- s
,,,,,,,,,,,

Programming Massive.
1 M =T T
Parallel Processors |

y w g b e 08 .
A Hands-on Approach 3 vl

M< N

Programming Massively
Parallel Processors
A Hands-on Approach

Programming Massively
Parallel Processors
A Hands-on Approach

Fourth Edition

Wen-mei W. Hwu
University of Illinois at Urbana-Champaign and NVIDIA,
Champaign, IL, United States

David B. Kirk
Formerly NVIDIA, United States

Izzat El Hajj

American University of Beirut, Beirut, Lebanon

g

ELSEVIER

Morgan Kaufmann is an imprint of Elsevier
50 Hampshire Street, sth Floor, Cambridge, MA 02139, United States

Copyright © 2023 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or any information storage and retrieval system,
without permission in writing from the publisher. Details on how to seek permission, further
information about the Publisher’s permissions policies and our arrangements with organizations such
as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical
treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating
and using any information, methods, compounds, or experiments described herein. In using such
information or methods they should be mindful of their own safety and the safety of others, including
parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume
any liability for any injury and/or damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas
contained in the material herein.

ISBN: 978-0-323-91231-0

For Information on all Morgan Kaufmann publications
visit our website at https://www.elsevier.com/books-and-journals

Publisher: Katey Birtcher

Acquisitions Editor: Stephen R. Merken

Editorial Project Manager: Naomi Robertson
Production Project Manager: Kiruthika Govindaraju
Cover Designer: Bridget Hoette

qh Working together
(L | ™8 1o grow libraries in
Bock&id developing countries

Typeset by MPS Limited, Chennai, India www.elsevier.com » www.bookaid.org

To Sabrina, Amanda, Bryan, and Carissa
To Caroline, Rose, and Leo
To Mona, Amal, and Ali

for enduring our absence while working on the course
and the book—once again!

Contents

FOTEWOTA ...ttt ettt et XV
PIEface ...eooeiieee e Xvii
ACKNOWIEAZIMENES ..ottt sttt s Xxvii
CHAPTER 1 Introduction...............cccccciiiiiiiiieniniicceeeeee, 1
1.1 Heterogeneous parallel cOMPUHNGccoeveveeverirrinirierieieieienieienes 3
1.2 Why more speed or paralleliSm?cccevvvveirieineeenieeieerieenas 7
1.3 Speeding up real appliCationsccoeeveveeverierereerenierenirieieereereeas 9
1.4 Challenges in parallel programming.............c.ceeveververeeereeereenen. 11
1.5 Related parallel programming interfaces...........coceeveervereeerenennen. 13
1.6 Overarching gOalsccceovvieeriereieiieeieeieteeeee e 14
1.7 Organization of the BOOKccceveieririereriereieieieieiereeeeeeiesenens 15
ReferenCes.cooueiuiruieiieieie e 19
Part | Fundamental Concepts
CHAPTER 2 Heterogeneous data parallel computing.................... 23
With special contribution from David Luebke
2.1 Data paralleliSm........ccceerieirieenirieieieeeee e 23
2.2 CUDA C program StrUCLUIEccveereerereereeereeereeesesesseseeseseesens 27
2.3 A vector addition Kernelccceevevieieieinieieiesiesesieeeeeeeneeeas 28
2.4 Device global memory and data transfer.............ccceveverererenennen. 31
2.5 Kernel functions and threading...........cccoeveeeieverieenieerieieieeenen, 35
2.6 Calling kernel funCtionscooveeeveereereriererieeieeeereeereeeeseenens 40
2.7 COMPIIALION ...vevvevinieieieteieiesteteeeteete ettt 42
2.8 SUIMIMAIY..c.cveviieteietiieteieeeteteseetetete e etet b se e eseseesesseseseeseseesans 43
EXEICISES ..uveviiiiieiieiieieieetee ettt ettt st 44
ReferencCes.cooveiuiriieiieieiee e 46
CHAPTER 3 Multidimensional grids and data 47
3.1 Multidimensional grid organization............c..ceceevevverierreruerueeennas 47
3.2 Mapping threads to multidimensional datac.cevevverenenen. 51
3.3 Image blur: a more complex kernel.........cccocoeevereneneineninecnnen 58
3.4 Matrix MultipliCationc.cceevevierierierieieier et eeeaeeeeeeas 62
3.0 SUMMATY .cviieiiieieieieetee ettt 66
EXEICISES ..vviiiiiiiicicicic e 67

vii

viii

Contents

CHAPTER 4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

CHAPTER 5
5.1
5.2
5.3
54
5.5
5.6
5.7

CHAPTER 6
6.1
6.2
6.3
6.4
6.5
6.6

Compute architecture and scheduling....................... 69
Architecture of a modern GPU.........c.cccoeeveiieiiieiiecieiecieeee, 70
Block schedulingcocoveeiininieniinieninieieneeeeeeseeceenen 70
Synchronization and transparent scalabilitycccccoevveriennen. 71
Warps and SIMD hardwWarecccooveerverieenieeneeneenieeneeneens 74
CONIOl AIVETZENCE ...eevvveeniieiieeieeieerite ettt ettt s 79
Warp scheduling and latency tolerance...........cceeeeeveerieeneennenns 83
Resource partitioning and OCCUPANCYcooveerveervercieenrienieeieene 85
Querying deviCe PrOPEertiesccevverveereereerireerreeiieenieesveeeeennes 87
SUIMIMATY ..ttt ettt ettt ste bt et st esitesateebeesanesaeees 90
EXEICISES -.eoveeniiiieiirieeienieeit ettt 90
REfEIeNCES....c..eeuviiieiiiiieiecc e 92
Memory architecture and data locality 93
Importance of memory access efficiencyccocceeeeereerienneenne. 94
CUDA MEMOTY LYPES...veeriereerieerieerireereenieesieesressieenseesseesseennes 96
Tiling for reduced memory traffic........ccoeceervirnviinviinienienene 103
A tiled matrix multiplication kernelccccceevvveriiinieniennen. 107
Boundary checkscoceevieeniiiiiienienieeeeeecieeeeee e 112
Impact of memory usage on OCCUPANCYccvveereverveerveervennens 115
SUIMIMATY ..ttt ettt ete et e st ebe e beesbeesaeesebesbeesanesnne 118
EXEICISES ..ttt 119
Performance considerationsc.cccccveene. 123
MEMOTY COALBSCING ..eevveeuvieiiiiiieiieniie ettt eieens 124
Hiding memory 1atency.........cocceverieiienieciiniieiieicnceeeie e 133
Thread COArSENINGeevveerieirrieeriienieeieeree ettt ettt eaeens 138
A checklist of OptimIZationsccceveeeveeereerierrienieerieenieeiens 141
Knowing your computation’s bottleneck...........ccccoceecvenernennen. 145
SUMMATY ...t st 146
EXEICISES ..vvieeiiiieiiieeeiieeetee ettt et e e e et e e eree e b e e snsaeeens 146
REferenCeS.veiiiiieeiie et 147

Part Il Parallel Patterns

CHAPTER 7

7.1
7.2
7.3

Convolution

An introduction to constant memory and caching 151
Background..........ccoeeieiiiiiiniiiee e 152
Parallel convolution: a basic algorithmccecevireenincenens 156
Constant memory and caching..........cccceceevevienieevienenreenenneennen. 159

1.4
1.5
7.6

CHAPTER 8
8.1
8.2
8.3
8.4
8.5
8.6

CHAPTER 9
9.1
9.2
9.3
9.4
9.5
9.6
9.7

CHAPTER 10

10.1
10.2
10.3
104
10.5
10.6
10.7
10.8
10.9

Contents

Tiled convolution with halo cellscccccevvecerinenenincninennee 163
Tiled convolution using caches for halo cells..........c.cccoceeeenen. 168
SUMIMATY ...ttt ettt ettt et e b e see e 170
EXETCISES .vviiiiericieiciceeitetee ettt s 171
SENCIl ... 173
Background...........coceoviiiiiiiiiii e 174
Parallel stencil: a basic algorithm...........ccccceeveiniiniiiniinncnnen. 178
Shared memory tiling for stencil SWeep.......cccceevevererenvenennene 179
Thread COArSeNINGcc.eervirieriereeieseeiete ettt 183
RegiSter tIlINGcooveriieiiiieieeeee e 186
SUMIMATY ...ttt ettt st e e e saee e 188
EXEICISES ..uvenienieiieiiiie ettt 188
Parallel histogramc..ccoooeeiiiiiieen, 191
Background...........ccooiiiiiiiiniiieeeee e 192
Atomic operations and a basic histogram kernel 194
Latency and throughput of atomic operations..............c..ccc.c..... 198
Privatization.............cooiiiiiiiiiiic e 200
COArSENING ..ottt 203
AGEIEZATION ..ttt ettt ettt et see st saeeaeeaeas 206
SUMIMATYeeeiiiiieiieeieeet ettt st esee e 208
EXETCISES ..ovviviienieieieieteitetere ettt s 209
REfEIeNCeS.....ccueviiiieicicicicce e 210
Reduction

And mMinimizing diVErgeNCec.ooueeeeeeeeeeeeeeeeeeeeeeeeee, 211
Background...........coceoviiiiiiiiiii e 211
Reduction trees..........cceouiiiiiiiiiiniienicceececc e 213
A simple reduction Kernel...........ccoocerirrieniniininienieeneeeee 217
Minimizing control divergence..........coceeeereereeenerenrenrenuennennes 219
Minimizing memory diVergence..........ecereevuenuereenerneeneenuennens 223
Minimizing global memory acCesses..........ceouerveereeruereerueeruennens 225
Hierarchical reduction for arbitrary input length 226
Thread coarsening for reduced overhead...........cccooceeveninnenen. 228
SUIMMATY ...ttt ettt sttt et 231

EXEICISES .ttt e e eaaaee s 232

X

Contents

CHAPTER 11

1.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8

CHAPTER 12

121
12.2
12.3
124
12.5
12.6
12.7
12.8
12.9

Prefix sum (scan)

An introduction to work efficiency in

parallel algorithmscoovieiiieeeeeeeee e 235
With special contributions from Li-Wen Chang,

Juan Gomez-Luna and John Owens
Background...........ccoeeiiiiiiiiniiieeeeeee e 236
Parallel scan with the Kogge-Stone algorithm.............cc..c....... 238
Speed and work efficiency consideration.............cccceceeeeeiennnne 244
Parallel scan with the Brent-Kung algorithm...........c.ccccccceeeeee. 246
Coarsening for even more work efficiencyccceceevercennene 251
Segmented parallel scan for arbitrary-length inputs 253
Single-pass scan for memory access efficiencycc.cceceeuene 256
SUMMATY ...t 259
EX@ICISES ..cuvenvenieiieiieiieieetietee ettt 260
RefEIeNCES. ..c.veeieiiiiieiieiee e 261
Merge

An introduction to dynamic input data identification.......... 263
With special contributions from Li-Wen Chang and

Jie Lv

Background............ccooiiiiiiiniii e 263
A sequential merge algorithm...........ccccoceeiniiiiniininiininenn. 265
A parallelization approachc.cccoeceeeveriieniennieniieiieeeenene 266
Co-rank function implementationcccceceeveeeeeneneenencenens 268
A basic parallel merge kernelc..cooceeviiniinniniinennicne. 273
A tiled merge kernel to improve coalescingccccceveereennene 275
A circular buffer merge kernelccccoooevieiiniiiiniieiee 282
Thread coarsening for MErgecceoeveevieneeienieneneenie e 288
SUMIMATY ...ttt ettt s 288
EXEICISES ..ttt 289
REfEIeNCES. ..c.vevieiiiiieiieieee e 289

Part lll Advanced Patterns and Applications

CHAPTER 13

13.1
13.2

SOMING ..o 293
With special contributions from Michael Garland

Background..........ccooeeiiiiiiiniiieee e 294
RAIX SOTT c.evieitiieiieiieeieete ettt ettt ettt sve e aesbaesaeesaseens 295

Contents

13.3 Parallel 1adiX SOteivveririeriireeiieeieieieteeesiereeree s ese s seese e 296

13.4 Optimizing for memory coalescingcccveveveereerreeereeerenenns 300

13.5 Choice of radiX VAlUE.......ccecerveirreirieirieiieieeeeie e 302

13.6 Thread coarsening to improve coalescingccceeervevervenennen 305

13.7 Parallel MErge SOIT ...cevvevirueeirreriieeiereiereeetereereeeseseeseseeseseeseneens 306

13.8 Other parallel sort Methods..........ccoeveirieirieirieirieiseeeeeeene 308

13.9 SUMMATY ...cooiviiiiiiiiiieiet ettt v 309

EXEICISES ..ttt e 310

References.cccouieienieiiniiieniiicececee e 310

CHAPTER 14 Sparse matrix computation......................c..ccoeoeeen. 311
14.1 Background...........ccocvevveiivieieeieiieiierieieeretee e eee e eve v e 312

14.2 A simple SpMV kernel with the COO formatcceuenene.. 314

14.3 Grouping row nonzeros with the CSR format............c.cccveneen. 317

14.4 Improving memory coalescing with the ELL format................ 320

14.5 Regulating padding with the hybrid ELL-COO format............ 324

14.6 Reducing control divergence with the JDS format 325

14T SUMMATY ...c.ooviiiieiieiiieieieieeetee ettt b s ere b sbe b s sens 328

EXEICISES ittt 329
References.......cccoevieniriinirieniiiccccceece e 329

CHAPTER 15 Graph traversal.............c...ccooovieeiieieeiceceeeee, 331

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8

CHAPTER 16

16.1
16.2

With special contributions from John Owens and
Juan Gomez-Luna

Background...........coceeeieiiiiniiiieeee e 332
Breadth-first S€archcooceeviiiiiiniiniiceeeeeeeeee 335
Vertex-centric parallelization of breadth-first search................ 338
Edge-centric parallelization of breadth-first search 343
Improving efficiency with frontiers.........c..cccceeeeveencricncencnnn. 345
Reducing contention with privatization...........cceceeeeeenieerueenneen. 348
Other OptiMIZAtIONSccueeviruieriereeieneereie et 350
SUMIMATY ...ttt ettt ettt ettt esaeesabeesbeesseenne 352
EXETCISES .nvviintieiieeiie ettt 353
References.......cccoeevenieiinirieiiccceeeee e 354
Deep 1earning............c.oovveveieeeiieceeeeeeeeeeeeee 355

With special contributions from Carl Pearson and

Boris Ginsburg

Background............cooeiiiiiiiiniee e 356
Convolutional neural NEtWOTKSc.cecvvereieeriierieeieeneenieenaeens 366

Xi

Xii

Contents

16.3
16.4
16.5
16.6

CHAPTER 17

171
17.2
17.3
17.4

CHAPTER 18

18.1
18.2
18.3
18.4
18.5
18.6

CHAPTER 19

19.1
19.2
19.3
19.4
19.5

Convolutional layer: a CUDA inference kernel........................ 376
Formulating a convolutional layer as GEMM...........ccccceeueeee. 379
CUDNN HDBIAIY ..ottt s 385
SUIMMATY ...ttt ettt ettt sttt e 387
EXEICISES ..ttt sttt 388
REfErences.cueveiiieiiiiiiiencccc e 388

Iterative magnetic resonance imaging

FeCONSEIUCHIONocvviiiii e 391
Background............cccooiiiiiiiii e 391
Iterative T€CONSIIUCTION.ccuerieiiiriieieiieieeeeeeeeee e 394
Computing FD ..o 396
SUMIMATY ...ttt ettt s 412
EX@ICISES vttt ettt 413
REfeINCES. ...t 414
Electrostatic potential map 415
With special contributions from John Stone
Background..........cccoeeieiiiiiniiieceeeeeee e 415
Scatter versus gather in kernel designcccccoceeeniiiiennenn. 417
Thread COArSENINGeevveeruiirrieiriieniieeieerte et 422
Memory COAlESCINGcovverveiriirieenierieeeete et 424
Cutoff binning for data size scalabilitycc.cccceeirveninnenen. 425
SUMIMATY c..eeeiieeiieeie ettt ettt 430
EX@ICISES -.eutentiiiieieeiieieet ettt sttt 431
RefEreNCeS. ..c.vieieiieiieiiei e 431
Parallel programming and computational

thinking ..., 433
Goals of parallel computing...........ccccevievienieiiieiieniiieeseenns 433
Algorithm SElEeCtiONcc.coeevuieiieniiieiieiciieecreeeere e 436
Problem decompoOSItion.........ccocueeveenieriieriienieeienie e 440
Computational thinking...........ccceceeieiininiiniiniineiieeee e 444
SUMMATY ...ttt ettt st s ee s 446

RETEIENCES. ... 446

Contents

Part IV Advanced Practices

CHAPTER 20 Programming a heterogeneous computing cluster

20.1
20.2
20.3
204
20.5
20.6
20.7
20.8

CHAPTER 21

21.1
21.2
21.3
21.4
21.5
21.6

CHAPTER 22

22.1
22.2
22.3
22.4
22.5

An introduction to CUDA streamscccceveeeieeeecieecen, 449
With special contributions from Isaac Gelado and
Javier Cabezas

Background...........cocueeiieniiiiiiiee e 449
A TUNNING @XAMPIE...eiriiieiieiiieiieie ettt 450
Message passing interface basiCs........covveereveerieenieniieeneenieenieen. 452
Message passing interface point-to-point communication........ 455
Overlapping computation and communication.........c...eeeveenee. 462
Message passing interface collective communication............... 470
CUDA aware message passing interface.........ccoceeeeerveerueenncene 471
SUMMATY ...ttt 472
EXEICISES .ottt st 472
REferencCes.cc.eeviiriiiiiiieeeeteeeete e 473
CUDA dynamic parallelism...................cc.cooeeveenennn. 475
With special contributions from Juan Gomez-Luna

Background............ccoooiiiiiiiinii e 476
Dynamic paralleliSm OVEIVIEWccceeeeereerieniieienieeieneeeeenees 478
An example: BEZIer CUIVEScovveerieenienieniienieeieeiee e 481
A recursive example: qUALIEes........cceveerueerierieiereeiere e 484
Important cOnSIderations...........coveereererieriersienieieneseeneeeee e 490
SUMMATY ... 492
EXETCISES .ottt 493
A21.1 Support code for quadtree examplec.cceceeveereeeennen. 495
ReferencCes........coevuivieieiiiiinicccceee e 497
Advanced practices and future evolution................ 499

With special contributions from Isaac Gelado and
Mark Harris

Model of host/device INteractionc.ceevveeeeueeeecueeeecneeeennen. 500
Kernel execution CONtrol..........c...cocieeeiuiieeiiieeeiieeeeiee e 505
Memory bandwidth and compute throughputc.cccoeenenee. 508
Programming environment...........cocueveeviereneenenneeneneeneenennen. 510
Future outlooKccccevvieriiiiieieeie ettt 513

RETEIENCEScciioiiiiiieeeeeee e 513

xiii

Xiv

Contents

CHAPTER 23 Conclusion and outlook........................c.ccoevvenennnn. 515
23.1 GOals TEVISILEA ... 515
23.2 FUuture OULLOOKoeiieeieeeie et 516

Appendix A: Numerical considerationscccoeevereeieerenenienenenieneensenneneenens 519

§ 5116 1o SN 537

Foreword

Written by two exceptional computer scientists and pioneers of GPU computing,
Wen-mei and David’s Programming Massively Parallel Processors, Fourth
Edition, by Wen-mei W. Hwu, David B. Kirk, and Izzat El Hajj continues to
make an invaluable contribution to the creation of a new computing model.

GPU computing has become an essential instrument of modern science. This
book will teach you how to use this instrument and give you a superpower tool to
solve the most challenging problems. GPUcomputing willbecome a time
machine that lets you see the future, a spaceship that takes you to new worlds
that are now within reach.

Computing performance is needed to solve many of the world’s most impact-
ful problems. From the beginning of the history of computers, architects sought
parallel computing techniques to boost performance. A hundredfold increase is
equivalent to a decade of CPU advancements that relied on sequential processing.
Despite the great benefits of parallel computing, creating a new computing model
with a virtuous cycle of users, developers, vendors, and distributors has been a
daunting chicken-and-egg problem.

After nearly three decades, NVIDIA GPU computing is pervasive, and mil-
lions of developers have learned parallel programming, many from earlier editions
of this book.

GPU computing is affecting every field of science and industry, even com-
puter science itself. The processing speed of GPUs has enabled deep learning
models to learn from data and to perform intelligent tasks, starting a wave of
invention from autonomous vehicles and robotics to synthetic biology. The era of
Al is underway.

Al is even learning physics and opening the possibility of simulating the
Earth’s climate a millionfold faster than has ever been possible. NVIDIA is build-
ing a GPU supercomputer called Earth-2, a digital twin of the Earth, and partner-
ing with the world’s scientific community to predict the impact of today’s actions
on our climate decades from now.

A life science researcher once said to me, “Because of your GPU, I can do my
life’s work in my lifetime.” So whether you are advancing Al or doing ground-
breaking science, I hope that GPU computing will help you do your life’s work.

Jensen Huang
NVIDIA, Santa Clara, CA, United States

XV

Melani Maheswaran

Preface

We are proud to introduce to you the fourth edition of Programming Massively
Parallel Processors: A Hands-on Approach.

Mass market computing systems that combine multicore CPUs and many-
thread GPUs have brought terascale computing to laptops and exascale computing
to clusters. Armed with such computing power, we are at the dawn of the wide-
spread use of computational experiments in the science, engineering, medical, and
business disciplines. We are also witnessing the wide adoption of GPU computing
in key industry vertical markets, such as finance, e-commerce, oil and gas, and
manufacturing. Breakthroughs in these disciplines will be achieved by using
computational experiments that are of unprecedented levels of scale, accuracy,
safety, controllability, and observability. This book provides a critical ingredient
for this vision: teaching parallel programming to millions of graduate and under-
graduate students so that computational thinking and parallel programming skills
will become as pervasive as calculus skills.

The primary target audience of this book consists of graduate and undergradu-
ate students in all science and engineering disciplines in which computational
thinking and parallel programming skills are needed to achieve breakthroughs.
The book has also been used successfully by industry professional developers
who need to refresh their parallel computing skills and keep up to date with ever-
increasing speed of technology evolution. These professional developers work in
fields such as machine learning, network security, autonomous vehicles, computa-
tional financing, data analytics, cognitive computing, mechanical engineering,
civil engineering, electrical engineering, bioengineering, physics, chemistry,
astronomy, and geography, and they use computation to advance their fields.
Thus these developers are both experts in their domains and programmers. The
book takes the approach of teaching parallel programming by building up an intu-
itive understanding of the techniques. We assume that the reader has at least
some basic C programming experience. We use CUDA C, a parallel programming
environment that is supported on NVIDIA GPUs. There are more than 1 billion
of these processors in the hands of consumers and professionals, and more than
400,000 programmers are actively using CUDA. The applications that you will
develop as part of your learning experience will be runnable by a very large user
community.

Since the third edition came out in 2016, we have received numerous com-
ments from our readers and instructors. Many of them told us about the existing
features they value. Others gave us ideas about how we should expand the book’s
contents to make it even more valuable. Furthermore, the hardware and software
for heterogeneous parallel computing have advanced tremendously since 2016. In
the hardware arena, three more generations of GPU computing architectures,
namely, Volta, Turing, and Ampere, have been introduced since the third edition.

XVii

Xviii

Preface

In the software domain, CUDA 9 through CUDA 11 have allowed programmers
to access new hardware and system features. New algorithms have also been
developed. Accordingly, we added four new chapters and rewrote a substantial
number of the existing chapters.

The four newly added chapters include one new foundational chapter, namely,

Chapter 4 (Compute Architecture and Scheduling), and three new parallel patterns
and applications chapters: Chapter 8 (Stencil), Chapter 10 (Reduction and
Minimizing Divergence), and Chapter 13 (Sorting). Our motivation for adding
these chapters is as follows:

Chapter 4 (Compute Architecture and Scheduling): In the previous edition the
discussions on architecture and scheduling considerations were scattered
across multiple chapters. In this edition, Chapter 4 consolidates these
discussions into one focused chapter that serves as a centralized reference for
readers who are particularly interested in this topic.

Chapter 8 (Stencil): In the previous edition the stencil pattern was briefly
mentioned in the convolution chapter in light of the similarities between the
two patterns. In this edition, Chapter 8 provides a more thorough treatment of
the stencil pattern, emphasizing the mathematical background behind the
computation and aspects that make it different from convolution, thereby
enabling additional optimizations. The chapter also provides an example of
handling three-dimensional grids and data.

Chapter 10 (Reduction and Minimizing Divergence): In the previous edition
the reduction pattern was briefly presented in the performance considerations
chapter. In this edition, Chapter 10 provides a more complete presentation of
the reduction pattern with an incremental approach to applying the
optimizations and a more thorough analysis of the associated performance
tradeoffs.

Chapter 13 (Sorting): In the previous edition, merge sort was briefly alluded
to in the chapter on the merge pattern. In this edition, Chapter 13 presents
radix sort as a noncomparison sort algorithm that is highly amenable to GPU
parallelization and follows an incremental approach to optimizing it and
analyzing the performance tradeoffs. Merge sort is also discussed in this
chapter.

In addition to the newly added chapters, all chapters have been revised, and

some chapters have been substantially rewritten. These chapters include the
following:

Chapter 6 (Performance Considerations): Some architecture considerations
that were previously in this chapter were moved to the new Chapter 4, and the
reduction example was moved to the new Chapter 10. In their place, this
chapter was rewritten to provide a more thorough handling of thread
granularity considerations and, more notably, to provide a checklist of
common performance optimization strategies and the performance bottlenecks

Preface

that each strategy tackles. This checklist is referred to throughout the rest of
the textbook as we optimize the code for implementing various parallel
patterns and applications. The goal is to reinforce a systematic and
incremental methodology for optimizing the performance of parallel programs.
Chapter 7 (Convolution): In the previous edition the chapter on the
convolution pattern used a one-dimensional convolution as a running example,
with a brief handling of two-dimensional convolutions toward the end. In this
edition this chapter was rewritten to focus more on two-dimensional
convolution from the start. This change allows us to address the complexity
and intricacies of higher-dimensional tiling and equip the readers with a better
background for learning convolutional neural networks in Chapter 16.

Chapter 9 (Parallel Histogram): In the previous edition the chapter on the
histogram pattern applied the thread coarsening optimization from the start
and combined the privatization optimization with the use of shared memory.
In this edition this chapter was rewritten to follow a more incremental
approach to performance optimization. The initial implementation that is now
presented does not apply thread coarsening. Privatization and the use of shared
memory for the private bins are distinguished as two separate optimizations,
the former aimed at reducing contention of atomics and the latter aimed at
reducing access latency. Thread coarsening is applied after privatization, since
one major benefit of coarsening is to reduce the number of private copies
committed to the public copy. The new organization of the chapter is more
consistent with the systematic and incremental approach to performance
optimization that is followed throughout the book. We also moved the chapter
to precede the chapters on the reduction and scan patterns in order to
introduce atomic operations sooner, since they are used in multiblock
reduction and single-pass scan kernels.

Chapter 14 (Sparse Matrix Computation): In this edition this chapter was
rewritten to follow a more systematic approach for analyzing the tradeoffs
between different sparse matrix storage formats. The beginning of the chapter
introduces a list of considerations that go into the design of different sparse
matrix storage formats. This list of design considerations is then used
throughout the chapter to systematically analyze the tradeoffs between the
different formats.

Chapter 15 (Graph Traversal): In the previous edition the chapter on graph
traversal focused on a particular BFS parallelization strategy. In this edition
this chapter was significantly expanded to cover a more comprehensive set of
alternative parallelization strategies and to analyze the tradeoffs between
them. These strategies include vertex-centric push-based, vertex-centric pull-
based, edge-centric, and linear algebraic implementations in addition to the
original implementation, which was the vertex-centric push-based frontier-
based implementation. The classification of these alternatives is not unique to
BFS but applies to parallelizing graph algorithms in general.

Xix

XX

Preface

e Chapter 16 (Deep Learning): In this edition this chapter was rewritten to
provide a comprehensive yet intuitive theoretical background for
understanding modern neural networks. The background makes it easier for
the reader to fully understand the computational components of neural
networks, such as fully connected layers, activation, and convolutional layers.
It also removes some of the common barriers to understanding the kernel
functions for training a convolutional neural network.

e Chapter 19 (Parallel Programming and Computational Thinking): In the
previous edition this chapter discussed algorithm selection and problem
decomposition while drawing examples from the chapters on iterative MRI
reconstruction and electrostatic potential map. In this edition the chapter was
revised to draw examples from many more chapters, serving as a concluding
chapter for Parts I and II. The discussion of problem decomposition was
particularly expanded to introduce the generalizations of output-centric
decomposition and input-centric decomposition and to discuss the tradeoffs
between them, using many examples.

e Chapter 21 (CUDA Dynamic Parallelism): In the previous edition this chapter
went into many programming details relating to the semantics of different
programming constructs and API calls in the context of dynamic parallelism.
In this edition the focus of the chapter has shifted more toward the application
examples, with the other programming details discussed more briefly while
referring interested readers to the CUDA programming guide.

While making all these improvements, we tried to preserve the features that
seem to contribute most to the book’s popularity. First, we keep our explanations
as intuitive as possible. While it is tempting to formalize some of the concepts,
especially when we cover the basic parallel algorithms, we have striven to keep
all our explanations intuitive and practical. Second, we keep the book as concise
as possible. Although it is tempting to keep adding new material, we wanted to
minimize the number of pages a reader needs to go through to learn all the key
concepts. We accomplished this by moving the previous chapter on numerical
considerations to the appendix. While numerical considerations are an extremely
important aspect of parallel computing, we found that a substantial amount of the
content in the chapter was already familiar to many of our readers who come
from a computer science or computational science background. For this reason
we preferred to dedicate more space to covering additional parallel patterns.

In addition to adding new chapters and substantially rewriting others since the
previous edition, we have also organized the book into four major parts. This
organization is illustrated in Fig. P.1. The first part introduces the fundamental
concepts behind parallel programming, the GPU architecture, and performance
analysis and optimization. The second part applies these concepts by covering six
common computation patterns and showing how they can be parallelized and
optimized. Each parallel pattern also introduces a new programming feature or
technique. The third part introduces additional advanced patterns and applications

Chapter 1
Introduction

Chapter 2
Heterogeneous Data
Parallel Computing

Preface

"
B v v
3 Chapter 3 Chapter 4
g Multidimensional GPU Architecture and
= O Grids and Data Scheduling
£ ' '
©
a <
[} Chapter 5
g Memory Architecture
'g and Data Locality
2 v
o
Chapter 6
Performance
Considerations
v v L2 v
2 Chapter 7 Chapter 9 Chapter 10 Chapter 12
E Convolution Parallel Histogram |- Reduction and Merge
= E Minimizing Divergence
£ a
£3 '
© Chapter 8 Chapter 11
g Stencil Prefix Sum (Scan)
_____________________________ - _______________'._______________________
$ v L 4 v v
Chapter 17 Chapter 16 Chapter 14 Chapter 13
'g Iterative MRI b FL] R Sparse Matrix Sap ?
] Reconstruction eep Learning Computation orting
w
w
55 :
= £ g Chapter 18 Chapter 15
+ @© i i
ctad g Electrostatic Potential Graph Traversal
a T a Map
8 o I T
c < Y v v ¥
g Chapter 19
-<° Parallel Programming and|
Computational Thinking
R = T 2
> 9 8 o Chapter 20 Chapter 21 Chapter 22
h % 8 Hlager;mg:]lgguas) P . Advanced Practices
© > © 8 Dynamic Parallelism .
a o A~ Computing Cluster and Future Evolution
< o
Chapter 23
Conclusion and
Outlook

Organization of the book.

and continues to apply the optimizations that are practiced in the second part.
However, it puts more emphasis on exploring alternative forms of problem
decomposition to parallelize a computation and analyzes the tradeoffs between
different decompositions and their associated data structures. Finally, the fourth
part exposes the reader to advanced practices and programming features.

xxii

Preface

How to use the hook

We would like to offer some of our experience in teaching courses with this
book. Since 2006 we have taught multiple types of courses: in one-semester for-
mat and in one-week intensive format. The original ECE498AL course has
become a permanent course known as ECE408 or CS483 at the University of
Illinois at Urbana-Champaign. We started to write up some of the early chapters
of this book when we offered ECE498AL the second time. The first four chapters
were also tested in an MIT class taught by Nicolas Pinto in the spring of 2009.
Since then, we have used the book for numerous offerings of ECE408 as well as
the Coursera Heterogeneous Parallel Programming course and the VSCSE and
PUMPS summer schools.

A two-phased approach

Most of the chapters in the book are designed to be covered in approximately a
single 75-minute lecture each. The chapters that may need two 75-minute lectures
to be fully covered are Chapter 11 (Prefix Sum (Scan)), Chapter 14 (Sparse
Matrix Computation), and Chapter 15 (Graph Traversal). In ECE408 the lectures,
programming assignments, and final project are paced with each other and are
organized into two phases.

In the first phase, which consists of Parts I and II of this book, students learn
about fundamentals and basic patterns, and they practice the skills that they learn
via guided programming assignments. This phase consists of 12 chapters and typi-
cally takes around seven weeks. Each week, students work on a programming
assignment corresponding to that week’s lectures. For example, in the first week,
a lecture based on Chapter 2 is dedicated to teaching the basic CUDA memory/
threading model, the CUDA extensions to the C language, and the basic program-
ming tools. After that lecture, students can write a simple vector addition code in
a couple of hours.

The following 2 weeks include a series of four lectures based on Chapters 3
through 6 that give students the conceptual understanding of the CUDA memory
model, the CUDA thread execution model, GPU hardware performance features,
and modern computer system architecture. During these two weeks, students
work on different implementations of matrix-matrix multiplication in which they
see how the performance of their implementations increases dramatically through-
out this period. In the remaining four weeks, the lectures cover common data-
parallel programming patterns that are needed to develop a high-performance
parallel application based on Chapters 7 through 12. Throughout these weeks,
students complete assignments on convolution, histogram, reduction, and prefix
sum. By the end of the first phase, students should be quite comfortable with

Preface

parallel programming and should be ready to implement more advanced code
with less handholding.

In the second phase, which consists of Parts III and IV, students learn about
advanced patterns and applications while they work on a final project that
involves accelerating an advanced pattern or application. They also learn about
advanced practices that they may find useful when finalizing their projects.
Although we do not usually assign weekly programming assignments during this
phase, the project typically has a weekly milestone to help the students pace
themselves. Depending on the duration and format of the course, instructors may
not be able to cover all the chapters in this phase and may need to skip some.
Instructors might also choose to replace some lectures with guest lectures, paper
discussion sessions, or lectures that support the final project. For this reason,
Fig. P.1 uses arrows to indicate the dependences between chapters to assist
instructors in selecting what chapters they can skip or reorder to customize the
course for their particular context.

Tying it all together: the final project

While the lectures, labs, and chapters of this book help to lay the intellectual
foundation for the students, what brings the learning experience together is the
final project. The final project is so important to the full-semester course that it is
prominently positioned in the course and commands nearly two months’ worth of
focus. It incorporates five innovative aspects: mentoring, workshop, clinic, final
report, and symposium. While much of the information about the final project is
available in the Illinois-NVIDIA GPU Teaching Kit, we would like to offer the
reasoning behind the design of these aspects.

Students are encouraged to base their final projects on problems that represent
current challenges in the research community. To seed the process, the instructors
should recruit several computational science research groups to propose problems
and serve as mentors. The mentors are asked to contribute a one- to two-page
project specification sheet that briefly describes the significance of the applica-
tion, what the mentor would like to accomplish with the student teams on the
application, the technical skills (particular types of math, physics, and chemistry
courses) that are required to understand and work on the application, and a list of
web and traditional resources on which students can draw for technical back-
ground, general information, and building blocks, along with specific URLs or
FTP paths to particular implementations and coding examples. These project
specification sheets also provide students with learning experiences in defining
their own research projects later in their careers. Several examples are available
in the Illinois-NVIDIA GPU Teaching Kit.

XXiii

XXiv

Preface

The design document

Once the students have decided on a project and formed a team, they are required
to submit a design document for the project. This helps them to think through the
project steps before they jump into it. The ability to do such planning will be
important to their later career success. The design document should discuss the
background and motivation for the project, the application-level objectives and
potential impact, the main features of the end application, an overview of their
design, an implementation plan, their performance goals, a verification plan and
acceptance test, and a project schedule.

The project report and symposium

Students are required to submit a project report on their team’s key findings. We
also recommend a whole-day class symposium. During the symposium, students
use presentation slots proportional to the size of the teams. During the presenta-
tion the students highlight the best parts of their project report for the benefit of
the whole class. The presentation accounts for a significant part of the students’
grades. Each student must answer questions that are directed to the student indi-
vidually, so different grades can be assigned to individuals in the same team. The
symposium is an opportunity for students to learn to produce a concise presenta-
tion that motivates their peers to read a full paper.

Class competition

In 2016 the enrollment level of ECE408 far exceeded the level that could be
accommodated by the final project process. As a result, we moved from the final
project to a class competition. At the midpoint of the semester we announce a
competition challenge problem. We use one lecture to explain the competition
challenge problem and the rules that will be used for ranking the teams. All stu-
dent submissions are auto-graded and ranked. The final ranking of each team is
determined by the execution time, correctness, and clarity of their parallel code.
The students do a demo of their solution at the end of the semester and submit a
final report. This compromise preserves some of the benefits of final projects
when the class size makes final projects infeasible.

Course resources

The Illinois-NVIDIA GPU Teaching Kit is a publicly available resource that con-
tains lecture slides and recordings, lab assignments, final project guidelines, and

Preface

sample project specifications for instructors who use this book for their classes. In
addition, we are in the process of making the courses of the Illinois
undergraduate-level and graduate-level offerings based on this book publicly
available. While this book provides the intellectual contents for these classes, the
additional material will be crucial in achieving the overall education goals.

Finally, we encourage you to submit your feedback. We would like to hear
from you if you have any ideas for improving this book. We would like to know
how we can improve the supplementary online material. Of course, we also like
to know what you liked about the book. We look forward to hearing from you.

Wen-mei W. Hwu
David B. Kirk
Izzat El Hajj

XXV

Acknowledgments

There are so many people who have made special contributions to this fourth edi-
tion. We would like first to thank the contributing chapter coauthors. Their names
are listed in the chapters to which they made special contributions. Their expertise
made a tremendous difference in the technical contents of this new edition.
Without the expertise and contribution of these individuals, we would not have
been able to cover the topics with the level of insight that we wanted to provide
to our readers.

We would like to especially acknowledge Ian Buck, the father of CUDA, and
John Nickolls, the lead architect of Tesla GPU Computing Architecture. Their
teams built excellent infrastructure for this course. Many engineers and research-
ers at NVIDIA have also contributed to the rapid advancement of CUDA, which
supports the efficient implementation of advanced parallel patterns. John passed
away while we were working on the second edition. We miss him dearly.

Our external reviewers have spent numerous hours of their precious time to
give us insightful feedback since the third edition: Sonia Lopez Alarcon
(Rochester Institute of Technology), Bedrich Benes (Purdue University), Bryan
Chin (UCSD), Samuel Cho (Wake Forest University), Kevin Farrell (Institute of
Technology, Blanchardstown, Dublin, Ireland), Lahouari Ghouti (King Fahd
University of Petroleum and Minerals, Saudi Arabia), Marisa Gil (Universitat
Politecnica de Catalunya, Barcelona, Spain), Karen L. Karavanic (Portland State
University), Steve Lumetta (University of Illinois at Urbana-Champaign), Dejan
Milojici (Hewlett-Packard Labs), Pinar Muyan-Ozcelik (California State
University, Sacramento), Greg Peterson (University of Tennessee—Knoxville),
José L. Sanchez (University of Castilla—La Mancha), Janche Sang (Cleveland
State University), and Jan Verschelde (University of Illinois at Chicago). Their
comments helped us to significantly improve the content and readability of the
book.

Steve Merken, Kiruthika Govindaraju, Naomi Robertson, and their staff at
Elsevier worked tirelessly on this project.

We would like to especially thank Jensen Huang for providing a great amount
of financial and human resources for developing the course that laid the founda-
tion for this book.

We would like to acknowledge Dick Blahut, who challenged us to embark on
the project. Beth Katsinas arranged a meeting between Dick Blahut and NVIDIA
Vice President Dan Vivoli. Through that gathering, Blahut was introduced to
David and challenged David to come to Illinois and create the original
ECE498AL course with Wen-mei.

We would like to especially thank our colleagues Kurt Akeley, Al Aho,
Arvind, Dick Blahut, Randy Bryant, Bob Colwell, Bill Dally, Ed Davidson, Mike
Flynn, Michael Garland, John Hennessy, Pat Hanrahan, Nick Holonyak, Dick
Karp, Kurt Keutzer, Chris Lamb, Dave Liu, David Luebke, Dave Kuck, Nacho

XXVii

xxviii Acknowledgments

Navarro, Sanjay Patel, Yale Patt, David Patterson, Bob Rao, Burton Smith, Jim
Smith, and Mateo Valero, who have taken the time to share their insight with us
over the years.

We are humbled by the generosity and enthusiasm of all the great people who
contributed to the course and the book.

CHAPTER

Introduction

Chapter Outline

1.1 Heterogeneous parallel computingccccoccmriccimrrcccr e 3
1.2 Why more speed or parallelism?
1.3 Speeding up real applications

1.4 Challenges in parallel programmingccccccceeicccicscmrrrnncscssceer e e s ssseee e e e eeenses
1.5 Related parallel programming interfaces
1.6 0verarching 0alsccccoieccicccmiririccccecrre s sn e e e s s mnn e e s e e s mmnn e e e e e annnnn
1.7 Organization of the hook ..o
References

Ever since the beginning of computing, many high-valued applications have
demanded more execution speed and resources than the computing devices can
offer. Early applications rely on the advancement of processor speed, memory
speed, and memory capacity to enhance application-level capabilities such as the
timeliness of weather forecasts, the accuracy of engineering structural analyses,
the realism of computer-generated graphics, the number of airline reservations
processed per second, and the number of fund transfers processed per second.
More recently, new applications such as deep learning have demanded even more
execution speed and resources than the best computing devices can offer. These
application demands have fueled fast advancement in computing device capabili-
ties in the past five decades and will continue to do so in the foreseeable future.
Microprocessors based on a single central processing unit (CPU) that appear
to execute instructions in sequential steps, such as those in the X 86 processors
from Intel and AMD, armed with fast increasing clock frequency and hardware
resources, drove rapid performance increases and cost reductions in computer
applications in the 1980s and 1990s. During the two decades of growth, these
single-CPU microprocessors brought GFLOPS, or giga (10%) floating-point
operations per second, to the desktop and TELOPS, or tera (10'%) floating-point
operations per second, to data centers. This relentless drive for performance
improvement has allowed application software to provide more functionality,
have better user interfaces, and generate more useful results. The users, in turn,
demand even more improvements once they become accustomed to these
improvements, creating a positive (virtuous) cycle for the computer industry.

Programming Massively Parallel Processors. DOI: https://doi.org/10.1016/B978-0-323-91231-0.00006-9
© 2023 Elsevier Inc. All rights reserved.

2

CHAPTER 1 Introduction

However, this drive has slowed down since 2003, owing to energy consumption
and heat dissipation issues. These issues limit the increase of the clock frequency
and the productive activities that can be performed in each clock period within a
single CPU while maintaining the appearance of executing instructions in sequen-
tial steps. Since then, virtually all microprocessor vendors have switched to a model
in which multiple physical CPUs, referred to as processor cores, are used in each
chip to increase the processing power. A traditional CPU can be viewed as a
single-core CPU in this model. To benefit from the multiple processor cores, users
must have multiple instruction sequences, whether from the same application or dif-
ferent applications, that can simultaneously execute on these processor cores. For a
particular application to benefit from multiple processor cores, its work must be
divided into multiple instruction sequences that can simultaneously execute on
these processor cores. This switch from a single CPU executing instructions in
sequential steps to multiple cores executing multiple instruction sequences in paral-
lel has exerted a tremendous impact on the software developer community.

Traditionally, the vast majority of software applications are written as sequen-
tial programs that are executed by processors whose design was envisioned by
von Neumann in his seminal report in 1945 (von Neumann et al., 1972). The exe-
cution of these programs can be understood by a human as sequentially stepping
through the code based on the concept of a program counter, also known as an
instruction pointer in the literature. The program counter contains the memory
address of the next instruction that will be executed by the processor. The
sequence of instruction execution activities resulting from this sequential, step-
wise execution of an application is referred to as a thread of execution, or simply
thread, in the literature. The concept of threads is so important that it will be
more formally defined and used extensively in the rest of this book.

Historically, most software developers relied on the advances in hardware,
such as increased clock speed and executing multiple instructions under the hood,
to increase the speed of their sequential applications; the same software simply
runs faster as each new processor generation is introduced. Computer users also
grew to expect that these programs run faster with each new generation of micro-
processors. This expectation has not been valid for over a decade. A sequential
program will run on only one of the processor cores, which will not become sig-
nificantly faster from generation to generation. Without performance improve-
ment, application developers will no longer be able to introduce new features and
capabilities into their software as new microprocessors are introduced; this
reduces the growth opportunities of the entire computer industry.

Rather, the application software that will continue to enjoy significant perfor-
mance improvement with each new generation of microprocessors will be parallel
programs, in which multiple threads of execution cooperate to complete the work
faster. This new, dramatically escalated advantage of parallel programs over
sequential programs has been referred to as the concurrency revolution (Sutter
and Larus, 2005). The practice of parallel programming is by no means new. The
high-performance computing (HPC) community has been developing parallel

1.1 Heterogeneous parallel computing

programs for decades. These parallel programs typically ran on expensive large-
scale computers. Only a few elite applications could justify the use of these com-
puters, thus limiting the practice of parallel programming to a small number of
application developers. Now that all new microprocessors are parallel computers,
the number of applications that need to be developed as parallel programs has
increased dramatically. There is now a great need for software developers to learn
about parallel programming, which is the focus of this book.

Heterogeneous parallel computing

Since 2003 the semiconductor industry has settled on two main trajectories for
designing microprocessors (Hwu et al., 2008). The multicore trajectory seeks to
maintain the execution speed of sequential programs while moving into multiple
cores. The multicores began with two-core processors, and the number of cores
has increased with each semiconductor process generation. A recent example is a
recent Intel multicore server microprocessor with up to 24 processor cores, each
of which is an out-of-order, multiple instruction issue processor implementing the
full X 86 instruction set, supporting hyperthreading with two hardware threads,
designed to maximize the execution speed of sequential programs. Another exam-
ple is a recent ARM Ampere multicore server processor with 128 processor cores.

In contrast, the many-thread trajectory focuses more on the execution through-
put of parallel applications. The many-thread trajectory began with a large num-
ber of threads, and once again, the number of threads increases with each
generation. A recent exemplar is the NVIDIA Tesla A100 graphics processing
unit (GPU) with tens of thousands of threads, executing in a large number of sim-
ple, in-order pipelines. Many-thread processors, especially GPUs, have led the
race of floating-point performance since 2003. As of 2021, the peak floating-
point throughput of the A100 GPU is 9.7 TFLOPS for 64-bit double-precision,
156 TFLOPS for 32-bit single-precision, and 312 TFLOPS for 16-bit half-preci-
sion. In comparison, the peak floating-point throughput of the recent Intel 24-core
processor is 0.33 TLOPS for double-precision and 0.66 TFLOPS for single-
precision. The ratio of peak floating-point calculation throughput between many-
thread GPUs and multicore CPUs has been increasing for the past several years.
These are not necessarily application speeds; they are merely the raw speeds that
the execution resources can potentially support in these chips.

Such a large gap in peak performance between multicores and many-threads
has amounted to a significant “electrical potential” buildup, and at some point,
something will have to give. We have reached that point. To date, this large peak
performance gap has already motivated many applications developers to move the
computationally intensive parts of their software to GPUs for execution. Perhaps
even more important, the drastically elevated performance of parallel execution
has enabled revolutionary new applications such as deep learning that are

L
3

I
4

CHAPTER 1 Introduction

intrinsically composed of computationally intensive parts. Not surprisingly, these
computationally intensive parts are also the prime target of parallel programming:
When there is more work to do, there is more opportunity to divide the work
among cooperating parallel workers, that is, threads.

One might ask why there is such a large peak performance gap between
many-threaded GPUs and multicore CPUs. The answer lies in the differences in
the fundamental design philosophies between the two types of processors, as illus-
trated in Fig. 1.1. The design of a CPU, as shown in Fig. 1.1A, is optimized for
sequential code performance. The arithmetic units and operand data delivery logic
are designed to minimize the effective latency of arithmetic operations at the cost
of increased use of chip area and power per unit. Large last-level on-chip caches
are designed to capture frequently accessed data and convert some of the long-
latency memory accesses into short-latency cache accesses. Sophisticated branch
prediction logic and execution control logic are used to mitigate the latency of
conditional branch instructions. By reducing the latency of operations, the CPU
hardware reduces the execution latency of each individual thread. However,
the low-latency arithmetic units, sophisticated operand delivery logic, large cache
memory, and control logic consume chip area and power that could otherwise be
used to provide more arithmetic execution units and memory access channels.
This design approach is commonly referred to as latency-oriented design.

The design philosophy of the GPUs, on the other hand, has been shaped by
the fast-growing video game industry, which exerts tremendous economic pres-
sure for the ability to perform a massive number of floating-point calculations
and memory accesses per video frame in advanced games. This demand motivates
GPU vendors to look for ways to maximize the chip area and power budget dedi-
cated to floating-point calculations and memory access throughput.

|
CPU GPU
(latency-oriented design) (throughput-oriented design)
(A) (B)

FIGURE 1.1

CPUs and GPUs have fundamentally different design philosophies: (A) CPU design is
latency oriented; (B) GPU design is throughput-oriented.

1.1 Heterogeneous parallel computing

The need for performing a massive number of floating-point calculations per
second in graphics applications for tasks such as viewpoint transformations and
object rendering is quite intuitive. Additionally, the need for performing a mas-
sive number of memory accesses per second is just as important and perhaps even
more important. The speed of many graphics applications is limited by the rate at
which data can be delivered from the memory system into the processors and
vice versa. A GPU must be capable of moving extremely large amounts of data
into and out of graphics frame buffers in its DRAM (dynamic random-access
memory) because such movement is what makes video displays rich and satisfy-
ing to gamers. The relaxed memory model (the way in which various system soft-
ware, applications, and I/O devices expect their memory accesses to work) that is
commonly accepted by game applications also makes it easier for the GPUs to
support massive parallelism in accessing memory.

In contrast, general-purpose processors must satisfy requirements from legacy
operating systems, applications, and I/O devices that present more challenges to
supporting parallel memory accesses and thus make it more difficult to increase
the throughput of memory accesses, commonly referred to as memory bandwidth.
As a result, graphics chips have been operating at approximately 10 times the
memory bandwidth of contemporaneously available CPU chips, and we expect
that GPUs will continue to be at an advantage in terms of memory bandwidth for
some time.

An important observation is that reducing latency is much more expensive
than increasing throughput in terms of power and chip area. For example, one
can double the arithmetic throughput by doubling the number of arithmetic units
at the cost of doubling the chip area and power consumption. However, reduc-
ing the arithmetic latency by half may require doubling the current at the cost
of more than doubling the chip area used and quadrupling the power consump-
tion. Therefore the prevailing solution in GPUs is to optimize for the execution
throughput of massive numbers of threads rather than reducing the latency of
individual threads. This design approach saves chip area and power by allowing
pipelined memory channels and arithmetic operations to have long latency. The
reduction in area and power of the memory access hardware and arithmetic units
allows the GPU designers to have more of them on a chip and thus increase the
total execution throughput. Fig. 1.1 visually illustrates the difference in the
design approaches by showing a smaller number of larger arithmetic units and a
smaller number of memory channels in the CPU design in Fig. 1.1A, in contrast
to the larger number of smaller arithmetic units and a larger number of memory
channels in Fig. 1.1B.

The application software for these GPUs is expected to be written with a large
number of parallel threads. The hardware takes advantage of the large number of
threads to find work to do when some of them are waiting for long-latency mem-
ory accesses or arithmetic operations. Small cache memories in Fig. 1.1B are pro-
vided to help control the bandwidth requirements of these applications so that
multiple threads that access the same memory data do not all need to go to the

L
5

6

CHAPTER 1 Introduction

DRAM. This design style is commonly referred to as throughput-oriented design,
as it strives to maximize the total execution throughput of a large number of
threads while allowing individual threads to take a potentially much longer time
to execute.

It should be clear that GPUs are designed as parallel, throughput-oriented comput-
ing engines, and they will not perform well on some tasks on which CPUs are
designed to perform well. For programs that have one or very few threads, CPUs
with lower operation latencies can achieve much higher performance than GPUs.
When a program has a large number of threads, GPUs with higher execution
throughput can achieve much higher performance than CPUs. Therefore one should
expect that many applications use both CPUs and GPUs, executing the sequential
parts on the CPU and the numerically intensive parts on the GPUs. This is why the
Compute Unified Device Architecture (CUDA) programming model, introduced by
NVIDIA in 2007, is designed to support joint CPU-GPU execution of an application.

It is also important to note that speed is not the only decision factor when appli-
cation developers choose the processors for running their applications. Several other
factors can be even more important. First and foremost, the processors of choice
must have a very large presence in the marketplace, referred to as the installed
base of the processor. The reason is very simple. The cost of software development
is best justified by a very large customer population. Applications that run on a pro-
cessor with a small market presence will not have a large customer base. This has
been a major problem with traditional parallel computing systems that have negligi-
ble market presence compared to general-purpose microprocessors. Only a few elite
applications that are funded by the government and large corporations have been
successfully developed on these traditional parallel computing systems. This has
changed with many-thread GPUs. Because of their popularity in the PC market,
GPUs have been sold by the hundreds of millions. Virtually all desktop PCs and
high-end laptops have GPUs in them. There are more than 1 billion CUDA-enabled
GPUs in use to date. Such a large market presence has made these GPUs economi-
cally attractive targets for application developers.

Another important decision factor is practical form factors and easy accessibil-
ity. Until 2006, parallel software applications ran on data center servers or
departmental clusters. But such execution environments tend to limit the use of
these applications. For example, in an application such as medical imaging, it is
fine to publish a paper based on a 64-node cluster machine. But actual clinical
applications on Magnetic Resonance Imaging (MRI) machines have been based
on some combination of a PC and special hardware accelerators. The simple rea-
son is that manufacturers such as GE and Siemens cannot sell MRIs that require
racks of computer server boxes in clinical settings, while this is common in aca-
demic departmental settings. In fact, the National Institutes of Health (NIH)
refused to fund parallel programming projects for some time; they believed that
the impact of parallel software would be limited because huge cluster-based
machines would not work in the clinical setting. Today, many companies ship
MRI products with GPUs, and the NIH funds research using GPU computing.

1.2 Why more speed or parallelism?

Until 2006, graphics chips were very difficult to use because programmers
had to use the equivalent of graphics API (application programming interface)
functions to access the processing units, meaning that OpenGL or Direct3D tech-
niques were needed to program these chips. Stated more simply, a computation
must be expressed as a function that paints a pixel in some way in order to exe-
cute on these early GPUs. This technique was called GPGPU, for general purpose
programming using a GPU. Even with a higher-level programming environment,
the underlying code still needs to fit into the APIs that are designed to paint pix-
els. These APIs limit the kinds of applications that one can actually write for
early GPUs. Consequently, GPGPU did not become a widespread programming
phenomenon. Nonetheless, this technology was sufficiently exciting to inspire
some heroic efforts and excellent research results.

Everything changed in 2007 with the release of CUDA (NVIDIA, 2007).
CUDA did not represent software changes alone; additional hardware was added
to the chip. NVIDIA actually devoted silicon area to facilitate the ease of parallel
programming. In the G80 and its successor chips for parallel computing, GPGPU
programs no longer go through the graphics interface at all. Instead, a new
general-purpose parallel programming interface on the silicon chip serves the
requests of CUDA programs. The general-purpose programming interface greatly
expands the types of applications that one can easily develop for GPUs. All the
other software layers were redone as well so that the programmers can use the
familiar C/C++ programming tools.

While GPUs are an important class of computing devices in heterogeneous
parallel computing, there are other important types of computing devices that are
used as accelerators in heterogeneous computing systems. For example, field-
programmable gate arrays have been widely used to accelerate networking appli-
cations. The techniques covered in this book using GPUs as the learning vehicle
also apply to the programming tasks for these accelerators.

Why more speed or parallelism?

As we stated in Section 1.1, the main motivation for massively parallel program-
ming is for applications to enjoy continued speed increases in future hardware
generations. As we will discuss in the chapters on parallel patterns, advanced pat-
terns, and applications (Parts II and III, Chapters 7 through 19), when an applica-
tion is suitable for parallel execution, a good implementation on a GPU can
achieve a speed up of more than 100 times over sequential execution on a single
CPU core. If the application includes what we call “data parallelism,” it is often
possible to achieve a 10X speedup with just a few hours of work.

One might ask why applications will continue to demand increased speed.
Many applications that we have today seem to be running quite fast enough.
Despite the myriad of computing applications in today’s world, many exciting mass

L
7

8

CHAPTER 1 Introduction

market applications of the future are what we previously considered supercomput-
ing applications, or superapplications. For example, the biology research commu-
nity is moving more and more into the molecular level. Microscopes, arguably the
most important instrument in molecular biology, used to rely on optics or electronic
instrumentation. However, there are limitations to the molecular-level observations
that we can make with these instruments. These limitations can be effectively
addressed by incorporating a computational model to simulate the underlying
molecular activities with boundary conditions set by traditional instrumentation.
With simulation we can measure even more details and test more hypotheses than
can ever be imagined with traditional instrumentation alone. These simulations will
continue to benefit from increasing computing speeds in the foreseeable future in
terms of the size of the biological system that can be modeled and the length of
reaction time that can be simulated within a tolerable response time. These
enhancements will have tremendous implications for science and medicine.

For applications such as video and audio coding and manipulation, consider
our satisfaction with digital high-definition (HD) TV in comparison to older
NTSC TV. Once we experience the level of details in the picture on an HDTYV, it
is very hard to go back to older technology. But consider all the processing that is
needed for that HDTV. It is a highly parallel process, as are three-dimensional
(3D) imaging and visualization. In the future, new functionalities such as view
synthesis and high-resolution display of low-resolution videos will demand more
computing power in the TV. At the consumer level, we will begin to see an
increasing number of video and image-processing applications that improve the
focus, lighting, and other key aspects of the pictures and videos.

Among the benefits that are offered by more computing speed are much better
user interfaces. Smartphone users now enjoy a much more natural interface with
high-resolution touch screens that rival a large-screen TV. Undoubtedly, future
versions of these devices will incorporate sensors and displays with 3D perspec-
tives, applications that combine virtual and physical space information for
enhanced usability, and voice and computer vision—based interfaces, requiring
even more computing speed.

Similar developments are underway in consumer electronic gaming. In the past,
driving a car in a game was simply a prearranged set of scenes. If your car bumped
into an obstacle, the course of your vehicle did not change; only the game score
changed. Your wheels were not bent or damaged, and it was no more difficult to
drive, even if you lost a wheel. With increased computing speed, the games can be
based on dynamic simulation rather than prearranged scenes. We can expect to
experience more of these realistic effects in the future. Accidents will damage your
wheels, and your online driving experience will be much more realistic. The ability
to accurately model physical phenomena has already inspired the concept of digital
twins, in which physical objects have accurate models in the simulated space so
that stress testing and deterioration prediction can be thoroughly conducted at much
lower cost. Realistic modeling and simulation of physics effects are known to
demand very large amounts of computing power.

1.3 Speeding up real applications

An important example of new applications that have been enabled by drasti-
cally increased computing throughput is deep learning based on artificial neural
networks. While neural networks have been actively researched since the 1970s,
they have been ineffective in practical applications because it takes too much
labeled data and too much computation to train these networks. The rise of the
Internet offered a tremendous number of labeled pictures, and the rise of GPUs
offered a surge of computing throughput. As a result, there has been a fast adop-
tion of neural network—based applications in computer vision and natural lan-
guage processing since 2012. This adoption has revolutionized computer vision
and natural language processing applications and triggered fast development of
self-driving cars and home assistant devices.

All the new applications that we mentioned involve simulating and/or repre-
senting a physical and concurrent world in different ways and at different levels,
with tremendous amounts of data being processed. With this huge quantity of
data, much of the computation can be done on different parts of the data in paral-
lel, although they will have to be reconciled at some point. In most cases, effec-
tive management of data delivery can have a major impact on the achievable
speed of a parallel application. While techniques for doing so are often well
known to a few experts who work with such applications on a daily basis, the
vast majority of application developers can benefit from a more intuitive under-
standing and practical working knowledge of these techniques.

We aim to present the data management techniques in an intuitive way to
application developers whose formal education may not be in computer sci-
ence or computer engineering. We also aim to provide many practical code
examples and hands-on exercises that help the reader to acquire working
knowledge, which requires a practical programming model that facilitates
parallel implementation and supports proper management of data delivery.
CUDA offers such a programming model and has been well tested by a large
developer community.

Speeding up real applications

How much speedup can we expect from parallelizing an application? The defini-
tion of speedup for an application by computing system A over computing system
B is the ratio of the time used to execute the application in system B over the
time used to execute the same application in system A. For example, if an appli-
cation takes 10 seconds to execute in system A but takes 200 seconds to execute
in System B, the speedup for the execution by system A over system B would be
200/10=20, which is referred to as a 20X (20 times) speedup.

The speedup that is achievable by a parallel computing system over a serial com-
puting system depends on the portion of the application that can be parallelized. For
example, if the percentage of time spent in the part that can be parallelized is 30%,

9

10

CHAPTER 1 Introduction

a 100X speedup of the parallel portion will reduce the total execution time of the
application by no more than 29.7%. That is, the speedup for the entire application
will be only about 1/(1 — 0.297)=1.42X . In fact, even infinite amount of speedup in
the parallel portion can only slash 30% off the execution time, achieving no more
than 1.43X speedup. The fact that the level of speedup that one can achieve through
parallel execution can be severely limited by the parallelizable portion of the appli-
cation is referred to as Amdahl’s Law (Amdahl, 2013). On the other hand, if 99% of
the execution time is in the parallel portion, a 100X speedup of the parallel portion
will reduce the application execution to 1.99% of the original time. This gives the
entire application a 50X speedup. Therefore it is very important that an application
has the vast majority of its execution in the parallel portion for a massively parallel
processor to effectively speed up its execution.

Researchers have achieved speedups of more than 100X for some applica-
tions. However, this is typically achieved only after extensive optimization and
tuning after the algorithms have been enhanced so that more than 99.9% of the
application work is in the parallel portion.

Another important factor for the achievable level of speedup for applications
is how fast data can be accessed from and written to the memory. In practice,
straightforward parallelization of applications often saturates the memory
(DRAM) bandwidth, resulting in only about a 10X speedup. The trick is to
figure out how to get around memory bandwidth limitations, which involves
doing one of many transformations to utilize specialized GPU on-chip memories
to drastically reduce the number of accesses to the DRAM. However, one must
further optimize the code to get around limitations such as limited on-chip mem-
ory capacity. An important goal of this book is to help the reader to fully under-
stand these optimizations and become skilled in using them.

Keep in mind that the level of speedup that is achieved over single-core CPU
execution can also reflect the suitability of the CPU to the application. In some
applications, CPUs perform very well, making it harder to speed up performance
using a GPU. Most applications have portions that can be much better executed
by the CPU. One must give the CPU a fair chance to perform and make sure that
the code is written so that GPUs complement CPU execution, thus properly
exploiting the heterogeneous parallel computing capabilities of the combined
CPU/GPU system. As of today, mass market computing systems that combine
multicore CPUs and many-core GPUs have brought terascale computing to lap-
tops and exascale computing to clusters.

Fig. 1.2 illustrates the main parts of a typical application. Much of a real
application’s code tends to be sequential. These sequential parts are illus-
trated as the “pit” area of the peach; trying to apply parallel computing tech-
niques to these portions is like biting into the peach pit—not a good feeling!
These portions are very hard to parallelize. CPUs tend to do a very good job
on these portions. The good news is that although these portions can take up a
large portion of the code, they tend to account for only a small portion of the
execution time of superapplications.

1.4 Challenges in parallel programming

. Sequential portions

Traditional CPU

D coverage

l:\ Data parallel portions

. GPGPU coverage

- Obstacles

FIGURE 1.2

Coverage of sequential and parallel application portions. The sequential portions and the
traditional (single-core) CPU coverage portions overlap with each other. The previous
GPGPU technique offers very limited coverage of the data parallel portions, since it is
limited to computations that can be formulated into painting pixels. The obstacles refer to
the power constraints that make it hard to extend single-core CPUs to cover more of the
data parallel portions.

Then come what we call the “peach flesh” portions. These portions are easy to
parallelize, as are some early graphics applications. Parallel programming in hetero-
geneous computing systems can drastically improve the speed of these applications.
As illustrated in Fig. 1.2, early GPGPU programming interfaces cover only a small
portion of the peach flesh section, which is analogous to a small portion of the
most exciting applications. As we will see, the CUDA programming interface is
designed to cover a much larger section of the peach flesh of exciting applications.
Parallel programming models and their underlying hardware are still evolving at a
fast pace to enable efficient parallelization of even larger sections of applications.

Challenges in parallel programming

What makes parallel programming hard? Someone once said that if you do not
care about performance, parallel programming is very easy. You can literally
write a parallel program in an hour. But then why bother to write a parallel pro-
gram if you do not care about performance?

This book addresses several challenges in achieving high performance in par-
allel programming. First and foremost, it can be challenging to design parallel
algorithms with the same level of algorithmic (computational) complexity as that
of sequential algorithms. Many parallel algorithms perform the same amount of
work as their sequential counterparts. However, some parallel algorithms do more
work than their sequential counterparts. In fact, sometimes they may do so much
more work that they ended up running slower for large input datasets. This is

L
11

12

parallel program
execution is more
sensitive to imput data
characterisitics

CHAPTER 1 Introduction

especially a problem because fast processing of large input datasets is an impor-
tant motivation for parallel programming.

For example, many real-world problems are most naturally described with
mathematical recurrences. Parallelizing these problems often requires nonintuitive
ways of thinking about the problem and may require redundant work during exe-
cution. There are important algorithm primitives, such as prefix sum, that can
facilitate the conversion of sequential, recursive formulation of the problems into
more parallel forms. We will more formally introduce the concept of work effi-
ciency and will illustrate the methods and tradeoffs that are involved in designing
parallel algorithms that achieve the same level of computational complexity as
their sequential counterparts, using important parallel patterns such as prefix sum
in Chapter 11, Prefix Sum (Scan).

Second, the execution speed of many applications is limited by Mmemory
accessmlatencywand/ormthroughput. We refer to these applications as memory
bound; by contrast, compute bound applications are limited by the number of
instructions performed per byte of data. Achieving high-performance parallel exe-
cution in memory-bound applications often requires methods for improving mem-
ory access speed. We will introduce optimization techniques for memory accesses
in Chapter 5, Memory Architecture and Data Locality and Chapter 6,
Performance Considerations, and will apply these techniques in several chapters
on parallel patterns and applications.

Third, the execution speed of parallel programs is often more sensitive to the
input data characteristics than is the case for their sequential counterparts. Many
real-world applications need to deal with inputs with widely varying characteristics,
such as erratic or unpredictable data sizes and uneven data distributions. These var-
iations in sizes and distributions can cause uneven amount of work to be assigned
to the parallel threads and can significantly reduce the effectiveness of parallel exe-
cution. The performance of parallel programs can sometimes vary dramatically
with these characteristics. We will introduce techniques for regularizing data distri-
butions and/or dynamically refining the number of threads to address these chal-
lenges in the chapters that introduce parallel patterns and applications.

Fourth, some applications can be parallelized while requiring little collabora-
tion across different threads. These applications are often referred to as embar-
rassingly parallel. Other applications require threads to collaborate with each
other, which requires using synchronization operations such as barriers or atomic
operations. These synchronization operations impose overhead on the application
because threads will often find themselves waiting for other threads instead of
performing useful work. We will discuss various strategies for reducing this syn-
chronization overhead throughout this book.

Fortunately, most of these challenges have been addressed by researchers. There
are also common patterns across application domains that allow us to apply solu-
tions that were derived in one domain to challenges in other domains. This is the
primary reason why we will be presenting key techniques for addressing these chal-
lenges in the context of important parallel computation patterns and applications.

1.5 Related parallel programming interfaces

Related parallel programming interfaces

Many parallel programming languages and models have been proposed in the
past several decades (Mattson et al., 2004). The ones that are the most widely
used are OpenMP (Open, 2005) for shared memory multiprocessor systems and
Message Passing Interface (MPI) (MPI, 2009) for scalable cluster computing.
Both have become standardized programming interfaces supported by major com-
puter vendors.

An OpenMP implementation consists of a compiler and a runtime. A program-
mer specifies directives (commands) and pragmas (hints) about a loop to the
OpenMP compiler. With these directives and pragmas, OpenMP compilers gener-
ate parallel code. The runtime system supports the execution of the parallel code
by managing parallel threads and resources. OpenMP was originally designed for
CPU execution and has been extended to support GPU execution. The major
advantage of OpenMP is that it provides compiler automation and runtime sup-
port for abstracting away many parallel programming details from programmers.
Such automation and abstraction can help to make the application code more
portable across systems produced by different vendors as well as different genera-
tions of systems from the same vendor. We refer to this property as performance
portability. However, effective programming in OpenMP still requires the pro-
grammer to understand all the detailed parallel programming concepts that are
involved. Because CUDA gives programmers explicit control of these parallel
programming details, it is an excellent learning vehicle even for someone who
would like to use OpenMP as their primary programming interface. Furthermore,
from our experience, OpenMP compilers are still evolving and improving. Many
programmers will likely need to use CUDA-style interfaces for parts in which
OpenMP compilers fall short.

On the other hand, MPI is a programming interface in which computing nodes
in a cluster do not share memory (MPI, 2009). All data sharing and interaction
must be done through explicit message passing. MPI has been widely used in
HPC. Applications written in MPI have run successfully on cluster computing sys-
tems with more than 100,000 nodes. Today, many HPC clusters employ heteroge-
neous CPU/GPU nodes. The amount of effort that is needed to port an application
into MPI can be quite high, owing to the lack of shared memory across computing
nodes. The programmer needs to perform domain decomposition to partition the
input and output data across individual nodes. On the basis of the domain decom-
position, the programmer also needs to call message sending and receiving func-
tions to manage the data exchange between nodes. CUDA, by contrast, provides
shared memory for parallel execution in the GPU to address this difficulty. While
CUDA is an effective interface with each node, most application developers need
to use MPI to program at the cluster level. Furthermore, there has been increasing
support for multi-GPU programming in CUDA via APIs such as the NVIDIA
Collective Communications Library (NCCL). It is therefore important that a

13

14

CHAPTER 1 Introduction

parallel programmer in HPC understands how to do joint MPI/CUDA program-
ming in modern computing clusters employing multi-GPU nodes, a topic that is
presented in Chapter 20, Programming a Heterogeneous Computing Cluster.

In 2009, several major industry players, including Apple, Intel, AMD/ATI,
and NVIDIA, jointly developed a standardized programming model called Open
Compute Language (OpenCL) (The Khronos Group, 2009). Similar to CUDA, the
OpenCL programming model defines language extensions and runtime APIs to
allow programmers to manage parallelism and data delivery in massively parallel
processors. In comparison to CUDA, OpenCL relies more on APIs and less on
language extensions. This allows vendors to quickly adapt their existing compilers
and tools to handle OpenCL programs. OpenCL is a standardized programming
model in that applications that are developed in OpenCL can run correctly with-
out modification on all processors that support the OpenCL language extensions
and APIL. However, one will likely need to modify the applications to achieve
high performance for a new processor.

Those who are familiar with both OpenCL and CUDA know that there is a
remarkable similarity between the key concepts and features of OpenCL and
those of CUDA. That is, a CUDA programmer can learn OpenCL programming
with minimal effort. More important, virtually all techniques that are learned in
using CUDA can be easily applied to OpenCL programming.

Overarching goals

Our primary goal is to teach you, the reader, how to program massively parallel
processors to achieve high performance. Therefore much of the book is dedi-
cated to the techniques for developing high-performance parallel code. Our
approach will not require a great deal of hardware expertise. Nevertheless, you
will need to have a good conceptual understanding of the parallel hardware
architectures to be able to reason about the performance behavior of your code.
Therefore we are going to dedicate some pages to the intuitive understanding of
essential hardware architecture features and many pages to techniques for devel-
oping high-performance parallel programs. In particular, we will focus on
computational thinking (Wing, 2006) techniques that will enable you to think
about problems in ways that are amenable to high-performance execution on
massively parallel processors.

High-performance parallel programming on most processors requires some
knowledge of how the hardware works. It will probably take many years to build
tools and machines that will enable programmers to develop high-performance
code without this knowledge. Even if we have such tools, we suspect that pro-
grammers who have knowledge of the hardware will be able to use the tools
much more effectively than those who do not. For this reason we dedicate
Chapter 4, Compute Architecture and Scheduling, to introduce the fundamentals

1.7 Organization of the book

of the GPU architecture. We also discuss more specialized architecture concepts
as part of our discussions of high-performance parallel programming techniques.

Our second goal is to teach parallel programming for correct functionality and
reliability, which constitutes a subtle issue in parallel computing. Programmers
who have worked on parallel systems in the past know that achieving initial per-
formance is not enough. The challenge is to achieve it in such a way that you can
debug the code and support users. The CUDA programming model encourages
the use of simple forms of barrier synchronization, memory consistency, and
atomicity for managing parallelism. In addition, it provides an array of powerful
tools that allow one to debug not only the functional aspects, but also the perfor-
mance bottlenecks. We will show that by focusing on data parallelism, one can
achieve both high performance and high reliability in one’s applications.

Our third goal is scalability across future hardware generations by exploring
approaches to parallel programming such that future machines, which will be
more and more parallel, can run your code faster than today’s machines. We want
to help you to master parallel programming so that your programs can scale up to
the level of performance of new generations of machines. The key to such scal-
ability is to regularize and localize memory data accesses to minimize consump-
tion of critical resources and conflicts in updating data structures. Therefore the
techniques for developing high-performance parallel code are also important for
ensuring future scalability of applications.

Much technical knowledge will be required to achieve these goals, so we will
cover quite a few principles and patterns (Mattson et al., 2004) of parallel pro-
gramming in this book. We will not be teaching these principles and patterns on
their own. We will teach them in the context of parallelizing useful applications.
We cannot cover all of them, however, so we have selected the most useful and
well-proven techniques to cover in detail. In fact, the current edition has a signifi-
cantly expanded number of chapters on parallel patterns. We are now ready to
give you a quick overview of the rest of the book.

Organization of the book

This book is organized into four parts. Part I covers fundamental concepts in par-
allel programming, data parallelism, GPUs, and performance optimization. These
foundational chapters equip the reader with the basic knowledge and skills that
are necessary for becoming a GPU programmer. Part II covers primitive parallel
patterns, and Part III covers more advanced parallel patterns and applications.
These two parts apply the knowledge and skills that were learned in the first part
and introduce other GPU architecture features and optimization techniques as the
need for them arises. The final part, Part IV, introduces advanced practices to
complete the knowledge of readers who would like to become expert GPU
programmers.

L
15

16

CHAPTER 1 Introduction

Part I on fundamental concepts consists of Chapters 2—6. Chapter 2,
Heterogeneous Data Parallel Computing, introduces data parallelism and
CUDA C programming. The chapter relies on the fact that the reader has had
previous experience with C programming. It first introduces CUDA C as a
simple, small extension to C that supports heterogeneous CPU/GPU computing
and the widely used single-program, multiple-data parallel programming
model. It then covers the thought processes that are involved in (1) identifying
the part of application programs to be parallelized, (2) isolating the data to be
used by the parallelized code, using an API function to allocate memory on
the parallel computing device, (3) using an API function to transfer data to the
parallel computing device, (4) developing the parallel part into a kernel func-
tion that will be executed by parallel threads, (5) launching a kernel function
for execution by parallel threads, and (6) eventually transferring the data back
to the host processor with an API function call. We use a running example of
vector addition to illustrate these concepts. While the objective of Chapter is
to teach enough concepts of the CUDA C programming model so that the
reader can write a simple parallel CUDA C program, it covers several basic
skills that are needed to develop a parallel application based on any parallel
programming interface.

Chapter 3, Multidimensional Grids and Data, presents more details of the paral-
lel execution model of CUDA, particularly as it relates to handling multidimen-
sional data using multidimensional organizations of threads. It gives enough insight
into the creation, organization, resource binding, and data binding of threads to
enable the reader to implement sophisticated computation using CUDA C.

Chapter 4, Compute Architecture and Scheduling, introduces the GPU architec-
ture, with a focus on how the computational cores are organized and how threads
are scheduled to execute on these cores. Various architecture considerations are dis-
cussed, with their implications on the performance of code that is executed on the
GPU architecture. These include concepts such as transparent scalability, SIMD
execution and control divergence, multithreading and latency tolerance, and occu-
pancy, all of which are defined and discussed in the chapter.

Chapter 5, Memory Architecture and Data Locality, extends Chapter 4,
Compute Architecture and Scheduling, by discussing the memory architecture of
a GPU. It also discusses the special memories that can be used to hold CUDA
variables for managing data delivery and improving program execution speed.
We introduce the CUDA language features that allocate and use these memories.
Appropriate use of these memories can drastically improve the data access
throughput and help to alleviate the traffic congestion in the memory system.

Chapter 6, Performance Considerations, presents several important perfor-
mance considerations in current CUDA hardware. In particular, it gives more
details about desirable patterns of thread execution and memory accesses. These
details form the conceptual basis for programmers to reason about the conse-
quences of their decisions on organizing their computation and data. The chapter
concludes with a checklist of common optimization strategies that GPU

1.7 Organization of the book

programmers often use to optimize any computation pattern. This checklist will
be used throughout the next two parts of the book to optimize various parallel pat-
terns and applications.

Part II on primitive parallel patterns consists of Chapters 7—12. Chapter 7,
Convolution, presents convolution, a frequently used parallel computing pattern
that is rooted in digital signal processing and computer vision and requires careful
management of data access locality. We also use this pattern to introduce constant
memory and caching in modern GPUs. Chapter 8, Stencil, presents stencil, a pat-
tern that is similar to convolution but is rooted in solving differential equations
and has specific features that present unique opportunities for further optimization
of data access locality. We also use this pattern to introduce 3D organizations of
threads and data and to showcase an optimization introduced in Chapter 6,
Performance Considerations, that targets thread granularity.

Chapter 9, Parallel Histogram, covers histogram, a pattern that is widely used
in statistical data analysis as well as pattern recognition in large datasets. We also
use this pattern to introduce atomic operations as a means for coordinating con-
current updates to shared data and the privatization optimization, which reduces
the overhead of these operations. Chapter 10, Reduction and Minimizing
Divergence, introduces the reduction tree pattern, which is used to summarize a
collection of input data. We also use this pattern to demonstrate the impact of
control divergence on performance and show techniques for how this impact can
be mitigated. Chapter 11, Prefix Sum (Scan), presents prefix sum, or scan, an
important parallel computing pattern that coverts inherently sequential computa-
tion into parallel computation. We also use this pattern to introduce the concept
of work efficiency in parallel algorithms. Finally, Chapter 12, Merge, covers par-
allel merge, a widely used pattern in divide-and-concur work-partitioning strate-
gies. We also use this chapter to introduce dynamic input data identification and
organization.

Part III on advanced parallel patterns and applications is similar in spirit to
Part II, but the patterns that are covered are more elaborate and often include
more application context. Thus these chapters are less focused on introducing
new techniques or features and more focused on application-specific considera-
tions. For each application we start by identifying alternative ways of formulat-
ing the basic structure of the parallel execution and follow up with reasoning
about the advantages and disadvantages of each alternative. We then go through
the steps of code transformation that are needed to achieve high performance.
These chapters help the readers to put all the materials from the previous chap-
ters together and support them as they take on their own application develop-
ment projects.

Part III consists of Chapters 13—19. Chapter 13, Sorting, presents two forms
of parallel sorting: radix sort and merge sort. This advanced pattern leverages
more primitive patterns that were covered in previous chapters, particularly prefix
sum and parallel merge. Chapter 14, Sparse Matrix Computation, presents sparse
matrix computation, which is widely used for processing very large datasets.

L
17

18

CHAPTER 1 Introduction

The chapter introduces the reader to the concepts of rearranging data for more
efficient parallel access: data compression, padding, sorting, transposition, and
regularization. Chapter 15, Graph Traversal, introduces graph algorithms and how
graph search can be efficiently implemented in GPU programming. Many differ-
ent strategies are presented for parallelizing graph algorithms, and the impact of
the graph structure on the choice of best algorithm is discussed. These strategies
build on the more primitive patterns, such as histogram and merge.

Chapter 16, Deep Learning, covers deep learning, which is becoming an
extremely important area for GPU computing. We introduce the efficient imple-
mentation of convolutional neural networks and leave more in-depth discussion to
other sources. The efficient implementation of the convolution neural networks
leverages techniques such as tiling and patterns such as convolution. Chapter 17,
ITterative Magnetic Resonance Imaging Reconstruction, covers non-Cartesian MRI
reconstruction and how to leverage techniques such as loop fusion and scatter-to-
gather transformations to enhance parallelism and reduce synchronization over-
head. Chapter 18, Electrostatic Potential Map, covers molecular visualization and
analysis, which benefit from techniques to handle irregular data by applying les-
sons learned from sparse matrix computation.

Chapter 19, Parallel Programming and Computational Thinking, introduces
computational thinking, the art of formulating and solving computational pro-
blems in ways that are more amenable to HPC. It does so by covering the concept
of organizing the computation tasks of a program so that they can be done in par-
allel. We start by discussing the translational process of organizing abstract scien-
tific, problem-specific concepts into computational tasks, which is an important
first step in producing high-quality application software, serial or parallel. The
chapter then discusses parallel algorithm structures and their effects on applica-
tion performance, which is grounded in the performance tuning experience with
CUDA. Although we do not go into the implementation details of these alterna-
tive parallel programming styles, we expect that the readers will be able to learn
to program in any of them with the foundation that they gain in this book. We
also present a high-level case study to show the opportunities that can be seen
through creative computational thinking.

Part IV on advanced practices consists of Chapters 20—22. Chapter 20,
Programming a Heterogeneous Computing Cluster, covers CUDA programming
on heterogeneous clusters, in which each compute node consists of both CPUs
and GPUs. We discuss the use of MPI alongside CUDA to integrate both inter-
node computing and intranode computing and the resulting communication issues
and practices. Chapter 21, CUDA Dynamic Parallelism, covers dynamic parallel-
ism, which is the ability of the GPU to dynamically create work for itself based
on the data or program structure rather than always waiting for the CPU to do so.
Chapter 22, Advanced Practices and Future Evolution, goes through a list of mis-
cellaneous advanced features and practices that are important for CUDA program-
mers to be aware of. These include topics such as zero-copy memory, unified
virtual memory, simultaneous execution of multiple kernels, function calls,

References

exception handling, debugging, profiling, double-precision support, configurable
cache/scratchpad sizes, and others. For example, early versions of CUDA pro-
vided limited shared memory capability between the CPU and the GPU. The pro-
grammers needed to explicitly manage the data transfer between CPU and GPU.
However, current versions of CUDA support features such as unified virtual
memory and zero-copy memory that enable seamless sharing of data between
CPUs and GPUs. With such support, a CUDA programmer can declare variables
and data structures as shared between CPU and GPU. The runtime hardware and
software maintain coherence and automatically perform optimized data transfer
operations on behalf of the programmer on a need basis. Such support signifi-
cantly reduces the programming complexity that is involved in overlapping data
transfer with computation and I/O activities. In the introductory part of the text-
book, we use the APIs for explicit data transfer so that reader gets a better under-
standing of what happens under the hood. We later introduce unified virtual
memory and zero-copy memory in Chapter 22, Advanced Practices and Future
Evolution.

Although the chapters throughout this book are based on CUDA, they help the
readers to build up the foundation for parallel programming in general. We believe
that humans understand best when we learn from concrete examples. That is, we
must first learn the concepts in the context of a particular programming model, which
provides us with solid footing when we generalize our knowledge to other program-
ming models. As we do so, we can draw on our concrete experience from the CUDA
examples. In-depth experience with CUDA also enables us to gain maturity, which
will help us to learn concepts that may not even be pertinent to the CUDA model.

Chapter 23, Conclusion and Outlook, offers concluding remarks and an out-
look for the future of massively parallel programming. We first revisit our goals
and summarize how the chapters fit together to help achieve the goals. We then
conclude with a prediction that these fast advances in massively parallel comput-
ing will make it one of the most exciting areas in the coming decade.

References

Amdahl, G.M., 2013. Computer architecture and amdahl’s law. Computer 46 (12), 38—46.

Hwu, W.W., Keutzer, K., Mattson, T., 2008. The concurrency challenge. IEEE Design and
Test of Computers 312—320.

Mattson, T.G., Sanders, B.A., Massingill, B.L., 2004. Patterns of Parallel Programming,
Addison-Wesley Professional.

Message Passing Interface Forum, 2009. MPI — A Message Passing Interface Standard
Version 2.2. http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf, September 4.

NVIDIA Corporation, 2007. CUDA Programming Guide, February.

OpenMP Architecture Review Board, 2005. OpenMP application program interface.

Sutter, H., Larus, J., 2005. Software and the concurrency revolution, in. ACM Queue 3 (7),
54—-62.

19

20 CHAPTER 1 Introduction

The Khronos Group, 2009. The OpenCL Specification version 1.0. http://www.khronos.
org/registry/cl/specs/opencl-1.0.29.pdf.

von Neumann, J., 1972. First draft of a report on the EDVAC. In: Goldstine, H.H. (Ed.),
The Computer: From Pascal to von Neumann. Princeton University Press, Princeton,
NJ, ISBN 0—-691-02367-0.

Wing, J., 2006. Computational thinking. Communications of the ACM 49 (3).

CHAPTER

Heterogeneous data parallel
computing

With special contribution from David Luebke

Chapter Outline

2.1 Data paralleliSmccoiiiiiiiiccccrrr e csece e e e e s e n e e e nnn e e e e e e ann 23
2.2 CUDA C program StrUCIUI®ccceeiieiiieiiisess s s s s e s e s e ssnsnnens 27
2.3 A vector addition Kernel ..o 28
2.4 Device global memory and data transfer —.........ccccceeemircinssnnscr s 31
2.5 Kernel functions and threadingcccccccccmrcememrssserssssseerssseessssne s s sme e ssssnnes 35
2.6 Calling kernel fUNCtionsccciiiiiiiiieceir e cece e mmm e e e ann 40
b2 B 1111 1 1 N 42
P Y11 11111 SN 43
EXBICISES 1ivcrrreerrsserrssensssmrssseesssensssnesssme s s e s me s sn s s n e s e e s anessan e s sanessansssanesesnsnssnnnnan 44
20T (=T -1 - 46

data parallelism = independent - so in

parallel - duh)
Data parallelism refers to the phenomenon in which the computation work to be

performed on different parts of the dataset can be done independently of each
other and thus can be done in parallel with each other. Many applications
exhibit a rich amount of data parallelism that makes them amenable to scalable
parallel execution. It is therefore important for parallel programmers to be
familiar with the concept of data parallelism and the parallel programming lan-
guage constructs for writing code that exploit data parallelism. In this chapter
we will use the CUDA C language constructs to develop a simple data parallel
program.

Data parallelism

When modern software applications run slowly, the problem is usually
data—too much data to process. Image-processing applications manipulate

Programming Massively Parallel Processors. DOI: https://doi.org/10.1016/B978-0-323-91231-0.00014-8 23
© 2023 Elsevier Inc. All rights reserved.

-
24

basis of data parallelism =
independent evaluation.

Writing data parallel
code entails
reorganizing

computation around

data such that we can
execute the resulting
independent
computations in parallel.

CHAPTER 2 Heterogeneous data parallel computing

images or videos with millions to trillions of pixels. Scientific applications
model fluid dynamics using billions of grid points. Molecular dynamics
applications must simulate interactions between thousands to billions of
atoms. Airline scheduling deals with thousands of flights, crews, and airport
gates. Most of these pixels, particles, grid points, interactions, flights, and so
on can usually be dealt with largely independently. For example, in image
processing, converting a color pixel to grayscale requires only the data of
that pixel. Blurring an image averages each pixel’s color with the colors of
nearby pixels, requiring only the data of that small neighborhood of pixels.
Even a seemingly global operation, such as finding the average brightness of
all pixels in an image, can be broken down into many smaller computations
that can be executed independently. Such independent evaluation of different
pieces of data is the basis of data parallelism. Writing data parallel code
entails (re)organizing the computation around the data such that we can exe-
cute the resulting independent computations in parallel to complete the over-
all job faster—often much faster.

Let us illustrate the concept of data parallelism with a color=tosgrayscalercon®
versionvexample. Fig. 2.1 shows a color image (left side) consisting of many pix-
els, each containing a red, green, and blue fractional value (r, g, b) varying from
0 (black) to 1 (full intensity).

To convert the color image (left side of Fig. 2.1) to a grayscale image (right
side), we compute the luminance value L for each pixel by applying the following
weighted sum formula:

FIGURE 2.1
Conversion of a color image to a grayscale image.

2.1 Data parallelism

RGB Color Image Representation

In an RGB representation, each pixel in an image is stored as a tuple of
(1, g b) values. The format of an image’s row is (r g b) (rgb) ... (r g b),
as illustrated in the following conceptual picture. Each tuple specifies a
mixture of red (R), green (G) and blue (B). That is, for each pixel, the r, g,
and b values represent the intensity (0 being dark and 1 being full inten-
sity) of the red, green, and blue light sources when the pixel is rendered.

ENEESEENEEEEED
ENEENEENEEEEED
ENEEIEEEEEEEEE
ENEESEEIEEEEED
ENEENEENEEEEED
ENEENEENEENEED
ENEESEENEEEEED
ENEENEENEEEEED
ENEENEENEEEEED
ENEENEENEENEED
ENEESEENEEEEEE
ENEESEENEEEEEE
ENEENEEEEEEEED
ENEEIEEEEEEEEE
EEEE EEEEEEEDE
EEEEEEE

1
[1]
[1]
1
um
[1]
1
ENEEEEEEEEEEEEEEEEEN

EEEEEEEEEEEEEEEEEEEN
EEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEN
EEEEEEEEEEEEEEEEEEEN
SEEEESEEEEEEEEEEEEEEEm
EEEEEEEEEEEEEEEEEEEN
EEEEEEEEEEEEEEEEEEEN
EEEEEEEEEEEEEEEEEEEE
SEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEN

om
amm
omm
oEE
EEEEEEEEEDN
IEEEEEEEES

The actual allowable mixtures of these three colors vary across indus-
try-specified color spaces. Here, the valid combinations of the three colors
in the AdbobeRGB™ color space are shown as the interior of the triangle.
The vertical coordinate (y value) and horizontal coordinate (x value) of
each mixture show the fraction of the pixel intensity that should be G and
R. The remaining fraction (1-y—x) of the pixel intensity should be assigned
to B. To render an image, the r, g, b values of each pixel are used to cal-
culate both the total intensity (luminance) of the pixel as well as the mix-

ture coefficients (GRyIEY=%)

If we consider the input to be an image organized as an array / of RGB
values and the output to be a corresponding array O of luminance values, we
get the simple computation structure shown in Fig. 2.2. For example, O[0] is
generated by calculating the weighted sum of the RGB values in I[0] according
to the formula above; O[1] is generated by calculating the weighted sum of the
RGB values in I[1]; O[2] is generated by calculating the weighted sum of the
RGB values in /[2]; and so on. None of these per-pixel computations depend
on each other. All of them can be performed independently. Clearly, color-to-
grayscale conversion exhibits a rich amount of data parallelism. Of course, data
parallelism in complete applications can be more complex, and much of this
book is devoted to teaching the parallel thinking necessary to find and exploit

data parallelism.

25

L 1/4r0:21 p g0:72 p b0:07

26 CHAPTER 2 Heterogeneous data parallel computing

O[1] is generated by

0[0] is generated by calculating calculating the

the weighted sum of the RGB :

values in I[0] according o the Welighted sum of the
formula above RGB values in I[1]

Input Array 1[0] I[1] 1[2] 1[3] 1[4] I[N-1]
2 g, b g b r,gb g b oo r,gb

%ﬂ& i

Output Array| o o[1] 0[2] 0[3] 0[4] O[N-1]
o s

FIGURE 2.2

Data parallelism in image-to-grayscale conversion. Pixels can be calculated independently
of each other.

Task Parallelism vs. Data Parallelism

Data parallelism is not the only type of parallelism used in parallel pro-
gramming. Task parallelism has also been used extensively in parallel
programming. Task parallelism is typically exposed through task decom-
position of applications. For example, a simple application may need
to do a vector addition and a matrix-vector multiplication. Each of these
would be a task. Task parallelism exists if the two tasks can be done
independently. 1/0 and data transfers are also common sources of tasks.

In large applications, there are usually a larger number of independent
tasks and therefore larger amount of task parallelism. For example, in a
molecular dynamics simulator, the list of natural tasks includes vibrational
forces, rotational forces, neighbor identification for non-bonding forces,
non-bonding forces, velocity and position, and other physical properties
based on velocity and position.

In general, data parallelism is the main source of scalability for par-
allel programs. With large datasets, one can often find abundant data
parallelism to be able to utilize massively parallel processors and allow
application performance to grow with each generation of hardware that
has more execution resources. Nevertheless, task parallelism can also
play an important role in achieving performance goals. We will be cover-
ing task parallelism later when we introduce streams.

2.2 CUDA C program structure

CUDA C program structure

We are now ready to learn how to write a CUDA C program to exploit data paral-
lelism for faster execution. CUDA C' extends the popular ANSI C programming
language with minimal new syntax and library functions to let programmers target
heterogeneous computing systems containing both CPU cores and massively par-
allel GPUs. As the name implies, CUDA C is built on NVIDIA’s CUDA plat-
form. CUDA is currently the most mature framework for massively parallel
computing. It is broadly used in the high-performance computing industry, with
essential tools such as compilers, debuggers, and profilers available on the most
common operating systems.

The structure of a CUDA C program reflects the coexistence of a host (CPU)
and one or more devices (GPUs) in the computer. Each CUDA C source file can
have a mixture of host code and device code. By default, any traditional C pro-
gram is a CUDA program that contains only host code. One can add device code
into any source file. The device code is clearly marked with special CUDA C
keywords. The device code includes functions, or kernels, whose code is executed
in a data-parallel manner.

The execution of a CUDA program is illustrated in Fig. 2.3. The execution
starts with host code (CPU serial code). When a kernel function is called, a large
number of threads are launched on a device to execute the kernel. All the threads
that are launched by a kernel call are collectively called a grid. These threads are
the primary vehicle of parallel execution in a CUDA platform. Fig. 2.3 shows the
execution of two grids of threads. We will discuss how these grids are organized
soon. When all threads of a grid have completed their execution, the grid termi-
nates, and the execution continues on the host until another grid is launched.

27

large

CPI: Sel‘ial Code execution starts with host code E
KernelA<<< nBlk, nTid >>>(args):;
03 When a kernel function is called, a
CPU Serlal COde number of threads are launched on a
device to execute the kernel.
KernelB<<< nBlk, nTid >>>(args):;

FIGURE 2.3
Execution of a CUDA program.

! There has been a steady movement for CUDA C to adopt C++ features. We will be using some
of these C++ features in our programming examples.

28

CHAPTER 2 Heterogeneous data parallel computing

Note that Fig. 2.3 shows a simplified model in which the CPU execution and
the GPU execution do not overlap. Many heterogeneous computing applications
manage overlapped CPU and GPU execution to take advantage of both CPUs
and GPUs.

Launching a grid typically generates many threads to exploit data parallelism.
In the color-to-grayscale conversion example, each thread could be used to com-
pute one pixel of the output array O. In this case, the number of threads that
ought to be generated by the grid launch is equal to the number of pixels in the
image. For large images, a large number of threads will be generated. CUDA pro-
grammers can assume that these threads take very few clock cycles to generate
and schedule, owing to efficient hardware support. This assumption contrasts with
traditional CPU threads, which typically take thousands of clock cycles to gener-
ate and schedule. In the next chapter we will show how to implement color-to-
grayscale conversion and image blur kernels. In the rest of this chapter we will
use vector addition as a running example for simplicity.

Threads

A thread is a simplified view of how a processor executes a sequential pro-
gram in modern computers. A thread consists of the code of the program,
the point in the code that is being executed, and the values of its variables
and data structures. The execution of a thread is sequential as far as a
user is concerned. One can use a source-level debugger to monitor the
progress of a thread by executing one statement at a time, looking at the
statement that will be executed next and checking the values of the vari-
ables and data structures as the execution progresses.

Threads have been used in programming for many years. If a program-
mer wants to start parallel execution in an application, he/she creates and
manages multiple threads using thread libraries or special languages. In
CUDA, the execution of each thread is sequential as well. A CUDA pro-
gram initiates parallel execution by calling kernel functions, which causes
the underlying runtime mechanisms to launch a grid of threads that pro-
cess different parts of the data in parallel.

A vector addition kernel

We use vector addition to demonstrate the CUDA C program structure. Vector
addition is arguably the simplest possible data parallel computation—the parallel
equivalent of “Hello World” from sequential programming. Before we show the
kernel code for vector addition, it is helpful to first review how a conventional
vector addition (host code) function works. Fig. 2.4 shows a simple traditional

thread

- view, how sequential program,

modern comp

- program code, executed code

point, variable + data structure
values
- exectution = sequential

Melani Maheswaran

2 L

o o
o 2.3 A vector addition kernel 29

S
e
eo"l‘d" g,\oo' This is a C program.
o ol We can see a main function and a vector addition function
01
02 void vecAdd(ﬂoa{é)A_h, float* B_h, float* C_h, int n) { Ve Cfor
03 for (int i = 0; i < n; ++i) { aoumoo”’n
04 chlil = A\‘:P:[i] + BRI e
05 ;M 2
06 }
07 int main() { main
08 Hunotion
09
10 e
11 vecAdd(A, B, C @ o
12} e A gt G
R 2™
FIGURE 2.4

A simple traditional vector addition C code example.

C program that consists of a main function and a vector addition function. In all
our examples, whenever there is a need to distinguish between host and device
data, we will suffix the names of variables that are used by the host with “_h”
and those of variables that are used by a device with “_d” to remind ourselves of
the intended usage of these variables. Since we have only host code in Fig. 2.4,
we see only variables suffixed with “_h”.

Pointers in the C Language

The function arguments A, B, and C in Fig. 2.4 are pointers. In the C lan-
guage, a pointer can be used to access variables and data structures.
While a floating-point variable V can be declared with:

float V; \/
a pointer variable P can be declared with: -wgc*c’

float *P; ee ?o

By assigning the address of V to P with the statement P= we

63 > g®
make P “point to V becomes a synonym for V. For example, U="P] Shning
assigns the value of V to U. For another example, *P =3 chang,(’)es the
value of 'V to 3.

An array in a C program can be accessed through a pointer that points
1o its 0™ element. For example, the statementmakes P point
to the 0™ element of array A. _P[i] becomes a synonym for A[i]. In fact, the
array name A is in itself a pointer to its 0" element. -

In Fig. 2.4, passing an array name A as the first argument to function
call to vecAdd makes the function’s first parameter A_h point to_the 0"
element of A. As a result, A_h[i] in the function body can be used to access
A[i] for the array A in the main function.

See Patt & Patel (Patt & Patel, 2020) for an easy-to-follow explanation
of the detailed usage of pointers in C.

30

CHAPTER 2 Heterogeneous data parallel computing

Assume that the vectors to be added are stored in arrays A and B that are allo-
cated and initialized in the main program. The output vector is in array C, which is
also allocated in the main program. For brevity we do not show the details of how
A, B, and C are allocated or initialized in the main function. The pointers to these
arrays are passed to the vecAdd function, along with the variable N that contains
the length of=the vectors. Note that the parameters of the vecAdd function are suf-
fixed with to emphasize that they are used by the host. This naming conven-
tion will be helpful when we introduce device code in the next few steps.

The vecAdd function in Fig. 2.4 uses a for-loop to iterate through the vector
elements. In the ith iteration, output element C_h[1i] receives the sum of A_h[1i]
and B_h[1i]. The vector length parameter n is used to control the loop so that
the number of iterations matches the length of the vectors. The function reads the
elements of A and B and writes the elements of C through the pointers A_h, B_h,
and C_h, respectively. When the vecAdd function returns, the subsequent state-
ments in the main function can access the new contents of C.

A straightforward way to execute vector addition in parallel is to modify the
vecAdd function and move its calculations to a device. The structure of such a
modified vecAdd function is shown in Fig. 2.5. Part 1 of the function allocates
space in the device (GPU) memory to hold copies of the A, B, and C vectors and
copies the A and B vectors from the host memory to the device memory. Part 2

Host (CPU) Device (GPU)

Part 2
Part 1

Host memory Device memory
Part 3

01 void vecAdd(float* A, float* B, float* C, int n) {
02 int size = n* sizeof(float);
03 float *d_A *d_B, *d_C;

04

05

06

07

08

09

10

11

12

13

14

15

16 }

FIGURE 2.5
Outline of a revised vecAdd function that moves the work to a device.

2.4 Device global memory and data transfer

calls the actual vector addition kernel to launch a grid of threads on the device.
Part 3 copies the sum vector C from the device memory to the host memory and
deallocates the three arrays from the device memory.

Note that the revised vecAdd function is essentially an outsourcing agent that
ships input data to a device, activates the calculation on the device, and collects
the results from the device. The agent does so in such a way that the main pro-
gram does not need to even be aware that the vector addition is now actually
done on a device. In practice, such a “transparent” outsourcing model can be very
inefficient because of all the copying of data back and forth. One would often
keep large and important data structures on the device and simply invoke device
functions on them from the host code. For now, however, we will use the simpli-
fied transparent model to introduce the basic CUDA C program structure. The
details of the revised function, as well as the way to compose the kernel function,
will be the topic of the rest of this chapter.

Device global memory and data transfer

In current CUDA systems, devices are often hardware cards that come with their
own dynamic random-access memory called device global memory, or simply
global memory. For example, the NVIDIA Volta V100 comes with 16GB or
32GB of global memory. Calling it “global” memory distinguishes it from other
types of device memory that are also accessible to programmers. Details about
the CUDA memory model and the different types of device memory are discussed
in Chapter 5, Memory Architecture and Data Locality.

For the vector addition kernel, before calling the kernel, the programmer needs
to allocate space in the device global memory and transfer data from the host
memory to the allocated space in the device global memory. This corresponds to
Part 1 of Fig. 2.5. Similarly, after device execution the programmer needs to
transfer result data from the device global memory back to the host memory and
free up the allocated space in the device global memory that is no longer needed.
This corresponds to Part 3 of Fig. 2.5. The CUDA runtime system (typically run-
ning on the host) provides applications programming interface (API) functions to
perform these activities on behalf of the programmer. From this point on, we will
simply say that data is transferred from host to device as shorthand for saying
that the data is copied from the host memory to the device global memory. The
same holds for the opposite direction.

In Fig. 2.5, Part 1 and Part 3 of the vecAdd function need to use the CUDA
API functions to allocate device global memory for A, B, and C; transfer A and B
from host to device; transfer C from device to host after the vector addition; and
free the device global memory for A, B, and C. We will explain the memory allo-
cation and free functions first.

Fig. 2.6 shows two API functions for allocating and freeing device global mem-
ory. The cudaMalloc function can be called from the host code to allocate a piece

L
31

32 CHAPTER 2 Heterogeneous data parallel computing

AP
O\\QQ 6"3”03\@ w cudaMalloc()
6@\ 0\\0 o e Allocates object in the device global memory
N @‘g}(e Two parameters 0
Dﬁj o Address of a pointer to the allocated object do(/&}b
QW @M\ (A\\O Vﬁ/ o Size of allocated object in terms of bytes o
\\O
cudaFree()
‘M e Frees object from device global memory
o Pointer to freed object
FIGURE 2.6

CUDA API functions for managing device global memory.

of device global memory for an object. The reader should notice the striking simi-
larity between cudaMalloc and the standard C runtime library malloc function. This
is intentional; CUDA C is C with minimal extensions. CUDA C uses the standard
C runtime library malloc function to manage the host memory’ and adds
cudaMalloc as an extension to the C runtime library. By keeping the interface as
close to the original C runtime libraries as possible, CUDA C minimizes the time
that a C programmer spends relearning the use of these extensions.

The first parameter to the cudaMalloc function is the address of a pointer vari-
able that will be set to point to the allocated object. The address of the pointer vari-
able should be cast to (void **) because the function expects a generic pointer; the
memory allocation function is a generic function that is not restricted to any particu-
lar type of objects.” This parameter allows the cudaMalloc function to write the
address of the allocated memory into the provided pointer variable regardless of its
type.* The host code that calls kernels passes this pointer value to the kernels that
need to access the allocated memory object. The second parameter to the cudaMalloc
function gives the size of the data to be allocated, in number of bytes. The usage of
this second parameter is consistent with the size parameter to the C malloc function.

We now use the following simple code example to illustrate the use of
cudaMalloc and cudaFree:

float *A_d
int size—n*sizeof(ﬂoat) ;
cudaMalloc((void**)&A_d, size);

cudafFree(A_d);

2 CUDA C also has more advanced library functions for allocating space in the host memory. We
will discuss them in Chapter 20, Programming a Heterogeneous Computing Cluster.

* The fact that cudaMalloc returns a generic object makes the use of dynamically allocated mul-
tidimensional arrays more complex. We will address this issue in Section 3.2.

* Note that cudaMalloc has a different format from the C malloc function. The C malloc func-
tion returns a pointer to the allocated object. It takes only one parameter that specifies the size of
the allocated object. The cudaMalloc function writes to the pointer variable whose address is
given as the first parameter. As a result, the cudaMalloc function takes two parameters. The two-
parameter format of cudaMalloc allows it to use the return value to report any errors in the same
way as other CUDA API functions.

2.4 Device global memory and data transfer

This is a continuation of the example in Fig. 2.5. For clarity we suffix a
pointer variable with “_d” to indicate that it points to an object in the device
global memory. The first argument passed to cudaMalloc is the address of
pointer A_d (i.e., &A_d) casted to a void pointer. When cudaMalloc, returns, A_d
will point to the device global memory region allocated for the A vector. The sec-
ond argument passed to cudaMalloc is the size of the region to be allocated.
Since size is in number of bytes, the programmer needs to translate from the num-
ber of elements in an array to the number of bytes when determining the value of
size. For example, in allocating space for an array of n single-precision floating-
point elements, the value of size would be n times the size of a single-precision
floating number, which is 4 bytes in computers today. Therefore the value of size
would be n*4. After the computation, cudaFree is called with pointer A_d as an
argument to free the storage space for the A vector from the device global mem-
ory. Note that cudaFree does not need to change the value of A_d; it only needs to
use the value of A_d to return the allocated memory back to the available pool.
Thus only the value and not the address of A_d is passed as an argument.

The addresses in A_d, B_d, and C_d point to locations in the device global mem-
ory. These addresses should not be dereferenced in the host code. They should be
used in calling API functions and kernel functions. Dereferencing a device global
memory pointer in host code can cause exceptions or other types of runtime errors.

The reader should complete Part 1 of the vecAdd example in Fig. 2.5 with simi-
lar declarations of B_d and C_d pointer variables as well as their corresponding
cudaMalloc calls. Furthermore, Part 3 in Fig. 2.5 can be completed with the
cudaFree calls for B_d and C_d.

Once the host code has allocated space in the device global memory for the
data objects, it can request that data be transferred from host to device. This is
accomplished by calling one of the CUDA API functions. Fig. 2.7 shows such an
API function, cudaMemcpy. The cudaMemcpy function takes four parameters. The
first parameter is a pointer to the destination location for the data object to be
copied. The second parameter points to the source location. The third parameter
specifies the number of bytes to be copied. The fourth parameter indicates the
types of memory involved in the copy: from host to host, from host to device,
from device to host, and from device to device. For example, the memory copy
function can be used to copy data from one location in the device global memory
to another location in the device global memory.

cudaMemcpy()
e memory data transfer
e Requires four parameters
o Pointer to destination
o Pointer to source
o Number of bytes copied
o Type/Direction of transfer

FIGURE 2.7
CUDA API function for data transfer between host and device.

L
33

34

CHAPTER 2 Heterogeneous data parallel computing

The vecAdd function calls the cudaMemcpy function to copy the A_h and B_h
vectors from the host memory to A_d and B_d in the device memory before adding
them and to copy the C_d vector from the device memory to C_h in the host mem-
ory after the addition has been done. Assuming that the values of A_h, B_h, A_d,
B_d, and size have already been set as we discussed before, the three cudaMemcpy
calls are shown below. The two symbolic constants, cudaMemcpyHostToDevice and
cudaMemcpyDeviceToHost, are recognized, predefined constants of the CUDA pro-
gramming environment. Note that the same function can be used to transfer data in
both directions by properly ordering the source and destination pointers and using
the appropriate constant for the transfer type.

cudaMemcpy(A_d, A_h, size, cudaMemcpyHostToDevice);
cudaMemcpy(B_d, B_h, size, cudaMemcpyHostToDevice);

cudaMemcpy(C_h, C_d, size, cudaMemcpyDeviceToHost);

To summarize, the main program in Fig. 2.4 calls vecAdd, which is also exe-
cuted on the host. The vecAdd function, outlined in Fig. 2.5, allocates space in
device global memory, requests data transfers, and calls the kernel that performs
the actual vector addition. We refer to this type of host code as a stub for calling
a kernel. We show a more complete version of the vecAdd function in Fig. 2.8.

01 void vecAdd(float* A_h, float* B_h, float* C_h, int n) {

02 int size = n * sizeof(float);

03 float *A_d, *B_d, *C_d;

04

05 cudamalloc((void **) &A_d, size);

06 cudaMalloc((void **) &B_d, size);

07 cudamaTlloc((void **) &C_d, size);

08

09 cudamemcpy(A_d, A_h, size, cudaMemcpyHostToDevice);
10 cudaMemcpy (B_d, B_h, size, cudaMemcpyHostToDevice);
11

12

13

14

15 cudaMemcpy(C_h, C_d, size, cudaMemcpyDeviceToHost);
16

17 cudaFree(A_d);

18 cudaFree(B_d);

19 cudaFree(cC_d);

20 }

FIGURE 2.8

A more complete version of vecAdd().

2.5 Kernel functions and threading

Compared to Fig. 2.5, the vecAdd function in Fig. 2.8 is complete for Part 1 and
Part 3. Part 1 allocates device global memory for A_d, B_d, and C_d and transfers
A_h to A_d and B_h to B_d. This is done by calling the cudaMalloc and cudaMemcpy
functions. The readers are encouraged to write their own function calls with the
appropriate parameter values and compare their code with that shown in Fig. 2.8.
Part 2 calls the kernel and will be described in the following subsection. Part 3 cop-
ies the vector sum data from the device to the host so that the values will be avail-
able in the main function. This is accomplished with a call to the cudaMemcpy
function. It then frees the memory for A_d, B_d, and C_d from the device global
memory, which is done by calls to the cudaFree function (Fig. 2.9).

Error Checking and Handling in CUDA

In general, it is important for a program to check and handle errors.
CUDA API functions return flags that indicate whether an error has
occurred when they served the request. Most errors are due to inappropri-
ate argument values used in the call.

For brevity, we will not show error checking code in our examples. For
example, Fig. 2.9 shows a call to cudaMalloc:

cudaMalloc((void**) &A_d, size);

In practice, we should surround the call with code that test for error
condition and print out error messages so that the user can be aware of
the fact that an error has occurred. A simple version of such checking
code is as follows:

cudaError_t err=cudaMalloc((void™*) &A_d, size);

if (error!=cudaSuccess) {
printf(“%s in %s at line Zd\n”, cudaGetErrorString(err),
_ FILE , _LINE_);

exTt (EXIT_FAILURE);
/

This way, if the system is out of device memory, the user will be
informed about the situation. This can save many hours of debugging time.

One could define a C macro to make the checking code more concise
in the source.

Kernel functions and threading

We are now ready to discuss more about the CUDA C kernel functions and the
effect of calling these kernel functions. In CUDA C, a kernel function specifies

L
35

36

CHAPTER 2 Heterogeneous data parallel computing

the code to be executed by all threads during a parallel phase. Since all these
threads execute the same code, CUDA C programming is an instance of the well-
known single-program multiple-data (SPMD) (Atallah, 1998) parallel program-
ming style, a popular programming style for parallel computing systems."

When a program’s host code calls a kernel, the CUDA runtime system
launches a grid of threads that are organized into a two-level hierarchy. Each grid
is organized as an array of thread blocks, which we will refer to as blocks for
brevity. All blocks of a grid are of the same size; each block can contain up to
1024 threads on current systems.’ Fig. 2.9 shows an example in which each block
consists of 256 threads. Each thread is represented by a curly arrow stemming
from a box that is labeled with the thread’s index number in the block.

Built-in Variables

Many programming languages have built-in variables. These variables
have special meaning and purpose. The values of these variables are often
pre-initialized by the runtime system and are typically read-only in the
program. The programmers should refrain from redefining these variables
for any other purposes.

The total number of threads in each thread block is specified by the host code
when a kernel is called. The same kernel can be called with different numbers
of threads at different parts of the host code. For a given grid of threads, the
number of threads in a block is available in a built-in variable named blockDim.
The blockDim variable is a struct with three unsigned integer fields (x, y, and z)
that help the programmer to organize the threads into a one-, two-, or three-
dimensional array. For a one-dimensional organization, only the x field is used.
For a two-dimensional organization, the x and y fields are used. For a three-
dimensional structure, all three x, y, and z fields are used. The choice of
dimensionality for organizing threads usually reflects the dimensionality of the
data. This makes sense because the threads are created to process data in parallel,
so it is only natural that the organization of the threads reflects the organization
of the data. In Fig. 2.9, each thread block is organized as a one-dimensional array
of threads because the data are one-dimensional vectors. The value of the
blockDim.x variable indicates the total number of threads in each block, which is
256 in Fig. 2.9. In general, it is recommended that the number of threads in each
dimension of a thread block be a multiple of 32 for hardware efficiency reasons.
We will revisit this later.

5 Note that SPMD is not the same as SIMD (single instruction multiple data) [Flynn 1972]. In an
SPMD system the parallel processing units execute the same program on multiple parts of the data.
However, these processing units do not need to be executing the same instruction at the same time.
In an SIMD system, all processing units are executing the same instruction at any instant.

© Each thread block can have up to 1024 threads in CUDA 3.0 and beyond. Some earlier CUDA
versions allow only up to 512 threads in a block.

2.5 Kernel functions and threading

Block 0 Block 1 Block N-1
i = blockldx.x * blockDim.x + i = blockldx.x * blockDim.x + i = blockldx.x * blockDim.x +
threadldx.x; threadldx.x; e threadldx.x;
C[i] = A[i] + B[i]; Cl[i] = A[i] + B[i]; Cl[i] = A[i] + B[i];
FIGURE 2.9

All threads in a grid execute the same kernel code.

CUDA kernels have access to two more built-in variables (threadIdx and
blockIdx) that allow threads to distinguish themselves from each other and to
determine the area of data each thread is to work on. The threadldx variable
gives each thread a unique coordinate within a block. In Fig. 2.9, since we are
using a one-dimensional thread organization, only threadIdx.x is used. The
threadIldx.x value for each thread is shown in the small shaded box of each
thread in Fig. 2.9. The first thread in each block has value O in its threadIdx.x
variable, the second thread has value 1, the third thread has value 2, and so on.

Hierarchical Organizations

Like CUDA threads, many real-world systems are organized hierar-
chically. The U.S. telephone system is a good example. At the top level,
the telephone system consists of “areas” each of which corresponds to a
geographical area. All telephone lines within the same area have the same
3-digit “area code”. A telephone area is sometimes larger than a city. For
example, many counties and cities of central Illinois are within the same
telephone area and share the same area code 217. Within an area, each
phone line has a seven-digit local phone number, which allows each area
to have a maximum of about ten million numbers.

One can think of each phone line as a CUDA thread, with the area code
as the value of blockldx and the seven-digital local number as the value
of threadldx. This hierarchical organization allows the system to have a
very large number of phone lines while preserving “locality” for calling the
same area. That is, when dialing a phone line in the same area, a caller
only needs to dial the local number. As long as we make most of our calls
within the local area, we seldom need to dial the area code. If we occasion-
ally need to call a phone line in another area, we dial 1 and the area code,
followed by the local number. (This is the reason why no local number in
any area should start with a 1.) The hierarchical organization of CUDA
threads also offers a form of locality. We will study this locality soon.

L
37

38

CHAPTER 2 Heterogeneous data parallel computing

The blockIdx variable gives all threads in a block a common block coordi-
nate. In Fig. 2.9, all threads in the first block have value O in their blockIdx.x
variables, those in the second thread block value 1, and so on. Using an analogy
with the telephone system, one can think of threadIdx.x as local phone number
and blockIdx.x as area code. The two together gives each telephone line in the
whole country a unique phone number. Similarly, each thread can combine its
threadldx and blockIdx values to create a unique global index for itself within
the entire grid.

In Fig. 2.9 a unique global index i is calculated as i=blockIdx.x * blockDim.
x + threadIdx.x. Recall that blockDim is 256 in our example. The i values of
threads in block O range from 0 to 255. The i values of threads in block 1 range
from 256 to 511. The i values of threads in block 2 range from 512 to 767. That
is, the i values of the threads in these three blocks form a continuous coverage of
the values from O to 767. Since each thread uses i to access A, B, and C, these
threads cover the first 768 iterations of the original loop. By launching a grid
with a larger number of blocks, one can process larger vectors. By launching a
grid with n or more threads, one can process vectors of length n.

Fig. 2.10 shows a kernel function for vector addition. Note that we do not use
the “_h” and “_d” convention in kernels, since there is no potential confusion. We
will not have any access to the host memory in our examples. The syntax of a
kernel is ANSI C with some notable extensions. First, there is a CUDA-C-
specific keyword “__global__” in front of the declaration of the vecAddKernel
function. This keyword indicates that the function is a kernel and that it can be
called to generate a grid of threads on a device.

In general, CUDA C extends the C language with three qualifier keywords
that can be used in function declarations. The meaning of these keywords is sum-
marized in Fig. 2.11. The “__global__" keyword indicates that the function being
declared is a CUDA C kernel function. Note that there are two underscore charac-
ters on each side of the word “global.” Such a kernel function is executed on the
device and can be called from the host. In CUDA systems that support dynamic
parallelism, it can also be called from the device, as we will see in Chapter 21,

01

02

03 __global__

04 void vecAddkernel(float* A, float* B, float* C, int n) {
05 int i = threadIdx.x + blockbim.x * blockIdx.x;

06 if (i <n) {

07 c[i] = A[i] + B[i];

08 }

09 }

FIGURE 2.10
A vector addition kernel function.

2.5 Kernel functions and threading 39

Qualifier Callable Executed Executed
Keyword From On By
__host__ Caller host
. Host Host e
_ global__ ‘ HOSt Device Newsgridiol

device threads

Caller device

device Device Device
— — thread

FIGURE 2.11
CUDA C keywords for function declaration.

CUDA Dynamic Parallelism. The important feature is that calling such a kernel
function results in a new grid of threads being launched on the device.

The tpudevicens”nkeyword indicates that the function being declared is a
CUDA device function. A device function executes on a CUDA device and can
be called only from a kernel function or another device function. The device func-
tion is executed by the device thread that calls it and does not result in any new
device threads being launched.’

The “__host__” keyword indicates that the function being declared is a
CUDA host function. A host function is simply a traditional C function that exe-
cutes on the host and can be called only from another host function. By default,
all functions in a CUDA program are host functions if they do not have any of
the CUDA keywords in their declaration. This makes sense, since many CUDA
applications are ported from CPU-only execution environments. The programmer
would add kernel functions and device functions during the porting process. The
original functions remain as host functions. Having all functions to default into
host functions spares the programmer the tedious work of changing all original
function declarations.

Note that one can use both “__host__ 7 and “__device__ " in a function decla-
ration. This combination tells the compilation system to generate two versions of
object code for the same function. One is executed on the host and can be called
only from a host function. The other is executed on the device and can be called
only from a device or kernel function. This supports a common use case when the
same function source code can be recompiled to generate a device version. Many
user library functions will likely fall into this category.

The second notable extension to C, in Fig. 2.10, is the built-in variables
“threadlIdx,” “blocklIdx,” and “blockDim.” Recall that all threads execute the same
kernel code and there needs to be a way for them to distinguish themselves from
each other and direct each thread toward a particular part of the data. These built-in
variables are the means for threads to access hardware registers that provide the

7 We will explain the rules for using indirect function calls and recursions in different generations
of CUDA later. In general, one should avoid the use of recursion and indirect function calls in their
device functions and kernel functions to allow maximal portability.

40

CHAPTER 2 Heterogeneous data parallel computing

identifying coordinates to threads. Different threads will see different values in their
threadIdx.x, blockIdx.x, and blockDim.x variables. For readability we will some-
times refer to a thread as thready ocxiax. x, threadrdx.x 0 our discussions.

There is an automatic (local) variable i in Fig. 2.10. In a CUDA kernel func-
tion, automatic variables are private to each thread. That is, a version of i will be
generated for every thread. If the grid is launched with 10,000 threads, there will
be 10,000 versions of i, one for each thread. The value assigned by a thread to its
i variable is not visible to other threads. We will discuss these automatic variables
in more details in Chapter 5, Memory Architecture and Data Locality.

A quick comparison between Fig. 2.4 and Fig. 2.10 reveals an important
insight into CUDA kernels. The kernel function in Fig. 2.10 does not have a loop
that corresponds to the one in Fig. 2.4. The reader should ask where the loop
went. The answer is that the loop is now replaced with the grid of threads. The
entire grid forms the equivalent of the loop. Each thread in the grid corresponds
to one iteration of the original loop. This is sometimes referred to as loop paral-
lelism, in which iterations of the original sequential code are executed by threads
in parallel.

Note that there is an if (i <n) statement in addVecKernel in Fig. 2.10. This is
because not all vector lengths can be expressed as multiples of the block size. For
example, let’s assume that the vector length is 100. The smallest efficient thread
block dimension is 32. Assume that we picked 32 as block size. One would need
to launch four thread blocks to process all the 100 vector elements. However, the
four thread blocks would have 128 threads. We need to disable the last 28 threads
in thread block 3 from doing work not expected by the original program. Since
all threads are to execute the same code, all will test their i values against n,
which is 100. With the if (i <n) statement, the first 100 threads will perform the
addition, whereas the last 28 will not. This allows the kernel to be called to pro-
cess vectors of arbitrary lengths.

Calling kernel functions

Having implemented the kernel function, the remaining step is to call that function
from the host code to launch the grid. This is illustrated in Fig. 2.12. When the host
code calls a kernel, it sets the grid and thread block dimensions via execution

01 int vectAdd(float* A, float* B, float* C, int n) {
02
03
04
05 vecAddKernel<<<ceil(n/256.0), 256>>>(A_d, B_d, C_d, n);
06 }
FIGURE 2.12

A vector addition kernel call statement.

2.6 Calling kernel functions

01 void vecAdd(float* A, float* B, float* C, int n) {
02 float *A_d, *B_d, *C_d;

03 int size = n * s‘izeo?(hoat);
04
05 cudaMalloc((void **) &A_d, size);
06 cudaMalloc((void **) &B_d, size);
07 cudaMalloc((void **) &C_d, size);
08
09 cudaMemcpy(A_d, A, size, cudaMemcpyHostToDevice);
10 cudamemcpy(B_d, B, size, cudaMemcpyHostToDevice);
11
12 vecAddKernel<<<ceil(n/256.0), 256>>>(A_d, B_d, C_d, n);
13
14 cudamemcpy(C, C_d, size, cudaMemcpyDeviceToHost);
15
16 cudaFree(A_d);
17 cudaFree(B_d);
18 cudaFree(C_d);
19 }
FIGURE 2.13

A complete version of the host code in the vecAdd function.

configuration parameters. The configuration parameters are given between the
“<<<” and “>>>" before the traditional C function arguments. The first configu-
ration parameter gives the number of blocks in the grid. The second specifies the
number of threads in each block. In this example there are 256 threads in each
block. To ensure that we have enough threads in the grid to cover all the vector ele-
ments, we need to set the number of blocks in the grid to the ceiling division (round-
ing up the quotient to the immediate higher integer value) of the desired number of
threads (n in this case) by the thread block size (256 in this case). There are many
ways to perform a ceiling division. One way is to apply the C ceiling function to n/
256.0. Using the floating-point value 256.0 ensures that we generate a floating value
for the division so that the ceiling function can round it up correctly. For example, if
we want 1000 threads, we would launch ceil(1000/256.0) = 4 thread blocks. As a
result, the statement will launch 4 X 256 = 1024 threads. With the if (i < n) state-
ment in the kernel as shown in Fig. 2.10, the first 1000 threads will perform addition
on the 1000 vector elements. The remaining 24 will not.

Fig. 2.13 shows the final host code in the vecAdd function. This source code
completes the skeleton in Fig. 2.5. Figs. 2.12 and 2.13 jointly illustrate a simple
CUDA program that consists of both host code and a device kernel. The code is
hardwired to use thread blocks of 256 threads each.® However, the number of
thread blocks used depends on the length of the vectors (n). If n is 750, three thread
blocks will be used. If n is 4000, 16 thread blocks will be used. If n is 2,000,000,
7813 blocks will be used. Note that all the thread blocks operate on different parts
of the vectors. They can be executed in any arbitrary order. The programmer must
not make any assumptions regarding execution order. A small GPU with a small
amount of execution resources may execute only one or two of these thread blocks
in parallel. A larger GPU may execute 64 or 128 blocks in parallel. This gives
CUDA kernels scalability in execution speed with hardware. That is, the same code

8 While we use an arbitrary block size 256 in this example, the block size should be determined by
a number of factors that will be introduced later.

41

-
42

CHAPTER 2 Heterogeneous data parallel computing

runs at lower speed on small GPUs and at higher speed on larger GPUs. We will
revisit this point in Chapter 4, Compute Architecture and Scheduling.

It is important to point out again that the vector addition example is used for
its simplicity. In practice, the overhead of allocating device memory, input data
transfer from host to device, output data transfer from device to host, and deallo-
cating device memory will likely make the resulting code slower than the original
sequential code in Fig. 2.4. This is because the amount of calculation that is done
by the kernel is small relative to the amount of data processed or transferred.
Only one addition is performed for two floating-point input operands and one
floating-point output operand. Real applications typically have kernels in which
much more work is needed relative to the amount of data processed, which makes
the additional overhead worthwhile. Real applications also tend to keep the data
in the device memory across multiple kernel invocations so that the overhead can
be amortized. We will present several examples of such applications.

Compilation

We have seen that implementing CUDA C kernels requires using various exten-
sions that are not part of C. Once these extensions have been used in the code, it
is no longer acceptable to a traditional C compiler. The code needs to be com-
piled by a compiler that recognizes and understands these extensions, such as
NVCC (NVIDIA C compiler). As is shown at the top of Fig. 2.14, the NVCC

Integrated C programs with CUDA extensions

¥

NVCC Compiler

Host Code ‘ ‘ Device Code (PTX)

Host C preprocessor,
compiler/ linker

¥ ¥

Heterogeneous Computing Platform with
CPUs, GPUs

Device just-in-time compiler

FIGURE 2.14
Overview of the compilation process of a CUDA C program.

2.8 Summary

compiler processes a CUDA C program, using the CUDA keywords to separate
the host code and device code. The host code is straight ANSI C code, which is
compiled with the host’s standard C/C++ compilers and is run as a traditional
CPU process. The device code, which is marked with CUDA keywords that des-
ignate CUDA kernels and their associated helper functions and data structures, is
compiled by NVCC into virtual binary files called PTX files. These PTX files are
further compiled by a runtime component of NVCC into the real object files and
executed on a CUDA-capable GPU device.

Summary

This chapter provided a quick, simplified overview of the CUDA C programming
model. CUDA C extends the C language to support parallel computing. We dis-
cussed an essential subset of these extensions in this chapter. For your convenience
we summarize the extensions that we have discussed in this chapter as follows:

Function declarations

CUDA C extends the C function declaration syntax to support heterogeneous par-
allel computing. The extensions are summarized in Fig. 2.12. Using one of
“_global_,” “__device_ ,” or “__host__,” a CUDA C programmer can instruct
the compiler to generate a kernel function, a device function, or a host function.
All function declarations without any of these keywords default to host functions.
If both “__host__” and “_device__” are used in a function declaration, the com-
piler generates two versions of the function, one for the device and one for the
host. If a function declaration does not have any CUDA C extension keyword, the
function defaults into a host function.

EEINT3 2

Kernel call and grid launch

CUDA C extends the C function call syntax with kernel execution configuration
parameters surrounded by <<<<< and >>>>. These execution configuration para-
meters are only used when calling a kernel function to launch a grid. We dis-
cussed the execution configuration parameters that define the dimensions of the
grid and the dimensions of each block. The reader should refer to the CUDA
Programming Guide (NVIDIA, 2021) for more details of the kernel launch exten-
sions as well as other types of execution configuration parameters.

Built-in (predefined) variables

CUDA kernels can access a set of built-in, predefined read-only variables that
allow each thread to distinguish itself from other threads and to determine the

L
43

44

CHAPTER 2 Heterogeneous data parallel computing

area of data to work on. We discussed the threadIdx, blockDim, and blockIdx
variables in this chapter. In Chapter 3, Multidimensional Grids and Data, we will
discuss more details of using these variables.

Runtime application programming interface

CUDA supports a set of API functions to provide services to CUDA C programs.
The services that we discussed in this chapter are cudaMalloc, cudaFree, and
cudaMemcpy functions. These functions are called by the host code to allocate
device global memory, deallocate device global memory, and transfer data between
host and device on behalf of the calling program, respectively. The reader is
referred to the CUDA C Programming Guide for other CUDA API functions.

Our goal for this chapter is to introduce the core concepts of CUDA C and the
essential CUDA extensions to C for writing a simple CUDA C program. The
chapter is by no means a comprehensive account of all CUDA features. Some of
these features will be covered in the remainder of the book. However, our empha-
sis will be on the key parallel computing concepts that are supported by these fea-
tures. We will introduce only the CUDA C features that are needed in our code
examples for parallel programming techniques. In general, we would like to
encourage the reader to always consult the CUDA C Programming Guide for
more details of the CUDA C features.

Exercises

1. If we want to use each thread in a grid to calculate one output element of a
vector addition, what would be the expression for mapping the thread/block
indices to the data index (i)?

(A) i=threadIdx.x+ threadlIdx.y;

(B) i=blockIdx.x + threadldx.x;

(C) i=blocklIdx.x*blockDim.x + threadIdx.x;
(D) i=blockIdx.x * threadldx.x;

2. Assume that we want to use each thread to calculate two adjacent elements of
a vector addition. What would be the expression for mapping the thread/block
indices to the data index (i) of the first element to be processed by a thread?
(A) i=blockIdx.x*blockDim.x + threadldx.x +2;

(B) i=blockIdx.x*threadldx.x*2;
(C) i=(blockIdx.x*blockDim.x + threadldx.x)*2;
(D) i=blockIdx.x*blockDim.x*2 + threadIdx.x;

3. We want to use each thread to calculate two elements of a vector addition.
Each thread block processes 2*blockDim.x consecutive elements that form
two sections. All threads in each block will process a section first, each
processing one element. They will then all move to the next section, each

Exercises

processing one element. Assume that variable i should be the index for the
first element to be processed by a thread. What would be the expression for
mapping the thread/block indices to data index of the first element?

(A) i=blockIdx.x*blockDim.x + threadldx.x +2;

(B) i=blockIdx.x*threadldx.x*2;

(C) i=(blocklIdx.x*blockDim.x + threadldx.x)*2;

(D) i=blocklIdx.x*blockDim.x*2 4+ threadldx.x;

. For a vector addition, assume that the vector length is 8000, each thread
calculates one output element, and the thread block size is 1024 threads. The
programmer configures the kernel call to have a minimum number of thread
blocks to cover all output elements. How many threads will be in the grid?
(A) 8000

(B) 8196

(C) 8192

(D) 8200

. 5. If we want to allocate an array of v integer elements in the CUDA device
global memory, what would be an appropriate expression for the second
argument of the cudaMalloc call?

(A) n

(B) v

(C) n*sizeof(int)

(D) v*sizeof(int)

. If we want to allocate an array of n floating-point elements and have a
floating-point pointer variable A_d to point to the allocated memory, what
would be an appropriate expression for the first argument of the cudaMalloc
() call?

(A) n

(B) (void*) A_d

(C) *A_d

(D) (void*) &A_d

. If we want to copy 3000 bytes of data from host array A_h (A_h is a pointer
to element O of the source array) to device array A_d (A_d is a pointer to
element O of the destination array), what would be an appropriate API call
for this data copy in CUDA?

(A) cudaMemcpy (3000, A_h, A_d, cudaMemcpyHostToDevice);

(B) cudaMemcpy(A_h, A_d, 3000, cudaMemcpyDeviceTHost);

(C) cudaMemcpy(A_d, A_h, 3000, cudaMemcpyHostToDevice);

(D) cudaMemcpy (3000, A_d, A_h, cudaMemcpyHostToDevice);

. How would one declare a variable err that can appropriately receive the
returned value of a CUDA API call?

(A) interr;

(B) cudaErrorerr;

(C) cudaError_terr;

(D) cudaSuccess_terr;

45

46 CHAPTER 2 Heterogeneous data parallel computing

9. Consider the following CUDA kernel and the corresponding host function
that calls it:

01 __global__void foo_kernel(float*a, float* b, unsigned int
N {

02 unsigned int i=blockIdx.x*blockDim.x + threadlIdx.
X3

03 if(i <N){

04 bli]=2.7f*ali] - 4.3f;

05 }

06 }

07 void foo(float* a_d, float* b_d) {

08 unsigned int N=200000;

09 foo_kernel << < (N+128-1)/128, 128 >> > (a_d,
b_d, N);

10 }
a. What is the number of threads per block?
b. What is the number of threads in the grid?
€. What is the number of blocks in the grid?
d. What is the number of threads that execute the code on line 02?

What is the number of threads that execute the code on line 04?

10. A new summer intern was frustrated with CUDA. He has been complaining
that CUDA is very tedious. He had to declare many functions that he plans
to execute on both the host and the device twice, once as a host function and
once as a device function. What is your response?

References

Atallah, M.J. (Ed.), 1998. Algorithms and Theory of Computation Handbook. CRC Press.
Flynn, M., 1972. Some computer organizations and their effectiveness. IEEE Trans.
Comput. C- 21, 948.

NVIDIA

Corporation, March 2021. NVIDIA CUDA C Programming Guide.

Patt, Y.N., Patel, S.J., 2020. ISBN-10: 1260565912, 2000, 2004 Introduction to Computing
Systems: From Bits and Gates to C and Beyond. McGraw Hill Publisher.

CHAPTER

Multidimensional grids and
data

Chapter Outline

3.1 Multidimensional grid organizationccccecccemiscscerrcccer s 47
3.2 Mapping threads to multidimensional datacccocomreimrecnnccrrcee e 51
3.3 Image blur: a more complex Kernel ... 58
3.4 Matrix multiplicationeurieer e ——————————— 62
B TR I 1] 1111 1P PP URR N 66
o T 67

In Chapter 2, Heterogeneous Data Parallel Computing, we learned to write a
simple CUDA C + + program that launches a one-dimensional grid of threads by
calling a kernel function to operate on elements of one-dimensional arrays. A
kernel specifies the statements that are executed by each individual thread in the
grid. In this chapter, we will look more generally at how threads are organized
and learn how threads and blocks can be used to process multidimensional arrays.
Multiple examples will be used throughout the chapter, including converting a
colored image to a grayscale image, blurring an image, and matrix multiplication.
These examples also serve to familiarize the reader with reasoning about data par-
allelism before we proceed to discuss the GPU architecture, memory organization,
and performance optimizations in the upcoming chapters.

Multidimensional grid organization

In CUDA, all threads in a grid execute the same kernel function, and they rely on
coordinates, that is, thread indices, to distinguish themselves from each other and to
identify the appropriate portion of the data to process. As we saw in Chapter 2,
Heterogeneous Data Parallel Computing, these threads are organized into a two-level
hierarchy: A grid consists of one or more blocks, and each block consists of one or
more threads. All threads in a block share the same block index, which can be
accessed via the blockIdx (built-in) variable. Each thread also has a thread index,
which can be accessed via the threadIdx (built-in) variable. When a thread executes
a kernel function, references to the blockIdx and threadldx variables return the

Programming Massively Parallel Processors. DOI: https://doi.org/10.1016/B978-0-323-91231-0.00004-5 47
© 2023 Elsevier Inc. All rights reserved.

48

CHAPTER 3 Multidimensional grids and data

coordinates of the thread. The execution configuration parameters in a kernel call
statement specify the dimensions of the grid and the dimensions of each block. These
dimensions are available via the gridDim and blockDim (built-in) variables.

In general, a grid is a three-dimensional (3D) array of blocks, and each block
is a 3D array of threads. When calling a kernel, the program needs to specify the
size of the grid and the blocks in each dimension. These are specified by using
the execution configuration parameters (within << <...>> >) of the kernel call
statement. The first execution configuration parameter specifies the dimensions of
the grid in number of blocks. The second specifies the dimensions of each block
in number of threads. Each such parameter has the type dim3, which is an integer
vector type of three elements x, y, and z. These three elements specify the sizes
of the three dimensions. The programmer can use fewer than three dimensions by
setting the size of the unused dimensions to 1.

For example, the following host code can be used to call the vecAddkernel()
kernel function and generate a 1D grid that consists of 32 blocks, each of which
consists of 128 threads. The total number of threads in the grid is 128*32 = 4096:

dim3 dimGrid (32, 1, 1);
dim3 dimBlock (128, 1, 1);
vecAddKernel<<<dimGrid, dimBlock>>>(...);

Note that dimBlock and dimGrid are host code variables that are defined by
the programmer. These variables can have any legal C variable name as long as
they have the type dim3. For example, the following statements accomplish the
same result as the statements above:

dim3 dog (32, 1, 1);
dim3 cat (128, 1, 1);
vecAddKernel<<<dog, cat>>>(...);

The grid and block dimensions can also be calculated from other variables.
For example, the kernel call in Fig. 2.12 can be written as follows:

dim3 dimGrid(ceil (n/256.0), 1, 1);
dim3 dimBlock (256, 1, 1);
vecAddKernel<<<dimGrid, dimBlock>>>(...);

This allows the number of blocks to vary with the size of the vectors so that
the grid will have enough threads to cover all vector elements. In this example
the programmer chose to fix the block size at 256. The value of variable n at ker-
nel call time will determine dimension of the grid. If n is equal to 1000, the grid
will consist of four blocks. If n is equal to 4000, the grid will have 16 blocks. In
each case, there will be enough threads to cover all the vector elements. Once the
grid has been launched, the grid and block dimensions will remain the same until
the entire grid has finished execution.

3.1 Multidimensional grid organization

For convenience, CUDA provides a special shortcut for calling a kernel with
one-dimensional (1D) grids and blocks. Instead of using dim3 variables, one can
use arithmetic expressions to specify the configuration of 1D grids and blocks. In
this case, the CUDA compiler simply takes the arithmetic expression as the x
dimensions and assumes that the y and z dimensions are 1. This gives us the ker-
nel call statement shown in Fig. 2.12:

vecAddKernel<<<ceil (n/256.0), 256>>>(...);

Readers who are familiar with C++ would realize that this “shorthand” conven-
tion for 1D configurations takes advantage of how C++ constructors and default
parameters work. The default values of the parameters to the dim3 constructor are
1. When a single value is passed where a dim3 is expected, that value will be passed
to the first parameter of the constructor, while the second and third parameters take
the default value of 1. The result is a 1D grid or block in which the size of the x
dimension is the value passed and the sizes of the y and z dimensions are 1.

Within the kernel function, the x field of variables gridDim and blockDim are
preinitialized according to the values of the execution configuration parameters.
For example, if n is equal to 4000, references to gridDim.x and blockDim.x in
the vectAddkernel kernel will result in 16 and 256, respectively. Note that unlike
the dim3 variables in the host code, the names of these variables within the kernel
functions are part of the CUDA C specification and cannot be changed. That is,
the gridDim and blockDim are built-in variables in a kernel and always reflect the
dimensions of the grid and the blocks, respectively.

In CUDA C the allowed values of gridDim.x range from 1 to 231 1,1 and
those of gridDim.y and gridDim.z range from 1 to 216 — 1 (65,535). All threads
in a block share the same blockIdx.x, blockIdx.y, and blockIdx.z values.
Among blocks, the blockldx.x value ranges from O to gridDim.x-1, the
blockIdx.y value ranges from O to gridDim.y-1, and the blocklIdx.z value
ranges from O to gridDim.z-1.

We now turn our attention to the configuration of blocks. Each block is orga-
nized into a 3D array of threads. Two-dimensional (2D) blocks can be created by
setting blockDim.z to 1. One-dimension blocks can be created by setting both
blockDim.y and blockDim.z to 1, as in the vectorAddkernel example. As we
mentioned before, all blocks in a grid have the same dimensions and sizes. The
number of threads in each dimension of a block is specified by the second execu-
tion configuration parameter at the kernel call. Within the kernel this configura-
tion parameter can be accessed as the x, y, and z fields of blockDim.

The total size of a block in current CUDA systems is limited to 1024 threads.
These threads can be distributed across the three dimensions in any way as long
as the total number of threads does not exceed 1024. For example, blockDim

Devices with a capability of less than 3.0 allow blockIdx.x to range from 1 to 2! — 1.

49

50

CHAPTER 3 Multidimensional grids and data

host device
Grid 1
Block Block
| Kernel 1 I > (0,0) ©,1)
Block /| Block [\
@9 | 7 Lan |
’ 7 v
,' II \\ \
/'/ I, \\ \\
2 7/ /7
Grid 2,7 K N
Block (1.1)
1,0,0) (1,0.1) (1,0.2) (1,03
|Keme12l /(}(/)(/)(>
Thread | Thread| Thread | Thread
(0,0,0)(0,0,1)[(0,0,2)|(0,0,3)
Thread | Thread | Thread | Thread |
(0,1,0)((0,1,1)|(0,1,2)|(0,1,3)

FIGURE 3.1
A multidimensional example of CUDA grid organization.

values of (512, 1, 1), (8, 16, 4), and (32, 16, 2) are all allowed, but (32, 32, 2) is
not allowed because the total number of threads would exceed 1024.

A grid and its blocks do not need to have the same dimensionality. A grid can
have higher dimensionality than its blocks and vice versa. For example, Fig. 3.1
shows a small toy grid example with a gridDim of (2, 2, 1) and a blockDim of (4,
2, 2). Such a grid can be created with the following host code:

dim3 dimGrid (2, 2, 1);
dim3 dimBlock (4, 2, 2);
KernelFunction<<<dimGrid, dimBlock>>>(...);

The grid in Fig. 3.1 consists of four blocks organized into a 2 X 2 array. Each
block is labeled with (blockIdx.y, blockIdx.x). For example, block (1,0) has
blockIdx.y =1 and blockIdx.x =0. Note that the ordering of the block and
thread labels is such that highest dimension comes first. This notation uses an
ordering that is the reverse of that used in the C statements for setting configura-
tion parameters, in which the lowest dimension comes first. This reversed order-
ing for labeling blocks works better when we illustrate the mapping of thread
coordinates into data indexes in accessing multidimensional data.

Each threadIdx also consists of three fields: the x coordinate threadId.x, the
y coordinate threadIdx.y, and the z coordinate threadldx.z. Fig. 3.1 illustrates
the organization of threads within a block. In this example, each block is orga-
nized into 4 X2 X2 arrays of threads. Since all blocks within a grid have the

3.2 Mapping threads to multidimensional data

16x16 blocks

FIGURE 3.2
Using a 2D thread grid to process a 62 X 76 picture P.

same dimensions, we show only one of them. Fig. 3.1 expands block (1,1) to
show its 16 threads. For example, thread (1,0,2) has threadldx.z=1,
threadldx.y =0, and threadldx.x =2. Note that in this example we have 4
blocks of 16 threads each, with a grand total of 64 threads in the grid. We use
these small numbers to keep the illustration simple. Typical CUDA grids contain
thousands to millions of threads.

Mapping threads to multidimensional data

The choice of 1D, 2D, or 3D thread organizations is usually based on the nature
of the data. For example, pictures are a 2D array of pixels. Using a 2D grid that
consists of 2D blocks is often convenient for processing the pixels in a picture.
Fig. 3.2 shows such an arrangement for processing a 62 X 761F1F" picture P
(62 pixels in the vertical or y direction and 76 pixels in the horizontal or x

*We will refer to the dimensions of multidimensional data in descending order: the z dimension fol-
lowed by the y dimension, and so on. For example, for a picture of n pixels in the vertical or y
dimension and m pixels in the horizontal or x dimension, we will refer to it as a n X m picture.
This follows the C multidimensional array indexing convention. For example, we can refer to P[y]
[x] as Py in text and figures for conciseness. Unfortunately, this ordering is opposite to the order
in which data dimensions are ordered in the gridDim and blockDim dimensions. The discrepancy
can be especially confusing when we define the dimensions of a thread grid on the basis of a multi-
dimensional array that is to be processed by its threads.

51

52

CHAPTER 3 Multidimensional grids and data

direction). Assume that we decided to use a 16 X 16 block, with 16 threads in the
x direction and 16 threads in the y direction. We will need four blocks in the y
direction and five blocks in the x direction, which results in 4 X 5 = 20 blocks, as
shown in Fig. 3.2. The heavy lines mark the block boundaries. The shaded area
depicts the threads that cover pixels. Each thread is assigned to process a pixel
whose y and x coordinates are derived from its blockIdx, blockDim, and
threadIdx variable values:

Vertical (row) row coordinate = blockldx.y*blockDim.y + threadldx.y
Horizontal (Column) coordinate = blockIdx.x*blockDim.x + threadIdx.x

For example, the Pin element to be processed by thread (0,0) of block (1,0)
can be identified as follows:

Plnb]ockldx.y*blockDim,y+1hreadldx,y,blockldx.x*blockDimx+1hreadex.x = P1n1*16+(),()*16+0 = Plnle,o

Note that in Fig. 3.2 we have two extra threads in the y direction and four
extra threads in the x direction. That is, we will generate 64 X 80 threads to pro-
cess 62 X 76 pixels. This is similar to the situation in which a 1000-element vec-
tor is processed by the 1D kernel vecAddKernel in Fig. 2.9 using four 256-thread
blocks. Recall that an if-statement in Fig. 2.10 is needed to prevent the extra 24
threads from taking effect. Similarly, we should expect that the picture-processing
kernel function will have if-statements to test whether the thread’s vertical and
horizontal indices fall within the valid range of pixels.

We assume that the host code uses an integer variable n to track the number
of pixels in the y direction and another integer variable m to track the number of
pixels in the x direction. We further assume that the input picture data has been
copied to the device global memory and can be accessed through a pointer vari-
able Pin_d. The output picture has been allocated in the device memory and can
be accessed through a pointer variable Pout_d. The following host code can be
used to call a 2D kernel colorToGrayscaleConversion to process the picture, as
follows:

dim3 dimGrid(ceil (m/16.0), ceil(n/16.0), 1);

dim3 dimBlock (16, 16, 1);

colorToGrayscaleConversion<<<dimGrid, dimBlock>>>
(Pin_d, Pout d, m, n);

In this example we assume for simplicity that the dimensions of the blocks are
fixed at 16 X 16. The dimensions of the grid, on the other hand, depend on
the dimensions of the picture. To process a 1500 X 2000 (3-million-pixel) picture,
we would generate 11,750 blocks: 94 in the y direction and 125 in the x direction.
Within the kernel function, references to gridDim.x, gridDim.y, blockDim.x, and
blockDim.y will result in 125, 94, 16, and 16, respectively.

Before we show the kernel code, we first need to understand how C statements
access elements of dynamically allocated multidimensional arrays. Ideally, we

3.2 Mapping threads to multidimensional data

would like to access Pin_d as a 2D array in which an element at row j and col-
umn i can be accessed as Pin_d[j][i]. However, the ANSI C standard on the
basis of which CUDA C was developed requires the number of columns in Pin to
be known at compile time for Pin to be accessed as a 2D array. Unfortunately,
this information is not known at compile time for dynamically allocated arrays. In
fact, part of the reason why one uses dynamically allocated arrays is to allow the
sizes and dimensions of these arrays to vary according to the data size at runtime.
Thus the information on the number of columns in a dynamically allocated 2D
array is not known at compile time by design. As a result, programmers need to
explicitly linearize, or “flatten,” a dynamically allocated 2D array into an equiva-
lent 1D array in the current CUDA C.

In reality, all multidimensional arrays in C are linearized. This is due to the
use of a “flat” memory space in modern computers (see the “Memory Space”
sidebar). In the case of statically allocated arrays, the compilers allow the pro-
grammers to use higher-dimensional indexing syntax, such as Pin_d[jI[i], to
access their elements. Under the hood, the compiler linearizes them into an equiv-
alent 1D array and translates the multidimensional indexing syntax into a 1D off-
set. In the case of dynamically allocated arrays, the current CUDA C compiler
leaves the work of such translation to the programmers, owing to lack of dimen-
sional information at compile time.

Memory Space

A memory space is a simplified view of how a processor accesses its
memory in modern computers. A memory space is usually associated with
each running application. The data to be processed by an application
and instructions executed for the application are stored in locations in its
memory space. Each location typically can accommodate a byte and has
an address. Variables that require multiple bytes—4 bytes for float and 8
bytes for double—are stored in consecutive byte locations. When acces-
sing a data value from the memory space, the processor gives the starting
address (address of the starting byte location) and the number of bytes
needed.

Most modern computers have at least 4G byte-sized locations,
where each G is 1,073,741,824 (2°°). All locations are labeled with an
address that ranges from 0 to the largest number used. Since there is only
one address for every location, we say that the memory space has a “flat”
organization. As a result, all multidimensional arrays are ultimately “flat-
tened” into equivalent one-dimensional arrays. While a C programmer can
use multidimensional array syntax to access an element of a multidimen-
sional array, the compiler translates these accesses into a base pointer that
points to the beginning element of the array, along with a one-dimensional
offset calculated from these multidimensional indices.

53

54

CHAPTER 3 Multidimensional grids and data

There are at least two ways in which a 2D array can be linearized. One is to
place all elements of the same row into consecutive locations. The rows are then
placed one after another into the memory space. This arrangement, called the
row-major layout, is illustrated in Fig. 3.3. To improve readability, we use M;; to
denote an element of M at the jth row and the ith column. M;; is equivalent to
the C expression M[j][i] but slightly more readable. Fig. 3.3 shows an example in
which a 4 X4 matrix M is linearized into a 16-element 1D array, with all ele-
ments of row O first, followed by the four elements of row 1, and so on.
Therefore the 1D equivalent index for an element of M at row j and column i is
j*4 +1i. The j*4 term skips over all elements of the rows before row j. The i term
then selects the right element within the section for row j. For example, the 1D
index for M, is 2*4 + 1 =9. This is illustrated in Fig. 3.3, in which My is the
1D equivalent to M, ;. This is the way in which C compilers linearize 2D arrays.

Another way to linearize a 2D array is to place all elements of the same col-
umn in consecutive locations. The columns are then placed one after another into
the memory space. This arrangement, called the column-major layout, is used by
FORTRAN compilers. Note that the column-major layout of a 2D array is equiva-
lent to the row-major layout of its transposed form. We will not spend more time
on this except to mention that readers whose primary previous programming
experience was with FORTRAN should be aware that CUDA C uses the row-
major layout rather than the column-major layout. Also, many C libraries that are

Mo | Mo1 [Moa | My3

+«—Z

Moo | My, M;o M;; Mz, Mss

L

M, [My 3 My, My; My Mgs

FIGURE 3.3

Row-major layout for a 2D C array. The result is an equivalent 1D array accessed by an
index expression j*Width+i for an element that is in the jth row and ith column of an array
of Width elements in each row.

3.2 Mapping threads to multidimensional data

03 global
04 void colortoGrayscaleConvertion (unsigned char * Pout,
05 unsigned char * Pin, int width, int height) {

06 int col = blockIdx.x*blockDim.x + threadIdx.x;
07 int row = blockIdx.y*blockDim.y + threadIdx.y;
08 if (col < width && row < height) {

09

10 int grayOffset = row*width + col;

11

12

13 int rgbOffset = grayOffset*CHANNELS;

14 unsigned char r = Pin[rgbOffset 18

15 unsigned char g = Pin[rgbOffset + 1];

16 unsigned char b = Pin[rgbOffset + 2];

17

18

19 Pout [grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;
20 }

21}

FIGURE 3.4

Source code of colorToGrayscaleConversion with 2D thread mapping to data.

designed to be used by FORTRAN programs use the column-major layout to
match the FORTRAN compiler layout. As a result, the manual pages for these
libraries usually tell the users to transpose the input arrays if they call these librar-
ies from C programs.

We are now ready to study the source code of colorToGrayscaleConversion,
shown in Fig. 3.4. The kernel code uses the following equation to convert each
color pixel to its grayscale counterpart:

L=021"r+0.72*g + 0.07"b

There are a total of blockDim.x*gridDim.x threads in the horizontal direction.
Similar to the vecAddKernel example, the following expression generates every
integer value from O to blockDim.x*gridDim.x—1 (line 06):

col = blockIdx.x*blockDim.x + threadIdx.x

We know that gridDim.x*blockDim.x is greater than or equal to width
(m value passed in from the host code). We have at least as many threads as the
number of pixels in the horizontal direction. We also know that there are at least as
many threads as the number of pixels in the vertical direction. Therefore as long as
we test and make sure that only the threads with both row and column values are
within range, that is, (col <width) && (row<height), we will be able to cover
every pixel in the picture (line 07).

Since there are width pixels in each row, we can generate the 1D index for the
pixel at row row and column col as row*width+col (line 10). This 1D index

55

56

CHAPTER 3 Multidimensional grids and data

grayOffset is the pixel index for Pout since each pixel in the output grayscale image
is 1 byte (unsigned char). Using our 62 X 76 image example, the linearized 1D index
of the Pout pixel calculated by thread (0,0) of block (1,0) with the following formula:

POUtblockldx.y*blockDim.y+threadldx.y,blockldx.x*blockDim.x+threadldx.x
= Pout;+16+0,0c16+0 = Poutjs = Pout[16*76 + 0] = Pout[1216]

As for Pin, we need to multiply the gray pixel index by 32F2F° (line 13),
since each colored pixel is stored as three elements (1, g, b), each of which is 1
byte. The resulting rgbOffset gives the starting location of the color pixel in the
Pin array. We read the r, g, and b value from the three consecutive byte locations
of the Pin array (lines 14—16), perform the calculation of the grayscale pixel
value, and write that value into the Pout array using grayOffset (line 19). In our
62 X 76 image example the linearized 1D index of the first component of the Pin
pixel that is processed by thread (0,0) of block (1,0) can be calculated with the
following formula:

Pinpockidx.y*blockDim.y +threadldx.y.blockldx.x*blockDim.x+threadldx.x = PiN1*16+0,0¢16+0
— Piny,0 = Pin[16*76*3 + 0] = Pin[3648]

The data that is being accessed is the 3 bytes starting at byte offset 3648.

Fig. 3.5 illustrates the execution of colorToGrayscaleConversion in
processing our 62X 76 example. Assuming 16X 16 blocks, calling the
colorToGrayscaleConversion kernel generates 64 X 80 threads. The grid will
have 4 X5 =20 blocks: four in the vertical direction and five in the horizontal
direction. The execution behavior of blocks will fall into one of four different
cases, shown as four shaded areas in Fig. 3.5.

The first area, marked 1 in Fig. 3.5, consists of the threads that belong to the
12 blocks covering the majority of pixels in the picture. Both col and row values
of these threads are within range; all these threads pass the if-statement test and
process pixels in the dark-shaded area of the picture. That is all 16 X 16 =256
threads in each block will process pixels.

The second area, marked 2 in Fig. 3.5, contains the threads that belong to the
three blocks in the medium-shaded area covering the upper-right pixels of the pic-
ture. Although the row values of these threads are always within range, the col
values of some of them exceed the m value of 76. This is because the number of
threads in the horizontal direction is always a multiple of the blockDim.x value
chosen by the programmer (16 in this case). The smallest multiple of 16 needed
to cover 76 pixels is 80. As a result, 12 threads in each row will find their col
values within range and will process pixels. The remaining four threads in each
row will find their col values out of range and thus will fail the if-statement con-
dition. These threads will not process any pixels. Overall, 12 X 16 = 192 of the
16 X 16 =256 threads in each of these blocks will process pixels.

3We assume that CHANNELS is a constant of value 3, and its definition is outside the kernel
function.

3.2 Mapping threads to multidimensional data

16x16 blocks

FIGURE 3.5
Covering a 76 X 62 picture with 16 X 16 blocks.

The third area, marked 3 in Fig. 3.5, accounts for the four lower-left blocks
covering the medium-shaded area of the picture. Although the col values of these
threads are always within range, the row values of some of them exceed the n
value of 62. This is because the number of threads in the vertical direction is
always a multiple of the blockDim.y value chosen by the programmer (16 in this
case). The smallest multiple of 16 to cover 62 is 64. As a result, 14 threads in
each column will find their row values within range and will process pixels. The
remaining two threads in each column will not pas the if-statement and will not
process any pixels. Overall, 16 X 14 = 224 of the 256 threads will process pixels.

The fourth area, marked 4 in Fig. 3.5, contains the threads that cover the lower
right, lightly shaded area of the picture. Like Area 2, 4 threads in each of the top
14 rows will find their col values out of range. Like Area 3, the entire bottom
two rows of this block will find their row values out of range. Overall, only
14 X 12 =168 of the 16 X 16 = 256 threads will process pixels.

We can easily extend our discussion of 2D arrays to 3D arrays by including
another dimension when we linearize the array. This is done by placing each
“plane” of the array one after another into the address space. Assume that the pro-
grammer uses variables m and n to track the number of columns and rows, respec-
tively, in a 3D array. The programmer also needs to determine the values of
blockDim.z and gridDim.z when calling a kernel. In the kernel the array index
will involve another global index:

int plane = blockIdx.z*blockDim.z + threadIdx.z

57

58

CHAPTER 3 Multidimensional grids and data

The linearized access to a 3D array P will be in the form of P[plane*m*n
+rowmtcol]. A kernel processing the 3D P array needs to check whether all the
three global indices, plane, row, and col, fall within the valid range of the array.
The use of 3D arrays in CUDA kernels will be further studies for the stencil pat-
tern in Chapter 8, Stencil.

3.3 Image blur: a more complex kernel

We have studied vecAddkernel and colorToGrayscaleConversion, in which each
thread performs only a small number of arithmetic operations on one array ele-
ment. These kernels serve their purposes well: to illustrate the basic CUDA C
program structure and data parallel execution concepts. At this point, the reader
should ask the obvious question: Do all threads in CUDA C programs perform
only such simple and trivial operations independently of each other? The answer
is no. In real CUDA C programs, threads often perform complex operations on
their data and need to cooperate with each other. For the next few chapters we
are going to work on increasingly complex examples that exhibit these character-
istics. We will start with an image-blurring function.

Image blurring smoothes out abrupt variation of pixel values while preserving
the edges that are essential for recognizing the key features of the image. Fig. 3.6
illustrates the effect of image blurring. Simply stated, we make the image blurry.
To human eyes, a blurred image tends to obscure the fine details and present the

2 “big picture” impression, or the major thematic objects in the picture. In computer

image-processing algorithms a common use case of image blurring is to reduce
the impact of noise and granular rendering effects in an image by correcting prob-
lematic pixel values with the clean surrounding pixel values. In computer vision,
image blurring can be used to allow edge detection and object recognition algo-
rithms to focus on thematic objects rather than being bogged down by a massive
quantity of fine-grained objects. In displays, image blurring is sometimes used to
highlight a particular part of the image by blurring the rest of the image.
Mathematically, an image-blurring function calculates the value of an output
image pixel as a weighted sum of a patch of pixels encompassing the pixel in the
input image. As we will learn in Chapter 7, Convolution, the computation of such

FIGURE 3.6
An original image (/eft) and a blurred version (right).

rﬁNO\‘m‘

A

W Que

|
0

3.3 Image blur: a more complex kernel

weighted sums belongs to the convolution pattern. We will be using a simplified
approach in this chapter by taking a simple average value of the N X N patch of
pixels surrounding, and including, our target pixel. To keep the algorithm simple,
we will not place a weight on the value of any pixel based on its distance from
the target pixel. In practice, placing such weights is quite common in convolution
blurring approaches, such as Gaussian blur.

Fig. 3.7 shows an example of image blurring using a 3 X 3 patch. When calcu-
lating an output pixel value at (row, col) position, we see that the patch is cen-
tered at the input pixel located at the (row, col) position. The 3 X 3 patch spans
three rows (row-1, row, row+1) and three columns (col-1, col, col+1). For exam-
ple, the coordinates of the nine pixels for calculating the output pixel at (25, 50)
are (24, 49), (24, 50), (24, 51), (25, 49), (25, 50), (25, 51), (26, 49), (26, 50), and
(26, 51).

Fig. 3.8 shows an image blur kernel. Similar to the strategy that was used in
colorToGrayscaleConversion, we use each thread to calculate an output pixel.
That is, the thread-to-output-data mapping remains the same. Thus at the begin-
ning of the kernel we see the familiar calculation of the col and row indices (lines
03—04). We also see the familiar if-statement that verifies that both col and row
are within the valid range according to the height and width of the image (line
05). Only the threads whose col and row indices are both within value ranges are
allowed to participate in the execution.

Col
1

Row->g Ei EsSiasess
R e

FIGURE 3.7

Each output pixel is the average of a patch of surrounding pixels and itself in the input
image.

59

60 CHAPTER 3 Multidimensional grids and data

01 _ global
02 wvoid blurKernel (unsigned char *in, unsigned char *out, int w, int h){

03 int col = blockIdx.x*blockDim.x + threadIdx.x;

04 int row = blockIdx.y*blockDim.y + threadIdx.y;

05 if(col < w && row < h) {

06 int pixvVal = 0;

07 int pixels = 0;

09

10 for (int blurRow=-BLUR SIZE; blurRow<BLUR SIZE+1l; ++blurRow) {
11 for (int blurCol=-BLUR SIZE; blurCol<BLUR SIZE+1; ++blurCol) {
12 int curRow = row + blurRow;

13 int curCol = col + blurCol;

14

15 if (curRow>=0 && curRow<h && curCol>=0 && curCol<w) {
16 pixval += in[curRow*w + curCol];

17 ++pixels;

18 }

19 }

20 }

21

22 out [row*w + col] = (unsigned char) (pixVal/pixels) ;

23 }

24 1}

FIGURE 3.8

An image blur kernel.

As shown in Fig. 3.7, the col and row values also give the central pixel loca-
tion of the patch of input pixels used for calculating the output pixel for the
thread. The nested for-loops in Fig. 3.8 (lines 10—11) iterate through all the pix-
els in the patch. We assume that the program has a defined constant BLUR_SIZE.
The value of BLUR_SIZE is set such that BLUR_SIZE gives the number of pixels on
each side (radius) of the patch and 2*BLUR_SIZE+1 gives the total number of pixels
across one dimension of the patch. For example, for a 3 X 3 patch, BLUR_SIZE is
set to 1, whereas for a 7 X 7 patch, BLUR_SIZE is set to 3. The outer loop iterates
through the rows of the patch. For each row, the inner loop iterates through the
columns of the patch.

In our 3 X 3 patch example, the BLUR_SIZE is 1. For the thread that calculates
output pixel (25, 50), during the first iteration of the outer loop, the curRow vari-
able is row-BLUR_SIZE=(25 — 1) = 24. Thus during the first iteration of the outer
loop, the inner loop iterates through the patch pixels in row 24. The inner loop
iterates from column col-BLUR_STZE =50—1=49 to col+BLUR_SIZE =51 using
the curCol variable. Therefore the pixels that are processed in the first iteration of
the outer loop are (24, 49), (24, 50), and (24, 51). The reader should verify that in
the second iteration of the outer loop, the inner loop iterates through pixels (25,
49), (25, 50), and (25, 51). Finally, in the third iteration of the outer loop, the
inner loop iterates through pixels (26, 49), (26, 50), and (26, 51).

3.3 Image blur: a more complex kernel

5

.4
2

FIGURE 3.9
Handling boundary conditions for pixels near the edges of the image.

Line 16 uses the linearized index of curRow and curCol to access the value
of the input pixel visited in the current iteration. It accumulates the pixel value
into a running sum variable pixVal. Line 17 records the fact that one more pixel
value has been added into the running sum by incrementing the pixels variable.
After all the pixels in the patch have been processed, line 22 calculates the aver-
age value of the pixels in the patch by dividing the pixVal value by the pixels
value. It uses the linearized index of row and col to write the result into its out-
put pixel.

Line 15 contains a conditional statement that guards the execution of lines 16
and 17. For example, in computing output pixels near the edge of the image, the
patch may extend beyond the valid range of the input image. This is illustrated in
Fig. 3.9 assuming 3 X 3 patches. In case 1, the pixel at the upper-left corner is
being blurred. Five of the nine pixels in the intended patch do not exist in the
input image. In this case, the row and col values of the output pixel are 0 and O,
respectively. During the execution of the nested loop, the curRow and curCol
values for the nine iterations are (—1, — 1), (—1,0), (—1,1), (0, — 1), (0,0), (0,1),
(1,—1), (1,0), and (1,1). Note that for the five pixels that are outside the image,
at least one of the values is less than 0. The curRow<0 and curCol <0 conditions
of the if-statement catch these values and skip the execution of lines 16 and 17.
As a result, only the values of the four valid pixels are accumulated into the run-
ning sum variable. The pixels value is also correctly incremented only four times
so that the average can be calculated properly at line 22.

The reader should work through the other cases in Fig. 3.9 and analyze the
execution behavior of the nested loop in blurKernel. Note that most of the
threads will find all the pixels in their assigned 3 X 3 patch within the input
image. They will accumulate all the nine pixels. However, for the pixels on the
four corners, the responsible threads will accumulate only four pixels. For other
pixels on the four edges, the responsible threads will accumulate six pixels. These
variations are what necessitates keeping track of the actual number of pixels that
are accumulated with the variable pixels.

61

62

CHAPTER 3 Multidimensional grids and data

Matrix multiplication

Matrix-matrix multiplication, or matrix multiplication in short, is an important
component of the Basic Linear Algebra Subprograms standard (see the “Linear
Algebra Functions” sidebar). It is the basis of many linear algebra solvers, such
as LU decomposition. It is also an important computation for deep learning using
convolutional neural networks, which will be discussed in detail in Chapter 16,
Deep Learning.

Linear Algebra Functions

Linear algebra operations are widely used in science and engineering
applications. In the Basic Linear Algebra Subprograms (BLAS), a de facto
standard for publishing libraries that perform basic algebra operations,
there are three levels of linear algebra functions. As the level increases,
the number of operations performed by the function increases. Level 1
functions perform vector operations of the form y = ax+y, where x and y
are vectors and o is a scalar. Our vector addition example is a special
case of a level 1 function with o= 1. Level 2 functions perform matrix-
vector operations of the form y = aAx+Qy, where A is a matrix, x and y
are vectors, and o and (are scalars. We will be studying a form of level 2
function in sparse linear algebra. Level 3 functions perform matrix-matrix
operations in the form of C = adAB + BC, where A, B, and C are matrices
and o and (8 are scalars. Our matrix-matrix multiplication example is a
special case of a level 3 function where =1 and (3 =0. These BLAS
functions are important because they are used as basic building blocks of
higher-level algebraic functions, such as linear system solvers and eigen-
value analysis. As we will discuss later, the performance of different imple-
mentations of BLAS functions can vary by orders of magnitude in both
sequential and parallel computers.

Matrix multiplication between an 1Xj (i rows by j columns) matrix M and a
j Xk matrix N produces an I X k matrix P. When a matrix multiplication is per-
formed, each element of the output matrix P is an inner product of a row of M and
a column of N. We will continue to use the convention where P, .o is the ele-
ment at the rowth position in the vertical direction and the colth position in the
horizontal direction. As shown in Fig. 3.10, P,y o1 (the small square in P) is the
inner product of the vector formed by the rowth row of M (shown as a horizontal
strip in M) and the vector formed by the colth column of N (shown as a vertical
strip in N). The inner product, sometimes called the dot product, of two vectors is
the sum of products of the individual vector elements. That is,

Prow,col = Z Mrow,k*Nk.col for k=0, 1,...Width —1

3.4 Matrix multiplication 63

Row 9

Col

FIGURE 3.10
Matrix multiplication using multiple blocks by tiling P.

For example, in Fig. 3.10, assuming row = 1 and col =5,
P15 =Mio*Nos + M *Nis + M2"Nays + + My wian—1"Nwian-1.5

To implement matrix multiplication using CUDA, we can map the threads in
the grid to the elements of the output matrix P with the same approach that we
used for colorToGrayscaleConversion. That is, each thread is responsible for cal-
culating one P element. The row and column indices for the P element to be cal-
culated by each thread are the same as before:

row = blockIdx.y*blockDim.y + threadIdx.y
and
col = blockIdx.x*blockDim.x + threadIdx.x

With this one-to-one mapping, the row and col thread indices are also the row
and column indices for their output elements. Fig. 3.11 shows the source code of

64 CHAPTER 3 Multidimensional grids and data

01 __global void MatrixMulKernel (float* M, float* N,
02 float* P, int Width) {
03 int row = blockIdx.y*blockDim.yt+tthreadIdx.y;

04 int col = blockIdx.x*blockDim.x+threadIdx.x;

05 if ((row < Width) && (col < Width)) {

06 float Pvalue = 0;

07 for (int k = 0; k < Width; ++k) {

08 Pvalue += M[row*Width+k] *N[k*Width+col];
09 }

10 Plrow*Width+col] = Pvalue;

11 }

12 }

FIGURE 3.11

A matrix multiplication kernel using one thread to compute one P element.

the kernel based on this thread-to-data mapping. The reader should immediately
see the familiar pattern of calculating row and col (lines 03—04) and the if-
statement testing if row and col are both within range (line 05). These statements
are almost identical to their counterparts in colorToGrayscaleConversion. The
only significant difference is that we are making a simplifying assumption that
matrixMulKernel needs to handle only square matrices, so we replace both width
and height with Width. This thread-to-data mapping effectively divides P into
tiles, one of which is shown as a light-colored square in Fig. 3.10. Each block is
responsible for calculating one of these tiles.

We now turn our attention to the work done by each thread. Recall that
Piow.co 1s calculated as the inner product of the rowth row of M and the colth col-
umn of N. In Fig. 3.11 we use a for-loop to perform this inner product operation.
Before we enter the loop, we initialize a local variable Pvalue to O (line 06).
Each iteration of the loop accesses an element from the rowth row of M and an
element from the colth column of N, multiplies the two elements together, and
accumulates the product into Pvalue (line 08).

Let us first focus on accessing the M element within the for-loop. M is linear-
ized into an equivalent 1D array using row-major order. That is, the rows of M are
placed one after another in the memory space, starting with the Oth row.
Therefore the beginning element of row 1 is M[1*Width] because we need to
account for all elements of row 0. In general, the beginning element of the rowth
row is M[{row*Width]. Since all elements of a row are placed in consecutive loca-
tions, the kth element of the rowth row is at M[row*Width+k]. This linearized
array offset is what we use in Fig. 3.11 (line 08).

We now turn our attention to accessing N. As is shown in Fig. 3.11, the begin-
ning element of the colth column is the colth element of row 0, which is N[col].
Accessing the next element in the colth column requires skipping over an entire row.
This is because the next element of the same column is the same element in the next
row. Therefore the kth element of the colth column is N[k*Width+co1] (line 08).

After the execution exits the for-loop, all threads have their P element values
in the Pvalue variables. Each thread then uses the 1D equivalent index expression

3.4 Matrix multiplication

row*Width+col to write its P element (line 10). Again, this index pattern is like
that used in the colorToGrayscaleConversion Kernel.

wWe now use a small example to illustrate the execution of the matrix multi-
plication kernel. Fig. 3.12 shows a 4 X 4 P with BLOCK_WIDTH = 2. Although
such small matrix and block sizes are not realistic, they allow us to fit the entire
example into one picture. The P matrix is divided into four tiles, and each block
calculates one tile. We do so by creating blocks that are 2 X 2 arrays of threads,
with each thread calculating one P element. In the example, thread (0,0) of block
(0,0) calculates Py o, whereas thread (0,0) of block (1,0) calculates P .

The row and col indices in matrixMulKernel identify the P element to be calcu-
lated by a thread. The row index also identifies the row of M, and the col index iden-
tifies the column of N as input values for the thread. Fig. 3.13 illustrates the
multiplication actions in each thread block. For the small matrix multiplication exam-
ple, threads in block (0,0) produce four dot products. The row and col indices of
thread (1,0) in block (0,0) are 0*0 + 1 =1 and 0*0 + 0 = 0, respectively. The thread
thus maps to P o and calculates the dot product of row 1 of M and column O of N.

Let us walk through the execution of the for-loop of Fig. 3.11 for thread (0,0)
in block (0,0). During iteration 0 (k=0), rowWidth+k=0*4+0=0 and
k*Width+col =0"4 + 0=0. Therefore the input elements accessed are M[0] and N
(01, which are the 1D equivalent of Myo and Npo. Note that these are indeed the
Oth elements of row O of M and column O of N. During iteration 1 (k=1),
row'Width+k=0*4+1=1 and k*Width+col =14+ 0=4. Therefore we are
accessing M[11 and N[4], which are the 1D equivalent of My; and N o. These are the
first elements of row O of M and column O of N. During iteration 2 (k=2),
rowWidth+k =04 +2=2 and k*Width + col =2*4 + 0 =8, which results in M[2]
and N[8]. Therefore the elements accessed are the 1D equivalent of Mg, and Ny,
Finally, during iteration 3 (k = 3), row*Width+ k=04 +3 =3 and k*Width+col =

BLOCK_WIDTH = 2
Block(0,0) Block(0,1)

\ Thr?ad(O, 1) /

1
Poo | Pox | Po2 | Pos | BLOCK WIDTH =2
Thread(1,0) _}P T
Thread(1,1) PP Pu P2 | Pis

PZ,O P2,1 P2,2 P2,3

Thread(0,0) ~—_|

P3.0 P3,1 P3.2 P3.3

Block(1,0) Block(1,1)
FIGURE 3.12

A small execution example of matrixMulKernel.

65

66

CHAPTER 3 Multidimensional grids and data

MO,O MO.I MO.Z M0.3 PO 0,

FIGURE 3.13
Matrix multiplication actions of one thread block.

3*4 + 0= 12, which results in M[3] and N[12], the 1D equivalent of My3 and Njg.
We have now verified that the for-loop performs the inner product between the Oth
row of M and the Oth column of N for thread (0,0) in block (0,0). After the loop, the
thread writes P[rowWidth+col], which is P[0]. This is the 1D equivalent of Pyg, so
thread (0,0) in block (0,0) successfully calculated the inner product between the Oth
row of M and the Oth column of N and deposited the result in Py .

We will leave it as an exercise for the reader to hand-execute and verify the
for-loop for other threads in block (0,0) or in other blocks.

Since the size of a grid is limited by the maximum number of blocks per grid
and threads per block, the size of the largest output matrix P that can be handled
by matrixMulKernel will also be limited by these constraints. In the situation in
which output matrices larger than this limit are to be computed, one can divide
the output matrix into submatrices whose sizes can be covered by a grid and use
the host code to launch a different grid for each submatrix. Alternatively, we can
change the kernel code so that each thread calculates more P elements. We will
explore both options later in this book.

Summary

CUDA grids and blocks are multidimensional with up to three dimensions. The
multidimensionality of grids and blocks is useful for organizing threads to be
mapped to multidimensional data. The kernel execution configuration parameters
define the dimensions of a grid and its blocks. Unique coordinates in blockIdx
and threadIdx allow threads of a grid to identify themselves and their domains of

Exercises

data. It is the programmer’s responsibility to use these variables in kernel func-
tions so that the threads can properly identify the portion of the data to process.
When accessing multidimensional data, programmers will often have to linearize
multidimensional indices into a 1D offset. The reason is that dynamically allo-
cated multidimensional arrays in C are typically stored as 1D arrays in row-major
order. We use examples of increasing complexity to familiarize the reader with
the mechanics of processing multidimensional arrays with multidimensional grids.
These skills will be foundational for understanding parallel patterns and their
associated optimization techniques.

Exercises

1.

In this chapter we implemented a matrix multiplication kernel that has each
thread produce one output matrix element. In this question, you will
implement different matrix-matrix multiplication kernels and compare them.
a. Write a kernel that has each thread produce one output matrix row. Fill in
the execution configuration parameters for the design.
h. Write a kernel that has each thread produce one output matrix column. Fill
in the execution configuration parameters for the design.
€. Analyze the pros and cons of each of the two kernel designs.
A matrix-vector multiplication takes an input matrix B and a vector C and
produces one output vector A. Each element of the output vector A is the dot
product of one row of the input matrix B and C, that is, A[i] = Zj BIil[j] + C[jl.
For simplicity we will handle only square matrices whose elements are single-
precision floating-point numbers. Write a matrix-vector multiplication kernel and
the host stub function that can be called with four parameters: pointer to the output
matrix, pointer to the input matrix, pointer to the input vector, and the number of
elements in each dimension. Use one thread to calculate an output vector element.
Consider the following CUDA kernel and the corresponding host function that
calls it:

01 __global _ void foo_kernel (float* a, float* b, unsigned int M,
unsigned int N) {

02 unsigned int row = blockIdx.y*blockDim.y + threadIdx.y;
03 unsigned int col = blockIdx.x*blockDim.x + threadIdx.x;
04 if(row < M && col < N) {

05 b[row*N + col] = a[row*N + col]/2.1f + 4.8f;

06 }

07 }

08 void foo(float* a d, float* b d) {

09 unsigned int M = 150;

10 unsigned int N = 300;

11 dim3 bd(l6, 32);

12 dim3 gd((N - 1)/16 + 1, (M - 1)/32 + 1);

13 foo_kernel <<< gd, bd >>>(a_d, b _d, M, N);

14 }

a. What is the number of threads per block?
b. What is the number of threads in the grid?

67

68 CHAPTER 3 Multidimensional grids and data

€. What is the number of blocks in the grid?
d. What is the number of threads that execute the code on line 05?

4. Consider a 2D matrix with a width of 400 and a height of 500. The matrix is
stored as a one-dimensional array. Specify the array index of the matrix
element at row 20 and column 10:

a. If the matrix is stored in row-major order.
b. If the matrix is stored in column-major order.

5. Consider a 3D tensor with a width of 400, a height of 500, and a depth of
300. The tensor is stored as a one-dimensional array in row-major order.
Specify the array index of the tensor element at x =10, y =20, and z = 5.

CHAPTER

Compute architecture and
scheduling

Chapter Outline

4.1 Architecture of a modern GPUccooiiiicrirrer e 70
4.2 Block SChedulingcccoieiiiiiie e s 70
4.3 Synchronization and transparent scalabilitycccocccmirrccrrrccc e 71
4.4 Warps and SIMD hardwarecccccccccccmmnnennnnnnnnnnnnnnnsnnnnsnnnnnnnssnsssssnnsnnnnnnnnnnnns 74
4.5 CoNtrol diVErZENCE eeeeiiiiiiccieccrrireisc s rnere e e e e s s smmr e e e e e s s s ssmmn e e e e e s s s nnmnneeeesnnsnnn 79
4.6 Warp scheduling and latency toleranceccccoccceerrriccccceeesessssssseeeeeessenns 83
4.7 Resource partitioning and 0CCUPANCY ccccercverrrsirrrier s 85
4.8 Querying device Propertiesccccccvccccerrssscrrrssssmerssssnesssssnressssssessssnesssssnsesssnns 87
4.9 SUMMAIY ...oeeeeeeenenennsnsssssnsssssssssssssssssssssssssssssssnsssssssssnsnsssssnsnsnsssnnnsnsnsnnnsnnsssnnnsn 90
T T 90
2 0C] (=T T - 92

In Chapter 1, Introduction, we saw that CPUs are designed to minimize the latency of
instruction execution and that GPUs are designed to maximize the throughput of exe-
cuting instructions. In Chapters 2, Heterogeneous Data Parallel Computing and 3,
Multidimensional Grids and Data, we learned the core features of the CUDA program-
ming interface for creating and calling kernels to launch and execute threads. In the
next three chapters we will discuss the architecture of modern GPU§; both the 'compute
architecture and the memory architecture) and the performance optimization techniques
stemming from the understanding of this architecture. This chapter presents several
aspects of the GPU compute architecture that are essential for CUDA C programmers
to understand and reason about the performance behavior of their kernel code. We will
start by showing a high-level, simplified view of the compute architecture and explore
the concepts of flexible resource assignment, scheduling of blocks, and occupancy. We
will then advance intofthread scheduling; latency tolerance; control divergence, and
synchronization:)We will finish the chapter with a description of the API functions that
can be used to query the resources that are available in the GPU and the tools to help
estimate the occupancy of the GPU when executing a kernel. In the following two
chapters, we will present the core concepts and programming considerations of the
GPU memory architecture. In particular, Chapter 5, Memory Architecture and Data
Locality, focuses on the on-chip memory architecture, and Chapter 6, Performance
Considerations, briefly covers the off-chip memory architecture then elaborates on vari-
ous performance considerations of the GPU architecture as a whole. A CUDA C

Programming Massively Parallel Processors. DOI: https://doi.org/10.1016/B978-0-323-91231-0.00003-3 69
© 2023 Elsevier Inc. All rights reserved.

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

70

CHAPTER 4 Compute architecture and scheduling

SM SM SM SM SM SM SM SM
Control Control Control Control Control Control Control Control
| (| (Wl 10 TR IC I0fCJC TR JC IMCIC] || (|] || (/N (N (.
L LI IO TheC 10 TWC IO Tl 10 10 10 T 10 THC 10 T I0 I8C IC INC I0 IMC IC IR C IC J3C IC IRl IC I§(I |
L L IWC O Thmel 10 IWC O Imr 10 1 10 TN 10 THC 10 Tu 00 I8C I0 IR I (MC I0 IR I((fC IC Jp(I(I I(|
[L INC IC TaC 0 INC 10 Ipmer 10 N0 10 TAeC 0 TWC IC TRl I IWC IC Tpl 10 M0 I TN 10 TR0 IC Il 10 IjC I[|
y y y y Memory Memory Memory Memory

FIGURE 4.1
Architecture of a CUDA-capable GPU.

programmer who masters these concepts is well equipped to write and to understand
high-performance parallel kernels.

4.1 Architecture of a modern GPU

Fig. 4.1 shows a high-level, CUDA C programmer’s view of the architecture of a
typical CUDA-capable GPU. It is' organized into an array of highly threaded
streaming multiprocessors (SMs). Each SM has several processing units called
streaming processors or CUDA cores (hereinafter referred to as just cores for
brevity), shown as small tiles inside the SMs in Fig. 4.1, that share control logic

and memory resources. For example, the@AmpererAl00IGPUNLasM08ISMsiwith

The SMs also come with different on-chip memory structures collectively labeled as
“Memory” in Fig. 4.1. These on-chip memory structures will be the topic of Chapter 5,
Memory Architecture and Data Locality. GPUs also come with gigabytes of off-chip
device memory, referred to as “Global Memory” in Fig. 4.1. WihilercldemGPUsIased

or brevity we will broadly refer to all these types
of memory as DRAM for the rest of the book. We will discuss the most important con-
cepts involved in accessing GPU DRAM s in Chapter 6, Performance Considerations.

4.2 Block scheduling

When a kernel is called, the CUDA runtime system launches a grid of threads that
execute the kernel code. These threads are assigned to SMs on a block-by-block
basis. That is, all threads in a block are simultaneously assigned to the same SM.

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

4.3 Synchronization and transparent scalability 71

t0t1t2 ... tm| |, S0t tm
\\\\\\\\\\5 L79 o* NN
_ , SM SM
i ; Control Control
Y
Blocks 3 { Blocks
E Memory Memory :

FIGURE 4.2
Thread block assignment to streaming multiprocessors (SMs).

Fig. 4.2 illustrates the assignment of blocks to SMs. Multiple blocks are likely
to be simultaneously assigned to the same SM. For example, in Fig. 4.2, three
blocks are assigned to each SM. However, blocks need to reserve hardware
resources to execute, so only a limited number of blocks can be simultaneously
assigned to a given SM. The limit on the number of blocks depends on a variety
of factors that are discussed in Section 4.6.

With a limited number of SMs and a limited number of blocks that can be simul-
taneously assigned to each SM, there is a limit on the total number of blocks that can
be simultaneously executing in a CUDA device. Most grids contain many more
blocks than this number. To ensure that all blocks in a grid get executed, the runtime
system maintains a list of blocks that need to execute and assigns new blocks to SMs
when previously assigned blocks complete execution.

The assignment of threads to SMs on a block-by-block basis guarantees that
threads in the same block are scheduled simultaneously on the same SM. This
guarantee makes it possible for threads in the same block to interact with each
other in ways that threads across different blocks cannot." This includes barrier
synchronization, which is discussed in Section 4.3. It also includes accessing a
low-latency shared memory that resides on the SM, which is discussed in
Chapter 5, Memory Architecture and Data Locality.

Synchronization and transparent scalability

CUDA allows threads in the same block to coordinate their activities using the
barrier synchronization function __syncthreads(). Note that “__" consists of two

! Threads in different blocks can perform barrier synchronization through the Cooperative Groups
API. However, there are several important restrictions that must be obeyed to ensure that all threads
involved are indeed simultaneously executing on the SMs. Interested readers are referred to the
CUDA C Programming Guide for proper use of the Cooperative Groups APIL.

Melani Maheswaran

-
72

CHAPTER 4 Compute architecture and scheduling

[T L]

_” characters. When a thread calls __syncthreads(), it will be held at the pro-
gram location of the call until every thread in the same block reaches that loca-
tion. This ensures that all threads in a block have completed a phase of their
execution before any of them can move on to the next phase.

Barrier synchronization is a simple and popular method for coordinating parallel
activities. In real life, we often use barrier synchronization to coordinate parallel activi-
ties of multiple people. For example, assume that four friends go to a shopping mall in
a car. They can all go to different stores to shop for their own clothes. This is a parallel
activity and is much more efficient than if they all remain as a group and sequentially
visit all the stores of interest. However, barrier synchronization is needed before they
leave the mall. They must wait until all four friends have returned to the car before
they can leave. The ones who finish earlier than the others must wait for those who fin-
ish later. Without the barrier synchronization, one or more individuals can be left in the
mall when the car leaves, which could seriously damage their friendship!

Fig. 4.3 illustrates thefexecution of batrier synchronization. There are N
threadstin'the'block. Time goes from left to right. Some of the threads reach the
barrier synchronization statement early, and some reach it much later. The ones
that reach the barrier early will wait for those that arrive late. When the latest one
arrives at the barrier, all threads can continue their execution. With barrier syn-
chronization, “no one is left behind.”

Thread 0 :>
Thread 1 ::>
Thread 2 :>
Thread 3 :>
Thread 4 :>

Thread N-3)

Thread N-2 [

Thread N-1 [:>/'
FIGURE 4.3

An example execution of barrier synchronization. The arrows represent execution activities
over time. The vertical curve marks the time when each thread executes theZsyncthreads
statement. The empty space to the right of the vertical curve depicts the time that each
thread waits for all threads to complete. Theverticallline'marks the time whenthe lastthread
executes the syncthreads statement, after which all threads are allowed to proceed to
execute the statements after the __syncthreads statement.

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

4.3 Synchronization and transparent scalability

01 void incorrect_barrier_example(int n) {
02 A

03 if (threadidx.x % 2 == 0) {
04 .

05 __syncthreads{};

06 }

07 else {

08 .

09 __syncthreads{};

10 }

11 }

FIGURE 4.4
An incorrect use of __syncthreads()

In CUDA, if a (isyncthreads() statement is present, it must be executed by all
threads in a block. When a __syncthreads() statement is placed in an if statement,
either all threads in a block execute the path that includes the _ syncthreads() or
none of them does. For an if-then-else statement, if each path has a _ syncthreads()
statement, either all threads in a block execute the then-path or all of them execute the
else-path. The two (isyncthireads(?) are different barrier synchronization points. For
example, in Fig. 4.4, two __syncthreads() are used in the if statement starting in line
04. All threads with even €hireadldxix values execute the then-path while the remain-
ing threads execute the else-path. The _ syncthreads() calls at line 06 and line 10
define two different barriers. Since not all threads in a block are guaranteed to execute
either of the barriers, the code violates the rules for using __syncthreads() and will

result in undefined execution behavior. IiNgeneraliinicorrectiusagerofibarriersynchro®
nization can result in incorrect result, or in threads waiting for each other forever,
whichris'referred torastaideadlocik 1t is the responsibility of the programmer to avoid
such inappropriate use of barrier synchronization.

Barrier synchronization imposes execution constraints on threads within a block.
These threads should execute in close time proximity with each other to avoid exces-
sively long waiting times. More important, the system needs to make sure that all threads
involved in the barrier synchronization have access to the necessary resources to eventu-
ally arrive at the barrier. Otherwise, a thread that never arrives at the barrier synchroniza-
tion point can cause a deadlock. The CUDA runtime system satisfies this constraint by
assigning execution resources to all threads in a block as a unit, as we saw in Section 4.2.
Not only do all threads in a block have to be assigned to the same SM, but also they need
to be assigned to that SM simultaneously. That is, a block can begin execution only
when the runtime system has secured all the resources needed by all threads in the block
to complete execution. This ensures the time proximity of all threads in a block and pre-
vents an excessive or even indefinite waiting time during barrier synchronization.

This leads us to an important tradeoff in the design of CUDA barrier synchroniza-
tion. By not allowing threads in different blocks to perform barrier synchronization

L
73

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

74

CHAPTER 4 Compute architecture and scheduling

Device Kernel grid

Device
o Sy
=
time
lock 2 jiBlock 3
Each block can execute in any order relative to other blocks.

FIGURE 4.5

Lack of synchronization constraints between blocks enables transparent scalability for
CUDA programs.

with each other, the CUDA runtime system can execute blocks in any order relative
to each other, since none of them need to wait for each other. This flexibility enables
scalable implementations, as shown in Fig. 4.5. Time in the figure progresses from
top to bottom. In a low-cost system with only a few execution resources, one can
execute a small number of blocks at the same time, portrayed as executing two
blocks a time on the left-hand side of Fig. 4.5. In a higher-end implementation with
more execution resources, one can execute many blocks at the same time, portrayed
as executing four blocks at a time on the right-hand side of Fig. 4.5. A high-end
GPU today can execute hundreds of blocks simultaneously.

The ability to execute the same application code with a wide range of speeds allows
the production of a wide range of implementations according to the cost, power, and
performance requirements of different market segments. For example, a mobile proces-
sor may execute an application slowly but at extremely low power consumption, and a
desktop processor may execute the same application at a higher speed while consuming
more power. Both execute the same application program with no change to the code.
The ability to execute the same application code on different hardware with different
amounts of execution resources is referred to as transparent scalability, which reduces
the burden on application developers and improves the usability of applications.

Warps and SIMD hardware

We have seen that blocks'can execute inany order relative toreach other; which
allows for transparent'scalability across different devices. However, we did not
say much about the'execution timing of threads within'each'block. Conceptually,
one should assume that threads in a block can execute in any order with respect
to each other. In algorithms with phases, barrier synchronizations should be used
whenever we want to ensure that all threads have completed a previous phase of
their execution before any of them start the next phase. The correctness of

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

4.4 Warps and SIMD hardware

executing a kernel should not depend on any assumption that certain threads will
execute in synchrony with each other without the use of barrier synchronizations.

Thread scheduling in CUDA GPUs is a hardware implementation concept and
therefore must be discussed in the context of specific hardware implementations.
In most implementations to date, once a block has been assigned to an SM, it is
further divided into 32-thread units called warps. The size of warps is implemen-
tation specific and can vary in future generations of GPUs. Knowledge of warps
can be helpful in understanding and optimizing the performance of CUDA appli-
cations on particular generations of CUDA devices.

A warp is the unit of thread scheduling in SMs. Fig. 4.6 shows the division of
blocks into warps in an implementation. In this example there are three blocks—
Block 1, Block 2, and Block 3—all assigned to an SM. Each of the three blocks
is further divided into warps for scheduling purposes. Each warp consists of 32
threads of consecutive threadIdx values: threads O through 31 form the first
warp, threads 32 through 63 form the second warp, and so on. We can calculate
the number of warps that reside in an SM for a given block size and a given num-
ber of blocks assigned to each SM. In this example, if each block has 256 threads,
we can determine that each block has 256/32 or 8 warps. With three blocks in the
SM, we have 8 X 3 = 24 warps in the SM.

1 1 1
Block 1 Warps Block 2 Warps Block 3 Warps
s 1 oo | .. l
t0tlt2 .. t31 t0tlit2 ... 131 t0t1t2 ... 31
\\\\\\\\\\3 \;\\\\\\\\5 \\\\\\\\\\5
d@!/} 2 §:> 2 4/} 2

SM

Control

Memory

FIGURE 4.6
Blocks are partitioned into warps for thread scheduling.

75

Melani Maheswaran

-
76

CHAPTER 4 Compute architecture and scheduling

Blocks are partitioned into warps on the basis of thread indices. If a block is
organized into a one-dimensional array, that is, only threadldx.x is used, the par-
tition is straightforward. The threadIdx.x values within a warp are consecutive
and increasing. For a warp size of 32, warp O starts with thread 0 and ends with
thread 31, warp 1 starts with thread 32 and ends with thread 63, and so on. In
general, warp n starts with thread 32 X n and ends with thfeadiS2exi@FEL)=1
For a block whose size is not a multiple of 32, the last warp will be padded with
inactive threads to fill up the 32 thread positions. For example, if a block has 48
threads, it will be partitioned into two warps, and the second warp will be padded
with 16 inactive threads.

For blocks that consist of multiple dimensions of threads, the dimensions will be
projected into a linearized row-major layout before partitioning into warps. The linear
layout is determined by placing the rows with lafgeryrandizicoordifiates after those
with lower ones. That is, if a block consists of two dimensions of threads, one will
form the linear layout by placing all threads whose EhFeadi@XEyEsl after those
whose threadldx.y is 0. Threads whose threadIdx.y is 2 will be placed after those
whose threadIdx.y is 1, and so on. Threads with the same threadldx.y value are
placed in consecutive positions in increasing threadIdx.x order.

Fig. 4.7 shows an example of placing threads of a two-dimensional block into
a linear layout. The upper part shows the two-dimensional view of the block. The
reader should recognize the similarity to the row-major layout of two-dimensional
arrays. Each thread is shown as Ty, x being threadldx.x and y being
threadldx.y. The lower part of Fig. 4.7 shows the linearized view of the block.
The first four threads are the threads whose threadIdx.y value is 0; they are
ordered with increasing threadIdx.x values. The next four threads are the threads
whose threadIdx.y value is 1. They are also placed with increasing threadlIdx.x
values. In this example, all 16 threads form half a warp. The warp will be padded
with another 16 threads to complete a 32-thread warp. Imagine a two-dimensional

TO,O TO,I TO,Z TO,S

TI,O Tl,l T1,2 Tl}

logical 2-D
organization

TO,O To,l TO,Z T0,3 TI,O Tl,l

\ 4

linear order

FIGURE 4.7
Placing 2D threads into a linear layout.

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

4.4 Warps and SIMD hardware

block with 8 X 8 threads. The 64 threads will form two warps. The first warp
starts from Ty and ends with T3 7. The second warp starts with T4 and ends
with T5 7. It would be useful for the reader to draw out the picture as an exercise.

For a three-dimensional block, we first place all threads whose threadldx.z
value is O into the linear order. These threads are treated as a two-dimensional
block, as shown in Fig. 4.7. All threads whose threadldx.z value is 1 will then
be placed into the linear order, and so on. For example, for a three-dimensional
2 X 8 X 4 block (four in the x dimension, eight in the y dimension, and two in the
z dimension), the 64 threads will be partitioned into two warps, with Tg g0
through Ty 7 3 in the first warp and T, o through T, ;73 in the second warp.

An SM is designed to execute all threads in a warp following the single-instruction,
multiple=data’(SIMD) model." That is, at any instant in time, one instruction is fetched
and executed for all threads in the warp (see the “Warps and SIMD Hardware” side-
bar). Fig. 4.8 shows how the cores in an SV are" grouped into: processing blocks in
which every 8 cores form a processing block and share an instruction fetch/dispatch
unit. As a real example, the Ampere A100 SM, which has 64 cores, is organized into
four processing blocks with 16 cores each. Threads in the same warp are assigned to
the same processing block, which fetches the instruction for the warp and executes it
for all threads in the warp at the same time. These threads apply the same instruction
to different portions of the data. Because the SIMD hardware effectively restricts all
threads in a warp to execute the same instruction at any point in time, the execution
behavior of a warp is often referred to as single instruction, multiple-thread.

The advantage of SIMD is that the cost of the control hardware, such as the
instruction fetch/dispatch unit, is shared across many execution units. This design
choice allows for a smaller percentage of the hardware to be dedicated to control

SM

Instruction Instruction
Fetch/Dispatch Fetch/Dispatch

FIGURE 4.8
Streaming multiprocessors are organized into processing blocks for SIMD execution.

77

Melani Maheswaran

Melani Maheswaran

78 CHAPTER 4 Compute architecture and scheduling

and a larger percentage to be dedicated to increasing arithmetic throughput. we
expect that in the foreseeable future, warp partitioning will remain a popular
implementation technique. However, the size of warp can vary from implementa-
tion to implementation. Up to this point in time, all CUDA devices have used
similar warp configurations in which each warp consists of 32 threads.

Warps and SIMD Hardware

In his seminal 1945 report, John von Neumann described a model for
building electronic computers, which is based on the design of the pioneer-
ing EDVAC computer. This model, now commonly referred to as the “von
Neumann Model,” has been the foundational blueprint for virtually all
modern computers.

The von Neumann Model is illustrated in the following figure. The com-
puter has an I/O (input/output) that allows both programs and data to be
provided to and generated from the system. To execute a program, the
computer first inputs the program and its data into the Memory.

Memory 1/0
1 |

| '

Processing Unit

Register
File

4

Control Unit

Processor

The program consists of a collection of instructions.. The Control Unit
maintains a Program Counter (PC), which contains the memory address of
the next instruction to be executed. In each “instruction cycle,” the
Control Unit uses the PC to fetch an instruction into the Instruction
Registeid(IR) The instruction bits are then examined to determine the
action to bentakennbyvallvcomponentsof ithencomputernThis is the reason
why the model is also called the (Storediprograny Vinodel, which means
that a user can change the behavior of a computer by storing a different
program into its memory.

CheNmiotivationforiexecutingsthreadssasswarps is illustrated in the fol-

lowing modified von Neumann model that is adapted to reflect a GPU

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

4.5 Control divergence

design. The processor, which corresponds to a processing block in
Figure 4.8, has only one control unit that fetches and dispatches instruc-
tions. The same control signals (arrows that go from the Control Unit to
the Processing Units in Figure 4.8) go to multiple processing units that
each correspond to a core in the SM, each of which executes one of the
threads in a warp.

777777 _‘ Memory H /0 ‘

Processing Unit

Shared

Register
Memory File
i — —

Iy

Control Unit
[pc | [IR |

Processor (Processing Block in SM)

Since all processing units are controlled by the same instruction in the
Instruction Register (IR) of the Control Unit, their execution differences
are due to the different data operand values in the register files. This is
called Single-Instruction-Multiple-Data (SIMD) in processor design. For
example, although all processing units (cores) are controlled by an
instruction, such as add rl, ¥2, ¥3, the contents of ¥2 and r3 are different
in different processing units.

Control units in modern processors are quite complex, including
sophisticated logic for fetching instructions and access ports to the instruc-
tion cache. Having multiple processing units to share a control unit can
result in significant reduction in hardware manufacturing cost and power
consumption.

Control divergence

SIMD execution works well when all threads within a warp follow the same exe-
cution path, more formally referred to as' control flow, when working on their
data. For example, for an if-else construct, the execution works well when either
all threads in a warp execute the if-path or all execute the else-path. However,
when threads within a warp take different control flow paths, the SIMD hardware
will take multiple passes through these paths, one pass for each path. For

79

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

80

CHAPTER 4 Compute architecture and scheduling

example, for an if-else construct, if some threads in a warp follow the if-path
while others follow the else path, the hardware will take two passes. One pass
executes the threads that follow the if-path, and the other executes the threads
that follow the else-path. During each pass, the threads that follow the other path
are not allowed to take effect.

When threads in the same warp follow different execution paths, we say that
these threads exhibit control divergence, that is, they diverge in their execution.
The multipass approach to divergent warp execution extends the SIMD hard-
ware’s ability to implement the full semantics of CUDA threads. While the hard-
ware executes the same instruction for all threads in a warp, it selectively lets
these threads take effect in only the pass that corresponds to the path that they
took, allowing every thread to appear to take its own control flow path. This pre-
serves the independence of threads while taking advantage of the reduced cost of
SIMD hardware. The cost of divergence, however, is the extra passes the hard-
ware needs to take to allow different threads in a warp to make their own deci-
sions as well as the execution resources that are consumed by the inactive threads
in each pass.

Fig. 4.9 shows an example of how a warp would execute a divergent if-else
statement. In this example, when the warp consisting of threads 0—31 arrives
at the if-else statement, threads 0—23 take the then-path, whilesthreads24=3i1
take the,else-paths, In this case, the warp will do a pass through the code in which
threads 0—23 execute A while threads 24—31 are inactive. The warp will also do
another pass through the code in which threads 24—31 execute B while threads
0—23 are inactive. The threads in the warp then reconverge and execute C. In the
Pascal architecture and prior architectures, these passes are executed sequentially,

it
o s S8

‘ RIS IR AR S

A

é 2
if (threadIdx.x < 24) { 2 é

FIGURE 4.9
Example of a warp diverging at an if-else statement.

Melani Maheswaran

4.5 Control divergence

meaning that one pass is executed to completion followed by the other pass.
From the Volta architecture onwards, the passes may be executed concurrently,
meaning that the execution of one pass may be interleaved with the execution of
another pass. This feature is referred to as independent thread scheduling.
Interested readers are referred to the whitepaper on the Volta V100 architecture
(NVIDIA, 2017) for details.

Divergence also can arise in other control flow constructs. Fig. 4.10 shows an
eéxample of 'how a warp would execute a divergent for=loop. In this example, each
thread executes a different number of loop iterations, which vary between four and
eight. For the first four iterations, all threads are active and execute A. For the
remaining iterations, some threads execute A, while others are inactive because they
have completed their iterations.

One can determine whether a control construct can result in thread divergence
by inspecting its decision condition. If the decision condition is based on
threadIdx values, the control statement can potentially cause thread divergence.
For example, the statement if(threadldx.x > 2) {...) causes the threads in the
first warp of a block to follow two divergent control flow paths. Threads 0, 1, and
2 follow a different path than that of threads 3, 4, 5, and so on. Similarly, a loop
can cause thread divergence if its loop condition is based on thread index values.

A prevalent reason for using a control construct with thread control divergence is
handling boundary conditions when mapping threads to data. This is usually because
the total number of threads needs to be a multiple of the thread block size, whereas
the size of the data can be an arbitrary number. Starting with our vector addition ker-
nel in Chapter 2, Heterogeneous Data Parallel Computing, we had an if(i <n) state-
ment in addVecKernel. This is because not all vector lengths can be expressed as
multiples of the block size. For example, let’s assume that the vector length is 1003

~ N\ Yo
~/ N\
P NN

=]

N = a[threadIdx.x];
for(i = 0; i < N; ++i) {

A

R R R R AR 2L 22 2ok a2
B R R ok 2%
B e 2%k 2ok ook o
B R VN R N R N L 22 2 o
VAN AN AN AN AN AN AN

FIGURE 4.10
Example of a warp diverging at a for-loop.

81

Melani Maheswaran

82

CHAPTER 4 Compute architecture and scheduling

and we picked 64 as the block size. One would need to launch 16 thread blocks to
process all the 1003 vector elements. However, the 16 thread blocks would have
1024 threads. We need to disable the last 21 threads in thread block 15 from doing
work that is not expected or not allowed by the original program. Keep in mind that
these 16 blocks are partitioned into 32 warps. Only the last warp (i.e., the second
warp in the last block) will have control divergence.

Note that the performance impact of control divergence decreases as the size
of the vectors being processed increases. For a vector length of 100, one of the
four warps will have control divergence, which can have significant impact on
performance. For a vector size of 1000, only one of the 32 warps will have con-
trol divergence. That is, control divergence will affect only about 3% of the exe-
cution time. Even if it doubles the execution time of the warp, the net impact on
the total execution time will be about 3%. Obviously, ifithe vector length is
10,000 or more, only one of the 313 warps will have control divergence. The
impact of control divergence will be much less than 1%!

For two-dimensional data, such as the color-to-grayscale conversion example
in Chapter 3, Multidimensional Grids and Data, if statements are also used to han-
dle the boundary conditions for threads that operate at the edge of the data. In
Fig. 3.2, to process the 62 X 76 image, we used 20 = 4 X5 two-dimensional
blocks that consist of 16 X 16 threads each. Each block will be partitioned into 8
warps; each one consists of two rows of a block. A total 160 warps (8 warps per
block) are involved. To analyze the impact of control divergence, refer to
Fig. 3.5. None of the warps in the 12 blocks in region 1 will have control diver-
gence. There are 12 X 8 = 96 warps in region 1. For region 2, all the 24 warps
will have control divergence. For region 3, all the bottom warps are mapped to
data that are completely outside the image. As result, none of them will pass the
if condition. The reader should verify that these warps would have had control
divergence if the picture had an odd number of pixels in the vertical dimension.
In region 4, the first 7 warps will have control divergence, but the last warp will
not. All in all, 31 out of the 160 warps will have control divergence.

Once again, the performance impact of control divergence decreases as the
number of pixels in the horizontal dimension increases. For example, if we pro-
cess a 200 X 150 picture with 16 X 16 blocks, there will be a total of 130 =
13 X 10 thread blocks or 1040 warps. The number of warps in regions 1 through
4 will be 864 (12X 9X8), 72 (9X8), 96 (12X 8), and 8 (1 X &). Only 80 of
these warps will have control divergence. Thus the performance impact of control
divergence will be less than 8%. Obviously, if we process a realistic picture with
more than 1000 pixels in the horizontal dimension, the performance impact of
control divergence will be less than 2%.

An important implication of control divergence is that one cannot assume that
all threads in a warp have the same execution timing. Therefore if all threads in a
warp must complete a phase of their execution before any of them can move on,
one must use a barrier synchronization mechanism such as __syncwarp() to
ensure correctness.

Melani Maheswaran

4.6 Warp scheduling and latency tolerance

Warp scheduling and latency tolerance

When threads are assigned to SMs, there are usually more threads assigned to an
SM than there are cores in the SM. That is, each SM has only enough execution
units to execute a subset of all the threads assigned to it at any point in time.
In earlier GPU designs, each SM can execute only one instruction for a single
warp at any given instant. In more recent designs, each SM can execute instruc-
tions for a small number of warps at any given point in time. In either case, the
hardware can execute instructions only for a subset of all warps in the SM. A
legitimate question is why we need to have so many warps assigned to an SM if
it can execute only a subset of them at any instant? The answer is that this is how
GPUs tolerate long-latency operations such as global memory accesses.

When an instruction to be executed by a warp needs to wait for the result of a
previously initiated long-latency operation, the warp is not selected for execution.
Instead, another resident warp that is no longer waiting for results of previous
instructions will be selected for execution. If more than one warp is ready for exe-
cution, a priority mechanism is used to select one for execution. This mechanism
of filling the latency time of operations from some threads with work from other
threads is often called “latency tolerance” or “latency hiding” (see the “Latency
Tolerance” sidebar).

Latency Tolerance

Latency tolerance is needed in many everyday situations. For example, in
post offices, each person who is trying to ship a package should ideally
have filled out all the forms and labels before going to the service counter.
However, as we all have experienced, some people wait for the service
desk clerk to tell them which form to fill out and how fto fill out the form.

When there is a long line in front of the service desk, it is important to
maximize the productivity of the service clerks. Letting a person fill out the
form in front of the clerk while everyone waits is not a good approach.
The clerk should be helping the next customers who are waiting in line
while the person fills out the form. These other customers are “ready to
go” and should not be blocked by the customer who needs more time to
fill out a form.

This is why a good clerk would politely ask the first customer to step
aside to fill out the form while the clerk serves other customers. In most
cases, instead of going to the end of the line, the first customer will be
served as soon as he or she finishes the form and the clerk finishes serving
the current customer.

We can think of these post office customers as warps and the clerk as a
hardware execution unit. The customer who needs to fill out the form cor-
responds to a warp whose continued execution is dependent on a long-
latency operation.

83

84

CHAPTER 4 Compute architecture and scheduling

Note that warp scheduling is also used for tolerating other types of operation
latencies, such as pipelined floating-point arithmetic and branch instructions.
With enough warps around, the hardware will likely find a warp to execute at any
point in time, thus making full use of the execution hardware while the instruc-
tions of some warps wait for the results of these long-latency operations. The
selection of warps that are ready for execution does not introduce any idle or
wasted time into the execution timeline, which is referred to as zero-overhead
thread scheduling (see the “Threads, Context-switching, and Zero-overhead
Scheduling” sidebar). With warp scheduling, the long waiting time of warp
instructions is “hidden” by executing instructions from other warps. This ability
to tolerate long operation latencies is the main reason why GPUs do not dedicate
nearly as much chip area to cache memories and branch prediction mechanisms
as CPUs do. As a result, GPUs can dedicate more chip area to floating-point exe-
cution and memory access channel resources.

Threads, Context-switching, and Zero-overhead Scheduling

Based on the von Neumann model, we are ready to more deeply understand
how threads are implemented. A thread in modern computers is a program
and the state of executing the program on a von Neumann Processor. Recall
that a thread consists of the code of a program, the instruction in the code
that is being executed, and value of its variables and data structures.

In a computer based on the von Neumann model, the code of the pro-
gram is stored in the memory. The PC keeps track of the address of the
instruction of the program that is being executed. The IR holds the instruc-
tion that is being executed. The register and memory hold the values of the
variables and data structures.

Modern processors are designed to allow context-switching, where mul-
tiple threads can time-share a processor by taking turns to make progress.
By carefully saving and restoring the PC value and the contents of regis-
ters and memory, we can suspend the execution of a thread and correctly
resume the execution of the thread later. However, saving and restoring
register contents during context-switching in these processors can incur
significant overhead in terms of added execution time.

Zero-overhead scheduling refers to the GPU'’s ability to put a warp
that needs to wait for a long-latency instruction result to sleep and activate
a warp that is ready to go withoutyi

@processingpumnitsmbraditional CPUs incur such idle cycles because switch-
ing the execution from one thread to another requires saving the execution
state (such as register contents of the out-going thread) to memory and
loading the execution state of the incoming thread from memory. GPU
SMs achieves zero-overhead scheduling by holding all the execution states
for the assigned warps in the hardware registers so there is no need to
save and restore states when switching from one warp to another.

Melani Maheswaran

4.7 Resource partitioning and occupancy

For latency tolerance to be effective, it is desirable for an SM to have many
more threads assigned to it than can be simultaneously supported with its execu-
tion resources to maximize the chance of finding a warp that is ready to execute
at any point in time. For example, in an Ampere A100 GPU, an SM has 64 cores
but can have up to 2048 threads assigned to it at the same time. Thus the SM can
have up to 32 times more threads assigned to it than its cores can support at any
given clock cycle. This oversubscription of threads to SMs is essential for latency
tolerance. It increases the chances of finding another warp to execute when a cur-
rently executing warp encounters a long-latency operation.

Resource partitioning and occupancy

We have seen that it is desirable to assign many warps to an SM in order to tolerate
long-latency operations. However,(it/may niot always be possible torassign to the'SM
the'maximum number of ‘warps that the "SM supports. The ratio of the number of
warps assigned to an SM to the maximum number it supports is referred to as occu-
pancy. To understand what may prevent an SM from reaching maximum occupancy,
it is important first to understand how SM resources are partitioned.

The execution resources in an SM include registers, shared memory (discussed
in Chapter 5, Memory Architecture and Data Locality), thread block slots, and
thread slots. These resources are dynamically partitioned across threads to support
their execution. For example, an Ampere A100 GPU can support a maximum of
32 blocks per SM, 64 warps (2048 threads) per SM, and 1024 threads per block.
If a grid is launched with a block size of 1024 threads (the maximum allowed),
the 2048 thread slots in each SM are partitioned and assigned to 2 blocks. In this
case, each SM can accommodate up to 2 blocks. Similarly, if a grid is launched
with a block size of 512, 256, 128, or 64 threads, the 2048 thread slots are parti-
tioned and assigned to 4, 8, 16, or 32 blocks, respectively.

This ability to dynamically partition thread slots among blocks makes SMs
versatile. They can either execute many blocks each having few threads or exe-
cute few blocks each having many threads: This dynamic partitioning can be con-
trasted with a fixed partitioning method in which each block would receive a
fixed amount of resources regardless of its real needs. Fixed partitioning results in
wasted thread slots when a block requires fewer threads than the fixed partition
supports and fails to support blocks that require more thread slots than that.

Dynamic partitioning of resources can lead to subtle interactions between
resource limitations, which can cause tnderutilization'of 'resources. Such interac-
tions can occur between block slots and thread slots. In the example of the
Ampere A100, we saw that the block size can be varied from 1024 to 64, result-
ing in 2—32 blocks per SM, respectively. In all these cases, the total number of
threads assigned to the SM is 2048, which maximizes occupancy. Consider, how-
ever, the case when each block has 32 threads. In this case, the 2048 thread slots

L
85

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

86

CHAPTER 4 Compute architecture and scheduling

would need to be partitioned and assigned to 64 blocks. However, the Volta SM
can support only 32 blocks slots at once. This means that only 1024 of the thread
slots will be utilized, that is, 32 blocks with 32 threads each. The occupancy in
this case is (1024 assigned threads)/(2048 maximum threads) = 50%. Therefore to
fully utilize the thread slots and achieve maximum occupancy, one needs at least
64 threads in each block.

Another situation that could negatively affect occupancy occurs when the maximum
number of threads per block is not divisible by the block size. In the example of the
Ampere A100, we saw that up to 2048 threads per SM can be supported. However, if
a block size of 768 is selected, the SM will be able to accommodate only 2 thread
blocks (1536 threads), leaving 512 thread slots unutilized. In this case, neither the max-
imum threads per SM nor the maximum blocks per SM are reached. The occupancy in
this case is (1536 assigned threads)/(2,048 maximum threads) = 75%.

The preceding discussion does not consider the impact of other resource con-
straints, such as registers and shared memory. We will see in Chapter 5, Memory
Architecture and Data Locality, that automatic variables declared in a CUDA kernel
are placed into registers. Some kernels may use many automatic variables, and
others may use few of them. Therefore one should expect that some kernels require
many registers per thread and some require few. By dynamically partitioning regis-
ters in an SM across threads, the SM can accommodate many blocks if they require
few registers per thread and fewer blocks if they require more registers per thread.

One does, however, need to be aware of potential impact of register resource
limitations on occupancy. For example, the Ampere A100 GPU allows a maximum
of 65,536 registers per SM. To run at full occupancy, each SM needs enough regis-
ters for 2048 threads, which means that each thread should not use more than
(65,536 registers)/(2048 threads) = 32 registers per thread. For example, if a kernel
uses 64 registers per thread, the maximum number of threads that can be supported
with 65,536 registers is 1024 threads. In this case, the kernel cannot run with full
occupancy regardless of what the block size is set to be. Instead, the occupancy
will be at most 50%. In some cases, the compiler may perform register spilling to
reduce the register requirement per thread and thus elevate the level of occupancy.
However, this is typically at the cost of increased execution time for the threads to
access the spilled register values from memory and may cause the total execution
time of the grid to increase. A similar analysis is done for the shared memory
resource in Chapter 5, Memory Architecture and Data Locality.

Assume that a programmer implements a kernel that uses 31 registers per
thread and configures it with 512 threads per block. In this case, the SM will
have (2048 threads)/(512 threads/block) = 4 blocks running simultaneously. These
threads will use a total of (2048 threads) X (31 registers/thread) = 63,488 regis-
ters, which is less than the 65,536 register limit. Now assume that the programmer
declares another two automatic variables in the kernel, bumping the number of
registers used by each thread to 33. The number of registers required by 2048
threads is now 67,584 registers, which exceeds the register limit. The CUDA run-
time system may deal with this situation by assigning only 3 blocks to each SM

4.8 Querying device properties

instead of 4, thus reducing the number of registers required to 50,688 registers.
However, this reduces the number of threads running on an SM from 2048 to
1536; that is, by using two extra automatic variables, the program saw a reduction
in occupancy from 100% to 75%. This is sometimes referred to as a “performance
cliff,” in which a slight increase in resource usage can result in significant reduc-
tion in parallelism and performance achieved (Ryoo et al., 2008).

It should be clear to the reader that the constraints of all the dynamically parti-
tioned resources interact with each other in a complex manner. Accurate determi-
nation of the number of threads running in each SM can be difficult. The reader
is referred to the CUDA Occupancy Calculator (CUDA Occupancy Calculator,
Web) which is a downloadable spreadsheet that calculates the actual number of
threads running on each SM for a particular device implementation given the
usage of resources by a kernel.

Querying device properties

Our discussion on partitioning of SM resources raises an important question: How
do we find out the amount of resources available for a particular device? When a
CUDA application executes on a system, how can it find out the number of SMs
in a device and the number of blocks and threads that can be assigned to each
SM? The same questions apply to other kinds of resources, some of which we
have not discussed so far. In general, many modern applications are designed to exe-
cute on a wide variety of hardware systems. There is often a need for the application
to query the available resources and capabilities of the underlying hardware in order
to take advantage of the more capable systems while compensating for the less capa-
ble systems (see the “Resource and Capability Queries” sidebar).

Resource and Capability Queries

In everyday life, we often query the resources and capabilities in an envi-
ronment. For example, when we make a hotel reservation, we can check
the amenities that come with a hotel room. If the room comes with a hair
dryer, we do not need to bring one. Most American hotel rooms come with
hair dryers, while many hotels in other regions do not.

Some Asian and European hotels provide toothpaste and even toothbrushes,
while most American hotels do not. Many American hotels provide both shampoo
and conditioner, while hotels in other continents often provide only shampoo.

If the room comes with a microwave oven and a refrigerator, we can take
the leftovers from dinner and expect to eat them the next day. If the hotel has a
pool, we can bring swimsuits and take a dip after business meetings. If the hotel
does not have a pool but has an exercise room, we can bring running shoes and
exercise clothes. Some high-end Asian hotels even provide exercise clothing!

87

88

CHAPTER 4 Compute architecture and scheduling

These hotel amenities are part of the properties, or resources and capa-
bilities, of the hotels. Veteran travelers check the properties at hotel web-
sites, choose the hotels that best match their needs, and pack more
efficiently and effectively.

The amount of resources in each CUDA device SM is specified as part of the
compute capability of the device. In general, the higher the compute capability
level, the more resources are available in each SM. The compute capability of
GPUs tends to increase from generation to generation. The Ampere A100 GPU
has compute capability 8.0.

In CUDA C, there is a built-in mechanism for the host code to query the prop-
erties of the devices that are available in the system. The CUDA runtime system
(device driver) has an API function cudaGetDeviceCount that returns the number
of available CUDA devices in the system. The host code can find out the number
of available CUDA devices by using the following statements:

int devCount;

cudaGetDeviceCount (&devCount) ;

While it may not be obvious, a modern PC system often has two or more CUDA
devices. This is because many PC systems come with one or more “integrated”
GPUs. These GPUs are the default graphics units and provide rudimentary capabilities
and hardware resources to perform minimal graphics functionalities for modern
window-based user interfaces. Most CUDA applications will not perform very well on
these integrated devices. This would be a reason for the host code to iterate through all
the available devices, query their resources and capabilities, and choose the ones that
have enough resources to execute the application with satisfactory performance.

The CUDA runtime numbers all the available devices in the system from O to
devCount-1. It provides an API function cudaGetDeviceProperties that returns
the properties of the device whose number is given as an argument. For example,
we can use the following statements in the host code to iterate through the avail-
able devices and query their properties:

cudaDeviceProp devProp;

for (unsigned int i = 0; i < devCount; i++) {
cudaGetDeviceProperties (&devProp, 1i);
// Decide if device has sufficient

resources/capabilities

}

4.8 Querying device properties

The built-in type cudaDeviceProp is a C struct type with fields that represent
the properties of a CUDA device. The reader is referred to the CUDA C
Programming Guide for all the fields of the type. We will discuss a few of these
fields that are particularly relevant to the assignment of execution resources to
threads. We assume that the properties are returned in the devProp variable whose
fields are set by the cudaGetDeviceProperties function. If the reader chooses to
name the variable differently, the appropriate variable name will obviously need
to be substituted in the following discussion.

As the name suggests, the field devProp.maxThreadsPerBlock gives the maximum
number of threads allowed in a block in the queried device. Some devices allow up to
1024 threads in each block, and other devices may allow fewer. It is possible that
future devices may even allow more than 1024 threads per block. Therefore it is a
good idea to query the available devices and determine which ones will allow a suffi-
cient number of threads in each block as far as the application is concerned.

The number of SMs in the device is given in devProp.multiProcessorCount. If the
application requires many SMs to achieve satisfactory performance, it should definitely
check this property of the prospective device. Furthermore, the clock frequency of the
device is in devProp.clockRate. The combination the clock rate and the number of SMs
gives a good indication of the maximum hardware execution throughput of the device.

The host code can find the maximum number of threads allowed along each
dimension of a block in fields devProp.maxThreadsDim[0] (for the x dimension),
devProp.maxThreadsDim[1] (for the y dimension), and devProp.maxThreadsDim[2]
(for the z dimension). An example of use of this information is for an automated
tuning system to set the range of block dimensions when evaluating the best per-
forming block dimensions for the underlying hardware. Similarly, it can find the
maximum number of blocks allowed along each dimension of a grid in devProp.
maxGridSize[0] (for the x dimension), devProp.maxGridSize[1] (for the y dimen-
sion), and devProp.maxGridSize[2] (for the z dimension). A typical use of this
information is to determine whether a grid can have enough threads to handle the
entire dataset or some kind of iterative approach is needed.

The field devProp.regsPerBlock gives the number of registers that are avail-
able in each SM. This field can be useful in determining whether the kernel can
achieve maximum occupancy on a particular device or will be limited by its reg-
ister usage. Note that the name of the field is a little misleading. For most com-
pute capability levels, the maximum number of registers that a block can use is
indeed the same as the total number of registers that are available in the SM.
However, for some compute capability levels, the maximum number of registers
that a block can use is less than the total that are available on the SM.

We have also discussed that the size of warps depends on the hardware. The
size of warps can be obtained from the devProp.warpSize field.

There are many more fields in the cudaDeviceProp type. We will discuss
them throughout the book as we introduce the concepts and features that they are
designed to reflect.

89

90

CHAPTER 4 Compute architecture and scheduling

Summary

A GPU is organized into SM, which consist of multiple processing blocks of
cores that share control logic and memory resources. When a grid is launched, its
blocks are assigned to SMs in an arbitrary order, resulting in transparent scalabil-
ity of CUDA applications. The transparent scalability comes with a limitation:
Threads in different blocks cannot synchronize with each other.

Threads are assigned to SMs for execution-en-a-block-by-block basis»Once a block
has been assigned to an SM, it is further partitioned into warps. Threads in a warp are
executed following the SIMD model. If threads in the same warp diverge by taking dif-
ferent execution paths, the processing block executes these paths in passes in which
each thread is active only in the pass corresponding to the path that it takes.

An SM may have many more threads assigned to it than it can execute simulta-
neously. At any time, the SM executes instructions of only a small subset of its resident
watps. This allows the other warps to wait for long-latency operations without slowing
down the overall execution throughput of the massive number of processing units. The
ratio of the number of threads assigned to the SM to the maximum number of threads
it can support is referred to agroceupancy. The higher the occupancy of an SM, the bet-
ter it can hide long-latency operations.

Each CUDA device imposes a potentially different limitation on the amount of
resources available in each SM. For example, each CUDA device has a limit on the
number of blocks, the number of threads, the number of registers, and the amount of
other resources that each of its SMs can accommodate. For each kemel, one or more of
these resource limitations can become the limiting factor for occupancy. CUDA C pro-
vides programmers with the ability to query the resources available in a GPU at runtime.

Exercises
1. Consider the following CUDA kernel and the corresponding host function that
calls it:
01 __global void foo_kernel (int* a, int* b) {
02 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
03 if (threadIdx.x < 40 || threadIdx.x >= 104) ({
04 bli] = ali] + 1;
05 }
06 if (1%2 == 0) {
07 ali] = b[i]l*2;
08 }
09 for (unsigned int j = 0; j < 5 - (1%3); ++3) {
10 b[il += j;
11 }
12 }
13 void foo(int* a d, int* b d) {
14 unsigned int N = 1024;
5 foo kernel <<< (N + 128 - 1)/128, 128 >>>(a d, b d);

16 }

Exercises

a. What is the number of warps per block?
. What is the number of warps in the grid?
c. For the statement on line 04:
i. How many warps in the grid are active?

ii. How many warps in the grid are divergent?

iii. What is the SIMD efficiency (in %) of warp 0 of block 0?
V. What is the SIMD efficiency (in %) of warp 1 of block 0?
V. What is the SIMD efficiency (in %) of warp 3 of block 0?
d. For the statement on line 07:

i. How many warps in the grid are active?

ii. How many warps in the grid are divergent?

iii. What is the SIMD efficiency (in %) of warp 0 of block 0?
e. For the loop on line 09:

i. How many iterations have no divergence?

ii. How many iterations have divergence?
. For a vector addition, assume that the vector length is 2000, each thread
calculates one output element, and the thread block size is 512 threads. How
many threads will be in the grid?
. For the previous question, how many warps do you expect to have divergence
due to the boundary check on vector length?
. Consider a hypothetical block with 8 threads executing a section of code
before reaching a barrier. The threads require the following amount of time
(in microseconds) to execute the sections: 2.0, 2.3, 3.0, 2.8, 2.4, 1.9, 2.6, and
2.9; they spend the rest of their time waiting for the barrier. What percentage
of the threads’ total execution time is spent waiting for the barrier?
. A CUDA programmer says that if they launch a kernel with only 32 threads
in each block, they can leave out the _ syncthreads() instruction wherever
barrier synchronization is needed. Do you think this is a good idea? Explain.
. If a CUDA device’s SM can take up to 1536 threads and up to 4 thread
blocks, which of the following block configurations would result in the most
number of threads in the SM?
a. 128 threads per block
b. 256 threads per block
€. 512 threads per block
d. 1024 threads per block
. Assume a device that allows up to 64 blocks per SM and 2048 threads per
SM. Indicate which of the following assignments per SM are possible. In the
cases in which it is possible, indicate the occupancy level.
a. 8 blocks with 128 threads each
16 blocks with 64 threads each
32 blocks with 32 threads each
64 blocks with 32 threads each
32 blocks with 64 threads each

(=2

L

91

92 CHAPTER 4 Compute architecture and scheduling

8. Consider a GPU with the following hardware limits: 2048 threads per SM, 32
blocks per SM, and 64K (65,536) registers per SM. For each of the following
kernel characteristics, specify whether the kernel can achieve full occupancy.
If not, specify the limiting factor.

a. The kernel uses 128 threads per block and 30 registers per thread.
b. The kernel uses 32 threads per block and 29 registers per thread.
c. The kernel uses 256 threads per block and 34 registers per thread.

9. A student mentions that they were able to multiply two 1024 X 1024 matrices
using a matrix multiplication kernel with 32 X 32 thread blocks. The student is
using a CUDA device that allows up to 512 threads per block and up to 8 blocks
per SM. The student further mentions that each thread in a thread block calculates
one element of the result matrix. What would be your reaction and why?

References

CUDA Occupancy Calculator, 2021. https://docs.nvidia.com/cuda/cuda-occupancy-calculator/
index.html.

NVIDIA (2017). NVIDIA Tesla V100 GPU Architecture. Version WP-08608-001_v1.1.

Ryoo, S., Rodrigues, C., Stone, S., Baghsorkhi, S., Ueng, S., Stratton, J., et al., Program
optimization space pruning for a multithreaded GPU. In: Proceedings of the Sixth
ACM/IEEE International Symposium on Code Generation and Optimization, April
6—9, 2008.

CHAPTER

Memory architecture and
data locality

Chapter Outline

5.1 Importance of memory access effiCiencycccccececerrecccnnrccce s 94
5.2 CUDA MEMOTY YPES ..eovrrreerriiinmeriismneissssss s s ssss s ss s s s s s sne s s mn s s mnn s asmnn s 96
5.3 Tiling for reduced memory traffic ccccceccerrcccemrrcse e e 103
5.4 A tiled matrix multiplication Kernel ... e 107
5.5 Boundary ChECKSooeiiiiiiiceii e se s mnn e e mmn e e e e e e e 112
5.6 Impact of memory usage 0N 0CCUPANCY cceeeccccemcreerresssssnnnreersesssssnnneessesanases 115
LR A 111111 | N 118
EXEICISES wivreeeccerissamerrsssmrersssmerssssmnessssmnenssssnensssnnesassnnenssssnensssnsensssnnenssssnnsensssnnes 119

So far, we have learned how to write a CUDA kernel function and how to
configure and coordinate its execution by a massive number of threads. We
have also looked at the compute architecture of current GPU hardware and how
threads are scheduled to execute on this hardware. In this chapter we will focus
on the on-chip memory architecture of the GPU and begin to study how one can
organize and position data for efficient access by a massive number of threads.
The CUDA kernels that we have studied so far will likely achieve only a tiny
fraction of the potential speed of the underlying hardware. This poor perfor-
mance is because global memory, which is typically implemented with off-chip
DRAM, tends to have long access latency (hundreds of clock cycles) and finite
access bandwidth. While having many threads available for execution can theo-
retically tolerate long memory access latencies, one can easily run into a situa-
tion in which traffic congestion in the global memory access paths prevents all
but a very few threads from making progress, thus rendering some of the cores
in the streaming multiprocessors (SMs) idle. To circumvent such congestion,
GPUs provide a number of additional on-chip memory resources for accessing
data that can remove the majority of traffic to and from the global memory. In
this chapter we will study the use of different memory types to boost the execu-
tion performance of CUDA kernels.

Programming Massively Parallel Processors. DOI: https://doi.org/10.1016/B978-0-323-91231-0.00018-5 93
© 2023 Elsevier Inc. All rights reserved.

Qf\

Uﬁ& ”J\OQOM o

o
wﬁ

#

94

CHAPTER 5 Memory architecture and data locality

Importance of memory access efficiency

We can illustrate the effect of memory access efficiency by calculating the
expected performance level of the most executed portion of the matrix multiplica-
tion kernel code in Fig. 3.11, which is partially replicated in Fig. 5.1. The most
important part of the kernel in terms of execution time is the for-loop that per-
forms the dot product of a row of M with a column of N.

In every iteration of the loop, two global memory accesses are performed for
one floating-point multiplication and one floating-point addition. The global
memory accesses fetch elements from the M and N arrays. The floating-point
multiplication operation multiplies these two elements together, and the
floating-point add operation accumulates the product into Pvalue. Thus the ratio
of floating-point operations (FLLOP) to bytes (B) accessed from global memory
is 2 FLOP to 8 B, or 0.25 FLOP/B. We will refer to this ratio as the compute to
global memory access ratio, defined as the number of FLOPs performed for
each byte access from the global memory within a region of a program. This
ratio is sometimes also referred to as arithmetic intensity or computational
intensity in the literature.

The compute to global memory access ratio has major implications for
the performance of a CUDA kernel. For example, the Ampere A100 GPU
has a peak global memory bandwidth of 1555 GB/second. Since the matrix
multiplication kernel performs 0.25 OP/B, the global memory bandwidth limits
the throughput of single-precision FLOPs that can be performed by the kernel
to 389 giga FLOPs per second (GFLOPS), obtained by multiplying 1555 GB/
second with 0.25 FLOP/B. However, 389 GFLOPS is only 2% of the peak
single-precision operation throughput of the A100 GPU, which is 19,500
GFLOPS. The A100 also comes with special purpose units called tensor cores
that are useful for accelerating matrix multiplication operations. If one consid-
ers the A100’s tensor-core peak single-precision floating-point throughput of
156,000 GFLOPS, 389 GFLOPS is only 0.25% of the peak. Thus the execution
of the matrix multiplication kernel is severely limited by the rate at which
the data can be delivered from memory to the GPU cores. We refer to pro-
grams whose execution speed is limited by memory bandwidth as memory-
bound programs.

07 for (int k = 0; k < Width; ++k) {

08 Pvalue += M[row*Width+k] * N[k*Width+col];
09 }

FIGURE 5.1

The most executed part of the matrix multiplication kernel in Fig. 3.11.

5.1 Importance of memory access efficiency

The Roofline Model
The Roofline Model is a visual model for assessing the performance
achieved by an application relative to the limits of the hardware it is run-
ning on. A basic example of the Roofline model is shown below.

A
72
A
Q
s
43
<
=
j="
5 &/
T o
1:9 &8 Peak throughput (GFLOPS)
s &
g & o5,
2 &
8 F /A,
EE:," <
S .A2
o

v

Computational intensity (FLOP/B)

On the x-axis, we have arithmetic or computational intensity measured
in FLOP/B. It reflects the amount of work done by an application for every
byte of data loaded. On the y-axis, we have computational throughput
measured in GFLOPS. The two lines inside of the plot reflect the hardware
limits. The horizontal line is determined by the peak computational
throughput (GFLOPS) that the hardware can sustain. The line with a posi-
tive slope starting from the origin is determined by the peak memory band-
width that the hardware can sustain. A point in the plot represents an
application with its operational intensity on the x-axis and the computa-
tional throughput it achieves on the y-axis. Of course, the points will be
under the two lines because they cannot achieve higher throughput than
the hardware peak.

The position of a point relative to the two lines tells us about an appli-
cation’s efficiency. Points close to the two lines indicate that an applica-
tion is using memory bandwidth or compute units efficiently, whereas
applications far below the lines indicate inefficient use of resources. The
point of intersection between these two lines represents the computational
intensity value at which applications transition from being memory bound
to being compute bound. Applications with lower computational intensity
are memory-bound and cannot achieve peak throughput because they are
limited by memory bandwidth. Applications with higher computational
intensity are compute-bound and are not limited by memory bandwidth.

95

9 [J(
o

A

2(\0

v
NG

UJ\‘D

(B\O
@

96

0

o 9

"

g
(/0\\(*

CHAPTER 5 Memory architecture and data locality

As an example, points A; and A, both represent memory-bound appli-
cations, while A; represents a compute-bound application. A; uses
resources efficiently and operates close to the peak memory bandwidth,
whereas A, does not. For A,, there may be room for additional optimiza-
tions to improve throughput by improving memory bandwidth utilization.
However, for A; the only way to improve throughput is to increase the
computational intensity of the application.

To achieve higher performance for this kernel, we need to increase the com-
pute to global memory access ratio of the kernel by reducing the number of
global memory accesses it performs. For example, to fully utilize the 19,500
GFLOPS that the A100 GPU provides, a ratio of at least (19,500 GOP/second)/
(1555 GB/second)=12.5 OP/B is needed. This ratio means that for every 4-byte
floating point value accessed, there must be about 50 floating-point operations
performed! The extent to which such a ratio can be achieved depends on the
intrinsic data reuse in the computation at hand. We refer the reader to the “The
Roofline Model” sidebar for a useful model for analyzing a program’s potential
performance with respect to its compute intensity.

As we will see, matrix multiplication presents opportunities for reduction of
global memory accesses that can be captured with relatively simple techniques.
The execution speed of matrix multiplication functions can vary by orders of
magnitude, depending on the level of reduction of global memory accesses.
Therefore matrix multiplication provides an excellent initial example for such
techniques. This chapter introduces a commonly used technique for reducing the
number of global memory accesses and demonstrates the technique on matrix
multiplication.

oo [¢

CUDA memory types

A CUDA device contains several types of memory that can help programmers to
improve the compute to global memory access ratio. Fig. 5.2 shows these CUDA
(g]evice memories. At the bottom of the figure, we see global memory and constant
memory. Both these types of memory can be written (W) and read (R) by the
host. The global memory can also be written and read by the device, whereas the
constant memory supports short-latency, high-bandwidth read-only access by the
device. We introduced global memory in Chapter 2, Heterogeneous Data Parallel
Computing, and we will look at constant memory in detail in Chapter 7,
Convolution.

Another type of memory is the local memory, which can also be read and
written.~Lhe local memory is actually placed in global memory and has similar
access latency, but it is not shared across threads. Each thread has its own section

5.2 CUDA memory types

of global memory that it uses as its own private local memory where it places
data that is private to the thread but cannot be allocated in registers. This data
includes statically allocated arrays, spilled registers, and other elements of the
thread’s call stack.

Registers and shared memory in Fig. 5.2 are on-chip memories. Variables that
reside in these types of memory can be accessed at very high speed in a highly
parallel manner. Registers are allocated to individual threads; each thread can
access only its own registers (see the “CPU versus GPU Register Architecture”
sidebar). A kernel function typically uses registers to hold frequently accessed
variables that are private to each thread. Shared memory is allocated to thread
blocks; all threads in a block can access shared memory variables declared for the
block. Shared memory is an efficient means by which threads can cooperate by
sharing their input data and intermediate results. By declaring a CUDA variable
in one of the CUDA memory types, a CUDA programmer dictates the visibility
and access speed of the variable.

CPU vs. GPU Register Architecture

The different design objectives across the CPUs and GPUs result in different
register architectures. As we saw in Chapter 4, Compute Architecture and
Scheduling, when CPUs context switch between different threads, they save
the registers of the outgoing thread to memory and restore the registers of
the incoming thread from memory. In contrast, GPUs achieve zero-overhead
scheduling by keeping the registers of all the threads that are scheduled on
the processing block in the processing block’s register file. This way, switch-
ing between warps of threads is instantaneous because the registers of the
incoming threads are already in the register file. Consequently, GPU register
files need to be substantially larger than CPU register files.

We also saw in Chapter 4, Compute Architecture and Scheduling, that
GPUs support dynamic resource partitioning where an SM may provision
few registers per thread and execute a large number of threads, or it my pro-
vision more registers per thread and execute fewer threads. For this reason,
GPU register files need to be designed to support such dynamic partitioning
of registers. In contrast, the CPU register architecture dedicates a fixed set
of registers per thread regardless of the thread’s actual demand for registers.

To fully appreciate the difference between registers, shared memory, and global
memory, we need to go into a little more detail about how these different memory
types are realized and used in modern processors. As we discussed in the “Warps
and SIMD Hardware” sidebar in Chapter 4, Compute Architecture and Scheduling,
virtually all modern processors find their root in the model proposed by John von
Neumann in 1945, which is shown in Fig. 5.3. CUDA devices are no exception.
The global memory in a CUDA device maps to the Memory box in Fig. 5.3. The

97

Melani Maheswaran

98 CHAPTER 5 Memory architecture and data locality

Device code can: (Device) Grid

— R/W per-thread registers Block (0,0) || Block (0, 0)

— R/W per-thread local memory

— R/W per-block shared memory

— R/W per-grid global memory

— Read only per-grid constant
memory

Host code can

— Transfer data to/from per grid
global and constant memories

{
Th
(0.0)

e
Host
G

FIGURE 5.2

An (incomplete) overview of the CUDA device memory model. An important type of CUDA
memory that is not shown in this figure is the texture memory, since its use is not covered
in this textbook.

A 4

Memory < /0
4 |

| v

Processing Unit

Register
File

A
|
I

Control Unit

[®]

Processor

FIGURE 5.3

Memory versus registers in a modern computer based on the von Neumann model.

processor box corresponds to the processor chip boundary that we typically see
today. The global memory is off the processor chip and is implemented with
DRAM technology, which implies long access latencies and relatively low access
bandwidthiid The registers correspond to the “Register File” of the von Neumann
model. The Register File is on the processor chip, which implies very short access
latency and drastically higher access bandwidth when compared to the global mem-
ory. In a typical device, the aggregated access bandwidth of all the register files
across all the SMs is at least two orders of magnitude higher than that of the global

memory? Furthermore, whenever a variable is stored in a register, its accesses no

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

5.2 CUDA memory types

longer consume off-chip global memory bandwidth. This will be reflected as an
increased compute to global memory access ratio.

A subtler point is that each access to registers involves fewer instructions than
an access to the global memory. Arithmetic instructions in'most modern proces=
sorshave “built=in” register operands."For example, a floating-point addition
instruction might be of the following form:

fadd rl, r2, r3

where 12 and r3 are the register numbers that specify the location in the register
file where the input operand values can be found. The location for storing the
floating-point addition result value is specified by rl. Therefore when an operand
of an arithmetic instruction is in a register, no additional instruction is required to
make the operand value available to the arithmetic and logic unit (ALU), where

the arithmetic calculation is done.
Meanwhile, if an operand value is in the global memory, the processor needs to

perform a memory load operation to make the operand value available to the ALU.
For example, if the first operand of a floating-point addition instruction is in the global
memory, the instructions that are involved will likely look like the following example:

load r2, r4, offset
fadd rl, r2, r3

where the load instruction adds an offset value to the contents of r4 to form an
address for the operand value. It then accesses the global memory and places the
value into register r2. Once the operand value is in r2, the fadd instruction per-
forms the floating-point addition using the values in r2 and r3 and places the
result into rl. Since the processor can fetch and execute only a limited number of
instructions per clock cycle, the version with an additional load will likely take
more time to process than the one without. This is another reason why placing the
operands in registers can improve execution speed.

Finally, there is yet another subtle reason why placing an operand value in registers
is preferable. In modern computers the energy that is consumed for accessing a value
from the register file is at least an order of magnitude lower than for accessing a value
from the global memory. Accessing a value from registers has a tremendous advantage
in energy efficiency over accessing the value from the global memory. We will look at
more details of the speed and energy difference in accessing these two hardware struc-
tures in modern computers soon. On the other hand, as we will soon learn, the number
of registers that are available to each thread is quite limited in today’s GPUs. As we
saw in Chapter 4, Compute Architecture and Scheduling, the occupancy that is
achieved for an application can be reduced if the register usage in full-occupancy sce-
narios exceeds the limit. Therefore we also need to avoid oversubscribing to this lim-
ited resource whenever possible.

99

Melani Maheswaran

100 CHAPTER 5 Memory architecture and data locality

Fig. 5.4 shows the shared memory and registers in a CUDA device. Although
both are on-chip memories, they differ significantly in functionality and cost of
access. Shared memory is designed as part of the memory space that resides on
the processor chip. When the processor accesses data that resides in the shared
memory, it needs to perform a memory load operation, just as in accessing data
in the global memory. However, because shared memory resides on-chip, it can
be accessed with much lower latency and much higher throughput than the global
memory. Because of the need to perform a load operation, shared memory has
longer latency and lower bandwidth than registers. In computer architecture termi-
nology the shared memory is a form of scratchpad memory.

One important difference between the shared memory and registers in CUDA
is that variables that reside in the shared memory are accessible by all threads in
a block. This contrasts with register data, which is private to a thread. That is,
shared memory is designed to support efficient, high-bandwidth sharing of data
among threads in a block. As shown in Fig. 5.4, a CUDA device SM typically
employs multiple processing units to allow multiple threads to make simultaneous
progress (see the “Threads” sidebar) in Chapter 2, Heterogeneous Data Parallel
Computing. Threads in a block can be spread across these processing units.
Therefore the hardware implementations of the shared memory in these CUDA
devices are typically designed to allow multiple processing units to simulta-
neously access its contents to support efficient data sharing among threads in a
block. We will be learning several important types of parallel algorithms that can
greatly benefit from such efficient data sharing among threads.

It should be clear by now that registers, local memory, shared memory, and
global memory all have different functionalities, latencies, and bandwidth. It is
therefore important to understand how to declare a variable so that it will reside
in the intended type of memory. Table 5.1 presents the CUDA syntax for declar-
ing program variables into the various memory types. Each such declaration also
gives its declared CUDA variable a scope and lifetime. Scope identifies the set of

e .‘ Memory H /0 |

Processing Unit

Shared :
: Register
; Memory Fgl le

f - T

—
Control Unit

Processor (Processing Block in SM)

FIGURE 5.4
Shared memory versus registers in a CUDA device SM.

5.2 CUDA memory types

Table 5.1 CUDA variable declaration type qualifiers and the properties of
each type.

Variable declaration Memory Scope Lifetime
Automatic variables other than arrays Register Thread Grid
Automatic array variables Local Thread Grid
__device__ __shared__ int SharedVar; Shared Block Grid
__device__ int GlobalVar; Global Grid Application
__device__ __constant__ int ConstVar; Constant Grid Application

threads that can access the variable: a single thread only, all threads of a block, or
all threads of all grids. If a variable’s scope is a single thread, a private version of
the variable will be created for every thread; each thread can access only its pri-
vate version of the variable. For example, if a kernel declares a variable whose
scope is a thread and it is launched with one million threads, one million versions
of the variable will be created so that each thread initializes and uses its own ver-
sion of the variable.

Lifetime tells the portion of the program’s execution duration when the variable
is available for use: either within a grid’s execution or throughout the entire applica-
tion. If a variable’s lifetime is within a grid’s execution, it must be declared within
the kernel function body and will be available for use only by the kernel’s code. If
the kernel is invoked several times, the value of the variable is not maintained across
these invocations. Each invocation must initialize the variable in order to use it. On
the other hand, if a variable’s lifetime is throughout the entire application, it must be
declared outside of any function body. The contents of these variables are maintained
throughout the execution of the application and available to all kernels.

We refer to variables that are not arrays as scalar variables. As shown in
Table 5.1, all automatic scalar variables that are declared in kernel and device
functions are placed into registers. The scopes of these automatic variables are
within individual threads. When a kernel function declares an automatic variable,
a private copy of that variable is generated for every thread that executes the ker-
nel function. When a thread terminates, all its automatic variables cease to exist.
In Fig. 5.1, variables blurRow, blurCol, curRow, curCol, pixels, and pixVal are
all automatic variables and fall into this category. Note that accessing these vari-
ables is extremely fast and parallel, but one must be careful not to exceed the lim-
ited capacity of the register storage in the hardware implementations. Using a
large number of registers can negatively affect the occupancy of each SM, as we
saw in Chapter 4, Compute Architecture and Scheduling.

Automatic array variables are not stored in registers.' Instead, they are stored
into the thread’s local memory and may incur long access delays and potential

'"There are some exceptions to this rule. The compiler may decide to store an automatic array into
registers if all accesses are done with constant index values.

101

102

CHAPTER 5 Memory architecture and data locality

access congestions. The scope of these arrays, like that of automatic scalar vari-
ables, is limited to individual threads. That is, a private version of each automatic
array is created for and used by every thread. Once a thread terminates its execu-
tion, the contents of its automatic array variables cease to exist. From our experi-
ence, one seldom needs to use automatic array variables in kernel functions and
device functions.

If a variable declaration is preceded by the _ shared__ keyword (each “__
consists of two “_’’ characters), it declares a shared variable in CUDA. One can
also add an optional __device__ in front of _ shared__ in the declaration to
achieve the same effect. Such a declaration is typically made within a kernel
function or a device function. Shared variables reside in the shared memory. The
scope of a shared variable is within a thread block; that is, all threads in a block
see the same version of a shared variable. A private version of the shared variable
is created for and used by each block during kernel execution. The lifetime of a
shared variable is within the duration of the kernel execution. When a kernel ter-
minates its grid’s execution, the contents of its shared variables cease to exist. As
we discussed earlier, shared variables are an efficient means for threads within a
block to collaborate with each other. Accessing shared variables from the shared
memory is extremely fast and highly parallel. CUDA programmers often use
shared variables to hold the portion of global memory data that is frequently used
and reused in an execution phase of the kernel. One may need to adjust the algo-
rithms that are used to create execution phases that heavily focus on small por-
tions of the global memory data, as we will demonstrate with matrix
multiplication in Section 5.4.

If a variable declaration is preceded by keyword _ constant__’ (each “__
consists of two “_’’ characters), it declares a constant variable in CUDA. One
can also add an optional _ device__ in front of _ constant__ to achieve the
same effect. Declaration of constant variables must be outside any function
body. The scope of a constant variable is all grids, meaning that all threads in
all grids see the same version of a constant variable. The lifetime of a constant
variable is the entire application execution. Constant variables are often used for
variables that provide input values to kernel functions. The values of the con-
stant variables cannot be changed by the kernel function code. Constant vari-
ables are stored in the global memory but are cached for efficient access. With
appropriate access patterns, accessing constant memory is extremely fast and
parallel. Currently, the total size of constant variables in an application is lim-
ited to 65,536 bytes. One may need to break up the input data volume to fit
within this limitation. We will demonstrate the usage of constant memory in
Chapter 7, Convolution.

A variable whose declaration is preceded only by the keyword _ device__
(each “__"" consists of two “_’’ characters) is a global variable and will be placed
in the global memory. Accesses to a global variable are slow. Latency and
throughput of accessing global variables have been improved with caches in more
recent devices. One important advantage of global variables is that they are

LX)

59

5.3 Tiling for reduced memory traffic

visible to all threads of all kernels. Their contents also persist through the entire
execution. Thus global variables can be used as a means for threads to collaborate
across blocks. However, one must be aware that there is currently no easy way to
synchronize between threads from different thread blocks or to ensure data con-
sistency across threads in accessing global memory other than using atomic
operations or terminating the current kernel execution.” Therefore global variables
are often used to pass information from one kernel invocation to another kernel
invocation.

In CUDA, pointers can be used to point to data objects in the global memory.
There are two typical ways in which pointer use arises in kernel and device func-
tions. First, if an object is allocated by a host function, the pointer to the object is
initialized by memory allocation API functions such as cudaMalloc and can be
passed to the kernel function as a parameter, as we saw in Chapter 2,
Heterogeneous Data Parallel Computing, and Chapter 3, Multidimensional Grids
and Data. The second type of use is to assign the address of a variable that is
declared in the global memory to a pointer variable. For example, the statement
{float* ptr=&GlobalVar;) in a kernel function assigns the address of GlobalVar
into an automatic pointer variable ptr. The reader should refer to the CUDA
Programming Guide for using pointers in other memory types.

Tiling for reduced memory traffic

We have an intrinsic tradeoff in the use of device memories in CUDA: The global
memory is large but slow, whereas the shared memory is small but fast. A com-
mon strategy is to partition the data into subsets called tiles so that each tile fits

into the shared memory. The (Effifilerdrawsionitheranalogysthatianargenvalliien
the global memory data) can be covered by small tiles (i.e., subsets that can each
fififfoNeIshafedifemony). An important criterion is that the kernel computation

on these tiles can be done independently of each other. Note that not all data
structures can be partitioned into tiles, given an arbitrary kernel function.

The concept ofltiling can be illustrated with the matrix multiplication example
from Chapter 3, Multidimensional Grids and Data. Fig. 3.13 showed a small
example of matrix multiplication. It corresponds to the kernel function in
Fig. 3.11. We replicate the example in Fig. 5.5 for convenient reference. For brev-
ity we abbreviate P[y*Width+x], M[y*Width+x], and N[y*Width+x] into Py ,, My,
Grand'Ny) respectively. This example assumes that we use four X 2 blocks to
compute the P matrix. The heavy boxes in the P matrix define the P elements that
are processed by each block. Fig. 5.5 highlights the computation done by the four

threads of blockgo. These four threads compute GEFIEGIIEINERGNRNS. The

2One can use CUDA memory fencing to ensure data coherence between thread blocks if the num-
ber of thread blocks is smaller than the number of SMs in the CUDA device. See the CUDA
Programming Guide for more details.

103

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

104 CHAPTER 5 Memory architecture and data locality

Moo | Mo, | Mo, | Mos \ W 02 | Pos

FIGURE 5.5

A small example of matrix multiplication. For brevity we show MIy*Width#x1;"NIy*Width
X1 Ply*Width=xDas My Ny Py respectively.

accesses to the M and N elements by thready, and thread,; of blocky, are
highlighted with black arrows. For example, threadyo reads My, and Ny, fol-
lowed by My ; and N o, followed by My, and N, o, followed by My 3 and N3 .

Fig. 5.6 shows the global memory accesses done by all threads in blockg .
The threads are listed in the vertical direction, with time of access increasing
from left to right in the horizontal direction. Note that each thread accesses four
elements of M and four elements of N during its execution. Among the four
threads highlighted, there is a significant overlap in the M and N elements that
they access. For example, thread, and thread,; both access My as well as the
rest of row O of M. Similarly, thready; and thread, ; both access Ny ; as well as
the rest of column 1 of N.

The kernel in Fig. 3.11 is written so that both thready, and thread,; access
row 0 elements of M from the global memory. If we can somehow manage to
have thready o and thready ; collaborate so that these M elements are loaded from
global memory only once, we can reduce the total number of accesses to the
global memory by half. In fact, we can see that every M and N element is
accessed exactly twice during the execution of blocky . Therefore if we can have
all four threads collaborate in their accesses to global memory, we can reduce the
traffic to the global memory by half.

The reader should verify that the potential reduction in global memory traffic
in the matrix multiplication example is proportional to the dimension of the
blocks that are used. With Width X Width blocks, the potential reduction of
global memory traffic would be Width. That is, if we use 16 X 16 blocks, we can
potentially reduce the global memory traffic to 1/16 of the original level through
collaboration between threads.

Melani Maheswaran

Melani Maheswaran

5.3 Tiling for reduced memory traffic

Access order

threadg ||Moof* Noo | Moj * Ny | Moa* Ny | M3 * Ny
threadg; ||Mog *m Mo * Nij | Moo * Ny | M3 * N3,
thread; o | My o* Noo | My * Nyp | Myp* Ny | Mj3* Ny
thread;; | My, M * Ny [M * Ny | Mz * Ny,

FIGURE 5.6
Global memory accesses performed by threads in blockg o.

We now present a tiled matrix multiplication algorithm. The basic idea is to
have the threads collaboratively load subsets of the M and N elements into the
shared memory before they individually use these elements in their dot product
calculation. Keep in mind that the size of the shared memory is quite small, and
one must be careful not to exceed the capacity of the shared memory when load-
ing these M and N elements into the shared memory. This can be accomplished
by dividing the M and N matrices into smaller tiles. The size of these tiles is cho-
sen so that they can fit into the shared memory. In the simplest form, the tile
dimensions equal those of the block, as illustrated in Fig. 5.7.

In Fig. 5.7 we divide M and N into 2 X 2 tiles, as delineated by the thick lines.
The dot product calculations that are performed by each thread are now divided
into phases. In each phase, all threads in a block collaborate to load a tile of M and
a tile of N into the shared memory. This can be done by having every thread in a
block load one M element and one N element into the shared memory, as illustrated
in Fig. 5.8. Each row of Fig. 5.8 shows the execution activities of a thread. Note
that time progresses from left to right. We need to show only the activities of
threads in blockg o; the other blocks all have the same behavior. The shared memory
array for the M elements is called Mds. The shared memory array for the N ele-
ments is called Nds. At the beginning of phase 1, the four threads of blocky col-
laboratively load a tile of M into shared memory: Thread, o loads My into Mdsg o,
thread, ; loads Mg ; into Mdsy ;, thread; o loads M|, into Mds o, and thread, ; loads
M, ; into Mds; ;. These loads are shown in the second column of Fig. 5.8. A tile of
N is also loaded in a similar manner, shown in the third column of Fig. 5.8.

After the two tiles of M and N are loaded into the shared memory, these ele-
ments are used in the calculation of the dot product. Note that each value in the
shared memory is used twice. For example, the M, ; value, loaded by thread,; ; into
Mds, ;, is used twice, once by thread; o and once by thread, ;. By loading each
global memory value into shared memory so that it can be used multiple times, we
reduce the number of accesses to the global memory. In this case, we reduce the
number of accesses to the global memory by a factor of 2. The reader should verify
that the reduction is by a factor of N if the tiles are N X N elements.

Note that the calculation of each dot product is now performed in two phases,
shown as phase 1 and phase 2 in Fig. 5.8. In each phase, each thread accumulates
products of two pairs of the input matrix elements into the Pvalue variable. Note

105

106

CHAPTER 5 Memory architecture and data locality

Moo | Moy | Mo, | Mys N, Py, | Pos
Mo | My, | My, | Mys Py | Pys
Pyo | Pay | Paa | P
Pso [Psy [Py [Py
FIGURE 5.7
Tiling M and N to utilize shared memory.
Phase 0 Phase 1
threadyo fl Moy | Noo PValue, , += M, Nay PValue, , +=
! l Mdsg o*Ndsj o+ l ! Mdsg ¢*Nds, o+
Mds,o | Ndsg | Mdso1*Nds; o IMds,, Ndsy o Mds, ;*Nds,
thread, §| My, No,1 PValue, , += My; N, PValue,, +=
! l Mdsyo*Ndso, + || ! Mdsg o*Nds, | +
Mds,; | Ndsy; Mds, ;*Nds Mdso; | Ndsy, Mds, ;*Nds
thread, o §l My Nio PValue, , += M,, Niy PValue, , +=
! 1 Mds, ¢*Ndsoot+ || l Mds, ¢*Ndsg o+
Mds; | Nds o | Mdsii*Ndsio IMds;, | Nds, , || Mds1i*Ndso
thread, ; f| My, Nis PValue, | += M, ; N;, PValue, | +=
! ! Mds, o*Ndso, + || ! Mds, o*Ndsy; +
Mds, | | Nds,, f| Mds; 1*Nds, Mds;; | Nds, , Mds, ,*Nds;
time
FIGURE 5.8

Execution phases of a tiled matrix multiplication.

that Pvalue is an automatic variable, so a private version is generated for each
thread. We added subscripts just to clarify that these are different instances of the
Pvalue variable created for each thread. The first phase calculation is shown in
the fourth column of Fig. 5.8, and the second phase is shown in the seventh col-
umn. In general, if an input matrix is of dimension Width and the tile size is
TILE_WIDTH, the dot product would be performed in Width/TILE_WIDTH phases.

5.4 A tiled matrix multiplication kernel

The creation of these phases is key to the reduction of accesses to the global
memory. With each phase focusing on a small subset of the input matrix values,
the threads can collaboratively load the subset into the shared memory and use
the values in the shared memory to satisfy their overlapping input needs in the
phase.

Note also that Mds and Nds are reused across phases. In each phase, the same
Mds and Nds are reused to hold the subset of M and N elements used in the
phase. This allows a much smaller shared memory to serve most of the accesses
to global memory. This is because each phase focuses on a small subset of the
input matrix elements. Such focused access behavior is called locality. When an
algorithm exhibits locality, there is an opportunity to use small, high-speed mem-
ories to serve most of the accesses and remove these accesses from the global
memory. Locality is as important for achieving high performance in multicore
CPUs as in many-thread GPUs We will return to the concept of locality in
Chapter 6, Performance Considerations.

A tiled matrix multiplication kernel

We are now ready to present a tiled matrix multiplication kernel that uses shared
memory to reduce traffic to the global memory. The kernel shown in Fig. 5.9
implements the phases illustrated in Fig. 5.8. In Fig. 5.9, lines 04 and 05 declare
Mds and Nds, respectively, as shared memory arrays. Recall that the scope of
shared memory variables is a block. Thus one version of the Mds and Nds arrays
will be created for each block, and all threads of a block have access to the same
Mds and Nds version. This is important because all threads in a block must have
access to the M and N elements that are loaded into Mds and Nds by their peers so
that they can use these values to satisfy their input needs.

Lines 07 and 08 save the threadIdx and blockIdx values into automatic vari-
ables with shorter names to make the code more concise. Recall that automatic
scalar variables are placed into registers. Their scope is in each individual thread.
That is, one private version of tx, ty, bx, and by is created by the runtime system
for each thread and will reside in registers that are accessible by the thread. They
are initialized with the threadldx and blockIdx values and used many times dur-
ing the lifetime of thread. Once the thread ends, the values of these variables
cease to exist.

Lines 11 and 12 determine the row index and column index, respectively, of
the P element that the thread is to produce. The code assumes that each thread is
responsible for calculating one P element. As shown in line 12, the horizontal (x)
position, or the column index of the P element to be produced by a thread, can be
calculated as bx*TILE_WIDTH+tx. This is because each block covers TILE_WIDTH
elements of P in the horizontal dimension. A thread in block bx would have
before it bx blocks of threads, or (bx*TILE_WIDTH) threads; they cover

107

108 CHAPTER 5 Memory architecture and data locality

01 #define TILE WIDTH 16

02 __global__ void matrixMulKernel (float* M, float* N, float* P, int Width) {
03

04 _ shared float Mds[TILE_WIDTH] [TILE_WIDTH];

05 _ shared float Nds[TILE WIDTH] [TILE WIDTH];

06

07 int bx = blockIdx.x; int by = blockIdx.y;

08 int tx = threadIdx.x; int ty = threadIdx.y;

09

10 // Identify the row and column of the P element to work on
11 int Row = by * TILE_WIDTH + ty;

12 int Col = bx * TILE WIDTH + tx;

13

14 // Loop over the M and N tiles required to compute P element
15 float Pvalue = 0;

16 for (int ph = 0; ph < Width/TILE WIDTH; ++ph) {

17

18 // Collaborative loading of M and N tiles into shared memory
19 Mds[ty] [tx] = M[Row*Width + ph*TILE WIDTH + tx];

20 Nds[ty] [tx] = N[(ph*TILE WIDTH + ty)*Width + Col];

21 __syncthreads () ;

22

23 for (int k = 0; k < TILE_WIDTH; ++k) {

24 Pvalue += Mds[ty] [k] * Nds[k][tx];

25 }

26 __syncthreads () ;

27

28 }

29 P[Row*Width + Col] = Pvalue;

30

31 }

FIGURE 5.9

A tiled matrix multiplication kernel using shared memory.

bx*TILE_WIDTH elements of P. Another tx thread within the same block would
cover another tx elements. Thus the thread with bx and tx should be responsible
for calculating the P element whose x index is bx*TILE_WIDTH+tx. For the exam-
ple in Fig. 5.7, the horizontal (x) index of the P element to be calculated by
thread,; of block; o is 0*2+1=1. This horizontal index is saved in the variable Co1
for the thread and is also illustrated in Fig. 5.10.

Similarly, the vertical (y) position, or the row index, of the P element to be pro-
cessed by a thread is calculated as by*TILE_WIDTH+ty. Going back to the example
in Fig. 5.7, the y index of the P element to be calculated by thread, ; of block; g is
1*2+0=2. This vertical index is saved in the variable Row for the thread. As shown
in Fig. 5.10, each thread calculates the P element at the Colth column and the Rowth
row. Thus the P element to be calculated by thread, ; of block, g is P; ;.

Line 16 of Fig. 5.9 marks the beginning of the loop that iterates through all
the phases of calculating the P element. Each iteration of the loop corresponds to
one phase of the calculation shown in Fig. 5.8. The ph variable indicates the num-
ber of phases that have already been done for the dot product. Recall that each
phase uses one tile of M and one tile of N elements. Therefore at the beginning

5.4 A tiled matrix multiplication kernel

Col
———
N T = A
2 g
BI |
3 2
’—
*
5 g
2
:
El
. [N v
M P e
Row | | ph*TILE_WIDTH E I
é _________ 1 1 '
z
g £
{

TILE_WIDTH TILE_WIDTH TILE_WIDTH
Width Width
< > |« v »

FIGURE 5.10
Calculation of the matrix indices in tiled multiplication.

of each phase, ph*TILE_WIDTH pairs of M and N elements have been processed by
previous phases.

In each phase, lines 19 and 20 in Fig. 5.9 load the appropriate M and N elements,
respectively, into the shared memory. Since we already know the row of M and col-
umn of N to be processed by the thread, we now turn our focus to the column index
of M and row index of N. As shown in Fig. 5.10, each block has TILE_WIDTH?
threads that will collaborate to load TILE_WIDTH* M elements and TILE_WIDTH® N ele-
ments into the shared memory. Thus all we need to do is to assign each thread to
load one M element and one N element. This is conveniently done by using the
blockIdx and threadIdx. Note that the beginning column index of the section of M
elements to be loaded is ph*TILE_WIDTH. Therefore an easy approach is to have every
thread load an element that is tx (the threadIdx.x value) positions away from that
beginning point. Similarly, the beginning row index of the section of N elements to
be loaded is also ph*TILE_WIDTH. Therefore every thread loads an element that is ty
(the threadIdx.y value) positions away from that beginning point.

109

110 CHAPTER 5 Memory architecture and data locality

This is precisely what we have in lines 19 and 20. In line 19, each thread
loads M[Row*Width + ph*TILE_WIDTH + tx], where the linearized index is formed
with the row index Row and column index ph*TILE_WIDTH + tx. Since the value of
Row is a linear function of ty, each of the TI LE_WIDTH? threads will load a unique
M element into the shared memory because each thread has a unique combination
of tx and ty. Together, these threads will load a dark square subset of M in
Fig. 5.10. In a similar way, in line 20, each thread loads the appropriate N ele-
ment to shared memory using the linearized index (ph*TILE_WIDTH + ty)*Width +
Col. The reader should use the small example in Figs. 5.7 and 5.8 to verify that
the address calculation works correctly for individual threads.

The barrier __syncthreads() in line 21 ensures that all threads have finished
loading the tiles of M and N into Mds and Nds before any of them can move for-
ward. Recall from Chapter 4, Compute Architecture and Scheduling, that the call
to __syncthreads() can be used to make all threads in a block wait for each other
to reach the barrier before any of them can proceed. This is important because the
M and N elements to be used by a thread can be loaded by other threads. One
needs to ensure that all elements are properly loaded into the shared memory
before any of the threads start to use the elements. The loop in line 23 then per-
forms one phase of the dot product based on the tile elements. The progression of
the loop for thread,y, (is shown in Fig. 5.10, with the access direction of the M
and N elements along the arrow marked with k, the loop variable in line 23. Note
that these elements will be accessed from Mds and Nds, the shared memory arrays
holding these M and N elements. The barrier __syncthreads() in line 26 ensures
that all threads have finished using the M and N elements in the shared memory
before any of them move on to the next iteration and load the elements from the
next tiles. Thus none of the threads would load the elements too early and corrupt
the input values of other threads.

The two __syncthreads() calls in lines 21 and 26 demonstrate two different
types of data dependence that parallel programmers often have to reason about
when they are coordinating between threads. The first is called a read-after-write
dependence because threads must wait for data to be written to the proper place
by other threads before they try to read it. The second is called a write-after-read
dependence because a thread must wait for the data to be read by all threads that
need it before overwriting it. Other names for read-after-write and write-after-read
dependences are true and false dependences, respectively. A read-after-write depen-
dence is a true dependence because the reading thread truly needs the data supplied
by the writing thread, so it has no choice but to wait for it. A write-after-read
dependence is a false dependence because the writing thread does not need any
data from the reading thread. The dependence is caused by the fact that they are
reusing the same memory location and would not exist if they used different
locations.

The loop nest from line 16 to line 28 illustrates a technique called strip-
mining, which takes a long-running loop and break it into phases. Each phase
involves an inner loop that executes a few consecutive iterations of the original

5.4 A tiled matrix multiplication kernel

loop. The original loop becomes an outer loop whose role is to iteratively invoke
the inner loop so that all the iterations of the original loop are executed in their
original order. By adding barrier synchronizations before and after the inner loop,
we force all threads in the same block to focus their work on the same section of
input data during each phase. Strip-mining is an important means to creating the
phases that are needed by tiling in data parallel programs.”

After all phases of the dot product are complete, the execution exits the outer
loop. In Line 29, all threads write to their P element using the linearized index
calculated from Row and Col.

The benefit of the tiled algorithm is substantial. For matrix multiplication, the
global memory accesses are reduced by a factor of TILE_WIDTH. With 16 X 16
tiles, one can reduce the global memory accesses by a factor of 16. This increases
the compute to global memory access ratio from 0.25 OP/B to 4 OP/B. This
improvement allows the memory bandwidth of a CUDA device to support a high-
er computation rate. For example, in the A100 GPU which has a global memory
bandwidth of 1555 GB/second, this improvement allows the device to achieve
(1555 GB/second)*(4 OP/B)=6220 GFLOPS, which is substantially higher than
the 389 GFLOPS achieved by the kernel that did not use tiling.

Although tiling improves throughput substantially, 6220 GFLOPS is still only
32% of the device’s peak throughput of 19,500 GFLOPS. One can further opti-
mize the code to reduce the number of global memory accesses and improve
throughput. We will see some of these optimizations later in the book, while other
advanced optimizations will not be covered. Because of the'importance of matrix
multiplication in many domains, there are highly optimized libraries, such as
cuBLAS and CUTLASS, that already incorporate many of these advanced optimi-
zations) Programmers can use these libraries to immediately achieve close to peak
performance in their linear algebra applications.

The effectiveness of tiling at improving the throughput of matrix multiplication
in particular and applications in general is not unique to GPUs. There is a long his-
tory of applying tiling (or blocking) techniques to improve performance on CPUs
by ensuring that the data that is reused by a CPU thread within a particular time
window will be found in the cache. One key difference is that tiling techniques on
CPUs rely on the CPU cache to keep reused data on-chip implicitly, whereas tiling
techniques on GPUs use shared memory explicitly to keep the data on-chip. The
reason is that a CPU core typically runs one or two threads at a time, so a thread
can rely on the cache keeping recently used data around. In contrast, a GPU SM
runs many threads simultaneously to be able to hide latency. These threads may
compete for cache slots, which makes the GPU cache less reliable, necessitating
the use of shared memory for important data that is to be reused.

The reader should note that strip-mining has long been used in programming CPUs. Strip-mining
followed by loop interchange is often used to enable tiling for improved locality in sequential pro-
grams. Strip-mining is also the main vehicle for vectorizing compilers to generate vector or SIMD
instructions for CPU programs.

111

Melani Maheswaran

112

CHAPTER 5 Memory architecture and data locality

While the performance improvement of the tiled matrix multiplication kernel
is impressive, it does make a few simplifying assumptions. First, the width of the
matrices is assumed to be a multiple of the width of thread blocks. This prevents
the kernel from correctly processing matrices with arbitrary width. The second
assumption is that the matrices are square matrices. This is not always true in
practice. In the next section we will present a kernel with boundary checks that
removes these assumptions.

Boundary checks

We now extend the tiled matrix multiplication kernel to handle matrices with
arbitrary width. The extensions will have to allow the kernel to correctly handle
matrices whose width is not a multiple of the tile width. Let’s change the small
example in Fig. 5.7 to use 3 X3 M, N, and P matrices. The revised example is
shown in Fig. 5.11. Note that the width of the matrices is 3, which is not a multi-
ple of the tile width (which is 2). Fig. 5.11 shows the memory access pattern dur-
ing the second phase of blocky,. We see that thread,; and thread; ; will attempt
to load M elements that do not exist. Similarly, we see that thread, o and thread, ;
will attempt to access N elements that do not exist.

Accessing nonexisting elements is problematic in two ways. In the case of
accessing a nonexisting element that is past the end of a row (M accesses by
thready ; and thread, ; in Fig. 5.11), these accesses will be done to incorrect ele-
ments. In our example the threads will attempt to access Mg 3 and M 3, which
do not exist. So what will happen to these memory loads? To answer this ques-
tion, we need to go back to the linearized layout of two-dimensional matrices.

NO,O N0,1 NO,Z
N1,0 N1,1 N1 2
N ,0 N2,1 NZ,Z
Threads (1,0) and (1,1) need special
treatment in loading N tile
sz\ Ny, Shared Memory
Shared Memory
MO,O MO,1 MO,Z —> PO,O PO,I PO,Z
M1,0 M1,1 M1,2 m,;-—) P1 0 P1,1 P1 2
Mg,0|My,1|M;,2 P2.0|P2.1|P22

Threads (0,1) and (1,1) need
special treatment in loading M tile

FIGURE 5.11
Loading input matrix elements that are close to the edge: phase 1 of blockg o.

5.5 Boundary checks

The element after My, in the linearized layout is M. Although thead
is attempting to access My 3, it will end up getting M; o. The use of this value
in the subsequent inner product calculation will obviously corrupt the output
value.

A similar problem arises in accessing an element that is past the end of a col-
umn (N accesses by thread; o and thread; ; in Fig. 5.11). These accesses are to
memory locations outside the allocated area for the array. In some systems they
will return random values from other data structures. In other systems these
accesses will be rejected, causing the program to abort. Either way, the outcome
of such accesses is undesirable.

From our discussion so far, it may seem that the problematic accesses arise
only in the last phase of execution of the threads. This would suggest that we can
deal with it by taking special actions during the last phase of the tiled kernel exe-
cution. Unfortunately, this is not true. Problematic accesses can arise in all
phases. Fig. 5.12 shows the memory access pattern of block; ; during phase 0.
We see that thread; and thread,; ; attempt to access nonexisting M elements M g
and M3 ;, whereas thread,; and thread, ; attempt to access Ny 3 and Ny 3, which
do not exist.

Note that these problematic accesses cannot be prevented by simply
excluding the threads that do not calculate valid P elements. For example,
thread, o in block; ; does not calculate any valid P element. However, it needs to
load M, ; during phase O for other threads in block; ; to use. Furthermore, note
that some threads that calculate valid P elements will attempt to access M or N
elements that do not exist. For example, as we saw in Fig. 5.11, thready; of block
0,0 calculates a valid P element Py ;. However, it attempts to access a nonexisting
My 3 during phase 1. These two facts indicate that we will need to use different
boundary condition tests for loading M tiles, loading N tiles, and calculating/

NO,O NO,! N ,2
N1 0 N1 1 N 2
NZ,O NZ.I

4
IS

Threads (0,1) and (1,1) need special

treatment in loading N tile N
L. H Shared Memory
N;
Mo,0|Mo,1)Mo,2 Po,0[Po,1|Po,2
My 0| Mq4IMy ! Shared Memory [Py o|P;4|Py.2
My o[MW o121 Pao[P21| P22
1
L

Threads (1,0) and (1,1) need
special treatment in loading M tile

FIGURE 5.12
Loading input elements during phase O of block ;.

113

114 CHAPTER 5 Memory architecture and data locality

storing P elements. A rule of thumb to follow is that every memory access needs
to have a corresponding check that ensures that the indices used in the access are
within the bounds of the array being accessed.

Let’s start with the boundary test condition for loading input tiles. When
a thread is to load an input tile element, it should test whether the input ele-
ment it is attempting to load is a valid element. This is easily done by exam-
ining the y and x indices. For example, in line 19 in Fig. 5.9, the linearized
index is a derived from a y index of Row and an x index of ph*TILE_WIDTH +
tx. The boundary condition test would be that both of indices are smaller
than Width: Row < Width && (ph*TILE_WIDTH+tx) < Width. If the condition is
true, the thread should go ahead and load the M element. The reader should
verify that the condition test for loading the N element is (ph*TILE_WIDTH
+ty) <Width && Col <Width.

If the condition is false, the thread should not load the element. The question
is what should be placed into the shared memory location. The answer is 0.0, a
value that will not cause any harm if it is used in the inner product calculation. If
any thread uses this 0.0 value in the calculation of its inner product, there will not
be any change in the inner product value.

Finally, a thread should store its final inner product value only if it is responsi-
ble for calculating a valid P element. The test for this condition is (Row < Width)
&& (Col < Width). The kernel code with the additional boundary condition checks
is shown in Fig. 5.13.

With the boundary condition checks, the tile matrix multiplication kernel is
just one step away from being a general matrix multiplication kernel. In general,

14 // Loop over the M and N tiles required to compute P element

15 float Pvalue = 0;

16 for (int ph = 0; ph < ceil(Width/(float)TILE_WIDTH); ++ph) {

17

18 // Collaborative loading of M and N tiles into shared memory

.. if ((Row < Width) && (ph*TILE WIDTH+tx) < Width)

19 Mds [ty] [tx] = M[Row*Width + ph*TILE WIDTH + tx];
else Mds[ty] [tx] = 0.0f;

o0 if ((Ph*TILE_WIDTH+ty) < Width && Col < Width)

20 Nds[ty] [tx] = N[(ph*TILE_WIDTH + ty)*Width + Col];

.. else Nds[ty] [tx] = 0.0f;

21 __syncthreads () ;

22

23 for (int k = 0; k < TILE WIDTH; ++k) {

24 Pvalue += Mds[ty] [k] * Nds[k][tx];

25 }

26 __syncthreads () ;

27

28 }

o if (Row < Width) && (Col < Width)

29 P[Row*Width + Col] = Pvalue;

FIGURE 5.13

Tiled matrix multiplication kernel with boundary condition checks.

5.6 Impact of memory usage on occupancy

matrix multiplication is defined for rectangular matrices: a j X k M matrix multi-
plied with a k X 1 N matrix results in a j X 1 P matrix. Our kernel can handle only
square matrices so far.

Fortunately, it is quite easy to extend our kernel further into a general matrix
multiplication kernel. We need to make a few simple changes. First, the Width
argument is replaced by three unsigned integer arguments: j, k, 1. Where Width is
used to refer to the height of M or height of P, replace it with j. Where Width
is used to refer to the width of M or height of N, replace it with k. Where Width
is used to refer to the width of N or width of P, replace it with 1. The revision of
the kernel with these changes is left as an exercise.

Impact of memory usage on occupancy

Recall that in Chapter 4, Compute Architecture and Scheduling, we discussed
the importance of maximizing the occupancy of threads on SMs to be able to
tolerate long latency operations. The memory usage of a kernel plays an impor-
tant role in occupancy tuning. While CUDA registers and shared memory can
be extremely effective at reducing the number of accesses to global memory,
one must be careful to stay within the SM’s capacity of these memories. Each
CUDA device offers limited resources, which limits the number threads that can
simultaneously reside in the SM for a given application. In general, the more
resources each thread requires, the fewer the number of threads that can reside
in each SM.

We saw in Chapter 4, Compute Architecture and Scheduling, how register
usage can be a limiting factor for occupancy. Shared memory usage can also limit
the number of threads that can be assigned to each SM. For example, the A100
GPU can be configured to have up to 164 KB of shared memory per SM and sup-
ports a maximum of 2048 threads per SM. Thus for all 2048 thread slots to be
used, a thread block should not use more than an average of (164 KB)/(2048
threads)=82 B/thread. In the tiled matrix multiplication example, every block has
TILE_WIDTH? threads, and uses TILE_WIDTH**4B of shared memory for Mds and
TILE_WIDTH**4B of shared memory for Nds. Thus the thread block uses an aver-
age of (TILE_WIDTH?*4B + TILE_WIDTH**4B)/(TILE_WIDTH? threads)=8 B/thread of
shared memory. Therefore the tiled matrix multiplication kernel’s occupancy is
not limited by the shared memory.

However, consider a kernel that has thread blocks that use 32 KB of shared
memory, each of which has 256 threads. In this case, the kernel uses an average
of (32 KB)/(256 threads)=132 B/thread of shared memory. With such shared
memory usage, the kernel cannot achieve full occupancy. Each SM can host a
maximum of only (164 KB)/(132 B/thread)=1272 threads. Therefore the maxi-
mum achievable occupancy of this kernel will be (1272 assigned threads)/(2048
maximum threads)=62%.

L
115

116

CHAPTER 5 Memory architecture and data locality

Note that the size of shared memory in each SM can also vary from device to
device. Each generation or model of devices can have a different amount of
shared memory in each SM. It is often desirable for a kernel to be able to use dif-
ferent amounts of shared memory according to the amount available in the hard-
ware. That is, we may want a host code to dynamically determine the size of the
shared memory and adjust the amount of shared memory that is used by a kernel.
This can be done by calling the cudaGetDeviceProperties function. Assume that
variable &devProp is passed to the function. In this case, the field devProp.
sharedMemPerBlock gives the amount of shared memory that is available in each
SM. The programmer can then determine the amount of shared memory that
should be used by each block.

Unfortunately, the kernels in Figs. 5.9 and 5.13 do not support any dynamic
adjustment of shared memory usage by the host code. The declarations that are
used in Fig. 5.9 hardwire the size of its shared memory usage to a compile-time
constant:

__shared float Mds[TILE WIDTH] [TILE WIDTH];
_ shared float Nds[TILE WIDTH] [TILE WIDTH];

That is, the size of Mds and Nds is set to be TILE_WIDTH? elements, whatever
the value of TILE_WIDTH is set to be at compile time. Since the code contains

#define TILE WIDTH 16

both Mds and Nds will have 256 elements. If we want to change the size of Mds
and Nds, we need to change the value of TILE_WIDTH and recompile the code. The
kernel cannot easily adjust its shared memory usage at runtime without
recompilation.

We can enable such adjustment with a different style of declaration in
CUDA by adding a C extern keyword in front of the shared memory declara-
tion and omitting the size of the array in the declaration. Based on this style,
the declarations for Mds and Nds need to be merged into one dynamically
allocated array:

extern _ shared Mds Nds[];

Since there is only one merged array, we will also need to manually define
where the Mds section of the array starts and where the Nds section starts. Note
that the merged array is one-dimensional. We will need to access it by using a lin-
earized index based on the vertical and horizontal indices.

5.6 Impact of memory usage on occupancy

At runtime, when we call the kernel, we can dynamically configure the
amount of shared memory to be used for each block according to the device
query result and supply that as a third configuration parameter to the kernel
call. For example, the revised kernel could be launched with the following
statements:

Size €t gize =
calculate appropriate SM usage (devProp.sharedMemPerBlock,

o)) &

matrixMulKernel<<<dimGrid,dimBlock, size>>> (Md, Nd, Pd,

Width, size/2, size/2);

where size_t is a built-in type for declaring a variable to hold the size infor-
mation for dynamically allocated data structures. The size is expressed in number
of bytes. In our matrix multiplication example, for a 16 X 16 tile, we have a size
of 2 X 16 X 16 X 4=2048 bytes to accommodate both Mds and Nds. We have omit-
ted the details of the calculation for setting the value of size at runtime and leave
it as an exercise for the reader.

In Fig. 5.14 we show how one can modify the kernel code in Figs. 5.9 and
5.11 to use dynamically sized shared memory for the Mds and Nds arrays. It may
also be useful to pass the sizes of each section of the array as arguments into
the kernel function. In this example we added two arguments: The first argu-
ment is the size of the Mds section, and the second argument is the size of
the Nds section, both in terms of bytes. Note that in the host code above, we
passed size/2 as the values of these arguments, which is 1024 bytes. With the
assignments in lines 06 and 07, the rest of the kernel code can use Mds and Nds
as the base of the array and use a linearized index to access the Mds and Nds ele-
ments. For example, instead of using Mds[tyl[tx], one would use Mds
[Ey*TILE_WIDTH+tx].

01 #define TILE_WIDTH 16

02 __global__ void matrixMulKernel (float* M, float* N, float* P, int Width,
unsigned Mdz_ sz, unsigned Nds_sz) {

03

04 extern _ shared char float Mds_Nds[];

05

06 float *Mds = (float *) Mds_Nds;

07 float *Nds = (float *) Mds Nds + Mds sz;

FIGURE 5.14

Tiled matrix multiplication kernel with dynamically sized shared memory usage.

L
117

118 CHAPTER 5 Memory architecture and data locality

Summary

In summary, the execution speed of a program in modern processors can be
severely limited by the speed of the memory. To achieve good utilization of the
execution throughput of a CUDA devices, one needs to strive for a high compute
to global memory access ratio in the kernel code. If the ratio is low, the kernel is
memory-bound. That is, its execution speed is limited by the rate at which its
operands are accessed from memory.

CUDA provides access to registers, shared memory, and constant memory.
These memories are much smaller than the global memory but can be accessed at
much higher speed. Using these memories effectively requires redesign of the
algorithm. We use matrix multiplication as an example to illustrate tiling, a popu-
lar strategy to enhance locality of data access and enable effective use of shared
memory. In parallel programming, tiling uses barrier synchronization to force
multiple threads to jointly focus on a subset of the input data at each phase of the
execution so that the subset data can be placed into these special memory types to
enable much higher access speed.

However, it is important for CUDA programmers to be aware of the limited
sizes of these special types of memory. Their capacities are implementation
dependent. Once their capacities have been exceeded, they limit the number of
threads that can be executing simultaneously in each SM and can negatively
affect the GPU’s computation throughput as well as its ability to tolerate latency.
The ability to reason about hardware limitations when developing an application
is a key aspect of parallel programming.

Although we introduced tiled algorithms in the context of CUDA C program-
ming, it is an effective strategy for achieving high-performance in virtually all types
of parallel computing systems. The reason is that an application must exhibit locality
in data access to make effective use of high-speed memories in these systems. For
example, in a multicore CPU system, data locality allows an application to effectively
use on-chip data caches to reduce memory access latency and achieve high perfor-
mance. These on-chip data caches are also of limited size and require the computa-
tion to exhibit locality. Therefore the reader will also find the tiled algorithm useful
when developing a parallel application for other types of parallel computing systems
using other programming models.

Our goal for this chapter was to introduce the concept of locality, tiling, and differ-
ent CUDA memory types. We introduced a tiled matrix multiplication kernel using
shared memory. We further studied the need for boundary test conditions to allow for
arbitrary data dimensions in applying tiling techniques. We also briefly discussed the
use of dynamically sized shared memory allocation so that the kernel can adjust the
size of shared memory that is used by each block according to the hardware capability.
We did not discuss the use of registers in tiling. We will explain the use of registers in
tiled algorithms when we discuss parallel algorithm patterns in Part I of the book.

Exercises

Exercises

1.

10.

Consider matrix addition. Can one use shared memory to reduce the
global memory bandwidth consumption? Hint: Analyze the elements that
are accessed by each thread and see whether there is any commonality
between threads.

Draw the equivalent of Fig. 5.7 for a 8 X 8 matrix multiplication with 2 X 2
tiling and 4 X 4 tiling. Verify that the reduction in global memory bandwidth
is indeed proportional to the dimension size of the tiles.

What type of incorrect execution behavior can happen if one forgot to use
one or both __syncthreads() in the kernel of Fig. 5.9?

Assuming that capacity is not an issue for registers or shared memory, give
one important reason why it would be valuable to use shared memory
instead of registers to hold values fetched from global memory? Explain
your answer.

For our tiled matrix-matrix multiplication kernel, if we use a 32 X 32 tile,
what is the reduction of memory bandwidth usage for input matrices M
and N?

Assume that a CUDA kernel is launched with 1000 thread blocks, each of
which has 512 threads. If a variable is declared as a local variable in the
kernel, how many versions of the variable will be created through the
lifetime of the execution of the kernel?

. In the previous question, if a variable is declared as a shared memory

variable, how many versions of the variable will be created through the
lifetime of the execution of the kernel?

Consider performing a matrix multiplication of two input matrices with
dimensions N X N. How many times is each element in the input matrices
requested from global memory when:

a. There is no tiling?

b. Tiles of size T X T are used?

A kernel performs 36 floating-point operations and seven 32-bit global
memory accesses per thread. For each of the following device
properties, indicate whether this kernel is compute-bound or memory-
bound.

a. Peak FLOPS=200 GFLOPS, peak memory bandwidth=100 GB/second
b. Peak FLOPS=300 GFLOPS, peak memory bandwidth=250 GB/second
To manipulate tiles, a new CUDA programmer has written a device kernel
that will transpose each tile in a matrix. The tiles are of size
BLOCK_WIDTH by BLOCK_WIDTH, and each of the dimensions of
matrix A is known to be a multiple of BLOCK_WIDTH. The kernel
invocation and code are shown below. BLOCK_WIDTH is known at
compile time and could be set anywhere from 1 to 20.

119

120 CHAPTER 5 Memory architecture and data locality

11.

01
02
03

04
05
06
07

08
09

10

11
12

dim3 blockDim (BLOCK_WIDTH,BLOCK WIDTH) ;
dim3 gridDim(A_width/blockDim.x,A height/blockDim.y) ;
BlockTranspose<<<gridDim, blockDim>>>(A, A _width, A height);

__global void
BlockTranspose (float* A elements, int A width, int A height)
{

_ shared__ float blockA[BLOCK WIDTH] [BLOCK_WIDTH] ;

int baseIdx = blockIdx.x * BLOCK_SIZE + threadIdx.x;
baseIdx += (blockIdx.y * BLOCK SIZE + threadIdx.y) * A width;

blockA[threadIdx.y] [threadIdx.x] = A elements[baseIdx];

A elements[baseIdx] = blockA[threadIdx.x] [threadIdx.y];

Out of the possible range of values for BLOCK_SIZE, for what values
of BLOCK_SIZE will this kernel function execute correctly on the
device?

If the code does not execute correctly for all BLOCK_SIZE values, what
is the root cause of this incorrect execution behavior? Suggest a fix to the
code to make it work for all BLOCK_SIZE values.

Consider the following CUDA kernel and the corresponding host function
that calls it:

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20

__global void foo kernel (float* a, float* b) {
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
float x[4];

_ shared float y_s;
__shared float b _s[128];
for (unsigned int j = 0; j < 4; ++3) {
x[j] = alj*blockDim.x*gridDim.x + i];
}
if (threadIdx.x == 0) {
y_s = 7.4f;
}
b _s[threadIdx.x] = b[i];
__syncthreads() ;
b[i] = 2.5f*x[0] + 3.7f*x[1] + 6.3f*x[2] + 8.5f*x[3]
+ y s*b s[threadIdx.x] + b s[(threadIdx.x + 3)%128];

}

void foo(int* a d, int* b d) {
unsigned int N = 1024;
foo kernel <<< (N + 128 - 1)/128, 128 >>>(a_d, b d);

How many versions of the variable i are there?
How many versions of the array x[] are there?
How many versions of the variable y_s are there?
How many versions of the array b_s[] are there?

Exercises 121

e. What is the amount of shared memory used per block (in bytes)?
f. What is the floating-point to global memory access ratio of the kernel (in OP/B)?
12. Consider a GPU with the following hardware limits: 2048 threads/SM, 32
blocks/SM, 64K (65,536) registers/SM, and 96 KB of shared memory/SM.
For each of the following kernel characteristics, specify whether the kernel
can achieve full occupancy. If not, specify the limiting factor.
a. The kernel uses 64 threads/block, 27 registers/thread, and 4 KB of shared
memory/SM.
b. The kernel uses 256 threads/block, 31 registers/thread, and 8 KB of
shared memory/SM.

CHAPTER

Performance considerations

Chapter Outline

6.1 Memory COAIESCING ...ccoeeccerricceeerrsirere e e s s s sne e s s smr e s e s sme e e s mn e s s smn e e e s snmeenennnns 124
6.2 Hiding memory latenCyccccoccceirioimrsrrrsr e 133
6.3 Thread COAISENINGcceeeceerrrssmerrsssrerssssnrrssssnsessssnnesssssnesssssnnessssnnesssssneenssnnns 138
6.4 A checklist of optimizationscooiiiii i 141
6.5 Knowing your computation’s hottleneckcccooommmirriccircnr s 145
(05T 11111 SRR 146
EXEICISES wivieeeceerisssserrssssrrsssssnressssnnessssnnesssssneessssnnesassnnesssssneesssnnsensssnsesssssnnennssnnnen 146
20T T =T 1 =L 147

The execution speed of a parallel program can vary greatly depending on
the interactions between the resource demands of the program and the
resource constraints of the hardware. Managing the interaction between par-
allel code and hardware resource constraints is important for achieving high
performance in virtually all parallel programming models. It is a practical
skill that requires deep understanding of the hardware architecture and is
best learned through hands-on exercises in a parallel programming model
that is designed for high performance.

So far, we have learned about various aspects of the GPU architecture and their
implications for performance. In Chapter 4, Compute Architecture and Scheduling,
we learned about the compute architecture of the GPU and related performance con-
siderations, such as control divergence and occupancy. In Chapter 5, Memory
Architecture and Data Locality, we learned about the on-chip memory architecture of
the GPU and the use of shared memory tiling to achieve more data reuse. In this
chapter we will briefly present the off-chip memory (DRAM) architecture and dis-
cuss related performance considerations such as memory coalescing and memory
latency hiding. We then discuss an important type of optimization—thread granular-
ity coarsening—that may target any of the different aspects of the architecture,
depending on the application. Finally, we wrap up this part of the book with a check-
list of common performance optimizations that will serve as a guide for optimizing
the performance of the parallel patterns that will be discussed in the second and third
parts of the book.

Programming Massively Parallel Processors. DOI: https://doi.org/10.1016/B978-0-323-91231-0.00016-1 1 23
© 2023 Elsevier Inc. All rights reserved.

124 CHAPTER 6 Performance considerations

In different applications, different architecture constraints may dominate and
become the limiting factors of performance, commonly referred to as bottlenecks.
One can often dramatically improve the performance of an application on a par-
ticular CUDA device by trading one resource usage for another. This strategy
works well if the resource constraint that is thus alleviated was the dominating
constraint before the strategy was applied and the constraint that is thus exacer-
bated does not have negative effects on parallel execution. Without such an
understanding, performance tuning would be guesswork; plausible strategies may
or may not lead to performance enhancements.

Memory coalescing

One of the most important factors of CUDA kernel performance is accessing data
in the global memory, the limited bandwidth of which can become the bottleneck.
CUDA applications extensively exploit data parallelism. Naturally, CUDA appli-
cations tend to process a massive amount of data from the global memory within
a short period of time, In Chapter 5, Memory Architecture and Data Locality, we
studied tiling techniques that leverage the shared memory to reduce the total
amount of data that must be accessed from the global memory by a collection of
threads in each thread block. In this chapter we will further discuss memory coa-
lescing techniques for moving data between global memory and shared memories
or registers in an efficient manner. Memory coalescing techniques are often used
in conjunction with tiling techniques to allow CUDA devices to reach their per-
formance potential by efficiently utilizing the global memory bandwidth.'

The global memory of a CUDA device is implemented with DRAM. Data bits
are stored in DRAM cells that are small capacitors, in which the presence or
absence of a tiny amount of electrical charge distinguishes between a 1 and a 0
value. Reading data from a DRAM cell requires the small capacitor to use its tiny
electrical charge to drive a highly capacitive line leading to a sensor and set off
the sensor’s detection mechanism that determines whether a sufficient amount of
charge is present in the capacitor to qualify as a “1.” This process takes tens of
nanoseconds in modern DRAM chips (see the “Why is DRAM So Slow?” side-
bar). This is in sharp contrast to the subnanosecond clock cycle time of modern
computing devices. Because this process is very slow relative to the desired data
access speed (subnanosecond access per byte), modern DRAM designs use paral-
lelism to increase their rate of data access, commonly referred to as memory
access throughput.

! Recent CUDA devices use on-chip caches for global memory data. Such caches automatically
coalesce more of the kernel access patterns and somewhat reduce the need for programmers to
manually rearrange their access patterns. Howeverjieven withrcaches; coalescing techniques will
continue to have significant effects on kernel execution performance in the foreseeable future.

Melani Maheswaran

6.1 Memory coalescing

Why Are DRAMs So Slow?

The following figure shows a DRAM cell and the path for accessing its
content. The decoder is an electronic circuit that uses a transistor to drive
a line connected to the outlet gates of thousands of cells. It can take a long
time for the line to be fully charged or discharged to the desired level.

About 1000 cells connected to
each vertical line

~
l L
—’_\ﬁ A very small capacitance

f— that stores a data bit
=

decode

To seilse amps

A more formidable challenge is for the cell to drive the vertical line to
the sense amplifiers and allow the sense amplifier to detect its content.
This is based on electrical charge sharing. The gate lets out the tiny
amount of electrical charge that is stored in the cell. If the cell content is
“1,” the tiny amount of charge must raise the electrical potential of the
large capacitance of the long bit line to a sufficiently high level that it can
trigger the detection mechanism of the sense amplifier. A good analogy
would be for someone to hold a small cup of coffee at one end of a long
hallway and a person at the other end of the hallway to use the aroma
propagated along the hallway to determine the flavor of the coffee.

One could speed up the process by using a larger, stronger capacitor
in each cell. However, the DRAMs have been going in the opposite direc-
tion. The capacitors in each cell have been steadily reduced in size and
thus reduced in their strength over time so that more bits can be stored in
each chip. This is why the access latency of DRAMs has not decreased
over time.

Each time a DRAM location is accessed, a range of consecutive locations that
include the requested location are accessed. Many sensors are provided in each
DRAM chip, and they all work in parallel. Each senses the content of a bit within
these consecutive locations. Once detected by the sensors, the data from all these
consecutive locations can be transferred at high speed to the processor. These
consecutive locations accessed and delivered are referred to as DRAM bursts. If
an application makes focused use of data from these bursts, the DRAMSs can sup-
ply the data at a much higher rate than would be the case if a truly random
sequence of locations were accessed.

Recognizing the burst organization of modern DRAMs, current CUDA devices
employ a technique that allows programmers to achieve high global memory

L
125

126

CHAPTER 6 Performance considerations

Mo [Mg Moz | Moz | Mo My : L WEEARIERY Mo M;; M;, M;;

Linearized order in increasing address

FIGURE 6.1

Placing matrix elements into a linear array based on row-major order.

access efficiency by organizing memory accesses of threads into favorable pat-
terns. This technique takes advantage of the fact that threads in a warp execute
the same instruction at any given point in time. When all threads in a warp exe-
cute a load instruction, the hardware detects whether they access consecutive
global memory locations. In other words, the most favorable access pattern is
achieved when all threads in a warp access consecutive global memory locations.
In this case, the hardware combines, or coalesces, all these accesses into a consol-
idated access to consecutive DRAM locations. For example, for a given load
instruction of a warp, if thread 0 accesses global memory location X, thread 1
accesses location X + 1, thread 2 accesses location X + 2, and so on, all these
accesses will be coalesced, or combined into a single request for consecutive
locations when accessing the DRAM.” Such coalesced access allows the DRAM
to deliver data as a burst.’

To understand how to effectively use the coalescing hardware, we need to
review how the memory addresses are formed in accessing C multidimensional
array elements. Recall from Chapter 3, Multidimensional Grids and Data,
(Fig. 3.3 is replicated here as Fig. 6.1 for convenience) that multidimensional
array elements in C and CUDA are placed into the linearly addressed memory
space according to the row-major convention. Recall that the term row-major

2 Different CUDA devices may also impose alignment requirements on the global memory address
X. For example, in some CUDA devices, X is required to be aligned to 16-word (i.e., 64-byte)
boundaries. That is, the lower six bits of X should all be 0 bits. Such alignment requirements have
been relaxed in recent CUDA devices, owing to the presence of second-level caches.

3 Note that modern CPUs also recognize the DRAM burst organization in their cache memory
design. A CPU cache line typically maps to one or more DRAM bursts. Applications that make
full use of bytes in each cache line they touch tend to achieve much higher performance than
those that randomly access memory locations. The techniques that we present in this chapter can be
adapted to help CPU programs to achieve high performance.

6.1 Memory coalescing

refers to the fact that the placement of data preserves the structure of rows: All
adjacent elements in a row are placed into consecutive locations in the address
space. In Fig. 6.1 the four elements of row O are first placed in their order of
appearance in the row. Elements in row 1 are then placed, followed by elements
of row 2, followed by elements of row 3. It should be clear that My and M, g,
though they appear to be consecutive in the two-dimensional matrix, are placed
four locations apart in the linearly addressed memory.

Let’s assume that the multidimensional array in Fig. 6.1 is a matrix that is
used as the second input matrix in matrix multiplication. In this case, consecutive
threads in a warp that are assigned to consecutive output elements will iterate
through consecutive columns of this input matrix. The top left part of Fig. 6.2
shows the code for this computation, and the top right part shows the logical view
of the access pattern: consecutive threads iterating through consecutive columns.
One can tell by inspecting the code that the accesses to M can be coalesced. The
index of the array M is k*Width+col. The variables k and Width have the same
value across all threads in the warp. The variable col is defined as blockIdx.
x*blockDim.x+threadIdx.x, which means that consecutive threads (with consecu-
tive threadldx.x values) will have consecutive values of col and will therefore
access consecutive elements of M.

Code Logical view
— o i T , T, T, T, T,
unsigned int row = blockIdx.y*blockDim.y + threadIdx.y:
unsigned int col = blockIdx.x*blockDim.x + threadIdx.x; f 1 1 f
if (row < Width && col < Width) { I I I I

float Pvalue = 0.0f; g MOAO MO.l MO.Z MO.S
for (unsigned int k = 0; k < Width; ++k) { «5
= *Wi -] * x4 3 o
} Pvalue += N[row*Width + k]*M[k*Width + col]; % Mm]\,11.1 Ml.l Ml.3
P[row*Width + col] = Pvalue; @
) 5| [Mao| Mz (Mg My
>3
<
M;, M3, M3, Ms,
Physical view
Loads for Loads for
iteration 0 iteration 1

To T, T, T5|T, T, T, T;

iRARREA

Moo [Mo [Moa|Mos| M| Mg | My (M5 (Moo My | Ms5 | M, 5 IR EEYE

Row-major layout

FIGURE 6.2
A coalesced access pattern.

L
127

128 CHAPTER 6 Performance considerations

The bottom part of Fig. 6.2 shows the physical view of the access pattern. In
iteration 0, consecutive threads will access consecutive elements in row O that are
adjacent in memory, shown as “Loads for iteration 0” in Fig. 6.2. In iteration 1,
consecutive threads will access consecutive elements in row 1 that are also adja-
cent in memory, shown as “Loads for iteration 1” in Fig. 6.2. This process con-
tinues for all rows. As we can see, the memory access pattern that is formed by
the threads during this process is a favorable one that can be coalesced. Indeed, in
all the kernels that we have implemented so far, our memory accesses have been
naturally coalesced.

Now assume that the matrix was stored in column-major order instead of row-
major order. There could be various reasons why this might be the case. For
example, we might be multiplying by the transpose of a matrix that is stored in
row-major order. In linear algebra we often need to use both the original and
transposed forms of a matrix. It would be better to avoid creating and storing
both forms. A common practice is to create the matrix in one form, say, the origi-
nal form. When the transposed form is needed, its elements can be accessed by
accessing the original form by switching the roles of the row and column indices.
In C this is equivalent to viewing the transposed matrix as a column-major layout
of the original matrix. Regardless of the reason, let’s observe the memory access
pattern that is achieved when the second input matrix to our matrix multiplication
example is stored in column-major order.

Fig. 6.3 illustrates how consecutive threads iterate through consecutive col-
umns when the matrix is stored in column-major order. The top left part of
Fig. 6.3 shows the code, and the top right part shows the logical view of the
memory accesses. The program is still trying to have each thread access a column
of matrix M. One can tell by inspecting the code that the accesses to M are not
favorable for coalescing. The index of the array M is col*Width+k. As before, col
is defined as blockIdx.x*blockDim.x+threadIdx.x, which means that consecutive
threads (with consecutive threadldx.x values) will have consecutive values of
col. However, in the index to M, col is multiplied by Width, which means that
consecutive threads will access elements of M that are Width apart. Therefore the
accesses are not favorable for coalescing.

In the bottom portion of Fig. 6.3, we can see that the physical view of the memory
accesses is quite different from that in Fig. 6.2. In iteration 0, consecutive threads will
logically access consecutive elements in row 0, but this time they are not adjacent in
memory because of the column-major layout. These loads are shown as “Loads for
iteration 0” in Fig. 6.3. Similarly, in iteration 1, consecutive threads will access conse-
cutive elements in row 1 that are also not adjacent in memory. For a realistic matrix
there are typically hundreds or even thousands of elements in each dimension. The M
elements that are accessed in each iteration by neighboring threads can be hundreds or
even thousands of elements apart. The hardware will determine that accesses to these
elements are far away from each other and cannot be coalesced.

There are various strategies for optimizing code to achieve memory coalescing
when the computation is not naturally amenable to it. One strategy is to rearrange

6.1 Memory coalescing

Code Logical view

unsigned int row = blockIdx.y*blockDim.y + threadIdx.y; TO Tl T2 T3
unsigned int col = blockIdx.x*blockDim.x + threadIdx.x; f f f
if (row < Width && col < Width) { I I I

float Pvalue = 0.0f; =] M(),o MO.I Mo,z 1\10,3
for(unsigned int k = 0; k < Width; ++k) { %
] Pvalue += N[row*Width + k]*M[col*Width + k]: g Ml.O M“ Ml,2 N[“
o
P(row*Width + col] = Pvalue; 2
} § M.’..O M2,1 Mu 1\13:
<
M;, | M;, (M5, BY
Physical view
Loads for
Ty T, iteration1 T T;
7) 7)
Loads for
T, T, iteration0 T, T,

MQO MIAO M2.0 MSAO MO.] Ml.l MZ.I M3.l MO,Z Ml,z M2.2 M3.2

Column-major layout

FIGURE 6.3

An uncoalesced access pattern.

how threads are mapped to the data; another strategy is to rearrange the layout of
the data itself. We will discuss these strategies in Section 6.4 and see examples
throughout this book of how they can be applied. Yet another strategy is to trans-
fer the data between global memory and shared memory in a coalesced manner
and carry out the unfavorable access pattern in shared memory, which provides
faster access latency. We will also see example optimizations that use this strat-
egy throughout this book, including an optimization that we will apply now to
matrix-matrix multiplication in which the second input matrix is in column-major
layout. This optimization is called corner turning.

Fig. 6.4 illustrates an example of how corner turning can be applied. In this
example, A is an input matrix that is stored in row-major layout in global mem-
ory, and B is an input matrix that is stored in column-major layout in global
memory. They are multiplied to produce an output matrix C that is stored in row-
major layout in global memory. The example illustrates how four threads that are
responsible for the four consecutive elements at the top edge of the output tile
load the input tile elements.

L
129

130 CHAPTER 6 Performance considerations

No coalescing when loading input tile Loading input tile from global memory

from global memory to shared memory to shared memory is coalesced
\
B B
C=AxB C=AxB
B_s B.s
A C A C
As As

(A) Without corner turning (B) With corner turning

FIGURE 6.4
Applying corner turning to coalesce accesses to matrix B, which is stored in column-major layout.

The access to the input tile in matrix A is similar to that in Chapter 5, Memory
Architecture and Data Locality. The four threads load the four elements at the top
edge of the input tile. Each thread loads an input element whose local row and col-
umn indices within the input tile are the same as those of the thread’s output element
within the output tile. These accesses are coalesced because consecutive threads
access consecutive elements in the same row of A that are adjacent in memory
according to the row-major layout.

On the other hand, the access to the input tile in matrix B needs to be different
from that in Chapter 5, Memory Architecture and Data Locality. Fig. 6.4(A)
shows what the access pattern would be like if we used the same arrangement as
in Chapter 5, Memory Architecture and Data Locality. Even though the four
threads are logically loading the four consecutive elements at the top edge of the
input tile, the elements that are loaded by consecutive threads are far away from
each other in the memory because of the column-major layout of the B elements.
In other words, consecutive threads that are responsible for consecutive elements
in the same row of the output tile load nonconsecutive locations in memory,
which results in uncoalesced memory accesses.

This problem can be solved by assigning the four consecutive threads to load
the four consecutive elements at the left edge (the same column) in the input tile,
as shown in Fig. 6.4(B). Intuitively, we are exchanging the roles of threadldx.x
and threadldx.y when each thread calculates the linearized index for loading the
B input tile. Since B is in column-major layout, consecutive elements in the same
column are adjacent in memory. Hence consecutive threads load input elements
that are adjacent in memory, which ensures that the memory accesses are coa-
lesced. The code can be written to place the tile of B elements into the shared

6.1 Memory coalescing

memory in either column-major layout or row-major layout. Either way, after the
input tile has been loaded, each thread can access its inputs with little perfor-
mance penalty. This is because shared memory is implemented with SRAM tech-
nology and does not require coalescing.

The main advantage of memory coalescing is that it reduces global memory
traffic by combining multiple memory accesses into a single access. Accesses can
be combined when they take place at the same time and access adjacent memory
locations. Traffic congestion does not arise only in computing. Most of us have
experienced traffic congestion in highway systems, as illustrated in Fig. 6.5. The
root cause of highway traffic congestion is that there are too many cars all trying
to travel on a road that is designed for a much smaller number of vehicles. When
congestion occurs, the travel time for each vehicle is greatly increased. Commute
time to work can easily double or triple when there is traffic congestion.

Most solutions for reducing traffic congestion involve the reduction of the
number of cars on the road. Assuming that the number of commuters is constant,
people need to share rides in order to reduce the number of cars on the road. A
common way to share rides is carpooling, in which the members of a group of
commuters take turns driving the group to work in one vehicle. Governments usu-
ally need to have policies to encourage carpooling. In some countries the govern-
ment simply disallows certain classes of cars to be on the road on a daily basis.
For example, cars with odd license plate numbers may not be allowed on the road
on Monday, Wednesday, or Friday. This encourages people whose cars are
allowed on different days to form a carpool group. In other countries the govern-
ment may provide incentives for behavior that reduces the number of cars on the

-

. v

Fre2e.

L=oAFe

FIGURE 6.5
Reducing traffic congestion in highway systems.

L
131

132 CHAPTER 6 Performance considerations

road. For example, in certain countries, some lanes of congested highways
are designated as carpool lanes; only cars with more than two or three people are
allowed to use these lanes. There are also countries where the government makes
gasoline so expensive that people form carpools to save money. All these mea-
sures for encouraging carpooling are designed to overcome the fact that carpool-
ing requires extra effort, as we show in Fig. 6.6.

Carpooling requires workers who wish to carpool to compromise and agree on
a common commute schedule. The top half of Fig. 6.6 shows a good schedule
pattern for carpooling. Time goes from left to right. Worker A and Worker B
have similar schedules for sleep, work, and dinner. This allows these two workers
to easily go to work and return home in one car. Their similar schedules allow
them to more easily agree on a common departure time and return time. This is
not the case for the schedules shown in the bottom half of Fig. 6.6. Worker A and
Worker B have very different schedules in this case. Worker A parties until sun-
rise, sleeps during the day, and goes to work in the evening. Worker B sleeps at
night, goes to work in the morning, and returns home for dinner at 6:00 pm. The
schedules are so wildly different that these two workers cannot possibly coordi-
nate a common time to drive to work and return home in one car.

Memory coalescing is very similar to carpooling arrangements. We can think
of the data as the commuters and the DRAM access requests as the vehicles.
When the rate of DRAM requests exceeds the provisioned access bandwidth of
the DRAM system, traffic congestion rises, and the arithmetic units become idle.
If multiple threads access data from the same DRAM location, they can poten-
tially form a “carpool” and combine their accesses into one DRAM request.
However, this requires the threads to have similar execution schedules so that
their data accesses can be combined into one. Threads in the same warp are

Good — people have similar schedules

Worker A sleep work dinner
Time
Worker B sleep work dinner

Bad — people have very different schedules

Worker A party sleep work
Time
Worker B sleep work dinner
FIGURE 6.6

Carpooling requires synchronization among people.

6.2 Hiding memory latency

perfect candidates because they all execute a load instruction simultaneously by
virtue of SIMD execution.

Hiding memory latency

As we explained in Section 6.1, DRAM bursting is a form of parallel organiza-
tion: Multiple locations are accessed in the DRAM core array in parallel.
However, bursting alone is not sufficient to realize the level of DRAM access
bandwidth required by modern processors. DRAM systems typically employ two
more forms of parallel organization: banks and channels. At the highest level, a
processor contains one or more channels. (Eachichannelisraimemory controller
with a bus that connects a set of DRAM banks to the processor. Fig. 6.7 illustrates
a processor that contains four channels, each with a bus that connects four
DRAM banks to the processor. In real systems a processor typically has one to
eight channels, and a large number of banks is connected to each channel.

The data transfer bandwidth of a bus is defined by its width and clock frequency.
Modern double data rate (DDR) busses perform two data transfers per clock cycle: one
at the rising edge and one at the falling edge of each clock cycle. For example, a 64-bit
DDR bus with a clock frequency of 1 GHz has a bandwidth of 8B*2*1 GHz=16GB/s.
This seems to be a large number but is often too small for modern CPUs and GPUs. A
modern CPU might require a memory bandwidth of at least 32 GB/s, whereas a modern
GPU might require 256 GB/s. For this example the CPU would require 2 channels, and
the GPU would require 16 channels.

For each channel, the number of banks that is connected to it is determined by
the number of banks required to fully utilize the data transfer bandwidth of the
bus. This is illustrated in Fig. 6.8. Each bank contains an array of DRAM cells,
the sensing amplifiers for accessing these cells, and the interface for delivering
bursts of data to the bus (Section 6.1).

bus bus bus bus
Bank [| Bank || Bank [| Bank [|
v v v v
Channel Channel Channel Channel
0 1 2 3
Processor

FIGURE 6.7
Channels and banks in DRAM systems.

L
133

134 CHAPTER 6 Performance considerations

[I1dle time
I Burst
time
Channel [N I]
(A) Single-Bank channel access timeline
Bank 0 [N I]
Bank 1 [|| |

Chamnel "IN T TN

(B) Two-Bank channel access timeline

FIGURE 6.8
Banking improves the utilization of data transfer bandwidth of a channel.

Fig. 6.8(A) illustrates the data transfer timing when a single bank is connected
to a channel. It shows the timing of two consecutive memory read accesses to the
DRAM cells in the bank. Recall from Section 6.1 that each access involves long
latency for the decoder to enable the cells and for the cells to share their stored
charge with the sensing amplifier. This latency is shown as the gray section at the
left end of the time frame. Once the sensing amplifier has completed its work, the
burst data is delivered through the bus. The time for transferring the burst data
through the bus is shown as the left dark section of the time frame in Fig. 6.8.
The second memory read access will incur a similar long access latency (the gray
section between the dark sections of the time frame) before its burst data can be
transferred (the right dark section).

In reality, the access latency (the gray sections) is much longer than the data
transfer time (the dark section). It should be apparent that the access transfer tim-
ing of a one-bank organization would grossly underutilize the data transfer band-
width of the channel bus. For example, if the ratio of DRAM cell array access
latency to the data transfer time is 20:1, the maximal utilization of the channel
bus would be 1/21=4.8%; that is a 16 GB/s channel would deliver data to the pro-
cessor at a rate no more than 0.76 GB/s. This would be totally unacceptable. This
problem is solved by connecting multiple banks to a channel bus.

When two banks are connected to a channel bus, an access can be initiated in
the second bank while the first bank is serving another access. Therefore one can
overlap the latency for accessing the DRAM cell arrays. Fig. 6.8(B) shows the
timing of a two-bank organization. We assume that bank O started at a time earlier
than the window shown in Fig. 6.8. Shortly after the first bank starts accessing its
cell array, the second bank also starts to access its cell array. When the access in
bank 0 is complete, it transfers the burst data (the leftmost dark section of the

6.2 Hiding memory latency

time frame). Once bank 0 completes its data transfer, bank 1 can transfer its burst
data (the second dark section). This pattern repeats for the next accesses.

From Fig. 6.8(B), we can see that by having two banks, we can potentially
double the utilization of the data transfer bandwidth of the channel bus. In gen-
eral, if the ratio of the cell array access latency and data transfer time is R, we
need to have at least R + 1 banks if we hope to fully utilize the data transfer
bandwidth of the channel bus. For example, if the ratio is 20, we will need at least
21 banks connected to each channel bus. In general, the number of banks con-
nected to each channel bus needs to be larger than R for two reasons. One is that
having more banks reduces the probability of multiple simultaneous accesses tar-
geting the same bank, a phenomenon called bank conflict. Since each bank can
serve only one access at a time, the cell array access latency can no longer be
overlapped for these conflicting accesses. Having a larger number of banks
increases the probability that these accesses will be spread out among multiple
banks. The second reason is that the size of each cell array is set to achieve rea-
sonable latency and manufacturability. This limits the number of cells that each
bank can provide. One may need many banks just to be able to support the mem-
ory size that is required.

There is an important connection between the parallel execution of threads and
the parallel organization of the DRAM system. To achieve the memory access band-
width specified for device, there must be a sufficient number of threads making
simultaneous memory accesses. This observation reflects another benefit of maximiz-
ing occupancy. Recall that in Chapter 4, Compute Architecture and Scheduling, we
saw that maximizing occupancy ensures that there are enough threads resident on the
streaming multiprocessors (SMs) to hide core pipeline latency, thereby utilizing the
instruction throughput efficiently. As we see now, maximizing occupancy also has
the additional benefit of ensuring that enough memory access requests are made to
hide DRAM access latency, thereby utilizing the memory bandwidth efficiently. Of
course, to achieve the best bandwidth utilization, these memory accesses must be
evenly distributed across channels and banks, and each access to a bank must also be
a coalesced access.

Fig. 6.9 shows a toy example of distributing the elements of an array M to channels
and banks. We assume a small burst size of two elements (8 bytes). The distribution is
done by hardware design. The addressing of the channels and backs are such that the
first 8 bytes of the array (M[0] and M[1]) are stored in bank O of channel 0, the next 8
bytes (M[2] and M[3]) in bank O of channel 1, the next 8 bytes (M[4] and M[5]) in
bank O of channel 2, and the next 8 bytes (M[6] and M[7]) in bank O of channel 3.

At this point, the distribution wraps back to channel 0 but will use bank 1 for the
next 8 bytes (M[8] and M[9]). Thus elements M[10] and M[11] will be in bank 1 of
channel 1, M[12] and M[13] will be in bank 1 of channel 2, and M[14] and M[15]
will be in bank 1 of channel 3. Although not shown in the figure, any additional ele-
ments will be wrapped around and start with bank 0 of channel 0. For example, if there
are more elements, M[16] and M[17] will be stored in bank O of channel 0, M[18] and
M[19] will be stored in bank 0 of channel 1, and so on.

L
135

136 CHAPTER 6 Performance considerations

Bank 1

\\M[lS]M[M] *“ M[13]M[12] j M[11]M[10] "—“|M[9]M[8]
1| Bank 0
M([7]M[6] M[5]M[4] M[3]M[2] M[1]m[0]
\ 4 v v v
Channel 3 Channel 2 Channel 1 Channel 0

FIGURE 6.9
Distributing array elements into channels and banks.

The distribution scheme illustrated in Fig. 6.9, often referred to as interleaved
data distribution, spreads the elements across the banks and channels in the sys-
tem. This scheme ensures that even relatively small arrays are spread out nicely.
Thus we assign only enough elements to fully utilize the DRAM burst of bank 0
of channel 0 before moving on to bank O of channel 1. In our toy example, as
long as we have at least 16 elements, the distribution will involve all the channels
and banks for storing the elements.

We now illustrate the interaction between parallel thread execution and the
parallel memory organization. We will use the example in Fig. 5.5, replicated as
Fig. 6.10. We assume that the multiplication will be performed with 2 X 2 thread
blocks and 2 X 2 tiles.

During phase 0 of the kernel’s execution, all four thread blocks will be loading their
first tile. The M elements that are involved in each tile are shown in Fig. 6.11. Row 2
shows the M elements accessed in phase 0, with their 2D indices. Row 3 shows the
same M elements with their linearized indices. Assume that all thread blocks are exe-
cuted in parallel. We see that each block will make two coalesced accesses.

According to the distribution in Fig. 6.9, these coalesced accesses will be
made to the two banks in channel 0 as well as the two banks in channel 2. These
four accesses will be done in parallel to take advantage of two channels as well
as improving the utilization of the data transfer bandwidth of each channel.

We also see that Blockg and Blocky; will load the same M elements. Most
modern devices are equipped with caches that will combine these accesses into
one as long as the execution timing of these blocks are sufficiently close to each
other. In fact, the cache memories in GPU devices are mainly designed to com-
bine such accesses and reduce the number of accesses to the DRAM system.

Rows 4 and 5 show the M elements loaded during phase 1 of the kernel execu-
tion. We see that the accesses are now done to the banks in channel 1 and channel 3.
Once again, these accesses will be done in parallel. It should be clear to the reader
that there is a symbiotic relationship between the parallel execution of the threads
and the parallel structure of the DRAM system. On one hand, good utilization of the
potential access bandwidth of the DRAM system requires that many threads

6.2 Hiding memory latency 137

M0=0 MO,I MOJ. MOJ PO__2 PO,}
MI,O Ml,] Ml,Z Ml} 1 P12 P1,3
PLO PZ,I PZ:Z P2:3
PB,O P3:1 P},Z P3:3

FIGURE 6.10

A small example of matrix multiplication (replicated from Fig. 5.5).

Tiles loaded by Block 0,0 Block 0,1 Block 1,0 Block 1,1

Phase 0 M[oJ[o],M[0][1], ~M[0][0], M[O][1], ~MI[2][0], M[2][1], M[2][0], M[2][1],
(2D index) M[1][0], M[1][1] M[1][0], M[1][1] MI3][0], M[3][1] MI3][0], M[3][1]
Phase 0 MI[o], M[1], M[o], M[1], M[8], M[19], M[8], M[9],
(linearized index) M[4], M[5] M[4], M[5] M[12], M[13] M[12], M[13]

Phase 1
(2D index)

Phase 1
(linearized index)

M[0][2],M[0](3],
M[1][2], M[1][3]

M[2], M[3],
M[6], M[7]

M[0][2],M[0](3],
M[1][2], M[1][3]

M[2], M[3],
M(6], M([7]

M[2][2], M[2][3],
M[3][2], M[3][3]

M[10], M[11],
M[14], M[15]

M[2][2], M[2][3],
M[3][2], M[3][3]

M[10], M[11],
M[14], M[15]

FIGURE 6.11

M elements loaded by thread blocks in each phase.

simultaneously access data in the DRAM. On the other hand, the execution through-
put of the device relies on good utilization of the parallel structure of the DRAM sys-
tem, that is, banks and channels. For example, if the simultaneously executing
threads all access data in the same channel, the memory access throughput and the
overall device execution speed will be greatly reduced.

138 CHAPTER 6 Performance considerations

The reader is invited to verify that multiplying two larger matrices, such as
8 X 8 with the same 2 X 2 thread block configuration, will make use of all the
four channels in Fig. 6.9. On the other hand, an increased DRAM burst size
would require multiplication of even larger matrices to fully utilize the data trans-
fer bandwidth of all the channels.

Thread coarsening

So far, in all the kernels that we have seen, work has been parallelized across threads
at the finest granularity. That is, each thread was assigned the smallest possible unit
of work. For example, in the vector addition kernel, each thread was assigned one
output element. In the RGB-to-grayscale conversion and the image blur kernels, each
thread was assigned one pixel in the output image. In the matrix multiplication ker-
nels, each thread was assigned one element in the output matrix.

The advantage of parallelizing work across threads at the finest granularity is that
it enhances transparent scalability, as discussed in Chapter 4, Compute Architecture
and Scheduling. If the hardware has enough resources to perform all the work in par-
allel, then the application has exposed enough parallelism to fully utilize the hard-
ware. Otherwise, if the hardware does not have enough resources to perform all the
work in parallel, the hardware can simply serialize the work by executing the thread
blocks one after the other.

The disadvantage of parallelizing work at the finest granularity comes when
there is a “price” to be paid for parallelizing that work. This price of parallelism
can take many forms, such as redundant loading of data by different thread
blocks, redundant work, synchronization overhead, and others. When the threads
are executed in parallel by the hardware, this price of parallelism is often worth
paying. However, if the hardware ends up serializing the work as a result of insuf-
ficient resources, then this price has been paid unnecessarily. In this case, it is
better for the programmer to partially serialize the work and reduce the price that
is paid for parallelism. This can be done by assigning each thread multiple units
of work, which is often referred to as thread coarsening.

We demonstrate the thread coarsening optimization using the tiled matrix mul-
tiplication example from Chapter 5, Memory Architecture and Data Locality.
Fig. 6.12 depicts the memory access pattern of computing two horizontally adja-
cent output tiles of the output matrix P. For each of these output tiles, we observe
that different input tiles of the matrix N need to be loaded. However, the same
input tiles of the matrix M are loaded for both the output tiles.

In the tiled implementation in Chapter 5, Memory Architecture and Data
Locality, each output tile is processed by a different thread block. Because the
shared memory contents cannot be shared across blocks, each block must load its
own copy of the input tiles of matrix M. Although having different thread blocks
load the same input tile is redundant, it is a price that we pay to be able to process
the two output tiles in parallel using different blocks. If these thread blocks run in

6.3 Thread coarsening 139

012 TILE_WIDTH-1
[E—

dN

aM

" TILE WIDTH-1

WIDTH

»

FIGURE 6.12
Thread coarsening for tiled matrix multiplication.

parallel, this price may be worth paying. On the other hand, if these thread blocks
are serialized by the hardware, the price is paid in vain. In the latter case, it is bet-
ter for the programmer to have a single thread block process the two output tiles,
whereby each thread in the block processes two output elements. This way, the
coarsened thread block would load the input tiles of M once and reuse them for
multiple output tiles.

Fig. 6.13 shows how thread coarsening can be applied to the tiled matrix
multiplication code from Chapter 5, Memory Architecture and Data Locality.
On line 02 a constant COARSE_FACTOR is added to represent the coarsening fac-
tor, which is the number of original units of work for which each coarsened
thread is going to be responsible. On line 13 the initialization of the column
index is replaced with an initialization of colStart, which is the index of the
first column for which the thread is responsible, since the thread is now
responsible for multiple elements with different column indices. In calculating
colStart, the block index bx is multiplied by TILE_WIDTH*COARSE_FACTOR
instead of just TILE_WIDTH, since each thread block is now responsible for
TILE_WIDTH*COARSE_FACTOR columns. On lines 16—19, multiple instances of
Pvalue are declared and initialized, one for each element for which the

140 CHAPTER 6 Performance considerations

01 #define TILE WIDTH 32

02 #define COARSE FACTOR 4

03 __global__ void matrixMulKernel (float* M, float* N, float* P, int width)
{

04

05 __shared float Mds[TILE WIDTH] [TILE WIDTH];

06 __shared float Nds[TILE WIDTH] [TILE WIDTH];

07

08 int bx = blockIdx.x; int by = blockIdx.y;

09 int tx = threadIdx.x; int ty = threadIdx.y;

10

11 // Identify the row and column of the P element to work on
12 int row = by*TILE WIDTH + ty;

13 int colStart = bx*TILE_WIDTH*COARSE_FACTOR + tx;

14

15 // Initialize Pvalue for all output elements

16 float Pvalue[COARSE FACTOR];

17 for(int ¢ = 0; c < COARSE_FACTOR; ++c) {

18 Pvalue[c] = 0.0f;

19 }

20

21 // Loop over the M and N tiles required to compute P element
22 for (int ph = 0; ph < width/TILE7WIDTH; ++ph) {

23

24 // Collaborative loading of M tile into shared memory
25 Mds([ty] [tx] = M[row*width + ph*TILE WIDTH + tx];

26

27 for (int ¢ = 0; c < COARSE_FACTOR; ++c) {

28

29 int col = colStart + c*TILE WIDTH;

30

31 // Collaborative loading of N tile into shared memory
32 Nds[ty] [tx] = N[(ph*TILE WIDTH + ty)*width + col];
33 __syncthreads () ;

34

35 for(int k = 0; k < TILE_WIDTH; ++k) {

36 Pvalue([c] += Mds[ty] [k]*Nds[k] [tx];

37 }

38 __syncthreads () ;

39

40 }

41

42 }

43

44 for(int ¢ = 0; c < COARSE FACTOR; ++c) {

45 int col = colStart + c*TILE WIDTH;

46 P[row*width + col] = Pvaluelc];

47 }

48

49 }
FIGURE 6.13

Code for thread coarsening for tiled matrix multiplication.

coarsened thread is responsible. The loop on line 17 that iterates over the dif-
ferent units of work for which the coarsened thread is responsible is some-
times referred to as a coarsening loop. Inside the loop on line 22 that loops
over the input tiles, only one tile of M is loaded in each loop iteration, as with
the original code. However, for each tile of M that is loaded, multiple tiles of N
are loaded and used by the coarsening loop on line 27. This loop first
figures out which column of the current tile the coarsened thread is responsible

6.4 A checklist of optimizations

for (line 29), then loads the tile of N (line 32) and uses the tile to compute and
update a different Pvalue each iteration (lines 35—37). At the end, on lines
44—47, another coarsening loop is used for each coarsened thread to update
the output elements for which it is responsible.

Thread coarsening is a powerful optimization that can result in substantial per-
formance improvement for many applications. It is an optimization that is com-
monly applied. However, there are several pitfalls to avoid in applying thread
coarsening. First, one must be careful not to apply the optimization when it is
unnecessary. Recall that thread coarsening is beneficial when there is a price paid
for parallelization that can be reduced with coarsening, such as redundant loading
of data, redundant work, synchronization overhead, or others. Not all computa-
tions have such a price. For example, in the vector addition kernel in Chapter 2,
Heterogeneous Data Parallel Computing, no price is paid for processing different
vector elements in parallel. Therefore applying thread coarsening to the vector
addition kernel would not be expected to make a substantial performance differ-
ence. The same applies to the RGB-to-grayscale conversion kernel in Chapter 3,
Multidimensional Grids and Data.

The second pitfall to avoid is not to apply so much coarsening that the hard-
ware resources become underutilized. Recall that exposing as much parallelism as
possible to the hardware enables transparent scalability. It provides the hardware
with the flexibility of parallelizing or serializing work, depending on the amount
of execution resources it has. When programmers coarsen threads, they reduce
the amount of parallelism that is exposed to the hardware. If the coarsening factor
is too high, not enough parallelism will be exposed to the hardware, resulting in
some parallel execution resources being unutilized. In practice, different devices
have different amounts of execution resources, so the best coarsening factor is
usually device-specific and dataset-specific and needs to be retuned for different
devices and datasets. Hence when thread coarsening is applied, scalability
becomes less transparent.

The third pitfall of applying thread coarsening is to avoid increasing resource
consumption to such an extent that it hurts occupancy. Depending on the kernel,
thread coarsening may require using more registers per thread or more shared
memory per thread block. If this is the case, programmers must be careful not to
use too many registers or too much shared memory such that the occupancy is
reduced. The performance penalty from reducing occupancy may be more detri-
mental than the performance benefit that thread coarsening may offer.

A checklist of optimizations

Throughout this first part of the book, we have covered various common optimi-
zations that CUDA programmers apply to improve the performance of their code.
We consolidate these optimizations into a single checklist, shown in Table 6.1.
This checklist is not an exhaustive one, but it contains many of the universal

141

142

CHAPTER 6 Performance considerations

Table 6.1 A checklist of optimizations.

Benefit to
Optimization | compute cores Benefit to memory | Strategies
Maximizing More work to hide | More parallel Tuning usage of SM
occupancy pipeline latency Memory accesses resources such as threads
to hide DRAM per block, shared memory
latency per block, and registers
per thread
Enabling Fewer pipeline Less global memory | Transfer between global
coalesced stalls waiting for traffic and better memory and shared
global global memory utilization of bursts/ memory in a coalesced
memory accesses cache lines manner and performing
accesses uncoalesced accesses in
shared memory (e.g.,
corner turning)
Rearranging the mapping
of threads to data
Rearranging the layout of
the data
Minimizing High SIMD — Rearranging the mapping
control efficiency (fewer of threads to work and/or
divergence idle cores during data
SIMD execution) Rearranging the layout of
the data
Tiling of Fewer pipeline Less global memory | Placing data that is reused
reused data stalls waiting for traffic within a block in shared
global memory memory or registers so
accesses that it is transferred
between global memory
and the SM only once
Privatization Fewer pipeline Less contention and | Applying partial updates to
(covered stalls waiting for serialization of a private copy of the data
later) atomic updates atomic updates and then updating the
universal copy when done
Thread Less redundant Less redundant Assigning multiple units of
coarsening work, divergence, | global memory parallelism to each thread
or synchronization | traffic to reduce the price of
parallelism when it is
incurred unnecessarily

optimizations that are common across different applications and that programmers
should first consider. In the second and third parts of the book, we will apply the
optimizations in this checklist to various parallel patterns and applications to
understand how they operate in different contexts. In this section we will provide
a brief review of each optimization and the strategies for applying it.

6.4 A checklist of optimizatio