial intervals of expected values are formally the same only their
“philosophy” is different. It was believed for a while that these two

intervals were practically the same and the debate confidence contra
fiducial seemed to be only theoretical. (At first it was Neyman who
supported Fisher’s fiducial theory the most mainly because Fisher also
failed to apply Bayes’ theorem.) Paradoxes of practical importance have

appeared, however, rather soon. The different philosophy of Fisher and
Neyman led to different results in practical application as well. In 1959
C. Stein pointed out an extremely paradoxical case. For simplicity, he
considered confidence and fiducial intervals for which B=o or A=—co
because these kind of intervals are determined by a single value (the
other end point of the interval).

5) The paradox

Let X,, Xo, ..., X;, be independent, normally distributed random variables
with unit variance (kK=2) and denote 9%,,9,..., 9, their unknown
expected value. Let the distance of the vector 9=(9,, 9., ..., 9,) from
the origin be

9] = 793+934...4+93.
Stein proved that the confidence and fiducial intervals of |9| may differ
extremely which results in the following paradox. Let us estimate every
9, by the mean value X; of an n-sized sample. Let the distance between
the origin and the sample mean vector (Xj, Xo, ..-, X;,) be |X|=

ay ke ie ek SodbenEP(R= |9)0.5cif x is. the~ ‘rane

dom variable (confidence interval) whatever the value of the un-
known 9 is. On the other hand, if 9 is the random variable (fiducial inter-
val) then P(|9|>|X|)>0.5 for any value of the sample mean X. In

other words, the probability that the confidence interval (—~, |X|)
contains the unknown |9| is more than 50% while it has also more than
50% chance that the random |9| is contained by the (fiducial) interval
(|X|, +0). Thus, in the confidence approach, it is favourable to bet on
the inequality |X|>|9| while with the fiducial approach, it is just the

other way round.
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c) The explanation of the paradox

It is impossible to show all the discrepancies between the confidence and
fiducial approaches in connection with Stein’s problem. Here we restrict
ourselves to a solution proposed by Stein himself. If the fiducial approach
is applied not to the sample elements given by their coordinates but
(because of the rotation symmetry of the normal distribution) to the
sum of squared coordinates then fiducial intervals became equivalent to
confidence intervals (see Stein’s paper). Consequently, it is more advan-
tageous to bet on “|X| is greater than |9|”’.

d) Remarks

(i) Let us construct an interval estimation for the unknown expected
value 3 of a normal distribution with known standard deviation o, using

the a priori information that 9 is normally distributed with an expected
value of w and standard deviation of s (u and s are known). If the mean
of the n-sized sample is X, then, according to Bayes’ theorem, the a pos-
teriori distribution of 9 is also normal with the expected value

9* = p+C(X—p)

and standard deviation D, where

2nS and D?= :
ee 1/s?+ n/o? ~ 1/s?+-n/o?*

Therefore (9*—2D, 8*+2D) is a 95% interval estimate for 9, because

P(9*-2D<3<9*+2D)~0.95. The lack of a priori information means
that s=co, that is, C=1. Thus 9*=X and D?=o0?/n, which is just

the fiducial interval. Consequently, in the case of multidimensional
normal distributions, the Bayesian approach results in the same paradox

as fiducial reasoning does directly. Another paradox of this type is the

following (it comes from the Moscow statistical school). A machine

consists of m components in series connections, thus if the i-th compo-

nent works with probability p; (i=1, 2, ...,m) then the machine works

with probability p=p, -p2 ... Pm. Now taking a sample of mm,No, ..., Mm
elements, it turns out that all of them works perfectly. Using this infor-
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mation, find an interval estimate of the form

P(p > p*) =«.

Surprisingly enough, the confidence interval (i.e., the variable p*) does
not depend on m, only on

min ny= 1%

and on the corresponding probability py. At the same time, in the Bayes-

ian framework, the interval estimate for p depends on m.

(ii) Fisher (1890—1962) had begun to deal with interval estimates,
a bit earlier than Neyman (1894—1981). Fisher even accused Neyman,
who was then working in Poland, of appropriating and enlarging his
ideas. At that time he had already both personal and professional
conflicts with other outstanding statisticians. He hated K. Pearson
(1857—1936) and for this reason he did not publish after 1920 in Bio-
metrika (the leading periodical of statistics, established and edited, among
others, by Pearson). Fisher transmitted his antipathy, though lessened,
to K. Pearson’s son E. S. Pearson (1895—1980) and his friend J.Neyman.
Later, Neyman became one of the leading statisticians in the USA and
their dispute turned into an Anglo—American dispute. Fisher had
never liked the idea of reducing statistical conclusions to decisions with
loss functions. (This ‘‘American” tendency in statistics was developed
by the Hungarian Abraham Wald on the basis of Neumann’s game
theory.) The strong contrast was expressed as follows: In America (cor-
responding to Peirce’s pragmatism) it is not important what we think
but what we do. In England it is just the contrary. Fisher, though his
reasonings are not always convincing, is one of the greatest (if not the
greatest) statisticians who has ever lived. So it is strange that he was
never made professor of statistics. He did in fact become a professor at
Cambridge University in 1943, but in genetics. He also became the pres-
ident of the Royal Society between 1952 and 1954.

(iii) We are to estimate the location parameter 9, from the sample
values X,, X>,..., X,, distributed according to the exponential density
function e°-* (if x>9 and 0 otherwise). The estimator

§= 2 pCa
NMj=1
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is unbiased, its probability density function is proportional to (x—9+
+1)""te-"@-8+D) for x>9—1. Using this density, we can easily de-

termine the shortest 90% confidence interval. In the case X,=12,
X,=14, X,=16, this confidence interval is 12.1471<9<13.8264. On
the other hand, 9 is obviously less than Xf=min X;=12. Thus the
shortest 90% confidence interval lies in the region where it is impossible
for 9 to be! Jaynes emphasizes (see the reference below) that the Bayesian
solution is the proper way to determine an interval estimation. If the
prior density is constant, the posterior density of 9 will be ne™-*1)
(if 9<X;* and 0 otherwise). The shortest posterior belt that contains
100P percent of the posterior probability is thus X*—q<9<xX;, where
g=n—' log (1—P). For the above sample values 11.23<9<12.0. From
the ‘‘confidence” point of view, one can argue that $ is not a sufficient
statistic for 9 while Xf is sufficient. The shortest confidence interval
based on the sufficient statistic is the same as the Bayesian interval above.
But even if we work with Xj, it may occur that a 90% confidence interval
(—<°,f(X})) lies in the negative half-line when we know (from prior

information) that cannot be negative.
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10. THE PARADOX OF TESTING A HYPOTHESIS

a) The history of the paradox

It is very difficult to say anything definite about the first attempts to test
a Statistical hypothesis but in his monograph B. V. Gnedenko states that
in ancient China as early as 2238 BC censuses showed that the birth rate
of boys was 50%. John Arbuthnot (1667—1735), an English matemati-
cian, doctor and writer, was the first to point out (in 1710) that the hy-
pothesis of equality of the birth rate of boys and girls must be rejected,

since, according to the demographic data over an 82 year period (available
at that time), more boys than girls were born each year. If the probability

that a newborn baby is a boy was 1/2, the experience of 82 years would
be so improbable (1/2°”) that it can be considered almost impossible. So
Arbuthnot was the first who rejected a natural statistical hypothesis.

This (not mathematical) paradox aroused the interest of Laplace. In
1784 he was surprised to find that the birth rate of boys was approxi-

mately equal 22/43 inseveral different places, whereas the same ratio was
25/49 in Paris. Laplace was intrigued by such a remarkable difference,
but he shortly found a rational explanation: the total number of births

in Paris included all foundlings and the surrounding population had a
preference for abandoning infants of one sex. When Laplace eliminated
the foundlings from the total number of births, the birth rate of boys

came close to the number 22/43.
In 1734, D. Bernoulli won a prize from the French Academy for an

essay on the orbits of planets. Constructing a hypothesis test, Bernoulli
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attempted to show that the similarity of planetary orbital planes would
have been most unlikely to have occurred by chance. Using the right
hand rule, each orbit corresponds to a point on a unit sphere, and he
tested the hypothesis that these points were drawn from a uniform distri-
bution on the unit sphere. In 1812, Laplace analyzed a similar problem.
He attempted to apply statistical methods to decide which hypothesis
should be accepted: that the comets are regular members of the solar
system or that they are only “‘intruders’’. In the latter case the angles
between the orbital planes of comets and the ecliptic would be uniformly
distributed between 0 and 2/2, and this was exactly the mathematical
form of Laplace’s hypothesis. (He found that comets are not regular
members of the solar system.) The modern theory of testing statistical
hypotheses was initiated by K. Pearson, E. S. Pearson, R. A. Fisher and

J. Neymann.
Suppose we have to test the hypothesis that the probability distribu-

tion of a random variable is F. (In the problem of Laplace, F was the
uniform distribution on the interval [0, 2/2].) For this ‘“‘goodness of fit”
problem K. Pearson, H. Cramér, R. von Mises, A. N. Kolmogorov, N. V.
Smirnov and others who followed them worked out several different
tests, and it became necessary to compare their efficiency. E. S. Pearson
and J. Neyman made the first move to solve the theoretical and practical
problem of finding the best decision methods. First they introduced the
notion of alternative hypothesis, which is not necessarily the opposite
of the original, null hypothesis. For example, consider a random variable
which is normally distributed with unit variance and unknown expecta-
tion; if the null hypothesis is that “‘the expectation is —1” and the alter-
native hypothesis is that “‘the expectation is +1”, then the two hypotheses
obviously do not cover all the possibilities. In connection with these
simple hypotheses (where both the null hypothesis and the alternative
hypothesis contained a single distribution) Neyman and Pearson showed

in 1933 that there exists a most powerful test in the following sense. When
aStatistical test is performed, two kinds of errors are possible. We may
reject the null hypothesis when it is true, making a type J error (or error
of the first kind). On the other hand, we may accept the null hypothesis
when it is false, making a type IJ error (or error of the second kind). A de-

cision method (test) based on a sample of given size is called most power-
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ful if, for an arbitrary fixed probability of a type I error, the probability

of a type II error is as small as possible. (If the size of the sample is given,
the sum of the probabilities of the two types of errors cannot be made
arbitrarily small. This fact is a kind of uncertainty principle in hypothesis
testing.) Suppose, for simplicity, that both distributions (in the null
hypothesis and in the alternative hypothesis) have density functions. Then,
according to the fundamental principle of Neyman and Pearson, there
is a most powerful test of the following form. Denote by fg and f, the
density function of the sample X¥=(X,, Xo, ..., X,) under the null hy-

pothesis and the alternative hypothesis, respectively. We accept the
null hypothesis if and only if

fi(X)
So(X)

(For simplicity we suppose that the probability of fi(X)/fo(X)=c is 0.)

The theory of Neyman and Pearson became fundamental in testing hy-
potheses, but not without paradoxes. Herbert Robbins showed in 1950 that
there is a test which is in a sense more powerful than the most powerful
test of Neyman and Pearson.

< c, where c is a suitable constant.

6b) The paradox

Suppose X is a normally distributed random variable with expectation
3 and variance 1. Let the null hypothesis be 9=—1 and the alternative
hypothesis 9= +1. On the basis of a single sample element X, the most
powerful test of the null hypothesis against the alternative hypothesis
is the following: we accept it and reject the alternative hypothesis if

X=0, otherwise we reject it and accept the alternative hypothesis. In
this case the probability of both kinds of errors is approximately 16%,

since
P(X >0/9 =—1) = P(YX¥< O|/8= +)D=

= ous en ai? dy = 0.1587 «929,0.16;
y2n 0

If we apply this test in N independent cases, then for large N the expected
number of false decisions is approximately 0.16N. Since we have used
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the most powerful test in each case, one might think that the average

number of false decisions cannot be smaller than 0.16N. The following

method of Robbins shows that, paradoxically, this is not the case.

Let X be the average of the observations X,, Xo, ..., Xy. Robbins’

test is the following:

if; X<—1,..then, @y=—1 (forall. i =1,.2,4..50N,

if X >-1, then” o7=+1 forall) 7— 122.7...

and finally

if —1S3X¥+1, then 8,=-1 or 9,=+1,

depending on whether the inequality

1, 1-X
: Sih* SeeIIA

holds or not. This method is very surprising because it connects inde-

pendent problems. For large N, (e.g., for N=100), if the true ratio of

$;=+1 to 9,=—1 is 0 or 1, then Robbins’ procedure decides with

100% certainty; for a ratio 0.1 or 0.9 the probability of error (of both

types) is 7%; for a ratio 0.2 or 0.8 the probability of false decisions is

11%; for a ratio 0.3 or 0.7 it is 14% and even for the ratio 0.4 or 0.6 the

percentage of errors is still smaller than the level 16% of the most power-

ful test. Robbins’ method becomes less efficient than the most powerful

test only in the case of ratio near to 0.5.

c) The explanation of the paradox

Robbins’ paradox shows that even when we have to make decisions

about accepting or rejecting products from different factories working _

independently, the total number of false decisions will be fewer on aver-

age, if we do not make our decisions independently of each other.

Since this is essentially the same problem as Stein’s paradox on admissible

estimators of the expectation, here we only refer to its explanation in

Section 2 and to Robbins’ fundamental paper.
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d) Remark

Other paradoxes on hypothesis testing will be discussed in Sections 12
and 13 among the quickies.
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11. RENYI’S PARADOX OF INFORMATION THEORY

a) The history of the paradox

One of the main tasks of information theory is to measure the amount
of information. The pioneers of this discipline of mathematics (C. Shan-
non, N. Wiener and others) realized that the amount of information is
measurable by a scalar independent of the actual meaning and form of
information, like the volume of liquid is independent of its shape. The unit
of information is the information content of an answer “‘yes” or “‘no”’.
In binary code this information can be given by a single digit (e.g., 1
for “‘yes”’,0 for ‘‘no”’), which is called a bit (abbr. of binary digit). What
makes this abbreviation especially suitable is its meaning as a normal

word. The content of information is measured by the average amount
of binary numbers needed to express the information. If a random
variable can take only a finite or countably infinite number of values

with positive probabilities p,, po, ... then, according to Shannon’s formula,
its information content is

H = H(py,Po,».) = 2, Pilogpr* (bit)

9 Székely
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where (in this passage) log stands for logarithms with base 2. H is called
the entropy of the probability distribution p,, po, ps3,.... This is the

average length of the most economical code combinations by means
of which the outcomes of events with probabilities p,, p.,... can be
described. Another important notion of information theory is the infor-
mation gain. If the observation of a random variable (or event) changes
the probability distribution p,, p2,p3,..- tO 41,42,43,-.. then the

amount of the information gained is

Now let the unknown parameter 9 of a probability distribution be a
random variable (according to the Bayesian view of mathematical sta-
tistics). For simplicity, suppose that 9 can take only a finite or countably
infinite number of values with probabilities p,, p2, ps, .... Thus the
entropy of 9 is H(9)=A(py, po, ps...) Suppose moreover that the
random sample X=(Xj, Xo, ..., X,) can also take only finite or count-
ably infinite number of different values with positive probabilities
91>42>43, --.. Finally, let r;, denote the probability that 9 takes the jth
value (whose probability is p;) and at the same time X the kth value (whose
probability is g,). Then the amount of information concerning 9 and
obtained by observing X is

l jk

Jj
TS) SF NO( ) Pas: oo dk

A function f(X)=f(X1, Xo, ..., X,) of the sample X is called sufficient
if I(f(X), $)=1(X, 9), ie., if f(X) contains as much information con-

cerning 9 as the original sample X does. If fisnot necessarily sufficient,
the ratio I(f(X), 9)/1 (X, 9) gives the proportion of information con-

cerning 9%that can be obtained from the sample if f(X) is used instead
of the complete sample. The property that, by taking more and more

observations, we can obtain at last all the information concerning 9
can be expressed in the language of information theory as follows. If
the observations X;, X:,... are independent, identically distributed
random variables whose distribution Fy, is different for different values
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of the parameter 9, then

jim 1((%,Xe,2/019X,)s9)= H(9).

A. Rényi’s paradox discussed below comes from the application of
information theory in testing hypotheses.

6) The paradox

By observing the random variable X which is in connection with the event
A, we would like to guess whether 4 has occurred or not. If the proba-
bility of Ais P(A)=p then the content of information of the event A is
H(p, 1—p). Having observed the variable X, the amount of information
still missing is Hy=E(H(P(A|X), 1—P(A|X))), where P(A|X) stands

for the conditional probability of the event A given X. Consequently,
the content of information concerning A if X was observed is

I(X,¥) = H(p, 1—p)—Hy.

Observing X, let d(X)=1 if we decide that A has occurred and d(X)=0
in case of the complement of A, i.e., A. The probability of awrong deci-
sion (error) is

6 = pP(d(X) = 0|A)+ (1—p)P(d(X) = 1A).

It is easyto prove(e.g.,by the fundamentalresult of Neymanand Pear-
son; see II. 10.) that no decision can have less error 6 than the following

“standard decision”’:

1 if P(A|X)>P(A|X),woof0 if P(A|X) < P(A|X).

If P(A|X)=P(A|X) then let d(X)=1 with probability p and 0 with
probability 1—p. The paradox appearing here is the following. Let
Y=d,(X). In this case the information content of Y concerning A is:

I(Y, A) = H(p, 1—p)—Hy.

Y is a function of X, therefore 1(Y, A)SI(X, A). The equality holds if
and only if P(A|X) can take only two different values, i.e., generally, X

Qt
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contains more information concerning A than Y. Still, knowing X, we
cannot make a better decision concerning A than if we know only Y=
=d,(X). From this it follows that while X contains generally more in-

formation on A than Y, it is impossible to utilize this extra information.

c) The explanation of the paradox

The extra information can be utilized by observing another random var-
iable. Let, e.g., Z=X+U, where Uis the indicator variable of the event

A. This means that U=1 if A occurs and zero otherwise. Obviously,
by observing X and Z simultaneously, we get full information concerning

A that is the latent extra information in the value of X concerning A can
be made free by observing the auxiliary variable Z.

d) Remarks

Information theory is in close connection with several practical problems,
e.g., with the optimal methods of telecommunication or the foundations
of biology (see the references below).
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12. THE PARADOX OF STUDENT?’S t-TEST

a) The history of the paradox

In the classical theory of mathematical statistics the sample elements

(observations) were considered to be given in advance. One of the most
important branches of modern statistics is based on the recognition that
the sample size should not be fixed in advance; instead it should depend
on the result of earlier observations. Thus the sample size also depends
on chance. This idea of sequential sampling evolved gradually from the
results of H. F. Dodge and H. G. Romig (1929), P. C. Mahalanobis
(1940), H. Hotelling (1941) and W. Bertky (1943), but the real founder of
the sequential theory of mathematical statistics was A. Wald (1902—1950).
His sequential likelihood ratio test (1943)was a decisive discovery which
enabled (in typical cases) a 50% saving on the average number of obser-
vations (with the same probabilities of errors). No wonder, Waid’s
discovery was classified as “‘restricted”” during World War II. His funda-
mental book ‘Sequential analysis” was published only in 1947. A year
later Wald and J. Wolfowitz proved that no other method can save
more sample elements than the sequential likelihood ratio test. Paradoxes
found their way into this field, too. Here we shall discuss the paradox
noted by C. Stein, though it refers only to a two-stage decision, not a

sequential one.

b) The paradox

Let X,, X2,..., X, be a sample of independent, normally distributed

random variables with the same unknown expectation 9 and the same
unknown standard deviation o. On the basis of this sample, we want to
decide between the following null hypothesis and alternative hypothesis.
The null hypothesis states that 9=9) (where 9 is a given number),
while the alternative hypothesis states that 949 . Let

y_i< *2 . Y\2= z=pas Dee= Sea2% X)
and
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The usual way of making a decision between the two hypotheses is the
Student’s t-test. According to the f-test, the null hypothesis should be
accepted or rejected depending on whether the value of tf, is near enough
to 0 or not. G. B. Dantzig showed in 1940 that given the probability of
the type I error, the probability of the type II error depends on the un-
known standard deviation o for any decision method. Paradoxically, five
years later C. Stein proved that if the sample size n was not fixed in ad-
vance but depends on the sample elements which have already been
chosen (as in Wald’s sequential analysis), then there does exist a t-test,
where (given the probability of the type I error) the probability of the
type II error does not depend on the unknown standard deviation o
(it depends only on the difference 9—9,).

c) The explanation of the paradox

In the first step choose a sample X,, Xo, ..., where 7 is a fixed

number. The empirical sample variance is
Ny?

Si {>ree (>x).
i=1 No*i=1

1
Ny—1

Let the size n of the entire sample depend on the magnitude of s and on

a previously fixed number z, in the following way:

52n=max{[<J+,nti},
where the brackets [] denote the integer part of a real number. Choose

the positive numbers a,, a2, ..., a, such that

and
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and decide between the hypotheses on the basis of the following statistics :

a,X;—9%

——deep t+

Sa;(X;—9)
agai .

Obviously, ifs is given, the random variable ¢is normally distributed with
expectation 0 and variance

where

Vshm

no* > aj/z = o%/s?.
i=1

On the other hand, the distribution of (m)—1)s?/o* (for arbitrary o) is the
same as the distribution of the sum of squares of #)—1 independent stand-
ard normal random variables (the Ty chi-square distribution) which

is independent of o. Therefore the distribution of t is also independent
of o, so t* depends only on 9—9, and not on o.

d) Remarks

(i) The random variable tf, is not normally distributed because D* is not

a number, but a random variable. (If the value of the standard deviation

were known and we substituted this value for D*, then ¢, would have a

standard normal distribution.) This remarkable observation and the

analysis of the random variable t, was published in 1908 by Student,

alias William D. Gosset. (He worked for the Guinness brewery in Dublin

from 1899 and his boss insisted that Gosset should write under a pseudo-

nym.) For a long time nobody recognized the importance of Student’s

paper. (According to Student, even as late as 1922 R. A. Fisher was the

only person who ever applied the ¢ distribution; in fact it was Fisher who

denoted Student’s distribution by ¢ for the first in his book published in

1925. Student himself used the letter z to denote, not exactly ¢,, but

(n—1)t,.)
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(ii) The optimal stopping of sampling sequences in sequential analysis
was the root of the modern theory of optimal stopping of different pro-

cesses. If we consider sampling as a process, we connect mathematical
statistics and the theory of stochastic processes, which will be discussed
in the following chapter. This connection proved an advantage for both
areas. Nowadays Wald’s fundamental theorems in sequential analysis

are special cases of the general theory of stopped stochastic processes
(see the book by Shirjaev).
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13. QUICKIES

a) The paradox of the typical and average

The notion of average, e.g., the average salary is often used as asynonym
of typical. As a matter of fact, if there are only a few extremely rich and
a great many poor families in a certain country having correspondingly
enormous or small incomes then the arithmetical means of their incomes
is not at all typical. The median of incomes, e.g., gives amuch more re-
alistic picture. (The median means that just the same number of people
have incomes larger than the median as smaller.) Besides average salary
there are other misleading averages. One of these is the ‘average man”

(Uhomme moyen). It is no wonder that the Belgian L. A. J. Quételet’s
study on this subject became the source of stormy debates. The worst
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about the “average man” is not his greyness but the discrepancies that

arise. E.g., the average height does not correspond to the average weight,

etc. For this reason alone we have to doubt the truth of the words of
J. Reynolds (the first president of the Royal College of Fine Arts) when

he said that the source of beauty is the average.

(Ref.: Quételet, L. A. J., Essai de Physique sociale, (1835); L’homme moyen, Phy-
sique Sociale, Vol. 2, Bruxelles, 1869.)

In spite of its inconsistencies, Quételet’s book of 1835 is considered
a milestone if not the starting point in the quantitative analysis of human
social properties. F. Galton, K. Pearson and F. Edgeworth all appreciated
Quételet as the genius pioneer of regression type thoughts. It was due
to his book that Galton began his scientific research. Quételet, however,
had other scientific merits, too. In 1820 he founded the Royal Belgian
Observatory and became its first director. He was an excellent organizer
too: the Statistical Society in London was set up at his suggestion in
1834, and it was also he who suggested that the first International Con-
gress of Statistics should be convened in Brussels in 1853.)

6) The paradox of estimation

The square of an estimate is generally not the same as the estimate of the

square. If, e.g., a parameter is estimated by X, that is, the mean of the

observed values X,, X2, ..., X, then the obvious estimate of the square

parameter is X*, which generally differs from the mean of the square

of the observed values. The same is true if the square is replaced by any

nonlinear function.

(Ref.: Carnap, R., Logical Foundation of Probability, Routledge and Kegan Paul Ltd.

Broadway House, London, 1950.)

c) The paradox of accurate measurement

Our task is, e.g., to determine the length of two different rods by two

measurements. The instrument we may use measures length with random

error whose standard deviation is o. Paradoxically, the best method is
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not measuring the rods one by one. The standard deviation of the result

will be less if firstly the total length (7) is measured by putting the rods
end to end and then side by side and so measuring the difference of
their length (D). The approximate length of the rods is

Dd: and Deady respectively.

2 2

The standard deviation of these lengths is o/V¥2 which is really less

than o.

(Ref.: Hotelling, H., “Some improvements in weighing and other experimental
techniques”, Annals of Math. Statist., 15, 297—306, (1944).)

d) The paradoxical estimation of probability

The usual estimation of an unknown probability is the relative frequency.
For example, if we toss a coin a hundred times and obtain tails 47

times then the probability of tossing tails is estimated at 47/100. However,
if we toss a more or less fair coin 10 times but do not obtain any tails,
it is unreasonable to consider the probability of tails to be 0. If we have

some a priori information (e.g., the coin is more or less fair) then
estimating by the relative frequency is generally not the best method. Our
a priori information can be well expressed by the beta distribution de-

pending on two parameters a and b. (The density function of the beta
distributions is 0 outside the interval (0,1) and proportional to x*~?

(1—x)’-? on (0, 1); (a>0, b>0.) The expected value and the variance of
the beta distribution is

m= g and qin aieCAiaretek
~atb ~ (a+by(a+b+4+1)’

respectively.

Thus solving this system of equations, our a priori information concerning

m and d can be expressed by a and b (e.g., if the coin is fair then m=1/2,
thus a=b). If the a priori distribution is beta with parameters (a, b)

then, by Bayes’ theorem, the a posteriori distribution will be of beta type,

too. (This property makes the beta distribution widely applicable.)
If an event with unknown probability occurs k times out of n experiments
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then the parameter of the a posteriori beta distribution will be (a+k,

b+n—k), thus the a posteriori expected value is

Seek
~ a+tb+n’

which contains more information and is a better estimation of the

unknown probability than the relative frequency k/n. Of course if n
is large enough then M hardly differs from the relative frequency, but,

e.g., in case n=10, k=0 and a=b=100, we get

M=70 ~ 0.48,

whereas the relative frequency is 0, which is absolute nonsense.

(Ref.: Good, I. J., The Estimation of Probability, MIT Press, Cambridge, 1965.)

e) The more the data the worse the conclusions

Quite obviously, more data enables us to calculate better results. The

following paradox, however, seems to show just the contrary. Let X,, X2,

and X; denote independent random variables and suppose that the dis-

tributions of X, and X, are the same: both X, and X, are equal either to

0 or to 2 with the same probability, hence both have the same expected

value, namely 1. Let further X; be equal either to 1 or to 2.5 with equal

probability, so its expected value is 1.75. All this information is unknown

to a mathematician who takes samples from these distributions in order

to select the one with the greatest expected value. The most obvious

choice is the distribution whose sample mean is the greatest. Take first

a sample of a single element from every distribution. The probability

of the correct selection is then

P(X, <=X3 and X, <=Xs) —

= P(X, = 2.5) +P(X; = 1)P(X, = 0). P(X, =0) = 2.
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Now what happens if one of the sample sizes (e.g., that of X3) is increased
to 2 (the others remain unchanged)? The probability of the correct

selection is then:

POXXsandXo<XJ=_%
where X; is the arithmetical mean of the two elements of the sample. Thus

the probability of the correct selection has decreased from more than

50% to less than 50%.

(Ref.: Chius, W. K., Lam, K., The American Statistician, 1975.)

F. Y. Edgeworth’s famous paradox (1883) concerns a similar problem:
if X, and X, are independent random variables with the same density
function f(x—9) symmetrical to 9 then it could easily happen that X,
is closer to 8than X=(X,+X,)/2 in the sense that

P(\X,—9| = e) > P(|X—8| S 8)

for any positive ¢. This is the case, e.g., when

2 1
se ECE

because the density function of X; is greater, at the point 9, than that of
6

(Ref.: Stigler, S. M., ““An Edgeworth curiosum’”, Annals of Statist. 8, 931—934,
(1980).)

I) The paradox of equality of expected values

Let the expected values of three normal random variables with the same

variance be m,, m, and mg. It can happen that, applying, e.g., Student’s
t-test, we accept the hypotheses m,=m, and m,=m, (at a certain con-
fidence level) but reject m,=m3! (The problem of equality of expected
values is tested on the basis of two n-sized samples by the statistic

X—Y
Sa 5 belies
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where X and Y are the sample means and D* is the empirical standard

deviation. The statistic t has a Student’s distribution with the parameter
2n—2.) This paradox was the starting point of many researches on simul-
taneous testing (analysis of variance, etc.).

(Ref.: Hodges, J. L., Lehmann, E. L., “The efficiency of some nonparametric com-

petitors of the t-est”, Annals of Math. Statist., 27, 324—335, (1956).

Scheffé, H., The Analysis of Variance, Wiley, New York, 1959.)

g) A paradoxical estimation for the expectation of a normal distribution

We wish to estimate the unknown expected value of a (one-dimensional)
normal distribution with unit standard deviation from an n-sized sample.
It is known that the arithmetical mean X of the sample is an estimator
of many favourable properties. It is, e.g., unbiased, has minimal variance,
admissible, and minimax under the quadratic loss function. In spite of
these properties, if our aim is only to give as close estimator for 9 as
possible with given probability then there exists a better estimator 9,

Le:

A 1P(\9-9| < |X-9) >>

for any possible 9. This type of estimator is the following

1
2Vn

9=xX- min(VnX,(—VnX))

if X=O and

= ce min(YnX,6(—2X)

if X=0, where @ denotes the distribution function of the standard

normal distribution.
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h) A paradox on testing normality

We want to test whether a given sample X,, X2, ..., X, may or may not
come from a distribution with continuous distributon function F(X).

et

1F,n(x) ee Ds 1
N i:X,<x

denote the empirical (cumulative) distribution function of the sample.
According to Kolmogorov’s theorem, if the hypothesis is true then

jimP(Vnsup|F,(x)—F(x)|< z)=

= F Crile =K(2).
j=—©

Using this theorem, it is easy to construct a test with confidence level «.
(if Ynsup |F,(x)—F(x)| exceeds a critical value z) for which K(z))=a

then the hypothesis will be rejected.) If the normality of a probability

distribution is to be tested, then first the expected value and the standard

deviation of the hypothetical normal distribution should be estimated
from the sample by the usual X and D*. Secondly, the above Kolmogorov

test should be applied for a normal distribution F(x) with the expected

value X and the standard deviation D*. Then we might think that if n
is large enough the substitution of the unknown parameters by X and

D* does not cause any essential difference. The difference is, however,

significant. E.g., at a95% confidence level the critical value z) in Kolmo-
gorov’s test is 1.36, while a precise analysis would show that the correct

critical value is 0.9. The explanation of this paradox is rather simple.

Due to substitutions, F(x) and the empirical F(x) have come closer to

each other, so it is advisable to choose a smaller critical value.

(Ref.: Durbin, S., “Some methods of constructing exact tests”, Biometrika, 48,
41—45, (1961).

Kac, M., Kiefer, J., Wofrowitz, J., “On tests of normality and other tests of goodness

of fit based on distance methods”, Annals of Math. Statist., 26, 189—211,

(1955).

Sarkadi, K., “On testing for normality”, Proc. 5th Berkeley Symp. on Math. Statist.
and Prob., 1. 373—387, 1967.)
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1) A paradox of linear regression

Suppose that a random quantity X can only be measured with an error

é having an expected value of 0. In other words, the result of the measure-
ment Y=X-+e is a very simple linear regression on X. Is there a “‘better
estimator” for X than the measured Y? Surprisingly, in some special
cases the answer is affirmative. At least, there exists an estimator X for
which E(X—X)? is less than E(Y—X)?=Ee®. Suppose, e.g., that X and

é are uncorrelated and the regression function of X on Y is also linear.
Then

_ De) D*(X)¥= pay E+ DY)

is a better estimator than Y. (In the extreme case of D%(e)=0 we get

X=Y.)

Mg

J) Sethuraman’s paradox

There exists statistical functions A and B such that the unbiased estima-
tor of the unknown parameter 9, based on A have smaller variance than
the estimator based on B (whatever the true value of 9); on the other

hand, when testing the null hypothesis 9=9y (e.g., against the alternative

hypothesis 9>9)), a test based on the function A is not necessarily
better than a test based on B; the latter can be better locally (in a neigh-

bourhood of the null hypothesis). If, for example, the sample elements

X,, Xo, ..., X, are uniformly distributed on the interval (9; 29), the maxi-

mum likelihood estimator of 9 is

U=max(Ki,Xo,oregX,)s
and a slight modification leads to the unbiased estimator

22
weer et Pom:

The following estimator A is also unbiased but with smaller variance.

a, ead
~ 5n+4 (4U+V), where V =min(X,, Xp, ..., X;).
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To test the hypothesis 9=9,, however, the method based on B is locally

more powerful.

(Ref.: Sethuraman, J., “Conflicting criteria of ‘goodness’of statistics”, Sankhya,
23, 187—190,(1961).)

k) A paradox on minimax estimation

The notion of minimax estimation was introduced in Remark (ii) of the
Paradox I. 12. Minimax estimations usually suit common sense. The
following example of H. Rubin, however, shows the contrary. The only
minimax estimator of the unknown probability p40 is the identically
0 estimator if the loss function is L(p, c)=min ((p—c)*/p?; 2). So, no

matter what the sample was it is reasonable to estimate the unknown
parameter by 0 (a value which was ruled out in advance among the
possible values of p).

Remark: If the loss function is L(p, c)=(p—c)?, the minimax estima-
tor is

n“+ y S
* — 2

n+Vn

where v is the sample size and x is the frequency of the event with un-
known probability.

1) Robbins’ paradox

It is well-known that the “‘best” estimator of the parameter of a Poisson
distribution on the basis of a single observation X is just X. (This is a
minimum variance unbiased, maximum likelihood estimator.) But how

can we estimate the parameters 9,, 92, ..., 9, of k independent Poisson
distributions on the basis of the corresponding observations X,, Xp, ...
weyX;, if we want

E(X@-9)")
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to be minimal? Is there a better estimator than §,=X,? It was H.
Robbins who first pointed out that, though the k Poisson distributions

are independent, it is still possible to find better estimators which take
into account not only the observations of ‘‘their own” (i.e., correspond-
ing), but also of the others. According to Robbins, if k is large and N(X)
denotes the number of observations which are equal to X, then the esti-
mator 9,=(X,+1)N(X,+1)/N(X,) is better than §,=X,. The essence

of the paradox is the following: it is possible that observations which
have nothing to do with a parameter can influence its good estimations
(cf. Paradox II. 2. (ii)).

(Ref.: Robbins, H., ‘“‘Anempirical Bayes’ approach to statistics”, Proc. 3rd Berkeley

Symp. on Math. Statist. and Prob. 1, 1S7—164, 1956.)

m) A Bayes model paradox

Let the density function /,(x) of a random variable X be the mixture of
two positive density functions fo(x) and f;(x):

Sy(x) = Po(x)+U—p)A@), where 0Sp=1.

The value of p is unknown and we hope that we can determine it as pre-
cisely as desired if n is large enough, on the basis of the independent ob-
servations X;, X2, ..., X, (the distributions of X,’s and X are the same).
We wish to solve the problem using Bayes’ theorem: we choose a number
Po, X<pPox<!1,and assume that the a priori density of X is pofo(x) + —
—Po)f(x). Then the a posteriori density of X (having observed the sample
X,, Xo, .-+>Xp) iS: Pyfo(x) +(1 --p,) f(x), where

ee Te ARG,

Lp; 1—poi=1fi (X)):

The sample elements would really determine the value of p as precisely

as we wish if

Pn P% lity 1).ee fee oo (with probability 1)

10 Székely
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This equation, however, does not always hold; if, e.g., the expectation of

So(X)
fi(X)

is 0, then by the Chung—Fuchs theorem (cf. III. 7. b.)

log

lim sup—2"— =< and lim inf —"- =0,
m--oo t— n "M-co i in

therefore

lps

does not even exist in this case. The paradox vanishes if instead of
(Po, 1—po)we choose ana priori distribution which has a positive density
function on the whole interval 0<p<1. This model is more advan-
tageous since it takes the actual f, into consideration with positive density.
(Ref. : Berk, R. H., “Limiting behaviour of the posterior distributions when
the model is incorrect”, Annals of Math. Statist., 37, 51—S8, (1966).)

n) A paradox of confidence intervals

Let X,, X2, X3,... be normally distributed random variables with a
common expectation m and unit variance, and let S$,denote the following

sum:
= 19petsRLS a

The probability that for any fixed n

S,—-2y~n S,+2)n
hl = a <x

n n

is approximately 95%, whereas the probability that the inequalities hold
for every n is 0. The latter probability remains 0 even if we substitute an
arbitrary large number for 2. (cf. Robbins, H., “Statistical methods
related to the law of the iterated logarithm”, Annals of Math. Statist., 41,
1397—1409, (1970).)
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o) A paradox of testing independence; is an effective medicine effective?

The three tables below indicate the effect of a certain kind of medicine

when it was taken only by men, only by women, and by the two sexes
together (combined results). The tables show that the recovery-rates are
better after medicinal treatment both among men and women. (The

MEN

After medical

treatment

Without medical

treatment

Recovered

Not recovered

WOMEN

After medical

treatment

Without medical

treatment

Recovered

Not recovered

COMBINED

After medical

treatment

Without medical

treatment

Recovered

Not recovered

Figure 11,

10*
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significant difference can be shown statistically by independence tests.)

On the other hand, the table of combined results indicates, surprisingly,
that the rate of recovery is better among those people who did not take
the medicine. So the medicine which proved to be effective both among
men and women gave a negative result when a mixed group of men and

women were treated with it. Similarly, a newly discovered medicine may
be found to be effective in each of ten different hospitals, but the com-

bined list of experiments shows the medicine to be worthless or of negative
effect. (Ref.: Pflug, G.: ‘““Paradoxien der Wahrscheinlichkeitsrechnung”,

in: Stochastik im Schulunterricht, Wien, Teubner, 155—163, 1981.)

Pp) Paradox of computer statistics

The face of statistics has been changed by computers since the 1950's.
Without computers scientists were forced to use oversimplified models
even if these models were unrealistic. In the last thirty years, however,

any Statistical decision that a computer can calculate in a relatively
short period has become ‘‘easy”. Thus many ‘“‘stable” (‘‘robust”) and

multivariate methods with an enormous quantity of operations entered
the practice of everyday statistics. At the same time statistics has become,

at least partly, an empirical science: computers can generate millions
of data in a few minutes and using them we can ‘“‘test”most new methods.

Many “empirical theorems” were put into practice without firm theoret-
ical basis. On the other hand, the theory of robust statistics (see, e.g.,

Huber, P. J., Robust Statistics, Wiley, New York, 1981) gives the theo-
retical background for many empirical ‘‘dirty tricks” in the practice of

statistics. For the controversies and paradoxes of this new period we
only refer to the following outstanding papers.

Efron, B., “Bootstrap methods: another look at the jackknife”, Annals of Statist., 6.
1—26, (1979).

Efron, B., “Computers and the theory of statistics: Thinking the unthinkable”, SIAM

Review, 1979 Okt.
Hampel, F. R., “Robust estimation: A condensed partial survey”, Zeitsch, Wahrsch,

theorie vrw. Geb., 27, 87—104, (1973),

Miller, R. G., “The jackknife-a review”, Biometrika, 61, 1—15, (1974).

Tukey, J. W., “The future of data analysis”, Annals of Math. Statist., 33, 1—67,
(1962).
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Paradoxes of random processes

“But next in order I will describe in

what ways that assemblage of matter

which you see has established earth and

sky and the ocean deeps, and the courses

of sun and moon. For certainly it was

no design of the first-beginnings that

led them to place themselves each in its

own order with keen intelligence, nor

assuredly did they make any bargain

what motions each should produce; but

because many first-beginnings of things

meet in all manner of ways, and to try

all combinations, whatsoever they could
produce by coming together, for this

reason it comes to pass, that being
spread abroad through a vast time, by

attempting every sort of combination

and motion, at length those come
together which being suddenly brought

together often become the beginnings

of great things, of sea and sky and the
generation of living creatures.”

in many ways struck with blows and

carried along by their own weight

from infinite time unto this present,

have been accustomed to move and to

(Lucretius, De Rerum Natura,

Book V, 416—431, Trans, W.H.D.

Rouse)

The first remarkable results in the theory of random processes—or sto-

chastic processes to use a term of Greek origin—arose only in the last

century. In the 17th and 18th centuries the chief tendency in investiga-

tion was to examine deterministic processes—due especially to the succes-

ses of classical mechanics. The ‘‘mechanical deterministic” aspect of

science, which identified chance with unimportance and aimed to elimi-

nate chance from basic sciences if possible, also evolved at that time.

In the second half of the last century, however, the mathematics of ran-

dom processes gained ground gradually in every fundamental! branch of

science, also in physics through statistical physics, and played an essen-

tial part in 20th century quantum physics. As the profundity of scientific

cognition increased, the indispensability of stochastic processes became

more and more evident.
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1. THE PARADOX OF BRANCHING PROCESSES

a) The history of the paradox

In the first half of the previous century an interesting phenomenon was
noticed, namely the gradual extinction of several famous common and
aristocratic family names. This problem was studied mathematically by

I. J. Bienaymé in 1845 and de Condolle in 1873. In 1874 Galton and
Watson published a paper of fundamental importance on this subject.

The branching chain of family names became the first example of the ran-
dom branching process. This type of process appeared in chemistry,

physics, and in several other areas. E.g., in nuclear physics the process
of neutron multiplying or chain reactions can be modelled as branching

processes. Neutron generations, however, follow each other much more
often than human generations, but in both cases the main question is the
same: under what conditions will the process die out (the family name

become extinct) or increase to infinity (the bomb blow up). The notion
of branching process was coined by A. N. Kolmogorov and N. A. Dmitriev
in 1947,

b) The paradox

Let Po, P;, Pz, -.. denote the probability that an adult man has 0, 1, 2, ...
sons. Calculate the probability q that after some generations there

remain no male offspring (extinction). Let the generating function of the
probability distribution po, p;, P2, ... be defined by

g(z) = De
k=0

where |z|=1. Denote the similar generating function in the nth gen-
eration by g,(z). (g:(z)=g(z).) Then, one can easily see that g,4:(z)=
=g(g,(z)), i.e., the generating function can be obtained by successive
function iterations of g(x). The probability that there remain no male
offspring in the nth generation is:

In = &,(0).
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Since g, is a monotone increasing sequence limg,=q exists and so
4n+1=8(qn) implies

q = g(q)-

Consequently, the probability g can be calculated from this equation.
Since g=1 is always a root of the equation, Watson supposed (wrongly)
that the probability of extinction is always 1 and therefore is unavoidable.

Though Watson’s result is completely unbelievable, it was not until
the 1920s that R. A. Fisher, J. B. Haldane, J. F. Steffensen and others
showed that the equation has another root, too, which is less than 1
provided that the average number of the sons:to be born:

BumegaPt
is greater than 1. In this case the smaller root gives the actual probability
of extinction. On the other hand, it is no wonder that in the case when m
is less than 1, the probability of extinction is 1. Aparadox may only arise
incase m=1. Supposing that every man has just one son on the average
(m=1), the probability of extinction is still 1 (except the degenerate
case p,=1). Therefore, in spite of the fact that the average number of
male offspring remains unchanged over generations (it is always 1) the
extinction is unavoidable (more precisely its probability is 1), though one
can show that the expected time passing till the extinction is infinite.

c) The explanation of the paradox

The equations

q=limq,=1 and m=1

do not contradict each other. The first equation means that the proba-
bility of a male baby is nearly 0 in the nth generation, but if there are

some, then their number may be large, so the average can easily be 1.
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d) Remarks

The Galton—Watson model is generally used in the special form when
p,=ab*—} (k=1, 2, ...) and po=1—p,—p.—... where a and b are posi-

tive numbers and ais less than 1 —b. In this case g,,(z) is a simple quotient
of linear functions. In 1931 A. J. Lotka calculated the above values
concerning the USA. He obtained a=0.2126, b=0.5893 and po=
=0.4825, so the probability of the extinction of a male line was g=
=0.819. Nice old family names are gradually becoming extinct and being
replaced by more common dull ones like Smith etc. Even the use of
combination of two or three names is not always enough to avoid finding
identical names, even in one office. The following genetical type naming
would be challenging, fair and symmetrical between the two sexes.
Each child would inherit two family names, one from the mother and
one from the father. Since both parents would also have two family
names, they could select their less common (or more attractive) names
for the child. Besides these two family names they would, of course,
have the first name (or names) as well. Due to this method, our world
of names would become more colourful and characteristic.
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2. MARKOV CHAINS AND A PHYSICAL PARADOX

a) The history of the paradox

The concept of Markov chains is due to A. A. Markov, a Russian mathe-
matician, whose first paper on this topic was published in The Notes
of the Imperial Academy of Sciences of St. Petersburg in 1907. He

applied this new concept to the study of the statistical behaviour of the
letters in Onegin, the famous poem by Pushkin. The notion ‘Markov

chain” is the most important mathematical notion that originated (at

least partly) from linguistics. A sequence (chain) of discrete-valued

random variables X,, Xo, ..., X;, ... is called a Markov chain (by defi-
nition), if for any initial time ¢ the future (after-t) “‘behaviour” of the

sequence depends on the past (before-t) ‘“‘behaviour” only through the
value X,, i.e.,

P(Xs41 = byalM = i, X-1 = a, -) =

= P(Xi41 = i1411X%,= 3)

holds for every possible values i,,,,i,,... of the random variables,
that is, for every possible state. This type of sequence occurs in many
fields, e.g., in classical physics, where the future development of a sys-
tem is completely determined by its present state (e.g., by the instanta-
neous velocity and position), independently of the way in which the
present state has developed. If {X,} is aMarkov chain and the conditional
probabilities P(X,,,=i,+:|X,=i,), the transition probabilities, are in-
dependent of t, then the Markov chain is called homogeneous. The tran-
sition probabilities of homogeneous Markov chains can be arranged in

a matrix A=(p,,;), where

Pi = P(Xi41 = j|X, = i).

The nth power of this transition matrix is A"=(p%?), where p=

= P(X,,,=/|X,=i). This relation allows us to utilize matrix-theory in
the theory of Markov chains. Nowadays Markov chains (and their
generalization for continuous time parameter and continuous phase
space, the Markov processes) are much more important for natural and
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technical sciences than for linguistics, where they were originally ap-
plied.

The problem of reversibility-irreversibility is an interesting paradox
of classical mechanics and thermodynamics and Markov chains are
efficient means of studying it. The essence of the problem is that the
laws of classical mechanics are reversible, so they cannot explain why a
cube of sugar dissolves in coffee and why we have never observed the
reverse process. The second law of thermodynamics, however, (which
was first formulated by L. S. Carnot) expresses the irreversibility of our
world. (The first law of thermodynamics expresses the principle of con-
servation of energy.) Forty years later R. Clausius introduced the mathe-
matical form of entropy, which is fundamental in the theory of irrever-
sible processes. (According to Clausius, [Memoir read at the Philos.
Soc. Ziirich, April 24. Pogg. Ann. 125:353, 1865] the word “‘entropy”’
comes from the Greek tgozy, meaning ‘‘a turning”, or “‘a turning point’’.
Clausius also states that he added the “‘en” only to make the word
sound like “‘energy’’, though the word evtgozy itself has ameaning, name-
ly “‘to turn one’s head aside”.) By means of entropy the second law
of thermodynamics can be formulated as follows : in the case of an isolated
system the entropy can never decrease, usually it tends to increase. This
law was aimed to verify by L. Boltzmann using the kinematics of atoms
and molecules. (At that time Boltzmann’s idea was not natural at all
since many physicists doubted even the existence of atoms, e.g., M. Fa-
raday, E. Mach or W. F. Ostwald, who was the founder of energetics.)
Boltzmann was strongly influenced by Maxwell’s work on the dynamic
theory of gases. In the 1870s Boltzmann found the connection between
entropy and thermodynamical probability (cf. Remark (i)). He showed

that irreversibility does not contradict Newton’s reversible mechanics:
applying the latter to a large number of particles it necessarily leads

to irreversibility, since systems consisting of millions of molecules tend
toward a state of greater thermodynamical probability. This is the
“final reason” for disintegration, amortization, aging (and moral or
historical decay as some say).

In 1907 P. and T. Ehrenfest created a model which elucidates the par-
adox of reversibility-irreversibility by the help of Markov chains.
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b) The paradox

Suppose we have a system of N molecules; each of them can be in one
of two possible energy levels (states). If a molecule is in the first state,

in one step it will get into the other state with probability p (and stays
in the first one with probability 1—p); if it is in the second state, (in

one step) it moves to the first one with probability g (and remains in the

second state with probability 1—q). As each molecule can ‘“‘choose”
from two possible levels, the system of N molecules can be in 2” different
states. If we consider the molecules indistinguishable, the system can be
only in N+1 different states: the state of the system is determined by

the number of molecules on the first level. Let X, denote the (random)

number of molecules being in the first state at time t. Then X,, X2, X3, ...
is obviously a Markov chain, which describes the development of the
system. How can this model reconcile the reversibility of classical
mechanics (symmetry in time) and the irreversibility of thermodynam-

ics (asymmetry in time)?

c) The explanation of the paradox

It can be shown that if |1—p—gq|<1, then the limit of the generating
function of the distribution P(X,=/j, X,4,=) is

limE(zXtwxers)=

% SORBED Me ee)
(p+q) :

and this functionis symmetricin z and w, thereforein equilibrium:

P(X,= J, X45= k) = P(X,= k, Xres= j).

This equation expresses the symmetry between the past and future of
the process (reversibility), whereas the following relation expresses irre-

versibility:

P(X,45 = k|X, = 7) # P(Xi44. = NX = &).
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If, for example, p=q=1/2, then

tim PO, = 4) = ())2-*

so the probability that the Markov chain approaches N/2 is greater than

the probability that it moves away from N/2.

d) Remarks

(i) Let f(v, ft)denote the distribution of the random velocities of gas mol-

ecules at time ¢ (for simplicity we assume that the distribution is inde-
pendent of the position of the gas molecules). Boltzmann formulated
his theorem in the following way in 1872: the derivative of the function

HY) = ff, ) log. fv, dv, a> 1,

cannot be positive, that is, Hcannot increase as t increases. (— H corre-
sponds to thermodynamical entropy, which, accordingly, may not decrease
—it usually increases.) In 1876. J. Loschmidt, an Austrian physicist,
raised the question of reversibility-irreversibility in the following form:
the laws of classical physics are invariant under the transformation
t>-—t (they contain second derivates with respect to ¢), whereas the
transformation t+-—tf turns Boltzmann’s theory to the opposite:
H(— 1?)can never decrease. Through the analysis of this paradox it turned
out that for the proof of Boltzmann’s theorem the perfect homogeneity
of molecular collisions has to be assumed, which is an exaggerated
idealization. Boltzmann’s theorem is valid only statistically: the proba-
bility that H(t) increases as time passes is very small.

Another paradox followed from the theorem of H. Poincaré. He

showed that considering a closed and finite gas system, the phase point,
which describes the state of this system (and moves on an equipotential

surface of the multidimensional Euclidean space) returns to an arbitrary

small neighbourhood of its initial position within finite time. But this—

as E. Zermelo showed in 1896—contradicts Boltzmann’s theorem: if a

process is irreversible (its entropy increases), its phase point cannot be

recurrent. The statistical formulation of Boltzmann’s theorem, however,
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solves this problem, too: a sequence of events with very small probability

may lead to the return of the phase point, but, according to Boltz.nann,
it takes 10°” years, so this event is practically unobservable, whereas

irreversibility can easily be observed.

The Loschmidt—Zermelo paradoxes show that probability theory is a
crucially important part of the foundation of molecular physics. Hun-

garian physicists also gained distinction in this foundation. For example,
in 1926 Leo Szilard buried the Maxwell demon which gleamed with the

possibility of a ‘‘perpetual motion” machine. (Maxwell stated that if the
increase of entropy is only statistical, ademon who can track the motion

of every molecule, could make a perpetual motion machine. But, accord-
ing to Szilard, such a ‘‘well-informed” demon requires great entropy,

therefore a perpetual motion machine directed by the Maxwell-demon

cannot be realized.)
(ii) The statistical analysis of the text of Onegin was not an isolated

research at all. At the end of the last century it became fashionable
to examine the frequency distribution of words in different texts (to help
language teaching and shorthand writing). The first frequency dictionary
was published in 1898 by F. W. Kaedig (Haufigkeitsw6rterbuch der
Deutschen Sprache), and it was based on a text consisting of 11 million
words. The application of mathematical statistics in linguistics, however,
has become a separate science owing especially to the American scientist
G. K. Zipf (1902—1950). His book ‘‘Human behavior and the Principle
of Least Effort” expounds a very complex idea.
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3. THE PARADOX OF BROWNIAN MOTION

a) The history of the paradox

While performing microscopic experiments Robert Brown, the English
botanist (1773—1858), discovered not only the nucleus of the cell but
also another interesting though at that time unexplainable phenomenon:
the random motion of colloid-size particles, known today as Brownian
motion. Since he made his first experiments (June—August 1827) with
pollen, it was supposed that the motion was biological. Brown’s great
merit was the experimental proof of the sole physical nature of the phe-
nomenon. At that time microphysics was not developed enough to be
able to explain the phenomenon. No wonder that even in 1879 C. W.
Ndgeli, a Swiss—German biologist, refused to believe that the Brownian
motion was due to the thermal diffusion of molecules. On the other hand,
J. H. Poincaré claimed in a lecture (Paris, 1904) that when big particles
about the size of 0.1 mm are hit very many times from all directions by
moving atoms, they do not move because the random collisions neutral-
ize each other, according to the laws of large numbers; smaller particles,
however, do not get pushed enough to neutralize each other so the par-
ticles move in a zigzag path. The quantitative explanation was given

independently by Einstein and the Polish Smoluchowski in 1905. According
to Einstein’s theorem, the mean path of the particles is proportional to
the square root of the time t. Consequently, their mean speed is propor-

tional to 1/Vt. From this it follows that the instantaneous speed of the
particles would be infinite in any moment showing that there are prob-
lems in defining the instantaneous speed for the Brownian motion.
A deeper mathematical analysis was required to solve this problem. It
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was not performed until more than a decade later by N. Wiener. To

acknowledge his merits in this field, the mathematical model of Brownian

motion is called after him: the Wiener process. The Wiener process is a

motion with continuous path (its realizations are continuous) which is

nowhere differentiable with probability 1. This means that the instan-

taneous speed cannot be defined anywhere.

Functions which are everywhere continuous but nowhere differentiable
were already known by mathematicians long before Wiener. Such patho-
logical functions where, however, considered only curiosities. In 1806
A, M. Ampére, the famous physicist, even wanted to show that, apart
from some isolated points, every continuous function is differentiable.

Due to researches mainly on Fourier series, the notion of function was
made much more general by B. Bolzano (1834), G. F. B. Riemann (1854)
and K. Weierstrass (1872). Weierstrass’ continuous but nowhere differ-
entiable function was firstly published by P. Du. Bois-Reymond in
1875. Most outstanding mathematicians were not too enthusiastic
about this invention. According to Poincaré (Science et Méthode, 1909),
‘In the old days when people invented a new function they had some
useful purpose in mind: now they invent them deliberately just to
invalidate our ancestors’ reasoning, and that is all they are ever going
to get out of them.” Ch. Hermite wrote to J. J. Stieltjes in a similar way.
‘With horror and dread do I turn away from this miserable plague:
functions that have no derivatives.” The Wiener process was an obvious
refutation of the above accusations, because nobody could say that the
Brownian motion was invented only to create a pathological counterexam-
ple. 20th century researches also made it clear that among continuous
functions just the undifferentiable ones are typical, in a sense, they are
in overwhelming majority. (Oxtoby, L. J. C., Measure and Category,
Springer, New York, 1971). In practice, however, most continuous func-
tions are differentiable. It is just like the case of irrational numbers.
In spite of their majority among real numbers (a random number is
irrational with probability 1), in practice we generally use rational numbers.
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b) The paradox

The trajectories (realizations) of Brownian motion are rather irregular
(ie., they are nowhere differentiable). In the usual sense we consider
any irregular curve, such as the trajectory of planar Brownian motion,
one dimensional. At the same time it can be shown that the trajectory
of a planar Brownian motion actually fills the whole plane (each point
of the plane is approached with any given accuracy with probability 1).
Therefore the trajectories can also be considered as two-dimensional
curves. Which conception is preferable?

c) The explanation of the paradox

The notion of dimension was used in the common, every day sense even

at the beginning of this century. Curves, surfaces, and bodies were
considered one, two, and three-dimensional, respectively. Generally,
a figure is said to be k-dimensional if k parameters (coordinates) are

required to ‘characterize’ the points of it. Using Poincaré’s intuitive
ideas L. E. J. Brouwer defined the topological dimension in 1913. Later,

in 1922, K.Menger and P. S. Uryson, working independently, also succeed-
ed in defining it. (For more details see the book by Hurewitz and

Wallman.) By the definition of topological dimension, the Brownian

motion is one-dimensional. On the other hand, in 1919 F. Hausdorff
introduced the following notion of dimension, according to which the
Brownian motion is two-dimensional. In the d-dimensional Eucli-
dean space the volume of the unit sphere is v(d)=I'(1/2)4/F'(1+/2),

where I’ denotes the usual gamma function (see the Notations). This
expression has sense even if d2O is not integer. Let a set E be given

in the n-dimensional Euclidean space, which is covered by a finite number
of n-dimensional spheres with radii r,, 72, .... The Hausdorff d-measure
of the set E is then

liminf > v(d)ré.

A. S. Besicovitch has proved that there always exists a (real) number D

that in case d<D the d-measure of the set E is infinite but if d>D it

is 0. This number (D) is called the Hausdorff or Hausdorff—Besicovitch
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dimension of the set E. In this sense the value of the dimension need not

be an integer. E.g., both coordinates of the planar Brownian motion

as functions of time (i.e., the curves of the ‘one-dimensional Brownian

motion”) have Hausdorff-dimension of 3/2. These curves are therefore

somewhere between being a “‘real’”’ curve and a “‘real”’ surface. The di-

mension of the curve of the planar Brownian motion is 2 just like that

of the “‘real’’ surfaces.

da) Remarks

(i) In the last few years many papers have been published on figures
whose topological and Hausdorff-dimensions are different. B. Mandelbroit
called them fractals. Fractals, e.g., Wiener processes, play a fundamental
tole in describing irregular figures of nature. While the Euclidean line
is the most frequent ‘‘letter” describing regular forms of nature, for
irregular forms (clouds, seashores) it is the Wiener process. In fact
neither ‘‘real’’ lines (having extension in length only) nor “real” Wiener
processes (nowhere differentiable) exist in nature but with their help a
fairly good picture of “‘real’’ forms can be obtained. Fractals have also
put the famous Olbers’ paradox of astronomy in a new light. According
to the paradox, it is inconceivable that the sky does not shine uniformly
at night if the stars are uniformly distributed in space. (See Mandelbroit’s

book.)
(ii) In his book Mandelbroit also mentions other notions of dimen-

sion, such as the Fourier dimension. As for algebraic dimension see

Székely’s article.

(iii) The irregularity of the Wiener process led to the development of
a new frontier of probability theory and analysis, namely the theory of
stochastic differential equations. This theory produces great deviations
from the usual differential and integral calculus. E.g., if f(t) is a differen-
tiable function, then

{SIGVIOBIOUAUOOM
In the theory of stochastic integrals the above expression makes sense

11 Székely
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even if f(t) is the (nowhere differentiable) Wiener process. In this case
the result of the integral is less than in the above (differentiable) case.
The difference is exactly 1/2.
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4. THE PARADOX OF WAITING TIMES (DO BUSES RUN

MORE FREQUENTLY IN THE OPPOSITE DIRECTION?)

a) The history of the paradox

Though modern technology continually shortens wasted waiting times,
our everyday nervousness is in great part due to useless waits. So the
efforts of mathematicians and engineers to reduce waiting times is
followed with great interest. It was A. K. Erlang who examined waiting
time problems for telephone exchanges (cf. 1/6 Remark (iii)). In the
1930s W. Feller introduced the notion of birth and death processes,
which gave an impulse to the mathematical analysis of waiting and
greatly contributed to the emerging theory of operations research. The
study of queuing systems has become an independent branch of science
on the borderland between probability theory and operations research.
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b) The paradox

The ‘frequency of bus runs”, i.e., average time passing between the

arrival of two consecutive buses is usually indicated at the bus stops.

Suppose the frequency of runs at a certain bus stop is 10 minutes. Then

we expect that people have to wait 5 minutes on the average for a bus.
It was found, however, that the average waiting time may not only

exceed 5 minutes, it may even be infinite! (Experience shows, however,
the situation in everyday life is not so bad.)

c) The explanation of the paradox

If buses arrive at the bus stop not only on an average but exactly every
10 minutes, the average waiting time would really be 5 minutes. But
buses actually run in “‘packs” (except if they are near the terminal where
they started from). Therefore waiting times show a large dispersion about
the average value. Let us suppose that the time intervals between con-
secutive arrivals of buses at a bus stop are independent identically distrib-
uted random variables with expectation m and standard deviation s.
Then it can be shown that the average waiting time is T=(m?+5?)/2m.
Let F(t) be the distribution function and f(t) be the density function of
the intervals between consecutive arrivals of buses. (We assume now that
the density function exists, though this condition may be omitted at
the cost of some modifications.) Suppose that time ¢is measured from the
arrival of the last bus before our arrival. Then the density function of the
random time interval till the arrival of the next bus is not f(t) but another
function which is proportional to t-f(t) (i.e., t-f(t)/m), since the prob-

ability that we arrive during a certain time interval is proportional to

its length ¢. Thus the average waiting time is.

m? +s?

2mT=n f f(t)dt=
(The density function of our waiting time is (1—F (t))/m.) Accordingly,

T=m/2 only if s=0, but if s=oo then T=, too. These extremes are
naturally far from reality. Buses actually arrive at intervals which have
nearly exponential (‘‘ageless”) distribution with some parameter 4.

11%
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Then m=s=1/A, that is, T=m, meaning that if the frequency of runs
is 10 minutes, the average waiting time is also 10 minutes and not 5.

The heuristic explanation of this paradox is very simple. If somebody

arrives at the bus stop at random, he has a much greater chance of
waiting for a long time, since his waiting time would only be short if

he caught one of the buses in a “‘pack’”; but the buses of a “‘pack”’
arrive at very short intervals so one has not much chance of catching

any of them. Consequently, if the time intervals between consecutive
buses show great dispersion, there are only a few people who have a
short wait and there are many people who have a long wait, meaning

that the average waiting time T is large.

d) Remarks

(i) We often have the illusion that no matter which way we would
like to go, buses and trams run more frequently in the opposite direc-
tion. Naturally this is impossible in reality. The explanation is very
simple. We see only one bus (the one we take) which runs in the same
direction as we want to go, whereas the probability of two or three buses
passing in the opposite direction while we are waiting is positive. Their
expected number is

m? +s? | as
oiialasabi NeoPeTS:

which is really greater than 1/2 if s is positive. This shows an asymmetry

between the two directions. But in fact this is not the case. The symmetry

between the two directions can be expressed by the fact that the proba-
bility that no bus will go in the opposite direction while we are waiting

for our bus is just 1/2 (but if a bus goes in the opposite direction then

more than one may also go, so the expectation may be arbitrarily large).

Let p, denote the probability that exactly k buses pass in the opposite

direction while we are waiting. If the intervals between the arrivals of
consecutive buses are exponentially distributed, then

1k+1dies(3) :
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if they are uniformly distributed on the interval (0, 1), then

1 2 1oe‘(ata Jon¢SEATca)
where k=1,2,... (po is always equal to 1/2 as we have mentioned).

(ii) Where there is a congestion of bus traffic, the bus service would

become steadier if the congested buses waited for longer time at a bus

stop; thus the average waiting time would also shorten. (Actually I have

never seen buses waiting at a bus stop, just to make the traffic steadier,
though lifts are sometimes held back to wait for people who are likely

to arrive soon. So lift traffic is slowed down to shorten the average

waiting times!) Let t,, t., ts, ... denote the times when buses arrive to a
certain bus stop, and let X,=%., X,;=t,—t,;-,, (i=2,3,...). If the
distribution function of X,, X2, ... is F, then—as we have already

mentioned—the density function of X, is [1—F(t)]/m, whose expecta-

tion is T=(m?+”)/2m. Slowing down the traffic means that we increase

the X;s to X;+g(Xj), (i=2, 3, ...) by a non-negative function g. It
can be shown that among integrable functions the function g(x)=
=max (0,(c—x)) most shortens waiting times, where c is the unique
solution of the following equation:

cE(X)+ f (-a) FO) dx =aX)/ 2,

(where X is arandom variable having the same distribution as X2, X3, ....
If for example X is exponentially distributed, more precisely if F(x)=
=1—e~* (x>0), then both the expectation and the variance of the
waiting time equals 1. If we choose the optimal g(x)=max (0, (0.901 —x))

(accurate to three decimal places) then the expected value of our average
waiting time is only 0.901 (and the variance is 0.691).

(iii) The following paradox is connected with traffic, too. (G. Schay
drew my attention to the problem itself, after my talk in MIT in 1983.)
The paradox states that it is not true that the faster cars go the more of
them can get through the green light, as, at higher speeds, cars have
to keep greater distances. Let us start from the following model to cal-

culate the optimal speed. Suppose cars go at the same speed v; let X;
denote the time (depending on chance), between the ith and the (é+ 1)th
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car getting into the traffic; X;’s are independent and identically distrib-
uted (for simplicity we shall assume that this distribution is exponential
with a parameter A>0O). Cars arrive at the traffic lights at intervals
Y,, Y2, ... which are not simply equal to X,, Xo, ..., since cars have to
follow each other at a certain distance. Let /; denote the length of the
ith car and a; its braking deceleration; /; and a; are usually not independ-
ent, but we assume that the vectors (/;, a;) i=1,2,... are independent
and identically distributed. The braking distance is v?/2a;, thus cars
have to follow each other at the distance /;+v?/2a;. The time between
the arrival of the first and (n+ 1)th car is

zy,=max{3Xi,"S¥4Zwate

(+35Z;= ere

M(t)= max{n: mae= th,

then the number of cars which can get through the green light from time
tto t+th is M(t+h)—M(t). It is known (from the theory of queues)

that

where

If

E(Z)~* if E(X) = E(Z,)

(this corresponds to the traffic in rush hours)
E(X%)* if E(x) > E(Z)).

Let t be a random time within the interval [0, 7]. Then the average num-

ber of cars which go through the green light is

lim aS) =
t—-co

tf meshM(t)]a=r[f Moarf M0dt|=

=hmin{E(Z,)7},E(X)+00), if T+;
(0(1) denotes a quantity which converges to 0, as To.) Therefore we

seek the maximum of

min {A,[E()/v+ E(az}) v/2]}
for v. The second term is maximal if

v = V2E(1)/E(az*).
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5. THE PARADOX OF RANDOM WALKS

a) The history of the paradox

About 60 years ago George Polya, the American mathematician of Hun-

garian origin, used to walk in a park where he kept meeting the same
couple. At that time he did not realize how accidental these random
meetings were, i.e., how small the probability was. Shortly afterwards

he calculated the probability of meetings in a model where 2 persons
are walking randomly on a squared network independently of each

other (at each crossing the probability of choosing any of the four pos-
sible directions is the same). Polya found that the probability of meeting
was 1. (Consequently if their time were unlimited they could also meet

infinitely many times with probability 1.) In the case of a cubic network,
however, the probability of a meeting is strictly less than 1 (so the proba-

bility of infinitely many meetings is now 0). From this interesting dis-
covery a brand new branch of probability theory has developed during

the last 60 years. In 1964 a nice monograph was written on this theme

by F. Spitzer.

b) The paradox

From Polya’s theorem it follows that considering a random walk on the
integer points of the real line starting from the origin and moving at
every Step by 1 either to the left or to the right with the same probability
1/2 (independently of the previous steps), we shall get back to O with
probability 1. Now the question arises that before returning to 0 (for
the first time) how many times has the walk reached a fixed integer k?
It is natural to suppose that the greater |k| is, i.e., the farther the random
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walk goes from the origin the fewer times it will happen, on average.
Surprisingly, the random walk will always reach k before the first

return just as many times on average, namely once, however great

|k| is.

c) The explanation of the paradox

The paradox can be explained very simply. The average number of steps
necessary to return to the origin (i.e., the expected value of the recurrence
time) is infinite, consequently there is enough time to reach any point
on the line once, on average. A related paradox is the following. The
starting point of the random walk is only finitely many times is its
most visited site (with probability one).

d) Remarks

(i) Under the above conditions suppose that we always take 2 steps
to the right but only 1 to the left. In this case the random walk is not
symmetric and one can easily see that starting from 0 the probability
of reaching —1 is less than 1. This probability is, suprisingly, just

(V5—1)/2, i.e., the ratio of golden section.
(ii) Diffusion type random walks where the probability of moving

to the left or to the right depends on actual location (k) are very important
in practice. Let p, denote the probability of moving to the right and
1—p, the probability of moving to the left. Suppose furthermore that

“HgA=5 k
(at least for great values of |k|) where c is an arbitrary constant. This
kind of random walk returns to 0 with probability 1 (i.e., it is recurrent)
if c=1/2. In the case c<—1/2, the expected value of the recurrence
time is finite, therefore the paradoxical situation of the random walk

(corresponding to c=0) cannot appear.
(iii) Researches on random walks can be extended from squared net-

works to more general ones called graphs. These generalizations have
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interesting applications in the theory of electronic networks. See the
fundamental paper by C. Nash- Williams written in 1959. Many other
applications (in physics, chemistry and biology) are discussed in Weiss’

paper.
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6. THE PARADOX OF STOCK EXCHANGE;

MARTINGALES

a) The history of the paradox

The mathematical study of the Stock Exchange is of almost the same age
as the Stock Exchange itself. Presumably not even Gresham’s Exchange
in the 16th century was free from mathematical speculation, but the
basic methods of probability theory were not applied in this field for
quite a long time. It is typical that even in 1900, when Louis Bachelier
defended his doctoral thesis in Paris on the connection between price
fluctuations in the Stock Exchange and Brownian motion (preceding
the physicists’ investigations concerning Brownian motion), the com-
mettee hardly appreciated his essentially new ideas. Bachelier created

the general mathematical model of a fair game, the so-called martingale,
which later became one of the most important stochastic processes after
the researches of J. Ville, P. Lévy, D. L. Doob and others. A sequence
of random variables X,, X,, Xz, ... is called a martingale if the condition-
al expectation of the difference X,,,,—X, (“the profit gained at time n”),
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given the total capitals X,, X,-1, ..., is zero with probability one, for

every n, that is,

E (Xe aes An=1-in) =0

with probability one. The sequence X,, X2, X3, ... is a supermartingale
(or submartingale) if the above mentioned expectation is not positive
(or negative) with probability one. The martingale is a general model of
fair game, of “quantitative justice”, which can be applied in many
fields, for instance, in the study of paradoxes in the Stock Exchange.

5) The paradox

If a share is expected to be profitable, it seems natural that the share is

worth buying, and if it is not profitable, it is worth selling. It also seems
natural to spend all one’s money on shares which are expected to be

the most profitable ones. Though this is true, in practice other strategies
are followed, because while the expected value of our money may increase
(our expected total capital tends to infinity), our fortune itself tends to
zero with probability one. So in Stock Exchange business we have to

be careful : shares which are expected to be profitable are sometimes worth
selling.

c) The explanation of the paradox

Let us suppose that we would like to buy shares, and we can choose from
k different ones; in a one year period the ith share (i=1, 2, ..., k) yields
X® times as much profit as our initial capital was at the beginning of
the year. (Obviously X= —1.) Suppose, for simplicity, ¥ is bounded,

though this condition can be omitted after some modifications of the
reasoning below. The random vector ¥=(X, ...,X) describes the

quotations. We assume that the vectors Yy J=1, 2, ...), which describe
the quotations in the jth year are of the same distribution as X and
are independent. Let T) be our initial capital and let a‘? denote the
proportion of our total capital that we spent on buying shares of type i
in the jth year. The quantity a=0 may depend on the random vectors
X,, Xo, ..., Xj-1. The vector a,=(a, a, ..., a) describes our buying
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strategy in the jth year. Evidently

> af)?=1,
i=1

Let a,X, denote the followingsum:

SM YWpe a; Xi S

Using this notation, our total capital at the end of the nth year is

n

itt

Obviously, the expectation of T, is the greatest if we spend all our money
on the most profitable shares every year. (We suppose that at least one
of the shares is profitable.) In this case the expected value of T,, tends
to infinity (so we are likely to grow rich) and still our total capital
T,, may tend to zero with probability one! Let us examine this paradoxical
situation in detail. Clearly,

log T,—logT, = > log(1+a, Xj).
j=l

Assuming that a;=a is a constant vector (independent of /; this assump-
tion is quite natural since in our case the quotation distributions do
not change), the right side of the equation is the greatest (with proba-
bility one for large n, according to the law of large numbers) if

E(log (1+a;X;))

kis maximal (under the conditions a(?=0 and Daf? =1). Let a*
i=1

denote the strategy which maximizes the above quantity. Further
let T* and T, denote, respectively, our total capital if we follow the
strategy a* or an arbitrary strategy a. Then it can be shown that the
sequence T,/T* (n=1, 2, ...) is always a non-negative supermartingale
(moreover, if every coordinate a*” of the vector a* is positive and

kDoe =,
i=1
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then it is a martingale). Therefore, according to a well-known theorem

of martingale theory

lim T,/T* =T

always exists with probability 1 and its expectation is at most 1. Thus
a* is an optimal strategy (in this sense) in the long run. In sum: it is
advantageous to maximize the expectation of log T, and not that of
T,. The heuristic explanation of this fact is quite simple: T,, increases
exponentially for every reasonable strategy, and the rate of this increase
can be maximized just by maximizing the expected value of logT,.

Consider now a simple (but extreme) example. Suppose we can choose
from two kinds of shares; p,,;=10% is the chance that the values of
both shares double, poo=5% is the probability that both shares lose
their value, the probability that the value of the first share doubles and
the second deteriorates is py=50%, and with probability po,;=35%
the same happens inversely. Then the first share is profitable (with a
probability of 60%) and the second one is losing (it is profitable only
with a probability of 45%), but it is still reasonable to buy some of both
kinds of shares, more exactly to spend one third of our money on the
shares every year in the ratio of 13:4. Generally it is reasonable to spend
the

P11 —Poo

PutPoo

proportion of our money on the two kinds of shares in the ratio of

(P11P10 —PoxPoo): (P11Pot —P10Poo)

(assuming that the differences are positive). Though the problems which
occur in the practice of Stock Exchange business are much more compli-
cated than the preceding example, the paradox in question also appears
in these more complex problems.

d) Remarks

(i) The martingale as a system of play was well-known long before the
appearance of the mathematical theory of martingales. (We shall
quote from the paper J. L. Snell; “Gambling, probability and martin-
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gales”, The Mathematical Intelligencer, 4, 118—124, (1982). ‘“‘The basic

idea of the martingale system is to double when you lose. For example,

suppose that we are playing roulette and we bet each time on red. We

make an initial bet of $1. If we win we quit; if we lose, we make a bet

of $2 next time. If we win, we are $1 ahead and we quit; if we lose, we

are down $1 $2 $3, and we bet $4. If we win, we are $1 ahead and quit;

if we lose, we bet $8 next time, etc. Under this martingale system, if the

wheel ever stops on a red number, we leave the casino $1 richer than

when we entered. Since a red is bound to show up eventually, it seems

that this is a foolproof system. But suppose that we enter the casino

with $100 and we encounter a run of 6 black. Then we have lost 2°—1=63

dollars and we cannot make the next required bet of $64.

In his book Newcomes (The Newcomes; Memoirs of a Most Re-
spectable Family, Chapter 28, Page 266, London, Bradbury and Evans,
1953), Thackeray remarks “‘You have not played as yet? Do not do so;
above all avoid a martingale if you do.”” While this is a good advice for
the gambler, mathematicians have not heeded it, and many of important
results in probability theory have come from ignoring Thackeray’s
advice.

(ii) ThomasGresham (1519—1579) the founder of the London Stock
Exchange, must have guessed that mathematics had an important part
in the analysis of Stock Exchange and economic life. Gresham’s testament
included the plan of a college where mathematics was one of the main
subjects of economics teaching. Henry Briggs, who first published a
logarithmic table in 1617, was also a professor at Gresham College,
which can be considered, in many respects, the predecessor of the Royal

Society.
(iii) Martingales have many interesting applications in genetics, po-

tential theory, stochastic integrals, etc. The monographs of J. Neveu,
P. A. Meyer, C. C. Heyde, and P. Hall are outstanding in this field.
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7. QUICKIES

a) Jacob and Laban’s paradox

According to the biblical story of Jacob and Laban, Jacob got Laban’s
dappled sheep in return for his services. Though the proportion of dap-
pled sheep to others was very small, Jacob gradually acquired greater
wealth than Laban. There are many mystic explanations of this paradox
(the Bible itself contains one, and Thomas Mann also dealt with this
riddle), but—as Alfred Rényi once pointed out—there is nothing mys-
terious about this paradox at all; it can be understood by simple mathe-
matical inference based on the fact that Jacob never returned sheep to

Laban but Laban always gave Jacob some of his own sheep.
Let us denote the average number of Jacob’s and Laban’s sheep in

the mth year, respectively, by J, and L, (in the initial, Oth year J)>=0
and Ly is a positive number). Let us suppose that each sheep has U lambs
every year on the average. Let q denote the proportion of Laban’s sheep
that he gives Jacob (p=1—g proportion remains at Laban). Then
Lyti—L,=UpL, and J,4,—J,=UJ,+UqL,, consequently L,=
=L,(1+Up)" and J,=L,(1+U)"—L(1+Up)", therefore

J ( ie
Leee Up

and this tends to infinity as n increases, so Jacob will really be richer
than Laban after a time. For example, for gq=10%, U=2,n=20, the

| :
ratio z is approximately3.
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6) A paradox of processes with independent increments

Processes with independent increments and their discrete versions, the
partial sums of independent random variables, are classical areas of
probability theory. Let X,, X2, ... be independent (not identically zero)
random variables with expectation zero. Then the sums S,=X,+X2+...

+ X,,2=1, 2, ... fluctuate about zero, i.e., (according to a theorem
of K. L. Chung and W. H.J. Fuchs proved in 1951) if X;’s have acommon
distribution, then

P(lim supS, = +e) = P(lim inf S,=—<) = 1.

This fluctuating property, however, does not necessarily hold if the X;’s

are not identically distributed. Put, e.g., X,;=Y,//1—i-?, where
P(Y,=i-})=1-i-? and P(Y,=—i+i-)=i-*. If the Yjs are inde-
pendent, then the Xjs are also independent and have expectation zero
and variance one. According to the Borel—Cantelli lemma, if

A,, Az, Ag, ... are arbitrary events and the sum of their probabilities
converges, then, with probability one, only a finite number of events
A, occur. Hence the event Y;=—i+i71 also occurs only finitely many

times(sinceSi-* <o), so for n sufficientlylarge,Y;=i-1with
i=1probability one, that is, X,=1/VF?—1,thus

P(lim'S, =<) ='1.
nN-~co

c) The paradox of goals

Two teams A and B are playing football against each other. Suppose the
teams have equal abilities (i.e., both teams score the next goal with prob-
ability 1/2 at any time during the match). If the length of the time inter-
val between two consecutive goals is constant, then it seems natural to
think that for 50% of the playing time team A leads and for 50% of the
time team B leads. Surprisingly, however, just the contrary is true: it is
most improbable that A (or B) will be in the lead for the half of the play-
ing time (if the cumulative scores are equal, the leading team is considered
the one which was leading before the last goal). If n=20 goals were
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scored during the match, then the probability that after 10 goals team A
and after the other 10 goals team B leads is only 6%; however, the prob-
ability that one of the teams will be in the lead throughout the game
is approximately 35%. It is also surprising that the probability that one
team leads throughout the second half is 50 per cent, no matter how
large n is.

The situation changes considerably if the ‘‘goal-scoring ability” of

the teams depends on the score of the game. Let

“(0Pr=5 k
be the probability that A scores the next goal if team A leads by k goals,
and k0;p)=1/2. Ifc is large and k is small, O0<p,=1 may not hold;
then let p,=1/2. (If c=0, then p,=1/2 for every k and this leads to
the simple model we have just examined.) If c is positive, the leading
team has more chance of scoring the next goal. If c>1/2, then after a
time one of the teams “breaks down’’, that is, if many goals are kicked,
only one team leads (which, depends on chance) nearly during 100%
of the playing time. On the other hand, if c is negative, then the losing
team scores a goal with greater probability; for c<—1/2, the match
is very varied and interesting: for half of the play one team leads and for
the other half the other team.

It can be shown that for c=0, the probability that team A will lead

at most for the fraction x (0<x<1) of the playing time converges to

F(x) = 2 are sinJx aS n>,

The corresponding density function for 0<x<1 is

1
on xl —x) ;

F(x)

which is minimal for x=1/2. Thus the probability density of A leading
for exactly 50% of the playing time is really the smallest. This is Paul
Lévy’s arc sine law (1939). (My conjecture is that in the general case the
density function is proportional to the (2c +1)th power of f(x) if c<1/2.)
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Finally one more surprising fact: in the case c=0, if the game ends in

a tie (n:n) and we want to know how long team A was in the lead, and

we take the interval between two consecutive goals as the unit of time,

then the probability that A was in the lead for a time 2k

(k=0, 1,2, ..., m) is independent of k!

(Ref.: Feller, W., An Introduction to Probability Theory and its Applications, John
Wiley, New York, 1969.

Lamperti, J., “Criteria for recurrence or transience of stochastic process I,”

J. Math. Anal. Appl., 1, 314—330, (1960).)

d) The paradox of expected ruin time

A and B are playing a coin tossing game. If it is heads, then A pays B,
if tails, Bpays A 1 dollar. A’s initial capital is 1 dollar and B’s is 999
dollars; they play till one of them is ruined. A has of course more chance
of running out of money first. If the coin falls heads at the first toss, A
is already ruined. Surprisingly, however, the expected duration, of the
game is quite long: on average one of them is ruined only after 999 trials.
(Is this duration really considerably longer than we would expect? In
general it can be proved that if A has a dollars, and his adversary B
has b, then the average duration of the game is ab trials, especially if a=b,
then the expected duration of the game is a?.) F. Stern examined the case
where the coin is not necessarily true, and called attention in 1975 to a
surprising phenomenon (Math. Mag. 48, 286—288.) Suppose A wins
with probability p in each turn and B with probability 1—p (0<p<1),
and they both have a dollars at the beginning of the game. It seems evi-
dent that if p#1/2, the conditional expectation of the duration of the
game, given that A is ruined at the end is completely different from the
conditional expectation given that B is ruined at the end of the game.
It can still be shown that either A’s or B’s ruin is assumed, the aver-
age durations of the games, and also their distributions are equal.
The proof is simple: the probability of B’s ruin after the (2k+a)th trial
is given by Poyig=Cy,gP***(1—p)* (k=0, 1,2, ...), and similarly the
probability of 4’s ruin after the (2k+a)th trial is qo,4g=Cy,aP*(1—p)***

- where Cz,q1Sthe total number of games which consist of exactly k heads
and k-+atails. As the ratio po, +4:42,4418 independent of k, the condition-

12 Székely
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al distributionsPox+4/>)PortaANdJox+a/>,Iox+aare identical—aswe
k khave stated. The explanation of this phenomenon lies in the following

fact: if p=0.99, then a long game results in B’s ruin with great proba-
bility, so the expected duration of the game, given that A will be ruined
at the end is very short, just as in the case where B’s ultimate ruin is
given. (For another argument see E. Seneta, “Another look at independ-

ence of hitting place and time for simple random walk”, Stoch. Proc.
and their Appl., 10, 101—104, (1980).) We have already mentioned that
if both A and B have a dollars and they play with a true coin, then the
expected duration of the game is a? turns; but what happens if they play
with two different coins: the probability that A will win with the first
coin is py=1/2+¢, and with the second coin, it is pp=1/2—e, (O<e<
<1/2). The players choose p, or p2 in each turn, depending randomly
on A’s accumulated gain k, (k=1, 2, ...,2a—1), in the following way:
before starting the game, we draw p, or p; for each value of k, independ-
ently of each other and with equal probability. One may feel intuitively
that this game with its complicated formulation is quasi-identical—at
least for large a—with the game where p,=p.,=1/2 for every k (i.e.,

the classical coin tossing game), since the large number of terms +eé
equalize each other for large a. But this is not so. J. G. Sinai has recently
pointed out that the average duration of this complicated game is far
longer. Even the logarithm of the average number of necessary tosses is

of order Ya (in contrast to the above mentioned a2). This surprising fact

can be explained on the basis of Remark (7)in I/9. In a sequence of length
a, which consist of independent and equally probable p,’s and p,’s,
there is a p, or p, run of length log, a with large probability, and this
drifts the gain towards the initial capital, so it delays the ultimate ruin.

It is very difficult to get over this ‘thick wall”, and that is why the average
duration of the game increases. Problems of this type (i.e., random walks
in random environments) are in close connection with the theory of
random fields in the last quickie.
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e) A paradox of optimal stoppings

We are playing heads or tails with a fair coin so that we stop playing after

the nth toss. In this case we win either

n rm
n+1

dollars or nothing, depending on whether the outcome is always tails
or not. When is it advisable to stop? Let J, denote our prize (depending
on chance) after the nth game:

n

ies n+l
Supposing that 7,40 the expected value of the prize J,,, is

n+l 1ECG 0) = rene =

sity. ts n ; Aa q
which is greater than i 2” meaning that it is always worth going on

playing. The probability, however, of 7,=0 for some (possibly large) n
is 1. Is it really worth playing till we lose everything?

(Ref.: Chow, Y.S., Robbins, H. and Siegmund, D., Great Expectations: The Theory of

Optimal Stopping, Houghton Mifflin, Boston, 1971.
Shiryayev, A. N., Optimal Stopping Rules, Springer, New York, 1978.)

tf) The paradox of choices

One often should choose the best one (from a certain point of view)
out of a collection of persons or objects (e.g., when shopping or getting

married). When studying this problem, we assume that the persons or
objects can be arranged in order of goodness, i.e., comparing any two
of them, we can always decide which is the better one. Selecting the best
would cause no problem if we saw all of them together. In most cases,
however, objects or persons have been tried successively and once re-
jected, one cannot return to that. In the following we will assume that

Whe
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if a “candidate” is not selected when it is his turn then we will not have

the opportunity to change our minds later. The problem is not unique

even so. We might not even know the total number of opportunities we
must choose from. (Generally, we do not have this information when

choosing our future wife or husband.) Let us suppose that there are
altogether n possibilities, more precisely let n persons or objects pass us

in any order (these orders are considered equally probable). Now the
question is the following. What method should be chosen to select the
best candidate if any of them can only be compared, naturally, with the

previous ones. If we always choose, e.g., the third one, the chance of
selecting the best is 1/n. With n growing, 1/n converges to 0, and there-
fore if the number of offers is great, the probability of selecting the best
one is nearly 0. Surprisingly, however, there is a method which enables

us to select the best candidate with a probability of nearly 30% even if
nis a large number. The method is the following. Let the first 37% (more
precisely, 100/e%) of the candidates go and then select the first one better

than any previous candidate (if none are better, select the last). In this case
the chance of selecting the best is approximately 1/e, i.e., ~37% however

great nis.
If two, three, ..., or generally k choices are allowed and the point is

only to have the best one among the k candidates selected, then the opti-

mal probability p, of this event can be calculated as follows. Let the num-

bers c, satisfy the indentity

Dar tear eis
feat

then
k

Pr= D>es,
j=l

e.2.,
it) 1

P2 = et eae?

which is more than 1/2(!). It can also be shown that

1 k
ate BPae ae = k/e

( ] a 1 Pr ='e 9

thus p, converges to | as k tends to infinity.
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If the number of candidates N is a random variable, then the chance

of selecting the best candidate may decrease. Suppose that the distribu-

tion of N,,/m converges to the distribution of a random variable X. Then

the optimal probability of selecting the best candidate (more precisely
its limit as mc) is

Px = maxE(f(x/X))

where f(x)=max(0,xIn x). The probability py may be very small
since inf Py=0.

(Ref.: Chow, Y., Robbins, H., Siegmund, D., Great Expectations: The Theory of

Optimal Stopping, Houghton Mifflin Co., Boston, 1971. Freeman, P. R., “The

secretary problem and its extensions: A review’’, Internat. Statist. Review, 51

189—206, (1983), Berezovskii, B. A., Gnedin, A. V., Optimal Choice Problems

(in Russian), Nauka, Moscow, 1984.)

g) The Pinsker paradox of stationary processes

A series of random variables X, (n=..., —3, —2, —1, 0, 1, 2, 3, ...) is
called stationary (more precisely, stationary in a wide sense) if firstly,
the expected value of X, does not depend on n (therefore we can assume
without the loss of generality that thiscommon expectation is 0) and sec-
ondly, the covariances E(X,, X,,,)=1,—m(the existence of which is assumed)
depend only on the difference n—m (specially if n =m, the variances do not
depend on n). A vector valued X, (n=..., —2, —1,0, 1,2, ...) isstationary if
E(X,,) is identically equal to the zero vector and the expected value of the
product of the ith coordinate of X, and the jth coordinate of X,, depend
only on i, 7and n—m. Two basic types of stationary processes are the
singular and regular processes. The former is deterministic (i.e., for any
value of n, X,,,; does not contain any “information” uncorrelated with the

random variables preceding X,,,,), while the regular type does not have
a deterministic part (i.e., if we omit X,, X,-1, X,-», etc., then we grad-
ually lose all information). In this way the world of singular processes
is ready, and it does not gain information as time passes, while regular

processes create a new world out of nothing, that is, the far future is
almost independent of the present. (In the Hilbert space of square inte-
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grable random variables, i.e., which are of finite variance, the above state-
ment can be formulated as follows. If H,, denotes the subspace which is

generated by the random variables preceding X, then in the singular case
H,=H,-, for all n, while in the regular case () H,=0.) The importance

n
of singular and regular processes was shown by Wold’s theorem, which
states that any stationary process can be uniquely decomposed into the
sum of a regular and a singular process. It is rather obvious that if X,
is singular then X_,, is singular, too, and if X,,is regular then X_, is regular
as well. In other words, if n denotes the time parameter then both singu-
larity and regularity remain unchanged when reflecting past and future.
Surprisingly, however, it is only true when X, is a scalar. Pinsker con-
structed a two-dimensional stationary process which is regular but its
inverse (when —n takes the part of n) is already singular. Thus singularity
may turn into regularity and vice versa if past and future are reversed.

h) The paradox of voting and electing; Random fields

When voting or electing, the outcome is generally uncertain and there-
fore it is not surprising that important probabilistic results have been

discovered in this area too. In 1878, W. A. Whitworth proved the follow-
ing famous ballot-theorem. If there are two candidates, say, A and B,

A scores n votes, B scores m votes, and n>™m(i.e. A has won) and p
denotes the probability that throughout the counting there are always

more votes for A than for B (provided that each order of counting is
equally probable), then

n—m
n+m-

p=

Thus, if n=2m, then p=1/3, that is, if A has received twice as many
votes as B then the probability that B had an equal number of votes
sometime during the counting is twice as much as the probability that
A was superior throughout the counting. (See Feller, W., Probability
Theory and Its Applications, (2nd ed.), Wiley, New York, 1965, p. 66.)
This may sound strange but it is not a paradox. Paradoxes do, however,
occur in this field too. Marquis de Condorcet (one of Voltaire’s friends)
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pointed out the following example in 1758. (Essai sur l’application de
l’analyse a la probabilité des décisions rendues 4 la pluralité des voix.)

If there are three candidates in an election, A, B, and C, and they receive
23, 19, and 18 votes, respectively, then on the basis of majority alone A
would be the winner but in actual fact, all the 19 who voted for B may well
prefer C to A. In 1950 Kenneth Arrow (the 1972 Nobel Prize winner in
economics) used the above example to show that it is logically impossible
to create an absolutely fair election system. Thus it is not surprising that
there does not exist a standard election system accepted all over the world.
(On the probabilistic contraversion of the election system in the USA
see Grofman’s paper.) The following paradox concerns a special kind
of voting: trials. Let us suppose that A, B, C, D and E are the five mem-
bers of a jury. They decide whether a prisoner is quilty or not by majority.
There is a 5% chance that A or B give the wrong verdict, for C and D
it is 10%, and E is mistaken with a probability of 20%. (Mistakes are
independently committed.) In this case the probability of bringing the
wrong verdict is about 0.7%. Paradoxically, this probability increases
to about 1.15% if E (who is most probably mistaken) abandons his own
judgement and always votes the same way a A (who is most rarely mis-
taken). The following paradox also shows how surprising situations may
arise if voters abandon their own judgements. Let us suppose that each
vertex of a planar square lattice is occupied by people who can vote for
or against independently of each other with probability p and 1—p, re-
spectively. Meanwhile each of them chooses one of his four neighbours and
votes the next time as that person did previously. The third, fourth, etc.
vote is carried out similarly. (When voting for the nth time, everybody
gives the (n—1)th vote of the chosen neighbour.) The question is the
following: What happens if no? It can be shown that everybody will
give the same vote in the end, in other words, “perfect harmony” will be
reached. (The probability that everybody votes for or against is p and
1—p, respectively.) It is worth mentioning that if voters are placed at
the vertices of the three-dimensional cubic lattice (where everybody has
six neighbours) then such an extreme situation will not occur, i.e., differ-
ent opinions may harmonize with each other, too (more precisely there
is an ergodic limit distribution). The same stands for more than three
dimensions. This fundamental difference between two and three dimen-
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sion is in close connection with the fact (see III/5a) that in the case of

two dimensional square lattice, symmetric random walks reach any
vertex with probability 1; while in 3 dimensions this is not true. (See

Bramson, M., Griffeath, D., “‘Renormalizing the 3-dimensional voter
model”, Annals of Prob., 418—432, (1972).)

The above mathematical model of voters standing in the vertices of a
square and a cubic lattice, has gained a very important role in the mathe-
matical physics of the last few years. Voters are replaced by “‘units”
with two possible values (e.g., the spin of ferromagnetic materials).
These random fields are generalizations of stochastic processes in which
the time parameter t is replaced by an element of a multidimensional space,

e.g., if ¢ stands for the vertices of a d-dimensional cubic lattice and
X(t) is a random variable for any ¢(in the voting model X(#) takes only
two values) then X(f) is a random field. Just as we supposed that the
voters’ opinions are only influenced by those of their neighbours, in
physics we may also assume (as a first approach) that each particle is
influenced only by its neighbours. This kind of random field is called
Markov field (it is the equivalent of Markov chain). In studying ferro-
magnetism, a special Markov field, namely the Ising model became very
important mainly due to the studies of the Norwegian physicochemist
N. Onsager in 1944. In the last few years Markov fields and especially
the Ising model have been applied to help solve the problem of phase
transitions. Though the exact notion of Markov field was only introduced
in 1968 by the Soviet mathematician R. L. Dobrushin, the first description
of the notion of phase and that of certain random fields had already been
carried out much earlier with potential functions in J. W. Gibbs’ book
in 1902 (Elementary Principles of Statistical Mechanics, Yale Univ.
Press). The description of Markov fields by potential functions is espe-
cially important because phase transitions occur just when the potential
does not determine uniquely the Markov field. In physical terms this
means that there may be more than one phase present at the same tem-
perature. The theory also explains why phase transitions are impossible
over the critical temperature (even Onsager succeeded in determining
the critical temperature). It is interesting that while there cannot occur
a phase transition in the one-dimensional model, in the case of the two-

dimensional one (on the square lattice) it is already possible. In the later
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case, in spite of the symmetry of the potential function (the value of the
function does not change if all ‘‘yes” states are replaced by ‘‘no” and
vice versa), the Markov field itself is not symmetrical. It is due to this
paradox (called symmetry-break) that ferromagnetic materials do not
lose their magnetism below the critical temperature.

(Ref.: Grofman, B., “Fair appointment and the Banzhaf index”, The Amer. Math.

Monthly, 88, 1—5, (1981).

Kindermann, R., Snell, J. L., Markov Random Fields, Contemporary Math.

Vol. 1, AMS, Providence RI, 1980.

Preston, C. J., Gibbs States on Countable Sets, Cambridge Univ. Press, 1974.

Sinai, J. G., Rigorous Results in the Theory of Phase Transitions, Akadémiai
Kiado, Budapest, 1982.)
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Paradoxes in the foundations of probability theory.
Miscellaneous paradoxes

“De natura Rationis non est res, ut

contingentes; sed, ut necessarias, con-

templari.”

(B. Spinoza, Ethica, Pars Secunda,
Propositio XLIV)

“Probability is the most important
concept in modern science, especially as

nobody has the slightest notion what
it means.”

(Bertrand Russel,
In a lecture, 1929)

“Calcul des Probabilités. Premiére Le-

con. 1. L’on ne peut guére donner une

définition satisfaisante de la Probabi-

Nitese-ca

(H. Poincaré, Calcul des

Probabilités, 1896, p. 1.)

“My thesis, paradoxically, and a little
provocatively, but nonetheless genuine-
ly, is simply this: PROBABILITY

DOES NOT EXIST.”

(B. de Finetti,

Theory of Probability, 1974)

In 1900, at the International Mathematical Congress in Paris, David
Hilbert considered the problem of the foundation of probability theory
as one of the 23 most important unsolved problems in mathematics.
Though by the turn of the century probability theory had produced many
outstanding results, due to the lack of foundation, this theory as a whole
could not join other branches of mathematics. This may be the main
cause why F. Klein, a professor at University in Géttingen, did not even
mention probability theory in his work ‘Mathematics of the 19th cen-
tury”. Utilizing the results of a number of mathematicians, especially
those of E. Borel, A. Lomnitzky, H. Steinhaus, and using set and measure
theory, A. N. Kolmogorov developed the exact theory of probability in
1933. (Details can be found in Archive for Hist. of Exact Sci., 18, 123—
190, 1978.) The base of Kolmogorov’s theory is that every event (whose

probability we want to obtain—these events are called observable events)
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can be represented by a subset of the set of all elementary events (i.e.,
by a subset of the phase space). For instance, when tossing a dice, the
outcomes can be 1, 2, ...,6; these elementary events together form the
phase space, and the event that the outcome is even can be represented
by the subset of the phase space, consisting of the even numbers, {2, 4, 6}.
The certain event is represented by the entire phase space, which is tra-
ditionally denoted by 2. Kolmogorov’s theory assumes that the observ-
able events form a sigma-algebra (sigma refers to infinity), i.e., the joint
occurrence of any two observable events, the occurrence of at least one
of finite or countably infinite observable events, and the complement of
any observable event is also an observable event. Anonnegative number
is assigned to each observable event, this is the probability of the event,
such that the probability of the certain event (i.e., of the entire phase
space) is 1, and the sigma-additive property holds, i.e., in the case of
pairwise exclusive events, the probability of the occurrence of at least
one (and so, owing to the pairwise exclusion, exactly one) observable
event in a collection of finite or countably infinite observable events is
the same as the sum of the probabilities of the observable events in the
collection.

The question arises: When defining probability, why do we need sigma-
algebras instead of the set of all the subsets of phase space 2? The answer
is very simple: In general, the probability cannot be defined on the set
of all the subsets of Q, more precisely, if probability is defined on a sigma-
algebra consisting of some subsets of Q, then this probability may not be
extended to the rest of the subsets of Q if sigma-additivity is still required
(unless Q consists of finite or countably infinite elements). G. Vitali knew
this result as early as 1905. Let the phase space be the interval (0, 1),
and make an attempt to define the probability on all the subsets of (0, 1)
according to the ‘uniform distribution”. Obviously, the probability

b—a should be assigned to a subinterval (a,b) Thus, due to sigma-
additivity, the probability is automatically defined on the least sigma-
algebra containing the intervals. This probability can be extended to
some Other sets, but there also exist sets to which it cannot be extended,
i.e., on which the probability cannot be defined according to the ‘‘uni-

form distribution”.
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Such a “pathological” set was constructed by E. Zermelo as follows.
He selected the points of the interval (0, 1) into disjoint classes such that

the points whose distance was rational belonged to the same class. Then,

using the axiom of choice, he defined a set H that had exactly one point

from each of the above classes. It can be proved that this set H cannot
have any probability according to the “‘uniform distribution”’.

It can also be shown that if we abandon ‘‘uniformness”’ but require that
each subset of 2 have probability and the probability of each point in Q be
0, then even this kind of probability definition is impossible in the case of a
phase space Q whose cardinality is countable or—assuming the continuum
hypothesis—continuum (see G. Birkhoff, Lattice Theory, Amer. Math.
Soc., Providence, 1967, p. 266). It is not yet known whether or not a
space Q (with sufficiently large cardinality) exist such that there can be
defined a probability fulfilling the above requirement. This is the prob-
lem of measurable cardinalities. The situation changes crucially if we
abandon the axiom of choice; see T. Jech; Set Theory, Acad. Press,
New York, 1978 and R. M. Solovay; ‘‘A model of set theory in which
every set of reals in Lebesgue measurable”, Annals of Math., 1—56,
(1970).

Though in Kolmogorov’s theory the probability is always a nonnegative
number, several theorems in probability theory can be extended so that a
negative number can be a probability, too. For example K. J. Hochberg
(Proc. Amer. Math. Soc., 79, 298—302, 1980) proved that in the theorems
obtained by such an extension of the central limit theorems, there occurs
the real (both positive and negative) valued “density function” w,(t, x)
which can be derived from the fundamental solutions to the following
extension of the differential equation of heat conducting

he Vannall
at = , ox"

n=2, 3, ... (the original differential equation of heat conducting is the
case where n=1). This book, however, does not deal with negative nor
complex valued probability measures, neither discusses other extensions
of probability.
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1. PARADOXES OF RANDOM NATURAL NUMBERS

a) The history of the paradox

In Kolmogorov’s theory of probability it is impossible to choose a nat-
ural (positive integer) number at random with uniform distribution, for
if the probability of selecting, e.g., 1 is 0, then due to uniformity, the
probability of choosing any other natural number is also 0. Thus sigma-
additivity leads to a contradiction because the probability of choosing

a natural number is 1 and not 0. On the other hand, if the probability of
choosing 1 is positive then sigma-additivity leads again to a contradic-
tion (the probability of the certain event would be infinite). In spite of
this fact it is natural to expect that the probability of choosing an odd or
an even number is 1/2. The next definition (which disregards of sigma-
additivity) gives just this probability. Let K be an arbitrary subset of
natural numbers and let k,, denote the number of elements in K not greater
than n. The relative frequency k,/n shows the probability of choosing a
number from K provided we may choose with uniform distribution from
the first n numbers. If the limit of the relative frequency k,/n when n
tends to infinity exists then this limit is called the probability of K. By
this definition the probability of choosing an integer divisible by 2, 3,
etc. is 1/2, 1/3, ..., respectively. The probability that two random inte-
gers (chosen independently with uniform distribution) are relative primes
can also easily be calculated. Supposing firstly that none of the integers
is greater than n, the corresponding probability (depending on n) is cal-
culated, and then its limit is considered as no. Cebyshev already showed
in the last century that this limit is 6/x* (~2/3). Accordingly, if both
the numerator and the denominator of a fraction are random natural
numbers then it cannot be reduced with probability 6/z?. The following
paradoxes also concern random natural numbers. According to J. E.
Littlewood, the first is due to the famous physicist, FE.Schrodinger. In a

1935 article F. P. Cantelli attributed the second paradox to P. Lévy.
(P. Lévy was one of the most outstanding geniuses of probability theory.
He came to occupy Poincaré’s and Hadamard’s seat at the French

Académie des Sciences.)
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b) The paradoxes

(i) One of two consecutive random natural numbers are drawn on the

foreheads of two players A and B. The person with the smaller number

loses and is obliged to pay the other as many dollars as shown on his

own forehead. Both players have the right to veto, i.e., finding the

number on the other’s forehead too large, any of them can ask for a new

game. (The number drawn on his own forehead is naturally unknown

to the player.) However, following the reasoning below, none of them will

veto. Both of them may think: “I can see the number k on my opponent’s

forehead. Therefore I have either kK—1or k+1. Eachcase is equally prob-

able but if I lose, I pay only k—1 dollars, while if Iwin, 1 get k dollars,

so.it is not worth vetoing.” As the expected value of the prize is positive

the game seems to be favourable to both players, which is of course

impossible.

(ii) Let us choose two random natural numbers X and Y independently,
with uniform distribution. For any fixed (non-random) number x the
probability of Y=x is 0. Similarly, for any fixed y the probability of
X=y is 0. Consequently, the probability of both Y=X and X¥SY
are also 0, which is impossible, for one of them is certainly true.

c) The explanation of the paradoxes

(i) The paradox is brought about the fact that there is no uniform

distribution on the set of natural numbers. If the numbers written on the
player’s foreheads were at most 3-digit-numbers then there would already

exist a uniform distribution on these numbers, but then the above reason-
ing that led to the paradox would become completely false.

(ii) No doubt, the probability of Y=Sx is 0 for any fixed x (by the
definition mentioned in the history of the paradoxes), but from this fact
it does not follow that the probability of Y=Xis also 0. It would follow
only if the probability were sigma-additive, but this kind of probability
(as we have mentioned) is not sigma-additive.
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d) Remarks

(i) Number theory and probability theory are in close connection. To
illustrate how probabilistic ideas can be applied in number theory, we
recall first that the relative frequency of primes among integers less
than n is about 1/log n (if n is large enough). Supposing that primes are
distributed randomly and independently among the first m numbers,
the probability of choosing two primes close to n is about 1|/(logn)?
(due to the independence). Let us consider an interval around n the
length of which is c. (c is small compared to n, but large enough for sta-
tistical considerations.) According to the above result, the number of
twin primes (primes the difference of which is 2) belonging to this interval
is c/(log n)*. A more detailed analysis (which takes into account, e.g.,
that an integer differing by 2 from a prime (#2) is certainly odd and there-
fore more likely a prime itself) shows that the expected number of twin
primes exceeds c/(log n)? by about 32%. Calculating on this basis, M. F.
Jones, M. Lal and W. J. Blundon published a table in the Mathematics
of Computation in 1967 which shows, e.g., that among the first 150
thousand numbers greater than 100 million the expected number of twin
primes is 584. Actually this number is 601. The difference is fairly small.
Similarly, considering the first 150 thousand numbers after 100 trillion,
we expect 191 twin primes, while the actual number is 186. This kind of
“statistical” approach to primes produces fairly good results. It is of
special interest because the number of twin primes (infinite or not) is
still unknown. (The largest prime known up to the present is 2°****—1).
Primes follow each other according to a very complicated seemingly
random rule. This is why a probabilistic approach is excellent in this
case. We will return to the relation of complexity and randomness with
“the paradox of the Monte Carlo method”.

(ii) According to the finitely additive uniform distribution on the natu-
ral numbers, the probability of any finite subset (of natural numbers) A
is 0. Supposing now that the distribution is not uniform but it has the

property that given an arbitrary positive number ¢, there is a finite set A
whose probability is P(A)>1—«, then the difference between additivity
and sigma-additivity disappears. More precisely, if the probability P is

additive on the finite subsets of natural numbers (or on any countable set
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Q), then the probability can be extended to every subset in such a way

that the extension becomes sigma-additive on the sigma-algebra of all

subsets of natural numbers.

If Q is not a countable set (e.g., the whole interval (0, 1)) then quite

strange additive probabilities may occur. They may take only the values
0 and 1, and they are defined on every subset of (0, 1) (supposing the
axiom of choice in set theory). These probabilities are strange because
countably many events with probability 1 may very unlikely to occur
simultaneously, i.e., this probability might be 0. Similarly, at least one
of countably many events with probability 0 may occur with probability 1.
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Annals of Probability, 10, 132—136, (1982).

2. BANACH—TARSKI PARADOX

a) The history of the paradox

The uniform probability, or the corresponding length, area and volume
in one, two, and three dimensions cannot be defined on arbitrary sets
if the sigma-additivity of these measures is required. However. if we assume
only additivity, (that is, the measure of the union of two disjoint sets
equals the sum of their individual measures), then—-as the Polish mathe-
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matician S. Banach showed—in one and two dimensions every bounded
set becomes measurable (has length, or area). Thus, accordingly, uni-
form probability can also be defined on every (bounded) set in one and
two dimensions if we assume only the additivity of probabilities. Haus-
dorff, however, showed in 1914 that such extension of measures in three
dimensions is impossible. S. Banach and A. Tarski set forth a paradoxical
theorem in 1924 which picturesquely showed that neither an additive

measure (volume), nor the corresponding uniform probability can be
defined on arbitrary bounded sets in three dimensions.

b) The paradox

Considering a ball of radius r=1 cm, it is possible to divide it into some
finite number of pieces and then reassemble them to form a ball of radius

R=1 km. In general, if A and B are bounded subsets of R* having non-
empty interiors, then there exist a natural number 7 and partitions
{A;:1SjSn} and {B,;:1Sj=n} of A and B, respectively, into n pieces

each, such that A, is congruent to B; for allj. (A subset X of R? is bounded

if it is contained in some ball, and X has a nonempty interior, if it
contains some ball. By a partition of a set X we mean a pairwise disjoint
family of subsets of X whose union is X.)

c) The explanation of the paradox

If we chop a ball of radius r=1 cm into a finite number of pieces, we
might intuitively expect that putting the pieces together, they can only
form solid figures whose volume is equal to that of the original ball of
radius 1 cm. This is, however, true only if we chop the ball into pieces
which have volume. The point of the paradox is that in the three-dimen-
sional space there are non-measurable sets, to which we cannot assign
volume, if we want to keep the additive property of the volume, and if
we want the volumes of two congruent sets to be equal. (The proof
of the Banach—Tarski theorem depends on Zermelo’s Axiom of Choice.)

13 Székely
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d) Remarks

Several outstanding mathematicians (for example, the Italian de Finetti)

consider the sigma-additivity of probability a too strong restriction, but
accept additivity. The Banach—Tarski paradox shows that changing
sigma-additivity for additivity does not solve every problem and also
brings new ones. In automata theory the dilemma of assuming or not
assuming sigma-additivity became so critical, that even the Encyclopae-
dia Britannica deals with the problem. Electronic computers are often
used to generate (theoretically) infinite sequences of random numbers
(cf. the next paradox). The probability of each sequence is zero, but the
probability of their union is one. Thus the acceptance of sigma-additivity
rests upon the tacit assumption that we cannot generate random phenom-
ena by automata, i.e., random and non-random sequences are separated,
which is just the well-known bifurcation of the Greek goddesses Tyche
(chance) and Moira (fate).
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3. THE PARADOX OF THE MONTE CARLO METHOD

a) The history of the paradox

The Monte Carlo Method is a numerical method based on random

sampling. In solving numerical problems there can frequently be found

a probabilistic model where the unknown number appears. Then it is

possible to solve the problem in such a way that we observe the outcomes
of random experiments belonging to the probabilistic model so many

times that we can estimate (from these outcomes) the unknown number

with a prescribed accuracy. Though the idea of this method is quite old,
its actual application dates back only to the invention of computers when
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J. Neumann, S. Ulam and E. Fermi used it for the approximate solution
of difficult numerical problems of nuclear reactions. The name of the
method refers to the series of random numbers used here which, in

principle, could also be the regularly announced results of games
played in gambling houses, e.g., in Monte Carlo. In practice, however,
the computer itself produces the random numbers necessary for
the method. Consequently this nice name (first used by N. Metro-
polis and S. Ulam in 1949) is totally misleading (the method is not of
much help in trying to win in Monte Carlo). The idea of Monte Carlo
method first appeared in a 1777 work by Buffon (see I. 11). It gives a
method for the estimation of z by throwing a needle randomly. If par-
allels are drawn on a table at unit distance and a needle of length L<1
is thrown randomly on the table (the angle between the parallels and

the needle, and the distance of the centre of the needle from any given
parallel are independent and uniformly distributed over (0,272) and
(- 1/2, 1/2), respectively) then the probability that the needle will inter-

sect one of the parallels is 2Z/z. If the experiment is carried out many
times then the relative frequency of intersections will be very near to the
theoretical probability 2L/z, and thus z can be calculated. This method
of the approximation of z is only of theoretical importance since to get
two-figure accuracy, several thousands of throws have to be made. (By
another method z can be determined to one million figures, see G. Miel’s
article.) Buffon’s needle problem shows that the Monte Carlo method is
not suitable for very accurate calculations. Even to obtain results of

two or three-figure accuracy, thousands or millions of experiments have
to be made. It is obvious therefore that the Monte Carlo method only
became applicable when experiments could be simulated by computers.
Instead of needle-throwing, two independent random numbers were
generated which determined the position of the (supposed) needle and
whether it intersected the (supposed) parallels. As the computer is able
to generate several millions of numbers a minute, it does not take too
long to simulate millions of experiments that would otherwise take a

life-time.
The theory of generating random numbers by computers has become

an important branch of mathematics. Instead of actual random numbers
(which might be produced by any random physical process such as radio-

Eh
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active decay), pseudo-random numbers, generated by deterministic
computer algorithms, came into the limelight.

In connection with pseudo-random numbers the following question
arises. In what sense can they be considered random since they are gen-
erated by deterministic (non-random) algorithms? Since von Mises’
article in 1919 several outstanding mathematicians have dealt with
this problem. (Its philosophical aspects were studied by P. Kirschenmann
and P. McShane, among others.)

b) The paradox

In 1965—66 Kolmogorov and Martin-Lof put the notion of randomness
in a new light. They defined when a series consisting of 0’s and 1’s can
be considered random. The main idea is the following. The more difficult
it is to describe a series (i.e., the longer its ‘“‘shortest” generating program
is) the more random we may consider it. Naturally, the length of this
“shortest” program may vary if we use different computers. For this
reason a standard machine is chosen which is called Turing-machine.
The measure of complexity of a series is the length of the shortest Turing
program which can generate the series. Complexity is a measure of irreg-
ularity. A series whose length is N is called random if its complexity
is nearly maximal. (It can be shown that most series are of that kind.)
As Martin-Lof proved, these series can be considered random because
they satisfy all the statistical tests of randomness. Complexity and ran-
domness are therefore in close connection. If a programmer wants to

generate “real” random numbers, then, due to Kolmogorov’s and
Martin-Léf’s results, he can only generate the series by a rather long pro-
gram. At the same time, in practice, random number generators are very
short. How can these two things be reconciled?

c) The explanation of the paradox

Series generated by short programs and used as random numbers actually
satisfy only a few criteria of randomness, not all. This, however, causes
hardly any problems in application. For example, for the purpose of nu-
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merical integration, it is enough to know that the pseudo-random num-

bers are uniformly distributed over an interval.
Suppose we want to integrate a function of bounded variation on the

interval (0, 1). Then the number

[=f fo)ax
is approximated by the mean

+yoy 2,SOD
not only if the series x,, X2, ..., Xy is random and uniformly distributed
over interval (0.1). It is enough to require that the series is uniformly
distributed. This means that as No,

Dy = sup |c(x, N)—2|
O0<x<1

converges to 0, where c(x, N) is the quotient of the number of xj, Xe, ...
..-) Xy belonging to (0, x) and N, i.e., the relative frequency.

It can be shown that

|\I—Iy| =V,Dy

where V, is a constant depending on function f (the total variation of f).

From this it follows that the approximation of / is the more accurate the

less Dy is. Dy, however, is not minimal in the case of random series. For

random series the order of approximation is N~1/?, while in non-random

cases an accuracy of N~1log N can be obtained.
In many cases it turns out that instead of trying to cope with the

‘‘impalpable concept of randomness” one should use deterministic sequen-

ces that are very well suited for given problems. This is the essence of the

quasi-Monte-Carlo-method.

d) Remarks

(i) Recently connections between randomness and complexity have led
to several interesting discoveries. In mathematics it has long been a gen-
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eral practice to handle too complicated structures as if they were random
(e.g., the behaviour of the complicated sequence of primes is frequently
described by probabilistic laws). The concept that randomness cannot
be distinguished from complexity is, however, such a revolutionary idea
that it is significant even from a philosophical point of view. Using this
concept, Spinoza’s motto can be restated as follows: People prefer simple
things to complicated ones—which is undoubtedly true. At the same time

it is obvious that the more we try to understand nature the more we have
to realize that not everything is simple.

(ii) The application of random number series is rather wide-ranging.
Numerical integration, numerical solution of differential equations,
computer simulation of physical, chemical, biological, technical, and
economic problems, etc. also require random sequences. They help to
solve traffic, transport, and other optimalization problems, as well as
creating astronomical models. The efficiency of different computer pro-
grams can also be tested if the data are random numbers.

Finally we should mention a completely different field of application,

the computer art, where random number sequences offer millions of

variations (random number sequences can of course correspond to
series of sounds, colours, letters, etc.). From random sequences the com-

puter filters out those that do not meet the rules recognized when studying
sample models. If the computer works on the base of enough samples,
the artistic result will be fairly good. Xenakis, the Greek composer has

used, e.g., computer-made random sounds in his works. Several exhibi-
tions have already been organized from computer graphics. (It has to be

noted that not all computer graphics apply random sequences.) An inter-
national organization of computer artists was founded in 1970.
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4. THE PARADOX OF UNINTERESTING NUMBERS;

AN INCALCULABLE PROBABILITY

a) The history of the paradox

Whether a number is interesting or uninteresting is completely subjective,

but one can give an objective definition on the basis of the previous

paradox. We shall consider a number interesting if its complexity (de-

fined in the previous section) is small. Therefore rational numbers are
interesting, for their decimals recur periodically; z and e are also interest-

ing among irrational numbers, since their digits can be generated by a

quite simple computer program. There exist however irrational numbers
which are more irregular. Normal numbers, for example, have the follow-

ing property: every decimal (and what is more, every group of fixed

number of digits) occur with the same probability in the infinite sequence
of their decimal expansion. Most of the irrational numbers are normal,

but it is difficult to decide whether a particular number is normal or not.
Thus, for example, it is not known whether z (whose first one million

decimals were published 1974) or e are normal or not. At the same time
there exists a very simple (but artificially constructed) example of a nor-

mal number. In the early thirties D. G. Champernowne showed that the

following number is normal:

0.123 456 789 101 112 131 415 161 718 192 021 222 324 252 6...

(the decimals are the consecutive natural numbers). The situation was

similar in arithmetic more than hundred years ago, when Liouville
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constructed a transcendental number for the first in 1844, that is, anum-
ber which cannot be the solution of an algebraic equation with integral

coefficients. x and e were only proved to be transcendental numbers as
late as 1882 and 1873 by F. Lindemann and Ch. Hermite. The study of
numbers regarding normality began only after the turn of the century,
due especially to the researches of E. Borel. Since that time the investiga-
tion of regularity and irregularity in the sequences of digits evolved into
an interesting theory, especially after the researches of A. N. Kolmogorov,
P. Marin-Léf, R. J. Solomonoff and G. J. Chaitin. The following paradox

is one among the many paradoxes in this field.

b) The paradox

In most numbers digits follow each other randomly, that is, most of

the numbers are uninteresting in the following sense: the computer
programs which produce these numbers are not much shorter than the

numbers themselves. In spite of this most numbers cannot be proved
to be uninteresting (in any system of axioms free from contradiction).
There exist an infinite number of uninteresting numbers, but this can be
proved only for a finite number of them.

c) The explanation of the paradox

Initially it may seem surprising that something that cannot be identified
may exist, but similar phenomena appear not only in the world of mathe-
matics. For example, if all the one hundred thousand seats in a stadium
are occupied, but only ninety-nine thousand tickets have been sold, then
it is clear that one thousand people have sneaked in without a ticket. The
identification of these people, however, is hopeless (especially if the tickets

were taken away from everybody at the entrance). Thus we are sure that
there are one thousand people in the stadium who got in without a ticket,
but we cannot prove that any particular person got in without a ticket.
Phenomena such as this occur frequently in mathematics.

It is not at all surprising that most of the numbers are uninteresting,

if we consider the fact how difficult it is to “discover” any regularity even
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in a seven-digit telephone number, to make it easier to memorize. In the

case of one hundred, or thousand digit numbers this would be even more
difficult for a larger percent of these numbers. So it is the second part of

the paradox which is more surprising, especially, for those who are inex-
perienced in the paradoxes of 20th century logic. Among these paradoxes

G. G. Berry’s is the nearest to ours. (This paradox was published for the
first time seventy years ago in ‘Principia Matematica” by B. Russel and

A. N. Whitehead.) The ‘computerized version” of Berry’s paradox comes
from E. F. Beckenbach. It claims that uninteresting natural numbers may

not exist, because then the smallest of these would be interesting. In other
words: the smallest of the numbers which can be produced only by long

computer programs can also be produced by a short program, and this
is undoubtedly a contradiction. It must be assumed that some numbers

can be uninteresting even if we cannot prove it. One can show that if

the system of axioms and inference rules we use contains n bits of infor-
mation, then the “‘uninteresting”’ property of a number cannot be proved
if its information content is much more than n bits.

d) Remark

A very important criterion of the randomness of digits in a number is
that they cannot be extrapolated, or predicted. The question is whether
there exist any (not random) number which can be defined precisely but
whose digits cannot be predicted. The question was answered in the
affirmative in an example of Chaitin. Let a random heads-tails sequence,
or a corresponding 0—1 sequence be the input of a certain computer,
namely a Turing-machine. The probability that the Turing-machine will
ever stop for a random input, defines the Chaitin number. (Theoretically
the machine may work for an infinitely long time, because it does not
receive order which would make it stop.) It can be proved that the Chaitin
number is an ‘“‘uninteresting” number whose decimals cannot be predicted.
At the same time this “‘uninteresting’’ Chaitin number has very interesting
properties. If, for example, we knew its first few thousand decimals,
then we would also get the answers to some classical, unsolved problems

of mathematics, such as the Fermat-conjecture or the Goldbach-conjecture.
The Fermat conjecture, (which claims that the equation x"+y"=z"
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cannot be solved for natural numbers x, y, zand n>2)*, could be proved

or disproved theoretically by a computer program, the ‘‘Fermat-pro-

gram” which would compute for given values of n and z if there exist

any numbers x and y which are solutions to the Fermat equation. If we

gradually increased the values of n and z, then every case would be

checked. The computer would stop if it found a solution. If the computer

ever stops, the conjecture is disproved, and if it never stops, the conjecture

is true. The ‘‘only” problem is the following: no matter how long the

computer has been already working for, we can never be sure that the

machine will not stop in the next step. We could get round this problem

if we knew the Chaitin-constant. Consider all the binary inputs of finite

length and try to select the programs (inputs) which terminate the comput-

er. First we try to see if the computer stops for the first program in the

first step; then if it stops for the second program in the first step. Then

we let the first program run till the second step, the third program till

the first step, the second one till the second step and the first one till the

third step, etc. If the computer stops for some binary input of length k,

then in thought we put a 1/2* unit weight into a sack. Gradually there

will be more and more weights in the sack and their sum will converge

to the Chaitin-constant (since the probability that an arbitrary binary

sequence of length k will occur in a heads-tails sequence is 1/2"). Let m

be the length of the binary ‘“‘Fermat-program’’. We continue to run the

programs until the difference between the Chaitin-constant and the accu-

mulated weight in the sack is less than 1/2”. If the Fermat-conjecture has

not turned out to be false up till this time, it must be true, because if the

‘‘Fermat-program” terminated the computer later, then we would have

to put a weight of 1/2” units into the sack, and this is in contradiction

with the fact that we have approached the Chaitin-constant with an

accuracy of more than 1/2”. The Chaitin-constant contains the solutions

(or the theoretical possibility of solutions) for all the problems which can

be reduced to a stopping (halting) problem such as the one we have

just discussed.

* Recently a German mathematician, G. Faltings has proved a very deep theorem
implying that the possible (essentially different) solutions of the Fermat’s equation
are finite, a big step in Fermat’s direction.
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5. THE PARADOX OF RANDOM GRAPHS

a) The history of the paradox

Structural problems in several fields of science (such as the problem of
electrical network) can easily be demonstrated and solved by graphs,
i.e., by points and lines connecting them. Points are called the vertices,
lines are called the edges of the graph. Edges may also represent connec-
tions depending on chance. That is why the research concerning the
structure of random graphs is of great importance. The theory of ran-
dom graphs is mainly due to the work of Paul Erdés and Alfréd Rényi.

Suppose that a graph has n vertices and each edge is drawn with prob-
ability p. independently of the existence of other edges. Let e>0 be an
arbitrary number. In 1960 Erdds and Rényi proved that if

ee (1-6) logsn

n

then the probability that the graph is connected converges to 0 as n

increases; on the other hand, if

(1+8) logan

n
a IV

then this probability converges to 1. (We say that a graph is connected
if any vertex can be reached from any other vertex through the edges.)
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Thus the probability

log.n

n

has a “‘dividing ridge” role. During the last two decades, the theory of
random graphs was extended to graphs with infinite vertices. In connec-
tion with these infinite graphs, Erdés and Rényi drew attention to the

following paradox.

b) The paradox

We say that two graphs G, and G, are isomorphic if there exists a one-

to-one correspondence between the vertices of G, and those of G, such

that two vertices in G, are connected if and only if the corresponding

vertices in G, are also connected.

If two graphs are isomorphic then their vertices have the same car-
dinality, but this is by no means a sufficient condition for isomorphism.
However, if the cardinality is infinite, more precisely, if the cardinality
of the vertices is the same as that of the integers and any two of them are
connected with probability 1/2 independently of the other edges, then
these graphs are isomorphic with probability 1. Consequently, in this
sense all infinite random graphs are the same!

c) The explanation of the paradox

We say that a graph is universal if for any sequences w,, up, ..., 4, and

U1,Vg, --+)UV,Of vertices (different from each other) there exists a vertex w

different from the u’s and v’s such that w is connected with every u but

with none of the v’s. It is easy to show that if G, and G, are universal then

they are also isomorphic. The probability that the random graphs in the

paradox are not universal, however, is 0 (i.e., w exists with probability 1).

d) Remarks

Beside the research of random graphs, the analysis of other random

structures (random matrices, random algebraic equations, random power
series, etc.) has also led to several interesting results in the last few years.
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E.g., N. B. Maslova proved the following theorem: If the coefficients X;
of the random algebraic equation

n

> X27 =0
j=1

are independent and identically distributed random variables with
expectation 0 (but are not identically 0) and

E(|Xj)?**)<co
for some positive ¢, then, asymptotically, the number of its real roots
is normally distributed with expected value

2
—Inn
Tl

and standard deviation

2Vx4(1—22-) Inn.
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6. THE PARADOX OF EXPECTATION

a) The history of the paradox

A well-known theorem of probability theory states that if X and Y are
random variables with finite expectations, then the expectation of their

sum exists and equals the sum of their expectations: E(X+Y)=
=E(X)+E(Y). It can easily be shown that even if E(X) and E(Y) do
not exist, but E(X+Y) exists, then E(X+Y) depends only on the distri-
butions of X and Y, that is, E(X+Y) can be determined without know-
ing the joint distribution of X and Y. Surprisingly this is not true for

three variables.
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b) The paradox

If X, Y and Z are arbitrary random variables, for which E(X+Y¥+Z)
exists, then this expectation cannot always be determined knowing only

the individual distributions of X, Y and Z.

c) The explanation of the paradox

Let us define the random variables X, Y and Z in two different ways.

Their distribution will be the same in both cases, but the expectation

E(X+Y+Z) will be different.

Let U be uniformly distributed on the interval (0, 1). Then clearly
1—U and V=(2U-1) are also uniformly distributed on (0, 1). If

1X=Y=tge v|

andZ=—2X,then¥+Y+Z=0andthusE(X+Y+Z)=0,whereas
if

1 TtX=te(=v),y=ts(a—v)|
and

TZ =—2 tg (= v} :

then the inequality X¥+¥Y+Z>0 holds with probability one, so E(X+
+Y-+Z) is also positive, more precisely,

E(X+Y+Z)=«in>:

d) Remarks

(i) Since E(X+Y+Z)=E((X+Y))+Z and E(X+Y+Z+W)=
=E((X+Y)+(Z+ W)), the expectations of sums of three and four

variables are uniquely determined by the two-dimensional distributions.
It is not known, however, whether this is true for more than four random
variables or not.
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(ii) Ruzsa and Székely showed that it is possible to assign a real num-
ber E(X) to every random variable X, so that this number equal their
expectations if they exist, and are finite; and

E(X+Y) = E(X)+E(Y)

always holds if X and Y are independent. Our paradox shows that this
kind of extended expectation does not exist for not necessarily independ-
ent random variables [for the random variables defined in Section c)
E(X+Y+2Z) should be zero since E(X)=E(Y) and E(Z)=—2E(X)].
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7. THE PARADOX OF THE FIRST DIGIT

a) The history of the paradox

About a century ago, in 1881, Simon Newcomb drew attention to an in-
teresting empirical fact in the Amer. J. Math. This discovery was soon
forgotten, however, and was only rediscovered 60 years later by Frank
Benford, a physicist at the General Electric Company. The law was
named after him. (Newcomb is not the only person to have been unfairly
treated. The sarcastic law of Eponymy states that no scientific theorem
or discovery is named after its original discoverer.) W. Weaver tells Ben-
ford’s story in ‘‘Lady Luck’: “‘I have been told that an engineer at the
General Electric Company, some twenty-five years or so ago, was walking
back to his office with a book containing a large table of logarithms. He
was holding it at his side, spine down; and as he glanced down at the
edges of the pages, he noticed that the book was dirtiest at the opening
pages and became progressively cleaner—just as though the early parts

of the book had been consulted a lot, the middle less, and the concluding
part least of all. ‘But that’, he must have thought, ‘is ridiculous. That
implies that people must frequently look up the logarithms of numbers
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beginning with the digit 1, next most frequently numbers beginning
with 2, and so on, and least frequently numbers beginning with 9.

And this just cannot be so; because people look up the logarithms of
all sorts of numbers, so that the various digits ought to be equally well

represented.”

b) The paradox

Consider a table, e.g., the table of the integer powers of 2 or any table of
physical constants or a table of population statistics. It generally turns
out that the first digit (40) of the numbers in the tables is not uniformly
distributed on 1, 2, 3, ..., 9. 1 is the most frequent, then comes 2 and so
on, 9 being the rarest. According to Benford, the relative frequency of
the first digits not greater than k is not k/9 (which would mean uni-
form distribution) but rather lg (k +1)(where lg stands for log,)). Conse-
quently, the relative frequency of 1, 2,..., 9 is about 30%, 17%, ...
.»+,5%. (Benford’s law can be put in another way, i.e., the mantissas of
the logarithm of numbers are of about uniform distribution over the in-
terval (0, 1).) Benford’s law does not claim that 1 is the most frequent
first digit in every table (anybody could create a table containing not a
single 1) but that typically the tables contain more ones as first digit than,

e.g., nines.

c) The explanation of the paradox

There are several probabilistic and non-probabilistic approaches to
Benford’s law. Consider first a non-probabilistic one.

Let us examine the table of the powers of 2. The first digit of 2” is 1
if there exists and integer s such that 10°=2"<2-10°. If n (and therefore
s) is large enough then s/n is approximately equal to ig 2, which means
that among the first 1 powers of 2 every lg 2-th begins with 1. Similarly, _
the rate of powers of 2 beginning at most with k is about lg(k+1) as
in Benford’s law.

The probabilistic approach is a bit more complicated. Again we have
to start from the fact that the first nonzero digit of a positive random
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number X is at most k if there exists an integer s such that

10° = X¥< (k+1)- 10°.

Consequently, Benford’s law holds only if the probability of the frac-
tional part {lg X} being at most lg (k +1)is exactly lg (k+1). A sufficient
condition is that the fractional part {lg X} is uniformly distributed over
the interval (0, 1). Now the first question is the following: What condi-

tions on the distribution of X imply that the distribution of {lg X} is
approximately uniform? Secondly, why do the tables very often show
this property? While the first question was discussed by several mathe-
maticians (e.g., R. S. Pinkham and J. H. B. Kempermann) with fairly
good solutions, the answers to the second one are not satisfactory. They
frequently lead to confused ‘“‘philosophies” even to number mysticism.
According to Benford, e.g., while “Man” counts arithmetically: 1, 2, 3, ...,
‘Nature’ automatically takes the logarithm of numbers and counts
e°, e*, e™, .... Benford states that the data of nature are composed of
geometrical series for which (just like for the powers of 2) Benford’s
law holds. He also mentions several examples in the fields of science and
technology which show the influence of Fechner’s law discovered in the
19th century. According to this law, the relation between stimulus and
sensation is logarithmic. Unfortunately, Benford’s analogies do not give
a Satisfactory answer to the question. Further details can be found in
R. A. Raimi’s survey article, where the author gives a very detailed ref-

erence.

d) Remarks

(i) If we are asked for the probability p, that k (k=1,2,...,9) is the

first digit of a random entry from a table of numerical data and we
suppose the existence of a definite solution and its scale invariance (noth-

ing has been said about the scale units employed) then we arrive at

the log-uniform distribution: p,=lg (k+1)—lg k.
(ii) Analyzing the second or third, etc. digits, we realize that the influ-

ence of the ‘“‘Benford’s effect” can hardly be seen, if at all, i.e., the second,

third, etc. digits are approximately uniformly distributed.

14 Székely
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8. THE PARADOX OF ZERO PROBABILITY;

(CAN MANY NOTHINGS MAKE SOMETHING?)

a) The history of the paradox

The probability of an impossible event is zero, but the contrary is not
true: the probability of an event may be zero without its being impossible.

For example, the probability that we hit the very centre of the target is

0, though it is not impossible. There is also a zero probability of hitting
any of one thousand fixed points, though this seems more likely than

hitting the center point. Therefore the question arises of whether it is
possible to compare the ‘‘chance”’ of events with zero probability or not.
The other problem is that the probability of hitting a particular point

of the target is zero, but amarksman will certainly hit one of the points,
so the union of events with probability zero may be an event with proba-

bility one, that is many nothings can really make something. Is this, in
fact, possible? This paradox is similar to Zenon’s two and a half thousand

year old paradox about the impossibility of moving. Zenon said that a
flying arrow is still in every instance (or in other words, the displacement

of the arrow during time intervals of zero length must be also zero), so it

is unthinkable that it moves at all. The question is the same: how is it

possible that adding many ‘‘nothings” result in ‘‘something”’? Thus the

essence of our paradox is several thousand years old, but its satisfactory
explanation evolved only in the past decades, due to the researches of
Abraham Robinson (1918—1974).
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6) The paradox

We choose a point at random in the interval (0, 1). Then the proba-
bility that we have chosen exactly the point 1/2 is zero, just as the prob-
ability that we have chosen any of the points 1/100, 2/100, 3/100, ...
though the latter seems to be more likely. Is it really impossible to make

a difference between the probabilities of the two events?

c) The explanation of the paradox

In the history of arithmetic more and more complex types of numbers
have been introduced: natural numbers and fractions were followed by
the zero, the negative, the real (=rational+irrational) and the complex

numbers. In the nineteensixties the set of numbers were further extended
by introducing infinitely small numbers, the infinitesimals. The word
‘infinitesimal”’ itself had been used since the time of Newton and Leib-
niz in differential and integral calculus, but only symbolically without
a well defined meaning or foundations. For precisely this lack of founda-
tions, infinitesimals were expelled from rigorous mathematics in the past
century, but they did not disappear completely (as physicists used them
continuously). Mathematicians changed over to the use of “‘epsilon-delta”’
analysis, and this still describes the spirit of university educations. Ro-
binson’s theory, however, builds a firm logical foundation ‘‘under” the
use of infinitesimals and the students of the next century will probably
be taught in the revived spirit of Newton’s and Leibniz’s original heuris-
tics. (At the universities of Wisconsin and M. I. T., students can, if they
like, choose Robinson’s theory instead of the epsion-delta theory of
Weierstrass.) Infinitesimals can usually be used in calculations similarly
to other numbers. While division by zero is not allowed, the division by
an infinitesimal! is well defined: the reciprocal value of an infinitesimal
is an infinitely large number, and conversely, the reciprocal value of an
infinitely large number is always an infinitesimal. Before Robinson’s
theory we thought that rational and irrational (i.e., real) numbers en-
tirely fill the number line. Examining one point of the number line under
Robinson’s “‘mathematical microscope’, we see not only one point but
a multitude of infinitesimals which are infinitely near to this point.

14*
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This image is called a ‘““monad” out of respect for Leibniz. Many para-
doxes can be solved by the infinitesimals, Zenon’s paradox as well as
the paradox of zero probability. The point is that we have to make a
difference between zero. and infinitesimally small numbers. It is possible,
for example, to assign a probability to every subset of an interval and this
probability is zero only for the empty subset corresponding to the im-
possible event, and any other event will have positive, possibly infinitesi-
mal, probability. Furthermore, considering a set A, whose probability
is P(A) in traditional sense, will have a probability which differs from
P(A) by at most an infinitesimal. (This new probability is not sigma-
additive, only additive.) Now we may really say that the probability of
choosing a single point, e.g., the centre of an interval is smaller than the
probability of choosing one of two points: the difference is an infinitesi-
mal.

d) Remark

Newton endeavoured to put the laws of nature into mathematical form,

thus he arrived at the border between finite and infinite quantities,

whereas Robinson apprehended infinity itself (having followed the

example of G. Cantor and others), and made it familiar to everyday

mathematics.
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9. THE PARADOX OF INFINITELY DIVISIBLE

DISTRIBUTIONS

a) The history of the paradox

The notion of infinitely divisible distributions was introduced by B. de
Finetti in 1929. A distribution F is called infinitely divisible if for any

positive integer m there exist n independent, identically distributed ran-

dom variables such that the distribution function of their sum is just F.

Let F, and F, be the distribution function of two independent random

variables, and denote the distribution function of their sum by F,*F,.
The operation x is called convolution. Obviously

(Ff,*h)*Kh=Fx(F.*F;), Axi = hx h
(which means algebraically that the distribution functions with the con-

volution as operation form a commutative semigroup). The distribution
function F is *-infinitely divisible (by the above definition) if for every
natural number 7 there exists a distribution function F, such that

Fix F,*...* F, = F.
_—_—_——_—_—_——_—_—_—_——

n times

Among others, the normal, Poisson, and exponential distributions are

infinitely divisible. The most important role of these distributions is

that they appear as limit distributions of the sum of independent

random variables. In 1936 Cramér proved that if the convolution

of two distributions is normal then both distributions must be normal

and thus infinitely divisible. Two years later the same result was

obtained by Raikov for Poisson distributions. These results are surprising

since they claim that normal distributions can only be a decomposed into

normal ones and the same stands for Poisson distributions. What is

even more surprising is that infinitely divisible distributions can be de-

composed into components which are not infinitely divisible.

b) The paradox

There exist distribution functions which are not infinitely divisible, but

their convolution is infinitely divisible.
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c) The explanation of the paradox

We will show that the exponential distribution can be decomposed into
the convolution of distributions which are not infinitely divisible. Con-
sider the exponential distribution with parameter A=1, its density func-
tion is e~* if x>0O and 0 if x<0. This distribution is really infinitely

divisible since the nth convolution power of the gamma-distribution of
order 1/n (whose density function is

il =ox é 4———- if x>0

and 0 if x<0) is just our exponential distribution. However, it can be

decomposed not only into gamma-distributions (which themselves are

infinitely divisible, too), but also into the convolution of two distributions
one of which takes only the values k=0, 1, 2, ... with probability 2~“t,

and the other is concentrated to the interval (0, 1), i.e., it takes values
from (0, 1) .The latter distribution is not infinitely divisible. According

to Remark (i), no distribution of bounded random variables can be infi-
nitely divisible. So we know already that an infinitely divisible distribution

may have not infinitely divisible convolution components. Now both
components of the exponential distribution obtained above can be de-

composed further so that each component concentrate to two points,

more precisely, to 0 and an integer power of 2. These distributions (as
every distribution concentrated to two points) are not only non-infinitely

divisible, but just the contrary, they are irreducible (i.e., there is no way

to decompose them unless one of the components is degenerated, i.e.,
concentrated to a single number).

d) Remarks

(i) We will show that the distribution function of a bounded random ,

variable cannot be infinitely divisible unless the random variable is de-

generated (i.e., when it takes only a single value with probability 1; in

this case its variance is 0). If the random variable X is bounded then there

exists a number K such that |X|<K. If the distribution function of X
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is infinitely divisible, there are independent random variables X,, Xp, ...

..-» X, with the same distribution such that the distribution functions of

X,+X,+...+X, and X are identical. As the supremum and variance of

the sum of independent random variables is the sum of the suprema and

variances of the components, we have

|X,|< K/nand D(X)= D(X){Vn.

Consequently, if D(X)#40 and n is large enough then the variance of
X; would be greater than the supremum of |X;|, which is impossible.
Therefore, if X is bounded and infinitely divisible then D(X)=0, ive.,
X is degenerated.

(ii) Besides the normal, Poisson, and gamma-distributions, the log-
norma! distribution is also infinitely divisible. (It is the distribution of a
positive random variable the logarithm of which is normally distributed —
see Thorin’s paper). Student’s t-distribution and the Cauchy-distribution
(the distribution of the quotient of two independent standard normally
distributed random variables) are also infinitely divisible (see Lukacs’s
book and the papers by Grosswald, Epstein and Bondesson).

(iii) The exponential distribution serves as an example for infinitely
divisible distributions decomposable into a (countably) infinite convolu-
tion of irreducible distributions. It is even more surprising that there
exist infinitely divisible distributions which can be decomposed into the
convolution of only two irreducible distributions (see Lévy’s paper).

(iv) Infinitely divisible distributions were characterized by Kolmogo-

rov, Lévy and Hindin in the 1930es. It is easy to show that the distribution
function of X,+X,+...+Xy is always infinitely divisible if X,, Xo, ...
are arbitrary nonnegative integer valued, independent, identically distrib-
uted random variables and N is a Poisson distributed random variable

independent of all X’s. At the same time it follows from Lévy’s and Hin-

éin’s theorem that every infinitely divisible distribution concentrated to

the nonnegative integers must be of this kind. Despite the fact that char-
acterization theorems of infinitely divisible distributions are already

50 years old, the problem of characterization of infinitely divisible distri-

bution having only infinitely divisible convolution components (the

normal and the Poisson distributions belong to this class but, as we have
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seen, the exponential distribution does not) is even now an unsolved

problem.
(v) In probability theory the notion of infinite divisibility comes up

not only in connection with convolution. Other important operations
can also be defined between distribution functions. For example, the
distribution function of the maximum of two independent random
variables with distribution functions F,(x) and F,(x) is F,(x)-+ F(x).

Therefore the product of distribution functions often appears in many
probabilistic problems, e.g., in reliability theory when we want to obtain
the probability distribution of life times in shunt connection. Obviously,

for any natural number n and any distribution function F(x), VF@)

is also a distribution function, thus every (one-dimensional) distribution
function is infinitely divisible. In the case of more than one dimension,

the characterization of infinitely divisible distributions is less trivial
(see the paper by Balkama and Resnick). A third operation is the follow-
ing.

Let F,oF, denote the multiplicative convolution, 1.e., the distribution
function of the product of independent random variables with distribu-
tion functions F, and F,. While the Poisson distribution is infinitely di-
visible if the operation is the convolution *, it is not divisible if the oper-
ation iso. Moreover, if X and Y denote independent random variables
and XY is of Poisson distribution, then either X or Y is concentrated to

the two-element set {0, 1} with probability 1. This means that the Poisson
distribution iso-irreducible (see the paper by Székely and Zempléni).
At the same time, the standard normal distribution iso-infinitely divis-

ible, too. (Theo-infinite divisibility of normal distributions with positive
expectation is not yet proved or disproved; if the expectation is negative,
it is obviously noto-infinitely divisible.)
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10. PARADOXES OF CHARACTERIZATION

a) The history of the paradox

The originator of the following problem is again George Polya. Consider
two independent identically distributed random variables X and Y. Is it
possible that aX+bY has the same distribution as X and Y if a and b
are positive numbers? Polya analyzed this question in his paper published
in 1923. The next remarkable result appeared only after a long interval
in 1936, when E. C. Geary began to describe the distributions F that
had the following property: if the variables X,, X2, ..., X, are independ-
ent and follow the distribution F, then

_ Xyt+Xet.+X,
n

x and S= » (X,-X)?
i=1
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are also independent. M. Kac in 1939 and S. N. Bernstein in 1941 answered

the question: if X and Y are independent and identically distributed

variables, then under what conditions are the variables Y¥+Yand X—Y

independent? Since the forties, characterization has evolved into a very

important part of probability theory, both theoretically and practically,

after the work of such outstanding mathematicians as Yu. V. Linnik,

E. Lukacs, A. A. Zinger, C. R. Rao and A. M. Kagan.

6) The paradoxes

Let X,, Xq, ..., X, be independent, identically distributed random vari-
ables. Is it possible, that Y=f(X1, Xo, .... X,) and Z=g(Xy, Xo, ..., X,)
are identically distributed, or independent if f and g are different—e.g.,
linear—functions? In certain cases, for example, if f (and consequently
Y) is identically constant, then Y and Z are obviously independent no
matter what the function g is, but “‘generally” we would expect that Y
and Z are neither independent nor identically distributed. Surprisingly,
however, exceptions turn up precisely in the most important cases, when
the X;,’sare normally distributed. If, for example, X, and X, represent
the coordinates of the velocity vector of a point moving randomly in a
plane, and X,, X, are independent standard normal variables, then the
quantities Y=X/)+4X;, (which is proportional to the kinetic energy)
and Z=X,/X,, (which determines the direction of the motion) are inde-
pendent. These kinds of properties often characterize normal distribu-
tions (or other important distributions).

c) The explanation of the paradoxes

Let both f and g be linear functions:

Y

I LMsa;X; and Fb,= > b,X;.
i=}

If there exist numbers a; and b; such that a,b; is not always zero, and
a;=b; does not hold for every i, but Y and Z are still identically distrib-
uted and all the moments of X7’sare finite, that is, E(|X;|") is finite for
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every k, (k=0, 1, 2, ...), then the X;’s are normally distributed. This theo-
rem of J. Marcinkiewicz is a generalization of Polya’s theorem. (For fur-
ther generalization we refer to the book by Kagan, Linnik and Rao.)

The theorem of G. Darmois and V. R. Skitovié states that if

nPe ey and 7 "bX,

sisal t=]

are independent and a;b; does not equal zero for every i, then X7’s
are normally distributed.

The following generalization of Geary’s theorem (also involving non-
linear functions) is very important in mathematical statistics. It states
that if X and S are independent, and n=2, then the X;s are normally
distributed.

d) Remarks

(i) While the independence of X and S is a very strong condition, their
correlation coefficient r(X,S)=0 e.g., for all symmetric random

variables X,, X2, ..., X, when the correlation exists. Though r(X, S) is

always less than 1, its supremum is 1. For unimodal distributions the

sharp upper bound is V15/16. In proving this result one can apply the
sharp inequality m2=(m,—m2)m, where m,=E(X—E(X))*, k=2, 3, 4.

(ii) There are several interesting and natural ways of characterizing a

family of distributions. For example, exponential distributions can be

characterized by the following property: the entropy

—{f(x)logef(x)dx

[f(x) denotes the density function] is maximal for the exponential distri-
butions among all distributions on the interval (0, <) which have a given
expectation. Among distributions on the interval (—o, oo) with given

expectation and variance normal distributions have maximal entropy.
On a finite interval the entropy is maximized by uniform distributions

(without any further assumption).
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11. PARADOXES OF FACTORIZATION

a) The history of the paradox

The basic theorems in classical probability theory (such as the laws of

large numbers, theorems on limit distribution) concern the distribution
of the sum of independent random variables on the basis of the proper-
ties of its terms. The ‘“‘converse” of these ‘“‘composition” theorems are

the “decomposition” or ‘‘factorization” theorems where the distribution

of the sum is known and we want to gain some information on the pos-
sible terms or ‘‘factors”’. Such a decomposition result is Cramér’s theorem

which has already mentioned. It claims that all factors of a normal
distribution are also normal. Both in composition and decomposition

theorems the characteristic function of random variables plays an im-
portant “technical role’. The characteristic function of a random var-

iable X is defined as the expectation of the complex random variable
e"* (j=/—1 and fis a real number), i-e., y(t) =E(e"*). Every random

variable has a characteristic function, which uniquely determines the

distribution function of the variable. The characteristic function of the

sum of independent random variables is the product of the characteristic

functions of the terms. These properties make it clear why characteristic

functions are so extremely important for the solution of composition
and factorization problems. They were already used by A. Cauchy in

1853 and A. M. Lyapunov at the turn of the century. Since the 1920s,
mainly due to the work of G. Polya and P. Lévy, charactersitic functions

have been used very frequently in solving composition problems. Since
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the 1930s, due to the theorems of Cramér, Hincin and Raikov, the theory

of decomposition has also evolved. There is no lack of surprising results

or paradoxes in this field either (see the ones below).

b) The paradoxes

(i) There exist random variables X, Y and Z such that the probability

distribution of X+Y is equal to that of X¥+Z but the distribution of Y

and Z are not the same. This fact, first pointed out by Hindcin in 1937,

is rather surpising because if X is either a bounded random variable or

its characteristic function is never equal to 0 (e.g., if it is infinitely divis-

ible) then the distributions of Yand Z must also be equal. Owing to

Hinéin’s paradox, in general there is no sense to speak about the “‘rest”’

of a probability distribution after one of its factors has been cancelled

because the remaining part is not unique. A great many difficulties are

caused by this fact in the algebra of probability distributions. At the

same time it is reasonable to ask what remains if a normal factor of a

distribution is omitted, since the characteristic function of a normal

distribution is never equal to 0 (the characteristic function of the stand-

ard normal distribution is e~“/?). A certain degree of caution, however,

is required even in this case. Namely, there exist independent, identically

distributed random variables X and Y that have no normally distributed

factors (with positive variance) but the random variable X+Y has already

got one. This result was first pointed out by D. Dugué and R. A. Fisher

in 1948 (see their paper below).

(ii) Let X,, Xz, ..., X, be independent random variables whose distri-

butions (not necessarily the same) are not known. We know, however,
the distributions of the linear combinations

neA ee js, 2,Haeuils
(c,, is an arbitrary number). If there exist X,, X2, ..., X, satisfying this
system of equations and the determinant of the matrix (c;,) is not 0,

then (since in this case Y,, Yo,...,Y, determine X,, X, ..., X, uniquely)
we might think that the distributions of X,, X2, ..., X, are also uniquely
determined. As A. Rényi showed in 1950, this is not the case.
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c) The explanation of the paradoxes

(i) It can be shown that if the value of a function g(t) is nonnegative

for any real t, p(0)=1, p(—)= (2) and for positive arguments ¢ the

function g(t) is convex and lim g(t)=0 as t>oo, then there exists a

random variable whose characteristic function is g(t). Thus there is a

random variable X with characteristic function 1—|t| if |t}=1 and 0

otherwise, and there also exist random variables Y and Z whose char-

acteristic functions are the same on the interval |t|=1 but differ out-

side this interval. Therefore if X, Yand Z are independent then

x+y = Ox+z(),

i.e., X+Yand X¥+Z have the same distribution, while the distributions

of Y and Z are different. (We shall see another example in 13a).

Slightly more can be proved than stated in the paradox. It can be shown
that when w(t) is a periodical function with period length of 2 and
y(t)=1-—|t| whenever |t|=1, then there exists a random variable Y

whose characteristic function is just w(t). From this it follows that

o(t)w(t)=¢(t)*, ie., there are independent random variables X, Y

and Z such that the distribution of ¥+Y is equal to that of ¥+Z, and
the distributions of X and Z are the same while those of Y and Z differ.

(ii) If the random variables Y, are given and the determinant ||c;,|| 40
then the random variables X, are uniquely determined. The variables Y,
can, however, be given in several different ways so that their distributions
remain unchanged. Therefore it is not at all certain that the distributions
of Y, uniquely determine the distributions of X; if only ||cj,||40 is
supposed.

d) Remarks

Rényi proved that generally it is also necessary to suppose that lleFel
is not equal to 0. If we know that

cx] #0 and |ci,|| 40

then under general conditions the uniqueness is also guaranteed (e. g.,
if the characteristic function of Y, is an entire function of order $2
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and if there is a solution at all). This fact has very important practical

consequences. We have seen in II. 13/c that two values can be obtained

by two measurements more accurately (the variances are less) if they are

not measured one by one but if first their sum, then their difference is
measured. The case is similar if we want to know n different unknown
quantities X,, X,, ..., X,. Greater accuracy can be achieved if certain

linear combinations Y,, Y2, ..., Y, are measured. Generally it is reason-

able to use such a matrix (c,,) which consist of +1 and —1 only. In this
case obviously ||c¥,||=0, and therefore the distributions of Y1, Yo, ...

..., Y, do not determine uniquely the distributions of X,, Xo, ..., X,.
As an example, let the distribution of both Y,=X,+X, and Y,=X,—X,

be standard normal. Then Cramér’s theorem states that X, and X,
are also normally distributed with expected value 0. However, their
variance is not determined uniquely. They merely satisfy the relation
D*(X;) + D*(X2)=1.
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12. THE PARADOX OF IRREDUCIBLE

AND PRIME DISTRIBUTIONS

a) The history of the paradox

Irreducible numbers, i.e., integers (greater than one) that have only one

and themselves for divisors, play a fundamental part in arithmetic.

These numbers: 2, 3, 5, 7, 11, 13, 17, 19, ... are also prime numbers, i.e.,

if they are factors of the product of two natural numbers, then they are

also factors of at least one of these numbers. Among natural numbers

primes and irreducibles are the same and the numbers 2, 3, 5, 7, ... are
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always called prime numbers. The fundamental theorem of arithmetic
states that there is exactly one prime factorization of each integer greater
than one (the order of the prime factors is disregarded). Thus prime num-
bers in arithmetic are like building blocks or like atoms in the physical
world. The most natural way of getting information about a complicat-
ed structure is to break it down into atoms, hence it is understandable
that the notions of irreducibility and primality have been extended to
general algebraic structures (since the last century). These notions can
also be interpreted for probability distributions: the role of natural num-
bers is taken over by probability distributions and the role of multiplica-
tion by convolution (for the definition of convolution see ‘“‘Theparadox
of infinitely divisible distributions’’).

A distribution F is irreducible if F=G* H implies that one of G and

H is degenerated (i.e., concentrated to a single point with probability
one; these distributions play the role of units). A distribution F is called
a prime distribution if it is the factor of G * H only if it is also the factor of
G or H. Hinéin proved in 1937 that every distribution is the convolution
of an infinitely divisible distribution and a finite or countable convolution

product of irreducible distributions, i.e., every characteristic function
g(t) can be expressed in the following form:

eOH=vMI 9;(0),
where y(t) and ¢,(t) are the characteristic functions of infinitely divisible
and irreducible distributions, respectively. This is somewhat similar to

the fundamental theorem of arithmetic but there is an important differ-
ence: the factorization of distributions is not unique. If, for example

the distribution F assumes the values 0, 1, 2, 3,4, 5 with the same, 1/6,
probability, then F can be decomposed to the convolution of irreducible
distributions in two different ways: in the first decomposition the first

factor assumes the values 0 and 1, the second factor assumes the values
0,2 and 4 with the same probability; in the second decomposition the
first factor assumes the values 0 and 3, and the second factor assumes

the values 0, 1 and 2 with equal probabilities. This ambiguity shows that

the analogy between the “arithmetic” of numbers and _ probability

distributions is not perfect. The following paradox will show a more

considerable discrepancy.
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b) The paradox

Probability distributions with the operation of convolution form an

algebraic structure that contains many irreducible distributions (e.g.,

every distribution concentrated on two points is irreducible), but it
does not contain any prime distribution. So if we really regard primes as
the ‘‘atoms” of probability distributions, then there are no atoms at all.

I. Z. Ruzsa and G. J. Székely first pointed out this fact in 1979.

c) The explanation of the paradox

The fact that primes and irreducibles are usually different is not surpris-
ing at all, it seems unexpected only because in the most familiar and

important structure, among natural numbers the two notions are equiva-
lent. In general, however, we can only say that a prime is always irreduc-
ible but the opposite is not necessarily true. The coincidence of the

two terms means (roughly speaking) that the factorization into irreduc-
ible elements is unique. It was observed even by Hinéin in 1937 that the

convolution decomposition of probability distributions into irreducibles
is not unique, that is, not every prime is irreducible. The article of Ruzsa

and Székeiy shows that there are no primes in this structure at all, and
thus concerning the connection between the notions of irreducibility and
primality, the multiplicative structure of natural numbers and the con-

volution structure of probability distributions are opposite extremes.

d) Remark

Say that two distributions F and G are relatively prime if Fand G can be
the tactors of a distribution H only if F *G is also a factor of H. In the

article already referred to, we proved that bounded (and not degenerated)
distributions cannot be relatively prime, and we conjecture that there are

no relatively prime distributions at all; but this problem is still unsolved.

15 Székely
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13. QUICKIES

a) The paradox of halving distributions

Let X and Y be independent, identically distributed random variables.
The distribution of X¥+Yusually determine uniquely the common distri-
bution of X and Y, but, paradoxically, not always. This fact is surpris-

ing, because the distributions in practice can usually be divided
uniquely, i.e., their nth proportion is determined uniquely (if it exists),
as in the case of bounded or infinitely divisible distributions. Now
let us see a paradox example.

If a random variable is restricted to the values 2k+1 (k=0, +1,
+2, ...), and the corresponding probabilities are

4
m?(2k+1)? ’

then its characteristic function g(t) is periodic with period 2z, and in
the interval —nStSnx

2|¢|
et) = Lie
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We now define another random variable which assumes zero with prob-
ability 1/2 and assumes 4k+2 with probability

ett ee
m(2k+1)?

The characteristic function w(t) of this random variable is also periodic.
The length of its period is z, and in the interval —2/2St=n/2

2|t|
p= T——.¥@=1-=

Obviously W(N=|e()|, so W()?=e(f?. Thus if the characteristic
function of X¥+Yis ~(t)?=@(t)?, then the common characteristic func-
tion of X and Y may be either ¢(f) or W(t), so it is not uniquely determined.

We note that (W(‘)+(d)/2 is also a characteristic function, thus

e400 OHO y(9,oe) =

which gives another example of the first factorization paradox, since
this equation cannot be reduced by (y(t)+y(t))/2.

One can also construct characteristic functions so that they do not
always assume real values, but their square is always real. Conse-
quently there exist probability distributions which are symmetric
to the origin, but ‘“‘half of them’ are not symmetric in the sense
that there exist independent, identically distributed random variables

X and Y such that X¥+Y is symmetrically distributed, but X¥ and Y
are not. (In the case of bounded variables this may not happen.) It
also seems surprising that if the random variable X has a symmetric
density function f(x)(f(—x)=f(x)) such that O<a<f(x)<b<=

whenever |t]}=c<-o and f(t)=0 for |t|>c, than X has no half,

ie., there is no characteristic function @ such that gy=q?. (Ref.:
Problem 10, Mat Lapok, 30, 1982, p. 272. (in Hungarian). Proposed by
T. F. Mori and G. J. Székely.)

15*
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b) Pathological probability distributions

(i) Let the distribution function F of a random variable have the follow-

ing properties: F(0)=0, F(1)=1 and for

x= D2-%, (ay <4, < a, <... positive integers)

F(x)=Prae+a)-*,
where a is an arbitrary positive number. L. Takacs showed (The Ameri-
can Math. Monthly, 85, 35—37, 1978) that F(x) is a strictly monotone
increasing and continuous function on the interval (0,1). For a=1,
F(x)=x on the interval (0, 1), that is, the random variable is uniformly
distributed, its density function is zero except the interval (0, 1), where
it is one. Surprisingly, if a41, then F (and the corresponding random
variable) never has a density function, that is, there does not exist a
function f, for which

F(x)= ff du.

Though the most frequent continuous probability distributions always
have density functions, we must not forget about the pathological ran-

dom variables we have just mentioned. It is interesting, for example,
that if a uniformly distributed random variable is decomposed into the
sum of two independent random variables whose distribution functions

are continuous, then at least one of them is pathological, i.e., it does not
have a density function. (The history of pathological and very patholog-
ical, i,e., ‘‘singular” functions began in 1904, when H. Lebesgue pub-

lished his book on integration of functions. One of the latest results on
singular functions is due to T. Zamrifescu, “Most monotone functions

are singular”, The American Math. Monthly, 88, 47—49, (1981). See

also F. S. Cater, ‘Most monotone functions are not singular’, The
American Math. Monthly, 89, 466—469, (1982).) .

(ii) Let be the joint density function of X and Y be

|x| i)
h(x, y) = ———eel +9712),

2yV2n
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Then the density function of X is

0, if x =.0
+00

fa= f PEI |e aol, < iP ae'O

Clearlyh is continuous,butfis not at zero.L. E. Clarkeconstructedan
example(TheAmericanMath. Monthly,82, 845—846,(1975))whereh
is continuouseverywhere,but fis nowherecontinuous!It can easilybe
shown that fis always lower semi-continuous, i.e.,

Jim f(*’) =f(@).

Moreover, if the integral of a non-negative, semi-continuous function
extended over the entire x axis is unity, then there exists a continuous
density function h(x, y), such that

fx= f h(x,y)dy.

(Ref.: Pelling, M. J., Verbeek, A., “On marginal density functions of continuous
densities IL”, The American Math. Monthly, 84, 364—365, (1977).)

c) The newsagent paradox

A newsagent orders WNdailies every day. He makes a profit of b dollars

on every daily sold and has a loss of c dollars on every daily left over.

Which N should he choose to maximize his expected profit? The numbers

of customers naturally depends on chance. Suppose it follows the Poisson

distribution with some parameter A, that is, the probability that the num-

ber of customers is exactly nis A"e~*/n!. If we put b=1, c=2 and A=10,

i.e., the average number of customers is 10, then one can show that the

average number of dailies that should be ordered is 9. It is evident, how-

ever, that if the newsagent orders only 9 dailies every day, the average

number of customers will decrease from 10 to 9; but in this case the

optimal number of dailies would only be 8, etc. The explanation of this

paradoxical situation lies in the fact that we must take into account the

loss, caused by losing a ‘‘potential customer’’, who leaves disappointedly.
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Let d dollars be the loss of the newsagent if he cannot serve a customer
with a daily. (The value of d cannot be determined as simply as the
values of b and c, hence—unfortunately—it is often neglected. For
example, if d=1$, for A4=10 the optimal value of N is 10.)

In general denote by X the (random) number of customers (now do not
suppose that X is Poissonian). One can show that the optimal number

c :

of N is the solution of the equation P(X:og arenes 1é.. if the

newsagent stocks N copies of a daily paper where N is the solution of
this equation, then his expected profit will be maximized.

(Ref.: Morse, P. M., Kimball, G. E., Methods of Operations Research, Wiley, New

York, 1951.

DeGroot, M. H., Optimal Statistical Decisions, McGraw Hill, New York,

1970.)

d) Kesten’s paradox

According to Kolmogorov’s strong law of large numbers, if X,, X2, X3,...
are independent, identically distributed random variables, then the se-

quence
gv tat ket. +%Be atBe |

n

converges to a constant M with probability one, if and only if the expec-
tations of X;’s exist; then these expectations are just equal to M. Thus
if M exist, then the sequence X, is very “regular” with probability one:

its only accumulation point is 44. To what extent can the sequence X,

be “irregular” if 4 does not exist? Harry Kesten proved in 1970 that

the set of the limit points of the sequence X, can be an arbitrary closed

set (independent of chance) which contains —co and © with probability

one. Accordingly, the set of limit points may be the entire number line,

though it has not yet been established what kind of characteristics the —

distribution function of X;s must have to possess this property.

(Ref.: Kesten, H., “The limit points of a normalized random walk”,
Annals of Math Statist., 41, 1173—1205, (1970).)
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e) The paradox of the stochastic geyser

Alfred Rényi proposed the following question in 1962. Consider a geyser
which is gushing at intervals X,, X,, ...; suppose these are independent,

identically distributed random variables. We measure the times of

gushes, S,=X,+X.+...+X,. How large can the measuring errors be
if we want to determine the unknown distribution of X;’s with probability
one, on the basis of our measurement data. This question is in close
connection with the following problem. Let S,=X,+X,+...+X, and
T,=Y¥,+Y.+...+Y, be the partial sums of independent, identically
distributed random variables (X’s need not be independent of Y’s).
How precisely can S, approach T, if the distributions of X’s and Y’s
are different? According to the strong law of large numbers, if (S,—T,,)/n
tends to zero, then the expected values of the X’s and Y’s (provided that
they exist) cannot be different (with probability one). The well-known
law of the iterated logarithm shows that if the standard deviations
D(X) of X’s exist, then

eo ¥2nlninn

Consequently, if even (S,—T,,)/ Yn converges to zero, then the standard

deviations of X’s and Y’s must be equal. The researches of Skorohod and

Strassen—based on the theory of Brownian motion—led to the con-

jecture that if, e.g., the X’s are bounded and the Y’s are normally distrib-

D(X).

uted, then |S,—T7,| is at least Yn, (if n is large enough). Hence

(S,-T,)/Vn cannot converge to zero (with probability one). Relying

upon these findings it was thought that the times of gushing of the sto-
chastic geyser are enough to be measured with an error smaller than

Ve It was a great surprise that, after P. Révész and M. Csorgé had taken

the initiative J.Komlés, P. Major and G. Tusnddy showed in 1974 that S,

can be approximated by 7, so well that even (S,—T,)/Inn remains

bounded. Thus if we record the times of gushes, the measurement

errors must be kept within the limit of In n. P. Bartfai showed that if the

measurement error divided by In n converges to zero, then the distribution
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of intervals between subsequent gushes can be determined with proba-

bility one.

(Ref.: M. Csérg6, P. Révész, Strong Approximations in Probability and Statistics,

Akadémiai Kiado, Budapest, 1981.)

tf) The paradox of probability in quantum physics

The methods of probability theory were widely used in physics even in
the last century. Classical statistical physics started from the idea that
the equilibrium of a system (consisting of large number of particles)
is the most probable state of the system. The methods of statistical phys-
ics were thought to describe only approximately the macroscopic
behaviour of a system. Through the probabilistic interpretation of
quantum physics, however, chance and probability became a funda-
mental part of physics as a whole. Probability has become a basic
notion such as energy, for example, not merely some kind of approxima-
tion which could be avoided in principle. Even Einstein was not pleased
with this sweeping change in the foundations of physics, though he was not
a bit conservative. He wrote in a letter to Max Born (who was awarded
the Nobel Prize for his probabilistical interpretation of the quantum
mechanical wave function) that he did believe in the existence of perfect
laws of Nature: ‘God does not dice.” In his answer, Born explained that
instead of solving a great number of differential equations, in some cases
one can obtain reasonable results by tossing dice. Since that time Born’s
conception has become dominant. Chance and probability are already
accepted notions of physics. These changes also affected philosophy:
mechanistic determinism lost its dominant importance. The present
state of the world does not determine uniquely its future state. With our

present knowledge we can determine only the probability of future
events. This, however, does not mean agnosticism, since the laws of
chance are recognizable (probability theory deals with exactly this).
Paradoxically, the physical concept of probability is not simply the appli- °
cation of mathematical probability in physics. The motives and spirit
of the two concepts are different. According to R. P. Feynman, who won
the Nobel Prize for physics in 1965, the laws of quantum physics can be

understood on the basis of probability theory that evolved from the
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theory of games of chance if we apply the laws of probability theory in
the case of large numbers of particles, but these laws do not explain the
behaviour of a single electron or proton. The wave theory of de Broglie
and Schrédinger and the uncertainty principle of Heisenberg led to the
elaboration of a new quantum-probability theory between 1926 and
1929, especially due to Born. Kolmogorov’s mathematical theory of prob-
ability was also built up about that time. The clarification of the rela-
tion between the two kinds of probability theories began much later,

about twenty years ago, especially with G. Mackey’s work based on
some earlier research of von Neumann. At last a general and unified
probability theory has developed, which involves both classical and
quantum probability theory (cf. Gudder’s book). This solved a contra-
diction and made it possible to outline a probability theory based on
general event structures.

(Ref.: Born, M., Natural Philosophy of Cause and Chance, Dover Pub., New York,

1964;

Gudder, S. P., Stochastic Methods in Quantum Mechanics, North-Holland,

New York, 1979.)

g) The paradox of cryptography

Throughout the several thousand years in the history of cryptography,
cryptanalysts have invented more and more cunning ciphers, and
their adversaries have correspondingly outwitted them by discovering
more and more efficient techniques for craching ciphers. Edgar Allan Poe,
who fancied himself a skilled cryptanalyst, was convinced that “‘... hu-
man ingenuity cannot concoct a cipher which human ingenuity cannot
resolve”. The first turning point in the history of cryptography was
reached in the twenties, when ‘“‘one-timepads’ were discovered. These
one-time ciphers were first used by the Germans and have been in gen-
eral use for half a century. Different types of one-time pads are considered
very efficient and are in constant use today in many countries, for special
messages. The famous ‘“‘hot-line’” between Washington and Moscow
also makes use of a one-time pad. These ciphers are really unbreakable
in principle, since a different shift cipher is used to encode each symbol
in the plaintext, each time choosing the shift at random. If the letter
‘“‘e’”was always encoded as “‘t”, it would be a simple substitution
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cipher, easily broken bya statistical analysis (as “‘e”’is the most frequent
letter in many languages). If, however, ‘‘e” is encoded sometimes as “‘a”’,
sometimes as ‘“‘c”and sometimes as ‘‘w” and the substituting letter is
chosen at random, then this one-time cipher is uncrackable even in
principle. The ciphertext does not disclose anything about itself. The
disadvantage of this procedure is that one-time pads are used only once,
for a single message. A brilliant discovery of Whitfield Diffie and Martin
E. Hellman, both electrical engineers at Stanford University, revolution-
ized the entire field of secret communication. Inspired by the mathematical
theory of complexity they proposed a new kind of cipher in 1975 which
is not unbreakable in principle but absolutely unbreakable in practice.
More precisely, these new ciphers can be broken, but only by computer
programs that run for millions of years. Surprisingly the encryption and
decription procedure of Diffie and Hellmann are not symmetric, meaning
that if only the method of encryption is known, it is computationally
infeasible to discover the method of decoding, and this provides absolute
secrecy. (This method of ciphering is made possible by what Diffie and
Hellman call a trapdoor one-way function.) The secret can be locked and
unlocked with different keys (and opening it requires a much finer key).
The basic idea of one-way cipherment is very simple: two numbers can
easily be multiplied by each other, e.g., the product of 101 and 211 can
be calculated quickly, it is 21311; but if we want to find two integers
greater than one, whose product is 21311, then it will take much more
time to find that 101 and 211 is the only possible solution. Naturally
there are computer algorithms for factoring numbers, but in the case of
a 40—SO digit number, the running time required would be millions of
years. On the basis of prime number theory, a simple trapdoor function
was found: the enciphering key depends only on the product of two
prime numbers, whereas to decipher the ciphertext the two prime num-

bers have to be known, too. Let us go into more details about this
trapdoor function!

Let p and q be two, large, random prime numbers. The product n of ©
these two numbers and another random number E are the user’s encipher-
ing key (£,n), which does not have to be kept secret; it can be put in a
public file, such as a telephone directory. To apply the key, a sender
first converts his message into a string of numbers, which he then breaks
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into blocks B,, B,,.... Each plaintext number B; must be between 0
and n—1. The sender computes for each plaintext number B; the cipher-

text number C;=B} modulo 2, (that is, if the Eth power of B, is divided
by n, the residual is C;). This public-key cryptosystem is based on the fact
that although finding large prime numbers (p and q) is computationally
easy, factoring the product of two such numbers is at present computa-
tionally infeasible, so knowing only (£, n) and C,, it is hopelessly difficult
to find B;. To decipher a ciphertext C,, Co, ..., the user employs n and a
secret deciphering key D derived from the prime factors p and gq of n.
D is the multiplicative inverse of Emodulo (p--1)(q—1), that is, ED
modulo (p—1)(¢—1) is equal to 1. (The product (p—1)(q—1) is the num-
ber of integers between 1 and n that have no common factor with n.)
After all these the receiver can easily obtain B;:

CP = (Bf)? = B;

mod n. This method was designed by Rivest, Shamir and Adleman and
is called the RSA system.

(Ref.: Hellman, M. E., “‘The mathematics of public-key cryptography’’, Sci. Amer.,

241, 130—139, (1979).
Simmons, G. J., “Cryptology, the mathematics of secure communication”, The
Math. Intelligencer, 1, 233—246, (1979).
Shamir, A., “A polinomial time algorithm for breaking Merkle—Hellman
cryptosystems”, Research Announcement, 1982.)

h) The paradox of poetry and information theory

The last paradox in this book is a quotation from my late professor

Alfréd Réenyi.
‘Since I started to deal with information theory I have often meditated

upon the conciseness of poems; how can a single line of verse contain
far more ‘information’ than a highly concise telegram of the same length.
The surprising richness of meaning of literary works seems to be in
contradiction with the laws of information theory. The key to this para-
dox is, I think, the notion of ‘resonance’. The writer does not merely
give us information, but also plays on the strings of the language with
such virtuosity, that our mind, and even the subconscious self resonate.
A poet can recall chains of ideas, emotions and memories with a well-
turned word. In this sense, writing is magic.”
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Paradoxology

“On foundation we believe in the real-
ity of mathematics, but of course

when philosophers attack us with
their paradoxes we rush to hide behind

formalism and say, ‘Mathematics is

just a combination of meaningless

Symbols,’...”

(J. A. Dieudonné, 1970)

Like most branches of science, mathematics is also the history of para-

doxes. The greatest discoveries generally solve the greatest paradoxes

(think of Darwin or Einstein) while they serve as sources for new ones as
well. Socrates’ teaching method of perceiving new ideas through para-

doxes is the most fundamental because the process of scientific cognition
itself rests on paradoxes.

For the development of deductive mathematics it was of fundamental
importance that (in spite of the Pythagorean ‘‘all is number’”’, i.e., integer
number) there are distances (e.g., the diagonal and the side of a square)
whose ratio is not the ratio of integer numbers, which means that this
ratio is not a number in Pythagorean sense. (In modern terminology, it is
not a rational number.) This paradox of ‘incommensurability” led to
the dissolution of the Pythagorean school and the overshadowing of
number mysticism, to Euclidean geometry (where the role of numbers was
replaced by geometric figures), and to Plato’s ‘‘mathematical idealism’’
(in practice ‘“‘incommensurability” cannot be tested directly, thus, accord-
ing to Plato, experience cannot lead to real knowledge). The greatest
paradox in the mathematics of the Middle Ages was that “nothing”, i.e.,
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nought should be considered something and denoted bya figure. In this
way, due to the Indian-Arabic method of number writing, calculating
became much easier. At the break of modern times several paradoxes
were caused by negative and later complex numbers. E.g., one of them
states that (—1):1=1:(—1) is impossible because the ratio of a smaller

number to a greater one cannot be equal to that of a greater number to
a smaller one. Modern times have brought several new paradoxes in all
branches of mathematics from the solvability of algebraic equation on

to Bolyai’s geometry. It is interesting that already in the first half of the
last century B. Bolzano from Prague devoted a whole book to the para-
doxes of infinity (‘“‘Paradoxien des Unendlichen’’) though the most in-
teresting paradoxes of infinity appeared only after G. Cantor’s set theory
published in 1872. Most leading mathematicians of the century, such as
Gauss, Cauchy, Kronecker, Poincaré and others, rejected the notion of
actual infinity and assigned only symbolical meaning to it. The founda-
tion stone of modern mathematics is, however, Cantor’s theory using
the notion of actual infinity, though we have to emphasize that the
‘horror infiniti” has not yet vanished. In fact new paradoxes have increased
the number of finitists. Similarly, the fear of randomness is still in the
air. The mathematical paradoxes of infinity and randomness are extreme-
ly important because these two concepts fundamentally influence our
outlook and philosophical attitude. Probability theory has evolved as a
symbolic counterpart of the random universe thus it is to be hoped that
the paradoxes in this book will help the reader to find the best way

through our random world.
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“Rien ne m’est stir que la chose incertaine;

Obscur, fors ce qui est tout evident;

Doute ne fais, fors en chose certaine;

Science tiens a soudain accident;”

(F. Villon, Ballade Du Concours

De Blois, 11—14)
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Notations

n! =1-2-3---n
()) _ n(n—1)(n—2)...(n—kK+1)
k <7 AO

P(A) probability of the event A

P(A) probability of the complement of the event A (A)

P(AB) probability of the joint occurrence of events A and B

P(A|B) _ probability of the event 4 given that the event B has occurred

_ MytXat... +X,
a

nN

$ estimator of the parameter 3

E(X) or EX expectation (or expected value) of the random variable X

D(X) standard deviation of the random variable X

T(z) S ip e‘t?~'dt if the real part of the complex number z is positive;

0

I(z+1)=2I(2), thus P(n+1)=a!; F(1/2)=Vx

1 x

D(x) f eV ay= aoe

16 Székely



Table 1. The standard normal distribution function

@(x) j eM)?dy [S(—x)=1-9(x)]

x) | eGylt | oa, Pelee x | oGy[x | oey
0,00
0,01
0,02
0,03
0,04
0,05
0,06
0,07
0,08
0,09
0,10
0,11
0,12
0,13
0,14
0,15
0,16
0,17
0,18
0,19
0,20
0,21
0,22
0,23
0,24
0.25
0,26
0,27
0,28
0,29
0,30
0,31
0,32
0,33
0,34
0,35
0,36
0,37
0,38
0,39
0,40
0,41
0,42
0,43
0,44
0,45
0,46
0,47
0,48
0,49
0,50

0,51 | 0,6950
0,52 | 0,6985
0,53 | 0.7019
0,54 | 0,7054
0,55 | 0,7088
0,56 | 0,7123
0,57 | 0,7157
0,58 | 0,7190
0,59 | 0,7224
0,60 | 0,7257
0,61 | 0,7291
0,62 | 0,7324
0,63 | 0,7352
0,64 | 0,7389
0,65 | 0,7422
0,66 | 0,7454
0,67 | 0,7486
0,68 | 0,7517
0,69 | 0,7549
0,70 | 0,7580
0,71 | 0,7611
0,72 | 0,7642
0,73 | 0,7673
0,74 | 0,7703
0,75 | 0,7734
0,76 | 0,7764
0,77 | 0,7794
0,78 | 0,7823
0,79 | 0,7853
0,80 | 0,7881
0,81 | 0,7910
0,82 | 0,7939
0,83 | 0,7967
0,84 | 0,7995
0,85 | 0,8023
0,86 | 0,8051
0,87 | 0,8078
0,88 | 0,8106
0,89 | 0,8133
0,90 | 0,8159
0,91 | 0,8186
0,92 | 0,8212
0,93 | 0,8238
0,94 | 0,8264
0,95 | 0,8289
0,96 | 0,8315
0,97 | 0,8340
0,98 | 0,8365
0,99 | 0,8389
1,00 | 0,8413
1,01 | 0,8438

1,02| 0,8461| 1,53
1,03| 0,8485| 1,54
1,04| 0,8508| 1,55
1,05| 0,8531| 1,56
1,06| 0,8554| 1,57
1,07| 0,8577| 1,58
1,08| 0,8599| 1,59
1,09| 0,8621| 1,60
1,10| 0,8643| 1,61
1,11| 0,8665| 1,62
1,12| 0,8686| 1,63
1,13| 0,8707| 1,64
1,14| 0,8729| 1,65
1,15| 0,8749| 1,66
1,16| 0,8770| 1,67
1,17| 0,8790| 1,68
1,18| 0,8810| 1,69
1,19| 0,8830| 1,70
1,20| 0,8849| 1,71
1,21| 0,8869| 1,72
1,22| 0,8888| 1,73
1,23| 0,8907| 1,74
1,24| 0,8925| 1,75
1,25| 0,8944| 1,76
1,26| 0,8962| 1,77
1,27| 0,8980| 1,78
1,28| 0,8997| 1,79
1,29| 0,9015| 1,80
1,30| 0,9032| 1,81
1,31| 0,9049| 1,82
1,32| 0,9066| 1,83
1,33| 0,9082| 1,84
1,34| 0,9099| 1,85
1,35| 0,9115| 1,86
1,36| 0,9131| 1,87
1,37| 0,9147| 1,88
1,38| 0,9162| 1,89
1,39| 0,9177| 1,90
1,40| 0,9192| 1,91
1,41| 0,9207| 1,92
1,42| 0,9222| 1,93
1,43| 0,9236| 1,94
1,44| 0,9251| 1,95
1,45| 0,9265| 1,96
1,46| 0,9279| 1,97
1,47| 0,9292| 1,98
1,48| 0,9306| 1,99
1,49| 0,9319| 2,00
1,50| 0,9332| 2,02
1,51| 0,9345| 2,04
1,52| 0,9367| 2,06

0,9370
0,9382
0,9394
0,9406
0,9418
0,9429
0,9441
0,9452
0,9463
0,9474
0,9484
0,9495
0,9505
0,9515
0,9525
0,9535
0,9545
0,9554
0,9564
0,9572
0,9582
0,9591
0,9599
0,9608
0,9616
0,9625
0,9633
0,9641
0,9649
0,9656
0,9664
0,9671
0,9678
0,9686
0,9693
0,9699
0,9706
0,9713
0,9719
0,9726
0,9732
0,9738
0,9744
0,9750
0,9756
0,9761
0,9767
0,9772
0,9783
0,9793
0,9803

2,08
2,10
Pah92
2,14
2,16
2,18
2,20
prepa
2,24
2,26
2,28
2,30
2,32
2,34
2,36
2,38
2,40
2,42
2,44
2,46
2,48
2,50
22
2,54
2,56
2,58
2,60
2,62
2.64
2,66
2,68
2,70
2,72
2,74
2,76
2,78
2,80
2,82
2,84
2,86
2,88
2,90
292,
2,94
2,96
2,98
3,00
3,20
3,40
3,60
3,80

0,9812
0,9821
0,9830
0,9838
0,9846
0,9854
0,9861
0,9868
0,9875
0,9881
0,9887
0,9893
0,9898
0,9904
0,9909
0,9913
0,9918
0,9922
0,9927
0,9931
0,9934
0,9938
0,9941
0.9945
0,9948
0,9951
0,9953
0,9956
0,9959
0,9961
0,9963
0,9965
0,9967
0,9969
0,9971
0,9973
0,9974
0,9976
0,9977
0,9979
0,9980
0,9981
0,9982 °
0,9984
0,9985
0,9986
0,9987
0,9993
0,9996
0,9998
0,9999
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Table 2. The first twenty thousand digits of z.

Is the occurrence of the decimals realy random, or do they obey a rule?

~=3, +

1415926535 8979323846 2643383279 5028841971 6939937510
8214808641 3282306647 0938446095 5058223172 5359408128
4428810975 6659334461 2847564823 3786783165 2712019091
7245870066 0631558817 4881520920 9628292540 9171536436
3305727036 5759591953 0921861173 8193261179 3105118548
9833673362 4406566430 8602139494 6395224737 1907021798
0005681271 4526356082 7785771342 7577896091 7363717872
4201995611 2129021960 8640344181 5981362977 4771309960
5024459455 3469083026 4252230825 3344685035 2619311881
5982534904 2875546873 1159562863 8823537875 9375195778

3809525720 1065485863 2788659361 5338182796 8230301952
5574857242 4541506959 5082953311 6861727855 8890750983
8583616035 6370766010 4710181942 9555961989 4676783744
9331367702 8989152104 7521620569 6602405803 8150193511
6782354781 6360093417 2164121992 4586315030 2861829745
3211653449 8720275596 0236480665 4991198818 3479775356
8164706001 6145249192 1732172147 7235014144 1973568548
4547762416 8625189835 6948556209 9219222184 2725502542
8279679766 8145410095 3883786360 9506800642 2512520511
0674427862 2039194945 0471237137 8696095636 4371917287

9465764078 9512694683 9835259570 9825822620 5224894077
4962524517 4939965143 1429809190 6592509372 2169646151
6868386894 2774155991 8559252459 5395943104 9972524680
4390451244 1365497627 8079771569 1435997700 1296160894
0168427394 5226746767 8895252138 5225499546 6672782398
1507606947 9451096596 0940252288 7971089314 5669136867
9009714909 6759852613 6554978189 3129784821 6829989487
5428584447 9526586782 1051141354 7357395231 1342716610
0374200731 0578539062 1983874478 0847848968 3321445713
8191197939 9520614196 6342875444 0643745123 7181921799

5679452080 9514655022 5231603881 9301420937 6213785595
0306803844 7734549202 6054146659 2520149744 2850732518
1005508106 6587969981 6357473638 4052571459 1028970641
2305587631 7635942187 3125147120 5329281918 2618612586
9229109816 9091528017 3506712748 5832228718 3520935396
6711136990 8658516398 3150197016 5151168517 1437657618
8932261854 8963213293 3089857064 2046752590 7091548141
2332609729 9712084433 5732654893 8239119325 9746366730
1809377344 4030707469 2112019130 2033038019 7621101100
2131449576 8572624334 4189303968 6426243410 7732269780

6655730925 4711055785 3763466820 6531098965 2691862056
3348850346 1136576867 5324944166 8039626579 7877185560
7002378776 5913440171 2749470420 5622305389 9456131407

16*
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Table 2. cont.

ma=3, +

6343285878 5698305235 8089330657 5740679545 7163775254

0990796547 3761255176 5675135751 7829666454 7791754011
9389713111 7904297828 5647503203 1986915140 2870808599
8530614228 8137585043 0633217518 2979866223 7172159160
9769265672 1463853067 3609657120 9180763832 7166416274
6171196377 9213375751 1495950156 6049631862 9472654736

6222247715 8915049530 9844489333 0963408780 7693259939

5820974944 5923078164 0628620899 8628034825 3421170679
4811174502 8410270193 8521105559 6446229489 5493038196

4564856692 3460348610 4543266482 1339360726 0249141273
7892590360 0113305305 4882046652 1384146951 9415116094
0744623799 6274956735 1885752724 8912279381 8301194912
6094370277 0539217176 2931767523 8467481846 7669405132
1468440901 2249534301 4654958537 1050792279 6892589235
5187072113 4999999837 2978049951 0597317328 1609631859
7101000313 7838752886 5875332083 8142061717 7669147303
1857780532 1712268066 1300192787 6611195909 2164201989

0353018529 6899577362 2599413891 2497217752 8347913151
8175463746 4939319255 0604009277 0167113900 9848824012
9448255379 7747268471 0404753464 6208046684 2590694912
2533824300 3558764024 7496473263 9141992726 0426992279
5570674983 8505494588 5869269956 9092721079 7509302955
6369807426 5425278625 5181841757 4672890977 7727938000
1613611573 §255213347 5741849468 4385233239 0739414333
5688767179 0494601653 4668049886 2723279178 6085784383
7392984896 0841284886 2694560424 1965285022 2106611863
4677646575 7396241389 0865832645 9958133904 7802759009

2671947826 8482601476 9909026401 3639443745 5305068203
5709858387 4105978859 5977297549 8930161753 9284681382
8459872736 4469584865 3836736222 6260991246 0805124388
4169486855 5848406353 4220722258 2848864815 8456028506
6456596116 3548862305 7745649803 5593634568 1743241125

2287489405 6010150330 8617928680 9208747609 1782493858

2265880485 7564014270 4775551323 7964145152 3746234364
2135969536 2314429524 8493718711 0145765403 5902799344
8687519435 0643021845 3191048481 0053706146 8067491927

9839101591 9561814675 1426912397 4894090718 6494231961

6638937787 0830390697 9207734672 2182562599 6615014215
6660021324 3408819071 0486331734 6496514539 0579626856

4011097120 6280439039 7595156771 5770042033 7869936007
7321579198 4148488291 6447060957 5270695722 0917567116
5725121083 5791513698 8209144421 0067510334 6711031412

3515565088 4909989859 9823873455 2833163550 7647918535



6549859461
5836041428
4492932151

2807318915

4769312570
8455296541
1127000407
2021149557

2996148903
0480109412
7716692547
8888007869
4252308177

7805419341

5695162396

4037014163
5578297352
3162499341
3166636528

9456127531
0408591337
8350493163
9562586586

4803048029

2901618766
2540790914

2784768472
1960121228
2283345085
4611996653
2184564622
9567302292
2711172364
0516553790

4460477464
3634655379
0126901475
2772190055
2276930624
3776700961
9164219399
1266830240
9104140792

6371802709
1388303203
6084244485
4411010446

5863566201

2665408530
8547332699
6158140025
0463994713
1472213179
4873898665
2560290228
0367515906
4473774418

5864573021
1496589794
3344604281
9131814809
6193266863
8134078330
4641442822
1284042512

5570552690
0058760758

7952406163

5135711136
6860849003
5993716231
0486082503
8581538420

0134967151
1913933918
3435439478
6866273337

9159950549

4986419270
4668476535

6148425551
7435363256
2071512491
4907236234
2929525220

8862150784

T= 3

8199430992
8249037589
9637669838
8232527162

8558100729
6143444318
3908145466
0126228594
2962107340
4764777262
4949450114
4721040317

7350235072
4263129860

6315981931
0924323789
5126272037
2777710386
3606273567
3362542327
7726346594

1925651798
4965209858
2510474709

4252257719
9410919139
3770242429
3017114448
9302133219
5685338621
8819097303
5680344903
2218185286
9958511562

7374256269
5638728317

7616477379
8792530343
9160781547
4043027253

6468441173
1187267675
2451670908

4488957571
8524374417
9522868478
0105265227

3606598764
5867697514

4645880797
1302164715
4375189573
2414254854
6540628433
2118608204
8354056704

8099888687

9516735381

6907069779
3431465319
3877343177
6303544776
8394497538
7047458784
0694113528
0338507224
1643961362

5429162991

2351910760
1651300500
4640903890
7155184306
8672523340
8119800497
9820595510

2608514006
5784322988

0104903778
4872332083
4675200490

5139844253
8181152843
8607648236
9403265918
6220415420
7000699282
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Table 2. cont.

2828905923
0291327656
3123552658
2111660396

8611791045
5661406800

2708266830
5097925923
5961458901
5403321571
6639379003
1900042296
0386743513
4132604721

2974167729
4223625082
7777416031
2075456545

2803504507
2437205835
7787201927
0131470130
2648293972
6760449256

9306455377
2082520261
5168323364
6449544400

3545500766
2830871123
3407239610
0226353536

6604433258
2737231989

1986835938
7601123029
7571555278

2234157623
6679570611
3414334623
4044378051
5161841634
1206604183
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9598470356

5771028402
5178609040
6161528813
9203767192
8244625759
3408005355
4043523117
7267507981
7429958180
9289647669

9588970695
6909411303
6922210327
2248261177
2543709069
5510500801
1596131854
3084076118
5020141020
2645600162

4786724229
2168895738
9906655418
3220777092
7723554710
3114771199
7152807317
4781643788
8584783163
2742042083

9914037340
8798531887
3503895170
6198690754

8282949304
2827892125
3685406643
1920419947
8856986705
8757141595

1465741268
9113679386

2226293486

7998066365
7086671149
8437909904
2033229094
1633303910
9849175417
6006651012
2554709589

7247162591
7583183271

3653494060
1509526179
4889218654

1858963814
7939612257
9086996033
3475464955
3013052793
6723585020
3742880210

2465436680

3798623001
7639792933
1201905166
5859548702

2606381334
6790770715
5185290928
0577775606
2085661190

4328752628
7058429725

2989392233
8516026327

1377655279
0771262946

1939509790
4553859381
4315470696

7811196358

0492564879

2708943879

m=3, +

0034158722

8254889264
6558343434
2317473363
3346768514
7225383742
3818839994
4120065975
0455635792
6685451333
3142517029

3402166544

3780029741
3648022967

0918390367
1429894671
0276347870
6978103829
2054274628
0724522563
9276457931

0980676928

5937764716
4419521541
0962804909
7908143562

6776879695
7213444730
5452011658

8887644624
6254543372

8896399587
9167781314
4517220138

5052983491
3975175461
3229563989
1906996395
0234395544

5747458550
3300594087

8556145372
9362016295

9805349896

8802545661

7693385781
9480457593
2214477379

1821408835
4697486762
5851276178
1221033346
1239480494
6923488962

3755890045

2076651479

8070576561

3672220888

5435784687

8108175450

3097164651

6540360367

2651341055

0657922955

2382806899

5122893578
3418994854
2636019759

4014517180
9703098339
6057007334
3934196562
8246857926

1315359584

9475729174
9699009019

1280696501
8740786680
3953984683
8989358211

5255300545
9597782779

3323233421
3068121602

3478673303
1541337142

Table 2. cont.

5022629174

0172967026
7113864558
1493140529
3937517034
0865739177
6551658276

5838292041
6974992356
7079119153
7668440323

6328822505
3942590298
5144632064
3215137556
8861444581
1193071412
4384070070
4532865105
9240190274
2498872758

6400482435

6015881617
4473456738
8828161332
6246436267

1307710987
9243693113
1349142415

0395352773
5068772460

6426357455

2116971737
1784408745
8818338510
3936383047

6745627010
0580685501
0237421617
0730154594

8764962867

9046883834
4892830722
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Table 2. cont.

m=3, +

1965362132 3926406160 1363581559 0742202020 3187277605

3610642506 3904975008 6562710953 5919465897 5141310348
086153 3150 4452127473 9245449454 236828 8606 13408 41486

5189757664 5216413767 9690314950 1910857598 4423919862
3338945257 4239950829 6591228508 3558215725 0310712570

8475651699 9811614101 0029960783 8690929160 3028840026
7180653556 7252532567 5328612910 4248776182 5829765157
8788202734 2092222453 3985626476 6914905562 8425039127

6407655904 2909945681 5065265305 3718294127 0336931378

7367812301 4587687126 6034891390 9562009939 3610310291
7634757481 1935670911 0137751721 0080315590 2485309066

4366199104 0337511173 5471918550 4644902636 $512816228
1509682887 4782656995 9957449066 1758344137 5223970968
5848358845 3142775687 9002909517 0283529716 3445621296
9748442360 8007193045 7618932349 2292796501 9875187212
3025494780 2490114195 2123828153 0911407907 3860251522
2673430282 4418604142 6363954800 0448002670 4952482017
2609275249 6035799646 9256504936 8183609003 2380929345

4525564056 4482465151 8754711962 1844396582 5337543885

9695946995 5657612186 5619673378 6236256125 2163208628
9279068212 0738837781 4233562823 6089632080 6822246801

0037279839 4004152970 0287830766 7094447456 0134556417
2314593571 9849225284 7160504922 1242470141 2147805734
2339086639 3833952942 5786905076 4310063835 1983438934
7360411237 3599843452 2516105070 2705623526 6012764848
7065874882 2596815793 6789766974 2205700596 8344086973
2162484391 4035998953 5394590944 0704691209 1409387001

4610126483 6999892256 9596881592 0560010165 5256375678

5667227966 1988578279 4848855834 3975187445 4551296563
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Like most branches of science, mathematics is also the hi
paradoxes. It is natural, therefore, that the mathematics of random
phenomena has revealed many interesting paradoxes. Most
monographs on probability theory and mathematical statistics,
contain only a few classical paradoxes. This book, however, presents
‘a more complete collection, including some which have not been
published before, and shows how the mathematical methods of
random phenomena have developed from such paradoxes. The book
also provides a summary of historical and philosophical backgrounds.
The study and understanding of paradoxes leads to better intuition,
particularly in the area of probability, and this volume will be of
interest to those involved in the study of random events.

ISBN90-277-1899-7MAEE15

| |

L“pfsoges‘AjexezSAYVHEIT39371100WSHSISNHOP“LSew9861ELP6S°ELZVOJoou}Ayjiqeqodulsexopeed

000+OLOLO


