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Foreword

Written by two exceptional computer scientists and pioneers of GPU computing,
Wen-mei and David’s Programming Massively Parallel Processors, Fourth
Edition, by Wen-mei W. Hwu, David B. Kirk, and Izzat El Hajj continues to
make an invaluable contribution to the creation of a new computing model.

GPU computing has become an essential instrument of modern science. This
book will teach you how to use this instrument and give you a superpower tool to
solve the most challenging problems. GPU computing will become a time
machine that lets you see the future, a spaceship that takes you to new worlds
that are now within reach.

Computing performance is needed to solve many of the world’s most impact-
ful problems. From the beginning of the history of computers, architects sought
parallel computing techniques to boost performance. A hundredfold increase is
equivalent to a decade of CPU advancements that relied on sequential processing.
Despite the great benefits of parallel computing, creating a new computing model
with a virtuous cycle of users, developers, vendors, and distributors has been a
daunting chicken-and-egg problem.

After nearly three decades, NVIDIA GPU computing is pervasive, and mil-
lions of developers have learned parallel programming, many from earlier editions
of this book.

GPU computing is affecting every field of science and industry, even com-
puter science itself. The processing speed of GPUs has enabled deep learning
models to learn from data and to perform intelligent tasks, starting a wave of
invention from autonomous vehicles and robotics to synthetic biology. The era of
AI is underway.

AI is even learning physics and opening the possibility of simulating the
Earth’s climate a millionfold faster than has ever been possible. NVIDIA is build-
ing a GPU supercomputer called Earth-2, a digital twin of the Earth, and partner-
ing with the world’s scientific community to predict the impact of today’s actions
on our climate decades from now.

A life science researcher once said to me, “Because of your GPU, I can do my
life’s work in my lifetime.” So whether you are advancing AI or doing ground-
breaking science, I hope that GPU computing will help you do your life’s work.

Jensen Huang
NVIDIA, Santa Clara, CA, United States

xv

Melani Maheswaran



Preface

We are proud to introduce to you the fourth edition of Programming Massively
Parallel Processors: A Hands-on Approach.

Mass market computing systems that combine multicore CPUs and many-
thread GPUs have brought terascale computing to laptops and exascale computing
to clusters. Armed with such computing power, we are at the dawn of the wide-
spread use of computational experiments in the science, engineering, medical, and
business disciplines. We are also witnessing the wide adoption of GPU computing
in key industry vertical markets, such as finance, e-commerce, oil and gas, and
manufacturing. Breakthroughs in these disciplines will be achieved by using
computational experiments that are of unprecedented levels of scale, accuracy,
safety, controllability, and observability. This book provides a critical ingredient
for this vision: teaching parallel programming to millions of graduate and under-
graduate students so that computational thinking and parallel programming skills
will become as pervasive as calculus skills.

The primary target audience of this book consists of graduate and undergradu-
ate students in all science and engineering disciplines in which computational
thinking and parallel programming skills are needed to achieve breakthroughs.
The book has also been used successfully by industry professional developers
who need to refresh their parallel computing skills and keep up to date with ever-
increasing speed of technology evolution. These professional developers work in
fields such as machine learning, network security, autonomous vehicles, computa-
tional financing, data analytics, cognitive computing, mechanical engineering,
civil engineering, electrical engineering, bioengineering, physics, chemistry,
astronomy, and geography, and they use computation to advance their fields.
Thus these developers are both experts in their domains and programmers. The
book takes the approach of teaching parallel programming by building up an intu-
itive understanding of the techniques. We assume that the reader has at least
some basic C programming experience. We use CUDA C, a parallel programming
environment that is supported on NVIDIA GPUs. There are more than 1 billion
of these processors in the hands of consumers and professionals, and more than
400,000 programmers are actively using CUDA. The applications that you will
develop as part of your learning experience will be runnable by a very large user
community.

Since the third edition came out in 2016, we have received numerous com-
ments from our readers and instructors. Many of them told us about the existing
features they value. Others gave us ideas about how we should expand the book’s
contents to make it even more valuable. Furthermore, the hardware and software
for heterogeneous parallel computing have advanced tremendously since 2016. In
the hardware arena, three more generations of GPU computing architectures,
namely, Volta, Turing, and Ampere, have been introduced since the third edition.

xvii



In the software domain, CUDA 9 through CUDA 11 have allowed programmers
to access new hardware and system features. New algorithms have also been
developed. Accordingly, we added four new chapters and rewrote a substantial
number of the existing chapters.

The four newly added chapters include one new foundational chapter, namely,
Chapter 4 (Compute Architecture and Scheduling), and three new parallel patterns
and applications chapters: Chapter 8 (Stencil), Chapter 10 (Reduction and
Minimizing Divergence), and Chapter 13 (Sorting). Our motivation for adding
these chapters is as follows:

• Chapter 4 (Compute Architecture and Scheduling): In the previous edition the
discussions on architecture and scheduling considerations were scattered
across multiple chapters. In this edition, Chapter 4 consolidates these
discussions into one focused chapter that serves as a centralized reference for
readers who are particularly interested in this topic.

• Chapter 8 (Stencil): In the previous edition the stencil pattern was briefly
mentioned in the convolution chapter in light of the similarities between the
two patterns. In this edition, Chapter 8 provides a more thorough treatment of
the stencil pattern, emphasizing the mathematical background behind the
computation and aspects that make it different from convolution, thereby
enabling additional optimizations. The chapter also provides an example of
handling three-dimensional grids and data.

• Chapter 10 (Reduction and Minimizing Divergence): In the previous edition
the reduction pattern was briefly presented in the performance considerations
chapter. In this edition, Chapter 10 provides a more complete presentation of
the reduction pattern with an incremental approach to applying the
optimizations and a more thorough analysis of the associated performance
tradeoffs.

• Chapter 13 (Sorting): In the previous edition, merge sort was briefly alluded
to in the chapter on the merge pattern. In this edition, Chapter 13 presents
radix sort as a noncomparison sort algorithm that is highly amenable to GPU
parallelization and follows an incremental approach to optimizing it and
analyzing the performance tradeoffs. Merge sort is also discussed in this
chapter.

In addition to the newly added chapters, all chapters have been revised, and
some chapters have been substantially rewritten. These chapters include the
following:

• Chapter 6 (Performance Considerations): Some architecture considerations
that were previously in this chapter were moved to the new Chapter 4, and the
reduction example was moved to the new Chapter 10. In their place, this
chapter was rewritten to provide a more thorough handling of thread
granularity considerations and, more notably, to provide a checklist of
common performance optimization strategies and the performance bottlenecks
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that each strategy tackles. This checklist is referred to throughout the rest of
the textbook as we optimize the code for implementing various parallel
patterns and applications. The goal is to reinforce a systematic and
incremental methodology for optimizing the performance of parallel programs.

• Chapter 7 (Convolution): In the previous edition the chapter on the
convolution pattern used a one-dimensional convolution as a running example,
with a brief handling of two-dimensional convolutions toward the end. In this
edition this chapter was rewritten to focus more on two-dimensional
convolution from the start. This change allows us to address the complexity
and intricacies of higher-dimensional tiling and equip the readers with a better
background for learning convolutional neural networks in Chapter 16.

• Chapter 9 (Parallel Histogram): In the previous edition the chapter on the
histogram pattern applied the thread coarsening optimization from the start
and combined the privatization optimization with the use of shared memory.
In this edition this chapter was rewritten to follow a more incremental
approach to performance optimization. The initial implementation that is now
presented does not apply thread coarsening. Privatization and the use of shared
memory for the private bins are distinguished as two separate optimizations,
the former aimed at reducing contention of atomics and the latter aimed at
reducing access latency. Thread coarsening is applied after privatization, since
one major benefit of coarsening is to reduce the number of private copies
committed to the public copy. The new organization of the chapter is more
consistent with the systematic and incremental approach to performance
optimization that is followed throughout the book. We also moved the chapter
to precede the chapters on the reduction and scan patterns in order to
introduce atomic operations sooner, since they are used in multiblock
reduction and single-pass scan kernels.

• Chapter 14 (Sparse Matrix Computation): In this edition this chapter was
rewritten to follow a more systematic approach for analyzing the tradeoffs
between different sparse matrix storage formats. The beginning of the chapter
introduces a list of considerations that go into the design of different sparse
matrix storage formats. This list of design considerations is then used
throughout the chapter to systematically analyze the tradeoffs between the
different formats.

• Chapter 15 (Graph Traversal): In the previous edition the chapter on graph
traversal focused on a particular BFS parallelization strategy. In this edition
this chapter was significantly expanded to cover a more comprehensive set of
alternative parallelization strategies and to analyze the tradeoffs between
them. These strategies include vertex-centric push-based, vertex-centric pull-
based, edge-centric, and linear algebraic implementations in addition to the
original implementation, which was the vertex-centric push-based frontier-
based implementation. The classification of these alternatives is not unique to
BFS but applies to parallelizing graph algorithms in general.
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• Chapter 16 (Deep Learning): In this edition this chapter was rewritten to
provide a comprehensive yet intuitive theoretical background for
understanding modern neural networks. The background makes it easier for
the reader to fully understand the computational components of neural
networks, such as fully connected layers, activation, and convolutional layers.
It also removes some of the common barriers to understanding the kernel
functions for training a convolutional neural network.

• Chapter 19 (Parallel Programming and Computational Thinking): In the
previous edition this chapter discussed algorithm selection and problem
decomposition while drawing examples from the chapters on iterative MRI
reconstruction and electrostatic potential map. In this edition the chapter was
revised to draw examples from many more chapters, serving as a concluding
chapter for Parts I and II. The discussion of problem decomposition was
particularly expanded to introduce the generalizations of output-centric
decomposition and input-centric decomposition and to discuss the tradeoffs
between them, using many examples.

• Chapter 21 (CUDA Dynamic Parallelism): In the previous edition this chapter
went into many programming details relating to the semantics of different
programming constructs and API calls in the context of dynamic parallelism.
In this edition the focus of the chapter has shifted more toward the application
examples, with the other programming details discussed more briefly while
referring interested readers to the CUDA programming guide.

While making all these improvements, we tried to preserve the features that
seem to contribute most to the book’s popularity. First, we keep our explanations
as intuitive as possible. While it is tempting to formalize some of the concepts,
especially when we cover the basic parallel algorithms, we have striven to keep
all our explanations intuitive and practical. Second, we keep the book as concise
as possible. Although it is tempting to keep adding new material, we wanted to
minimize the number of pages a reader needs to go through to learn all the key
concepts. We accomplished this by moving the previous chapter on numerical
considerations to the appendix. While numerical considerations are an extremely
important aspect of parallel computing, we found that a substantial amount of the
content in the chapter was already familiar to many of our readers who come
from a computer science or computational science background. For this reason
we preferred to dedicate more space to covering additional parallel patterns.

In addition to adding new chapters and substantially rewriting others since the
previous edition, we have also organized the book into four major parts. This
organization is illustrated in Fig. P.1. The first part introduces the fundamental
concepts behind parallel programming, the GPU architecture, and performance
analysis and optimization. The second part applies these concepts by covering six
common computation patterns and showing how they can be parallelized and
optimized. Each parallel pattern also introduces a new programming feature or
technique. The third part introduces additional advanced patterns and applications
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and continues to apply the optimizations that are practiced in the second part.
However, it puts more emphasis on exploring alternative forms of problem
decomposition to parallelize a computation and analyzes the tradeoffs between
different decompositions and their associated data structures. Finally, the fourth
part exposes the reader to advanced practices and programming features.
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How to use the book
We would like to offer some of our experience in teaching courses with this
book. Since 2006 we have taught multiple types of courses: in one-semester for-
mat and in one-week intensive format. The original ECE498AL course has
become a permanent course known as ECE408 or CS483 at the University of
Illinois at Urbana-Champaign. We started to write up some of the early chapters
of this book when we offered ECE498AL the second time. The first four chapters
were also tested in an MIT class taught by Nicolas Pinto in the spring of 2009.
Since then, we have used the book for numerous offerings of ECE408 as well as
the Coursera Heterogeneous Parallel Programming course and the VSCSE and
PUMPS summer schools.

A two-phased approach
Most of the chapters in the book are designed to be covered in approximately a
single 75-minute lecture each. The chapters that may need two 75-minute lectures
to be fully covered are Chapter 11 (Prefix Sum (Scan)), Chapter 14 (Sparse
Matrix Computation), and Chapter 15 (Graph Traversal). In ECE408 the lectures,
programming assignments, and final project are paced with each other and are
organized into two phases.

In the first phase, which consists of Parts I and II of this book, students learn
about fundamentals and basic patterns, and they practice the skills that they learn
via guided programming assignments. This phase consists of 12 chapters and typi-
cally takes around seven weeks. Each week, students work on a programming
assignment corresponding to that week’s lectures. For example, in the first week,
a lecture based on Chapter 2 is dedicated to teaching the basic CUDA memory/
threading model, the CUDA extensions to the C language, and the basic program-
ming tools. After that lecture, students can write a simple vector addition code in
a couple of hours.

The following 2 weeks include a series of four lectures based on Chapters 3
through 6 that give students the conceptual understanding of the CUDA memory
model, the CUDA thread execution model, GPU hardware performance features,
and modern computer system architecture. During these two weeks, students
work on different implementations of matrix-matrix multiplication in which they
see how the performance of their implementations increases dramatically through-
out this period. In the remaining four weeks, the lectures cover common data-
parallel programming patterns that are needed to develop a high-performance
parallel application based on Chapters 7 through 12. Throughout these weeks,
students complete assignments on convolution, histogram, reduction, and prefix
sum. By the end of the first phase, students should be quite comfortable with
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parallel programming and should be ready to implement more advanced code
with less handholding.

In the second phase, which consists of Parts III and IV, students learn about
advanced patterns and applications while they work on a final project that
involves accelerating an advanced pattern or application. They also learn about
advanced practices that they may find useful when finalizing their projects.
Although we do not usually assign weekly programming assignments during this
phase, the project typically has a weekly milestone to help the students pace
themselves. Depending on the duration and format of the course, instructors may
not be able to cover all the chapters in this phase and may need to skip some.
Instructors might also choose to replace some lectures with guest lectures, paper
discussion sessions, or lectures that support the final project. For this reason,
Fig. P.1 uses arrows to indicate the dependences between chapters to assist
instructors in selecting what chapters they can skip or reorder to customize the
course for their particular context.

Tying it all together: the final project
While the lectures, labs, and chapters of this book help to lay the intellectual
foundation for the students, what brings the learning experience together is the
final project. The final project is so important to the full-semester course that it is
prominently positioned in the course and commands nearly two months’ worth of
focus. It incorporates five innovative aspects: mentoring, workshop, clinic, final
report, and symposium. While much of the information about the final project is
available in the Illinois-NVIDIA GPU Teaching Kit, we would like to offer the
reasoning behind the design of these aspects.

Students are encouraged to base their final projects on problems that represent
current challenges in the research community. To seed the process, the instructors
should recruit several computational science research groups to propose problems
and serve as mentors. The mentors are asked to contribute a one- to two-page
project specification sheet that briefly describes the significance of the applica-
tion, what the mentor would like to accomplish with the student teams on the
application, the technical skills (particular types of math, physics, and chemistry
courses) that are required to understand and work on the application, and a list of
web and traditional resources on which students can draw for technical back-
ground, general information, and building blocks, along with specific URLs or
FTP paths to particular implementations and coding examples. These project
specification sheets also provide students with learning experiences in defining
their own research projects later in their careers. Several examples are available
in the Illinois-NVIDIA GPU Teaching Kit.
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The design document
Once the students have decided on a project and formed a team, they are required
to submit a design document for the project. This helps them to think through the
project steps before they jump into it. The ability to do such planning will be
important to their later career success. The design document should discuss the
background and motivation for the project, the application-level objectives and
potential impact, the main features of the end application, an overview of their
design, an implementation plan, their performance goals, a verification plan and
acceptance test, and a project schedule.

The project report and symposium
Students are required to submit a project report on their team’s key findings. We
also recommend a whole-day class symposium. During the symposium, students
use presentation slots proportional to the size of the teams. During the presenta-
tion the students highlight the best parts of their project report for the benefit of
the whole class. The presentation accounts for a significant part of the students’
grades. Each student must answer questions that are directed to the student indi-
vidually, so different grades can be assigned to individuals in the same team. The
symposium is an opportunity for students to learn to produce a concise presenta-
tion that motivates their peers to read a full paper.

Class competition
In 2016 the enrollment level of ECE408 far exceeded the level that could be
accommodated by the final project process. As a result, we moved from the final
project to a class competition. At the midpoint of the semester we announce a
competition challenge problem. We use one lecture to explain the competition
challenge problem and the rules that will be used for ranking the teams. All stu-
dent submissions are auto-graded and ranked. The final ranking of each team is
determined by the execution time, correctness, and clarity of their parallel code.
The students do a demo of their solution at the end of the semester and submit a
final report. This compromise preserves some of the benefits of final projects
when the class size makes final projects infeasible.

Course resources
The Illinois-NVIDIA GPU Teaching Kit is a publicly available resource that con-
tains lecture slides and recordings, lab assignments, final project guidelines, and
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sample project specifications for instructors who use this book for their classes. In
addition, we are in the process of making the courses of the Illinois
undergraduate-level and graduate-level offerings based on this book publicly
available. While this book provides the intellectual contents for these classes, the
additional material will be crucial in achieving the overall education goals.

Finally, we encourage you to submit your feedback. We would like to hear
from you if you have any ideas for improving this book. We would like to know
how we can improve the supplementary online material. Of course, we also like
to know what you liked about the book. We look forward to hearing from you.

Wen-mei W. Hwu
David B. Kirk
Izzat El Hajj
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Ever since the beginning of computing, many high-valued applications have
demanded more execution speed and resources than the computing devices can
offer. Early applications rely on the advancement of processor speed, memory
speed, and memory capacity to enhance application-level capabilities such as the
timeliness of weather forecasts, the accuracy of engineering structural analyses,
the realism of computer-generated graphics, the number of airline reservations
processed per second, and the number of fund transfers processed per second.
More recently, new applications such as deep learning have demanded even more
execution speed and resources than the best computing devices can offer. These
application demands have fueled fast advancement in computing device capabili-
ties in the past five decades and will continue to do so in the foreseeable future.

Microprocessors based on a single central processing unit (CPU) that appear
to execute instructions in sequential steps, such as those in the3 86 processors
from Intel and AMD, armed with fast increasing clock frequency and hardware
resources, drove rapid performance increases and cost reductions in computer
applications in the 1980s and 1990s. During the two decades of growth, these
single-CPU microprocessors brought GFLOPS, or giga (109) floating-point
operations per second, to the desktop and TFLOPS, or tera (1012) floating-point
operations per second, to data centers. This relentless drive for performance
improvement has allowed application software to provide more functionality,
have better user interfaces, and generate more useful results. The users, in turn,
demand even more improvements once they become accustomed to these
improvements, creating a positive (virtuous) cycle for the computer industry.

Programming Massively Parallel Processors. DOI: https://doi.org/10.1016/B978-0-323-91231-0.00006-9

© 2023 Elsevier Inc. All rights reserved.
1



However, this drive has slowed down since 2003, owing to energy consumption
and heat dissipation issues. These issues limit the increase of the clock frequency
and the productive activities that can be performed in each clock period within a
single CPU while maintaining the appearance of executing instructions in sequen-
tial steps. Since then, virtually all microprocessor vendors have switched to a model
in which multiple physical CPUs, referred to as processor cores, are used in each
chip to increase the processing power. A traditional CPU can be viewed as a
single-core CPU in this model. To benefit from the multiple processor cores, users
must have multiple instruction sequences, whether from the same application or dif-
ferent applications, that can simultaneously execute on these processor cores. For a
particular application to benefit from multiple processor cores, its work must be
divided into multiple instruction sequences that can simultaneously execute on
these processor cores. This switch from a single CPU executing instructions in
sequential steps to multiple cores executing multiple instruction sequences in paral-
lel has exerted a tremendous impact on the software developer community.

Traditionally, the vast majority of software applications are written as sequen-
tial programs that are executed by processors whose design was envisioned by
von Neumann in his seminal report in 1945 (von Neumann et al., 1972). The exe-
cution of these programs can be understood by a human as sequentially stepping
through the code based on the concept of a program counter, also known as an
instruction pointer in the literature. The program counter contains the memory
address of the next instruction that will be executed by the processor. The
sequence of instruction execution activities resulting from this sequential, step-
wise execution of an application is referred to as a thread of execution, or simply
thread, in the literature. The concept of threads is so important that it will be
more formally defined and used extensively in the rest of this book.

Historically, most software developers relied on the advances in hardware,
such as increased clock speed and executing multiple instructions under the hood,
to increase the speed of their sequential applications; the same software simply
runs faster as each new processor generation is introduced. Computer users also
grew to expect that these programs run faster with each new generation of micro-
processors. This expectation has not been valid for over a decade. A sequential
program will run on only one of the processor cores, which will not become sig-
nificantly faster from generation to generation. Without performance improve-
ment, application developers will no longer be able to introduce new features and
capabilities into their software as new microprocessors are introduced; this
reduces the growth opportunities of the entire computer industry.

Rather, the application software that will continue to enjoy significant perfor-
mance improvement with each new generation of microprocessors will be parallel
programs, in which multiple threads of execution cooperate to complete the work
faster. This new, dramatically escalated advantage of parallel programs over
sequential programs has been referred to as the concurrency revolution (Sutter
and Larus, 2005). The practice of parallel programming is by no means new. The
high-performance computing (HPC) community has been developing parallel
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programs for decades. These parallel programs typically ran on expensive large-
scale computers. Only a few elite applications could justify the use of these com-
puters, thus limiting the practice of parallel programming to a small number of
application developers. Now that all new microprocessors are parallel computers,
the number of applications that need to be developed as parallel programs has
increased dramatically. There is now a great need for software developers to learn
about parallel programming, which is the focus of this book.

1.1 Heterogeneous parallel computing
Since 2003 the semiconductor industry has settled on two main trajectories for
designing microprocessors (Hwu et al., 2008). The multicore trajectory seeks to
maintain the execution speed of sequential programs while moving into multiple
cores. The multicores began with two-core processors, and the number of cores
has increased with each semiconductor process generation. A recent example is a
recent Intel multicore server microprocessor with up to 24 processor cores, each
of which is an out-of-order, multiple instruction issue processor implementing the
full 3 86 instruction set, supporting hyperthreading with two hardware threads,
designed to maximize the execution speed of sequential programs. Another exam-
ple is a recent ARM Ampere multicore server processor with 128 processor cores.

In contrast, the many-thread trajectory focuses more on the execution through-
put of parallel applications. The many-thread trajectory began with a large num-
ber of threads, and once again, the number of threads increases with each
generation. A recent exemplar is the NVIDIA Tesla A100 graphics processing
unit (GPU) with tens of thousands of threads, executing in a large number of sim-
ple, in-order pipelines. Many-thread processors, especially GPUs, have led the
race of floating-point performance since 2003. As of 2021, the peak floating-
point throughput of the A100 GPU is 9.7 TFLOPS for 64-bit double-precision,
156 TFLOPS for 32-bit single-precision, and 312 TFLOPS for 16-bit half-preci-
sion. In comparison, the peak floating-point throughput of the recent Intel 24-core
processor is 0.33 TLOPS for double-precision and 0.66 TFLOPS for single-
precision. The ratio of peak floating-point calculation throughput between many-
thread GPUs and multicore CPUs has been increasing for the past several years.
These are not necessarily application speeds; they are merely the raw speeds that
the execution resources can potentially support in these chips.

Such a large gap in peak performance between multicores and many-threads
has amounted to a significant “electrical potential” buildup, and at some point,
something will have to give. We have reached that point. To date, this large peak
performance gap has already motivated many applications developers to move the
computationally intensive parts of their software to GPUs for execution. Perhaps
even more important, the drastically elevated performance of parallel execution
has enabled revolutionary new applications such as deep learning that are
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intrinsically composed of computationally intensive parts. Not surprisingly, these
computationally intensive parts are also the prime target of parallel programming:
When there is more work to do, there is more opportunity to divide the work
among cooperating parallel workers, that is, threads.

One might ask why there is such a large peak performance gap between
many-threaded GPUs and multicore CPUs. The answer lies in the differences in
the fundamental design philosophies between the two types of processors, as illus-
trated in Fig. 1.1. The design of a CPU, as shown in Fig. 1.1A, is optimized for
sequential code performance. The arithmetic units and operand data delivery logic
are designed to minimize the effective latency of arithmetic operations at the cost
of increased use of chip area and power per unit. Large last-level on-chip caches
are designed to capture frequently accessed data and convert some of the long-
latency memory accesses into short-latency cache accesses. Sophisticated branch
prediction logic and execution control logic are used to mitigate the latency of
conditional branch instructions. By reducing the latency of operations, the CPU
hardware reduces the execution latency of each individual thread. However,
the low-latency arithmetic units, sophisticated operand delivery logic, large cache
memory, and control logic consume chip area and power that could otherwise be
used to provide more arithmetic execution units and memory access channels.
This design approach is commonly referred to as latency-oriented design.

The design philosophy of the GPUs, on the other hand, has been shaped by
the fast-growing video game industry, which exerts tremendous economic pres-
sure for the ability to perform a massive number of floating-point calculations
and memory accesses per video frame in advanced games. This demand motivates
GPU vendors to look for ways to maximize the chip area and power budget dedi-
cated to floating-point calculations and memory access throughput.

FIGURE 1.1

CPUs and GPUs have fundamentally different design philosophies: (A) CPU design is
latency oriented; (B) GPU design is throughput-oriented.
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The need for performing a massive number of floating-point calculations per
second in graphics applications for tasks such as viewpoint transformations and
object rendering is quite intuitive. Additionally, the need for performing a mas-
sive number of memory accesses per second is just as important and perhaps even
more important. The speed of many graphics applications is limited by the rate at
which data can be delivered from the memory system into the processors and
vice versa. A GPU must be capable of moving extremely large amounts of data
into and out of graphics frame buffers in its DRAM (dynamic random-access
memory) because such movement is what makes video displays rich and satisfy-
ing to gamers. The relaxed memory model (the way in which various system soft-
ware, applications, and I/O devices expect their memory accesses to work) that is
commonly accepted by game applications also makes it easier for the GPUs to
support massive parallelism in accessing memory.

In contrast, general-purpose processors must satisfy requirements from legacy
operating systems, applications, and I/O devices that present more challenges to
supporting parallel memory accesses and thus make it more difficult to increase
the throughput of memory accesses, commonly referred to as memory bandwidth.
As a result, graphics chips have been operating at approximately 10 times the
memory bandwidth of contemporaneously available CPU chips, and we expect
that GPUs will continue to be at an advantage in terms of memory bandwidth for
some time.

An important observation is that reducing latency is much more expensive
than increasing throughput in terms of power and chip area. For example, one
can double the arithmetic throughput by doubling the number of arithmetic units
at the cost of doubling the chip area and power consumption. However, reduc-
ing the arithmetic latency by half may require doubling the current at the cost
of more than doubling the chip area used and quadrupling the power consump-
tion. Therefore the prevailing solution in GPUs is to optimize for the execution
throughput of massive numbers of threads rather than reducing the latency of
individual threads. This design approach saves chip area and power by allowing
pipelined memory channels and arithmetic operations to have long latency. The
reduction in area and power of the memory access hardware and arithmetic units
allows the GPU designers to have more of them on a chip and thus increase the
total execution throughput. Fig. 1.1 visually illustrates the difference in the
design approaches by showing a smaller number of larger arithmetic units and a
smaller number of memory channels in the CPU design in Fig. 1.1A, in contrast
to the larger number of smaller arithmetic units and a larger number of memory
channels in Fig. 1.1B.

The application software for these GPUs is expected to be written with a large
number of parallel threads. The hardware takes advantage of the large number of
threads to find work to do when some of them are waiting for long-latency mem-
ory accesses or arithmetic operations. Small cache memories in Fig. 1.1B are pro-
vided to help control the bandwidth requirements of these applications so that
multiple threads that access the same memory data do not all need to go to the
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DRAM. This design style is commonly referred to as throughput-oriented design,
as it strives to maximize the total execution throughput of a large number of
threads while allowing individual threads to take a potentially much longer time
to execute.

It should be clear that GPUs are designed as parallel, throughput-oriented comput-
ing engines, and they will not perform well on some tasks on which CPUs are
designed to perform well. For programs that have one or very few threads, CPUs
with lower operation latencies can achieve much higher performance than GPUs.
When a program has a large number of threads, GPUs with higher execution
throughput can achieve much higher performance than CPUs. Therefore one should
expect that many applications use both CPUs and GPUs, executing the sequential
parts on the CPU and the numerically intensive parts on the GPUs. This is why the
Compute Unified Device Architecture (CUDA) programming model, introduced by
NVIDIA in 2007, is designed to support joint CPU-GPU execution of an application.

It is also important to note that speed is not the only decision factor when appli-
cation developers choose the processors for running their applications. Several other
factors can be even more important. First and foremost, the processors of choice
must have a very large presence in the marketplace, referred to as the installed
base of the processor. The reason is very simple. The cost of software development
is best justified by a very large customer population. Applications that run on a pro-
cessor with a small market presence will not have a large customer base. This has
been a major problem with traditional parallel computing systems that have negligi-
ble market presence compared to general-purpose microprocessors. Only a few elite
applications that are funded by the government and large corporations have been
successfully developed on these traditional parallel computing systems. This has
changed with many-thread GPUs. Because of their popularity in the PC market,
GPUs have been sold by the hundreds of millions. Virtually all desktop PCs and
high-end laptops have GPUs in them. There are more than 1 billion CUDA-enabled
GPUs in use to date. Such a large market presence has made these GPUs economi-
cally attractive targets for application developers.

Another important decision factor is practical form factors and easy accessibil-
ity. Until 2006, parallel software applications ran on data center servers or
departmental clusters. But such execution environments tend to limit the use of
these applications. For example, in an application such as medical imaging, it is
fine to publish a paper based on a 64-node cluster machine. But actual clinical
applications on Magnetic Resonance Imaging (MRI) machines have been based
on some combination of a PC and special hardware accelerators. The simple rea-
son is that manufacturers such as GE and Siemens cannot sell MRIs that require
racks of computer server boxes in clinical settings, while this is common in aca-
demic departmental settings. In fact, the National Institutes of Health (NIH)
refused to fund parallel programming projects for some time; they believed that
the impact of parallel software would be limited because huge cluster-based
machines would not work in the clinical setting. Today, many companies ship
MRI products with GPUs, and the NIH funds research using GPU computing.
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Until 2006, graphics chips were very difficult to use because programmers
had to use the equivalent of graphics API (application programming interface)
functions to access the processing units, meaning that OpenGL or Direct3D tech-
niques were needed to program these chips. Stated more simply, a computation
must be expressed as a function that paints a pixel in some way in order to exe-
cute on these early GPUs. This technique was called GPGPU, for general purpose
programming using a GPU. Even with a higher-level programming environment,
the underlying code still needs to fit into the APIs that are designed to paint pix-
els. These APIs limit the kinds of applications that one can actually write for
early GPUs. Consequently, GPGPU did not become a widespread programming
phenomenon. Nonetheless, this technology was sufficiently exciting to inspire
some heroic efforts and excellent research results.

Everything changed in 2007 with the release of CUDA (NVIDIA, 2007).
CUDA did not represent software changes alone; additional hardware was added
to the chip. NVIDIA actually devoted silicon area to facilitate the ease of parallel
programming. In the G80 and its successor chips for parallel computing, GPGPU
programs no longer go through the graphics interface at all. Instead, a new
general-purpose parallel programming interface on the silicon chip serves the
requests of CUDA programs. The general-purpose programming interface greatly
expands the types of applications that one can easily develop for GPUs. All the
other software layers were redone as well so that the programmers can use the
familiar C/C++ programming tools.

While GPUs are an important class of computing devices in heterogeneous
parallel computing, there are other important types of computing devices that are
used as accelerators in heterogeneous computing systems. For example, field-
programmable gate arrays have been widely used to accelerate networking appli-
cations. The techniques covered in this book using GPUs as the learning vehicle
also apply to the programming tasks for these accelerators.

1.2 Why more speed or parallelism?
As we stated in Section 1.1, the main motivation for massively parallel program-
ming is for applications to enjoy continued speed increases in future hardware
generations. As we will discuss in the chapters on parallel patterns, advanced pat-
terns, and applications (Parts II and III, Chapters 7 through 19), when an applica-
tion is suitable for parallel execution, a good implementation on a GPU can
achieve a speed up of more than 100 times over sequential execution on a single
CPU core. If the application includes what we call “data parallelism,” it is often
possible to achieve a 103 speedup with just a few hours of work.

One might ask why applications will continue to demand increased speed.
Many applications that we have today seem to be running quite fast enough.
Despite the myriad of computing applications in today’s world, many exciting mass

71.2 Why more speed or parallelism?



market applications of the future are what we previously considered supercomput-
ing applications, or superapplications. For example, the biology research commu-
nity is moving more and more into the molecular level. Microscopes, arguably the
most important instrument in molecular biology, used to rely on optics or electronic
instrumentation. However, there are limitations to the molecular-level observations
that we can make with these instruments. These limitations can be effectively
addressed by incorporating a computational model to simulate the underlying
molecular activities with boundary conditions set by traditional instrumentation.
With simulation we can measure even more details and test more hypotheses than
can ever be imagined with traditional instrumentation alone. These simulations will
continue to benefit from increasing computing speeds in the foreseeable future in
terms of the size of the biological system that can be modeled and the length of
reaction time that can be simulated within a tolerable response time. These
enhancements will have tremendous implications for science and medicine.

For applications such as video and audio coding and manipulation, consider
our satisfaction with digital high-definition (HD) TV in comparison to older
NTSC TV. Once we experience the level of details in the picture on an HDTV, it
is very hard to go back to older technology. But consider all the processing that is
needed for that HDTV. It is a highly parallel process, as are three-dimensional
(3D) imaging and visualization. In the future, new functionalities such as view
synthesis and high-resolution display of low-resolution videos will demand more
computing power in the TV. At the consumer level, we will begin to see an
increasing number of video and image-processing applications that improve the
focus, lighting, and other key aspects of the pictures and videos.

Among the benefits that are offered by more computing speed are much better
user interfaces. Smartphone users now enjoy a much more natural interface with
high-resolution touch screens that rival a large-screen TV. Undoubtedly, future
versions of these devices will incorporate sensors and displays with 3D perspec-
tives, applications that combine virtual and physical space information for
enhanced usability, and voice and computer vision!based interfaces, requiring
even more computing speed.

Similar developments are underway in consumer electronic gaming. In the past,
driving a car in a game was simply a prearranged set of scenes. If your car bumped
into an obstacle, the course of your vehicle did not change; only the game score
changed. Your wheels were not bent or damaged, and it was no more difficult to
drive, even if you lost a wheel. With increased computing speed, the games can be
based on dynamic simulation rather than prearranged scenes. We can expect to
experience more of these realistic effects in the future. Accidents will damage your
wheels, and your online driving experience will be much more realistic. The ability
to accurately model physical phenomena has already inspired the concept of digital
twins, in which physical objects have accurate models in the simulated space so
that stress testing and deterioration prediction can be thoroughly conducted at much
lower cost. Realistic modeling and simulation of physics effects are known to
demand very large amounts of computing power.
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An important example of new applications that have been enabled by drasti-
cally increased computing throughput is deep learning based on artificial neural
networks. While neural networks have been actively researched since the 1970s,
they have been ineffective in practical applications because it takes too much
labeled data and too much computation to train these networks. The rise of the
Internet offered a tremendous number of labeled pictures, and the rise of GPUs
offered a surge of computing throughput. As a result, there has been a fast adop-
tion of neural network!based applications in computer vision and natural lan-
guage processing since 2012. This adoption has revolutionized computer vision
and natural language processing applications and triggered fast development of
self-driving cars and home assistant devices.

All the new applications that we mentioned involve simulating and/or repre-
senting a physical and concurrent world in different ways and at different levels,
with tremendous amounts of data being processed. With this huge quantity of
data, much of the computation can be done on different parts of the data in paral-
lel, although they will have to be reconciled at some point. In most cases, effec-
tive management of data delivery can have a major impact on the achievable
speed of a parallel application. While techniques for doing so are often well
known to a few experts who work with such applications on a daily basis, the
vast majority of application developers can benefit from a more intuitive under-
standing and practical working knowledge of these techniques.

We aim to present the data management techniques in an intuitive way to
application developers whose formal education may not be in computer sci-
ence or computer engineering. We also aim to provide many practical code
examples and hands-on exercises that help the reader to acquire working
knowledge, which requires a practical programming model that facilitates
parallel implementation and supports proper management of data delivery.
CUDA offers such a programming model and has been well tested by a large
developer community.

1.3 Speeding up real applications
How much speedup can we expect from parallelizing an application? The defini-
tion of speedup for an application by computing system A over computing system
B is the ratio of the time used to execute the application in system B over the
time used to execute the same application in system A. For example, if an appli-
cation takes 10 seconds to execute in system A but takes 200 seconds to execute
in System B, the speedup for the execution by system A over system B would be
200/10=20, which is referred to as a 203 (20 times) speedup.

The speedup that is achievable by a parallel computing system over a serial com-
puting system depends on the portion of the application that can be parallelized. For
example, if the percentage of time spent in the part that can be parallelized is 30%,
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a 1003 speedup of the parallel portion will reduce the total execution time of the
application by no more than 29.7%. That is, the speedup for the entire application
will be only about 1/(12 0.297)=1.423 . In fact, even infinite amount of speedup in
the parallel portion can only slash 30% off the execution time, achieving no more
than 1.433 speedup. The fact that the level of speedup that one can achieve through
parallel execution can be severely limited by the parallelizable portion of the appli-
cation is referred to as Amdahl’s Law (Amdahl, 2013). On the other hand, if 99% of
the execution time is in the parallel portion, a 1003 speedup of the parallel portion
will reduce the application execution to 1.99% of the original time. This gives the
entire application a 503 speedup. Therefore it is very important that an application
has the vast majority of its execution in the parallel portion for a massively parallel
processor to effectively speed up its execution.

Researchers have achieved speedups of more than 1003 for some applica-
tions. However, this is typically achieved only after extensive optimization and
tuning after the algorithms have been enhanced so that more than 99.9% of the
application work is in the parallel portion.

Another important factor for the achievable level of speedup for applications
is how fast data can be accessed from and written to the memory. In practice,
straightforward parallelization of applications often saturates the memory
(DRAM) bandwidth, resulting in only about a 103 speedup. The trick is to
figure out how to get around memory bandwidth limitations, which involves
doing one of many transformations to utilize specialized GPU on-chip memories
to drastically reduce the number of accesses to the DRAM. However, one must
further optimize the code to get around limitations such as limited on-chip mem-
ory capacity. An important goal of this book is to help the reader to fully under-
stand these optimizations and become skilled in using them.

Keep in mind that the level of speedup that is achieved over single-core CPU
execution can also reflect the suitability of the CPU to the application. In some
applications, CPUs perform very well, making it harder to speed up performance
using a GPU. Most applications have portions that can be much better executed
by the CPU. One must give the CPU a fair chance to perform and make sure that
the code is written so that GPUs complement CPU execution, thus properly
exploiting the heterogeneous parallel computing capabilities of the combined
CPU/GPU system. As of today, mass market computing systems that combine
multicore CPUs and many-core GPUs have brought terascale computing to lap-
tops and exascale computing to clusters.

Fig. 1.2 illustrates the main parts of a typical application. Much of a real
application’s code tends to be sequential. These sequential parts are illus-
trated as the “pit” area of the peach; trying to apply parallel computing tech-
niques to these portions is like biting into the peach pit—not a good feeling!
These portions are very hard to parallelize. CPUs tend to do a very good job
on these portions. The good news is that although these portions can take up a
large portion of the code, they tend to account for only a small portion of the
execution time of superapplications.
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Then come what we call the “peach flesh” portions. These portions are easy to
parallelize, as are some early graphics applications. Parallel programming in hetero-
geneous computing systems can drastically improve the speed of these applications.
As illustrated in Fig. 1.2, early GPGPU programming interfaces cover only a small
portion of the peach flesh section, which is analogous to a small portion of the
most exciting applications. As we will see, the CUDA programming interface is
designed to cover a much larger section of the peach flesh of exciting applications.
Parallel programming models and their underlying hardware are still evolving at a
fast pace to enable efficient parallelization of even larger sections of applications.

1.4 Challenges in parallel programming
What makes parallel programming hard? Someone once said that if you do not
care about performance, parallel programming is very easy. You can literally
write a parallel program in an hour. But then why bother to write a parallel pro-
gram if you do not care about performance?

This book addresses several challenges in achieving high performance in par-
allel programming. First and foremost, it can be challenging to design parallel
algorithms with the same level of algorithmic (computational) complexity as that
of sequential algorithms. Many parallel algorithms perform the same amount of
work as their sequential counterparts. However, some parallel algorithms do more
work than their sequential counterparts. In fact, sometimes they may do so much
more work that they ended up running slower for large input datasets. This is

FIGURE 1.2

Coverage of sequential and parallel application portions. The sequential portions and the
traditional (single-core) CPU coverage portions overlap with each other. The previous
GPGPU technique offers very limited coverage of the data parallel portions, since it is
limited to computations that can be formulated into painting pixels. The obstacles refer to
the power constraints that make it hard to extend single-core CPUs to cover more of the
data parallel portions.
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especially a problem because fast processing of large input datasets is an impor-
tant motivation for parallel programming.

For example, many real-world problems are most naturally described with
mathematical recurrences. Parallelizing these problems often requires nonintuitive
ways of thinking about the problem and may require redundant work during exe-
cution. There are important algorithm primitives, such as prefix sum, that can
facilitate the conversion of sequential, recursive formulation of the problems into
more parallel forms. We will more formally introduce the concept of work effi-
ciency and will illustrate the methods and tradeoffs that are involved in designing
parallel algorithms that achieve the same level of computational complexity as
their sequential counterparts, using important parallel patterns such as prefix sum
in Chapter 11, Prefix Sum (Scan).

Second, the execution speed of many applications is limited by memory
access latency and/or throughput. We refer to these applications as memory
bound; by contrast, compute bound applications are limited by the number of
instructions performed per byte of data. Achieving high-performance parallel exe-
cution in memory-bound applications often requires methods for improving mem-
ory access speed. We will introduce optimization techniques for memory accesses
in Chapter 5, Memory Architecture and Data Locality and Chapter 6,
Performance Considerations, and will apply these techniques in several chapters
on parallel patterns and applications.

Third, the execution speed of parallel programs is often more sensitive to the
input data characteristics than is the case for their sequential counterparts. Many
real-world applications need to deal with inputs with widely varying characteristics,
such as erratic or unpredictable data sizes and uneven data distributions. These var-
iations in sizes and distributions can cause uneven amount of work to be assigned
to the parallel threads and can significantly reduce the effectiveness of parallel exe-
cution. The performance of parallel programs can sometimes vary dramatically
with these characteristics. We will introduce techniques for regularizing data distri-
butions and/or dynamically refining the number of threads to address these chal-
lenges in the chapters that introduce parallel patterns and applications.

Fourth, some applications can be parallelized while requiring little collabora-
tion across different threads. These applications are often referred to as embar-
rassingly parallel. Other applications require threads to collaborate with each
other, which requires using synchronization operations such as barriers or atomic
operations. These synchronization operations impose overhead on the application
because threads will often find themselves waiting for other threads instead of
performing useful work. We will discuss various strategies for reducing this syn-
chronization overhead throughout this book.

Fortunately, most of these challenges have been addressed by researchers. There
are also common patterns across application domains that allow us to apply solu-
tions that were derived in one domain to challenges in other domains. This is the
primary reason why we will be presenting key techniques for addressing these chal-
lenges in the context of important parallel computation patterns and applications.
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1.5 Related parallel programming interfaces
Many parallel programming languages and models have been proposed in the
past several decades (Mattson et al., 2004). The ones that are the most widely
used are OpenMP (Open, 2005) for shared memory multiprocessor systems and
Message Passing Interface (MPI) (MPI, 2009) for scalable cluster computing.
Both have become standardized programming interfaces supported by major com-
puter vendors.

An OpenMP implementation consists of a compiler and a runtime. A program-
mer specifies directives (commands) and pragmas (hints) about a loop to the
OpenMP compiler. With these directives and pragmas, OpenMP compilers gener-
ate parallel code. The runtime system supports the execution of the parallel code
by managing parallel threads and resources. OpenMP was originally designed for
CPU execution and has been extended to support GPU execution. The major
advantage of OpenMP is that it provides compiler automation and runtime sup-
port for abstracting away many parallel programming details from programmers.
Such automation and abstraction can help to make the application code more
portable across systems produced by different vendors as well as different genera-
tions of systems from the same vendor. We refer to this property as performance
portability. However, effective programming in OpenMP still requires the pro-
grammer to understand all the detailed parallel programming concepts that are
involved. Because CUDA gives programmers explicit control of these parallel
programming details, it is an excellent learning vehicle even for someone who
would like to use OpenMP as their primary programming interface. Furthermore,
from our experience, OpenMP compilers are still evolving and improving. Many
programmers will likely need to use CUDA-style interfaces for parts in which
OpenMP compilers fall short.

On the other hand, MPI is a programming interface in which computing nodes
in a cluster do not share memory (MPI, 2009). All data sharing and interaction
must be done through explicit message passing. MPI has been widely used in
HPC. Applications written in MPI have run successfully on cluster computing sys-
tems with more than 100,000 nodes. Today, many HPC clusters employ heteroge-
neous CPU/GPU nodes. The amount of effort that is needed to port an application
into MPI can be quite high, owing to the lack of shared memory across computing
nodes. The programmer needs to perform domain decomposition to partition the
input and output data across individual nodes. On the basis of the domain decom-
position, the programmer also needs to call message sending and receiving func-
tions to manage the data exchange between nodes. CUDA, by contrast, provides
shared memory for parallel execution in the GPU to address this difficulty. While
CUDA is an effective interface with each node, most application developers need
to use MPI to program at the cluster level. Furthermore, there has been increasing
support for multi-GPU programming in CUDA via APIs such as the NVIDIA
Collective Communications Library (NCCL). It is therefore important that a
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parallel programmer in HPC understands how to do joint MPI/CUDA program-
ming in modern computing clusters employing multi-GPU nodes, a topic that is
presented in Chapter 20, Programming a Heterogeneous Computing Cluster.

In 2009, several major industry players, including Apple, Intel, AMD/ATI,
and NVIDIA, jointly developed a standardized programming model called Open
Compute Language (OpenCL) (The Khronos Group, 2009). Similar to CUDA, the
OpenCL programming model defines language extensions and runtime APIs to
allow programmers to manage parallelism and data delivery in massively parallel
processors. In comparison to CUDA, OpenCL relies more on APIs and less on
language extensions. This allows vendors to quickly adapt their existing compilers
and tools to handle OpenCL programs. OpenCL is a standardized programming
model in that applications that are developed in OpenCL can run correctly with-
out modification on all processors that support the OpenCL language extensions
and API. However, one will likely need to modify the applications to achieve
high performance for a new processor.

Those who are familiar with both OpenCL and CUDA know that there is a
remarkable similarity between the key concepts and features of OpenCL and
those of CUDA. That is, a CUDA programmer can learn OpenCL programming
with minimal effort. More important, virtually all techniques that are learned in
using CUDA can be easily applied to OpenCL programming.

1.6 Overarching goals
Our primary goal is to teach you, the reader, how to program massively parallel
processors to achieve high performance. Therefore much of the book is dedi-
cated to the techniques for developing high-performance parallel code. Our
approach will not require a great deal of hardware expertise. Nevertheless, you
will need to have a good conceptual understanding of the parallel hardware
architectures to be able to reason about the performance behavior of your code.
Therefore we are going to dedicate some pages to the intuitive understanding of
essential hardware architecture features and many pages to techniques for devel-
oping high-performance parallel programs. In particular, we will focus on
computational thinking (Wing, 2006) techniques that will enable you to think
about problems in ways that are amenable to high-performance execution on
massively parallel processors.

High-performance parallel programming on most processors requires some
knowledge of how the hardware works. It will probably take many years to build
tools and machines that will enable programmers to develop high-performance
code without this knowledge. Even if we have such tools, we suspect that pro-
grammers who have knowledge of the hardware will be able to use the tools
much more effectively than those who do not. For this reason we dedicate
Chapter 4, Compute Architecture and Scheduling, to introduce the fundamentals
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of the GPU architecture. We also discuss more specialized architecture concepts
as part of our discussions of high-performance parallel programming techniques.

Our second goal is to teach parallel programming for correct functionality and
reliability, which constitutes a subtle issue in parallel computing. Programmers
who have worked on parallel systems in the past know that achieving initial per-
formance is not enough. The challenge is to achieve it in such a way that you can
debug the code and support users. The CUDA programming model encourages
the use of simple forms of barrier synchronization, memory consistency, and
atomicity for managing parallelism. In addition, it provides an array of powerful
tools that allow one to debug not only the functional aspects, but also the perfor-
mance bottlenecks. We will show that by focusing on data parallelism, one can
achieve both high performance and high reliability in one’s applications.

Our third goal is scalability across future hardware generations by exploring
approaches to parallel programming such that future machines, which will be
more and more parallel, can run your code faster than today’s machines. We want
to help you to master parallel programming so that your programs can scale up to
the level of performance of new generations of machines. The key to such scal-
ability is to regularize and localize memory data accesses to minimize consump-
tion of critical resources and conflicts in updating data structures. Therefore the
techniques for developing high-performance parallel code are also important for
ensuring future scalability of applications.

Much technical knowledge will be required to achieve these goals, so we will
cover quite a few principles and patterns (Mattson et al., 2004) of parallel pro-
gramming in this book. We will not be teaching these principles and patterns on
their own. We will teach them in the context of parallelizing useful applications.
We cannot cover all of them, however, so we have selected the most useful and
well-proven techniques to cover in detail. In fact, the current edition has a signifi-
cantly expanded number of chapters on parallel patterns. We are now ready to
give you a quick overview of the rest of the book.

1.7 Organization of the book
This book is organized into four parts. Part I covers fundamental concepts in par-
allel programming, data parallelism, GPUs, and performance optimization. These
foundational chapters equip the reader with the basic knowledge and skills that
are necessary for becoming a GPU programmer. Part II covers primitive parallel
patterns, and Part III covers more advanced parallel patterns and applications.
These two parts apply the knowledge and skills that were learned in the first part
and introduce other GPU architecture features and optimization techniques as the
need for them arises. The final part, Part IV, introduces advanced practices to
complete the knowledge of readers who would like to become expert GPU
programmers.
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Part I on fundamental concepts consists of Chapters 2!6. Chapter 2,
Heterogeneous Data Parallel Computing, introduces data parallelism and
CUDA C programming. The chapter relies on the fact that the reader has had
previous experience with C programming. It first introduces CUDA C as a
simple, small extension to C that supports heterogeneous CPU/GPU computing
and the widely used single-program, multiple-data parallel programming
model. It then covers the thought processes that are involved in (1) identifying
the part of application programs to be parallelized, (2) isolating the data to be
used by the parallelized code, using an API function to allocate memory on
the parallel computing device, (3) using an API function to transfer data to the
parallel computing device, (4) developing the parallel part into a kernel func-
tion that will be executed by parallel threads, (5) launching a kernel function
for execution by parallel threads, and (6) eventually transferring the data back
to the host processor with an API function call. We use a running example of
vector addition to illustrate these concepts. While the objective of Chapter is
to teach enough concepts of the CUDA C programming model so that the
reader can write a simple parallel CUDA C program, it covers several basic
skills that are needed to develop a parallel application based on any parallel
programming interface.

Chapter 3, Multidimensional Grids and Data, presents more details of the paral-
lel execution model of CUDA, particularly as it relates to handling multidimen-
sional data using multidimensional organizations of threads. It gives enough insight
into the creation, organization, resource binding, and data binding of threads to
enable the reader to implement sophisticated computation using CUDA C.

Chapter 4, Compute Architecture and Scheduling, introduces the GPU architec-
ture, with a focus on how the computational cores are organized and how threads
are scheduled to execute on these cores. Various architecture considerations are dis-
cussed, with their implications on the performance of code that is executed on the
GPU architecture. These include concepts such as transparent scalability, SIMD
execution and control divergence, multithreading and latency tolerance, and occu-
pancy, all of which are defined and discussed in the chapter.

Chapter 5, Memory Architecture and Data Locality, extends Chapter 4,
Compute Architecture and Scheduling, by discussing the memory architecture of
a GPU. It also discusses the special memories that can be used to hold CUDA
variables for managing data delivery and improving program execution speed.
We introduce the CUDA language features that allocate and use these memories.
Appropriate use of these memories can drastically improve the data access
throughput and help to alleviate the traffic congestion in the memory system.

Chapter 6, Performance Considerations, presents several important perfor-
mance considerations in current CUDA hardware. In particular, it gives more
details about desirable patterns of thread execution and memory accesses. These
details form the conceptual basis for programmers to reason about the conse-
quences of their decisions on organizing their computation and data. The chapter
concludes with a checklist of common optimization strategies that GPU
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programmers often use to optimize any computation pattern. This checklist will
be used throughout the next two parts of the book to optimize various parallel pat-
terns and applications.

Part II on primitive parallel patterns consists of Chapters 7!12. Chapter 7,
Convolution, presents convolution, a frequently used parallel computing pattern
that is rooted in digital signal processing and computer vision and requires careful
management of data access locality. We also use this pattern to introduce constant
memory and caching in modern GPUs. Chapter 8, Stencil, presents stencil, a pat-
tern that is similar to convolution but is rooted in solving differential equations
and has specific features that present unique opportunities for further optimization
of data access locality. We also use this pattern to introduce 3D organizations of
threads and data and to showcase an optimization introduced in Chapter 6,
Performance Considerations, that targets thread granularity.

Chapter 9, Parallel Histogram, covers histogram, a pattern that is widely used
in statistical data analysis as well as pattern recognition in large datasets. We also
use this pattern to introduce atomic operations as a means for coordinating con-
current updates to shared data and the privatization optimization, which reduces
the overhead of these operations. Chapter 10, Reduction and Minimizing
Divergence, introduces the reduction tree pattern, which is used to summarize a
collection of input data. We also use this pattern to demonstrate the impact of
control divergence on performance and show techniques for how this impact can
be mitigated. Chapter 11, Prefix Sum (Scan), presents prefix sum, or scan, an
important parallel computing pattern that coverts inherently sequential computa-
tion into parallel computation. We also use this pattern to introduce the concept
of work efficiency in parallel algorithms. Finally, Chapter 12, Merge, covers par-
allel merge, a widely used pattern in divide-and-concur work-partitioning strate-
gies. We also use this chapter to introduce dynamic input data identification and
organization.

Part III on advanced parallel patterns and applications is similar in spirit to
Part II, but the patterns that are covered are more elaborate and often include
more application context. Thus these chapters are less focused on introducing
new techniques or features and more focused on application-specific considera-
tions. For each application we start by identifying alternative ways of formulat-
ing the basic structure of the parallel execution and follow up with reasoning
about the advantages and disadvantages of each alternative. We then go through
the steps of code transformation that are needed to achieve high performance.
These chapters help the readers to put all the materials from the previous chap-
ters together and support them as they take on their own application develop-
ment projects.

Part III consists of Chapters 13!19. Chapter 13, Sorting, presents two forms
of parallel sorting: radix sort and merge sort. This advanced pattern leverages
more primitive patterns that were covered in previous chapters, particularly prefix
sum and parallel merge. Chapter 14, Sparse Matrix Computation, presents sparse
matrix computation, which is widely used for processing very large datasets.
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The chapter introduces the reader to the concepts of rearranging data for more
efficient parallel access: data compression, padding, sorting, transposition, and
regularization. Chapter 15, Graph Traversal, introduces graph algorithms and how
graph search can be efficiently implemented in GPU programming. Many differ-
ent strategies are presented for parallelizing graph algorithms, and the impact of
the graph structure on the choice of best algorithm is discussed. These strategies
build on the more primitive patterns, such as histogram and merge.

Chapter 16, Deep Learning, covers deep learning, which is becoming an
extremely important area for GPU computing. We introduce the efficient imple-
mentation of convolutional neural networks and leave more in-depth discussion to
other sources. The efficient implementation of the convolution neural networks
leverages techniques such as tiling and patterns such as convolution. Chapter 17,
Iterative Magnetic Resonance Imaging Reconstruction, covers non-Cartesian MRI
reconstruction and how to leverage techniques such as loop fusion and scatter-to-
gather transformations to enhance parallelism and reduce synchronization over-
head. Chapter 18, Electrostatic Potential Map, covers molecular visualization and
analysis, which benefit from techniques to handle irregular data by applying les-
sons learned from sparse matrix computation.

Chapter 19, Parallel Programming and Computational Thinking, introduces
computational thinking, the art of formulating and solving computational pro-
blems in ways that are more amenable to HPC. It does so by covering the concept
of organizing the computation tasks of a program so that they can be done in par-
allel. We start by discussing the translational process of organizing abstract scien-
tific, problem-specific concepts into computational tasks, which is an important
first step in producing high-quality application software, serial or parallel. The
chapter then discusses parallel algorithm structures and their effects on applica-
tion performance, which is grounded in the performance tuning experience with
CUDA. Although we do not go into the implementation details of these alterna-
tive parallel programming styles, we expect that the readers will be able to learn
to program in any of them with the foundation that they gain in this book. We
also present a high-level case study to show the opportunities that can be seen
through creative computational thinking.

Part IV on advanced practices consists of Chapters 20!22. Chapter 20,
Programming a Heterogeneous Computing Cluster, covers CUDA programming
on heterogeneous clusters, in which each compute node consists of both CPUs
and GPUs. We discuss the use of MPI alongside CUDA to integrate both inter-
node computing and intranode computing and the resulting communication issues
and practices. Chapter 21, CUDA Dynamic Parallelism, covers dynamic parallel-
ism, which is the ability of the GPU to dynamically create work for itself based
on the data or program structure rather than always waiting for the CPU to do so.
Chapter 22, Advanced Practices and Future Evolution, goes through a list of mis-
cellaneous advanced features and practices that are important for CUDA program-
mers to be aware of. These include topics such as zero-copy memory, unified
virtual memory, simultaneous execution of multiple kernels, function calls,
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exception handling, debugging, profiling, double-precision support, configurable
cache/scratchpad sizes, and others. For example, early versions of CUDA pro-
vided limited shared memory capability between the CPU and the GPU. The pro-
grammers needed to explicitly manage the data transfer between CPU and GPU.
However, current versions of CUDA support features such as unified virtual
memory and zero-copy memory that enable seamless sharing of data between
CPUs and GPUs. With such support, a CUDA programmer can declare variables
and data structures as shared between CPU and GPU. The runtime hardware and
software maintain coherence and automatically perform optimized data transfer
operations on behalf of the programmer on a need basis. Such support signifi-
cantly reduces the programming complexity that is involved in overlapping data
transfer with computation and I/O activities. In the introductory part of the text-
book, we use the APIs for explicit data transfer so that reader gets a better under-
standing of what happens under the hood. We later introduce unified virtual
memory and zero-copy memory in Chapter 22, Advanced Practices and Future
Evolution.

Although the chapters throughout this book are based on CUDA, they help the
readers to build up the foundation for parallel programming in general. We believe
that humans understand best when we learn from concrete examples. That is, we
must first learn the concepts in the context of a particular programming model, which
provides us with solid footing when we generalize our knowledge to other program-
ming models. As we do so, we can draw on our concrete experience from the CUDA
examples. In-depth experience with CUDA also enables us to gain maturity, which
will help us to learn concepts that may not even be pertinent to the CUDA model.

Chapter 23, Conclusion and Outlook, offers concluding remarks and an out-
look for the future of massively parallel programming. We first revisit our goals
and summarize how the chapters fit together to help achieve the goals. We then
conclude with a prediction that these fast advances in massively parallel comput-
ing will make it one of the most exciting areas in the coming decade.
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Data parallelism refers to the phenomenon in which the computation work to be
performed on different parts of the dataset can be done independently of each
other and thus can be done in parallel with each other. Many applications
exhibit a rich amount of data parallelism that makes them amenable to scalable
parallel execution. It is therefore important for parallel programmers to be
familiar with the concept of data parallelism and the parallel programming lan-
guage constructs for writing code that exploit data parallelism. In this chapter
we will use the CUDA C language constructs to develop a simple data parallel
program.

2.1 Data parallelism
When modern software applications run slowly, the problem is usually
data—too much data to process. Image-processing applications manipulate
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images or videos with millions to trillions of pixels. Scientific applications
model fluid dynamics using billions of grid points. Molecular dynamics
applications must simulate interactions between thousands to billions of
atoms. Airline scheduling deals with thousands of flights, crews, and airport
gates. Most of these pixels, particles, grid points, interactions, flights, and so
on can usually be dealt with largely independently. For example, in image
processing, converting a color pixel to grayscale requires only the data of
that pixel. Blurring an image averages each pixel’s color with the colors of
nearby pixels, requiring only the data of that small neighborhood of pixels.
Even a seemingly global operation, such as finding the average brightness of
all pixels in an image, can be broken down into many smaller computations
that can be executed independently. Such independent evaluation of different
pieces of data is the basis of data parallelism. Writing data parallel code
entails (re)organizing the computation around the data such that we can exe-
cute the resulting independent computations in parallel to complete the over-
all job faster—often much faster.

Let us illustrate the concept of data parallelism with a color-to-grayscale con-
version example. Fig. 2.1 shows a color image (left side) consisting of many pix-
els, each containing a red, green, and blue fractional value (r, g, b) varying from
0 (black) to 1 (full intensity).

To convert the color image (left side of Fig. 2.1) to a grayscale image (right
side), we compute the luminance value L for each pixel by applying the following
weighted sum formula:

L ¼ r"0:21þ g"0:72þ b"0:07

FIGURE 2.1

Conversion of a color image to a grayscale image.
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RGB Color Image Representation

In an RGB representation, each pixel in an image is stored as a tuple of
(r, g, b) values. The format of an image’s row is (r g b) (r g b) . . . (r g b),
as illustrated in the following conceptual picture. Each tuple specifies a
mixture of red (R), green (G) and blue (B). That is, for each pixel, the r, g,
and b values represent the intensity (0 being dark and 1 being full inten-
sity) of the red, green, and blue light sources when the pixel is rendered.

The actual allowable mixtures of these three colors vary across indus-
try-specified color spaces. Here, the valid combinations of the three colors
in the AdbobeRGBt color space are shown as the interior of the triangle.
The vertical coordinate (y value) and horizontal coordinate (x value) of
each mixture show the fraction of the pixel intensity that should be G and
R. The remaining fraction (1-y$x) of the pixel intensity should be assigned
to B. To render an image, the r, g, b values of each pixel are used to cal-
culate both the total intensity (luminance) of the pixel as well as the mix-
ture coefficients (x, y, 1-y-x).

If we consider the input to be an image organized as an array I of RGB
values and the output to be a corresponding array O of luminance values, we
get the simple computation structure shown in Fig. 2.2. For example, O[0] is
generated by calculating the weighted sum of the RGB values in I[0] according
to the formula above; O[1] is generated by calculating the weighted sum of the
RGB values in I[1]; O[2] is generated by calculating the weighted sum of the
RGB values in I[2]; and so on. None of these per-pixel computations depend
on each other. All of them can be performed independently. Clearly, color-to-
grayscale conversion exhibits a rich amount of data parallelism. Of course, data
parallelism in complete applications can be more complex, and much of this
book is devoted to teaching the parallel thinking necessary to find and exploit
data parallelism.

252.1 Data parallelism
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Task Parallelism vs. Data Parallelism

Data parallelism is not the only type of parallelism used in parallel pro-
gramming. Task parallelism has also been used extensively in parallel
programming. Task parallelism is typically exposed through task decom-
position of applications. For example, a simple application may need
to do a vector addition and a matrix-vector multiplication. Each of these
would be a task. Task parallelism exists if the two tasks can be done
independently. I/O and data transfers are also common sources of tasks.

In large applications, there are usually a larger number of independent
tasks and therefore larger amount of task parallelism. For example, in a
molecular dynamics simulator, the list of natural tasks includes vibrational
forces, rotational forces, neighbor identification for non-bonding forces,
non-bonding forces, velocity and position, and other physical properties
based on velocity and position.

In general, data parallelism is the main source of scalability for par-
allel programs. With large datasets, one can often find abundant data
parallelism to be able to utilize massively parallel processors and allow
application performance to grow with each generation of hardware that
has more execution resources. Nevertheless, task parallelism can also
play an important role in achieving performance goals. We will be cover-
ing task parallelism later when we introduce streams.

FIGURE 2.2

Data parallelism in image-to-grayscale conversion. Pixels can be calculated independently
of each other.
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2.2 CUDA C program structure
We are now ready to learn how to write a CUDA C program to exploit data paral-
lelism for faster execution. CUDA C1 extends the popular ANSI C programming
language with minimal new syntax and library functions to let programmers target
heterogeneous computing systems containing both CPU cores and massively par-
allel GPUs. As the name implies, CUDA C is built on NVIDIA’s CUDA plat-
form. CUDA is currently the most mature framework for massively parallel
computing. It is broadly used in the high-performance computing industry, with
essential tools such as compilers, debuggers, and profilers available on the most
common operating systems.

The structure of a CUDA C program reflects the coexistence of a host (CPU)
and one or more devices (GPUs) in the computer. Each CUDA C source file can
have a mixture of host code and device code. By default, any traditional C pro-
gram is a CUDA program that contains only host code. One can add device code
into any source file. The device code is clearly marked with special CUDA C
keywords. The device code includes functions, or kernels, whose code is executed
in a data-parallel manner.

The execution of a CUDA program is illustrated in Fig. 2.3. The execution
starts with host code (CPU serial code). When a kernel function is called, a large
number of threads are launched on a device to execute the kernel. All the threads
that are launched by a kernel call are collectively called a grid. These threads are
the primary vehicle of parallel execution in a CUDA platform. Fig. 2.3 shows the
execution of two grids of threads. We will discuss how these grids are organized
soon. When all threads of a grid have completed their execution, the grid termi-
nates, and the execution continues on the host until another grid is launched.

FIGURE 2.3

Execution of a CUDA program.

1 There has been a steady movement for CUDA C to adopt C++ features. We will be using some
of these C++ features in our programming examples.
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Note that Fig. 2.3 shows a simplified model in which the CPU execution and
the GPU execution do not overlap. Many heterogeneous computing applications
manage overlapped CPU and GPU execution to take advantage of both CPUs
and GPUs.

Launching a grid typically generates many threads to exploit data parallelism.
In the color-to-grayscale conversion example, each thread could be used to com-
pute one pixel of the output array O. In this case, the number of threads that
ought to be generated by the grid launch is equal to the number of pixels in the
image. For large images, a large number of threads will be generated. CUDA pro-
grammers can assume that these threads take very few clock cycles to generate
and schedule, owing to efficient hardware support. This assumption contrasts with
traditional CPU threads, which typically take thousands of clock cycles to gener-
ate and schedule. In the next chapter we will show how to implement color-to-
grayscale conversion and image blur kernels. In the rest of this chapter we will
use vector addition as a running example for simplicity.

Threads

A thread is a simplified view of how a processor executes a sequential pro-
gram in modern computers. A thread consists of the code of the program,
the point in the code that is being executed, and the values of its variables
and data structures. The execution of a thread is sequential as far as a
user is concerned. One can use a source-level debugger to monitor the
progress of a thread by executing one statement at a time, looking at the
statement that will be executed next and checking the values of the vari-
ables and data structures as the execution progresses.

Threads have been used in programming for many years. If a program-
mer wants to start parallel execution in an application, he/she creates and
manages multiple threads using thread libraries or special languages. In
CUDA, the execution of each thread is sequential as well. A CUDA pro-
gram initiates parallel execution by calling kernel functions, which causes
the underlying runtime mechanisms to launch a grid of threads that pro-
cess different parts of the data in parallel.

2.3 A vector addition kernel
We use vector addition to demonstrate the CUDA C program structure. Vector
addition is arguably the simplest possible data parallel computation—the parallel
equivalent of “Hello World” from sequential programming. Before we show the
kernel code for vector addition, it is helpful to first review how a conventional
vector addition (host code) function works. Fig. 2.4 shows a simple traditional
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C program that consists of a main function and a vector addition function. In all
our examples, whenever there is a need to distinguish between host and device
data, we will suffix the names of variables that are used by the host with “_h”
and those of variables that are used by a device with “_d” to remind ourselves of
the intended usage of these variables. Since we have only host code in Fig. 2.4,
we see only variables suffixed with “_h”.

Pointers in the C Language

The function arguments A, B, and C in Fig. 2.4 are pointers. In the C lan-
guage, a pointer can be used to access variables and data structures.
While a floating-point variable V can be declared with:

float V;
a pointer variable P can be declared with:

float "P;
By assigning the address of V to P with the statement P5&V, we

make P “point to” V. "P becomes a synonym for V. For example, U5 "P
assigns the value of V to U. For another example, "P5 3 changes the
value of V to 3.

An array in a C program can be accessed through a pointer that points
to its 0th element. For example, the statement P5&(A[0]) makes P point
to the 0th element of array A. P[i] becomes a synonym for A[i]. In fact, the
array name A is in itself a pointer to its 0th element.

In Fig. 2.4, passing an array name A as the first argument to function
call to vecAdd makes the function’s first parameter A_h point to the 0th

element of A. As a result, A_h[i] in the function body can be used to access
A[i] for the array A in the main function.

See Patt & Patel (Patt & Patel, 2020) for an easy-to-follow explanation
of the detailed usage of pointers in C.

04            C_h[i] = A_h[i] + B_h[i]; 

05        } 

06    } 

07    int main() { 

08        // Memory allocation for arrays A, B, and C

09        // I/O to read A and B, N elements each

10        ... 

11        vecAdd(A, B, C, N); 

12    } 

01    // Compute vector sum C_h = A_h + B_h

02    void vecAdd(float* A_h, float* B_h, float* C_h, int n) { 

03        for (int i = 0; i < n; ++i) { 

FIGURE 2.4

A simple traditional vector addition C code example.
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Assume that the vectors to be added are stored in arrays A and B that are allo-
cated and initialized in the main program. The output vector is in array C, which is
also allocated in the main program. For brevity we do not show the details of how
A, B, and C are allocated or initialized in the main function. The pointers to these
arrays are passed to the vecAdd function, along with the variable N that contains
the length of the vectors. Note that the parameters of the vecAdd function are suf-
fixed with “_h” to emphasize that they are used by the host. This naming conven-
tion will be helpful when we introduce device code in the next few steps.

The vecAdd function in Fig. 2.4 uses a for-loop to iterate through the vector
elements. In the ith iteration, output element C_h[i] receives the sum of A_h[i]
and B_h[i]. The vector length parameter n is used to control the loop so that
the number of iterations matches the length of the vectors. The function reads the
elements of A and B and writes the elements of C through the pointers A_h, B_h,
and C_h, respectively. When the vecAdd function returns, the subsequent state-
ments in the main function can access the new contents of C.

A straightforward way to execute vector addition in parallel is to modify the
vecAdd function and move its calculations to a device. The structure of such a
modified vecAdd function is shown in Fig. 2.5. Part 1 of the function allocates
space in the device (GPU) memory to hold copies of the A, B, and C vectors and
copies the A and B vectors from the host memory to the device memory. Part 2

01    void vecAdd(float* A, float* B, float* C, int n) {

02        int  size = n* sizeof(float); 

03        float  *d_A *d_B, *d_C;

04

05        // Part 1: Allocate device memory for A, B, and C

06        // Copy A and B to device memory

07        ...

08    

09        // Part 2: Call kernel – to launch a grid of threads

10        // to perform the actual vector addition

11        ...

12

13        // Part 3: Copy C from the device memory

14        // Free device vectors

15        ...

16    }

FIGURE 2.5

Outline of a revised vecAdd function that moves the work to a device.
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calls the actual vector addition kernel to launch a grid of threads on the device.
Part 3 copies the sum vector C from the device memory to the host memory and
deallocates the three arrays from the device memory.

Note that the revised vecAdd function is essentially an outsourcing agent that
ships input data to a device, activates the calculation on the device, and collects
the results from the device. The agent does so in such a way that the main pro-
gram does not need to even be aware that the vector addition is now actually
done on a device. In practice, such a “transparent” outsourcing model can be very
inefficient because of all the copying of data back and forth. One would often
keep large and important data structures on the device and simply invoke device
functions on them from the host code. For now, however, we will use the simpli-
fied transparent model to introduce the basic CUDA C program structure. The
details of the revised function, as well as the way to compose the kernel function,
will be the topic of the rest of this chapter.

2.4 Device global memory and data transfer
In current CUDA systems, devices are often hardware cards that come with their
own dynamic random-access memory called device global memory, or simply
global memory. For example, the NVIDIA Volta V100 comes with 16GB or
32GB of global memory. Calling it “global” memory distinguishes it from other
types of device memory that are also accessible to programmers. Details about
the CUDA memory model and the different types of device memory are discussed
in Chapter 5, Memory Architecture and Data Locality.

For the vector addition kernel, before calling the kernel, the programmer needs
to allocate space in the device global memory and transfer data from the host
memory to the allocated space in the device global memory. This corresponds to
Part 1 of Fig. 2.5. Similarly, after device execution the programmer needs to
transfer result data from the device global memory back to the host memory and
free up the allocated space in the device global memory that is no longer needed.
This corresponds to Part 3 of Fig. 2.5. The CUDA runtime system (typically run-
ning on the host) provides applications programming interface (API) functions to
perform these activities on behalf of the programmer. From this point on, we will
simply say that data is transferred from host to device as shorthand for saying
that the data is copied from the host memory to the device global memory. The
same holds for the opposite direction.

In Fig. 2.5, Part 1 and Part 3 of the vecAdd function need to use the CUDA
API functions to allocate device global memory for A, B, and C; transfer A and B
from host to device; transfer C from device to host after the vector addition; and
free the device global memory for A, B, and C. We will explain the memory allo-
cation and free functions first.

Fig. 2.6 shows two API functions for allocating and freeing device global mem-
ory. The cudaMalloc function can be called from the host code to allocate a piece
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of device global memory for an object. The reader should notice the striking simi-
larity between cudaMalloc and the standard C runtime library malloc function. This
is intentional; CUDA C is C with minimal extensions. CUDA C uses the standard
C runtime library malloc function to manage the host memory2 and adds
cudaMalloc as an extension to the C runtime library. By keeping the interface as
close to the original C runtime libraries as possible, CUDA C minimizes the time
that a C programmer spends relearning the use of these extensions.

The first parameter to the cudaMalloc function is the address of a pointer vari-
able that will be set to point to the allocated object. The address of the pointer vari-
able should be cast to (void "") because the function expects a generic pointer; the
memory allocation function is a generic function that is not restricted to any particu-
lar type of objects.3 This parameter allows the cudaMalloc function to write the
address of the allocated memory into the provided pointer variable regardless of its
type.4 The host code that calls kernels passes this pointer value to the kernels that
need to access the allocated memory object. The second parameter to the cudaMalloc
function gives the size of the data to be allocated, in number of bytes. The usage of
this second parameter is consistent with the size parameter to the C malloc function.

We now use the following simple code example to illustrate the use of
cudaMalloc and cudaFree:

float "A_d
int size=n"sizeof(float);
cudaMalloc((void"")&A_d, size);
. . .
cudaFree(A_d);

FIGURE 2.6

CUDA API functions for managing device global memory.

2 CUDA C also has more advanced library functions for allocating space in the host memory. We
will discuss them in Chapter 20, Programming a Heterogeneous Computing Cluster.
3 The fact that cudaMalloc returns a generic object makes the use of dynamically allocated mul-
tidimensional arrays more complex. We will address this issue in Section 3.2.
4 Note that cudaMalloc has a different format from the C malloc function. The C malloc func-
tion returns a pointer to the allocated object. It takes only one parameter that specifies the size of
the allocated object. The cudaMalloc function writes to the pointer variable whose address is
given as the first parameter. As a result, the cudaMalloc function takes two parameters. The two-
parameter format of cudaMalloc allows it to use the return value to report any errors in the same
way as other CUDA API functions.
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This is a continuation of the example in Fig. 2.5. For clarity we suffix a
pointer variable with “_d” to indicate that it points to an object in the device
global memory. The first argument passed to cudaMalloc is the address of
pointer A_d (i.e., &A_d) casted to a void pointer. When cudaMalloc, returns, A_d
will point to the device global memory region allocated for the A vector. The sec-
ond argument passed to cudaMalloc is the size of the region to be allocated.
Since size is in number of bytes, the programmer needs to translate from the num-
ber of elements in an array to the number of bytes when determining the value of
size. For example, in allocating space for an array of n single-precision floating-
point elements, the value of size would be n times the size of a single-precision
floating number, which is 4 bytes in computers today. Therefore the value of size
would be n"4. After the computation, cudaFree is called with pointer A_d as an
argument to free the storage space for the A vector from the device global mem-
ory. Note that cudaFree does not need to change the value of A_d; it only needs to
use the value of A_d to return the allocated memory back to the available pool.
Thus only the value and not the address of A_d is passed as an argument.

The addresses in A_d, B_d, and C_d point to locations in the device global mem-
ory. These addresses should not be dereferenced in the host code. They should be
used in calling API functions and kernel functions. Dereferencing a device global
memory pointer in host code can cause exceptions or other types of runtime errors.

The reader should complete Part 1 of the vecAdd example in Fig. 2.5 with simi-
lar declarations of B_d and C_d pointer variables as well as their corresponding
cudaMalloc calls. Furthermore, Part 3 in Fig. 2.5 can be completed with the
cudaFree calls for B_d and C_d.

Once the host code has allocated space in the device global memory for the
data objects, it can request that data be transferred from host to device. This is
accomplished by calling one of the CUDA API functions. Fig. 2.7 shows such an
API function, cudaMemcpy. The cudaMemcpy function takes four parameters. The
first parameter is a pointer to the destination location for the data object to be
copied. The second parameter points to the source location. The third parameter
specifies the number of bytes to be copied. The fourth parameter indicates the
types of memory involved in the copy: from host to host, from host to device,
from device to host, and from device to device. For example, the memory copy
function can be used to copy data from one location in the device global memory
to another location in the device global memory.

FIGURE 2.7

CUDA API function for data transfer between host and device.
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The vecAdd function calls the cudaMemcpy function to copy the A_h and B_h
vectors from the host memory to A_d and B_d in the device memory before adding
them and to copy the C_d vector from the device memory to C_h in the host mem-
ory after the addition has been done. Assuming that the values of A_h, B_h, A_d,
B_d, and size have already been set as we discussed before, the three cudaMemcpy
calls are shown below. The two symbolic constants, cudaMemcpyHostToDevice and
cudaMemcpyDeviceToHost, are recognized, predefined constants of the CUDA pro-
gramming environment. Note that the same function can be used to transfer data in
both directions by properly ordering the source and destination pointers and using
the appropriate constant for the transfer type.

cudaMemcpy(A_d, A_h, size, cudaMemcpyHostToDevice);
cudaMemcpy(B_d, B_h, size, cudaMemcpyHostToDevice);
. . .
cudaMemcpy(C_h, C_d, size, cudaMemcpyDeviceToHost);

To summarize, the main program in Fig. 2.4 calls vecAdd, which is also exe-
cuted on the host. The vecAdd function, outlined in Fig. 2.5, allocates space in
device global memory, requests data transfers, and calls the kernel that performs
the actual vector addition. We refer to this type of host code as a stub for calling
a kernel. We show a more complete version of the vecAdd function in Fig. 2.8.

01    void vecAdd(float* A_h, float* B_h, float* C_h, int n) { 

02        int size = n * sizeof(float);  

03        float *A_d, *B_d, *C_d; 

04     

05        cudaMalloc((void **) &A_d, size); 

06 cudaMalloc((void **) &B_d, size); 

07        cudaMalloc((void **) &C_d, size); 

08 

09        cudaMemcpy(A_d, A_h, size, cudaMemcpyHostToDevice); 

10 cudaMemcpy(B_d, B_h, size, cudaMemcpyHostToDevice); 

11 

12        // Kernel invocation code – to be shown later 

13        ... 

14 

15 cudaMemcpy(C_h, C_d, size, cudaMemcpyDeviceToHost); 

16 

17        cudaFree(A_d); 

18        cudaFree(B_d); 

19        cudaFree(C_d); 

20    } 

FIGURE 2.8

A more complete version of vecAdd().
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Compared to Fig. 2.5, the vecAdd function in Fig. 2.8 is complete for Part 1 and
Part 3. Part 1 allocates device global memory for A_d, B_d, and C_d and transfers
A_h to A_d and B_h to B_d. This is done by calling the cudaMalloc and cudaMemcpy
functions. The readers are encouraged to write their own function calls with the
appropriate parameter values and compare their code with that shown in Fig. 2.8.
Part 2 calls the kernel and will be described in the following subsection. Part 3 cop-
ies the vector sum data from the device to the host so that the values will be avail-
able in the main function. This is accomplished with a call to the cudaMemcpy
function. It then frees the memory for A_d, B_d, and C_d from the device global
memory, which is done by calls to the cudaFree function (Fig. 2.9).

Error Checking and Handling in CUDA

In general, it is important for a program to check and handle errors.
CUDA API functions return flags that indicate whether an error has
occurred when they served the request. Most errors are due to inappropri-
ate argument values used in the call.

For brevity, we will not show error checking code in our examples. For
example, Fig. 2.9 shows a call to cudaMalloc:

cudaMalloc((void"") &A_d, size);
In practice, we should surround the call with code that test for error

condition and print out error messages so that the user can be aware of
the fact that an error has occurred. A simple version of such checking
code is as follows:

cudaError_t err5cudaMalloc((void"") &A_d, size);
if (error!5cudaSuccess) {

printf(“%s in %s at line %d\n”, cudaGetErrorString(err),
__FILE__, __LINE__);
exit(EXIT_FAILURE);

}

This way, if the system is out of device memory, the user will be
informed about the situation. This can save many hours of debugging time.

One could define a C macro to make the checking code more concise
in the source.

2.5 Kernel functions and threading
We are now ready to discuss more about the CUDA C kernel functions and the
effect of calling these kernel functions. In CUDA C, a kernel function specifies
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the code to be executed by all threads during a parallel phase. Since all these
threads execute the same code, CUDA C programming is an instance of the well-
known single-program multiple-data (SPMD) (Atallah, 1998) parallel program-
ming style, a popular programming style for parallel computing systems.5

When a program’s host code calls a kernel, the CUDA runtime system
launches a grid of threads that are organized into a two-level hierarchy. Each grid
is organized as an array of thread blocks, which we will refer to as blocks for
brevity. All blocks of a grid are of the same size; each block can contain up to
1024 threads on current systems.6 Fig. 2.9 shows an example in which each block
consists of 256 threads. Each thread is represented by a curly arrow stemming
from a box that is labeled with the thread’s index number in the block.

Built-in Variables

Many programming languages have built-in variables. These variables
have special meaning and purpose. The values of these variables are often
pre-initialized by the runtime system and are typically read-only in the
program. The programmers should refrain from redefining these variables
for any other purposes.

The total number of threads in each thread block is specified by the host code
when a kernel is called. The same kernel can be called with different numbers
of threads at different parts of the host code. For a given grid of threads, the
number of threads in a block is available in a built-in variable named blockDim.
The blockDim variable is a struct with three unsigned integer fields (x, y, and z)
that help the programmer to organize the threads into a one-, two-, or three-
dimensional array. For a one-dimensional organization, only the x field is used.
For a two-dimensional organization, the x and y fields are used. For a three-
dimensional structure, all three x, y, and z fields are used. The choice of
dimensionality for organizing threads usually reflects the dimensionality of the
data. This makes sense because the threads are created to process data in parallel,
so it is only natural that the organization of the threads reflects the organization
of the data. In Fig. 2.9, each thread block is organized as a one-dimensional array
of threads because the data are one-dimensional vectors. The value of the
blockDim.x variable indicates the total number of threads in each block, which is
256 in Fig. 2.9. In general, it is recommended that the number of threads in each
dimension of a thread block be a multiple of 32 for hardware efficiency reasons.
We will revisit this later.

5 Note that SPMD is not the same as SIMD (single instruction multiple data) [Flynn 1972]. In an
SPMD system the parallel processing units execute the same program on multiple parts of the data.
However, these processing units do not need to be executing the same instruction at the same time.
In an SIMD system, all processing units are executing the same instruction at any instant.
6 Each thread block can have up to 1024 threads in CUDA 3.0 and beyond. Some earlier CUDA
versions allow only up to 512 threads in a block.
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CUDA kernels have access to two more built-in variables (threadIdx and
blockIdx) that allow threads to distinguish themselves from each other and to
determine the area of data each thread is to work on. The threadIdx variable
gives each thread a unique coordinate within a block. In Fig. 2.9, since we are
using a one-dimensional thread organization, only threadIdx.x is used. The
threadIdx.x value for each thread is shown in the small shaded box of each
thread in Fig. 2.9. The first thread in each block has value 0 in its threadIdx.x
variable, the second thread has value 1, the third thread has value 2, and so on.

Hierarchical Organizations

Like CUDA threads, many real-world systems are organized hierar-
chically. The U.S. telephone system is a good example. At the top level,
the telephone system consists of “areas” each of which corresponds to a
geographical area. All telephone lines within the same area have the same
3-digit “area code”. A telephone area is sometimes larger than a city. For
example, many counties and cities of central Illinois are within the same
telephone area and share the same area code 217. Within an area, each
phone line has a seven-digit local phone number, which allows each area
to have a maximum of about ten million numbers.

One can think of each phone line as a CUDA thread, with the area code
as the value of blockIdx and the seven-digital local number as the value
of threadIdx. This hierarchical organization allows the system to have a
very large number of phone lines while preserving “locality” for calling the
same area. That is, when dialing a phone line in the same area, a caller
only needs to dial the local number. As long as we make most of our calls
within the local area, we seldom need to dial the area code. If we occasion-
ally need to call a phone line in another area, we dial 1 and the area code,
followed by the local number. (This is the reason why no local number in
any area should start with a 1.) The hierarchical organization of CUDA
threads also offers a form of locality. We will study this locality soon.

FIGURE 2.9

All threads in a grid execute the same kernel code.
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The blockIdx variable gives all threads in a block a common block coordi-
nate. In Fig. 2.9, all threads in the first block have value 0 in their blockIdx.x
variables, those in the second thread block value 1, and so on. Using an analogy
with the telephone system, one can think of threadIdx.x as local phone number
and blockIdx.x as area code. The two together gives each telephone line in the
whole country a unique phone number. Similarly, each thread can combine its
threadIdx and blockIdx values to create a unique global index for itself within
the entire grid.

In Fig. 2.9 a unique global index i is calculated as i=blockIdx.x " blockDim.
x + threadIdx.x. Recall that blockDim is 256 in our example. The i values of
threads in block 0 range from 0 to 255. The i values of threads in block 1 range
from 256 to 511. The i values of threads in block 2 range from 512 to 767. That
is, the i values of the threads in these three blocks form a continuous coverage of
the values from 0 to 767. Since each thread uses i to access A, B, and C, these
threads cover the first 768 iterations of the original loop. By launching a grid
with a larger number of blocks, one can process larger vectors. By launching a
grid with n or more threads, one can process vectors of length n.

Fig. 2.10 shows a kernel function for vector addition. Note that we do not use
the “_h” and “_d” convention in kernels, since there is no potential confusion. We
will not have any access to the host memory in our examples. The syntax of a
kernel is ANSI C with some notable extensions. First, there is a CUDA-C-
specific keyword “__global__” in front of the declaration of the vecAddKernel
function. This keyword indicates that the function is a kernel and that it can be
called to generate a grid of threads on a device.

In general, CUDA C extends the C language with three qualifier keywords
that can be used in function declarations. The meaning of these keywords is sum-
marized in Fig. 2.11. The “__global__” keyword indicates that the function being
declared is a CUDA C kernel function. Note that there are two underscore charac-
ters on each side of the word “global.” Such a kernel function is executed on the
device and can be called from the host. In CUDA systems that support dynamic
parallelism, it can also be called from the device, as we will see in Chapter 21,

01    // Compute vector sum C = A + B 

02    // Each thread performs one pair-wise addition 

03    __global__ 

04    void vecAddKernel(float* A, float* B, float* C, int n) { 

05        int i = threadIdx.x + blockDim.x * blockIdx.x; 

06        if (i < n) { 

07            C[i] = A[i] + B[i]; 

08        } 

09    }

FIGURE 2.10

A vector addition kernel function.
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CUDA Dynamic Parallelism. The important feature is that calling such a kernel
function results in a new grid of threads being launched on the device.

The “__device__” keyword indicates that the function being declared is a
CUDA device function. A device function executes on a CUDA device and can
be called only from a kernel function or another device function. The device func-
tion is executed by the device thread that calls it and does not result in any new
device threads being launched.7

The “__host__” keyword indicates that the function being declared is a
CUDA host function. A host function is simply a traditional C function that exe-
cutes on the host and can be called only from another host function. By default,
all functions in a CUDA program are host functions if they do not have any of
the CUDA keywords in their declaration. This makes sense, since many CUDA
applications are ported from CPU-only execution environments. The programmer
would add kernel functions and device functions during the porting process. The
original functions remain as host functions. Having all functions to default into
host functions spares the programmer the tedious work of changing all original
function declarations.

Note that one can use both “__host__” and “__device__” in a function decla-
ration. This combination tells the compilation system to generate two versions of
object code for the same function. One is executed on the host and can be called
only from a host function. The other is executed on the device and can be called
only from a device or kernel function. This supports a common use case when the
same function source code can be recompiled to generate a device version. Many
user library functions will likely fall into this category.

The second notable extension to C, in Fig. 2.10, is the built-in variables
“threadIdx,” “blockIdx,” and “blockDim.” Recall that all threads execute the same
kernel code and there needs to be a way for them to distinguish themselves from
each other and direct each thread toward a particular part of the data. These built-in
variables are the means for threads to access hardware registers that provide the

FIGURE 2.11

CUDA C keywords for function declaration.

7 We will explain the rules for using indirect function calls and recursions in different generations
of CUDA later. In general, one should avoid the use of recursion and indirect function calls in their
device functions and kernel functions to allow maximal portability.
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identifying coordinates to threads. Different threads will see different values in their
threadIdx.x, blockIdx.x, and blockDim.x variables. For readability we will some-
times refer to a thread as threadblockIdx.x, threadIdx.x in our discussions.

There is an automatic (local) variable i in Fig. 2.10. In a CUDA kernel func-
tion, automatic variables are private to each thread. That is, a version of i will be
generated for every thread. If the grid is launched with 10,000 threads, there will
be 10,000 versions of i, one for each thread. The value assigned by a thread to its
i variable is not visible to other threads. We will discuss these automatic variables
in more details in Chapter 5, Memory Architecture and Data Locality.

A quick comparison between Fig. 2.4 and Fig. 2.10 reveals an important
insight into CUDA kernels. The kernel function in Fig. 2.10 does not have a loop
that corresponds to the one in Fig. 2.4. The reader should ask where the loop
went. The answer is that the loop is now replaced with the grid of threads. The
entire grid forms the equivalent of the loop. Each thread in the grid corresponds
to one iteration of the original loop. This is sometimes referred to as loop paral-
lelism, in which iterations of the original sequential code are executed by threads
in parallel.

Note that there is an if (i, n) statement in addVecKernel in Fig. 2.10. This is
because not all vector lengths can be expressed as multiples of the block size. For
example, let’s assume that the vector length is 100. The smallest efficient thread
block dimension is 32. Assume that we picked 32 as block size. One would need
to launch four thread blocks to process all the 100 vector elements. However, the
four thread blocks would have 128 threads. We need to disable the last 28 threads
in thread block 3 from doing work not expected by the original program. Since
all threads are to execute the same code, all will test their i values against n,
which is 100. With the if (i, n) statement, the first 100 threads will perform the
addition, whereas the last 28 will not. This allows the kernel to be called to pro-
cess vectors of arbitrary lengths.

2.6 Calling kernel functions
Having implemented the kernel function, the remaining step is to call that function
from the host code to launch the grid. This is illustrated in Fig. 2.12. When the host
code calls a kernel, it sets the grid and thread block dimensions via execution

01    int vectAdd(float* A, float* B, float* C, int n) { 

02        // A_d, B_d, C_d allocations and copies omitted

03        ...

04        // Launch ceil(n/256) blocks of 256 threads each 

05        vecAddKernel<<<ceil(n/256.0), 256>>>(A_d, B_d, C_d, n);

06    }

FIGURE 2.12

A vector addition kernel call statement.
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configuration parameters. The configuration parameters are given between the
“,,, ” and “... ” before the traditional C function arguments. The first configu-
ration parameter gives the number of blocks in the grid. The second specifies the
number of threads in each block. In this example there are 256 threads in each
block. To ensure that we have enough threads in the grid to cover all the vector ele-
ments, we need to set the number of blocks in the grid to the ceiling division (round-
ing up the quotient to the immediate higher integer value) of the desired number of
threads (n in this case) by the thread block size (256 in this case). There are many
ways to perform a ceiling division. One way is to apply the C ceiling function to n/
256.0. Using the floating-point value 256.0 ensures that we generate a floating value
for the division so that the ceiling function can round it up correctly. For example, if
we want 1000 threads, we would launch ceil(1000/256.0)5 4 thread blocks. As a
result, the statement will launch 43 2565 1024 threads. With the if (i , n) state-
ment in the kernel as shown in Fig. 2.10, the first 1000 threads will perform addition
on the 1000 vector elements. The remaining 24 will not.

Fig. 2.13 shows the final host code in the vecAdd function. This source code
completes the skeleton in Fig. 2.5. Figs. 2.12 and 2.13 jointly illustrate a simple
CUDA program that consists of both host code and a device kernel. The code is
hardwired to use thread blocks of 256 threads each.8 However, the number of
thread blocks used depends on the length of the vectors (n). If n is 750, three thread
blocks will be used. If n is 4000, 16 thread blocks will be used. If n is 2,000,000,
7813 blocks will be used. Note that all the thread blocks operate on different parts
of the vectors. They can be executed in any arbitrary order. The programmer must
not make any assumptions regarding execution order. A small GPU with a small
amount of execution resources may execute only one or two of these thread blocks
in parallel. A larger GPU may execute 64 or 128 blocks in parallel. This gives
CUDA kernels scalability in execution speed with hardware. That is, the same code

01    void vecAdd(float* A, float* B, float* C, int n) { 
02        float *A_d, *B_d, *C_d; 
03        int size = n * sizeof(float);  
04 
05        cudaMalloc((void **) &A_d, size); 
06        cudaMalloc((void **) &B_d, size); 
07        cudaMalloc((void **) &C_d, size); 
08 
09        cudaMemcpy(A_d, A, size, cudaMemcpyHostToDevice); 
10        cudaMemcpy(B_d, B, size, cudaMemcpyHostToDevice); 
11 
12        vecAddKernel<<<ceil(n/256.0), 256>>>(A_d, B_d, C_d, n); 
13 
14        cudaMemcpy(C, C_d, size, cudaMemcpyDeviceToHost); 
15 
16        cudaFree(A_d); 
17        cudaFree(B_d); 
18        cudaFree(C_d); 
19    } 

FIGURE 2.13

A complete version of the host code in the vecAdd function.

8 While we use an arbitrary block size 256 in this example, the block size should be determined by
a number of factors that will be introduced later.
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runs at lower speed on small GPUs and at higher speed on larger GPUs. We will
revisit this point in Chapter 4, Compute Architecture and Scheduling.

It is important to point out again that the vector addition example is used for
its simplicity. In practice, the overhead of allocating device memory, input data
transfer from host to device, output data transfer from device to host, and deallo-
cating device memory will likely make the resulting code slower than the original
sequential code in Fig. 2.4. This is because the amount of calculation that is done
by the kernel is small relative to the amount of data processed or transferred.
Only one addition is performed for two floating-point input operands and one
floating-point output operand. Real applications typically have kernels in which
much more work is needed relative to the amount of data processed, which makes
the additional overhead worthwhile. Real applications also tend to keep the data
in the device memory across multiple kernel invocations so that the overhead can
be amortized. We will present several examples of such applications.

2.7 Compilation
We have seen that implementing CUDA C kernels requires using various exten-
sions that are not part of C. Once these extensions have been used in the code, it
is no longer acceptable to a traditional C compiler. The code needs to be com-
piled by a compiler that recognizes and understands these extensions, such as
NVCC (NVIDIA C compiler). As is shown at the top of Fig. 2.14, the NVCC

FIGURE 2.14

Overview of the compilation process of a CUDA C program.
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compiler processes a CUDA C program, using the CUDA keywords to separate
the host code and device code. The host code is straight ANSI C code, which is
compiled with the host’s standard C/C++ compilers and is run as a traditional
CPU process. The device code, which is marked with CUDA keywords that des-
ignate CUDA kernels and their associated helper functions and data structures, is
compiled by NVCC into virtual binary files called PTX files. These PTX files are
further compiled by a runtime component of NVCC into the real object files and
executed on a CUDA-capable GPU device.

2.8 Summary
This chapter provided a quick, simplified overview of the CUDA C programming
model. CUDA C extends the C language to support parallel computing. We dis-
cussed an essential subset of these extensions in this chapter. For your convenience
we summarize the extensions that we have discussed in this chapter as follows:

2.8.1 Function declarations

CUDA C extends the C function declaration syntax to support heterogeneous par-
allel computing. The extensions are summarized in Fig. 2.12. Using one of
“__global__,” “__device__,” or “__host__,” a CUDA C programmer can instruct
the compiler to generate a kernel function, a device function, or a host function.
All function declarations without any of these keywords default to host functions.
If both “__host__” and “_device__” are used in a function declaration, the com-
piler generates two versions of the function, one for the device and one for the
host. If a function declaration does not have any CUDA C extension keyword, the
function defaults into a host function.

2.8.2 Kernel call and grid launch

CUDA C extends the C function call syntax with kernel execution configuration
parameters surrounded by ,,, and .... These execution configuration para-
meters are only used when calling a kernel function to launch a grid. We dis-
cussed the execution configuration parameters that define the dimensions of the
grid and the dimensions of each block. The reader should refer to the CUDA
Programming Guide (NVIDIA, 2021) for more details of the kernel launch exten-
sions as well as other types of execution configuration parameters.

2.8.3 Built-in (predefined) variables

CUDA kernels can access a set of built-in, predefined read-only variables that
allow each thread to distinguish itself from other threads and to determine the
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area of data to work on. We discussed the threadIdx, blockDim, and blockIdx
variables in this chapter. In Chapter 3, Multidimensional Grids and Data, we will
discuss more details of using these variables.

2.8.4 Runtime application programming interface

CUDA supports a set of API functions to provide services to CUDA C programs.
The services that we discussed in this chapter are cudaMalloc, cudaFree, and
cudaMemcpy functions. These functions are called by the host code to allocate
device global memory, deallocate device global memory, and transfer data between
host and device on behalf of the calling program, respectively. The reader is
referred to the CUDA C Programming Guide for other CUDA API functions.

Our goal for this chapter is to introduce the core concepts of CUDA C and the
essential CUDA extensions to C for writing a simple CUDA C program. The
chapter is by no means a comprehensive account of all CUDA features. Some of
these features will be covered in the remainder of the book. However, our empha-
sis will be on the key parallel computing concepts that are supported by these fea-
tures. We will introduce only the CUDA C features that are needed in our code
examples for parallel programming techniques. In general, we would like to
encourage the reader to always consult the CUDA C Programming Guide for
more details of the CUDA C features.

Exercises
1. If we want to use each thread in a grid to calculate one output element of a

vector addition, what would be the expression for mapping the thread/block
indices to the data index (i)?
(A) i=threadIdx.x + threadIdx.y;
(B) i=blockIdx.x + threadIdx.x;
(C) i=blockIdx.x"blockDim.x + threadIdx.x;
(D) i=blockIdx.x " threadIdx.x;

2. Assume that we want to use each thread to calculate two adjacent elements of
a vector addition. What would be the expression for mapping the thread/block
indices to the data index (i) of the first element to be processed by a thread?
(A) i=blockIdx.x"blockDim.x + threadIdx.x +2;
(B) i=blockIdx.x"threadIdx.x"2;
(C) i=(blockIdx.x"blockDim.x + threadIdx.x)"2;
(D) i=blockIdx.x"blockDim.x"2 + threadIdx.x;

3. We want to use each thread to calculate two elements of a vector addition.
Each thread block processes 2"blockDim.x consecutive elements that form
two sections. All threads in each block will process a section first, each
processing one element. They will then all move to the next section, each
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processing one element. Assume that variable i should be the index for the
first element to be processed by a thread. What would be the expression for
mapping the thread/block indices to data index of the first element?
(A) i=blockIdx.x"blockDim.x + threadIdx.x +2;
(B) i=blockIdx.x"threadIdx.x"2;
(C) i=(blockIdx.x"blockDim.x + threadIdx.x)"2;
(D) i=blockIdx.x"blockDim.x"2 + threadIdx.x;

4. For a vector addition, assume that the vector length is 8000, each thread
calculates one output element, and the thread block size is 1024 threads. The
programmer configures the kernel call to have a minimum number of thread
blocks to cover all output elements. How many threads will be in the grid?
(A) 8000
(B) 8196
(C) 8192
(D) 8200

5. 5. If we want to allocate an array of v integer elements in the CUDA device
global memory, what would be an appropriate expression for the second
argument of the cudaMalloc call?
(A) n
(B) v
(C) n " sizeof(int)
(D) v " sizeof(int)

6. If we want to allocate an array of n floating-point elements and have a
floating-point pointer variable A_d to point to the allocated memory, what
would be an appropriate expression for the first argument of the cudaMalloc
() call?
(A) n
(B) (void ") A_d
(C) "A_d
(D) (void "") &A_d

7. If we want to copy 3000 bytes of data from host array A_h (A_h is a pointer
to element 0 of the source array) to device array A_d (A_d is a pointer to
element 0 of the destination array), what would be an appropriate API call
for this data copy in CUDA?
(A) cudaMemcpy(3000, A_h, A_d, cudaMemcpyHostToDevice);
(B) cudaMemcpy(A_h, A_d, 3000, cudaMemcpyDeviceTHost);
(C) cudaMemcpy(A_d, A_h, 3000, cudaMemcpyHostToDevice);
(D) cudaMemcpy(3000, A_d, A_h, cudaMemcpyHostToDevice);

8. How would one declare a variable err that can appropriately receive the
returned value of a CUDA API call?
(A) int err;
(B) cudaError err;
(C) cudaError_t err;
(D) cudaSuccess_t err;
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9. Consider the following CUDA kernel and the corresponding host function
that calls it:

01 __global__ void foo_kernel(float" a, float" b, unsigned int
N){

02 unsigned int i=blockIdx.x"blockDim.x + threadIdx.
x;

03 if(i , N) {
04 b[i]=2.7f"a[i] - 4.3f;
05 }
06 }
07 void foo(float" a_d, float" b_d) {
08 unsigned int N=200000;
09 foo_kernel ,, , (N + 128$1)/128, 128 .. .(a_d,

b_d, N);
10 }

a. What is the number of threads per block?
b. What is the number of threads in the grid?
c. What is the number of blocks in the grid?
d. What is the number of threads that execute the code on line 02?
e. What is the number of threads that execute the code on line 04?

10. A new summer intern was frustrated with CUDA. He has been complaining
that CUDA is very tedious. He had to declare many functions that he plans
to execute on both the host and the device twice, once as a host function and
once as a device function. What is your response?
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In Chapter 2, Heterogeneous Data Parallel Computing, we learned to write a
simple CUDA C11 program that launches a one-dimensional grid of threads by
calling a kernel function to operate on elements of one-dimensional arrays. A
kernel specifies the statements that are executed by each individual thread in the
grid. In this chapter, we will look more generally at how threads are organized
and learn how threads and blocks can be used to process multidimensional arrays.
Multiple examples will be used throughout the chapter, including converting a
colored image to a grayscale image, blurring an image, and matrix multiplication.
These examples also serve to familiarize the reader with reasoning about data par-
allelism before we proceed to discuss the GPU architecture, memory organization,
and performance optimizations in the upcoming chapters.

3.1 Multidimensional grid organization
In CUDA, all threads in a grid execute the same kernel function, and they rely on
coordinates, that is, thread indices, to distinguish themselves from each other and to
identify the appropriate portion of the data to process. As we saw in Chapter 2,
Heterogeneous Data Parallel Computing, these threads are organized into a two-level
hierarchy: A grid consists of one or more blocks, and each block consists of one or
more threads. All threads in a block share the same block index, which can be
accessed via the blockIdx (built-in) variable. Each thread also has a thread index,
which can be accessed via the threadIdx (built-in) variable. When a thread executes
a kernel function, references to the blockIdx and threadIdx variables return the
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coordinates of the thread. The execution configuration parameters in a kernel call
statement specify the dimensions of the grid and the dimensions of each block. These
dimensions are available via the gridDim and blockDim (built-in) variables.

In general, a grid is a three-dimensional (3D) array of blocks, and each block
is a 3D array of threads. When calling a kernel, the program needs to specify the
size of the grid and the blocks in each dimension. These are specified by using
the execution configuration parameters (within ,, , . . ... . ) of the kernel call
statement. The first execution configuration parameter specifies the dimensions of
the grid in number of blocks. The second specifies the dimensions of each block
in number of threads. Each such parameter has the type dim3, which is an integer
vector type of three elements x, y, and z. These three elements specify the sizes
of the three dimensions. The programmer can use fewer than three dimensions by
setting the size of the unused dimensions to 1.

For example, the following host code can be used to call the vecAddkernel()
kernel function and generate a 1D grid that consists of 32 blocks, each of which
consists of 128 threads. The total number of threads in the grid is 128!325 4096:

Note that dimBlock and dimGrid are host code variables that are defined by
the programmer. These variables can have any legal C variable name as long as
they have the type dim3. For example, the following statements accomplish the
same result as the statements above:

dim3 dog(32, 1, 1);
dim3 cat(128, 1, 1);
vecAddKernel<<<dog, cat>>>(...);

The grid and block dimensions can also be calculated from other variables.
For example, the kernel call in Fig. 2.12 can be written as follows:

This allows the number of blocks to vary with the size of the vectors so that
the grid will have enough threads to cover all vector elements. In this example
the programmer chose to fix the block size at 256. The value of variable n at ker-
nel call time will determine dimension of the grid. If n is equal to 1000, the grid
will consist of four blocks. If n is equal to 4000, the grid will have 16 blocks. In
each case, there will be enough threads to cover all the vector elements. Once the
grid has been launched, the grid and block dimensions will remain the same until
the entire grid has finished execution.
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For convenience, CUDA provides a special shortcut for calling a kernel with
one-dimensional (1D) grids and blocks. Instead of using dim3 variables, one can
use arithmetic expressions to specify the configuration of 1D grids and blocks. In
this case, the CUDA compiler simply takes the arithmetic expression as the x
dimensions and assumes that the y and z dimensions are 1. This gives us the ker-
nel call statement shown in Fig. 2.12:

Readers who are familiar with C++ would realize that this “shorthand” conven-
tion for 1D configurations takes advantage of how C++ constructors and default
parameters work. The default values of the parameters to the dim3 constructor are
1. When a single value is passed where a dim3 is expected, that value will be passed
to the first parameter of the constructor, while the second and third parameters take
the default value of 1. The result is a 1D grid or block in which the size of the x
dimension is the value passed and the sizes of the y and z dimensions are 1.

Within the kernel function, the x field of variables gridDim and blockDim are
preinitialized according to the values of the execution configuration parameters.
For example, if n is equal to 4000, references to gridDim.x and blockDim.x in
the vectAddkernel kernel will result in 16 and 256, respectively. Note that unlike
the dim3 variables in the host code, the names of these variables within the kernel
functions are part of the CUDA C specification and cannot be changed. That is,
the gridDim and blockDim are built-in variables in a kernel and always reflect the
dimensions of the grid and the blocks, respectively.

In CUDA C the allowed values of gridDim.x range from 1 to 231 2 1,1 and
those of gridDim.y and gridDim.z range from 1 to 216 2 1 (65,535). All threads
in a block share the same blockIdx.x, blockIdx.y, and blockIdx.z values.
Among blocks, the blockIdx.x value ranges from 0 to gridDim.x-1, the
blockIdx.y value ranges from 0 to gridDim.y-1, and the blockIdx.z value
ranges from 0 to gridDim.z-1.

We now turn our attention to the configuration of blocks. Each block is orga-
nized into a 3D array of threads. Two-dimensional (2D) blocks can be created by
setting blockDim.z to 1. One-dimension blocks can be created by setting both
blockDim.y and blockDim.z to 1, as in the vectorAddkernel example. As we
mentioned before, all blocks in a grid have the same dimensions and sizes. The
number of threads in each dimension of a block is specified by the second execu-
tion configuration parameter at the kernel call. Within the kernel this configura-
tion parameter can be accessed as the x, y, and z fields of blockDim.

The total size of a block in current CUDA systems is limited to 1024 threads.
These threads can be distributed across the three dimensions in any way as long
as the total number of threads does not exceed 1024. For example, blockDim

1Devices with a capability of less than 3.0 allow blockIdx.x to range from 1 to 2162 1.
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values of (512, 1, 1), (8, 16, 4), and (32, 16, 2) are all allowed, but (32, 32, 2) is
not allowed because the total number of threads would exceed 1024.

A grid and its blocks do not need to have the same dimensionality. A grid can
have higher dimensionality than its blocks and vice versa. For example, Fig. 3.1
shows a small toy grid example with a gridDim of (2, 2, 1) and a blockDim of (4,
2, 2). Such a grid can be created with the following host code:

The grid in Fig. 3.1 consists of four blocks organized into a 23 2 array. Each
block is labeled with (blockIdx.y, blockIdx.x). For example, block (1,0) has
blockIdx.y5 1 and blockIdx.x5 0. Note that the ordering of the block and
thread labels is such that highest dimension comes first. This notation uses an
ordering that is the reverse of that used in the C statements for setting configura-
tion parameters, in which the lowest dimension comes first. This reversed order-
ing for labeling blocks works better when we illustrate the mapping of thread
coordinates into data indexes in accessing multidimensional data.

Each threadIdx also consists of three fields: the x coordinate threadId.x, the
y coordinate threadIdx.y, and the z coordinate threadIdx.z. Fig. 3.1 illustrates
the organization of threads within a block. In this example, each block is orga-
nized into 43 23 2 arrays of threads. Since all blocks within a grid have the

FIGURE 3.1

A multidimensional example of CUDA grid organization.
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same dimensions, we show only one of them. Fig. 3.1 expands block (1,1) to
show its 16 threads. For example, thread (1,0,2) has threadIdx.z5 1,
threadIdx.y5 0, and threadIdx.x5 2. Note that in this example we have 4
blocks of 16 threads each, with a grand total of 64 threads in the grid. We use
these small numbers to keep the illustration simple. Typical CUDA grids contain
thousands to millions of threads.

3.2 Mapping threads to multidimensional data
The choice of 1D, 2D, or 3D thread organizations is usually based on the nature
of the data. For example, pictures are a 2D array of pixels. Using a 2D grid that
consists of 2D blocks is often convenient for processing the pixels in a picture.
Fig. 3.2 shows such an arrangement for processing a 623 761F1F2 picture P
(62 pixels in the vertical or y direction and 76 pixels in the horizontal or x

FIGURE 3.2

Using a 2D thread grid to process a 623 76 picture P.

2We will refer to the dimensions of multidimensional data in descending order: the z dimension fol-
lowed by the y dimension, and so on. For example, for a picture of n pixels in the vertical or y
dimension and m pixels in the horizontal or x dimension, we will refer to it as a n 3 m picture.
This follows the C multidimensional array indexing convention. For example, we can refer to P[y]
[x] as Py,x in text and figures for conciseness. Unfortunately, this ordering is opposite to the order
in which data dimensions are ordered in the gridDim and blockDim dimensions. The discrepancy
can be especially confusing when we define the dimensions of a thread grid on the basis of a multi-
dimensional array that is to be processed by its threads.
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direction). Assume that we decided to use a 163 16 block, with 16 threads in the
x direction and 16 threads in the y direction. We will need four blocks in the y
direction and five blocks in the x direction, which results in 43 55 20 blocks, as
shown in Fig. 3.2. The heavy lines mark the block boundaries. The shaded area
depicts the threads that cover pixels. Each thread is assigned to process a pixel
whose y and x coordinates are derived from its blockIdx, blockDim, and
threadIdx variable values:

Vertical ðrowÞ row coordinate5 blockIdx:y!blockDim:y1 threadIdx:y

Horizontal ðColumnÞ coordinate5 blockIdx:x!blockDim:x1 threadIdx:x

For example, the Pin element to be processed by thread (0,0) of block (1,0)
can be identified as follows:

PinblockIdx:y!blockDim:y1threadIdx:y;blockIdx:x!blockDim:x1threadIdx:x 5Pin1!1610;0!1610 5Pin16;0

Note that in Fig. 3.2 we have two extra threads in the y direction and four
extra threads in the x direction. That is, we will generate 643 80 threads to pro-
cess 623 76 pixels. This is similar to the situation in which a 1000-element vec-
tor is processed by the 1D kernel vecAddKernel in Fig. 2.9 using four 256-thread
blocks. Recall that an if-statement in Fig. 2.10 is needed to prevent the extra 24
threads from taking effect. Similarly, we should expect that the picture-processing
kernel function will have if-statements to test whether the thread’s vertical and
horizontal indices fall within the valid range of pixels.

We assume that the host code uses an integer variable n to track the number
of pixels in the y direction and another integer variable m to track the number of
pixels in the x direction. We further assume that the input picture data has been
copied to the device global memory and can be accessed through a pointer vari-
able Pin_d. The output picture has been allocated in the device memory and can
be accessed through a pointer variable Pout_d. The following host code can be
used to call a 2D kernel colorToGrayscaleConversion to process the picture, as
follows:

In this example we assume for simplicity that the dimensions of the blocks are
fixed at 163 16. The dimensions of the grid, on the other hand, depend on
the dimensions of the picture. To process a 15003 2000 (3-million-pixel) picture,
we would generate 11,750 blocks: 94 in the y direction and 125 in the x direction.
Within the kernel function, references to gridDim.x, gridDim.y, blockDim.x, and
blockDim.y will result in 125, 94, 16, and 16, respectively.

Before we show the kernel code, we first need to understand how C statements
access elements of dynamically allocated multidimensional arrays. Ideally, we

52 CHAPTER 3 Multidimensional grids and data



would like to access Pin_d as a 2D array in which an element at row j and col-
umn i can be accessed as Pin_d[j][i]. However, the ANSI C standard on the
basis of which CUDA C was developed requires the number of columns in Pin to
be known at compile time for Pin to be accessed as a 2D array. Unfortunately,
this information is not known at compile time for dynamically allocated arrays. In
fact, part of the reason why one uses dynamically allocated arrays is to allow the
sizes and dimensions of these arrays to vary according to the data size at runtime.
Thus the information on the number of columns in a dynamically allocated 2D
array is not known at compile time by design. As a result, programmers need to
explicitly linearize, or “flatten,” a dynamically allocated 2D array into an equiva-
lent 1D array in the current CUDA C.

In reality, all multidimensional arrays in C are linearized. This is due to the
use of a “flat” memory space in modern computers (see the “Memory Space”
sidebar). In the case of statically allocated arrays, the compilers allow the pro-
grammers to use higher-dimensional indexing syntax, such as Pin_d[j][i], to
access their elements. Under the hood, the compiler linearizes them into an equiv-
alent 1D array and translates the multidimensional indexing syntax into a 1D off-
set. In the case of dynamically allocated arrays, the current CUDA C compiler
leaves the work of such translation to the programmers, owing to lack of dimen-
sional information at compile time.

Memory Space

A memory space is a simplified view of how a processor accesses its
memory in modern computers. A memory space is usually associated with
each running application. The data to be processed by an application
and instructions executed for the application are stored in locations in its
memory space. Each location typically can accommodate a byte and has
an address. Variables that require multiple bytes—4 bytes for float and 8
bytes for double—are stored in consecutive byte locations. When acces-
sing a data value from the memory space, the processor gives the starting
address (address of the starting byte location) and the number of bytes
needed.

Most modern computers have at least 4G byte-sized locations,
where each G is 1,073,741,824 (230). All locations are labeled with an
address that ranges from 0 to the largest number used. Since there is only
one address for every location, we say that the memory space has a “flat”
organization. As a result, all multidimensional arrays are ultimately “flat-
tened” into equivalent one-dimensional arrays. While a C programmer can
use multidimensional array syntax to access an element of a multidimen-
sional array, the compiler translates these accesses into a base pointer that
points to the beginning element of the array, along with a one-dimensional
offset calculated from these multidimensional indices.
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There are at least two ways in which a 2D array can be linearized. One is to
place all elements of the same row into consecutive locations. The rows are then
placed one after another into the memory space. This arrangement, called the
row-major layout, is illustrated in Fig. 3.3. To improve readability, we use Mj,i to
denote an element of M at the jth row and the ith column. Mj,i is equivalent to
the C expression M[j][i] but slightly more readable. Fig. 3.3 shows an example in
which a 43 4 matrix M is linearized into a 16-element 1D array, with all ele-
ments of row 0 first, followed by the four elements of row 1, and so on.
Therefore the 1D equivalent index for an element of M at row j and column i is
j!41 i. The j!4 term skips over all elements of the rows before row j. The i term
then selects the right element within the section for row j. For example, the 1D
index for M2,1 is 2!41 15 9. This is illustrated in Fig. 3.3, in which M9 is the
1D equivalent to M2,1. This is the way in which C compilers linearize 2D arrays.

Another way to linearize a 2D array is to place all elements of the same col-
umn in consecutive locations. The columns are then placed one after another into
the memory space. This arrangement, called the column-major layout, is used by
FORTRAN compilers. Note that the column-major layout of a 2D array is equiva-
lent to the row-major layout of its transposed form. We will not spend more time
on this except to mention that readers whose primary previous programming
experience was with FORTRAN should be aware that CUDA C uses the row-
major layout rather than the column-major layout. Also, many C libraries that are

FIGURE 3.3

Row-major layout for a 2D C array. The result is an equivalent 1D array accessed by an
index expression j!Width+i for an element that is in the jth row and ith column of an array
of Width elements in each row.
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designed to be used by FORTRAN programs use the column-major layout to
match the FORTRAN compiler layout. As a result, the manual pages for these
libraries usually tell the users to transpose the input arrays if they call these librar-
ies from C programs.

We are now ready to study the source code of colorToGrayscaleConversion,
shown in Fig. 3.4. The kernel code uses the following equation to convert each
color pixel to its grayscale counterpart:

L5 0:21!r1 0:72!g1 0:07!b

There are a total of blockDim.x!gridDim.x threads in the horizontal direction.
Similar to the vecAddKernel example, the following expression generates every
integer value from 0 to blockDim.x!gridDim.x$1 (line 06):

col = blockIdx.x*blockDim.x + threadIdx.x

We know that gridDim.x!blockDim.x is greater than or equal to width
(m value passed in from the host code). We have at least as many threads as the
number of pixels in the horizontal direction. We also know that there are at least as
many threads as the number of pixels in the vertical direction. Therefore as long as
we test and make sure that only the threads with both row and column values are
within range, that is, (col,width) && (row,height), we will be able to cover
every pixel in the picture (line 07).

Since there are width pixels in each row, we can generate the 1D index for the
pixel at row row and column col as row!width+col (line 10). This 1D index

FIGURE 3.4

Source code of colorToGrayscaleConversion with 2D thread mapping to data.
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grayOffset is the pixel index for Pout since each pixel in the output grayscale image
is 1 byte (unsigned char). Using our 623 76 image example, the linearized 1D index
of the Pout pixel calculated by thread (0,0) of block (1,0) with the following formula:

PoutblockIdx:y!blockDim:y1threadIdx:y;blockIdx:x!blockDim:x1threadIdx:x

5 Pout1!1610;0!1610 5Pout16;0 5 Pout 16!761 0½ &5 Pout 1216½ &

As for Pin, we need to multiply the gray pixel index by 32F2F3 (line 13),
since each colored pixel is stored as three elements (r, g, b), each of which is 1
byte. The resulting rgbOffset gives the starting location of the color pixel in the
Pin array. We read the r, g, and b value from the three consecutive byte locations
of the Pin array (lines 14$16), perform the calculation of the grayscale pixel
value, and write that value into the Pout array using grayOffset (line 19). In our
623 76 image example the linearized 1D index of the first component of the Pin
pixel that is processed by thread (0,0) of block (1,0) can be calculated with the
following formula:

PinblockIdx:y!blockDim:y1threadIdx:y;blockIdx:x!blockDim:x1threadIdx:x 5Pin1!1610;0!1610

5 Pin16;0 5Pin 16!76!31 0½ &5Pin 3648½ &

The data that is being accessed is the 3 bytes starting at byte offset 3648.
Fig. 3.5 illustrates the execution of colorToGrayscaleConversion in

processing our 623 76 example. Assuming 163 16 blocks, calling the
colorToGrayscaleConversion kernel generates 643 80 threads. The grid will
have 43 55 20 blocks: four in the vertical direction and five in the horizontal
direction. The execution behavior of blocks will fall into one of four different
cases, shown as four shaded areas in Fig. 3.5.

The first area, marked 1 in Fig. 3.5, consists of the threads that belong to the
12 blocks covering the majority of pixels in the picture. Both col and row values
of these threads are within range; all these threads pass the if-statement test and
process pixels in the dark-shaded area of the picture. That is all 163 165 256
threads in each block will process pixels.

The second area, marked 2 in Fig. 3.5, contains the threads that belong to the
three blocks in the medium-shaded area covering the upper-right pixels of the pic-
ture. Although the row values of these threads are always within range, the col
values of some of them exceed the m value of 76. This is because the number of
threads in the horizontal direction is always a multiple of the blockDim.x value
chosen by the programmer (16 in this case). The smallest multiple of 16 needed
to cover 76 pixels is 80. As a result, 12 threads in each row will find their col
values within range and will process pixels. The remaining four threads in each
row will find their col values out of range and thus will fail the if-statement con-
dition. These threads will not process any pixels. Overall, 123 165 192 of the
163 165 256 threads in each of these blocks will process pixels.

3We assume that CHANNELS is a constant of value 3, and its definition is outside the kernel
function.
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The third area, marked 3 in Fig. 3.5, accounts for the four lower-left blocks
covering the medium-shaded area of the picture. Although the col values of these
threads are always within range, the row values of some of them exceed the n
value of 62. This is because the number of threads in the vertical direction is
always a multiple of the blockDim.y value chosen by the programmer (16 in this
case). The smallest multiple of 16 to cover 62 is 64. As a result, 14 threads in
each column will find their row values within range and will process pixels. The
remaining two threads in each column will not pas the if-statement and will not
process any pixels. Overall, 163 145 224 of the 256 threads will process pixels.

The fourth area, marked 4 in Fig. 3.5, contains the threads that cover the lower
right, lightly shaded area of the picture. Like Area 2, 4 threads in each of the top
14 rows will find their col values out of range. Like Area 3, the entire bottom
two rows of this block will find their row values out of range. Overall, only
143 125 168 of the 163 165 256 threads will process pixels.

We can easily extend our discussion of 2D arrays to 3D arrays by including
another dimension when we linearize the array. This is done by placing each
“plane” of the array one after another into the address space. Assume that the pro-
grammer uses variables m and n to track the number of columns and rows, respec-
tively, in a 3D array. The programmer also needs to determine the values of
blockDim.z and gridDim.z when calling a kernel. In the kernel the array index
will involve another global index:

FIGURE 3.5

Covering a 763 62 picture with 163 16 blocks.
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The linearized access to a 3D array P will be in the form of P[plane!m!n
+row!m+col]. A kernel processing the 3D P array needs to check whether all the
three global indices, plane, row, and col, fall within the valid range of the array.
The use of 3D arrays in CUDA kernels will be further studies for the stencil pat-
tern in Chapter 8, Stencil.

3.3 Image blur: a more complex kernel
We have studied vecAddkernel and colorToGrayscaleConversion, in which each
thread performs only a small number of arithmetic operations on one array ele-
ment. These kernels serve their purposes well: to illustrate the basic CUDA C
program structure and data parallel execution concepts. At this point, the reader
should ask the obvious question: Do all threads in CUDA C programs perform
only such simple and trivial operations independently of each other? The answer
is no. In real CUDA C programs, threads often perform complex operations on
their data and need to cooperate with each other. For the next few chapters we
are going to work on increasingly complex examples that exhibit these character-
istics. We will start with an image-blurring function.

Image blurring smoothes out abrupt variation of pixel values while preserving
the edges that are essential for recognizing the key features of the image. Fig. 3.6
illustrates the effect of image blurring. Simply stated, we make the image blurry.
To human eyes, a blurred image tends to obscure the fine details and present the
“big picture” impression, or the major thematic objects in the picture. In computer
image-processing algorithms a common use case of image blurring is to reduce
the impact of noise and granular rendering effects in an image by correcting prob-
lematic pixel values with the clean surrounding pixel values. In computer vision,
image blurring can be used to allow edge detection and object recognition algo-
rithms to focus on thematic objects rather than being bogged down by a massive
quantity of fine-grained objects. In displays, image blurring is sometimes used to
highlight a particular part of the image by blurring the rest of the image.

Mathematically, an image-blurring function calculates the value of an output
image pixel as a weighted sum of a patch of pixels encompassing the pixel in the
input image. As we will learn in Chapter 7, Convolution, the computation of such

FIGURE 3.6

An original image (left) and a blurred version (right).
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weighted sums belongs to the convolution pattern. We will be using a simplified
approach in this chapter by taking a simple average value of the N3N patch of
pixels surrounding, and including, our target pixel. To keep the algorithm simple,
we will not place a weight on the value of any pixel based on its distance from
the target pixel. In practice, placing such weights is quite common in convolution
blurring approaches, such as Gaussian blur.

Fig. 3.7 shows an example of image blurring using a 33 3 patch. When calcu-
lating an output pixel value at (row, col) position, we see that the patch is cen-
tered at the input pixel located at the (row, col) position. The 33 3 patch spans
three rows (row-1, row, row+1) and three columns (col-1, col, col+1). For exam-
ple, the coordinates of the nine pixels for calculating the output pixel at (25, 50)
are (24, 49), (24, 50), (24, 51), (25, 49), (25, 50), (25, 51), (26, 49), (26, 50), and
(26, 51).

Fig. 3.8 shows an image blur kernel. Similar to the strategy that was used in
colorToGrayscaleConversion, we use each thread to calculate an output pixel.
That is, the thread-to-output-data mapping remains the same. Thus at the begin-
ning of the kernel we see the familiar calculation of the col and row indices (lines
03$04). We also see the familiar if-statement that verifies that both col and row
are within the valid range according to the height and width of the image (line
05). Only the threads whose col and row indices are both within value ranges are
allowed to participate in the execution.

FIGURE 3.7

Each output pixel is the average of a patch of surrounding pixels and itself in the input
image.
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As shown in Fig. 3.7, the col and row values also give the central pixel loca-
tion of the patch of input pixels used for calculating the output pixel for the
thread. The nested for-loops in Fig. 3.8 (lines 10$11) iterate through all the pix-
els in the patch. We assume that the program has a defined constant BLUR_SIZE.
The value of BLUR_SIZE is set such that BLUR_SIZE gives the number of pixels on
each side (radius) of the patch and 2!BLUR_SIZE+1 gives the total number of pixels
across one dimension of the patch. For example, for a 33 3 patch, BLUR_SIZE is
set to 1, whereas for a 73 7 patch, BLUR_SIZE is set to 3. The outer loop iterates
through the rows of the patch. For each row, the inner loop iterates through the
columns of the patch.

In our 33 3 patch example, the BLUR_SIZE is 1. For the thread that calculates
output pixel (25, 50), during the first iteration of the outer loop, the curRow vari-
able is row-BLUR_SIZE5 (252 1)5 24. Thus during the first iteration of the outer
loop, the inner loop iterates through the patch pixels in row 24. The inner loop
iterates from column col-BLUR_SIZE5 50$15 49 to col+BLUR_SIZE5 51 using
the curCol variable. Therefore the pixels that are processed in the first iteration of
the outer loop are (24, 49), (24, 50), and (24, 51). The reader should verify that in
the second iteration of the outer loop, the inner loop iterates through pixels (25,
49), (25, 50), and (25, 51). Finally, in the third iteration of the outer loop, the
inner loop iterates through pixels (26, 49), (26, 50), and (26, 51).

FIGURE 3.8

An image blur kernel.
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Line 16 uses the linearized index of curRow and curCol to access the value
of the input pixel visited in the current iteration. It accumulates the pixel value
into a running sum variable pixVal. Line 17 records the fact that one more pixel
value has been added into the running sum by incrementing the pixels variable.
After all the pixels in the patch have been processed, line 22 calculates the aver-
age value of the pixels in the patch by dividing the pixVal value by the pixels
value. It uses the linearized index of row and col to write the result into its out-
put pixel.

Line 15 contains a conditional statement that guards the execution of lines 16
and 17. For example, in computing output pixels near the edge of the image, the
patch may extend beyond the valid range of the input image. This is illustrated in
Fig. 3.9 assuming 33 3 patches. In case 1, the pixel at the upper-left corner is
being blurred. Five of the nine pixels in the intended patch do not exist in the
input image. In this case, the row and col values of the output pixel are 0 and 0,
respectively. During the execution of the nested loop, the curRow and curCol
values for the nine iterations are (21,2 1), (21,0), (21,1), (0,2 1), (0,0), (0,1),
(1,2 1), (1,0), and (1,1). Note that for the five pixels that are outside the image,
at least one of the values is less than 0. The curRow,0 and curCol,0 conditions
of the if-statement catch these values and skip the execution of lines 16 and 17.
As a result, only the values of the four valid pixels are accumulated into the run-
ning sum variable. The pixels value is also correctly incremented only four times
so that the average can be calculated properly at line 22.

The reader should work through the other cases in Fig. 3.9 and analyze the
execution behavior of the nested loop in blurKernel. Note that most of the
threads will find all the pixels in their assigned 33 3 patch within the input
image. They will accumulate all the nine pixels. However, for the pixels on the
four corners, the responsible threads will accumulate only four pixels. For other
pixels on the four edges, the responsible threads will accumulate six pixels. These
variations are what necessitates keeping track of the actual number of pixels that
are accumulated with the variable pixels.

FIGURE 3.9

Handling boundary conditions for pixels near the edges of the image.
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3.4 Matrix multiplication
Matrix-matrix multiplication, or matrix multiplication in short, is an important
component of the Basic Linear Algebra Subprograms standard (see the “Linear
Algebra Functions” sidebar). It is the basis of many linear algebra solvers, such
as LU decomposition. It is also an important computation for deep learning using
convolutional neural networks, which will be discussed in detail in Chapter 16,
Deep Learning.

Linear Algebra Functions

Linear algebra operations are widely used in science and engineering
applications. In the Basic Linear Algebra Subprograms (BLAS), a de facto
standard for publishing libraries that perform basic algebra operations,
there are three levels of linear algebra functions. As the level increases,
the number of operations performed by the function increases. Level 1
functions perform vector operations of the form y5αx+y, where x and y
are vectors and α is a scalar. Our vector addition example is a special
case of a level 1 function with α5 1. Level 2 functions perform matrix-
vector operations of the form y5αAx+βy, where A is a matrix, x and y
are vectors, and α and β are scalars. We will be studying a form of level 2
function in sparse linear algebra. Level 3 functions perform matrix-matrix
operations in the form of C5αAB1βC, where A, B, and C are matrices
and α and β are scalars. Our matrix-matrix multiplication example is a
special case of a level 3 function where α5 1 and β5 0. These BLAS
functions are important because they are used as basic building blocks of
higher-level algebraic functions, such as linear system solvers and eigen-
value analysis. As we will discuss later, the performance of different imple-
mentations of BLAS functions can vary by orders of magnitude in both
sequential and parallel computers.

Matrix multiplication between an I3 j (i rows by j columns) matrix M and a
j3 k matrix N produces an I3 k matrix P. When a matrix multiplication is per-
formed, each element of the output matrix P is an inner product of a row of M and
a column of N. We will continue to use the convention where Prow, col is the ele-
ment at the rowth position in the vertical direction and the colth position in the
horizontal direction. As shown in Fig. 3.10, Prow,col (the small square in P) is the
inner product of the vector formed by the rowth row of M (shown as a horizontal
strip in M) and the vector formed by the colth column of N (shown as a vertical
strip in N). The inner product, sometimes called the dot product, of two vectors is
the sum of products of the individual vector elements. That is,

Prow;col 5
X

Mrow;k
!Nk;col for k5 0; 1; . . .Width2 1
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For example, in Fig. 3.10, assuming row5 1 and col5 5,

P1;5 5M1;0
!N0;5 þM1;1

!N1;5 þM1;2
!N2;5 þ . . .:þM1;Width21

!NWidth21;5

To implement matrix multiplication using CUDA, we can map the threads in
the grid to the elements of the output matrix P with the same approach that we
used for colorToGrayscaleConversion. That is, each thread is responsible for cal-
culating one P element. The row and column indices for the P element to be cal-
culated by each thread are the same as before:

and

With this one-to-one mapping, the row and col thread indices are also the row
and column indices for their output elements. Fig. 3.11 shows the source code of

FIGURE 3.10

Matrix multiplication using multiple blocks by tiling P.
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the kernel based on this thread-to-data mapping. The reader should immediately
see the familiar pattern of calculating row and col (lines 03$04) and the if-
statement testing if row and col are both within range (line 05). These statements
are almost identical to their counterparts in colorToGrayscaleConversion. The
only significant difference is that we are making a simplifying assumption that
matrixMulKernel needs to handle only square matrices, so we replace both width
and height with Width. This thread-to-data mapping effectively divides P into
tiles, one of which is shown as a light-colored square in Fig. 3.10. Each block is
responsible for calculating one of these tiles.

We now turn our attention to the work done by each thread. Recall that
Prow,col is calculated as the inner product of the rowth row of M and the colth col-
umn of N. In Fig. 3.11 we use a for-loop to perform this inner product operation.
Before we enter the loop, we initialize a local variable Pvalue to 0 (line 06).
Each iteration of the loop accesses an element from the rowth row of M and an
element from the colth column of N, multiplies the two elements together, and
accumulates the product into Pvalue (line 08).

Let us first focus on accessing the M element within the for-loop. M is linear-
ized into an equivalent 1D array using row-major order. That is, the rows of M are
placed one after another in the memory space, starting with the 0th row.
Therefore the beginning element of row 1 is M[1!Width] because we need to
account for all elements of row 0. In general, the beginning element of the rowth
row is M[row!Width]. Since all elements of a row are placed in consecutive loca-
tions, the kth element of the rowth row is at M[row!Width+k]. This linearized
array offset is what we use in Fig. 3.11 (line 08).

We now turn our attention to accessing N. As is shown in Fig. 3.11, the begin-
ning element of the colth column is the colth element of row 0, which is N[col].
Accessing the next element in the colth column requires skipping over an entire row.
This is because the next element of the same column is the same element in the next
row. Therefore the kth element of the colth column is N[k!Width+col] (line 08).

After the execution exits the for-loop, all threads have their P element values
in the Pvalue variables. Each thread then uses the 1D equivalent index expression

FIGURE 3.11

A matrix multiplication kernel using one thread to compute one P element.
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row!Width+col to write its P element (line 10). Again, this index pattern is like
that used in the colorToGrayscaleConversion kernel.

wWe now use a small example to illustrate the execution of the matrix multi-
plication kernel. Fig. 3.12 shows a 43 4 P with BLOCK_WIDTH5 2. Although
such small matrix and block sizes are not realistic, they allow us to fit the entire
example into one picture. The P matrix is divided into four tiles, and each block
calculates one tile. We do so by creating blocks that are 23 2 arrays of threads,
with each thread calculating one P element. In the example, thread (0,0) of block
(0,0) calculates P0,0, whereas thread (0,0) of block (1,0) calculates P2,0.

The row and col indices in matrixMulKernel identify the P element to be calcu-
lated by a thread. The row index also identifies the row of M, and the col index iden-
tifies the column of N as input values for the thread. Fig. 3.13 illustrates the
multiplication actions in each thread block. For the small matrix multiplication exam-
ple, threads in block (0,0) produce four dot products. The row and col indices of
thread (1,0) in block (0,0) are 0!01 15 1 and 0!01 05 0, respectively. The thread
thus maps to P1,0 and calculates the dot product of row 1 of M and column 0 of N.

Let us walk through the execution of the for-loop of Fig. 3.11 for thread (0,0)
in block (0,0). During iteration 0 (k5 0), row!Width1k50!41 05 0 and
k!Width1col50!41 05 0. Therefore the input elements accessed are M[0] and N
[0], which are the 1D equivalent of M0,0 and N0,0. Note that these are indeed the
0th elements of row 0 of M and column 0 of N. During iteration 1 (k5 1),
row!Width1k5 0!41 15 1 and k!Width1col5 1!41 05 4. Therefore we are
accessing M[1] and N[4], which are the 1D equivalent of M0,1 and N1,0. These are the
first elements of row 0 of M and column 0 of N. During iteration 2 (k5 2),
row!Width1k5 0!41 25 2 and k!Width1col5 2!41 05 8, which results in M[2]
and N[8]. Therefore the elements accessed are the 1D equivalent of M0,2 and N2,0.
Finally, during iteration 3 (k5 3), row!Width1k5 0!41 35 3 and k!Width1col5

FIGURE 3.12

A small execution example of matrixMulKernel.
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3!41 05 12, which results in M[3] and N[12], the 1D equivalent of M0,3 and N3,0.
We have now verified that the for-loop performs the inner product between the 0th
row of M and the 0th column of N for thread (0,0) in block (0,0). After the loop, the
thread writes P[row!Width+col], which is P[0]. This is the 1D equivalent of P0,0, so
thread (0,0) in block (0,0) successfully calculated the inner product between the 0th
row of M and the 0th column of N and deposited the result in P0,0.

We will leave it as an exercise for the reader to hand-execute and verify the
for-loop for other threads in block (0,0) or in other blocks.

Since the size of a grid is limited by the maximum number of blocks per grid
and threads per block, the size of the largest output matrix P that can be handled
by matrixMulKernel will also be limited by these constraints. In the situation in
which output matrices larger than this limit are to be computed, one can divide
the output matrix into submatrices whose sizes can be covered by a grid and use
the host code to launch a different grid for each submatrix. Alternatively, we can
change the kernel code so that each thread calculates more P elements. We will
explore both options later in this book.

3.5 Summary
CUDA grids and blocks are multidimensional with up to three dimensions. The
multidimensionality of grids and blocks is useful for organizing threads to be
mapped to multidimensional data. The kernel execution configuration parameters
define the dimensions of a grid and its blocks. Unique coordinates in blockIdx
and threadIdx allow threads of a grid to identify themselves and their domains of

FIGURE 3.13

Matrix multiplication actions of one thread block.
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data. It is the programmer’s responsibility to use these variables in kernel func-
tions so that the threads can properly identify the portion of the data to process.
When accessing multidimensional data, programmers will often have to linearize
multidimensional indices into a 1D offset. The reason is that dynamically allo-
cated multidimensional arrays in C are typically stored as 1D arrays in row-major
order. We use examples of increasing complexity to familiarize the reader with
the mechanics of processing multidimensional arrays with multidimensional grids.
These skills will be foundational for understanding parallel patterns and their
associated optimization techniques.

Exercises
1. In this chapter we implemented a matrix multiplication kernel that has each

thread produce one output matrix element. In this question, you will
implement different matrix-matrix multiplication kernels and compare them.
a. Write a kernel that has each thread produce one output matrix row. Fill in

the execution configuration parameters for the design.
b. Write a kernel that has each thread produce one output matrix column. Fill

in the execution configuration parameters for the design.
c. Analyze the pros and cons of each of the two kernel designs.

2. A matrix-vector multiplication takes an input matrix B and a vector C and
produces one output vector A. Each element of the output vector A is the dot
product of one row of the input matrix B and C, that is, A[i]5

Pj B[i][j]1C[j].
For simplicity we will handle only square matrices whose elements are single-
precision floating-point numbers. Write a matrix-vector multiplication kernel and
the host stub function that can be called with four parameters: pointer to the output
matrix, pointer to the input matrix, pointer to the input vector, and the number of
elements in each dimension. Use one thread to calculate an output vector element.

3. Consider the following CUDA kernel and the corresponding host function that
calls it:

a. What is the number of threads per block?
b. What is the number of threads in the grid?

67Exercises



c. What is the number of blocks in the grid?
d. What is the number of threads that execute the code on line 05?

4. Consider a 2D matrix with a width of 400 and a height of 500. The matrix is
stored as a one-dimensional array. Specify the array index of the matrix
element at row 20 and column 10:
a. If the matrix is stored in row-major order.
b. If the matrix is stored in column-major order.

5. Consider a 3D tensor with a width of 400, a height of 500, and a depth of
300. The tensor is stored as a one-dimensional array in row-major order.
Specify the array index of the tensor element at x5 10, y5 20, and z5 5.
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In Chapter 1, Introduction, we saw that CPUs are designed to minimize the latency of
instruction execution and that GPUs are designed to maximize the throughput of exe-
cuting instructions. In Chapters 2, Heterogeneous Data Parallel Computing and 3,
Multidimensional Grids and Data, we learned the core features of the CUDA program-
ming interface for creating and calling kernels to launch and execute threads. In the
next three chapters we will discuss the architecture of modern GPUs, both the compute
architecture and the memory architecture, and the performance optimization techniques
stemming from the understanding of this architecture. This chapter presents several
aspects of the GPU compute architecture that are essential for CUDA C programmers
to understand and reason about the performance behavior of their kernel code. We will
start by showing a high-level, simplified view of the compute architecture and explore
the concepts of flexible resource assignment, scheduling of blocks, and occupancy. We
will then advance into thread scheduling, latency tolerance, control divergence, and
synchronization. We will finish the chapter with a description of the API functions that
can be used to query the resources that are available in the GPU and the tools to help
estimate the occupancy of the GPU when executing a kernel. In the following two
chapters, we will present the core concepts and programming considerations of the
GPU memory architecture. In particular, Chapter 5, Memory Architecture and Data
Locality, focuses on the on-chip memory architecture, and Chapter 6, Performance
Considerations, briefly covers the off-chip memory architecture then elaborates on vari-
ous performance considerations of the GPU architecture as a whole. A CUDA C
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programmer who masters these concepts is well equipped to write and to understand
high-performance parallel kernels.

4.1 Architecture of a modern GPU
Fig. 4.1 shows a high-level, CUDA C programmer’s view of the architecture of a
typical CUDA-capable GPU. It is organized into an array of highly threaded
streaming multiprocessors (SMs). Each SM has several processing units called
streaming processors or CUDA cores (hereinafter referred to as just cores for
brevity), shown as small tiles inside the SMs in Fig. 4.1, that share control logic
and memory resources. For example, the Ampere A100 GPU has 108 SMs with
64 cores each, totaling 6912 cores in the entire GPU.

The SMs also come with different on-chip memory structures collectively labeled as
“Memory” in Fig. 4.1. These on-chip memory structures will be the topic of Chapter 5,
Memory Architecture and Data Locality. GPUs also come with gigabytes of off-chip
device memory, referred to as “Global Memory” in Fig. 4.1. While older GPUs used
graphics double data rate synchronous DRAM, more recent GPUs starting with
NVIDIA’s Pascal architecture may use HBM (high-bandwidth memory) or HBM2,
which consist of DRAM (dynamic random access memory) modules tightly integrated
with the GPU in the same package. For brevity we will broadly refer to all these types
of memory as DRAM for the rest of the book. We will discuss the most important con-
cepts involved in accessing GPU DRAMs in Chapter 6, Performance Considerations.

4.2 Block scheduling
When a kernel is called, the CUDA runtime system launches a grid of threads that
execute the kernel code. These threads are assigned to SMs on a block-by-block
basis. That is, all threads in a block are simultaneously assigned to the same SM.

FIGURE 4.1

Architecture of a CUDA-capable GPU.
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Fig. 4.2 illustrates the assignment of blocks to SMs. Multiple blocks are likely
to be simultaneously assigned to the same SM. For example, in Fig. 4.2, three
blocks are assigned to each SM. However, blocks need to reserve hardware
resources to execute, so only a limited number of blocks can be simultaneously
assigned to a given SM. The limit on the number of blocks depends on a variety
of factors that are discussed in Section 4.6.

With a limited number of SMs and a limited number of blocks that can be simul-
taneously assigned to each SM, there is a limit on the total number of blocks that can
be simultaneously executing in a CUDA device. Most grids contain many more
blocks than this number. To ensure that all blocks in a grid get executed, the runtime
system maintains a list of blocks that need to execute and assigns new blocks to SMs
when previously assigned blocks complete execution.

The assignment of threads to SMs on a block-by-block basis guarantees that
threads in the same block are scheduled simultaneously on the same SM. This
guarantee makes it possible for threads in the same block to interact with each
other in ways that threads across different blocks cannot.1 This includes barrier
synchronization, which is discussed in Section 4.3. It also includes accessing a
low-latency shared memory that resides on the SM, which is discussed in
Chapter 5, Memory Architecture and Data Locality.

4.3 Synchronization and transparent scalability
CUDA allows threads in the same block to coordinate their activities using the
barrier synchronization function __syncthreads(). Note that “__” consists of two

FIGURE 4.2

Thread block assignment to streaming multiprocessors (SMs).

1 Threads in different blocks can perform barrier synchronization through the Cooperative Groups
API. However, there are several important restrictions that must be obeyed to ensure that all threads
involved are indeed simultaneously executing on the SMs. Interested readers are referred to the
CUDA C Programming Guide for proper use of the Cooperative Groups API.
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“_” characters. When a thread calls __syncthreads(), it will be held at the pro-
gram location of the call until every thread in the same block reaches that loca-
tion. This ensures that all threads in a block have completed a phase of their
execution before any of them can move on to the next phase.

Barrier synchronization is a simple and popular method for coordinating parallel
activities. In real life, we often use barrier synchronization to coordinate parallel activi-
ties of multiple people. For example, assume that four friends go to a shopping mall in
a car. They can all go to different stores to shop for their own clothes. This is a parallel
activity and is much more efficient than if they all remain as a group and sequentially
visit all the stores of interest. However, barrier synchronization is needed before they
leave the mall. They must wait until all four friends have returned to the car before
they can leave. The ones who finish earlier than the others must wait for those who fin-
ish later. Without the barrier synchronization, one or more individuals can be left in the
mall when the car leaves, which could seriously damage their friendship!

Fig. 4.3 illustrates the execution of barrier synchronization. There are N
threads in the block. Time goes from left to right. Some of the threads reach the
barrier synchronization statement early, and some reach it much later. The ones
that reach the barrier early will wait for those that arrive late. When the latest one
arrives at the barrier, all threads can continue their execution. With barrier syn-
chronization, “no one is left behind.”

FIGURE 4.3

An example execution of barrier synchronization. The arrows represent execution activities
over time. The vertical curve marks the time when each thread executes the__syncthreads
statement. The empty space to the right of the vertical curve depicts the time that each
thread waits for all threads to complete. The vertical line marks the time when the last thread
executes the __syncthreads statement, after which all threads are allowed to proceed to
execute the statements after the __syncthreads statement.
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In CUDA, if a __syncthreads() statement is present, it must be executed by all
threads in a block. When a __syncthreads() statement is placed in an if statement,
either all threads in a block execute the path that includes the __syncthreads() or
none of them does. For an if-then-else statement, if each path has a __syncthreads()
statement, either all threads in a block execute the then-path or all of them execute the
else-path. The two __syncthreads() are different barrier synchronization points. For
example, in Fig. 4.4, two __syncthreads() are used in the if statement starting in line
04. All threads with even threadIdx.x values execute the then-path while the remain-
ing threads execute the else-path. The __syncthreads() calls at line 06 and line 10
define two different barriers. Since not all threads in a block are guaranteed to execute
either of the barriers, the code violates the rules for using __syncthreads() and will
result in undefined execution behavior. In general, incorrect usage of barrier synchro-
nization can result in incorrect result, or in threads waiting for each other forever,
which is referred to as a deadlock. It is the responsibility of the programmer to avoid
such inappropriate use of barrier synchronization.

Barrier synchronization imposes execution constraints on threads within a block.
These threads should execute in close time proximity with each other to avoid exces-
sively long waiting times. More important, the system needs to make sure that all threads
involved in the barrier synchronization have access to the necessary resources to eventu-
ally arrive at the barrier. Otherwise, a thread that never arrives at the barrier synchroniza-
tion point can cause a deadlock. The CUDA runtime system satisfies this constraint by
assigning execution resources to all threads in a block as a unit, as we saw in Section 4.2.
Not only do all threads in a block have to be assigned to the same SM, but also they need
to be assigned to that SM simultaneously. That is, a block can begin execution only
when the runtime system has secured all the resources needed by all threads in the block
to complete execution. This ensures the time proximity of all threads in a block and pre-
vents an excessive or even indefinite waiting time during barrier synchronization.

This leads us to an important tradeoff in the design of CUDA barrier synchroniza-
tion. By not allowing threads in different blocks to perform barrier synchronization

FIGURE 4.4

An incorrect use of __syncthreads()
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with each other, the CUDA runtime system can execute blocks in any order relative
to each other, since none of them need to wait for each other. This flexibility enables
scalable implementations, as shown in Fig. 4.5. Time in the figure progresses from
top to bottom. In a low-cost system with only a few execution resources, one can
execute a small number of blocks at the same time, portrayed as executing two
blocks a time on the left-hand side of Fig. 4.5. In a higher-end implementation with
more execution resources, one can execute many blocks at the same time, portrayed
as executing four blocks at a time on the right-hand side of Fig. 4.5. A high-end
GPU today can execute hundreds of blocks simultaneously.

The ability to execute the same application code with a wide range of speeds allows
the production of a wide range of implementations according to the cost, power, and
performance requirements of different market segments. For example, a mobile proces-
sor may execute an application slowly but at extremely low power consumption, and a
desktop processor may execute the same application at a higher speed while consuming
more power. Both execute the same application program with no change to the code.
The ability to execute the same application code on different hardware with different
amounts of execution resources is referred to as transparent scalability, which reduces
the burden on application developers and improves the usability of applications.

4.4 Warps and SIMD hardware
We have seen that blocks can execute in any order relative to each other, which
allows for transparent scalability across different devices. However, we did not
say much about the execution timing of threads within each block. Conceptually,
one should assume that threads in a block can execute in any order with respect
to each other. In algorithms with phases, barrier synchronizations should be used
whenever we want to ensure that all threads have completed a previous phase of
their execution before any of them start the next phase. The correctness of

FIGURE 4.5

Lack of synchronization constraints between blocks enables transparent scalability for
CUDA programs.
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executing a kernel should not depend on any assumption that certain threads will
execute in synchrony with each other without the use of barrier synchronizations.

Thread scheduling in CUDA GPUs is a hardware implementation concept and
therefore must be discussed in the context of specific hardware implementations.
In most implementations to date, once a block has been assigned to an SM, it is
further divided into 32-thread units called warps. The size of warps is implemen-
tation specific and can vary in future generations of GPUs. Knowledge of warps
can be helpful in understanding and optimizing the performance of CUDA appli-
cations on particular generations of CUDA devices.

A warp is the unit of thread scheduling in SMs. Fig. 4.6 shows the division of
blocks into warps in an implementation. In this example there are three blocks—
Block 1, Block 2, and Block 3—all assigned to an SM. Each of the three blocks
is further divided into warps for scheduling purposes. Each warp consists of 32
threads of consecutive threadIdx values: threads 0 through 31 form the first
warp, threads 32 through 63 form the second warp, and so on. We can calculate
the number of warps that reside in an SM for a given block size and a given num-
ber of blocks assigned to each SM. In this example, if each block has 256 threads,
we can determine that each block has 256/32 or 8 warps. With three blocks in the
SM, we have 83 3 = 24 warps in the SM.

FIGURE 4.6

Blocks are partitioned into warps for thread scheduling.
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Blocks are partitioned into warps on the basis of thread indices. If a block is
organized into a one-dimensional array, that is, only threadIdx.x is used, the par-
tition is straightforward. The threadIdx.x values within a warp are consecutive
and increasing. For a warp size of 32, warp 0 starts with thread 0 and ends with
thread 31, warp 1 starts with thread 32 and ends with thread 63, and so on. In
general, warp n starts with thread 323 n and ends with thread 323 (n+1)2 1.
For a block whose size is not a multiple of 32, the last warp will be padded with
inactive threads to fill up the 32 thread positions. For example, if a block has 48
threads, it will be partitioned into two warps, and the second warp will be padded
with 16 inactive threads.

For blocks that consist of multiple dimensions of threads, the dimensions will be
projected into a linearized row-major layout before partitioning into warps. The linear
layout is determined by placing the rows with larger y and z coordinates after those
with lower ones. That is, if a block consists of two dimensions of threads, one will
form the linear layout by placing all threads whose threadIdx.y is 1 after those
whose threadIdx.y is 0. Threads whose threadIdx.y is 2 will be placed after those
whose threadIdx.y is 1, and so on. Threads with the same threadIdx.y value are
placed in consecutive positions in increasing threadIdx.x order.

Fig. 4.7 shows an example of placing threads of a two-dimensional block into
a linear layout. The upper part shows the two-dimensional view of the block. The
reader should recognize the similarity to the row-major layout of two-dimensional
arrays. Each thread is shown as Ty,x, x being threadIdx.x and y being
threadIdx.y. The lower part of Fig. 4.7 shows the linearized view of the block.
The first four threads are the threads whose threadIdx.y value is 0; they are
ordered with increasing threadIdx.x values. The next four threads are the threads
whose threadIdx.y value is 1. They are also placed with increasing threadIdx.x
values. In this example, all 16 threads form half a warp. The warp will be padded
with another 16 threads to complete a 32-thread warp. Imagine a two-dimensional

FIGURE 4.7

Placing 2D threads into a linear layout.
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block with 83 8 threads. The 64 threads will form two warps. The first warp
starts from T0,0 and ends with T3,7. The second warp starts with T4,0 and ends
with T7,7. It would be useful for the reader to draw out the picture as an exercise.

For a three-dimensional block, we first place all threads whose threadIdx.z
value is 0 into the linear order. These threads are treated as a two-dimensional
block, as shown in Fig. 4.7. All threads whose threadIdx.z value is 1 will then
be placed into the linear order, and so on. For example, for a three-dimensional
23 83 4 block (four in the x dimension, eight in the y dimension, and two in the
z dimension), the 64 threads will be partitioned into two warps, with T0,0,0

through T0,7,3 in the first warp and T1,0,0 through T1,7,3 in the second warp.
An SM is designed to execute all threads in a warp following the single-instruction,

multiple-data (SIMD) model. That is, at any instant in time, one instruction is fetched
and executed for all threads in the warp (see the “Warps and SIMD Hardware” side-
bar). Fig. 4.8 shows how the cores in an SM are grouped into processing blocks in
which every 8 cores form a processing block and share an instruction fetch/dispatch
unit. As a real example, the Ampere A100 SM, which has 64 cores, is organized into
four processing blocks with 16 cores each. Threads in the same warp are assigned to
the same processing block, which fetches the instruction for the warp and executes it
for all threads in the warp at the same time. These threads apply the same instruction
to different portions of the data. Because the SIMD hardware effectively restricts all
threads in a warp to execute the same instruction at any point in time, the execution
behavior of a warp is often referred to as single instruction, multiple-thread.

The advantage of SIMD is that the cost of the control hardware, such as the
instruction fetch/dispatch unit, is shared across many execution units. This design
choice allows for a smaller percentage of the hardware to be dedicated to control

FIGURE 4.8

Streaming multiprocessors are organized into processing blocks for SIMD execution.
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and a larger percentage to be dedicated to increasing arithmetic throughput. we
expect that in the foreseeable future, warp partitioning will remain a popular
implementation technique. However, the size of warp can vary from implementa-
tion to implementation. Up to this point in time, all CUDA devices have used
similar warp configurations in which each warp consists of 32 threads.

Warps and SIMD Hardware

In his seminal 1945 report, John von Neumann described a model for
building electronic computers, which is based on the design of the pioneer-
ing EDVAC computer. This model, now commonly referred to as the “von
Neumann Model,” has been the foundational blueprint for virtually all
modern computers.

The von Neumann Model is illustrated in the following figure. The com-
puter has an I/O (input/output) that allows both programs and data to be
provided to and generated from the system. To execute a program, the
computer first inputs the program and its data into the Memory.

The program consists of a collection of instructions. The Control Unit
maintains a Program Counter (PC), which contains the memory address of
the next instruction to be executed. In each “instruction cycle,” the
Control Unit uses the PC to fetch an instruction into the Instruction
Register (IR). The instruction bits are then examined to determine the
action to be taken by all components of the computer. This is the reason
why the model is also called the “stored program” model, which means
that a user can change the behavior of a computer by storing a different
program into its memory.

The motivation for executing threads as warps is illustrated in the fol-
lowing modified von Neumann model that is adapted to reflect a GPU

78 CHAPTER 4 Compute architecture and scheduling

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran

Melani Maheswaran



design. The processor, which corresponds to a processing block in
Figure 4.8, has only one control unit that fetches and dispatches instruc-
tions. The same control signals (arrows that go from the Control Unit to
the Processing Units in Figure 4.8 ) go to multiple processing units that
each correspond to a core in the SM, each of which executes one of the
threads in a warp.

Since all processing units are controlled by the same instruction in the
Instruction Register (IR) of the Control Unit, their execution differences
are due to the different data operand values in the register files. This is
called Single-Instruction-Multiple-Data (SIMD) in processor design. For
example, although all processing units (cores) are controlled by an
instruction, such as add r1, r2, r3, the contents of r2 and r3 are different
in different processing units.

Control units in modern processors are quite complex, including
sophisticated logic for fetching instructions and access ports to the instruc-
tion cache. Having multiple processing units to share a control unit can
result in significant reduction in hardware manufacturing cost and power
consumption.

4.5 Control divergence
SIMD execution works well when all threads within a warp follow the same exe-
cution path, more formally referred to as control flow, when working on their
data. For example, for an if-else construct, the execution works well when either
all threads in a warp execute the if-path or all execute the else-path. However,
when threads within a warp take different control flow paths, the SIMD hardware
will take multiple passes through these paths, one pass for each path. For
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example, for an if-else construct, if some threads in a warp follow the if-path
while others follow the else path, the hardware will take two passes. One pass
executes the threads that follow the if-path, and the other executes the threads
that follow the else-path. During each pass, the threads that follow the other path
are not allowed to take effect.

When threads in the same warp follow different execution paths, we say that
these threads exhibit control divergence, that is, they diverge in their execution.
The multipass approach to divergent warp execution extends the SIMD hard-
ware’s ability to implement the full semantics of CUDA threads. While the hard-
ware executes the same instruction for all threads in a warp, it selectively lets
these threads take effect in only the pass that corresponds to the path that they
took, allowing every thread to appear to take its own control flow path. This pre-
serves the independence of threads while taking advantage of the reduced cost of
SIMD hardware. The cost of divergence, however, is the extra passes the hard-
ware needs to take to allow different threads in a warp to make their own deci-
sions as well as the execution resources that are consumed by the inactive threads
in each pass.

Fig. 4.9 shows an example of how a warp would execute a divergent if-else
statement. In this example, when the warp consisting of threads 0!31 arrives
at the if-else statement, threads 0!23 take the then-path, while threads 24!31
take the else-path. In this case, the warp will do a pass through the code in which
threads 0!23 execute A while threads 24!31 are inactive. The warp will also do
another pass through the code in which threads 24!31 execute B while threads
0!23 are inactive. The threads in the warp then reconverge and execute C. In the
Pascal architecture and prior architectures, these passes are executed sequentially,

FIGURE 4.9

Example of a warp diverging at an if-else statement.
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meaning that one pass is executed to completion followed by the other pass.
From the Volta architecture onwards, the passes may be executed concurrently,
meaning that the execution of one pass may be interleaved with the execution of
another pass. This feature is referred to as independent thread scheduling.
Interested readers are referred to the whitepaper on the Volta V100 architecture
(NVIDIA, 2017) for details.

Divergence also can arise in other control flow constructs. Fig. 4.10 shows an
example of how a warp would execute a divergent for-loop. In this example, each
thread executes a different number of loop iterations, which vary between four and
eight. For the first four iterations, all threads are active and execute A. For the
remaining iterations, some threads execute A, while others are inactive because they
have completed their iterations.

One can determine whether a control construct can result in thread divergence
by inspecting its decision condition. If the decision condition is based on
threadIdx values, the control statement can potentially cause thread divergence.
For example, the statement if(threadIdx.x . 2) {. . .} causes the threads in the
first warp of a block to follow two divergent control flow paths. Threads 0, 1, and
2 follow a different path than that of threads 3, 4, 5, and so on. Similarly, a loop
can cause thread divergence if its loop condition is based on thread index values.

A prevalent reason for using a control construct with thread control divergence is
handling boundary conditions when mapping threads to data. This is usually because
the total number of threads needs to be a multiple of the thread block size, whereas
the size of the data can be an arbitrary number. Starting with our vector addition ker-
nel in Chapter 2, Heterogeneous Data Parallel Computing, we had an if(i,n) state-
ment in addVecKernel. This is because not all vector lengths can be expressed as
multiples of the block size. For example, let’s assume that the vector length is 1003

FIGURE 4.10

Example of a warp diverging at a for-loop.
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and we picked 64 as the block size. One would need to launch 16 thread blocks to
process all the 1003 vector elements. However, the 16 thread blocks would have
1024 threads. We need to disable the last 21 threads in thread block 15 from doing
work that is not expected or not allowed by the original program. Keep in mind that
these 16 blocks are partitioned into 32 warps. Only the last warp (i.e., the second
warp in the last block) will have control divergence.

Note that the performance impact of control divergence decreases as the size
of the vectors being processed increases. For a vector length of 100, one of the
four warps will have control divergence, which can have significant impact on
performance. For a vector size of 1000, only one of the 32 warps will have con-
trol divergence. That is, control divergence will affect only about 3% of the exe-
cution time. Even if it doubles the execution time of the warp, the net impact on
the total execution time will be about 3%. Obviously, if the vector length is
10,000 or more, only one of the 313 warps will have control divergence. The
impact of control divergence will be much less than 1%!

For two-dimensional data, such as the color-to-grayscale conversion example
in Chapter 3, Multidimensional Grids and Data, if statements are also used to han-
dle the boundary conditions for threads that operate at the edge of the data. In
Fig. 3.2, to process the 623 76 image, we used 20 = 43 5 two-dimensional
blocks that consist of 163 16 threads each. Each block will be partitioned into 8
warps; each one consists of two rows of a block. A total 160 warps (8 warps per
block) are involved. To analyze the impact of control divergence, refer to
Fig. 3.5. None of the warps in the 12 blocks in region 1 will have control diver-
gence. There are 123 8 = 96 warps in region 1. For region 2, all the 24 warps
will have control divergence. For region 3, all the bottom warps are mapped to
data that are completely outside the image. As result, none of them will pass the
if condition. The reader should verify that these warps would have had control
divergence if the picture had an odd number of pixels in the vertical dimension.
In region 4, the first 7 warps will have control divergence, but the last warp will
not. All in all, 31 out of the 160 warps will have control divergence.

Once again, the performance impact of control divergence decreases as the
number of pixels in the horizontal dimension increases. For example, if we pro-
cess a 2003 150 picture with 163 16 blocks, there will be a total of 130 =
133 10 thread blocks or 1040 warps. The number of warps in regions 1 through
4 will be 864 (123 93 8), 72 (93 8), 96 (123 8), and 8 (13 8). Only 80 of
these warps will have control divergence. Thus the performance impact of control
divergence will be less than 8%. Obviously, if we process a realistic picture with
more than 1000 pixels in the horizontal dimension, the performance impact of
control divergence will be less than 2%.

An important implication of control divergence is that one cannot assume that
all threads in a warp have the same execution timing. Therefore if all threads in a
warp must complete a phase of their execution before any of them can move on,
one must use a barrier synchronization mechanism such as __syncwarp() to
ensure correctness.
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4.6 Warp scheduling and latency tolerance
When threads are assigned to SMs, there are usually more threads assigned to an
SM than there are cores in the SM. That is, each SM has only enough execution
units to execute a subset of all the threads assigned to it at any point in time.
In earlier GPU designs, each SM can execute only one instruction for a single
warp at any given instant. In more recent designs, each SM can execute instruc-
tions for a small number of warps at any given point in time. In either case, the
hardware can execute instructions only for a subset of all warps in the SM. A
legitimate question is why we need to have so many warps assigned to an SM if
it can execute only a subset of them at any instant? The answer is that this is how
GPUs tolerate long-latency operations such as global memory accesses.

When an instruction to be executed by a warp needs to wait for the result of a
previously initiated long-latency operation, the warp is not selected for execution.
Instead, another resident warp that is no longer waiting for results of previous
instructions will be selected for execution. If more than one warp is ready for exe-
cution, a priority mechanism is used to select one for execution. This mechanism
of filling the latency time of operations from some threads with work from other
threads is often called “latency tolerance” or “latency hiding” (see the “Latency
Tolerance” sidebar).

Latency Tolerance

Latency tolerance is needed in many everyday situations. For example, in
post offices, each person who is trying to ship a package should ideally
have filled out all the forms and labels before going to the service counter.
However, as we all have experienced, some people wait for the service
desk clerk to tell them which form to fill out and how to fill out the form.

When there is a long line in front of the service desk, it is important to
maximize the productivity of the service clerks. Letting a person fill out the
form in front of the clerk while everyone waits is not a good approach.
The clerk should be helping the next customers who are waiting in line
while the person fills out the form. These other customers are “ready to
go” and should not be blocked by the customer who needs more time to
fill out a form.

This is why a good clerk would politely ask the first customer to step
aside to fill out the form while the clerk serves other customers. In most
cases, instead of going to the end of the line, the first customer will be
served as soon as he or she finishes the form and the clerk finishes serving
the current customer.

We can think of these post office customers as warps and the clerk as a
hardware execution unit. The customer who needs to fill out the form cor-
responds to a warp whose continued execution is dependent on a long-
latency operation.
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Note that warp scheduling is also used for tolerating other types of operation
latencies, such as pipelined floating-point arithmetic and branch instructions.
With enough warps around, the hardware will likely find a warp to execute at any
point in time, thus making full use of the execution hardware while the instruc-
tions of some warps wait for the results of these long-latency operations. The
selection of warps that are ready for execution does not introduce any idle or
wasted time into the execution timeline, which is referred to as zero-overhead
thread scheduling (see the “Threads, Context-switching, and Zero-overhead
Scheduling” sidebar). With warp scheduling, the long waiting time of warp
instructions is “hidden” by executing instructions from other warps. This ability
to tolerate long operation latencies is the main reason why GPUs do not dedicate
nearly as much chip area to cache memories and branch prediction mechanisms
as CPUs do. As a result, GPUs can dedicate more chip area to floating-point exe-
cution and memory access channel resources.

Threads, Context-switching, and Zero-overhead Scheduling

Based on the von Neumann model, we are ready to more deeply understand
how threads are implemented. A thread in modern computers is a program
and the state of executing the program on a von Neumann Processor. Recall
that a thread consists of the code of a program, the instruction in the code
that is being executed, and value of its variables and data structures.

In a computer based on the von Neumann model, the code of the pro-
gram is stored in the memory. The PC keeps track of the address of the
instruction of the program that is being executed. The IR holds the instruc-
tion that is being executed. The register and memory hold the values of the
variables and data structures.

Modern processors are designed to allow context-switching, where mul-
tiple threads can time-share a processor by taking turns to make progress.
By carefully saving and restoring the PC value and the contents of regis-
ters and memory, we can suspend the execution of a thread and correctly
resume the execution of the thread later. However, saving and restoring
register contents during context-switching in these processors can incur
significant overhead in terms of added execution time.

Zero-overhead scheduling refers to the GPU’s ability to put a warp
that needs to wait for a long-latency instruction result to sleep and activate
a warp that is ready to go without introducing any extra idle cycles in the
processing units. Traditional CPUs incur such idle cycles because switch-
ing the execution from one thread to another requires saving the execution
state (such as register contents of the out-going thread) to memory and
loading the execution state of the incoming thread from memory. GPU
SMs achieves zero-overhead scheduling by holding all the execution states
for the assigned warps in the hardware registers so there is no need to
save and restore states when switching from one warp to another.
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For latency tolerance to be effective, it is desirable for an SM to have many
more threads assigned to it than can be simultaneously supported with its execu-
tion resources to maximize the chance of finding a warp that is ready to execute
at any point in time. For example, in an Ampere A100 GPU, an SM has 64 cores
but can have up to 2048 threads assigned to it at the same time. Thus the SM can
have up to 32 times more threads assigned to it than its cores can support at any
given clock cycle. This oversubscription of threads to SMs is essential for latency
tolerance. It increases the chances of finding another warp to execute when a cur-
rently executing warp encounters a long-latency operation.

4.7 Resource partitioning and occupancy
We have seen that it is desirable to assign many warps to an SM in order to tolerate
long-latency operations. However, it may not always be possible to assign to the SM
the maximum number of warps that the SM supports. The ratio of the number of
warps assigned to an SM to the maximum number it supports is referred to as occu-
pancy. To understand what may prevent an SM from reaching maximum occupancy,
it is important first to understand how SM resources are partitioned.

The execution resources in an SM include registers, shared memory (discussed
in Chapter 5, Memory Architecture and Data Locality), thread block slots, and
thread slots. These resources are dynamically partitioned across threads to support
their execution. For example, an Ampere A100 GPU can support a maximum of
32 blocks per SM, 64 warps (2048 threads) per SM, and 1024 threads per block.
If a grid is launched with a block size of 1024 threads (the maximum allowed),
the 2048 thread slots in each SM are partitioned and assigned to 2 blocks. In this
case, each SM can accommodate up to 2 blocks. Similarly, if a grid is launched
with a block size of 512, 256, 128, or 64 threads, the 2048 thread slots are parti-
tioned and assigned to 4, 8, 16, or 32 blocks, respectively.

This ability to dynamically partition thread slots among blocks makes SMs
versatile. They can either execute many blocks each having few threads or exe-
cute few blocks each having many threads. This dynamic partitioning can be con-
trasted with a fixed partitioning method in which each block would receive a
fixed amount of resources regardless of its real needs. Fixed partitioning results in
wasted thread slots when a block requires fewer threads than the fixed partition
supports and fails to support blocks that require more thread slots than that.

Dynamic partitioning of resources can lead to subtle interactions between
resource limitations, which can cause underutilization of resources. Such interac-
tions can occur between block slots and thread slots. In the example of the
Ampere A100, we saw that the block size can be varied from 1024 to 64, result-
ing in 2!32 blocks per SM, respectively. In all these cases, the total number of
threads assigned to the SM is 2048, which maximizes occupancy. Consider, how-
ever, the case when each block has 32 threads. In this case, the 2048 thread slots
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would need to be partitioned and assigned to 64 blocks. However, the Volta SM
can support only 32 blocks slots at once. This means that only 1024 of the thread
slots will be utilized, that is, 32 blocks with 32 threads each. The occupancy in
this case is (1024 assigned threads)/(2048 maximum threads) = 50%. Therefore to
fully utilize the thread slots and achieve maximum occupancy, one needs at least
64 threads in each block.

Another situation that could negatively affect occupancy occurs when the maximum
number of threads per block is not divisible by the block size. In the example of the
Ampere A100, we saw that up to 2048 threads per SM can be supported. However, if
a block size of 768 is selected, the SM will be able to accommodate only 2 thread
blocks (1536 threads), leaving 512 thread slots unutilized. In this case, neither the max-
imum threads per SM nor the maximum blocks per SM are reached. The occupancy in
this case is (1536 assigned threads)/(2,048 maximum threads) = 75%.

The preceding discussion does not consider the impact of other resource con-
straints, such as registers and shared memory. We will see in Chapter 5, Memory
Architecture and Data Locality, that automatic variables declared in a CUDA kernel
are placed into registers. Some kernels may use many automatic variables, and
others may use few of them. Therefore one should expect that some kernels require
many registers per thread and some require few. By dynamically partitioning regis-
ters in an SM across threads, the SM can accommodate many blocks if they require
few registers per thread and fewer blocks if they require more registers per thread.

One does, however, need to be aware of potential impact of register resource
limitations on occupancy. For example, the Ampere A100 GPU allows a maximum
of 65,536 registers per SM. To run at full occupancy, each SM needs enough regis-
ters for 2048 threads, which means that each thread should not use more than
(65,536 registers)/(2048 threads) = 32 registers per thread. For example, if a kernel
uses 64 registers per thread, the maximum number of threads that can be supported
with 65,536 registers is 1024 threads. In this case, the kernel cannot run with full
occupancy regardless of what the block size is set to be. Instead, the occupancy
will be at most 50%. In some cases, the compiler may perform register spilling to
reduce the register requirement per thread and thus elevate the level of occupancy.
However, this is typically at the cost of increased execution time for the threads to
access the spilled register values from memory and may cause the total execution
time of the grid to increase. A similar analysis is done for the shared memory
resource in Chapter 5, Memory Architecture and Data Locality.

Assume that a programmer implements a kernel that uses 31 registers per
thread and configures it with 512 threads per block. In this case, the SM will
have (2048 threads)/(512 threads/block) = 4 blocks running simultaneously. These
threads will use a total of (2048 threads)3 (31 registers/thread) = 63,488 regis-
ters, which is less than the 65,536 register limit. Now assume that the programmer
declares another two automatic variables in the kernel, bumping the number of
registers used by each thread to 33. The number of registers required by 2048
threads is now 67,584 registers, which exceeds the register limit. The CUDA run-
time system may deal with this situation by assigning only 3 blocks to each SM
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instead of 4, thus reducing the number of registers required to 50,688 registers.
However, this reduces the number of threads running on an SM from 2048 to
1536; that is, by using two extra automatic variables, the program saw a reduction
in occupancy from 100% to 75%. This is sometimes referred to as a “performance
cliff,” in which a slight increase in resource usage can result in significant reduc-
tion in parallelism and performance achieved (Ryoo et al., 2008).

It should be clear to the reader that the constraints of all the dynamically parti-
tioned resources interact with each other in a complex manner. Accurate determi-
nation of the number of threads running in each SM can be difficult. The reader
is referred to the CUDA Occupancy Calculator (CUDA Occupancy Calculator,
Web) which is a downloadable spreadsheet that calculates the actual number of
threads running on each SM for a particular device implementation given the
usage of resources by a kernel.

4.8 Querying device properties
Our discussion on partitioning of SM resources raises an important question: How
do we find out the amount of resources available for a particular device? When a
CUDA application executes on a system, how can it find out the number of SMs
in a device and the number of blocks and threads that can be assigned to each
SM? The same questions apply to other kinds of resources, some of which we
have not discussed so far. In general, many modern applications are designed to exe-
cute on a wide variety of hardware systems. There is often a need for the application
to query the available resources and capabilities of the underlying hardware in order
to take advantage of the more capable systems while compensating for the less capa-
ble systems (see the “Resource and Capability Queries” sidebar).

Resource and Capability Queries

In everyday life, we often query the resources and capabilities in an envi-
ronment. For example, when we make a hotel reservation, we can check
the amenities that come with a hotel room. If the room comes with a hair
dryer, we do not need to bring one. Most American hotel rooms come with
hair dryers, while many hotels in other regions do not.

Some Asian and European hotels provide toothpaste and even toothbrushes,
while most American hotels do not. Many American hotels provide both shampoo
and conditioner, while hotels in other continents often provide only shampoo.

If the room comes with a microwave oven and a refrigerator, we can take
the leftovers from dinner and expect to eat them the next day. If the hotel has a
pool, we can bring swimsuits and take a dip after business meetings. If the hotel
does not have a pool but has an exercise room, we can bring running shoes and
exercise clothes. Some high-end Asian hotels even provide exercise clothing!
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These hotel amenities are part of the properties, or resources and capa-
bilities, of the hotels. Veteran travelers check the properties at hotel web-
sites, choose the hotels that best match their needs, and pack more
efficiently and effectively.

The amount of resources in each CUDA device SM is specified as part of the
compute capability of the device. In general, the higher the compute capability
level, the more resources are available in each SM. The compute capability of
GPUs tends to increase from generation to generation. The Ampere A100 GPU
has compute capability 8.0.

In CUDA C, there is a built-in mechanism for the host code to query the prop-
erties of the devices that are available in the system. The CUDA runtime system
(device driver) has an API function cudaGetDeviceCount that returns the number
of available CUDA devices in the system. The host code can find out the number
of available CUDA devices by using the following statements:

int devCount;
cudaGetDeviceCount(&devCount);

While it may not be obvious, a modern PC system often has two or more CUDA
devices. This is because many PC systems come with one or more “integrated”
GPUs. These GPUs are the default graphics units and provide rudimentary capabilities
and hardware resources to perform minimal graphics functionalities for modern
window-based user interfaces. Most CUDA applications will not perform very well on
these integrated devices. This would be a reason for the host code to iterate through all
the available devices, query their resources and capabilities, and choose the ones that
have enough resources to execute the application with satisfactory performance.

The CUDA runtime numbers all the available devices in the system from 0 to
devCount-1. It provides an API function cudaGetDeviceProperties that returns
the properties of the device whose number is given as an argument. For example,
we can use the following statements in the host code to iterate through the avail-
able devices and query their properties:

cudaDeviceProp devProp;
for(unsigned int i = 0; i < devCount; i++) {

cudaGetDeviceProperties(&devProp, i);
// Decide if device has sufficient 

resources/capabilities
}
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The built-in type cudaDeviceProp is a C struct type with fields that represent
the properties of a CUDA device. The reader is referred to the CUDA C
Programming Guide for all the fields of the type. We will discuss a few of these
fields that are particularly relevant to the assignment of execution resources to
threads. We assume that the properties are returned in the devProp variable whose
fields are set by the cudaGetDeviceProperties function. If the reader chooses to
name the variable differently, the appropriate variable name will obviously need
to be substituted in the following discussion.

As the name suggests, the field devProp.maxThreadsPerBlock gives the maximum
number of threads allowed in a block in the queried device. Some devices allow up to
1024 threads in each block, and other devices may allow fewer. It is possible that
future devices may even allow more than 1024 threads per block. Therefore it is a
good idea to query the available devices and determine which ones will allow a suffi-
cient number of threads in each block as far as the application is concerned.

The number of SMs in the device is given in devProp.multiProcessorCount. If the
application requires many SMs to achieve satisfactory performance, it should definitely
check this property of the prospective device. Furthermore, the clock frequency of the
device is in devProp.clockRate. The combination the clock rate and the number of SMs
gives a good indication of the maximum hardware execution throughput of the device.

The host code can find the maximum number of threads allowed along each
dimension of a block in fields devProp.maxThreadsDim[0] (for the x dimension),
devProp.maxThreadsDim[1] (for the y dimension), and devProp.maxThreadsDim[2]
(for the z dimension). An example of use of this information is for an automated
tuning system to set the range of block dimensions when evaluating the best per-
forming block dimensions for the underlying hardware. Similarly, it can find the
maximum number of blocks allowed along each dimension of a grid in devProp.
maxGridSize[0] (for the x dimension), devProp.maxGridSize[1] (for the y dimen-
sion), and devProp.maxGridSize[2] (for the z dimension). A typical use of this
information is to determine whether a grid can have enough threads to handle the
entire dataset or some kind of iterative approach is needed.

The field devProp.regsPerBlock gives the number of registers that are avail-
able in each SM. This field can be useful in determining whether the kernel can
achieve maximum occupancy on a particular device or will be limited by its reg-
ister usage. Note that the name of the field is a little misleading. For most com-
pute capability levels, the maximum number of registers that a block can use is
indeed the same as the total number of registers that are available in the SM.
However, for some compute capability levels, the maximum number of registers
that a block can use is less than the total that are available on the SM.

We have also discussed that the size of warps depends on the hardware. The
size of warps can be obtained from the devProp.warpSize field.

There are many more fields in the cudaDeviceProp type. We will discuss
them throughout the book as we introduce the concepts and features that they are
designed to reflect.
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4.9 Summary
A GPU is organized into SM, which consist of multiple processing blocks of
cores that share control logic and memory resources. When a grid is launched, its
blocks are assigned to SMs in an arbitrary order, resulting in transparent scalabil-
ity of CUDA applications. The transparent scalability comes with a limitation:
Threads in different blocks cannot synchronize with each other.

Threads are assigned to SMs for execution on a block-by-block basis. Once a block
has been assigned to an SM, it is further partitioned into warps. Threads in a warp are
executed following the SIMD model. If threads in the same warp diverge by taking dif-
ferent execution paths, the processing block executes these paths in passes in which
each thread is active only in the pass corresponding to the path that it takes.

An SM may have many more threads assigned to it than it can execute simulta-
neously. At any time, the SM executes instructions of only a small subset of its resident
warps. This allows the other warps to wait for long-latency operations without slowing
down the overall execution throughput of the massive number of processing units. The
ratio of the number of threads assigned to the SM to the maximum number of threads
it can support is referred to as occupancy. The higher the occupancy of an SM, the bet-
ter it can hide long-latency operations.

Each CUDA device imposes a potentially different limitation on the amount of
resources available in each SM. For example, each CUDA device has a limit on the
number of blocks, the number of threads, the number of registers, and the amount of
other resources that each of its SMs can accommodate. For each kernel, one or more of
these resource limitations can become the limiting factor for occupancy. CUDA C pro-
vides programmers with the ability to query the resources available in a GPU at runtime.

Exercises
1. Consider the following CUDA kernel and the corresponding host function that

calls it:
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a. What is the number of warps per block?
b. What is the number of warps in the grid?
c. For the statement on line 04:

i. How many warps in the grid are active?
ii. How many warps in the grid are divergent?
iii. What is the SIMD efficiency (in %) of warp 0 of block 0?
iv. What is the SIMD efficiency (in %) of warp 1 of block 0?
v. What is the SIMD efficiency (in %) of warp 3 of block 0?

d. For the statement on line 07:
i. How many warps in the grid are active?
ii. How many warps in the grid are divergent?
iii. What is the SIMD efficiency (in %) of warp 0 of block 0?

e. For the loop on line 09:
i. How many iterations have no divergence?
ii. How many iterations have divergence?

2. For a vector addition, assume that the vector length is 2000, each thread
calculates one output element, and the thread block size is 512 threads. How
many threads will be in the grid?

3. For the previous question, how many warps do you expect to have divergence
due to the boundary check on vector length?

4. Consider a hypothetical block with 8 threads executing a section of code
before reaching a barrier. The threads require the following amount of time
(in microseconds) to execute the sections: 2.0, 2.3, 3.0, 2.8, 2.4, 1.9, 2.6, and
2.9; they spend the rest of their time waiting for the barrier. What percentage
of the threads’ total execution time is spent waiting for the barrier?

5. A CUDA programmer says that if they launch a kernel with only 32 threads
in each block, they can leave out the __syncthreads() instruction wherever
barrier synchronization is needed. Do you think this is a good idea? Explain.

6. If a CUDA device’s SM can take up to 1536 threads and up to 4 thread
blocks, which of the following block configurations would result in the most
number of threads in the SM?
a. 128 threads per block
b. 256 threads per block
c. 512 threads per block
d. 1024 threads per block

7. Assume a device that allows up to 64 blocks per SM and 2048 threads per
SM. Indicate which of the following assignments per SM are possible. In the
cases in which it is possible, indicate the occupancy level.
a. 8 blocks with 128 threads each
b. 16 blocks with 64 threads each
c. 32 blocks with 32 threads each
d. 64 blocks with 32 threads each
e. 32 blocks with 64 threads each
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8. Consider a GPU with the following hardware limits: 2048 threads per SM, 32
blocks per SM, and 64K (65,536) registers per SM. For each of the following
kernel characteristics, specify whether the kernel can achieve full occupancy.
If not, specify the limiting factor.
a. The kernel uses 128 threads per block and 30 registers per thread.
b. The kernel uses 32 threads per block and 29 registers per thread.
c. The kernel uses 256 threads per block and 34 registers per thread.

9. A student mentions that they were able to multiply two 10243 1024 matrices
using a matrix multiplication kernel with 323 32 thread blocks. The student is
using a CUDA device that allows up to 512 threads per block and up to 8 blocks
per SM. The student further mentions that each thread in a thread block calculates
one element of the result matrix. What would be your reaction and why?
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So far, we have learned how to write a CUDA kernel function and how to
configure and coordinate its execution by a massive number of threads. We
have also looked at the compute architecture of current GPU hardware and how
threads are scheduled to execute on this hardware. In this chapter we will focus
on the on-chip memory architecture of the GPU and begin to study how one can
organize and position data for efficient access by a massive number of threads.
The CUDA kernels that we have studied so far will likely achieve only a tiny
fraction of the potential speed of the underlying hardware. This poor perfor-
mance is because global memory, which is typically implemented with off-chip
DRAM, tends to have long access latency (hundreds of clock cycles) and finite
access bandwidth. While having many threads available for execution can theo-
retically tolerate long memory access latencies, one can easily run into a situa-
tion in which traffic congestion in the global memory access paths prevents all
but a very few threads from making progress, thus rendering some of the cores
in the streaming multiprocessors (SMs) idle. To circumvent such congestion,
GPUs provide a number of additional on-chip memory resources for accessing
data that can remove the majority of traffic to and from the global memory. In
this chapter we will study the use of different memory types to boost the execu-
tion performance of CUDA kernels.
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5.1 Importance of memory access efficiency
We can illustrate the effect of memory access efficiency by calculating the
expected performance level of the most executed portion of the matrix multiplica-
tion kernel code in Fig. 3.11, which is partially replicated in Fig. 5.1. The most
important part of the kernel in terms of execution time is the for-loop that per-
forms the dot product of a row of M with a column of N.

In every iteration of the loop, two global memory accesses are performed for
one floating-point multiplication and one floating-point addition. The global
memory accesses fetch elements from the M and N arrays. The floating-point
multiplication operation multiplies these two elements together, and the
floating-point add operation accumulates the product into Pvalue. Thus the ratio
of floating-point operations (FLOP) to bytes (B) accessed from global memory
is 2 FLOP to 8 B, or 0.25 FLOP/B. We will refer to this ratio as the compute to
global memory access ratio, defined as the number of FLOPs performed for
each byte access from the global memory within a region of a program. This
ratio is sometimes also referred to as arithmetic intensity or computational
intensity in the literature.

The compute to global memory access ratio has major implications for
the performance of a CUDA kernel. For example, the Ampere A100 GPU
has a peak global memory bandwidth of 1555 GB/second. Since the matrix
multiplication kernel performs 0.25 OP/B, the global memory bandwidth limits
the throughput of single-precision FLOPs that can be performed by the kernel
to 389 giga FLOPs per second (GFLOPS), obtained by multiplying 1555 GB/
second with 0.25 FLOP/B. However, 389 GFLOPS is only 2% of the peak
single-precision operation throughput of the A100 GPU, which is 19,500
GFLOPS. The A100 also comes with special purpose units called tensor cores
that are useful for accelerating matrix multiplication operations. If one consid-
ers the A100’s tensor-core peak single-precision floating-point throughput of
156,000 GFLOPS, 389 GFLOPS is only 0.25% of the peak. Thus the execution
of the matrix multiplication kernel is severely limited by the rate at which
the data can be delivered from memory to the GPU cores. We refer to pro-
grams whose execution speed is limited by memory bandwidth as memory-
bound programs.

FIGURE 5.1

The most executed part of the matrix multiplication kernel in Fig. 3.11.
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The Roofline Model

The Roofline Model is a visual model for assessing the performance
achieved by an application relative to the limits of the hardware it is run-
ning on. A basic example of the Roofline model is shown below.

On the x-axis, we have arithmetic or computational intensity measured
in FLOP/B. It reflects the amount of work done by an application for every
byte of data loaded. On the y-axis, we have computational throughput
measured in GFLOPS. The two lines inside of the plot reflect the hardware
limits. The horizontal line is determined by the peak computational
throughput (GFLOPS) that the hardware can sustain. The line with a posi-
tive slope starting from the origin is determined by the peak memory band-
width that the hardware can sustain. A point in the plot represents an
application with its operational intensity on the x-axis and the computa-
tional throughput it achieves on the y-axis. Of course, the points will be
under the two lines because they cannot achieve higher throughput than
the hardware peak.

The position of a point relative to the two lines tells us about an appli-
cation’s efficiency. Points close to the two lines indicate that an applica-
tion is using memory bandwidth or compute units efficiently, whereas
applications far below the lines indicate inefficient use of resources. The
point of intersection between these two lines represents the computational
intensity value at which applications transition from being memory bound
to being compute bound. Applications with lower computational intensity
are memory-bound and cannot achieve peak throughput because they are
limited by memory bandwidth. Applications with higher computational
intensity are compute-bound and are not limited by memory bandwidth.
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As an example, points A1 and A2 both represent memory-bound appli-
cations, while A3 represents a compute-bound application. A1 uses
resources efficiently and operates close to the peak memory bandwidth,
whereas A2 does not. For A2, there may be room for additional optimiza-
tions to improve throughput by improving memory bandwidth utilization.
However, for A1 the only way to improve throughput is to increase the
computational intensity of the application.

To achieve higher performance for this kernel, we need to increase the com-
pute to global memory access ratio of the kernel by reducing the number of
global memory accesses it performs. For example, to fully utilize the 19,500
GFLOPS that the A100 GPU provides, a ratio of at least (19,500 GOP/second)/
(1555 GB/second)=12.5 OP/B is needed. This ratio means that for every 4-byte
floating point value accessed, there must be about 50 floating-point operations
performed! The extent to which such a ratio can be achieved depends on the
intrinsic data reuse in the computation at hand. We refer the reader to the “The
Roofline Model” sidebar for a useful model for analyzing a program’s potential
performance with respect to its compute intensity.

As we will see, matrix multiplication presents opportunities for reduction of
global memory accesses that can be captured with relatively simple techniques.
The execution speed of matrix multiplication functions can vary by orders of
magnitude, depending on the level of reduction of global memory accesses.
Therefore matrix multiplication provides an excellent initial example for such
techniques. This chapter introduces a commonly used technique for reducing the
number of global memory accesses and demonstrates the technique on matrix
multiplication.

5.2 CUDA memory types
A CUDA device contains several types of memory that can help programmers to
improve the compute to global memory access ratio. Fig. 5.2 shows these CUDA
device memories. At the bottom of the figure, we see global memory and constant
memory. Both these types of memory can be written (W) and read (R) by the
host. The global memory can also be written and read by the device, whereas the
constant memory supports short-latency, high-bandwidth read-only access by the
device. We introduced global memory in Chapter 2, Heterogeneous Data Parallel
Computing, and we will look at constant memory in detail in Chapter 7,
Convolution.

Another type of memory is the local memory, which can also be read and
written. The local memory is actually placed in global memory and has similar
access latency, but it is not shared across threads. Each thread has its own section
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of global memory that it uses as its own private local memory where it places
data that is private to the thread but cannot be allocated in registers. This data
includes statically allocated arrays, spilled registers, and other elements of the
thread’s call stack.

Registers and shared memory in Fig. 5.2 are on-chip memories. Variables that
reside in these types of memory can be accessed at very high speed in a highly
parallel manner. Registers are allocated to individual threads; each thread can
access only its own registers (see the “CPU versus GPU Register Architecture”
sidebar). A kernel function typically uses registers to hold frequently accessed
variables that are private to each thread. Shared memory is allocated to thread
blocks; all threads in a block can access shared memory variables declared for the
block. Shared memory is an efficient means by which threads can cooperate by
sharing their input data and intermediate results. By declaring a CUDA variable
in one of the CUDA memory types, a CUDA programmer dictates the visibility
and access speed of the variable.

CPU vs. GPU Register Architecture

The different design objectives across the CPUs and GPUs result in different
register architectures. As we saw in Chapter 4, Compute Architecture and
Scheduling, when CPUs context switch between different threads, they save
the registers of the outgoing thread to memory and restore the registers of
the incoming thread from memory. In contrast, GPUs achieve zero-overhead
scheduling by keeping the registers of all the threads that are scheduled on
the processing block in the processing block’s register file. This way, switch-
ing between warps of threads is instantaneous because the registers of the
incoming threads are already in the register file. Consequently, GPU register
files need to be substantially larger than CPU register files.

We also saw in Chapter 4, Compute Architecture and Scheduling, that
GPUs support dynamic resource partitioning where an SM may provision
few registers per thread and execute a large number of threads, or it my pro-
vision more registers per thread and execute fewer threads. For this reason,
GPU register files need to be designed to support such dynamic partitioning
of registers. In contrast, the CPU register architecture dedicates a fixed set
of registers per thread regardless of the thread’s actual demand for registers.

To fully appreciate the difference between registers, shared memory, and global
memory, we need to go into a little more detail about how these different memory
types are realized and used in modern processors. As we discussed in the “Warps
and SIMD Hardware” sidebar in Chapter 4, Compute Architecture and Scheduling,
virtually all modern processors find their root in the model proposed by John von
Neumann in 1945, which is shown in Fig. 5.3. CUDA devices are no exception.
The global memory in a CUDA device maps to the Memory box in Fig. 5.3. The

975.2 CUDA memory types

Melani Maheswaran



processor box corresponds to the processor chip boundary that we typically see
today. The global memory is off the processor chip and is implemented with
DRAM technology, which implies long access latencies and relatively low access
bandwidth. The registers correspond to the “Register File” of the von Neumann
model. The Register File is on the processor chip, which implies very short access
latency and drastically higher access bandwidth when compared to the global mem-
ory. In a typical device, the aggregated access bandwidth of all the register files
across all the SMs is at least two orders of magnitude higher than that of the global
memory. Furthermore, whenever a variable is stored in a register, its accesses no

FIGURE 5.3

Memory versus registers in a modern computer based on the von Neumann model.

FIGURE 5.2

An (incomplete) overview of the CUDA device memory model. An important type of CUDA
memory that is not shown in this figure is the texture memory, since its use is not covered
in this textbook.
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longer consume off-chip global memory bandwidth. This will be reflected as an
increased compute to global memory access ratio.

A subtler point is that each access to registers involves fewer instructions than
an access to the global memory. Arithmetic instructions in most modern proces-
sors have “built-in” register operands. For example, a floating-point addition
instruction might be of the following form:

where r2 and r3 are the register numbers that specify the location in the register
file where the input operand values can be found. The location for storing the
floating-point addition result value is specified by r1. Therefore when an operand
of an arithmetic instruction is in a register, no additional instruction is required to
make the operand value available to the arithmetic and logic unit (ALU), where
the arithmetic calculation is done.

Meanwhile, if an operand value is in the global memory, the processor needs to
perform a memory load operation to make the operand value available to the ALU.
For example, if the first operand of a floating-point addition instruction is in the global
memory, the instructions that are involved will likely look like the following example:

where the load instruction adds an offset value to the contents of r4 to form an
address for the operand value. It then accesses the global memory and places the
value into register r2. Once the operand value is in r2, the fadd instruction per-
forms the floating-point addition using the values in r2 and r3 and places the
result into r1. Since the processor can fetch and execute only a limited number of
instructions per clock cycle, the version with an additional load will likely take
more time to process than the one without. This is another reason why placing the
operands in registers can improve execution speed.

Finally, there is yet another subtle reason why placing an operand value in registers
is preferable. In modern computers the energy that is consumed for accessing a value
from the register file is at least an order of magnitude lower than for accessing a value
from the global memory. Accessing a value from registers has a tremendous advantage
in energy efficiency over accessing the value from the global memory. We will look at
more details of the speed and energy difference in accessing these two hardware struc-
tures in modern computers soon. On the other hand, as we will soon learn, the number
of registers that are available to each thread is quite limited in today’s GPUs. As we
saw in Chapter 4, Compute Architecture and Scheduling, the occupancy that is
achieved for an application can be reduced if the register usage in full-occupancy sce-
narios exceeds the limit. Therefore we also need to avoid oversubscribing to this lim-
ited resource whenever possible.
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Fig. 5.4 shows the shared memory and registers in a CUDA device. Although
both are on-chip memories, they differ significantly in functionality and cost of
access. Shared memory is designed as part of the memory space that resides on
the processor chip. When the processor accesses data that resides in the shared
memory, it needs to perform a memory load operation, just as in accessing data
in the global memory. However, because shared memory resides on-chip, it can
be accessed with much lower latency and much higher throughput than the global
memory. Because of the need to perform a load operation, shared memory has
longer latency and lower bandwidth than registers. In computer architecture termi-
nology the shared memory is a form of scratchpad memory.

One important difference between the shared memory and registers in CUDA
is that variables that reside in the shared memory are accessible by all threads in
a block. This contrasts with register data, which is private to a thread. That is,
shared memory is designed to support efficient, high-bandwidth sharing of data
among threads in a block. As shown in Fig. 5.4, a CUDA device SM typically
employs multiple processing units to allow multiple threads to make simultaneous
progress (see the “Threads” sidebar) in Chapter 2, Heterogeneous Data Parallel
Computing. Threads in a block can be spread across these processing units.
Therefore the hardware implementations of the shared memory in these CUDA
devices are typically designed to allow multiple processing units to simulta-
neously access its contents to support efficient data sharing among threads in a
block. We will be learning several important types of parallel algorithms that can
greatly benefit from such efficient data sharing among threads.

It should be clear by now that registers, local memory, shared memory, and
global memory all have different functionalities, latencies, and bandwidth. It is
therefore important to understand how to declare a variable so that it will reside
in the intended type of memory. Table 5.1 presents the CUDA syntax for declar-
ing program variables into the various memory types. Each such declaration also
gives its declared CUDA variable a scope and lifetime. Scope identifies the set of

FIGURE 5.4

Shared memory versus registers in a CUDA device SM.
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threads that can access the variable: a single thread only, all threads of a block, or
all threads of all grids. If a variable’s scope is a single thread, a private version of
the variable will be created for every thread; each thread can access only its pri-
vate version of the variable. For example, if a kernel declares a variable whose
scope is a thread and it is launched with one million threads, one million versions
of the variable will be created so that each thread initializes and uses its own ver-
sion of the variable.

Lifetime tells the portion of the program’s execution duration when the variable
is available for use: either within a grid’s execution or throughout the entire applica-
tion. If a variable’s lifetime is within a grid’s execution, it must be declared within
the kernel function body and will be available for use only by the kernel’s code. If
the kernel is invoked several times, the value of the variable is not maintained across
these invocations. Each invocation must initialize the variable in order to use it. On
the other hand, if a variable’s lifetime is throughout the entire application, it must be
declared outside of any function body. The contents of these variables are maintained
throughout the execution of the application and available to all kernels.

We refer to variables that are not arrays as scalar variables. As shown in
Table 5.1, all automatic scalar variables that are declared in kernel and device
functions are placed into registers. The scopes of these automatic variables are
within individual threads. When a kernel function declares an automatic variable,
a private copy of that variable is generated for every thread that executes the ker-
nel function. When a thread terminates, all its automatic variables cease to exist.
In Fig. 5.1, variables blurRow, blurCol, curRow, curCol, pixels, and pixVal are
all automatic variables and fall into this category. Note that accessing these vari-
ables is extremely fast and parallel, but one must be careful not to exceed the lim-
ited capacity of the register storage in the hardware implementations. Using a
large number of registers can negatively affect the occupancy of each SM, as we
saw in Chapter 4, Compute Architecture and Scheduling.

Automatic array variables are not stored in registers.1 Instead, they are stored
into the thread’s local memory and may incur long access delays and potential

Table 5.1 CUDA variable declaration type qualifiers and the properties of
each type.

Variable declaration Memory Scope Lifetime

Automatic variables other than arrays Register Thread Grid
Automatic array variables Local Thread Grid
__device__ __shared__ int SharedVar; Shared Block Grid
__device__ int GlobalVar; Global Grid Application
__device__ __constant__ int ConstVar; Constant Grid Application

1There are some exceptions to this rule. The compiler may decide to store an automatic array into
registers if all accesses are done with constant index values.
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access congestions. The scope of these arrays, like that of automatic scalar vari-
ables, is limited to individual threads. That is, a private version of each automatic
array is created for and used by every thread. Once a thread terminates its execu-
tion, the contents of its automatic array variables cease to exist. From our experi-
ence, one seldom needs to use automatic array variables in kernel functions and
device functions.

If a variable declaration is preceded by the __shared__ keyword (each “__’’
consists of two “_’’ characters), it declares a shared variable in CUDA. One can
also add an optional __device__ in front of __shared__ in the declaration to
achieve the same effect. Such a declaration is typically made within a kernel
function or a device function. Shared variables reside in the shared memory. The
scope of a shared variable is within a thread block; that is, all threads in a block
see the same version of a shared variable. A private version of the shared variable
is created for and used by each block during kernel execution. The lifetime of a
shared variable is within the duration of the kernel execution. When a kernel ter-
minates its grid’s execution, the contents of its shared variables cease to exist. As
we discussed earlier, shared variables are an efficient means for threads within a
block to collaborate with each other. Accessing shared variables from the shared
memory is extremely fast and highly parallel. CUDA programmers often use
shared variables to hold the portion of global memory data that is frequently used
and reused in an execution phase of the kernel. One may need to adjust the algo-
rithms that are used to create execution phases that heavily focus on small por-
tions of the global memory data, as we will demonstrate with matrix
multiplication in Section 5.4.

If a variable declaration is preceded by keyword __constant__’ (each “__’’
consists of two “_’’ characters), it declares a constant variable in CUDA. One
can also add an optional __device__ in front of __constant__ to achieve the
same effect. Declaration of constant variables must be outside any function
body. The scope of a constant variable is all grids, meaning that all threads in
all grids see the same version of a constant variable. The lifetime of a constant
variable is the entire application execution. Constant variables are often used for
variables that provide input values to kernel functions. The values of the con-
stant variables cannot be changed by the kernel function code. Constant vari-
ables are stored in the global memory but are cached for efficient access. With
appropriate access patterns, accessing constant memory is extremely fast and
parallel. Currently, the total size of constant variables in an application is lim-
ited to 65,536 bytes. One may need to break up the input data volume to fit
within this limitation. We will demonstrate the usage of constant memory in
Chapter 7, Convolution.

A variable whose declaration is preceded only by the keyword __device__
(each “__’’ consists of two “_’’ characters) is a global variable and will be placed
in the global memory. Accesses to a global variable are slow. Latency and
throughput of accessing global variables have been improved with caches in more
recent devices. One important advantage of global variables is that they are
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visible to all threads of all kernels. Their contents also persist through the entire
execution. Thus global variables can be used as a means for threads to collaborate
across blocks. However, one must be aware that there is currently no easy way to
synchronize between threads from different thread blocks or to ensure data con-
sistency across threads in accessing global memory other than using atomic
operations or terminating the current kernel execution.2 Therefore global variables
are often used to pass information from one kernel invocation to another kernel
invocation.

In CUDA, pointers can be used to point to data objects in the global memory.
There are two typical ways in which pointer use arises in kernel and device func-
tions. First, if an object is allocated by a host function, the pointer to the object is
initialized by memory allocation API functions such as cudaMalloc and can be
passed to the kernel function as a parameter, as we saw in Chapter 2,
Heterogeneous Data Parallel Computing, and Chapter 3, Multidimensional Grids
and Data. The second type of use is to assign the address of a variable that is
declared in the global memory to a pointer variable. For example, the statement
{float! ptr=&GlobalVar;} in a kernel function assigns the address of GlobalVar
into an automatic pointer variable ptr. The reader should refer to the CUDA
Programming Guide for using pointers in other memory types.

5.3 Tiling for reduced memory traffic
We have an intrinsic tradeoff in the use of device memories in CUDA: The global
memory is large but slow, whereas the shared memory is small but fast. A com-
mon strategy is to partition the data into subsets called tiles so that each tile fits
into the shared memory. The term tile draws on the analogy that a large wall (i.e.,
the global memory data) can be covered by small tiles (i.e., subsets that can each
fit into the shared memory). An important criterion is that the kernel computation
on these tiles can be done independently of each other. Note that not all data
structures can be partitioned into tiles, given an arbitrary kernel function.

The concept of tiling can be illustrated with the matrix multiplication example
from Chapter 3, Multidimensional Grids and Data. Fig. 3.13 showed a small
example of matrix multiplication. It corresponds to the kernel function in
Fig. 3.11. We replicate the example in Fig. 5.5 for convenient reference. For brev-
ity we abbreviate P[y!Width+x], M[y!Width+x], and N[y!Width+x] into Py,x, My,

x, and Ny,x, respectively. This example assumes that we use four 3 2 blocks to
compute the P matrix. The heavy boxes in the P matrix define the P elements that
are processed by each block. Fig. 5.5 highlights the computation done by the four
threads of block0,0. These four threads compute P0,0, P0,1, P1,0, and P1,1. The

2One can use CUDA memory fencing to ensure data coherence between thread blocks if the num-
ber of thread blocks is smaller than the number of SMs in the CUDA device. See the CUDA
Programming Guide for more details.
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accesses to the M and N elements by thread0,0 and thread0,1 of block0,0 are
highlighted with black arrows. For example, thread0,0 reads M0,0 and N0,0, fol-
lowed by M0,1 and N1,0, followed by M0,2 and N2,0, followed by M0,3 and N3,0.

Fig. 5.6 shows the global memory accesses done by all threads in block0,0.
The threads are listed in the vertical direction, with time of access increasing
from left to right in the horizontal direction. Note that each thread accesses four
elements of M and four elements of N during its execution. Among the four
threads highlighted, there is a significant overlap in the M and N elements that
they access. For example, thread0,0 and thread0,1 both access M0,0 as well as the
rest of row 0 of M. Similarly, thread0,1 and thread1,1 both access N0,1 as well as
the rest of column 1 of N.

The kernel in Fig. 3.11 is written so that both thread0,0 and thread0,1 access
row 0 elements of M from the global memory. If we can somehow manage to
have thread0,0 and thread0,1 collaborate so that these M elements are loaded from
global memory only once, we can reduce the total number of accesses to the
global memory by half. In fact, we can see that every M and N element is
accessed exactly twice during the execution of block0,0. Therefore if we can have
all four threads collaborate in their accesses to global memory, we can reduce the
traffic to the global memory by half.

The reader should verify that the potential reduction in global memory traffic
in the matrix multiplication example is proportional to the dimension of the
blocks that are used. With Width3Width blocks, the potential reduction of
global memory traffic would be Width. That is, if we use 163 16 blocks, we can
potentially reduce the global memory traffic to 1/16 of the original level through
collaboration between threads.

FIGURE 5.5

A small example of matrix multiplication. For brevity we show M[y!Width+x], N[y!Width
+x], P[y!Width+x] as My,x, Ny,x Py,x, respectively.
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We now present a tiled matrix multiplication algorithm. The basic idea is to
have the threads collaboratively load subsets of the M and N elements into the
shared memory before they individually use these elements in their dot product
calculation. Keep in mind that the size of the shared memory is quite small, and
one must be careful not to exceed the capacity of the shared memory when load-
ing these M and N elements into the shared memory. This can be accomplished
by dividing the M and N matrices into smaller tiles. The size of these tiles is cho-
sen so that they can fit into the shared memory. In the simplest form, the tile
dimensions equal those of the block, as illustrated in Fig. 5.7.

In Fig. 5.7 we divide M and N into 23 2 tiles, as delineated by the thick lines.
The dot product calculations that are performed by each thread are now divided
into phases. In each phase, all threads in a block collaborate to load a tile of M and
a tile of N into the shared memory. This can be done by having every thread in a
block load one M element and one N element into the shared memory, as illustrated
in Fig. 5.8. Each row of Fig. 5.8 shows the execution activities of a thread. Note
that time progresses from left to right. We need to show only the activities of
threads in block0,0; the other blocks all have the same behavior. The shared memory
array for the M elements is called Mds. The shared memory array for the N ele-
ments is called Nds. At the beginning of phase 1, the four threads of block0,0 col-
laboratively load a tile of M into shared memory: Thread0,0 loads M0,0 into Mds0,0,
thread0,1 loads M0,1 into Mds0,1, thread1,0 loads M1,0 into Mds1,0, and thread1,1 loads
M1,1 into Mds1,1. These loads are shown in the second column of Fig. 5.8. A tile of
N is also loaded in a similar manner, shown in the third column of Fig. 5.8.

After the two tiles of M and N are loaded into the shared memory, these ele-
ments are used in the calculation of the dot product. Note that each value in the
shared memory is used twice. For example, the M1,1 value, loaded by thread1,1 into
Mds1,1, is used twice, once by thread1,0 and once by thread1,1. By loading each
global memory value into shared memory so that it can be used multiple times, we
reduce the number of accesses to the global memory. In this case, we reduce the
number of accesses to the global memory by a factor of 2. The reader should verify
that the reduction is by a factor of N if the tiles are N3N elements.

Note that the calculation of each dot product is now performed in two phases,
shown as phase 1 and phase 2 in Fig. 5.8. In each phase, each thread accumulates
products of two pairs of the input matrix elements into the Pvalue variable. Note

FIGURE 5.6

Global memory accesses performed by threads in block0,0.
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that Pvalue is an automatic variable, so a private version is generated for each
thread. We added subscripts just to clarify that these are different instances of the
Pvalue variable created for each thread. The first phase calculation is shown in
the fourth column of Fig. 5.8, and the second phase is shown in the seventh col-
umn. In general, if an input matrix is of dimension Width and the tile size is
TILE_WIDTH, the dot product would be performed in Width/TILE_WIDTH phases.

FIGURE 5.8

Execution phases of a tiled matrix multiplication.

FIGURE 5.7

Tiling M and N to utilize shared memory.
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The creation of these phases is key to the reduction of accesses to the global
memory. With each phase focusing on a small subset of the input matrix values,
the threads can collaboratively load the subset into the shared memory and use
the values in the shared memory to satisfy their overlapping input needs in the
phase.

Note also that Mds and Nds are reused across phases. In each phase, the same
Mds and Nds are reused to hold the subset of M and N elements used in the
phase. This allows a much smaller shared memory to serve most of the accesses
to global memory. This is because each phase focuses on a small subset of the
input matrix elements. Such focused access behavior is called locality. When an
algorithm exhibits locality, there is an opportunity to use small, high-speed mem-
ories to serve most of the accesses and remove these accesses from the global
memory. Locality is as important for achieving high performance in multicore
CPUs as in many-thread GPUs We will return to the concept of locality in
Chapter 6, Performance Considerations.

5.4 A tiled matrix multiplication kernel
We are now ready to present a tiled matrix multiplication kernel that uses shared
memory to reduce traffic to the global memory. The kernel shown in Fig. 5.9
implements the phases illustrated in Fig. 5.8. In Fig. 5.9, lines 04 and 05 declare
Mds and Nds, respectively, as shared memory arrays. Recall that the scope of
shared memory variables is a block. Thus one version of the Mds and Nds arrays
will be created for each block, and all threads of a block have access to the same
Mds and Nds version. This is important because all threads in a block must have
access to the M and N elements that are loaded into Mds and Nds by their peers so
that they can use these values to satisfy their input needs.

Lines 07 and 08 save the threadIdx and blockIdx values into automatic vari-
ables with shorter names to make the code more concise. Recall that automatic
scalar variables are placed into registers. Their scope is in each individual thread.
That is, one private version of tx, ty, bx, and by is created by the runtime system
for each thread and will reside in registers that are accessible by the thread. They
are initialized with the threadIdx and blockIdx values and used many times dur-
ing the lifetime of thread. Once the thread ends, the values of these variables
cease to exist.

Lines 11 and 12 determine the row index and column index, respectively, of
the P element that the thread is to produce. The code assumes that each thread is
responsible for calculating one P element. As shown in line 12, the horizontal (x)
position, or the column index of the P element to be produced by a thread, can be
calculated as bx!TILE_WIDTH+tx. This is because each block covers TILE_WIDTH
elements of P in the horizontal dimension. A thread in block bx would have
before it bx blocks of threads, or (bx!TILE_WIDTH) threads; they cover
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bx!TILE_WIDTH elements of P. Another tx thread within the same block would
cover another tx elements. Thus the thread with bx and tx should be responsible
for calculating the P element whose x index is bx!TILE_WIDTH+tx. For the exam-
ple in Fig. 5.7, the horizontal (x) index of the P element to be calculated by
thread0,1 of block1,0 is 0

!2+1=1. This horizontal index is saved in the variable Col
for the thread and is also illustrated in Fig. 5.10.

Similarly, the vertical (y) position, or the row index, of the P element to be pro-
cessed by a thread is calculated as by!TILE_WIDTH+ty. Going back to the example
in Fig. 5.7, the y index of the P element to be calculated by thread0,1 of block1,0 is
1!2+0=2. This vertical index is saved in the variable Row for the thread. As shown
in Fig. 5.10, each thread calculates the P element at the Colth column and the Rowth
row. Thus the P element to be calculated by thread0,1 of block1,0 is P2,1.

Line 16 of Fig. 5.9 marks the beginning of the loop that iterates through all
the phases of calculating the P element. Each iteration of the loop corresponds to
one phase of the calculation shown in Fig. 5.8. The ph variable indicates the num-
ber of phases that have already been done for the dot product. Recall that each
phase uses one tile of M and one tile of N elements. Therefore at the beginning

FIGURE 5.9

A tiled matrix multiplication kernel using shared memory.
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of each phase, ph!TILE_WIDTH pairs of M and N elements have been processed by
previous phases.

In each phase, lines 19 and 20 in Fig. 5.9 load the appropriate M and N elements,
respectively, into the shared memory. Since we already know the row of M and col-
umn of N to be processed by the thread, we now turn our focus to the column index
of M and row index of N. As shown in Fig. 5.10, each block has TILE_WIDTH2

threads that will collaborate to load TILE_WIDTH2 M elements and TILE_WIDTH2 N ele-
ments into the shared memory. Thus all we need to do is to assign each thread to
load one M element and one N element. This is conveniently done by using the
blockIdx and threadIdx. Note that the beginning column index of the section of M
elements to be loaded is ph!TILE_WIDTH. Therefore an easy approach is to have every
thread load an element that is tx (the threadIdx.x value) positions away from that
beginning point. Similarly, the beginning row index of the section of N elements to
be loaded is also ph!TILE_WIDTH. Therefore every thread loads an element that is ty
(the threadIdx.y value) positions away from that beginning point.

FIGURE 5.10

Calculation of the matrix indices in tiled multiplication.
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This is precisely what we have in lines 19 and 20. In line 19, each thread
loads M[Row!Width + ph!TILE_WIDTH + tx], where the linearized index is formed
with the row index Row and column index ph!TILE_WIDTH + tx. Since the value of
Row is a linear function of ty, each of the TILE_WIDTH2 threads will load a unique
M element into the shared memory because each thread has a unique combination
of tx and ty. Together, these threads will load a dark square subset of M in
Fig. 5.10. In a similar way, in line 20, each thread loads the appropriate N ele-
ment to shared memory using the linearized index (ph!TILE_WIDTH + ty)!Width +
Col. The reader should use the small example in Figs. 5.7 and 5.8 to verify that
the address calculation works correctly for individual threads.

The barrier __syncthreads() in line 21 ensures that all threads have finished
loading the tiles of M and N into Mds and Nds before any of them can move for-
ward. Recall from Chapter 4, Compute Architecture and Scheduling, that the call
to __syncthreads() can be used to make all threads in a block wait for each other
to reach the barrier before any of them can proceed. This is important because the
M and N elements to be used by a thread can be loaded by other threads. One
needs to ensure that all elements are properly loaded into the shared memory
before any of the threads start to use the elements. The loop in line 23 then per-
forms one phase of the dot product based on the tile elements. The progression of
the loop for threadty, tx is shown in Fig. 5.10, with the access direction of the M
and N elements along the arrow marked with k, the loop variable in line 23. Note
that these elements will be accessed from Mds and Nds, the shared memory arrays
holding these M and N elements. The barrier __syncthreads() in line 26 ensures
that all threads have finished using the M and N elements in the shared memory
before any of them move on to the next iteration and load the elements from the
next tiles. Thus none of the threads would load the elements too early and corrupt
the input values of other threads.

The two __syncthreads() calls in lines 21 and 26 demonstrate two different
types of data dependence that parallel programmers often have to reason about
when they are coordinating between threads. The first is called a read-after-write
dependence because threads must wait for data to be written to the proper place
by other threads before they try to read it. The second is called a write-after-read
dependence because a thread must wait for the data to be read by all threads that
need it before overwriting it. Other names for read-after-write and write-after-read
dependences are true and false dependences, respectively. A read-after-write depen-
dence is a true dependence because the reading thread truly needs the data supplied
by the writing thread, so it has no choice but to wait for it. A write-after-read
dependence is a false dependence because the writing thread does not need any
data from the reading thread. The dependence is caused by the fact that they are
reusing the same memory location and would not exist if they used different
locations.

The loop nest from line 16 to line 28 illustrates a technique called strip-
mining, which takes a long-running loop and break it into phases. Each phase
involves an inner loop that executes a few consecutive iterations of the original
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loop. The original loop becomes an outer loop whose role is to iteratively invoke
the inner loop so that all the iterations of the original loop are executed in their
original order. By adding barrier synchronizations before and after the inner loop,
we force all threads in the same block to focus their work on the same section of
input data during each phase. Strip-mining is an important means to creating the
phases that are needed by tiling in data parallel programs.3

After all phases of the dot product are complete, the execution exits the outer
loop. In Line 29, all threads write to their P element using the linearized index
calculated from Row and Col.

The benefit of the tiled algorithm is substantial. For matrix multiplication, the
global memory accesses are reduced by a factor of TILE_WIDTH. With 163 16
tiles, one can reduce the global memory accesses by a factor of 16. This increases
the compute to global memory access ratio from 0.25 OP/B to 4 OP/B. This
improvement allows the memory bandwidth of a CUDA device to support a high-
er computation rate. For example, in the A100 GPU which has a global memory
bandwidth of 1555 GB/second, this improvement allows the device to achieve
(1555 GB/second)!(4 OP/B)=6220 GFLOPS, which is substantially higher than
the 389 GFLOPS achieved by the kernel that did not use tiling.

Although tiling improves throughput substantially, 6220 GFLOPS is still only
32% of the device’s peak throughput of 19,500 GFLOPS. One can further opti-
mize the code to reduce the number of global memory accesses and improve
throughput. We will see some of these optimizations later in the book, while other
advanced optimizations will not be covered. Because of the importance of matrix
multiplication in many domains, there are highly optimized libraries, such as
cuBLAS and CUTLASS, that already incorporate many of these advanced optimi-
zations. Programmers can use these libraries to immediately achieve close to peak
performance in their linear algebra applications.

The effectiveness of tiling at improving the throughput of matrix multiplication
in particular and applications in general is not unique to GPUs. There is a long his-
tory of applying tiling (or blocking) techniques to improve performance on CPUs
by ensuring that the data that is reused by a CPU thread within a particular time
window will be found in the cache. One key difference is that tiling techniques on
CPUs rely on the CPU cache to keep reused data on-chip implicitly, whereas tiling
techniques on GPUs use shared memory explicitly to keep the data on-chip. The
reason is that a CPU core typically runs one or two threads at a time, so a thread
can rely on the cache keeping recently used data around. In contrast, a GPU SM
runs many threads simultaneously to be able to hide latency. These threads may
compete for cache slots, which makes the GPU cache less reliable, necessitating
the use of shared memory for important data that is to be reused.

3The reader should note that strip-mining has long been used in programming CPUs. Strip-mining
followed by loop interchange is often used to enable tiling for improved locality in sequential pro-
grams. Strip-mining is also the main vehicle for vectorizing compilers to generate vector or SIMD
instructions for CPU programs.
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While the performance improvement of the tiled matrix multiplication kernel
is impressive, it does make a few simplifying assumptions. First, the width of the
matrices is assumed to be a multiple of the width of thread blocks. This prevents
the kernel from correctly processing matrices with arbitrary width. The second
assumption is that the matrices are square matrices. This is not always true in
practice. In the next section we will present a kernel with boundary checks that
removes these assumptions.

5.5 Boundary checks
We now extend the tiled matrix multiplication kernel to handle matrices with
arbitrary width. The extensions will have to allow the kernel to correctly handle
matrices whose width is not a multiple of the tile width. Let’s change the small
example in Fig. 5.7 to use 33 3 M, N, and P matrices. The revised example is
shown in Fig. 5.11. Note that the width of the matrices is 3, which is not a multi-
ple of the tile width (which is 2). Fig. 5.11 shows the memory access pattern dur-
ing the second phase of block0,0. We see that thread0,1 and thread1,1 will attempt
to load M elements that do not exist. Similarly, we see that thread1,0 and thread1,1
will attempt to access N elements that do not exist.

Accessing nonexisting elements is problematic in two ways. In the case of
accessing a nonexisting element that is past the end of a row (M accesses by
thread0,1 and thread1,1 in Fig. 5.11), these accesses will be done to incorrect ele-
ments. In our example the threads will attempt to access M0,3 and M1,3, which
do not exist. So what will happen to these memory loads? To answer this ques-
tion, we need to go back to the linearized layout of two-dimensional matrices.

FIGURE 5.11

Loading input matrix elements that are close to the edge: phase 1 of block0,0.
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The element after M0,2 in the linearized layout is M1,0. Although thead0,1
is attempting to access M0,3, it will end up getting M1,0. The use of this value
in the subsequent inner product calculation will obviously corrupt the output
value.

A similar problem arises in accessing an element that is past the end of a col-
umn (N accesses by thread1,0 and thread1,1 in Fig. 5.11). These accesses are to
memory locations outside the allocated area for the array. In some systems they
will return random values from other data structures. In other systems these
accesses will be rejected, causing the program to abort. Either way, the outcome
of such accesses is undesirable.

From our discussion so far, it may seem that the problematic accesses arise
only in the last phase of execution of the threads. This would suggest that we can
deal with it by taking special actions during the last phase of the tiled kernel exe-
cution. Unfortunately, this is not true. Problematic accesses can arise in all
phases. Fig. 5.12 shows the memory access pattern of block1,1 during phase 0.
We see that thread1,0 and thread1,1 attempt to access nonexisting M elements M3,0

and M3,1, whereas thread0,1 and thread1,1 attempt to access N0,3 and N1,3, which
do not exist.

Note that these problematic accesses cannot be prevented by simply
excluding the threads that do not calculate valid P elements. For example,
thread1,0 in block1,1 does not calculate any valid P element. However, it needs to
load M2,1 during phase 0 for other threads in block1,1 to use. Furthermore, note
that some threads that calculate valid P elements will attempt to access M or N
elements that do not exist. For example, as we saw in Fig. 5.11, thread0,1 of block
0,0 calculates a valid P element P0,1. However, it attempts to access a nonexisting
M0,3 during phase 1. These two facts indicate that we will need to use different
boundary condition tests for loading M tiles, loading N tiles, and calculating/

FIGURE 5.12

Loading input elements during phase 0 of block1,1.
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storing P elements. A rule of thumb to follow is that every memory access needs
to have a corresponding check that ensures that the indices used in the access are
within the bounds of the array being accessed.

Let’s start with the boundary test condition for loading input tiles. When
a thread is to load an input tile element, it should test whether the input ele-
ment it is attempting to load is a valid element. This is easily done by exam-
ining the y and x indices. For example, in line 19 in Fig. 5.9, the linearized
index is a derived from a y index of Row and an x index of ph!TILE_WIDTH +
tx. The boundary condition test would be that both of indices are smaller
than Width: Row , Width && (ph!TILE_WIDTH+tx) , Width. If the condition is
true, the thread should go ahead and load the M element. The reader should
verify that the condition test for loading the N element is (ph!TILE_WIDTH
+ty) , Width && Col , Width.

If the condition is false, the thread should not load the element. The question
is what should be placed into the shared memory location. The answer is 0.0, a
value that will not cause any harm if it is used in the inner product calculation. If
any thread uses this 0.0 value in the calculation of its inner product, there will not
be any change in the inner product value.

Finally, a thread should store its final inner product value only if it is responsi-
ble for calculating a valid P element. The test for this condition is (Row , Width)
&& (Col , Width). The kernel code with the additional boundary condition checks
is shown in Fig. 5.13.

With the boundary condition checks, the tile matrix multiplication kernel is
just one step away from being a general matrix multiplication kernel. In general,

FIGURE 5.13

Tiled matrix multiplication kernel with boundary condition checks.
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matrix multiplication is defined for rectangular matrices: a j3 k M matrix multi-
plied with a k3 l N matrix results in a j3 l P matrix. Our kernel can handle only
square matrices so far.

Fortunately, it is quite easy to extend our kernel further into a general matrix
multiplication kernel. We need to make a few simple changes. First, the Width
argument is replaced by three unsigned integer arguments: j, k, l. Where Width is
used to refer to the height of M or height of P, replace it with j. Where Width
is used to refer to the width of M or height of N, replace it with k. Where Width
is used to refer to the width of N or width of P, replace it with l. The revision of
the kernel with these changes is left as an exercise.

5.6 Impact of memory usage on occupancy
Recall that in Chapter 4, Compute Architecture and Scheduling, we discussed
the importance of maximizing the occupancy of threads on SMs to be able to
tolerate long latency operations. The memory usage of a kernel plays an impor-
tant role in occupancy tuning. While CUDA registers and shared memory can
be extremely effective at reducing the number of accesses to global memory,
one must be careful to stay within the SM’s capacity of these memories. Each
CUDA device offers limited resources, which limits the number threads that can
simultaneously reside in the SM for a given application. In general, the more
resources each thread requires, the fewer the number of threads that can reside
in each SM.

We saw in Chapter 4, Compute Architecture and Scheduling, how register
usage can be a limiting factor for occupancy. Shared memory usage can also limit
the number of threads that can be assigned to each SM. For example, the A100
GPU can be configured to have up to 164 KB of shared memory per SM and sup-
ports a maximum of 2048 threads per SM. Thus for all 2048 thread slots to be
used, a thread block should not use more than an average of (164 KB)/(2048
threads)=82 B/thread. In the tiled matrix multiplication example, every block has
TILE_WIDTH2 threads, and uses TILE_WIDTH2!4B of shared memory for Mds and
TILE_WIDTH2!4B of shared memory for Nds. Thus the thread block uses an aver-
age of (TILE_WIDTH2!4B + TILE_WIDTH2!4B)/(TILE_WIDTH2 threads)=8 B/thread of
shared memory. Therefore the tiled matrix multiplication kernel’s occupancy is
not limited by the shared memory.

However, consider a kernel that has thread blocks that use 32 KB of shared
memory, each of which has 256 threads. In this case, the kernel uses an average
of (32 KB)/(256 threads)=132 B/thread of shared memory. With such shared
memory usage, the kernel cannot achieve full occupancy. Each SM can host a
maximum of only (164 KB)/(132 B/thread)=1272 threads. Therefore the maxi-
mum achievable occupancy of this kernel will be (1272 assigned threads)/(2048
maximum threads)=62%.
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Note that the size of shared memory in each SM can also vary from device to
device. Each generation or model of devices can have a different amount of
shared memory in each SM. It is often desirable for a kernel to be able to use dif-
ferent amounts of shared memory according to the amount available in the hard-
ware. That is, we may want a host code to dynamically determine the size of the
shared memory and adjust the amount of shared memory that is used by a kernel.
This can be done by calling the cudaGetDeviceProperties function. Assume that
variable &devProp is passed to the function. In this case, the field devProp.
sharedMemPerBlock gives the amount of shared memory that is available in each
SM. The programmer can then determine the amount of shared memory that
should be used by each block.

Unfortunately, the kernels in Figs. 5.9 and 5.13 do not support any dynamic
adjustment of shared memory usage by the host code. The declarations that are
used in Fig. 5.9 hardwire the size of its shared memory usage to a compile-time
constant:

That is, the size of Mds and Nds is set to be TILE_WIDTH2 elements, whatever
the value of TILE_WIDTH is set to be at compile time. Since the code contains

both Mds and Nds will have 256 elements. If we want to change the size of Mds
and Nds, we need to change the value of TILE_WIDTH and recompile the code. The
kernel cannot easily adjust its shared memory usage at runtime without
recompilation.

We can enable such adjustment with a different style of declaration in
CUDA by adding a C extern keyword in front of the shared memory declara-
tion and omitting the size of the array in the declaration. Based on this style,
the declarations for Mds and Nds need to be merged into one dynamically
allocated array:

Since there is only one merged array, we will also need to manually define
where the Mds section of the array starts and where the Nds section starts. Note
that the merged array is one-dimensional. We will need to access it by using a lin-
earized index based on the vertical and horizontal indices.
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At runtime, when we call the kernel, we can dynamically configure the
amount of shared memory to be used for each block according to the device
query result and supply that as a third configuration parameter to the kernel
call. For example, the revised kernel could be launched with the following
statements:

where size_t is a built-in type for declaring a variable to hold the size infor-
mation for dynamically allocated data structures. The size is expressed in number
of bytes. In our matrix multiplication example, for a 163 16 tile, we have a size
of 23 163 163 4=2048 bytes to accommodate both Mds and Nds. We have omit-
ted the details of the calculation for setting the value of size at runtime and leave
it as an exercise for the reader.

In Fig. 5.14 we show how one can modify the kernel code in Figs. 5.9 and
5.11 to use dynamically sized shared memory for the Mds and Nds arrays. It may
also be useful to pass the sizes of each section of the array as arguments into
the kernel function. In this example we added two arguments: The first argu-
ment is the size of the Mds section, and the second argument is the size of
the Nds section, both in terms of bytes. Note that in the host code above, we
passed size/2 as the values of these arguments, which is 1024 bytes. With the
assignments in lines 06 and 07, the rest of the kernel code can use Mds and Nds
as the base of the array and use a linearized index to access the Mds and Nds ele-
ments. For example, instead of using Mds[ty][tx], one would use Mds
[ty!TILE_WIDTH+tx].

FIGURE 5.14

Tiled matrix multiplication kernel with dynamically sized shared memory usage.
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5.7 Summary
In summary, the execution speed of a program in modern processors can be
severely limited by the speed of the memory. To achieve good utilization of the
execution throughput of a CUDA devices, one needs to strive for a high compute
to global memory access ratio in the kernel code. If the ratio is low, the kernel is
memory-bound. That is, its execution speed is limited by the rate at which its
operands are accessed from memory.

CUDA provides access to registers, shared memory, and constant memory.
These memories are much smaller than the global memory but can be accessed at
much higher speed. Using these memories effectively requires redesign of the
algorithm. We use matrix multiplication as an example to illustrate tiling, a popu-
lar strategy to enhance locality of data access and enable effective use of shared
memory. In parallel programming, tiling uses barrier synchronization to force
multiple threads to jointly focus on a subset of the input data at each phase of the
execution so that the subset data can be placed into these special memory types to
enable much higher access speed.

However, it is important for CUDA programmers to be aware of the limited
sizes of these special types of memory. Their capacities are implementation
dependent. Once their capacities have been exceeded, they limit the number of
threads that can be executing simultaneously in each SM and can negatively
affect the GPU’s computation throughput as well as its ability to tolerate latency.
The ability to reason about hardware limitations when developing an application
is a key aspect of parallel programming.

Although we introduced tiled algorithms in the context of CUDA C program-
ming, it is an effective strategy for achieving high-performance in virtually all types
of parallel computing systems. The reason is that an application must exhibit locality
in data access to make effective use of high-speed memories in these systems. For
example, in a multicore CPU system, data locality allows an application to effectively
use on-chip data caches to reduce memory access latency and achieve high perfor-
mance. These on-chip data caches are also of limited size and require the computa-
tion to exhibit locality. Therefore the reader will also find the tiled algorithm useful
when developing a parallel application for other types of parallel computing systems
using other programming models.

Our goal for this chapter was to introduce the concept of locality, tiling, and differ-
ent CUDA memory types. We introduced a tiled matrix multiplication kernel using
shared memory. We further studied the need for boundary test conditions to allow for
arbitrary data dimensions in applying tiling techniques. We also briefly discussed the
use of dynamically sized shared memory allocation so that the kernel can adjust the
size of shared memory that is used by each block according to the hardware capability.
We did not discuss the use of registers in tiling. We will explain the use of registers in
tiled algorithms when we discuss parallel algorithm patterns in Part II of the book.

118 CHAPTER 5 Memory architecture and data locality



Exercises
1. Consider matrix addition. Can one use shared memory to reduce the

global memory bandwidth consumption? Hint: Analyze the elements that
are accessed by each thread and see whether there is any commonality
between threads.

2. Draw the equivalent of Fig. 5.7 for a 83 8 matrix multiplication with 23 2
tiling and 43 4 tiling. Verify that the reduction in global memory bandwidth
is indeed proportional to the dimension size of the tiles.

3. What type of incorrect execution behavior can happen if one forgot to use
one or both __syncthreads() in the kernel of Fig. 5.9?

4. Assuming that capacity is not an issue for registers or shared memory, give
one important reason why it would be valuable to use shared memory
instead of registers to hold values fetched from global memory? Explain
your answer.

5. For our tiled matrix-matrix multiplication kernel, if we use a 323 32 tile,
what is the reduction of memory bandwidth usage for input matrices M
and N?

6. Assume that a CUDA kernel is launched with 1000 thread blocks, each of
which has 512 threads. If a variable is declared as a local variable in the
kernel, how many versions of the variable will be created through the
lifetime of the execution of the kernel?

7. In the previous question, if a variable is declared as a shared memory
variable, how many versions of the variable will be created through the
lifetime of the execution of the kernel?

8. Consider performing a matrix multiplication of two input matrices with
dimensions N3N. How many times is each element in the input matrices
requested from global memory when:
a. There is no tiling?
b. Tiles of size T3T are used?

9. A kernel performs 36 floating-point operations and seven 32-bit global
memory accesses per thread. For each of the following device
properties, indicate whether this kernel is compute-bound or memory-
bound.
a. Peak FLOPS=200 GFLOPS, peak memory bandwidth=100 GB/second
b. Peak FLOPS=300 GFLOPS, peak memory bandwidth=250 GB/second

10. To manipulate tiles, a new CUDA programmer has written a device kernel
that will transpose each tile in a matrix. The tiles are of size
BLOCK_WIDTH by BLOCK_WIDTH, and each of the dimensions of
matrix A is known to be a multiple of BLOCK_WIDTH. The kernel
invocation and code are shown below. BLOCK_WIDTH is known at
compile time and could be set anywhere from 1 to 20.
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a. Out of the possible range of values for BLOCK_SIZE, for what values
of BLOCK_SIZE will this kernel function execute correctly on the
device?

b. If the code does not execute correctly for all BLOCK_SIZE values, what
is the root cause of this incorrect execution behavior? Suggest a fix to the
code to make it work for all BLOCK_SIZE values.

11. Consider the following CUDA kernel and the corresponding host function
that calls it:

a. How many versions of the variable i are there?
b. How many versions of the array x[] are there?
c. How many versions of the variable y_s are there?
d. How many versions of the array b_s[] are there?
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e. What is the amount of shared memory used per block (in bytes)?
f. What is the floating-point to global memory access ratio of the kernel (in OP/B)?
12. Consider a GPU with the following hardware limits: 2048 threads/SM, 32

blocks/SM, 64K (65,536) registers/SM, and 96 KB of shared memory/SM.
For each of the following kernel characteristics, specify whether the kernel
can achieve full occupancy. If not, specify the limiting factor.
a. The kernel uses 64 threads/block, 27 registers/thread, and 4 KB of shared

memory/SM.
b. The kernel uses 256 threads/block, 31 registers/thread, and 8 KB of

shared memory/SM.
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The execution speed of a parallel program can vary greatly depending on
the interactions between the resource demands of the program and the
resource constraints of the hardware. Managing the interaction between par-
allel code and hardware resource constraints is important for achieving high
performance in virtually all parallel programming models. It is a practical
skill that requires deep understanding of the hardware architecture and is
best learned through hands-on exercises in a parallel programming model
that is designed for high performance.

So far, we have learned about various aspects of the GPU architecture and their
implications for performance. In Chapter 4, Compute Architecture and Scheduling,
we learned about the compute architecture of the GPU and related performance con-
siderations, such as control divergence and occupancy. In Chapter 5, Memory
Architecture and Data Locality, we learned about the on-chip memory architecture of
the GPU and the use of shared memory tiling to achieve more data reuse. In this
chapter we will briefly present the off-chip memory (DRAM) architecture and dis-
cuss related performance considerations such as memory coalescing and memory
latency hiding. We then discuss an important type of optimization—thread granular-
ity coarsening—that may target any of the different aspects of the architecture,
depending on the application. Finally, we wrap up this part of the book with a check-
list of common performance optimizations that will serve as a guide for optimizing
the performance of the parallel patterns that will be discussed in the second and third
parts of the book.

Programming Massively Parallel Processors. DOI: https://doi.org/10.1016/B978-0-323-91231-0.00016-1
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In different applications, different architecture constraints may dominate and
become the limiting factors of performance, commonly referred to as bottlenecks.
One can often dramatically improve the performance of an application on a par-
ticular CUDA device by trading one resource usage for another. This strategy
works well if the resource constraint that is thus alleviated was the dominating
constraint before the strategy was applied and the constraint that is thus exacer-
bated does not have negative effects on parallel execution. Without such an
understanding, performance tuning would be guesswork; plausible strategies may
or may not lead to performance enhancements.

6.1 Memory coalescing
One of the most important factors of CUDA kernel performance is accessing data
in the global memory, the limited bandwidth of which can become the bottleneck.
CUDA applications extensively exploit data parallelism. Naturally, CUDA appli-
cations tend to process a massive amount of data from the global memory within
a short period of time, In Chapter 5, Memory Architecture and Data Locality, we
studied tiling techniques that leverage the shared memory to reduce the total
amount of data that must be accessed from the global memory by a collection of
threads in each thread block. In this chapter we will further discuss memory coa-
lescing techniques for moving data between global memory and shared memories
or registers in an efficient manner. Memory coalescing techniques are often used
in conjunction with tiling techniques to allow CUDA devices to reach their per-
formance potential by efficiently utilizing the global memory bandwidth.1

The global memory of a CUDA device is implemented with DRAM. Data bits
are stored in DRAM cells that are small capacitors, in which the presence or
absence of a tiny amount of electrical charge distinguishes between a 1 and a 0
value. Reading data from a DRAM cell requires the small capacitor to use its tiny
electrical charge to drive a highly capacitive line leading to a sensor and set off
the sensor’s detection mechanism that determines whether a sufficient amount of
charge is present in the capacitor to qualify as a “1.” This process takes tens of
nanoseconds in modern DRAM chips (see the “Why is DRAM So Slow?” side-
bar). This is in sharp contrast to the subnanosecond clock cycle time of modern
computing devices. Because this process is very slow relative to the desired data
access speed (subnanosecond access per byte), modern DRAM designs use paral-
lelism to increase their rate of data access, commonly referred to as memory
access throughput.

1 Recent CUDA devices use on-chip caches for global memory data. Such caches automatically
coalesce more of the kernel access patterns and somewhat reduce the need for programmers to
manually rearrange their access patterns. However, even with caches, coalescing techniques will
continue to have significant effects on kernel execution performance in the foreseeable future.
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Why Are DRAMs So Slow?

The following figure shows a DRAM cell and the path for accessing its
content. The decoder is an electronic circuit that uses a transistor to drive
a line connected to the outlet gates of thousands of cells. It can take a long
time for the line to be fully charged or discharged to the desired level.

A more formidable challenge is for the cell to drive the vertical line to
the sense amplifiers and allow the sense amplifier to detect its content.
This is based on electrical charge sharing. The gate lets out the tiny
amount of electrical charge that is stored in the cell. If the cell content is
“1,” the tiny amount of charge must raise the electrical potential of the
large capacitance of the long bit line to a sufficiently high level that it can
trigger the detection mechanism of the sense amplifier. A good analogy
would be for someone to hold a small cup of coffee at one end of a long
hallway and a person at the other end of the hallway to use the aroma
propagated along the hallway to determine the flavor of the coffee.

One could speed up the process by using a larger, stronger capacitor
in each cell. However, the DRAMs have been going in the opposite direc-
tion. The capacitors in each cell have been steadily reduced in size and
thus reduced in their strength over time so that more bits can be stored in
each chip. This is why the access latency of DRAMs has not decreased
over time.

Each time a DRAM location is accessed, a range of consecutive locations that
include the requested location are accessed. Many sensors are provided in each
DRAM chip, and they all work in parallel. Each senses the content of a bit within
these consecutive locations. Once detected by the sensors, the data from all these
consecutive locations can be transferred at high speed to the processor. These
consecutive locations accessed and delivered are referred to as DRAM bursts. If
an application makes focused use of data from these bursts, the DRAMs can sup-
ply the data at a much higher rate than would be the case if a truly random
sequence of locations were accessed.

Recognizing the burst organization of modern DRAMs, current CUDA devices
employ a technique that allows programmers to achieve high global memory
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access efficiency by organizing memory accesses of threads into favorable pat-
terns. This technique takes advantage of the fact that threads in a warp execute
the same instruction at any given point in time. When all threads in a warp exe-
cute a load instruction, the hardware detects whether they access consecutive
global memory locations. In other words, the most favorable access pattern is
achieved when all threads in a warp access consecutive global memory locations.
In this case, the hardware combines, or coalesces, all these accesses into a consol-
idated access to consecutive DRAM locations. For example, for a given load
instruction of a warp, if thread 0 accesses global memory location X, thread 1
accesses location X + 1, thread 2 accesses location X + 2, and so on, all these
accesses will be coalesced, or combined into a single request for consecutive
locations when accessing the DRAM.2 Such coalesced access allows the DRAM
to deliver data as a burst.3

To understand how to effectively use the coalescing hardware, we need to
review how the memory addresses are formed in accessing C multidimensional
array elements. Recall from Chapter 3, Multidimensional Grids and Data,
(Fig. 3.3 is replicated here as Fig. 6.1 for convenience) that multidimensional
array elements in C and CUDA are placed into the linearly addressed memory
space according to the row-major convention. Recall that the term row-major

FIGURE 6.1

Placing matrix elements into a linear array based on row-major order.

2 Different CUDA devices may also impose alignment requirements on the global memory address
X. For example, in some CUDA devices, X is required to be aligned to 16-word (i.e., 64-byte)
boundaries. That is, the lower six bits of X should all be 0 bits. Such alignment requirements have
been relaxed in recent CUDA devices, owing to the presence of second-level caches.
3 Note that modern CPUs also recognize the DRAM burst organization in their cache memory
design. A CPU cache line typically maps to one or more DRAM bursts. Applications that make
full use of bytes in each cache line they touch tend to achieve much higher performance than
those that randomly access memory locations. The techniques that we present in this chapter can be
adapted to help CPU programs to achieve high performance.
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refers to the fact that the placement of data preserves the structure of rows: All
adjacent elements in a row are placed into consecutive locations in the address
space. In Fig. 6.1 the four elements of row 0 are first placed in their order of
appearance in the row. Elements in row 1 are then placed, followed by elements
of row 2, followed by elements of row 3. It should be clear that M0,0 and M1,0,
though they appear to be consecutive in the two-dimensional matrix, are placed
four locations apart in the linearly addressed memory.

Let’s assume that the multidimensional array in Fig. 6.1 is a matrix that is
used as the second input matrix in matrix multiplication. In this case, consecutive
threads in a warp that are assigned to consecutive output elements will iterate
through consecutive columns of this input matrix. The top left part of Fig. 6.2
shows the code for this computation, and the top right part shows the logical view
of the access pattern: consecutive threads iterating through consecutive columns.
One can tell by inspecting the code that the accesses to M can be coalesced. The
index of the array M is k!Width+col. The variables k and Width have the same
value across all threads in the warp. The variable col is defined as blockIdx.
x!blockDim.x+threadIdx.x, which means that consecutive threads (with consecu-
tive threadIdx.x values) will have consecutive values of col and will therefore
access consecutive elements of M.

FIGURE 6.2

A coalesced access pattern.
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The bottom part of Fig. 6.2 shows the physical view of the access pattern. In
iteration 0, consecutive threads will access consecutive elements in row 0 that are
adjacent in memory, shown as “Loads for iteration 0” in Fig. 6.2. In iteration 1,
consecutive threads will access consecutive elements in row 1 that are also adja-
cent in memory, shown as “Loads for iteration 1” in Fig. 6.2. This process con-
tinues for all rows. As we can see, the memory access pattern that is formed by
the threads during this process is a favorable one that can be coalesced. Indeed, in
all the kernels that we have implemented so far, our memory accesses have been
naturally coalesced.

Now assume that the matrix was stored in column-major order instead of row-
major order. There could be various reasons why this might be the case. For
example, we might be multiplying by the transpose of a matrix that is stored in
row-major order. In linear algebra we often need to use both the original and
transposed forms of a matrix. It would be better to avoid creating and storing
both forms. A common practice is to create the matrix in one form, say, the origi-
nal form. When the transposed form is needed, its elements can be accessed by
accessing the original form by switching the roles of the row and column indices.
In C this is equivalent to viewing the transposed matrix as a column-major layout
of the original matrix. Regardless of the reason, let’s observe the memory access
pattern that is achieved when the second input matrix to our matrix multiplication
example is stored in column-major order.

Fig. 6.3 illustrates how consecutive threads iterate through consecutive col-
umns when the matrix is stored in column-major order. The top left part of
Fig. 6.3 shows the code, and the top right part shows the logical view of the
memory accesses. The program is still trying to have each thread access a column
of matrix M. One can tell by inspecting the code that the accesses to M are not
favorable for coalescing. The index of the array M is col!Width+k. As before, col
is defined as blockIdx.x!blockDim.x+threadIdx.x, which means that consecutive
threads (with consecutive threadIdx.x values) will have consecutive values of
col. However, in the index to M, col is multiplied by Width, which means that
consecutive threads will access elements of M that are Width apart. Therefore the
accesses are not favorable for coalescing.

In the bottom portion of Fig. 6.3, we can see that the physical view of the memory
accesses is quite different from that in Fig. 6.2. In iteration 0, consecutive threads will
logically access consecutive elements in row 0, but this time they are not adjacent in
memory because of the column-major layout. These loads are shown as “Loads for
iteration 0” in Fig. 6.3. Similarly, in iteration 1, consecutive threads will access conse-
cutive elements in row 1 that are also not adjacent in memory. For a realistic matrix
there are typically hundreds or even thousands of elements in each dimension. The M
elements that are accessed in each iteration by neighboring threads can be hundreds or
even thousands of elements apart. The hardware will determine that accesses to these
elements are far away from each other and cannot be coalesced.

There are various strategies for optimizing code to achieve memory coalescing
when the computation is not naturally amenable to it. One strategy is to rearrange
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how threads are mapped to the data; another strategy is to rearrange the layout of
the data itself. We will discuss these strategies in Section 6.4 and see examples
throughout this book of how they can be applied. Yet another strategy is to trans-
fer the data between global memory and shared memory in a coalesced manner
and carry out the unfavorable access pattern in shared memory, which provides
faster access latency. We will also see example optimizations that use this strat-
egy throughout this book, including an optimization that we will apply now to
matrix-matrix multiplication in which the second input matrix is in column-major
layout. This optimization is called corner turning.

Fig. 6.4 illustrates an example of how corner turning can be applied. In this
example, A is an input matrix that is stored in row-major layout in global mem-
ory, and B is an input matrix that is stored in column-major layout in global
memory. They are multiplied to produce an output matrix C that is stored in row-
major layout in global memory. The example illustrates how four threads that are
responsible for the four consecutive elements at the top edge of the output tile
load the input tile elements.

FIGURE 6.3

An uncoalesced access pattern.
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The access to the input tile in matrix A is similar to that in Chapter 5, Memory
Architecture and Data Locality. The four threads load the four elements at the top
edge of the input tile. Each thread loads an input element whose local row and col-
umn indices within the input tile are the same as those of the thread’s output element
within the output tile. These accesses are coalesced because consecutive threads
access consecutive elements in the same row of A that are adjacent in memory
according to the row-major layout.

On the other hand, the access to the input tile in matrix B needs to be different
from that in Chapter 5, Memory Architecture and Data Locality. Fig. 6.4(A)
shows what the access pattern would be like if we used the same arrangement as
in Chapter 5, Memory Architecture and Data Locality. Even though the four
threads are logically loading the four consecutive elements at the top edge of the
input tile, the elements that are loaded by consecutive threads are far away from
each other in the memory because of the column-major layout of the B elements.
In other words, consecutive threads that are responsible for consecutive elements
in the same row of the output tile load nonconsecutive locations in memory,
which results in uncoalesced memory accesses.

This problem can be solved by assigning the four consecutive threads to load
the four consecutive elements at the left edge (the same column) in the input tile,
as shown in Fig. 6.4(B). Intuitively, we are exchanging the roles of threadIdx.x
and threadIdx.y when each thread calculates the linearized index for loading the
B input tile. Since B is in column-major layout, consecutive elements in the same
column are adjacent in memory. Hence consecutive threads load input elements
that are adjacent in memory, which ensures that the memory accesses are coa-
lesced. The code can be written to place the tile of B elements into the shared

FIGURE 6.4

Applying corner turning to coalesce accesses to matrix B, which is stored in column-major layout.
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memory in either column-major layout or row-major layout. Either way, after the
input tile has been loaded, each thread can access its inputs with little perfor-
mance penalty. This is because shared memory is implemented with SRAM tech-
nology and does not require coalescing.

The main advantage of memory coalescing is that it reduces global memory
traffic by combining multiple memory accesses into a single access. Accesses can
be combined when they take place at the same time and access adjacent memory
locations. Traffic congestion does not arise only in computing. Most of us have
experienced traffic congestion in highway systems, as illustrated in Fig. 6.5. The
root cause of highway traffic congestion is that there are too many cars all trying
to travel on a road that is designed for a much smaller number of vehicles. When
congestion occurs, the travel time for each vehicle is greatly increased. Commute
time to work can easily double or triple when there is traffic congestion.

Most solutions for reducing traffic congestion involve the reduction of the
number of cars on the road. Assuming that the number of commuters is constant,
people need to share rides in order to reduce the number of cars on the road. A
common way to share rides is carpooling, in which the members of a group of
commuters take turns driving the group to work in one vehicle. Governments usu-
ally need to have policies to encourage carpooling. In some countries the govern-
ment simply disallows certain classes of cars to be on the road on a daily basis.
For example, cars with odd license plate numbers may not be allowed on the road
on Monday, Wednesday, or Friday. This encourages people whose cars are
allowed on different days to form a carpool group. In other countries the govern-
ment may provide incentives for behavior that reduces the number of cars on the

FIGURE 6.5

Reducing traffic congestion in highway systems.
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road. For example, in certain countries, some lanes of congested highways
are designated as carpool lanes; only cars with more than two or three people are
allowed to use these lanes. There are also countries where the government makes
gasoline so expensive that people form carpools to save money. All these mea-
sures for encouraging carpooling are designed to overcome the fact that carpool-
ing requires extra effort, as we show in Fig. 6.6.

Carpooling requires workers who wish to carpool to compromise and agree on
a common commute schedule. The top half of Fig. 6.6 shows a good schedule
pattern for carpooling. Time goes from left to right. Worker A and Worker B
have similar schedules for sleep, work, and dinner. This allows these two workers
to easily go to work and return home in one car. Their similar schedules allow
them to more easily agree on a common departure time and return time. This is
not the case for the schedules shown in the bottom half of Fig. 6.6. Worker A and
Worker B have very different schedules in this case. Worker A parties until sun-
rise, sleeps during the day, and goes to work in the evening. Worker B sleeps at
night, goes to work in the morning, and returns home for dinner at 6:00 pm. The
schedules are so wildly different that these two workers cannot possibly coordi-
nate a common time to drive to work and return home in one car.

Memory coalescing is very similar to carpooling arrangements. We can think
of the data as the commuters and the DRAM access requests as the vehicles.
When the rate of DRAM requests exceeds the provisioned access bandwidth of
the DRAM system, traffic congestion rises, and the arithmetic units become idle.
If multiple threads access data from the same DRAM location, they can poten-
tially form a “carpool” and combine their accesses into one DRAM request.
However, this requires the threads to have similar execution schedules so that
their data accesses can be combined into one. Threads in the same warp are

FIGURE 6.6

Carpooling requires synchronization among people.
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perfect candidates because they all execute a load instruction simultaneously by
virtue of SIMD execution.

6.2 Hiding memory latency
As we explained in Section 6.1, DRAM bursting is a form of parallel organiza-
tion: Multiple locations are accessed in the DRAM core array in parallel.
However, bursting alone is not sufficient to realize the level of DRAM access
bandwidth required by modern processors. DRAM systems typically employ two
more forms of parallel organization: banks and channels. At the highest level, a
processor contains one or more channels. Each channel is a memory controller
with a bus that connects a set of DRAM banks to the processor. Fig. 6.7 illustrates
a processor that contains four channels, each with a bus that connects four
DRAM banks to the processor. In real systems a processor typically has one to
eight channels, and a large number of banks is connected to each channel.

The data transfer bandwidth of a bus is defined by its width and clock frequency.
Modern double data rate (DDR) busses perform two data transfers per clock cycle: one
at the rising edge and one at the falling edge of each clock cycle. For example, a 64-bit
DDR bus with a clock frequency of 1 GHz has a bandwidth of 8B!2!1 GHz=16GB/s.
This seems to be a large number but is often too small for modern CPUs and GPUs. A
modern CPU might require a memory bandwidth of at least 32 GB/s, whereas a modern
GPU might require 256 GB/s. For this example the CPU would require 2 channels, and
the GPU would require 16 channels.

For each channel, the number of banks that is connected to it is determined by
the number of banks required to fully utilize the data transfer bandwidth of the
bus. This is illustrated in Fig. 6.8. Each bank contains an array of DRAM cells,
the sensing amplifiers for accessing these cells, and the interface for delivering
bursts of data to the bus (Section 6.1).

FIGURE 6.7

Channels and banks in DRAM systems.
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Fig. 6.8(A) illustrates the data transfer timing when a single bank is connected
to a channel. It shows the timing of two consecutive memory read accesses to the
DRAM cells in the bank. Recall from Section 6.1 that each access involves long
latency for the decoder to enable the cells and for the cells to share their stored
charge with the sensing amplifier. This latency is shown as the gray section at the
left end of the time frame. Once the sensing amplifier has completed its work, the
burst data is delivered through the bus. The time for transferring the burst data
through the bus is shown as the left dark section of the time frame in Fig. 6.8.
The second memory read access will incur a similar long access latency (the gray
section between the dark sections of the time frame) before its burst data can be
transferred (the right dark section).

In reality, the access latency (the gray sections) is much longer than the data
transfer time (the dark section). It should be apparent that the access transfer tim-
ing of a one-bank organization would grossly underutilize the data transfer band-
width of the channel bus. For example, if the ratio of DRAM cell array access
latency to the data transfer time is 20:1, the maximal utilization of the channel
bus would be 1/21=4.8%; that is a 16 GB/s channel would deliver data to the pro-
cessor at a rate no more than 0.76 GB/s. This would be totally unacceptable. This
problem is solved by connecting multiple banks to a channel bus.

When two banks are connected to a channel bus, an access can be initiated in
the second bank while the first bank is serving another access. Therefore one can
overlap the latency for accessing the DRAM cell arrays. Fig. 6.8(B) shows the
timing of a two-bank organization. We assume that bank 0 started at a time earlier
than the window shown in Fig. 6.8. Shortly after the first bank starts accessing its
cell array, the second bank also starts to access its cell array. When the access in
bank 0 is complete, it transfers the burst data (the leftmost dark section of the

FIGURE 6.8

Banking improves the utilization of data transfer bandwidth of a channel.
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time frame). Once bank 0 completes its data transfer, bank 1 can transfer its burst
data (the second dark section). This pattern repeats for the next accesses.

From Fig. 6.8(B), we can see that by having two banks, we can potentially
double the utilization of the data transfer bandwidth of the channel bus. In gen-
eral, if the ratio of the cell array access latency and data transfer time is R, we
need to have at least R + 1 banks if we hope to fully utilize the data transfer
bandwidth of the channel bus. For example, if the ratio is 20, we will need at least
21 banks connected to each channel bus. In general, the number of banks con-
nected to each channel bus needs to be larger than R for two reasons. One is that
having more banks reduces the probability of multiple simultaneous accesses tar-
geting the same bank, a phenomenon called bank conflict. Since each bank can
serve only one access at a time, the cell array access latency can no longer be
overlapped for these conflicting accesses. Having a larger number of banks
increases the probability that these accesses will be spread out among multiple
banks. The second reason is that the size of each cell array is set to achieve rea-
sonable latency and manufacturability. This limits the number of cells that each
bank can provide. One may need many banks just to be able to support the mem-
ory size that is required.

There is an important connection between the parallel execution of threads and
the parallel organization of the DRAM system. To achieve the memory access band-
width specified for device, there must be a sufficient number of threads making
simultaneous memory accesses. This observation reflects another benefit of maximiz-
ing occupancy. Recall that in Chapter 4, Compute Architecture and Scheduling, we
saw that maximizing occupancy ensures that there are enough threads resident on the
streaming multiprocessors (SMs) to hide core pipeline latency, thereby utilizing the
instruction throughput efficiently. As we see now, maximizing occupancy also has
the additional benefit of ensuring that enough memory access requests are made to
hide DRAM access latency, thereby utilizing the memory bandwidth efficiently. Of
course, to achieve the best bandwidth utilization, these memory accesses must be
evenly distributed across channels and banks, and each access to a bank must also be
a coalesced access.

Fig. 6.9 shows a toy example of distributing the elements of an array M to channels
and banks. We assume a small burst size of two elements (8 bytes). The distribution is
done by hardware design. The addressing of the channels and backs are such that the
first 8 bytes of the array (M[0] and M[1]) are stored in bank 0 of channel 0, the next 8
bytes (M[2] and M[3]) in bank 0 of channel 1, the next 8 bytes (M[4] and M[5]) in
bank 0 of channel 2, and the next 8 bytes (M[6] and M[7]) in bank 0 of channel 3.

At this point, the distribution wraps back to channel 0 but will use bank 1 for the
next 8 bytes (M[8] and M[9]). Thus elements M[10] and M[11] will be in bank 1 of
channel 1, M[12] and M[13] will be in bank 1 of channel 2, and M[14] and M[15]
will be in bank 1 of channel 3. Although not shown in the figure, any additional ele-
ments will be wrapped around and start with bank 0 of channel 0. For example, if there
are more elements, M[16] and M[17] will be stored in bank 0 of channel 0, M[18] and
M[19] will be stored in bank 0 of channel 1, and so on.
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The distribution scheme illustrated in Fig. 6.9, often referred to as interleaved
data distribution, spreads the elements across the banks and channels in the sys-
tem. This scheme ensures that even relatively small arrays are spread out nicely.
Thus we assign only enough elements to fully utilize the DRAM burst of bank 0
of channel 0 before moving on to bank 0 of channel 1. In our toy example, as
long as we have at least 16 elements, the distribution will involve all the channels
and banks for storing the elements.

We now illustrate the interaction between parallel thread execution and the
parallel memory organization. We will use the example in Fig. 5.5, replicated as
Fig. 6.10. We assume that the multiplication will be performed with 23 2 thread
blocks and 23 2 tiles.

During phase 0 of the kernel’s execution, all four thread blocks will be loading their
first tile. The M elements that are involved in each tile are shown in Fig. 6.11. Row 2
shows the M elements accessed in phase 0, with their 2D indices. Row 3 shows the
same M elements with their linearized indices. Assume that all thread blocks are exe-
cuted in parallel. We see that each block will make two coalesced accesses.

According to the distribution in Fig. 6.9, these coalesced accesses will be
made to the two banks in channel 0 as well as the two banks in channel 2. These
four accesses will be done in parallel to take advantage of two channels as well
as improving the utilization of the data transfer bandwidth of each channel.

We also see that Block0,0 and Block0,1 will load the same M elements. Most
modern devices are equipped with caches that will combine these accesses into
one as long as the execution timing of these blocks are sufficiently close to each
other. In fact, the cache memories in GPU devices are mainly designed to com-
bine such accesses and reduce the number of accesses to the DRAM system.

Rows 4 and 5 show the M elements loaded during phase 1 of the kernel execu-
tion. We see that the accesses are now done to the banks in channel 1 and channel 3.
Once again, these accesses will be done in parallel. It should be clear to the reader
that there is a symbiotic relationship between the parallel execution of the threads
and the parallel structure of the DRAM system. On one hand, good utilization of the
potential access bandwidth of the DRAM system requires that many threads

FIGURE 6.9

Distributing array elements into channels and banks.
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simultaneously access data in the DRAM. On the other hand, the execution through-
put of the device relies on good utilization of the parallel structure of the DRAM sys-
tem, that is, banks and channels. For example, if the simultaneously executing
threads all access data in the same channel, the memory access throughput and the
overall device execution speed will be greatly reduced.

FIGURE 6.10

A small example of matrix multiplication (replicated from Fig. 5.5).

FIGURE 6.11

M elements loaded by thread blocks in each phase.
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The reader is invited to verify that multiplying two larger matrices, such as
83 8 with the same 23 2 thread block configuration, will make use of all the
four channels in Fig. 6.9. On the other hand, an increased DRAM burst size
would require multiplication of even larger matrices to fully utilize the data trans-
fer bandwidth of all the channels.

6.3 Thread coarsening
So far, in all the kernels that we have seen, work has been parallelized across threads
at the finest granularity. That is, each thread was assigned the smallest possible unit
of work. For example, in the vector addition kernel, each thread was assigned one
output element. In the RGB-to-grayscale conversion and the image blur kernels, each
thread was assigned one pixel in the output image. In the matrix multiplication ker-
nels, each thread was assigned one element in the output matrix.

The advantage of parallelizing work across threads at the finest granularity is that
it enhances transparent scalability, as discussed in Chapter 4, Compute Architecture
and Scheduling. If the hardware has enough resources to perform all the work in par-
allel, then the application has exposed enough parallelism to fully utilize the hard-
ware. Otherwise, if the hardware does not have enough resources to perform all the
work in parallel, the hardware can simply serialize the work by executing the thread
blocks one after the other.

The disadvantage of parallelizing work at the finest granularity comes when
there is a “price” to be paid for parallelizing that work. This price of parallelism
can take many forms, such as redundant loading of data by different thread
blocks, redundant work, synchronization overhead, and others. When the threads
are executed in parallel by the hardware, this price of parallelism is often worth
paying. However, if the hardware ends up serializing the work as a result of insuf-
ficient resources, then this price has been paid unnecessarily. In this case, it is
better for the programmer to partially serialize the work and reduce the price that
is paid for parallelism. This can be done by assigning each thread multiple units
of work, which is often referred to as thread coarsening.

We demonstrate the thread coarsening optimization using the tiled matrix mul-
tiplication example from Chapter 5, Memory Architecture and Data Locality.
Fig. 6.12 depicts the memory access pattern of computing two horizontally adja-
cent output tiles of the output matrix P. For each of these output tiles, we observe
that different input tiles of the matrix N need to be loaded. However, the same
input tiles of the matrix M are loaded for both the output tiles.

In the tiled implementation in Chapter 5, Memory Architecture and Data
Locality, each output tile is processed by a different thread block. Because the
shared memory contents cannot be shared across blocks, each block must load its
own copy of the input tiles of matrix M. Although having different thread blocks
load the same input tile is redundant, it is a price that we pay to be able to process
the two output tiles in parallel using different blocks. If these thread blocks run in
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parallel, this price may be worth paying. On the other hand, if these thread blocks
are serialized by the hardware, the price is paid in vain. In the latter case, it is bet-
ter for the programmer to have a single thread block process the two output tiles,
whereby each thread in the block processes two output elements. This way, the
coarsened thread block would load the input tiles of M once and reuse them for
multiple output tiles.

Fig. 6.13 shows how thread coarsening can be applied to the tiled matrix
multiplication code from Chapter 5, Memory Architecture and Data Locality.
On line 02 a constant COARSE_FACTOR is added to represent the coarsening fac-
tor, which is the number of original units of work for which each coarsened
thread is going to be responsible. On line 13 the initialization of the column
index is replaced with an initialization of colStart, which is the index of the
first column for which the thread is responsible, since the thread is now
responsible for multiple elements with different column indices. In calculating
colStart, the block index bx is multiplied by TILE_WIDTH!COARSE_FACTOR
instead of just TILE_WIDTH, since each thread block is now responsible for
TILE_WIDTH!COARSE_FACTOR columns. On lines 16"19, multiple instances of
Pvalue are declared and initialized, one for each element for which the

FIGURE 6.12

Thread coarsening for tiled matrix multiplication.
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coarsened thread is responsible. The loop on line 17 that iterates over the dif-
ferent units of work for which the coarsened thread is responsible is some-
times referred to as a coarsening loop. Inside the loop on line 22 that loops
over the input tiles, only one tile of M is loaded in each loop iteration, as with
the original code. However, for each tile of M that is loaded, multiple tiles of N
are loaded and used by the coarsening loop on line 27. This loop first
figures out which column of the current tile the coarsened thread is responsible

FIGURE 6.13

Code for thread coarsening for tiled matrix multiplication.
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for (line 29), then loads the tile of N (line 32) and uses the tile to compute and
update a different Pvalue each iteration (lines 35"37). At the end, on lines
44"47, another coarsening loop is used for each coarsened thread to update
the output elements for which it is responsible.

Thread coarsening is a powerful optimization that can result in substantial per-
formance improvement for many applications. It is an optimization that is com-
monly applied. However, there are several pitfalls to avoid in applying thread
coarsening. First, one must be careful not to apply the optimization when it is
unnecessary. Recall that thread coarsening is beneficial when there is a price paid
for parallelization that can be reduced with coarsening, such as redundant loading
of data, redundant work, synchronization overhead, or others. Not all computa-
tions have such a price. For example, in the vector addition kernel in Chapter 2,
Heterogeneous Data Parallel Computing, no price is paid for processing different
vector elements in parallel. Therefore applying thread coarsening to the vector
addition kernel would not be expected to make a substantial performance differ-
ence. The same applies to the RGB-to-grayscale conversion kernel in Chapter 3,
Multidimensional Grids and Data.

The second pitfall to avoid is not to apply so much coarsening that the hard-
ware resources become underutilized. Recall that exposing as much parallelism as
possible to the hardware enables transparent scalability. It provides the hardware
with the flexibility of parallelizing or serializing work, depending on the amount
of execution resources it has. When programmers coarsen threads, they reduce
the amount of parallelism that is exposed to the hardware. If the coarsening factor
is too high, not enough parallelism will be exposed to the hardware, resulting in
some parallel execution resources being unutilized. In practice, different devices
have different amounts of execution resources, so the best coarsening factor is
usually device-specific and dataset-specific and needs to be retuned for different
devices and datasets. Hence when thread coarsening is applied, scalability
becomes less transparent.

The third pitfall of applying thread coarsening is to avoid increasing resource
consumption to such an extent that it hurts occupancy. Depending on the kernel,
thread coarsening may require using more registers per thread or more shared
memory per thread block. If this is the case, programmers must be careful not to
use too many registers or too much shared memory such that the occupancy is
reduced. The performance penalty from reducing occupancy may be more detri-
mental than the performance benefit that thread coarsening may offer.

6.4 A checklist of optimizations
Throughout this first part of the book, we have covered various common optimi-
zations that CUDA programmers apply to improve the performance of their code.
We consolidate these optimizations into a single checklist, shown in Table 6.1.
This checklist is not an exhaustive one, but it contains many of the universal
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optimizations that are common across different applications and that programmers
should first consider. In the second and third parts of the book, we will apply the
optimizations in this checklist to various parallel patterns and applications to
understand how they operate in different contexts. In this section we will provide
a brief review of each optimization and the strategies for applying it.

Table 6.1 A checklist of optimizations.

Optimization
Benefit to
compute cores Benefit to memory Strategies

Maximizing
occupancy

More work to hide
pipeline latency

More parallel
memory accesses
to hide DRAM
latency

Tuning usage of SM
resources such as threads
per block, shared memory
per block, and registers
per thread

Enabling
coalesced
global
memory
accesses

Fewer pipeline
stalls waiting for
global memory
accesses

Less global memory
traffic and better
utilization of bursts/
cache lines

Transfer between global
memory and shared
memory in a coalesced
manner and performing
uncoalesced accesses in
shared memory (e.g.,
corner turning)
Rearranging the mapping
of threads to data
Rearranging the layout of
the data

Minimizing
control
divergence

High SIMD
efficiency (fewer
idle cores during
SIMD execution)

" Rearranging the mapping
of threads to work and/or
data
Rearranging the layout of
the data

Tiling of
reused data

Fewer pipeline
stalls waiting for
global memory
accesses

Less global memory
traffic

Placing data that is reused
within a block in shared
memory or registers so
that it is transferred
between global memory
and the SM only once

Privatization
(covered
later)

Fewer pipeline
stalls waiting for
atomic updates

Less contention and
serialization of
atomic updates

Applying partial updates to
a private copy of the data
and then updating the
universal copy when done

Thread
coarsening

Less redundant
work, divergence,
or synchronization

Less redundant
global memory
traffic

Assigning multiple units of
parallelism to each thread
to reduce the price of
parallelism when it is
incurred unnecessarily
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The first optimization in Table 6.1 is maximizing the occupancy of threads on
SMs. This optimization was introduced in Chapter 4, Compute Architecture and
Scheduling, where the importance of having many more threads than cores was
emphasized as a way to have enough work available to hide long-latency operations
in the core pipeline. To maximize occupancy, programmers can tune the resource
usage of their kernels to ensure that the maximum number of blocks or registers
allowed per SM do not limit the number of threads that can be assigned to the SM
simultaneously. In Chapter 5, Memory Architecture and Data Locality, shared
memory was introduced as another resource whose usage should be carefully tuned
so as not to limit occupancy. In this chapter, the importance of maximizing occu-
pancy was discussed as a means for also hiding memory latency, not just core pipe-
line latency. Having many threads executing simultaneously ensures that enough
memory accesses are generated to fully utilize the memory bandwidth.

The second optimization in Table 6.1 is using coalesced global memory
accesses by ensuring that threads in the same warp access adjacent memory loca-
tions. This optimization was introduced in this chapter, where the hardware’s abil-
ity to combine accesses to adjacent memory locations into a single memory
request was emphasized as a way for reducing global memory traffic and improv-
ing the utilization of DRAM bursts. So far, the kernels that we have looked at in
this part of the book have exhibited coalesced accesses naturally. However, we
will see many examples in the second and third parts of the book in which mem-
ory access patterns are more irregular, thereby requiring more effort to achieve
coalescing.

There are multiple strategies that can be employed for achieving coalescing
in applications with irregular access patterns. One strategy is to load data from
global memory to shared memory in a coalesced manner and then perform the
irregular accesses on shared memory. We have already seen an example of
this strategy in this chapter, namely, corner turning. We will see another
example of this strategy in Chapter 12, Merge, which covers the merge pat-
tern. In this pattern, threads in the same block need to perform a binary search
in the same array, so they collaborate to load that array from global memory
to shared memory in a coalesced manner, and then each performs the binary
search in shared memory. We will also see an example of this strategy in
Chapter 13, Sorting, which covers the sort pattern. In this pattern, threads
write out results to an array in a scattered manner, so they can collaborate to
perform their scattered accesses in the shared memory, then write the result
from the shared memory to the global memory with more coalescing enabled
for elements with nearby destinations.

Another strategy for achieving coalescing in applications with irregular access
patterns is to rearrange how the threads are mapped to the data elements. We will
see an example of this strategy in Chapter 10, Reduction and Minimizing
Divergence, which covers the reduction pattern. Yet another strategy for achiev-
ing coalescing in applications with irregular access patterns is to rearrange how
the data itself is laid out. We will see an example of this strategy in Chapter 14,
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Sparse Matrix Computation which covers sparse matrix computation and storage
formats, particularly in discussing the ELL and JDS formats.

The third optimization in Table 6.1 is minimizing control divergence. Control
divergence was introduced in Chapter 4, Compute Architecture and Scheduling,
where the importance of threads in the same warp taking the same control path
was emphasized as a means for ensuring that all cores are productively utilized
during SIMD execution. So far, the kernels that we have looked at in this part of
the book have not exhibited control divergence, except for the inevitable
divergence at boundary conditions. However, we will see many examples in
the second and third parts of the book in which control divergence can be a
significant detriment to performance.

There are multiple strategies that can be employed for minimizing control
divergence. One strategy is to rearrange how the work and/or data is distributed
across the threads to ensure that threads in one warp are all used before threads in
other warps are used. We will see an example of this strategy in Chapter 10,
Reduction and Minimizing Divergence, which covers the reduction pattern, and
Chapter 11, Prefix Sum (Scan), which covers the scan pattern. The strategy of
rearranging how work and/or data is distributed across threads can also be used to
ensure that threads in the same warp have similar workloads. We will see an
example of this in Chapter 15, Graph Traversal, which covers graph traversal, in
which we will discuss the tradeoffs between vertex-centric and edge-centric paral-
lelization schemes. Another strategy for minimizing control divergence is to rear-
range how the data is laid out to ensure that threads in the same warp that process
adjacent data have similar workloads. We will see an example of this strategy in
Chapter 14, Sparse Matrix Computation, which covers sparse matrix computation
and storage formats, particularly when discussing the JDS format.

The fourth optimization in Table 6.1 is tiling data that is reused within a block by
placing it in the shared memory or registers and accessing it repetitively from there,
such that it needs to be transferred between global memory and the SM only once.
Tiling was introduced in Chapter 5, Memory Architecture and Data Locality, in the
context of matrix multiplication, in which threads processing the same output tile col-
laborate to load the corresponding input tiles to the shared memory and then access
these input tiles repetitively from the shared memory. We will see this optimization
applied again in most of the parallel patterns in the second and third parts of the
book. We will observe the challenges of applying tiling when the input and output
tiles have different dimensions. This challenge arises in Chapter 7, Convolution,
which covers the convolution pattern, and in Chapter 8, Stencil, which covers the
stencil pattern. We will also observe that tiles of data can be stored in registers, not
just shared memory. This observation is most pronounced in Chapter 8, Stencil,
which covers the stencil pattern. We will additionally observe that tiling is applicable
to output data that is accessed repeatedly, not just input data.

The fifth optimization in Table 6.1 is privatization. This optimization has not
yet been introduced, but we mention it here for completeness. Privatization relates
to the situation in which multiple threads or blocks need to update a universal
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output. To avoid the overhead of updating the same data concurrently, a private
copy of the data can be created and partially updated, and then a final update can
be made to the universal copy from the private copy when done. We will see
an example of this optimization in Chapter 9, Parallel Histogram, which covers
the histogram pattern, in which multiple threads need to update the same histo-
gram counters. We will also see an example of this optimization in Chapter 15,
Graph Traversal, which covers graph traversal, in which multiple threads need to
add entries to the same queue.

The sixth optimization in Table 6.1 is thread coarsening, in which multiple units of
parallelism are assigned to a single thread to reduce the price of parallelism if the hard-
ware was going to serialize the threads anyway. Thread coarsening was introduced in
this chapter in the context of tiled matrix multiplication, in which the price of parallel-
ism was loading of the same input tile redundantly by multiple thread blocks that pro-
cess adjacent output tiles. In this case, assigning one thread block to process multiple
adjacent output tiles enables loading an input tile once for all the output tiles. In the
second and third parts of the book, we will see thread coarsening applied in different
contexts with a different price of parallelism each time. In Chapter 8, Stencil, which
covers the stencil pattern, thread coarsening is applied to reduce the redundant loading
of input data, as in this chapter. In Chapter 9, Parallel Histogram, which covers the his-
togram pattern, thread coarsening helps to reduce the number of private copies that
need to be committed to the universal copy in the context of the privatization optimiza-
tion. In Chapter 10, Reduction and Minimizing Divergence, which covers the reduction
pattern, and in Chapter 11, Prefix Sum (Scan), which covers the scan pattern, thread
coarsening is applied to reduce the overhead from synchronization and control diver-
gence. Also in Chapter 11, Prefix Sum (Scan), which covers the scan pattern, thread
coarsening also helps reduce the redundant work that is performed by the parallel algo-
rithm compared to the sequential algorithm. In Chapter 12, Merge, which covers the
merge pattern, thread coarsening reduces the number of binary search operations that
need to be performed to identify each thread’s input segment. In Chapter 13, Sorting,
which covers the sort pattern, thread coarsening helps improve memory coalescing.

Again, the checklist in Table 6.1 is not intended to be an exhaustive one, but it
contains major types of the optimizations that are common across different computa-
tion patterns. These optimizations appear in multiple chapters in the second and third
parts of the book. We will also see other optimizations that appear in specific chapters.
For example, in Chapter 7, Convolution, which covers the convolution pattern, we
will introduce the use of constant memory. In Chapter 10, Reduction and Minimizing
Divergence, which covers the scan pattern, we will introduce the double-buffering
optimization.

6.5 Knowing your computation’s bottleneck
In deciding what optimization to apply to a specific computation, it is important
first to understand what resource is limiting the performance of that computation.
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The resource that limits the performance of a computation is often referred to as a
performance bottleneck. Optimizations typically use more of one resource to
reduce the burden on another resource. If the optimization that is applied does not
target the bottleneck resource, there may be no benefit from the optimization.
Worse yet, the optimization attempt may even hurt performance.

For example, shared memory tiling increases the use of shared memory to
reduce the pressure on the global memory bandwidth. This optimization is great
when the bottleneck resource is the global memory bandwidth and the data being
loaded is reused. However, if, for example, the performance is limited by occu-
pancy and occupancy is constrained by the use of too much shared memory
already, then applying shared memory tiling is likely to make things worse.

To understand what resource is limiting the performance of a computation,
GPU computing platforms typically provide various profiling tools. We refer
readers to the CUDA documentation for more information on how to use profiling
tools to identify the performance bottlenecks of their computations (NVIDIA,
Profiler). Performance bottlenecks may be hardware-specific, meaning that the
same computation may encounter different bottlenecks on different devices. For
this reason the process of identifying performance bottlenecks and applying per-
formance optimizations requires a good understanding of the GPU architecture
and the architectural differences across different GPU devices.

6.6 Summary
In this chapter we covered the off-chip memory (DRAM) architecture of a GPU and
discussed related performance considerations, such as global memory access coalescing
and hiding memory latency with memory parallelism. We then presented an important
optimization: thread granularity coarsening. With the insights that were presented in
this chapter and earlier chapters, readers should be able to reason about the perfor-
mance of any kernel code that they come across. We concluded this part of the book
by presenting a checklist of common performance optimizations that are widely used
to optimize many computations. We will continue to study practical applications of
these optimizations in the parallel computation patterns and application case studies in
the next two parts of the book.

Exercises
1. Write a matrix multiplication kernel function that corresponds to the design

illustrated in Fig. 6.4.
2. For tiled matrix multiplication, of the possible range of values for

BLOCK_SIZE, for what values of BLOCK_SIZE will the kernel completely
avoid uncoalesced accesses to global memory? (You need to consider only
square blocks.)
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3. Consider the following CUDA kernel:

For each of the following memory accesses, specify whether they are
coalesced or uncoalesced or coalescing is not applicable:
a. The access to array a of line 05
b. The access to array a_s of line 05
c. The access to array b of line 07
d. The access to array c of line 07
e. The access to array bc_s of line 07
f. The access to array a_s of line 10
g. The access to array d of line 10
h. The access to array bc_s of line 11
i. The access to array e of line 11

4. What is the floating point to global memory access ratio (in OP/B) of each of
the following matrix-matrix multiplication kernels?
a. The simple kernel described in Chapter 3, Multidimensional Grids and

Data, without any optimizations applied.
b. The kernel described in Chapter 5, Memory Architecture and Data

Locality, with shared memory tiling applied using a tile size of 323 32.
c. The kernel described in this chapter with shared memory tiling applied

using a tile size of 323 32 and thread coarsening applied using a
coarsening factor of 4.

References
NVIDIA Profiler User’s Guide. https://docs.nvidia.com/cuda/profiler-users-guide.
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In the next several chapters we will discuss a set of important patterns of parallel
computation. These patterns are the basis of a wide range of parallel algorithms
that appear in many parallel applications. We will start with convolution, which
is a popular array operation that is used in various forms in signal processing, dig-
ital recording, image processing, video processing, and computer vision. In these
application areas, convolution is often performed as a filter that transforms signals
and pixels into more desirable values. Our image blur kernel is such a filter that
smoothes out the signal values so that one can see the big picture trend. For
another example, Gaussian filters are convolution filters that can be used to
sharpen boundaries and edges of objects in images.

Convolution typically performs a significant number of arithmetic operations
to generate each output element. For large datasets such as high-definition
images and videos in which there are many output elements (pixels), the amount
of computation can be huge. On one hand, each output data element of convolu-
tion can be calculated independently of each other, a desirable trait for parallel
computing. On the other hand, there is a substantial amount of input data shar-
ing in processing different output data elements with somewhat challenging
boundary conditions. This makes convolution an important use case for sophisti-
cated tiling methods and input data staging methods, which are the focus of this
chapter.

Programming Massively Parallel Processors. DOI: https://doi.org/10.1016/B978-0-323-91231-0.00008-2
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7.1 Background
Convolution is an array operation in which each output data element is a weighted
sum of the corresponding input element and a collection of input elements that
are centered on it. The weights that are used in the weighted sum calculation are
defined by a filter array, commonly referred to as the convolution kernel. Since
there is an unfortunate name conflict between the CUDA kernel functions and
convolution kernels, we will refer to these filter arrays as convolution filters to
avoid confusion.

Convolution can be performed on input data of different dimensionality: one-
dimensional (1D) (e.g., audio), two-dimensional (2D) (e.g., photo), three-
dimensional (3D) (e.g., video), and so on. In audio digital signal processing, the
input 1D array elements are sampled signal volume over time. That is, the input
data element xi is the ith sample of the audio signal volume. A convolution on 1D
data, referred to as 1D convolution, is mathematically defined as a function that
takes an input data array of n elements [x0, x1, . . ., xn21] and a filter array of
2r + 1 elements [f0, f1, . . ., f2r] and returns an output data array y:

yi ¼
Xr

j52r

fiþj 3 xi

Since the size of the filter is an odd number (2r þ 1Þ, the weighted sum calcu-
lation is symmetric around the element that is being calculated. That is, the
weighted sum involves r input elements on each side of the position that is being
calculated, which is the reason why r is referred to as the radius of the filter.

Fig. 7.1 shows a 1D convolution example in which a five-element (r = 2) con-
volution filter f is applied to a seven-element input array x. We will follow the C
language convention by which x and y elements are indexed from 0 to 6 and f
elements are indexed from 0 to 4. Since the filter radius is 2, each output element
is calculated as the weighted sum of the corresponding input element, two ele-
ments on the left, and two elements on the right.

1 3 5 3 1 8 6 25 12 1

x[0] y
3 8 52 16 158 2 5 4 1 7 3 3 3

x[3]x[1] x[2] x[5]x[4] x[6]

f[0] f[3]f[1] f[2] f[4]

y[0] y[3]y[1] y[2] y[5]y[4] y[6]x

f

FIGURE 7.1

A 1D convolution example, inside elements.
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For example, the value of y[2] is generated as the weighted sum of x[0] (i.e.,
x[2 2 2]) through x[4] (i.e., x[2 + 2]). In this example we arbitrarily assume that
the values of the x elements are [8, 2, 5, 4, 1, 7, 3]. The f elements define the
weights, whose values are 1, 3, 5, 3, 1 in this example. Each f element is multi-
plied to the corresponding x element values before the products are summed
together. As shown in Fig. 7.1, the calculation for y[2] is as follows:

y 2½ % ¼ f 0½ %&x 0½ % þ f 1½ %&x 1½ % þ f 2½ %&x 2½ % þ f 3½ %&x 3½ % þ f 4½ %&x 4½ %

¼ 1&8þ 3&2þ 5&5þ 3&4þ 1&1

¼ 52

In Fig. 7.1 the calculation for y[i] can be viewed as an inner product between
the subarray of x that starts at x[I2 2] and the f array. Fig. 7.2 shows the calcula-
tion for y[3]. The calculation is shifted by one x element from that of Fig. 7.1.
That is, the value of y[3] is the weighted sum of x[1] (i.e., x[3 2 2]), through x
[5] (i.e., x[3 + 2]). We can think of the calculation for x[3] is as following inner
product:

y 3½ % ¼ f 0½ %&x 1½ % þ f 1½ %&x 2½ % þ f 2½ %&x 3½ % þ f 3½ %&x 4½ % þ f 4½ %&x 5½ %y 3½ %

¼ f 0½ %&x 1½ % þ f 1½ %&x 2½ % þ f 2½ %&x 3½ % þ f 3½ %&x 4½ % þ f 4½ %&x 5½ %

¼ 1&2þ 3&5þ 5&4þ 3&1þ 1&7

¼ 47

Because convolution is defined in terms of neighboring elements, boundary
conditions naturally arise in computing output elements that are close to the ends
of an array. As shown in Fig. 7.3, when we calculate y[1], there is only one x ele-
ment to the left of x[1]. That is, there are not enough x elements to calculate y[1]
according to our definition of convolution. A typical approach to handling such
boundary conditions is to assign a default value to these missing x elements. For
most applications the default value is 0, which is what we use in Fig. 7.3. For
example, in audio signal processing, we can assume that the signal volume is 0

1 3 5 3 1 2 15 20 3 7

x[0] y
3 8 57 47 158 2 5 4 1 7 3 3 3

x[3]x[1] x[2] x[5]x[4] x[6]

f[0] f[3]f[1] f[2] f[4]

y[0] y[3]y[1] y[2] y[5]y[4] y[6]x

f

FIGURE 7.2

1D convolution, calculation of y[3].
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before the recording starts and after it ends. In this case, the calculation of y[1] is
as follows:

y 1½ % ¼ f 0½ %&0þ f 1½ %&x 0½ % þ f 2½ %&x 1½ % þ f 3½ %&x 2½ % þ f 4½ %&x 3½ %
¼ 1&0þ 3&8þ 5&2þ 3&5þ 1&4
¼ 53

The x element that does not exist in this calculation is illustrated as a dashed box
in Fig. 7.3. It should be clear that the calculation of y[0] will involve two missing x
elements, both of which will be assumed to be 0 for this example. We leave the cal-
culation of y[0] as an exercise. These missing elements are typically referred to as
ghost cells in the literature. There are also other types of ghost cells due to the use of
tiling in parallel computation. These ghost cells can have significant impact on the
effectiveness and/or efficiency of tiling. We will come back to this point soon.

Also, not all applications assume that the ghost cells contain 0. For example,
some applications might assume that the ghost cells contain the same value as the
closest valid data element on the edge.

For image processing and computer vision, input data is typically represented
as 2D arrays, with pixels in an x'y space. Image convolutions are therefore 2D
convolutions, as illustrated in Fig. 7.4. In a 2D convolution the filter f is also a
2D array. Its x and y dimensions determine the range of neighbors to be included
in the weighted sum calculation. If we assume that the dimension of the filter is
(2rx + 1) in the x dimension and (2ry + 1) in the y dimension, the calculation of
each P element can be expressed as follows:

Py;x ¼
Xry

j52ry

Xrx

k¼2rx

fyþj;xþk 3Ny;x

In Fig. 7.4 we use a 5 3 5 filter for simplicity; that is, ry = 2 and rx = 2. In
general, the filter does not have to be but is typically a square array. To generate
an output element, we take the subarray whose center is at the corresponding loca-
tion in the input array N. We then perform pairwise multiplication between

1 3 5 3 1 0 24 10 15 4

f

x y
3 53 57 16 158 2 5 4 1 7 3 3 30

x[0] x[3]x[1] x[2] x[5]x[4] x[6]

Filled in

f[0] f[3]f[1] f[2] f[4]

y[0] y[3]y[1] y[2] y[5]y[4] y[6]

FIGURE 7.3

A 1D convolution boundary condition.
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elements of the filter array and those of the image array. For our example the result
is shown as the 5 3 5 product array below N and P in Fig. 7.4. The value of the
output element is the sum of all elements of the product array.

The example in Fig. 7.4 shows the calculation of P2,2. For brevity, we will
use Ny,x to denote N[y][x] in addressing a C array. Since N and P are most likely
dynamically allocated arrays, we will be using linearized indices in our actual
code examples. The calculation is as follows:

1 2 3 2 1
2 3 4 3 2
3 4 5 4 3
2 3 4 3 2
1 2 3 2 1

1 4 9 8 5

4 9 16 15 12

9 16 25 24 21

8 15 24 21 16

5 12 21 16 5

f

N P
1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

1 2 3 4 5

2 3 4 5 6

3 4 321 6 7

4 5 6 7 8

5 6 7 8 5

FIGURE 7.4

A 2D convolution example.
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Like 1D convolution, 2D convolution must also deal with boundary con-
ditions. With boundaries in both the x and y dimensions, there are more com-
plex boundary conditions: The calculation of an output element may involve
boundary conditions along a horizontal boundary, a vertical boundary, or
both. Fig. 7.5 illustrates the calculation of a P element that involves both
boundaries. From Fig. 7.5 the calculation of P1,0 involves two missing col-
umns and one missing row in the subarray of N. As in 1D convolution, dif-
ferent applications assume different default values for these missing N
elements. In our example we assume that the default value is 0. These bound-
ary conditions also affect the efficiency of tiling. We will come back to this
point soon.

7.2 Parallel convolution: a basic algorithm
The fact that the calculation of all output elements can be done in parallel in a
convolution makes convolution an ideal use case for parallel computing. Based
on our experience in matrix multiplication, we can quickly write a simple parallel
convolution kernel. We will show code examples for 2D convolution, and the

1 2 3 2 1
2 3 4 3 2
3 4 5 4 3
2 3 4 3 2
1 2 3 2 1

0 0 0 0 0

0 0 4 6 6

0 0 10 12 12

0 0 12 12 10

0 0 12 10 6

f

N P
1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

1 2 3 4 5

112 3 4 5 6

3 4 5 6 7

4 5 6 7 8

5 6 7 8 5

4

FIGURE 7.5

A 2D convolution boundary condition.
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reader is encouraged to adapt these code examples to 1D and 3D as exercises.
Also, for simplicity we will assume square filters.

The first step is to define the major input parameters for the kernel. We
assume that the 2D convolution kernel receives five arguments: a pointer to the
input array, N; a pointer to the filter, F; a pointer to the output array, P; the radius
of the square filter, r; the width of the input and output arrays, width; and the
height of the input and output arrays, height. Thus we have the following setup:

The second step is to determine and implement the mapping of threads to out-
put elements. Since the output array is 2D, a simple and good approach is to orga-
nize the threads into a 2D grid and have each thread in the grid calculate one
output element. Each block, with up to 1024 threads in a block, can calculate up
to 1024 output elements. Fig. 7.6 shows a toy example in which the input and
output are 16 3 16 images. We assume in this toy example that each thread
block is organized as a 4 3 4 array of threads: four threads in the x dimension
and four in the y dimension. The grid in this example is organized as a 4 3 4
array of blocks. The assignment of threads to output elements—output pixels in
this example—is simple: Every thread is assigned to calculate an output pixel
whose x and y indices are the same as the thread’s x and y indices.

The reader should recognize that the parallelization arrangement in Fig. 7.6 is the
same as the ColorToGrayScaleConversion example in Chapter 3, Multidimensional

outputinput
(in global memory)

outCol
outRow

outCol-r
outRow-r

FIGURE 7.6

Parallelization and thread organization for 2D convolution.
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Grids and Data. Therefore we can use the statements in lines 02 and 03 of the kernel
in Fig. 7.7 to calculate the output element indices from the block index, block dimen-
sion, and thread index for each thread. For example, thread1,1 of block1,1 is mapped
to output element P[1&4+1][1&4+1]=P[5][5], which is marked as a green square in
Fig. 7.6.

Once we have determined the output element indices for each thread, we can
identify the input N elements that are needed for calculating the output element.
As illustrated in Fig. 7.6, the calculation of P[5][5] (green square) by thread1, 1 of
block1, 1 will use the input elements whose x indices range from outCol - r=3 to
outCol + r=7 and whose y indices range from outRow - r=3 to outRow + r=7. For
all threads, outCol - r and outRow - r define the upper-left corner (heavily shaded
square) of the patch of input elements (lightly shaded area) needed for P[outRow]
[outCol]. Therefore we can use a doubly nested loop to iterate through all these
index values and perform this calculation (lines 05'13 of Fig. 7.7).

The register variable Pvalue will accumulate all intermediate results to save
DRAM bandwidth. The if-statement in the inner for-loop tests whether any of the
input N elements that are used are ghost cells on the left, right, top, or bottom
side of the N array. Since we assume that 0 values will be used for ghost cells,
we can simply skip the multiplication and accumulation of the ghost cell element
and its corresponding filter element. After the end of the loop, we release the
Pvalue into the output P element (line 14).

We make two observations on the kernel in Fig. 7.7. First, there will be
control flow divergence. The threads that calculate the output elements near
the four edges of the P array will need to handle ghost cells. As we showed in
Section 7.1, each of these threads will encounter a different number of ghost
cells. Therefore they will all be somewhat different decisions in the if-
statement (line 09). The thread that calculates P[0][0] will skip the multiply-
accumulate statement most of the time, whereas the one that calculates P[0][1]
will skip fewer times, and so on. The cost of control divergence will depend

FIGURE 7.7

A 2D convolution kernel with boundary condition handling.
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on the value of width and height of the input array and the radius of the filter. For
large input arrays and small filters, control divergence occurs only in computing a
small portion of the output elements, which will keep the effect of control diver-
gence small. Since convolution is often applied to large images, we expect the
effect of control divergence to range from modest to insignificant.

A more serious problem is memory bandwidth. The ratio of floating-point
arithmetic calculation to global memory accesses is only about 0.25 OP/B (2
operations for every 8 bytes loaded on line 10). As we saw in the matrix multipli-
cation example, this simple kernel can be expected to run only at a tiny fraction
of the peak performance. We will discuss two key techniques for reducing the
number of global memory accesses in the next two sections.

7.3 Constant memory and caching
There are three interesting properties in the way the filter array F is used in con-
volution. First, the size of F is typically small; the radius of most convolution fil-
ters is 7 or smaller. Even in 3D convolution the filter typically contains only less
than or equal to 73 = 343 elements. Second, the contents of F do not change
throughout the execution of the convolution kernel. Third, all threads access the
filter elements. Even better, all threads access the F elements in the same order,
starting from F[0][0] and moving by one element at a time through the iterations
of the doubly nested for-loop in Fig. 7.7. These three properties make the filter an
excellent candidate for constant memory and caching (Fig. 7.8).

Grid

Global Memory

Block (0, 0)

Shared Memory/L1 cache

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory/L1 cache

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host
Constant Memory

FIGURE 7.8

A review of the CUDA memory model.
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As we discussed in Chapter 5, Memory Architecture and Data Locality
(Table 5.1), the CUDA C allows programmers to declare variables to reside in the
constant memory. Like global memory variables, constant memory variables are
visible to all thread blocks. The main difference is that the value of a constant
memory variable cannot be modified by threads during kernel execution.
Furthermore, the size of the constant memory is quite small, currently at 64 KB.

To use constant memory, the host code needs to allocate and copy constant mem-
ory variables in a different way than global memory variables. We assume that the
radius of the filter is specified in the compile-time constant FILTER_RADIUS. To declare
an F array in constant memory, the host code declares it a global variable as follows:

Note that this is a global variable declaration and should be outside any func-
tion in the source file. The keyword __constant__ (two underscores on each side)
tells the compiler that array F should be placed into the device constant memory.

Assume that the host code has already allocated and initialized the mask in a
filter F_h array in the host memory with (2&FILTER_RADIUS+1)2 elements. The
contents of the F_h can be transferred from the host memory to F in the device
constant memory as follows:

Note that this is a special memory copy function that informs the CUDA run-
time that the data being copied into the constant memory will not be changed dur-
ing kernel execution. In general, the use of cudaMemcpyToSymble() function is as
follows:

where dest is a pointer to the destination location in the constant memory, src is
a pointer to the source data in the host memory, and size is the number of bytes
to be copied.1

Kernel functions access constant memory variables as global variables.
Therefore their pointers do not need to be passed to the kernel as arguments. We
can revise our kernel to use the constant memory as shown in Fig. 7.9. Note that
the kernel looks almost identical to that in Fig. 7.7. The only difference is that F
is no longer accessed through a pointer that is passed in as a parameter. It is now

1The function can take two more arguments, namely, offset and kind, but these are seldom
used and are often omitted. The reader is referred to CUDA C Programming Guide for details of
these arguments.
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accessed as a global variable. Keep in mind that all the C language scoping rules
for global variables apply here. If the host code and kernel code are in different
files, the kernel code file must include the relevant external declaration informa-
tion to ensure that the declaration of F is visible to the kernel.

Like global memory variables, constant memory variables are also located in
DRAM. However, because the CUDA runtime knows that constant memory vari-
ables are not modified during kernel execution, it directs the hardware to aggres-
sively cache the constant memory variables during kernel execution. To
understand the benefit of constant memory usage, we need to first understand
more about modern processor memory and cache hierarchies.

As we discussed in Chapter 6, Performance Considerations, the long latency and
limited bandwidth of DRAM form a bottleneck in virtually all modern processors.
To mitigate the effect of this memory bottleneck, modern processors commonly
employ on-chip cache memories, or caches, to reduce the number of variables that
need to be accessed from the main memory (DRAM), as shown in Fig. 7.10.

Unlike the CUDA shared memory, or scratchpad memories in general, caches
are “transparent” to programs. That is, to use CUDA shared memory to hold the
value of a global variable, a program needs to declare variables as __shared__
and explicitly copy the value of the global memory variable into the shared mem-
ory variable. On the other hand, in using caches, the program simply accesses the
original global memory variables. The processor hardware will automatically
retain the most recently or frequently used variables in the cache and remember
their original global memory address. When one of the retained variables is used
later, the hardware will detect from their addresses that a copy of the variable is
available in cache. The value of the variable will then be served from the cache,
eliminating the need to access DRAM.

There is a tradeoff between the size of a memory and the speed of a memory. As
a result, modern processors often employ multiple levels of caches. The numbering
convention for these cache levels reflects the distance to the processor. The lowest

FIGURE 7.9

A 2D convolution kernel using constant memory for F.
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level, L1 or level 1, is the cache that is directly attached to a processor core, as
shown in Fig. 7.10. It runs at a speed close to that of the processor in both latency
and bandwidth. However, an L1 cache is small, typically between 16 and 64 KB in
capacity. L2 caches are larger, in the range of a few hundred kilobytes to a small
number of MBs but can take tens of cycles to access. They are typically shared
among multiple processor cores, or streaming multiprocessors (SMs) in a CUDA
device, so the access bandwidth is shared among SMs. In some high-end processors
today, there are even L3 caches that can be of hundreds of megabytes in size.

Constant memory variables play an interesting role in designing and using
memories in massively parallel processors. Since these constant memory variables
are not modified during kernel execution, there is no need to support writes by
threads when caching them in an SM. Supporting high-throughput writes into a
general cache requires sophisticated hardware logic and is costly in terms of chip
area and power consumption. Without the need for supporting writes, a specialized
cache for constant memory variables can be designed in a highly efficient manner
in terms of chip area and power consumption. Furthermore, since the constant
memory is quite small (64 KB), a small, specialized cache can be highly effective
in capturing the heavily used constant memory variables for each kernel. This spe-
cialized cache is called a constant cache in modern GPUs. As a result, when all
threads in a warp access the same constant memory variable, as is the case of F in
Fig. 7.9, where the indices for accessing F are independent of the thread indices,
the constant caches can provide a tremendous amount of bandwidth to satisfy the
data needs of these threads. Also, since the size of F is typically small, we can
assume that all F elements are effectively always accessed from the constant cache.
Therefore we can simply assume that no DRAM bandwidth is spent on accesses to
the F elements. With the use of constant memory and caching, we have effectively
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FIGURE 7.10

A simplified view of the cache hierarchy of modern processors.
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doubled the ratio of floating-point arithmetic to memory access to around 0.5 OP/B
(2 operations for every 4 bytes loaded on line 10).

As it turns out, the accesses to the input N array elements can also benefit
from caching. We will come back to this point in Section 7.5.

7.4 Tiled convolution with halo cells
We can address the memory bandwidth bottleneck of convolution with a tiled
convolution algorithm. Recall that in a tiled algorithm, threads collaborate to load
input elements into an on-chip memory for subsequent use of these elements. We
will first establish the definitions of input and output tiles, since these definitions
are important for understanding the design of the algorithm. We will refer to the
collection of output elements processed by each block as an output tile. Recall
that Fig. 7.6 shows a toy example of a 16 3 16 2D convolution using 16 blocks
of 16 threads each. In that example there are 16 output tiles. Keep in mind that
we use 16 threads per block to keep the example small. In practice, there should
be at least 32 threads, or one warp, per block and typically many more to achieve
good occupancy and data reuse. From this point on, we will assume that the F ele-
ments are in the constant memory.

We define an input tile as the collection of input N elements that are needed to
calculate the P elements in an output tile. Fig. 7.11 shows the input tile (the shaded
patch on the left side) that corresponds to an output tile (the shaded patch on the right
side). Note that the dimensions of the input tile need to be extended by the radius of
the filter (2 in this example) in each direction to ensure that it includes all the halo
input elements that are needed for calculating the P elements at the edges of the out-
put tile. This extension can make the input tiles significantly larger than output tiles.

FIGURE 7.11

Input tile versus output tile in a 2D convolution.
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In this toy example, each output tile consists of 42 = 16 P-elements, whereas each
input tile consists of (4 + 4)2 = 82 = 64 elements. In this case, the input tiles are 43
larger than the output tiles. However, this large ratio is because we assume a tiny out-
put tile dimension for ease of visualization in the toy example. In practice, the output
tile dimensions would be much larger, and the ratio between input tile size and output
tile size would be closer to 1.0. For example, if the output size is 16 3 16 = 256,
with the same 5 3 5 filter, the input tile size would be (16 + 4)2 = 400. The ratio
between the input tile size and the output size would be about 1.6. Although this ratio
is much less than 4, it shows that the input tile size can still be significantly larger
than output tiles even for practical output tile dimensions.

In this section we present a class of tiled convolution algorithms in which all
threads in a block first collaboratively load the input tile into the shared memory
before they calculate the elements of the output tile by accessing the input ele-
ments from the shared memory. This should sound familiar to the reader; the
strategy resembles that of the tiled matrix multiplication algorithms that were dis-
cussed in Chapter 5, Memory Architecture and Data Locality. The main differ-
ence is that the tiled matrix multiplication algorithms in Chapter 5, Memory
Architecture and Data Locality, assume that the input tiles are of the same dimen-
sion as the output tiles, whereas the convolution input tiles are larger than the out-
put tiles. This difference between input tile size and output tile size complicates
the design of tiled convolution kernels.

There are two simple thread organizations for addressing the discrepancy
between the input tile size and the output tile size. The first one launches thread
blocks whose dimension matches that of the input tiles. This simplifies the loading
of the input tiles, as each thread needs to load just one input element. However,
since the block dimension is larger than that of the output tile, some of the threads
need to be disabled during the calculation of output elements, which can reduce the
efficiency of execution resource utilization. The second approach launches blocks
whose dimension matches that of the output tiles. On one hand, this second strategy
makes the input tile loading more complex, as the threads need to iterate to ensure
that all input tile elements are loaded. On the other hand, it simplifies the calcula-
tion of the output elements, since the dimension of the block is the same as the out-
put tile, and there is no need to disable any threads during the calculation of output
elements. We will present the design of a kernel based on the first thread organiza-
tion and leave the second organization as an exercise.

Fig. 7.12 shows a kernel that is based on the first thread organization. Each
thread first calculates the column index (col) and row index (row) of the input or
output element that it is responsible for loading or computing (lines 06'07). The
kernel allocates a shared memory array N_s whose size is the same as an input
tile (line 09) and loads the input tile to the shared memory array (lines 10'15).
The conditions in line 10 are used by each thread to check whether the input tile
element that it is attempting to load is a ghost cell. If so, the thread does not per-
form a memory load. Rather, it places a zero into the shared memory. All threads
perform a barrier synchronization (line 15) to ensure that the entire input tile is in
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place in the shared memory before any thread is allowed to proceed with the cal-
culation of output elements.

Now that all the input tile elements are in the N_ds array, each thread can cal-
culate their output P element value using the N_ds elements. Keep in mind that
the output tile is smaller than the input tile and that the blocks are of the same
size as the input tiles, so only a subset of the threads in each block will be used
to calculate the output tile elements. There are multiple ways in which we can
select the threads for this calculation. We use a design that deactivates
FILTER_RADIUS exterior layers of threads, as illustrated in Fig. 7.13.

Fig. 7.13 shows a small example of convolution using a 3 3 3 filter
(FILTER_RADIUS=1), 8 3 8 input tiles, 8 3 8 blocks, and 6 3 6 output tiles.
The left side of Fig. 7.13 shows the input tile and the thread block. Since they are
of the same size, they are overlaid on top of each other. With our design, we
deactivate FILTER_RADIUS=1 exterior layer of threads. The heavy-line box at the
center of the left side of Fig. 7.13 encloses the active threads for calculating the
output tile elements. In this example the threadIdx.x and threadIdx.y values of
the active threads both range from 1 to 6.

Fig. 7.13 also shows the mapping of the active threads to the output tile ele-
ments: Active thread (tx, ty) will calculate output element (tx - FILTER_RADIUS, ty

FIGURE 7.12

A tiled 2D convolution kernel using constant memory for F.
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- FILTER_RADIUS) using a patch of input tile elements whose upper-left corner is
element (tx - FILTER_RADIUS, ty - FILTER_RADIUS) of the input tile. This is
reflected in lines 17'18 of Fig. 7.12, where the column index (tileCol) and row
index (tileRow) are assigned threadIdx.x-FILTER_RADIUS and threadId.y-
FILTER_RADIUS, respectively.

In our small example in Fig. 7.13, tileCol and tileRow of thread (1,1) receive
0 and 0, respectively. Thus thread (1, 1) calculates element (0,0) of the output tile
using the 3 3 3 patch of input tile elements highlighted with the dashed box at
the upper-left corner of the input tile. The fRow-fCol loop nest on lines 24'28 of
Fig. 7.12 iterates through the patch and generates the output element. Thread
(1,1) in the block will iterate through the patch whose upper-left corner is N_s[0]
[0], whereas thread (5,5) will iterate through the patch whose upper-left corner is
N_s[5][5].

In lines 06'07, blockIdx.x&OUT_TILE_DIM and blockIdx.y&OUT_TILE_DIM are
the horizontal and vertical P array indices, respectively, of the beginning of the out-
put tile assigned to the block. As we discussed earlier, threadIdx.x-r and
threadIdx.y-r give the offset into the tile. Thus the row and the col variables pro-
vide the index of the output element assigned to each active thread. Each thread
uses these two indices to write the final value of the output element in line 29.

The tiled 2D convolution kernel in Fig. 7.12 is significantly longer and more
complex than the basic kernel in Fig. 7.9. We introduced the additional complex-
ity to reduce the number of DRAM accesses for the N elements. The goal is to
improve the arithmetic-to-global memory access ratio so that the achieved perfor-
mance is not limited or less limited by the DRAM bandwidth. Recall from
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FIGURE 7.13

A small example that illustrates the thread organization for using the input tile elements in
the shared memory to calculate the output tile elements.
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Section 7.4 that the arithmetic-to-global memory access ratio of the kernel in
Fig. 7.9 is 0.5 OP/B. Let us now derive this ratio for the kernel in Fig. 7.12.

For the blocks that handle tiles at the edges of the data, the threads that handle
ghost cells do not perform any memory access for these ghost cells. This reduces
the number of memory accesses for these blocks. We can calculate the reduced
number of memory accesses by enumerating the number of threads that use each
ghost cell. However, it should be clear that for large input arrays, the effect of
ghost cells for small mask sizes will be insignificant. Therefore we will ignore
the effect of ghost cells when we calculate the arithmetic-to-global memory
access ratio in tiled convolution kernels and consider only the internal thread
blocks whose halo cells are not ghost cells.

We now calculate the arithmetic-to-global memory access ratio for the tiled ker-
nel in Fig. 7.12. Every thread that is assigned to an output tile element performs one
multiplication and one addition for every element of the filter. Therefore the threads
in an internal block collectively perform OUT_TILE_DIM2&(2&FILTER_RADIUS + 1)2&2
arithmetic operations. As for the global memory accesses, all the global memory
accesses have been shifted to the code that loads the N elements into the shared
memory. Each thread that is assigned to an input tile element loads one 4-byte input
value. Therefore IN_TILE_DIM2&4=(OUT_TILE_DIM+2&FILTER_RADIUS)2&4 bytes are
loaded by each internal block. Therefore the arithmetic-to-global memory access ratio
for the tiled kernel is

OUT TILE DIM2&ð2&FILTER RADIUSþ 1Þ2&2
ðOUT TILE DIMþ 2&FILTER RADIUSÞ2&4

For our example with a 5 3 5 filter and 32 3 32 input tiles (28 3 28 output
tiles), the ratio is 282 3 52&2

322&4
¼ 9:57OP=B. An input tile size of 32 3 32 is the largest

that is achievable on current GPUs. However, we can perform an asymptotic analy-
sis on the tile size to get an upper bound on the arithmetic-to-global memory access
ratio that is achievable for this computation. If OUT_TILE_DIM is much larger than
FILTER_RADIUS, we can consider OUT_TILE_DIM+2&FILTER_RADIUS to be approxi-
mately OUT_TILE_DIM. This simplifies the expression to (2&FILTER_RADIUS+1)2&2/4.
This should be quite an intuitive result. In the original algorithm, each N element is
redundantly loaded by approximately (2&FILTER_RADIUS+1)2 threads, each of which
performs two arithmetic operations with it. Thus if the tile size is infinitely large
and each 4-byte element is loaded only into the shared memory once, the ratio
should be (2&FILTER_RADIUS+1)2&2/4.

Fig. 7.14 shows how the arithmetic-to-global memory access ratio of the tiled
convolution kernel for different filter sizes varies with tile dimension, including
an asymptotic bound. The bound on the ratio with a 5 3 5 filter is 12.5 OP/B.
However, the ratio that is actually achievable with the 32 3 32 limit on thread
block size is 9.57 OP/B. For a larger filter, such as 9 3 9 in the bottom row of
Fig. 7.14, the bound on the ratio is 40.5 OP/B. However, the ratio that is actually
achievable with the 32 3 32 limit on thread block size is 22.78 OP/B. Therefore
we observe that a larger filter size has a higher ratio because each input element
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is used by more threads. However, the larger filter size also has a higher disparity
between the bound and the ratio that is actually achieved because of the larger
number of halo elements that force a smaller output tile.

The reader should always be careful when using small block and tile sizes.
They may result in significantly less reduction in memory accesses than expected.
For example, in Figs. 7.14, 7.8 3 8 blocks (input tiles) result in only a ratio of
3.13 OP/B for 5 3 5 filters. In practice, smaller tile sizes are often used because
of an insufficient amount of on-chip memory, especially in 3D convolution, in
which the amount of on-chip memory that is needed grows quickly with the
dimension of the tile.

7.5 Tiled convolution using caches for halo cells
In Fig. 7.12, much of the complexity of the code has to do with the fact that the
input tiles and blocks are larger than the output tiles because of the loading of
halo cells. Recall that the halo cells of an input tile of a block are also the internal
elements of neighboring tiles. For example, in Fig. 7.11 the lightly shaded halo
cells of an input tile are also internal elements of the input tiles of neighboring
blocks. There is a significant probability that by the time a block needs its halo
cells, they are already in L2 cache because of the accesses by its neighboring
blocks. As a result, the memory accesses to these halo cells may be naturally
served from L2 cache without causing additional DRAM traffic. That is, we can
leave the accesses to these halo cells in the original N elements rather than load-
ing them into the N_ds. We now present a tiled convolution algorithm that uses
the same dimension for input and output tiles and loads only the internal elements
of each tile into the shared memory.

Fig. 7.15 shows a 2D convolution kernel using caching for halo cells. In this
tiled kernel, the shared memory N_ds array needs to hold only the internal ele-
ments of the tile. Thus the input tiles and output tiles are of the same dimension,
which is defined as constant TILE_DIM (line 1). With this simplification, N_s is
declared to have TILE_DIM elements in both x and y dimensions (line 6).

IN_TILE_DIM 8 16 32 Bound

5x5 filter
(FILTER_RADIUS = 2)

OUT_TILE_DIM 4 12 28 -

Ratio 3.13 7.03 9.57 12.5

9x9 filter
(FILTER_RADIUS = 4)

OUT_TILE_DIM - 8 24 -

Ratio - 10.13 22.78 40.5

FIGURE 7.14

Arithmetic-to-global memory access ratio as a function of tile size and filter size for a 2D
tiled convolution.
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Because the input tiles and output tiles are of the same size, the thread blocks
can be launched with the same size of the input/output tiles. Loading of the N_s ele-
ments becomes simpler, since each thread can simply load the input element that
has the same x and y coordinates as its assigned output element (lines 4'5 and
7'11). The condition for loading an input element is also simplified in line 7:
Because the kernel no longer loads halo cells into shared memory, there is no dan-
ger of loading ghost cells. Thus the condition needs to check only for the usual
boundary condition that a tile may extend beyond the valid range of the input data.

However, the body of the loop that calculates P elements becomes more com-
plex. It needs to add conditions to check for use of both halo cells and ghost cells.
The handling of halo cells is done with the conditions in lines 17'20, which tests
whether the input element falls within the interior of the input tile. If so, the ele-
ment is accessed from the shared memory. If not, the conditions in lines 24'27

FIGURE 7.15

A tiled 2D convolution kernel using caching for halos and constant memory for F.
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check whether the halo cells are ghost cells. If so, no action is taken for the ele-
ment, since we assume that the ghost values are 0. Otherwise, the element is
accessed from the global memory. The reader should verify that the conditions
for handling the ghost cells are similar to those used in Fig. 7.7.

A subtle advantage of the kernel in Fig. 7.15 compared to the kernel in
Fig. 7.12 is that its block size, input tile size, and output tile size can be the same
and can be a power of 2. Because the input tile size and output tile size are differ-
ent for the kernel in Fig. 7.12, there is likely more memory divergence and con-
trol divergence during the execution of that kernel.

7.6 Summary
In this chapter we have studied convolution as an important parallel computation
pattern. While convolution is used in many applications, such as computer vision
and video processing, it also represents a general pattern that forms the basis of
many parallel algorithms. For example, one can view the stencil algorithms in
partial differential equation solvers as a special case of convolution; this will be
the subject of Chapter 8, Stencil. For another example, one can also view the cal-
culation of grid point force or potential value as a special case of convolution,
which will be presented in Chapter 17, Iterative Magnetic Resonance Imaging
Reconstruction. We will also apply much of what we learned in this chapter on
convolutional neural networks in Chapter 16, Deep Learning.

We presented a basic parallel convolution algorithm whose implementation
will be limited by DRAM bandwidth for accessing both the input and filter ele-
ments. We then introduced constant memory and a simple modification to the
kernel and host code to take advantage of constant caching and eliminate practi-
cally all DRAM accesses for the filter elements. We further introduced a tiled
parallel convolution algorithm that reduces DRAM bandwidth consumption by
leveraging the shared memory while introducing more control flow divergence
and programming complexity. Finally, we presented a tiled parallel convolution
algorithm that takes advantage of the L1 and L2 caches for handling halo cells.

We presented an analysis of the benefit of tiling in terms of elevated
arithmetic-to-global memory access ratio. The analysis is an important skill and
will be useful in understanding the benefit of tiling for other patterns. Through
the analysis we can learn about the limitation of small tile sizes, which is espe-
cially pronounced for large filters and 3D convolutions.

Although we have shown kernel examples for only 1D and 2D convolutions, the
techniques are directly applicable to 3D convolutions as well. In general, the index cal-
culation for the input and output arrays are more complex, owing to higher dimension-
ality. Also, one will have more loop nesting for each thread, since multiple dimensions
need to be traversed in loading tiles and/or calculating output values. We encourage
the reader to complete these higher-dimension kernels as homework exercises.
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Exercises
1. Calculate the P[0] value in Fig. 7.3.
2. Consider performing a 1D convolution on array N = {4,1,3,2,3} with filter F

= {2,1,4}. What is the resulting output array?
3. What do you think the following 1D convolution filters are doing?

a. [0 1 0]
b. [0 0 1]
c. [1 0 0]
d. [2 1/2 0 1/2]
e. [1/3 1/3 1/3]

4. Consider performing a 1D convolution on an array of size N with a filter of
size M:
a. How many ghost cells are there in total?
b. How many multiplications are performed if ghost cells are treated as

multiplications (by 0)?
c. How many multiplications are performed if ghost cells are not treated as

multiplications?
5. Consider performing a 2D convolution on a square matrix of size N 3 N

with a square filter of size M 3 M:
a. How many ghost cells are there in total?
b. How many multiplications are performed if ghost cells are treated as

multiplications (by 0)?
c. How many multiplications are performed if ghost cells are not treated as

multiplications?
6. Consider performing a 2D convolution on a rectangular matrix of size N1 3

N2 with a rectangular mask of size M1 3 M2:
a. How many ghost cells are there in total?
b. How many multiplications are performed if ghost cells are treated as

multiplications (by 0)?
c. How many multiplications are performed if ghost cells are not treated as

multiplications?
7. Consider performing a 2D tiled convolution with the kernel shown in

Fig. 7.12 on an array of size N 3 N with a filter of size M 3 M using an
output tile of size T 3 T.
a. How many thread blocks are needed?
b. How many threads are needed per block?
c. How much shared memory is needed per block?
d. Repeat the same questions if you were using the kernel in Fig. 7.15.

8. Revise the 2D kernel in Fig. 7.7 to perform 3D convolution.
9. Revise the 2D kernel in Fig. 7.9 to perform 3D convolution.

10. Revise the tiled 2D kernel in Fig. 7.12 to perform 3D convolution.
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Stencils are foundational to numerical methods for solving partial differential equa-
tions in application domains such as fluid dynamics, heat conductance, combustion,
weather forecasting, climate simulation, and electromagnetics. The data that is pro-
cessed by stencil-based algorithms consists of discretized quantities of physical sig-
nificance, such as mass, velocity, force, acceleration, temperature, electrical field,
and energy, whose relationships with each other are governed by differential equa-
tions. A common use of stencils is to approximate the derivative values of a func-
tion based on the function values within a range of input variable values. Stencils
bear strong resemblance to convolution in that both stencils and convolution calcu-
late the new value of an element of a multidimensional array based on the current
value of the element at the same position and those in the neighborhood in another
multidimensional array. Therefore stencils also need to deal with halo cells and
ghost cells. Unlike convolution, a stencil computation is used to iteratively solve
the values of continuous, differentiable functions within the domain of interest. The
data elements and the weight coefficients that are used for the elements in the sten-
cil neighborhood are governed by the differential equations that are being solved.
Some stencil patterns are amenable to optimizations that are not applicable to con-
volution. In the solvers in which initial conditions are iteratively propagated
through the domain, the calculations of output values may have dependences and
need to be performed according to some ordering constraints. Furthermore, because
of the numerical accuracy requirements in solving differential questions, the data
that is processed by stencils tends to be high-precision floating data that consumes
more on-chip memory for tiling techniques. Because of these differences, stencils
tend to motivate different optimizations than convolution does.
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8.1 Background
The first step in using computers to numerically evaluate and solve functions,
models, variables, and equations is to convert them into a discrete representation.
For example, Fig. 8.1A shows the sine function y ¼ sin xð Þ for 0# x#π.
Fig. 8.1B shows the design of a one-dimensional (1D) regular (structured) grid
whose seven grid points correspond to x values that are of constant spacing (π6Þ
apart. In general, structured grids cover an n-dimensional Euclidean space with
identical parallelotopes (e.g., segments in one dimension, rectangles in two
dimension, bricks in three dimensions). As we will see later, with structured grids,
derivatives of variables can be conveniently expressed as finite differences.
Therefore structured grids are used mainly in finite-difference methods.
Unstructured grids are more complex and are used in finite-element and finite-
volume methods. For simplicity we will use only regular grids and thus finite-
difference methods in this book.

Fig. 8.1C shows the resulting discrete representation in which the sine func-
tion is represented with its values at the seven grid points. In this case, the repre-
sentation is stored in a 1D array F. Note that the x values are implicitly assumed
to be i π6, where i is the index of the array element. For example, the x value that
corresponds to element F[2] is 0.87, which is the sine value of 2 π

6.
In a discrete representation, one needs to use an interpolation technique such

as linear or splines to derive the approximate value of the function for x values
that do not correspond to any of the grid points. The fidelity of the representation
or how accurate the function values from these approximate interpolation techni-
ques are depends on the spacing between grid points: The smaller the spacing, the
more accurate the approximations. By decreasing the spacing, one can improve
the accuracy of the representation at the cost of more storage and, as we will see,
more computation when we solve a partial differential equation.

FIGURE 8.1

(A) Sine as a continuous, differentiable function for 0 # x # π. (B) Design of a regular
grid with constant spacing (π6Þ between grid point for discretization. (C) Resulting discrete
representation of the sine function for 0 # x #π.
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The fidelity of a discrete representation also depends on the precision of the
numbers used. Since we are approximating continuous functions, floating-point
numbers are typically used for the grid point values. Mainstream CPUs and GPUs
support double-precision (64-bit), single-precisions (32-bit), and half-precision
(16-bit) representations today. Among the three, double-precision numbers offer
the best precision and the most fidelity in discrete representations. However, mod-
ern CPUs and GPUs typically have much higher arithmetic computation through-
put for single-precision and half-precision arithmetic. Also, since double-
precision numbers consist of more bits, reading and writing double-precision
numbers consumes more memory bandwidth. Storing these double-precision num-
bers also requires memory capacity. This can pose a significant challenge for til-
ing techniques that require a significant number of grid point values to be stored
in on-chip memory and registers.

Let us discuss the definition of stencils with a little more formalism. In mathe-
matics a stencil is a geometric pattern of weights applied at each point of a struc-
tured grid. The pattern specifies how the values of the grid point of interest can
be derived from the values at neighboring points using a numerical approximation
routine. For example, a stencil may specify how the derivative value of a function
at a point of interest is approximated by using finite differences between the
values of the function at the point and its neighbors. Since partial differential
equations express the relationships between functions, variables, and their deriva-
tives, stencils offer a convenient basis for specifying how finite difference meth-
ods numerically compute the solutions to partial differential equations.

For example, assume that we have f xð Þ discretized into a 1D grid array F and
we would like to calculate the discretized derivative of f xð Þ, f 0 xð Þ. We can use the
classic finite difference approximation for the first derivative:

f
0
xð Þ5

f xþ hð Þ2 f ðx2 hÞ
2h

þ O h2
! "

That is, the derivative of a function at point x can be approximated by the dif-
ference of the function values at two neighboring points divided by the difference
of the x values of these neighboring points. The value h is the spacing between
neighboring points in the grid. The error is expressed by the term O h2

! "
; meaning

that the error is proportional to the square of h. Obviously, the smaller the h
value, the better the approximation. In our example in Fig. 8.1 the h value is π

6 or
0.52. The value is not small enough to make the approximation error negligible
but should be able to result in a reasonably close approximation.

Since the grid spacing is h, the current estimated f(x2 h), f(x), and f(x1 h)
values are in F[i2 1], F[i], and F[i1 1], respectively, where x5 i%h. Therefore
we can calculate the derivative values of f(x) at each grid point into an output
array FD:

FD i½ '5
F iþ 1½ '2F½i2 1'

2!h
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for all the grid points. This expression can be rewritten as

FD i½ '5
21

2!h!F i2 1½ ' þ
1

2!h!F iþ 1½ '

That is, the calculation of the estimated function derivative value at grid point
involves the current estimated function values at grid points [i2 1, i, i1 1] with
coefficients ½ 21

2h , 0, 1
2h ', which defines a 1D three-point stencil, as shown in

Fig. 8.2A. If we are approximating higher derivative values at grid points, we
would need to use higher-order finite differences. For example, if the differential
equation includes up to the second derivative of f(x), we will use a stencil involv-
ing [i2 2, i2 1, i, i1 1, i1 2], which is a 1D five-point stencil, as shown in
Fig. 8.2B. In general, if the equation involves up to the nth derivative, the stencil
will involve n grid points on each side of the center grid point. Fig. 8.2C shows a
1D seven-point stencil. The number of grid points on each side of the center point
is called the order of the stencil, as it reflects the order of the derivative being
approximated. According to this definition, the stencils in Fig. 8.3 are of order 1,
2, and 3, respectively.

FIGURE 8.2

One-dimensional stencil examples. (A) Three-point (order 1) stencil. (B) Five-point (order
2) stencil. (C) Seven-point (order 3) stencil.

FIGURE 8.3

(A) Two-dimensional five-point stencil (order 1). (B) Two-dimensional nine-point stencil
(order 2). (C) Three-dimensional seven-point stencil (order 1). (D) Three-dimensional 13-
point stencil (order 2).
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It should be obvious that solving a partial differential equation of two vari-
ables would require the function values to be discretized into a two-dimensional
(2D) grid, and we will use a 2D stencil to calculate the approximate partial deri-
vatives. If the partial differential equation involves exclusively the partial deriva-
tives by only one of the variables, for example, @f x;yð Þ

@x ; @f x;yð Þ
@y , but not @f ðx;yÞ

@x@y , we can
use 2D stencils whose selected grid points are all along the x axis and y axis. For
example, for a partial differential equation involving only first derives by x and
first derivatives by y, we can use a 2D stencil that involves two grid points on
each side of the center point along the x axis and the y axis, which results in the
2D five-point stencil in Fig. 8.3A. If the equation involves up to second-order
derivatives only by x or by y, we will use a 2D nine-point stencil, as shown in
Fig. 8.3B.

Fig. 8.4 summarizes the concepts of discretization, numerical grids, and appli-
cation of stencils on the grid points. Functions are discretized into their grid point
values which are stored in multi-dimensional arrays. In Fig. 8.4 a function of two
variables is discretized as a 2D grid which is stored as a 2D array. The stencil
that is used in Fig. 8.4 is 2D and is used to calculate an approximate derivative
value (output) at each grid point from function values at the neighboring grid
points and the grid point itself. In this chapter we will focus on the computation
pattern in which a stencil is applied to all the relevant input grid points to gener-
ate the output values at all grid points, which will be referred to as a stencil
sweep.

FIGURE 8.4

A 2D grid example and a five-point (order 1) stencil used to calculate the approximate
derivative values at grid points.
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8.2 Parallel stencil: a basic algorithm
We will first present a basic kernel for stencil sweep. For simplicity we assume
that there is no dependence between output grid points when generating the out-
put grid point values within a stencil sweep. We further assume that the grid point
values on the boundaries store boundary conditions and will not change from
input to output, as illustrated in Fig. 8.5. That is, the shaded inside area in the out-
put grid will be calculated, whereas the unshaded boundary cells will remain the
same as the input values. This is a reasonable assumption, since stencils are used
mainly to solve differential equations with boundary conditions.

Fig. 8.6 shows a basic kernel that performs a stencil sweep. This kernel
assumes that each thread block is responsible for calculating a tile of output grid
values and that each thread is assigned to one of the output grid points. A 2D til-
ing example of the output grid in which each thread block is responsible for a

FIGURE 8.5

Simplifying boundary condition. The boundary cells contain boundary conditions that will
not be updated from one iteration to the next. Thus only the inner output grid points need
to be calculated during each stencil sweep.

FIGURE 8.6

A basic stencil sweep kernel.
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43 4 output tile is shown in Fig. 8.5. However, since most real-world applica-
tions solve three-dimensional (3D) differential equations, the kernel in Fig. 8.6
assumes a 3D grid and a 3D seven-point stencil like the one in Fig. 8.3C. The
assignment of threads to grid points is done with the familiar linear expressions
involving the x, y, and z fields of blockIdx, blockDim, and threadIdx (lines
02(04). Once each thread has been assigned to a 3D grid point, the input values
at that grid point and all neighboring grid points are multiplied by different coef-
ficients (c0 to c6 on lines 06(12) and added. The values of these coefficients
depend on the differential equation that is being solved, as we explained in the
background section.

Let us now calculate the floating-point to global memory access ratio for the
kernel in Fig. 8.6. Each thread performs 13 floating-point operations (seven multi-
plications and six additions) and loads seven input values that are 4 bytes each.
Therefore the floating-point to global memory access ratio for this kernel is
13/(7!4)5 0.46 OP/B (operations per byte). As we discussed in Chapter 5,
Memory Architecture and Data Locality, this ratio needs to be much larger for
the performance of the kernel to be reasonably close to the level that is supported
by the arithmetic compute resources. We will need to use a tiling technique like
that discussed in Chapter 7, Convolution, to elevate the floating-point to global
memory access ratio.

8.3 Shared memory tiling for stencil sweep
As we saw in Chapter 5, Memory Architecture and Data Locality, the ratio of
floating-point operations to global memory accessing operations can be signifi-
cantly elevated with shared memory tiling. As the reader probably suspected, the
design of shared memory tiling for stencils is almost identical to that of convolu-
tion. However, there are a few subtle but important differences.

Fig. 8.7 shows the input and output tiles for a 2D five-point stencil applied to
a small grid example. A quick comparison with Figure 7.11 shows a small differ-
ence between convolution and stencil sweep: The input tiles of the five-point
stencil do not include the corner grid points. This property will become important
when we explore register tiling later in this chapter. For the purpose of shared
memory tiling, we can expect the input data reuse in a 2D five-point stencil to be
significantly lower than that in a 33 3 convolution. As we discussed in
Chapter 7, Convolution, the upper bound of the arithmetic to global memory
access ratio of a 2D 33 3 convolution is 4.5 OP/B. However, for a 2D five-point
stencil, the upper bound on the ratio is only 2.5 OP/B. This is because each output
grid point value uses only five input grid values, compared to the nine input pixel
values in 33 3 convolution.

The difference is even more pronounced when the number of dimensions and
the order of the stencil increases. For example, if we increase the order of the 2D
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stencil from 1 (one grid point on each side, five-point stencil) to 2 (two grid
points on each side, nine-point stencil), the upper bound on the ratio is 4.5 OP/B,
compared to 12.5 OP/B for its counterpart 2D 53 5 convolution. This discrep-
ancy is further pronounced when the order of the 2D stencil is increased to 3
(three grid points on each side, 13-point stencil). The upper bound on the ratio is
6.5 OP/B, compared to 24.5 OP/B for its counterpart 2D 73 7 convolution.

When we move into 3D, the discrepancy between the upper bound on the
arithmetic to global memory access ratio of stencil sweep and convolution is even
more pronounced. For example, a 3D third-order stencil (3 points on each side,
19-point stencil) has an upper bound of 9.5 OP/B, compared to 171.5 OP/B for its
counterpart 3D 73 73 7 convolution. That is, the benefit of loading of an input
grid point value into the shared memory for a stencil sweep can be significantly
lower than that for convolution, especially for 3D, which is the prominent use
case for stencils. As we will see later in the chapter, this small but significant dif-
ference motivates the use of thread coarsening and register tiling in the third
dimension.

Since all the strategies for loading input tiles for convolution apply directly to
stencil sweep, we present in Fig. 8.8 a kernel like the convolution kernel in
Figure 7.12 in which blocks are of the same size as input tiles and some of the
threads are turned off in calculating output grid point values. The kernel is
adapted from the basic stencil sweep kernel in Fig. 8.6, so we will focus only on
the changes that are made during the adaptation. Like the tiled convolution ker-
nel, the tiled stencil sweep kernel first calculates the beginning x, y, and z coordi-
nates of the input patch that is used for each thread. The value 1 that is subtracted
in each expression is because the kernel assumes a 3D seven-point stencil with

FIGURE 8.7

Input and output tiles for a 2D five-point stencil.

180 CHAPTER 8 Stencil



one grid point on each side (lines 02(04). In general, the value that is subtracted
should be the order of the stencil.

The kernel allocates an in_s array in shared memory to hold the input tile for
each block (line 05). Every thread loads one input element. Like the tiled convo-
lution kernel, each thread loads the beginning element of the cubic input patch
that contains the stencil grid point pattern. Because of the subtraction in lines
02(04, it is possible that some of the threads may attempt to load ghost cells of
the grid. The conditions i .50, j .50, and k .50 (line 06) guard against these
out-of-bound accesses. Because the blocks are larger than the output tiles, it is
also possible that some of the threads at the end of the x, y, and z dimensions of
a block attempt to access the ghost cells outside the upper bound of each dimen-
sion of the grid array. The conditions I , N, j , N, and k , N (line 6) guard against
these out-of-bound accesses. All threads in the thread block collaboratively load
the input tile into the shared memory (line 07) and use the barrier synchronization
to wait until all input tile grid points are in the shared memory (line 09).

Each block calculates its output tile in lines 10(21. The conditions in line 10
reflect the simplifying assumption that the boundary points of both the input grid
and the output hold initial condition values and do not need to be calculated from
iteration to iteration by the kernel. Therefore threads whose output grid points fall
on these boundary positions are turned off. Note that the boundary grid points
form a layer at the surface of the grid.

The conditions in lines 12(13 turn off the extra threads that were launched
just to load the input tile grid points. The conditions allow those threads whose i,
j, and k index values fall within the output tile to calculate the output grid points
selected by these indices. Finally, each active thread calculates its output grid
point value using the input grid points specified by the seven-point stencil.

FIGURE 8.8

A 3D seven-point stencil sweep kernel with shared memory tiling.
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We can evaluate the effectiveness of shared memory tiling by calculating the
arithmetic to global memory access ratio that this kernel achieves. Recall that the
original stencil sweep kernel achieved a ratio of 0.46 OP/B. With the shared
memory tiling kernel, let us assume that each input tile is a cube with T grid
points in each dimension and that each output tile has T2 2 grid points in each
dimension. Therefore each block has (T2 2)3 active threads calculating output
grid point values, and each active thread performs 13 floating-point multiplication
or addition operations, which is a total of 13!(T2 2)3 floating-point arithmetic
operations. Moreover, each block loads an input tile by performing T3 loads that
are 4 bytes each. Therefore the floating point to global memory access ratio of
the tiled kernel can be calculated as follows:

13! T22ð Þ3

4!T3
5

13

4
! 12

2

T

# $3

OP=B

That is, the larger the T value, the more the input grid point values are reused.
The upper bound on the ratio as T increases asymptotically is 13/45 3.25 OP/B.

Unfortunately, the 1024 limit of the block size on current hardware makes it
difficult to have large T values. The practical limit on T is 8 because an 83 83 8
thread block has a total of 512 threads. Furthermore, the amount of shared mem-
ory that is used for the input tile is proportional to T3. Thus a larger T dramati-
cally increases the consumption of the shared memory. These hardware
constraints force us to use small tile sizes for the tiled stencil kernel. In contrast,
convolution is often used to process 2D images in which larger tile dimensions (T
value) such as 323 32 can be used.

There are two major disadvantages to the small limit on the T value that is
imposed by the hardware. The first disadvantage is that it limits the reuse ratio
and thus the compute to memory access ratio. For T5 8 the ratio for a seven-
point stencil is only 1.37 OP/B, which is much less than the upper bound of 3.25
OP/B. The reuse ratio decreases as the T value decreases because of the halo
overhead. As we discussed in Chapter 7, Convolution, halo elements are less
reused than the nonhalo elements are. As the portion of halo elements in the input
tile increases, both the data reuse ratio and the floating-point to global memory
access ratio decrease. For example, for a convolution filter with radius 1, a
323 32 2D input tile has 1024 input elements. The corresponding output tile has
303 305 900 elements, which means that 10242 9005 124 of the input ele-
ments are halo elements. The portion of halo elements in the input tile is about
12%. In contrast, for a 3D stencil of order 1, an 83 83 8 3D input tile has 512
elements. The corresponding output tile has 63 63 65 216 elements, which
means that 5122 2165 296 of the input elements are halo elements. The portion
of halo elements in the input tile is about 58%!

The second disadvantage of a small tile size is that it has an adverse impact
on memory coalescing. For an 83 83 8 tile, every warp that consists of 32
threads will be responsible for loading four different rows of the tile that have
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eight input values each. Hence on the same load instruction the threads of the
warp will access at least four distant locations in global memory. These accesses
cannot be coalesced and will underutilize the DRAM bandwidth. Therefore T
needs to be a much larger value for the reuse level to be closer to 3.25 OP/B and
to enable full use of the DRAM bandwidth. The need for a larger T motivates the
approach that we will cover in the following section.

8.4 Thread coarsening
As we mentioned in the previous section, the fact that stencils are typically
applied to 3D grids and the sparse nature of the stencil patterns can make stencil
sweep a less profitable target of shared memory tiling than convolution. This sec-
tion presents the use of thread coarsening to overcome the block size limitation
by coarsening the work that is done by each thread from calculating one grid
point value to a column of grid point values, as illustrated in Fig. 8.9. Recall from
Section 6.3 that with thread coarsening, the programmer partially serializes paral-
lel units of work into each thread and reduces the price paid for parallelism. In
this case, the price that is paid for parallelism is the low data reuse due to the
loading of halo elements by each block.

In Fig. 8.9 we assume that each input tile consists of T3 5 63 5 216 grid
points. Note that to make the inside of the input tile visible, we have peeled away
the front, left, and top layers of the tile. We also assume that each output tile con-
sists of ðT22Þ3 5 43 5 64 grid points. The x, y, and z directions in the illustration
are shown with the coordinate system for the input and the output. Each x-y plane

FIGURE 8.9

Thread coarsening in the z direction for a 3D seven-point stencil sweep.
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of the input tile consists of 62 5 36 grid points, and each x-y plane of the output
tile consists of 42 5 16 grid points. The thread block that is assigned to process
this tile consists of the same number of threads as one x-y plane of the input tile
(i.e., 63 6). In the illustration we show only the internal threads of the thread
block that are active in computing output tile values (i.e., 43 4).

Fig. 8.10 shows a kernel with thread coarsening in the z direction for a 3D
seven-point stencil sweep. The idea is for the thread block to iterate in the z
direction (into the figure), calculating the values of grid points in one x-y plane
of the output tile during each iteration. The kernel first assigns each thread to a
grid point in an x-y plane of the output (lines 03#04). Note that i is the z index
of the output tile grid point calculated by each thread. During each iteration, all
threads in a block will be processing an x-y plane of an output tile; thus they will
all be calculating output grid points whose z indices are identical.

FIGURE 8.10

Kernel with thread coarsening in the z direction for a 3D seven-point stencil sweep.
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Initially, each block needs to load into the shared memory the three input tile
planes that contain all the points that are needed to calculate the values of the out-
put tile plane that is the closest to the reader (marked with threads) in Fig. 8.9.
This is done by having all the threads in the block load the first layer (lines
08#10) into the shared memory array inPrev_s and the second layer (lines
11#13) into the shared memory array inCurr_s. For the first layer, inPrev_s is
loaded from the front layer of the input tile that has been peeled off for visibility
into the internal layers.

During the first iteration, all threads in a block collaborate to load the third
layer needed for the current output tile layer into the shared memory array
inNext_s (lines 15#17). All threads then wait on a barrier (line 18) until all have
completed loading the input tile layers. The conditions in lines 19#21 serve the
same purpose as their counterparts in the shared memory kernel in Fig. 8.8.

Each thread then calculates its output grid point value in the current output
tile plane using the four x-y neighbors stored in inCurr_s, the z neighbor in
inPrev_s, and the z neighbor in inNext_s. All threads in the block then wait at
the barrier to ensure that everyone completes its calculation before they move on
to the next output tile plane. Once off the barrier, all threads collaborate to move
the contents of inCurr_s to inPrev_s and the contents of inNext_s to inCurr_s.
This is because the roles that are played by the input tile planes change when the
threads move by one output plane in the z direction. Thus by the end of each iter-
ation, the block has two of the three input tile planes needed for calculating the
output tile plane of the next iteration. All threads then move into the next iteration
and load the third plane of the input tile needed for the output plane of the itera-
tion. The updated mappings of inPrev_s, inCurr_s, and inNext_s in preparation
for the calculation of the second output tile plane are illustrated in Fig. 8.11.

FIGURE 8.11

The mapping of the shared memory arrays to the input tile after the first iteration.
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The advantages of the thread coarsening kernel are that it increases the tile
size without increasing the number of threads and that it does not require all
planes of the input tile to be present in the shared memory. The thread block size
is now only T2 instead of T3, so we can use a much larger T value, such as 32,
which would result in a block size of 1024 threads. With this T value we can
expect that the floating-point arithmetic to global memory access ratio will be
13
4 ! 12 2

32

! "3
5 2:68OP=B, which is a significant improvement over the 1.37 OP/

B ratio of the original shared memory tiling kernel and closer to the 3.25 OP/B
upper bound. Moreover, at any point in time, only three layers of the input tile
need to be in the shared memory. The shared memory capacity requirement is
now 3T2 elements instead of T3 elements. For T5 32 the shared memory con-
sumption is now at a reasonable level of 3!322!4B5 12KB per block.

8.5 Register tiling
The special characteristics of some stencil patterns can give rise to new optimiza-
tion opportunities. Here, we present an optimization that can be especially effec-
tive for stencil patterns that involve only neighbors along the x, y, and z
directions of the center point. All stencils in Fig. 8.3 fall into this description. The
3D seven-point stencil sweep kernel in Fig. 8.10 reflects this property. Each
inPrev_s and inNext_s element is used by only one thread in the calculation of
the output tile grid point with the same x-y indices. Only the inCurr_s elements
are accessed by multiple threads and truly need to be in the shared memory. The
z neighbors in inPrev_s and inNext_s can instead stay in the registers of the sin-
gle user thread.

We take advantage of this property with the register tiling kernel in Fig. 8.12.
The kernel is built on the thread coarsening kernel in Fig. 8.10 with some simple
but important modifications. We will focus on these modifications. First, we cre-
ate the three register variables inPrev, inCurr, and inNext (lines 05, 07, 08). The
register variables inPrev and inNext replace the shared memory arrays inPrev_s
and inNext, respectively. In comparison, we keep inCurr_s to allow the x-y
neighbor grid point values to be shared among threads. Therefore the amount of
shared memory that is used by this kernel is reduced to one-third of that by the
kernel in Fig. 8.12.

The initial loading of the previous and current input tile planes (lines 09#15)
and the loading of the next plane of the input tile before each new iteration (lines
17#19) are all performed with register variables as destination. Thus the three
planes of the “active part” of the input tile are held in the registers across
the threads of the same block. In addition, the kernel always maintains a copy of
the current plane of the input tile in the shared memory (lines 14 and 34). That is,
the x-y neighbors of the active input tile plane are always available to all threads
that need to access these neighbors.
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The kernels in Figs. 8.10 and 8.12 both keep only the active part of the input
tile in the on-chip memory. The number of planes in the active part depends on
the order of the stencil and is 3 for the 3D seven-point stencil. The coarsening
and register tiling kernel in Fig. 8.12 has two advantages over the coarsening ker-
nel in Fig. 8.10. First, many reads from and writes to the shared memory are now
shifted into registers. Since registers have significantly lower latency and higher
bandwidth than the shared memory, we expect the code to run faster. Second,
each block consumes only one-third of the shared memory. This is, of course,
achieved at the cost of three more registers used by each thread, or 3072 more
registers per block, assuming 323 32 blocks. The reader should keep in mind
that register use will become even higher for higher-order stencils. If the register

FIGURE 8.12

Kernel with thread coarsening and register tiling in the z direction for a 3D seven-point
stencil sweep.
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usage becomes a problem, one can go back to storing some of the planes in
shared memory. This scenario represents a common tradeoff that often needs to
be made between shared memory and register usage.

Overall, the data reuse is now spread across registers and the shared memory.
The number of global memory accesses has not changed. The overall data reuse
if we consider both registers and the shared memory remains the same as the
thread coarsening kernel that uses only the shared memory for the input tile. Thus
there is no impact on the consumption of the global memory bandwidth when we
add register tiling to thread coarsening.

Note that the idea of storing a tile of data collectively in the registers of a block’s
threads is one that we have seen before. In the matrix multiplication kernels in
Chapters 3, Multidimensional Grids and Data, and 5, Memory Architecture and Data
Locality, and in the convolution kernel in Chapter 7, Convolution, we stored the out-
put value computed by each thread in a register of that thread. Hence the output tile
that is computed by a block was stored collectively in the registers of that block’s
threads. Therefore register tiling is not a new optimization but one that we have
applied before. It just became more apparent in this chapter because we are now using
registers to store part of the input tile: the same tile was sometimes stored in registers
and other times stored in shared memory throughout the course of the computation.

8.6 Summary
In this chapter we dived into stencil sweep computation, which seems to be just
convolution with special filter patterns. However, because the stencils come from
discretization and numerical approximation of derivatives in solving differential
equations, they have two characteristics that motivate and enable new optimiza-
tions. First stencil sweeps are typically done on 3D grids, whereas convolution is
typically done on 2D images or a small number of time slices of 2D images. This
makes the tiling considerations different between the two and motivates thread
coarsening for 3D stencils to enable larger input tiles and more data reuse.
Second, the stencil patterns can sometimes enable register tiling of input data to
further improve data access throughput and alleviate shared memory pressure.

Exercises
1. Consider a 3D stencil computation on a grid of size 1203 1203 120,

including boundary cells.
a. What is the number of output grid points that is computed during each

stencil sweep?
b. For the basic kernel in Fig. 8.6, what is the number of thread blocks that

are needed, assuming a block size of 83 83 8?
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c. For the kernel with shared memory tiling in Fig. 8.8, what is the number
of thread blocks that are needed, assuming a block size of 83 83 8?

d. For the kernel with shared memory tiling and thread coarsening in
Fig. 8.10, what is the number of thread blocks that are needed, assuming a
block size of 323 32?

2. Consider an implementation of a seven-point (3D) stencil with shared memory
tiling and thread coarsening applied. The implementation is similar to those in
Figs. 8.10 and 8.12, except that the tiles are not perfect cubes. Instead, a
thread block size of 323 32 is used as well as a coarsening factor of 16 (i.e.,
each thread block processes 16 consecutive output planes in the z dimension).
a. What is the size of the input tile (in number of elements) that the thread

block loads throughout its lifetime?
b. What is the size of the output tile (in number of elements) that the thread

block processes throughout its lifetime?
c. What is the floating point to global memory access ratio (in OP/B) of the

kernel?
d. How much shared memory (in bytes) is needed by each thread block if

register tiling is not used, as in Fig. 8.10?
e. How much shared memory (in bytes) is needed by each thread block if

register tiling is used, as in Fig. 8.12?
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The parallel computation patterns that we have presented so far all allow the
task of computing each output element to be exclusively assigned to, or owned
by, a thread. Therefore these patterns are amenable to the owner-computes
rule, in which every thread can write into its designated output element(s)
without any concern about interference from other threads. This chapter intro-
duces the parallel histogram computation pattern, in which each output ele-
ment can potentially be updated by any thread. Therefore one must take care
to coordinate among threads as they update output elements and avoid any
interference that could corrupt the final result. In practice, there are many
other important parallel computation patterns in which output interference can-
not be easily avoided. Therefore parallel histogram algorithms provide an
example of output interference that occurs in these patterns. We will first
examine a baseline approach that uses atomic operations to serialize the
updates to each element. This baseline approach is simple but inefficient, often
resulting in disappointing execution speed. We will then present some widely
used optimization techniques, most notably privatization, to significantly
enhance execution speed while preserving correctness. The cost and benefit of
these techniques depend on the underlying hardware as well as the characteris-
tics of the input data. It is therefore important for a developer to understand
the key ideas of these techniques and to be able to reason about their applica-
bility in different circumstances.
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9.1 Background
A histogram is a display of the number count or percentage of occurrences of
data values in a dataset. In the most common form of histogram, the value inter-
vals are plotted along the horizontal axis, and the count of data values in each
interval is represented as the height of a rectangle, or bar, rising from the horizon-
tal axis. For example, a histogram can be used to show the frequency of letters of
the alphabet in the phrase “programming massively parallel processors.” For sim-
plicity we assume that the input phrase is in all lowercase. By inspection we see
that there are four instances of the letter “a,” zero of the letter “b,” one of the let-
ter “c,” and so on. We define each value interval as a continuous range of four
letters of the alphabet. Thus the first value interval is “a” through “d,” the second
value interval is “e” through “h,” and so on. Fig. 9.1 shows a histogram that dis-
plays the frequency of letters in the phrase “programming massively parallel pro-
cessors” according to our definition of value intervals.

Histograms provide useful summaries of datasets. In our example we can see
that the phrase being represented consists of letters that are heavily concentrated
in the middle intervals of the alphabet and is noticeably sparse in the later inter-
vals. The shape of the histogram is sometimes referred to as a feature of the
dataset and provides a quick way to determine whether there are significant phe-
nomena in the dataset. For example, the shape of a histogram of the purchase
categories and locations of a credit card account can be used to detect fraudulent
usage. When the shape of the histogram deviates significantly from the norm,
the system raises a flag of potential concern.

Many application domains rely on histograms to summarize datasets for data
analysis. One such area is computer vision. Histograms of different types of
object images, such as faces versus cars, tend to exhibit different shapes. For
example, one can plot the histogram of pixel luminous values in an image or an

FIGURE 9.1

A histogram representation of the phrase “programming massively parallel processors.”
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area of an image. Such a histogram of the sky on a sunny day might have only a
small number of very tall bars in the high-value intervals of the luminous spec-
trum. By dividing an image into subareas and analyzing the histograms for these
subareas, one can quickly identify the interesting subareas of an image that poten-
tially contain the objects of interest. The process of computing histograms of
image subareas is an important approach to feature extraction in computer vision,
in which the features refer to patterns of interest in images. In practice, whenever
there is a large volume of data that needs to be analyzed to distill interesting
events, histograms are likely used as a foundational computation. Credit card
fraudulence detection and computer vision obviously meet this description. Other
application domains with such needs include speech recognition, website purchase
recommendations, and scientific data analysis, such as correlating heavenly object
movements in astrophysics.

Histograms can be easily computed in a sequential manner. Fig. 9.2 shows a
sequential function that calculates the histogram defined in Fig. 9.1. For simplic-
ity the histogram function is required to recognize only lowercase letters. The C
code assumes that the input dataset comes in a char array data and the histogram
will be generated into the int array histo (line 01). The number of input data
items is specified in function parameter length. The for-loop (lines 02!07)
sequentially traverses the array, identifies the alphabet index of the character in
the visited position data[i], saves the alphabet index into the alphabet_position
variable, and increments the histo[alphabet_position/4] element associated
with that interval. The calculation of the alphabet index relies on the fact that the
input string is based on the standard ASCII code representation in which the
alphabet letters “a” through “z” are encoded into consecutive values according to
their order in the alphabet.

Although one might not know the exact encoded value of each letter, one can
assume that the encoded value of a letter is the encoded value of “a” plus the alpha-
bet position difference between that letter and “a.” In the input, each character is
stored in its encoded value. Thus the expression data[i] ! “a” (line 03) derives the
alphabet position of the letter with the alphabet position of “a” being 0. If the posi-
tion value is greater than or equal to 0 and less than 26, the data character is indeed
a lowercase alphabet letter (line 04). Keep in mind that we defined the intervals

FIGURE 9.2

A simple C function for calculating histogram for an input text string.
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such that each interval contains four alphabet letters. Therefore the interval index
for the letter is its alphabet position value divided by 4. We use the interval index
to increment the appropriate histo array element (line 05).

The C code in Fig. 9.2 is quite simple and efficient. The computational com-
plexity of the algorithm is O(N), where N is the number of input data elements.
The data array elements are accessed sequentially in the for-loop, so the CPU cache
lines are well used whenever they are fetched from the system DRAM. The histo
array is so small that it fits well in the level-one (L1) data cache of the CPU, which
ensures fast updates to the histo elements. For most modern CPUs, one can expect
the execution speed of this code to be memory bound, that is, limited by the rate at
which the data elements can be brought from DRAM into the CPU cache.

9.2 Atomic operations and a basic histogram kernel
The most straightforward approach to parallelizing histogram computation is to
launch as many threads as there are data elements and have each thread process
one input element. Each thread reads its assigned input element and increments the
appropriate interval counter for the character. Fig. 9.3 illustrates an example of this
parallelization strategy. Note that multiple threads need to update the same counter
(m-p), which is a conflict that is referred to as output interference. Programmers
must understand the concepts of race conditions and atomic operations in order to
confidently handle such output interferences in their parallel code.

An increment to an interval counter in the histo array is an update, or read-
modify-write, operation on a memory location. The operation involves reading
the memory location (read), adding one to the original value (modify), and writ-
ing the new value back to the memory location (write). Read-modify-write is a
frequently used operation for coordinating collaborative activities.

FIGURE 9.3

Basic parallelization of a histogram.

194 CHAPTER 9 Parallel histogram



For example, when we make a flight reservation with an airline, we bring up
the seat map and look for available seats (read), we pick a seat to reserve (mod-
ify), and that changes the seat status to unavailable in the seat map (write). A bad
potential scenario can happen as follows:

• Two customers simultaneously bring up seat map of the same flight.
• Both customers pick the same seat, say, 9C.
• Both customers change the status of seat 9C to unavailable.

After the sequence, both customers think that they have seat 9C. We can imagine
that they will have an unpleasant situation when they board the flight and find out
that one of them cannot take the reserved seat! Believe it or not, such unpleasant
situations happen in real life because of flaws in airline reservation software.

For another example, some stores allow customers to wait for service without
standing in line. They ask each customer to take a number from one of the kiosks.
There is a display that shows the number that will be served next. When a service
agent becomes available, the agent asks the customer to present the ticket that matches
the number, verifies the ticket, and updates the display number to the next higher
number. Ideally, all customers will be served in the order in which they enter the
store. An undesirable outcome would be that two customers simultaneously sign in at
two kiosks and both receive tickets with the same number. When a service agent calls
for that number, both customers expect to be the one who should receive service.

In both examples, undesirable outcomes are caused by a phenomenon called
read-modify-write race condition, in which the outcome of two or more simulta-
neous update operations varies depending on the relative timing of the operations
that are involved.1 Some outcomes are correct, and some are incorrect. Fig. 9.4
illustrates a race condition when two threads attempt to update the same histo ele-
ment in our text histogram example. Each row in Fig. 9.4 shows the activity dur-
ing a time period, with time progressing from top to bottom.

FIGURE 9.4

Race condition in updating a histo array element: (A) One possible interleaving of
instructions; (B) Another possible interleaving of instructions.

1Note that this is similar but not the same as the write-after-read race condition in Chapter 10, Reduction
and Minimizing Divergence, when we discussed the need for a barrier synchronization between the reads
from and writes to the XY array in each iteration of the Kogge-Stone scan kernel.
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Fig. 9.4A depicts a scenario in which thread 1 completes all three parts of its
read-modify-write sequence during time periods 1 through 3 before thread 2 starts
its sequence at time period 4. The value in the parenthesis in front of each opera-
tion shows the value being written into the destination, assuming that the value of
histo[x] was initially 0. In this scenario the value of histo[x] afterwards is 2, exactly
what one would expect. That is, both threads successfully incremented histo[x].
The element value starts with 0 and becomes 2 after the operations complete.

In Fig. 9.4B the read-modify-write sequences of the two threads overlap. Note that
thread 1 writes the new value into histo[x] at time period 4. When thread 2 reads histo
[x] at time period 3, it still has the value 0. As a result, the new value that it calculates
and eventually writes to histo[x] is 1 rather than 2. The problem is that thread 2 read
histo[x] too early, before thread 1 had completed its update. The net outcome is that the
value of histo[x] afterwards is 1, which is incorrect. The update by thread 1 is lost.

During parallel execution, threads can run in any order relative to each other.
In our example, thread 2 can easily start its update sequence ahead of thread 1.
Fig. 9.5 shows two such scenarios. In Fig. 9.5A, thread 2 completes its update
before thread 1 starts its. In Fig. 9.5B, thread 1 starts its update before thread 2
has completed its. It should be obvious that the sequences in Fig. 9.5A result in a
correct outcome for histo[x], but those in Fig. 9.5B produce an incorrect outcome.

The fact that the final value of histo[x] varies depending on the relative timing
of the operations that are involved indicates that there is a race condition. We can
eliminate such variation by eliminating the possible interleaving of operation
sequences of thread 1 and thread 2. That is, we would like to allow the timings
shown in Figs. 9.4A and 9.5A while eliminating the possibilities shown in
Figs. 9.4B and 9.5B. This can be accomplished by using atomic operations.

An atomic operation on a memory location is an operation that performs a
read-modify-write sequence on the memory location in such a way that no other
read-modify-write sequence to the location can overlap with it. That is, the read,
modify, and write parts of the operation form an undividable unit, hence the
name atomic operation. In practice, atomic operations are realized with hardware
support to lock out other operations to the same location until the current

FIGURE 9.5

Race condition scenarios in which thread 2 runs ahead of thread 1: (A) One possible
interleaving of instructions; (B) Another possible interleaving of instructions.
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operation is complete. In our example, such support eliminates the possibility
depicted in Figs. 9.4B and 9.5B, since the trailing thread cannot start its update
sequence until the leading thread has completed its.

It is important to remember that atomic operations do not enforce any particu-
lar execution order between threads. In our example, both orders shown in
Figs. 9.4A and 9.5A are allowed by atomic operations. Thread 1 can run either
ahead of or behind thread 2. The rule that is being enforced is that if both threads
perform atomic operations on the same memory location, the atomic operation
that is performed by the trailing thread cannot be started until the atomic opera-
tion of the leading thread completes. This effectively serializes the atomic opera-
tions that are being performed on a memory location.

Atomic operations are usually named according to the modification that is per-
formed on the memory location. In our text histogram example we are adding a
value to the memory location, so the atomic operation is called atomic add. Other
types of atomic operations include subtraction, increment, decrement, minimum,
maximum, logical and, and logical or. A CUDA kernel can perform an atomic
add operation on a memory location through a function call:

The atomicAdd function is an intrinsic function (see the sidebar “Intrinsic
Functions”) that is compiled into a hardware atomic operation instruction. This
instruction reads the 32-bit word pointed to by the address argument in global or
shared memory, adds val to the old content, and stores the result back to memory
at the same address. The function returns the old value at the address.

Intrinsic Functions

Modern processors often offer special instructions that either perform criti-
cal functionality (such as the atomic operations) or substantial performance
enhancement (such as vector instructions). These instructions are typically
exposed to the programmers as intrinsic functions, or simply instrinsics.
From the programmer’s perspective, these are library functions. However,
they are treated in a special way by compilers; each such call is translated
into the corresponding special instruction. There is typically no function call
in the final code, just the special instructions in line with the user code. All
major modern compilers, such as the GNU Compiler Collection (gcc), Intel
C Compiler, and Clang/LLVM C Compiler support intrinsics.

Fig. 9.6 shows a CUDA kernel that performs parallel histogram computation.
The code is similar to the sequential code in Fig. 9.2 with two key distinctions. The
first distinction is that the loop over input elements is replaced with a thread index
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calculation (line 02) and a boundary check (line 03) to assign a thread to each input
element. The second distinction is that the increment expression in Fig. 9.2:

becomes an atomicAdd() function call in Fig. 9.6 (line 06). The address of the
location to be updated, &(histo[alphabet_position/4]), is the first argument.
The value to be added to the location, 1, is the second argument. This ensures
that any simultaneous updates to any histo array element by different threads are
properly serialized.

9.3 Latency and throughput of atomic operations
The atomic operation that is used in the kernel of Fig. 9.6 ensures the correctness of
updates by serializing any simultaneous updates to a location. As we know, serializ-
ing any portion of a massively parallel program can drastically increase the execution
time and reduce the execution speed of the program. Therefore it is important that
such serialized operations account for as little execution time as possible.

As we learned in Chapter 5, Memory Architecture and Data Locality, the access
latency to data in DRAMs can take hundreds of clock cycles. In Chapter 4,
Compute Architecture and Scheduling, we learned that GPUs use zero-cycle con-
text switching to tolerate such latency. In Chapter 6, Performance Considerations,
we learned that as long as we have many threads whose memory access latencies
can overlap with each other, the execution speed is limited by the throughput of the
memory system. Therefore it is important that GPUs make full use DRAM bursts,
banks, and channels to achieve high memory access throughput.

It should be clear to the reader at this point that the key to high memory access
throughput is to have many DRAM accesses that are simultaneously in progress.
Unfortunately, this strategy breaks down when many atomic operations update the
same memory location. In this case, the read-modify-write sequence of a trailing
thread cannot start until the read-modify-write sequence of a leading thread is

FIGURE 9.6

A CUDA kernel for calculation histogram.
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complete. As is shown in Fig. 9.7, the execution of atomic operations at the same
memory location is such that there can be only one in progress. The duration of
each atomic operation is approximately the latency of a memory load (left section
of the atomic operation time) plus the latency of a memory store (right section of
the atomic operation time). The length of these time sections of each read-modify-
write operation, usually hundreds of clock cycles, defines the minimum amount of
time that must be dedicated to servicing each atomic operation and limits the
throughput, or the rate at which atomic operations can be performed.

For example, assume a memory system with a 64-bit (8-byte) double data rate
DRAM interface per channel, eight channels, 1 GHz clock frequency, and typical
access latency of 200 cycles. The peak access throughput of the memory system
is 8 (bytes/transfer) " 2 (transfers per clock per channel) " 1 G (clocks per second)
" 8 (channels) = 128 GB/s. Assuming that each data accessed is 4 bytes, the sys-
tem has a peak access throughput of 32 G data elements per second.

However, in performing atomic operations on a particular memory location,
the highest throughput that one can achieve is one atomic operation every 400
cycles (200 cycles for the read and 200 cycles for the write). This translates into
a time-based throughput of 1/400 atomics/clock " 1 G (clocks/second) = 2.5 M
atomics/second. This is dramatically lower than most users expect from a GPU
memory system. Furthermore, the long latency of the sequence of atomic opera-
tions will likely dominate the kernel execution time and can dramatically lower
the execution speed of the kernel.

In practice, not all atomic operations will be performed on a single memory loca-
tion. In our text histogram example, the histogram has seven intervals. If the input
characters were uniformly distributed in the alphabet, the atomic operations would be
evenly distributed among the histo elements. This would boost the throughput to
7"2.5 M = 17.5 M atomic operations per second. In reality, the boost factor tends to
be much lower than the number of intervals in the histogram because the characters
tend to have a biased distribution in the alphabet. For example, in Fig. 9.1 we see
that the characters in the example phrase are heavily biased toward the m-p and q-t
intervals. The heavy contention traffic to update these intervals will likely reduce the
achievable throughput to only around (28/10)"2.5 M = 7 M.

FIGURE 9.7

The throughput of an atomic operation is determined by the memory access latency.
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One approach to improving the throughput of atomic operations is to reduce
the access latency to the heavily contended locations. Cache memories are the pri-
mary tool for reducing memory access latency. For this reason, modern GPUs
allow atomic operations to be performed in the last-level cache, which is shared
among all streaming multiprocessors (SMs). During an atomic operation, if the
updated variable is found in the last-level cache, it is updated in the cache. If it
cannot be found in the last-level cache, it triggers a cache miss and is brought
into the cache, where it is updated. Since the variables that are updated by atomic
operations tend to be heavily accessed by many threads, these variables tend to
remain in the cache once they have been brought in from DRAM. Because the
access time to the last-level cache is in tens of cycles rather than hundreds of
cycles, the throughput of atomic operations is improved by at least an order of
magnitude compared to early generations of GPU. This is an important reason
why most modern GPUs support atomic operations in the last-level cache.

9.4 Privatization
Another approach to improving the throughput of atomic operations is to alleviate
the contention by directing the traffic away from the heavily contended locations.
This can be achieved with a technique referred to as privatization that is com-
monly used to address the heavy output interference problems in parallel comput-
ing. The idea is to replicate highly contended output data structures into private
copies so that each subset of threads can update its private copy. The benefit is
that the private copies can be accessed with much less contention and often at
much lower latency. These private copies can dramatically increase the through-
put for updating the data structures. The downside is that the private copies need
to be merged into the original data structure after the computation completes. One
must carefully balance between the level of contention and the merging cost.
Therefore in massively parallel systems, privatization is typically done for subsets
of threads rather than individual threads.

In our text histogram example we can create multiple private histograms and
designate a subset of threads to update each of them. For example, we can create
two private copies and have even-index blocks to update one of them and odd-
index blocks to update the other. For another example, we can create four private
copies and have blocks whose indices are of the form 4n+i to update the ith pri-
vate version for I5 0, . . ., 3. A common approach is to create a private copy for
each thread block. This approach has multiple advantages that we will see later.

Fig. 9.8 shows an example of how privatization is applied to the text histo-
gram example from Fig. 9.3. In this example the threads are organized into
thread blocks, each of which consists of eight threads (in practice, thread blocks
are much larger). Each thread block receives a private copy of the histogram
that it updates. As shown in Fig. 9.8, rather than having contention across all
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the threads that update the same histogram bin, contention will be experienced
only between threads in the same block and when the private copies are being
merged at the end.

Fig. 9.9 presents a simple kernel that creates and associates a private copy of
the histogram to every block. In this scheme, up to 1024 threads would work on a
copy of the histogram. In this kernel the private histograms are in the global
memory. These private copies will likely be cached in the L2 cache for reduced
latency and improved throughput.

The first part of the kernel in Fig. 9.9 (lines 02!08) is similar to the kernel in
Fig. 9.6 with one key distinction. The kernel in Fig. 9.9 assumes that the host
code will allocate enough device memory for the histo array to hold all the

FIGURE 9.8

Private copies of histogram reduce contention of atomic operations.

FIGURE 9.9

Histogram kernel with private versions in global memory for thread blocks.

2019.4 Privatization



private copies of the histogram, which amounts to gridDim.x"NUM_BINS"4
bytes. This is reflected in line 06, where each thread adds an offset of blockIdx.
x"NUM_BINS to the index when performing atomic add on histo elements (bins
of the histogram). This offset shifts the position to the private copy for the block
to which the thread belongs. In this case, the level of contention is reduced by a
factor that is approximately the number of active blocks across all SMs. The
effect of reduced contention can result in orders of magnitude of improvement in
the update throughput for the kernel.

At the end of the execution, each thread block will commit the values in pri-
vate copy into the version produced by block 0 (lines 09!17). That is, we pro-
mote the private copy of block 0 into a public copy that will hold the total results
from all block. The threads in the block first wait for each other to finish updating
the private copy (line 10). Next, the threads iterate over the private histogram
bins (line 11), each thread being responsible for committing one or more of the
private bins. A loop is used to accommodate an arbitrary number of bins. Each
thread reads the value of the private bin for which it is responsible (line 13) and
checks whether the bin is nonzero (line 13). If it is, the thread commits the value
by atomically adding it to the copy of block 0 (line 14). Note that the addition
needs to be performed atomically because threads from multiple blocks can be
simultaneously performing the addition on the same location. Therefore at the
end of the kernel execution, the final histogram will be in the first NUM_BINS
elements of the histo array. Since only one thread from each block will be updat-
ing any given histo array element during this phase of the kernel execution, the
level of contention for each location is very modest.

One benefit of creating a private copy of the histogram on a per-thread-block
basis is that the threads can use __syncthreads() to wait for each other before
committing. If the private copy were accessed by multiple blocks, we would have
needed to call another kernel to merge the private copies or used other sophisti-
cated techniques. Another benefit of creating a private copy of the histogram on a
per-thread-block basis is that if the number of bins in the histogram is small
enough, the private copy of the histogram can be declared in shared memory.
Using shared memory would not be possible if the private copy were accessed by
multiple blocks because blocks do not have visibility of each other’s shared
memory.

Recall that any reduction in latency directly translates into improved through-
put of atomic operations on the same memory location. The latency for accessing
memory can be dramatically reduced by placing data in the shared memory.
Shared memory is private to each SM and has very short access latency (a few
cycles). This reduced latency directly translates into increased throughput of
atomic operations.

Fig. 9.10 shows a privatized histogram kernel that stores the private copies in
the shared memory instead of global memory. The key difference from the kernel
code in Fig. 9.9 is that the private copy of the histogram is allocated in shared
memory in the histo_s array and is initialized to 0 in parallel by the threads of
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the block (line 02!06). The barrier synchronization (line 07) ensures that all bins
of the private histogram have been properly initialized before any thread starts to
update them. The remaining code is identical to that in Fig. 9.9 except that the
first atomic operation is performed on the elements of the shared memory array
histo_s (line 13) and the private bin value is later read from there (line 19).

9.5 Coarsening
We have seen that privatization is effective in reducing the contention of atomic
operations and that storing the privatized histogram in the shared memory reduces
the latency of each atomic operation. However, the overhead of privatization is
the need to commit the private copies to the public copy. This commit operation
is done once per thread block. Hence the more thread blocks we use, the larger
this overhead is. The overhead is usually worth paying when the thread blocks
are executed in parallel. However, if the number of thread blocks that are
launched exceeds the number that can be executed simultaneously by the hard-
ware, the hardware schedule will serialize these thread blocks. In this case, the
privatization overhead is incurred unnecessarily.

We can reduce the overhead of privatization via thread coarsening. In other
words, we can reduce the number of private copies that are committed to the pub-
lic copy by reducing the number of blocks and having each thread process

FIGURE 9.10

A privatized text histogram kernel using the shared memory.
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multiple input elements. In this section we look at two strategies for assigning
multiple input elements to a thread: contiguous partitioning and interleaved
partitioning.

Fig. 9.11 shows an example of the contiguous partitioning strategy. The input
is partitioned into contiguous segments, and each segment is assigned to a thread.
Fig. 9.12 shows the histogram kernel with coarsening applied using the contigu-
ous partitioning strategy. The difference from Fig. 9.10 is on lines 09!10. In
Fig. 9.10 the input element index i corresponded to the global thread index, so

FIGURE 9.11

Contiguous partitioning of input elements.

FIGURE 9.12

Histogram kernel with coarsening using contiguous partitioning.
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each thread received one input element. In Fig. 9.11 the input elements index i is
the index of a loop that iterates from tid"CFACTOR to (tid + 1)"CFACTOR where
CFACTOR is the coarsening factor. Therefore each thread takes a contiguous seg-
ment of CFACTOR elements. The min operation in the loop bound ensures that the
threads at the end do not read out of bounds.

Partitioning data into contiguous segments is conceptually simple and intui-
tive. On a CPU, where parallel execution typically involves a small number of
threads, contiguous partitioning is often the best-performing strategy, since the
sequential access pattern by each thread makes good use of cache lines. Since
each CPU cache typically supports only a small number of threads, there is little
interference in cache usage by different threads. The data in cache lines, once
brought in for a thread, can be expected to remain for the subsequent accesses.

In contrast, contiguous partitioning on GPUs results in a suboptimal memory
access pattern. As we learned in Chapter 5, Memory Architecture and Data
Locality, the large number of simultaneously active threads in an SM typically
causes so much interference in the cache that one cannot expect data to remain in
the cache for all the sequential accesses by a single thread. Instead, we need to
make sure that threads in a warp access consecutive locations to enable memory
coalescing. This observation motivates interleaved partitioning.

Fig. 9.13 shows an example of the interleaved partitioning strategy. During
the first iteration, the eight threads access characters 0 through 7 (“programm”).
With memory coalescing, all the elements will be fetched with only one DRAM
access. During the second iteration the four threads access the characters “ing
mass” in one coalesced memory access. It should be clear why this is called
interleaved partitioning: The partitions to be processed by different threads are
interleaved with each other. Obviously, this is a toy example, and in reality,
there will be many more threads. There are also more subtle performance con-
siderations. For example, each thread should process four characters (a 32-bit
word) in each iteration to fully utilize the interconnect bandwidth between the
caches and the SMs.

FIGURE 9.13

Interleaved partitioning of input elements.
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Fig. 9.14 shows the histogram kernel with coarsening applied by using the
interleaved partitioning strategy. The difference from Figs. 9.10 and 9.12 is again
on lines 09!10. In the first iteration of the loop, each thread accesses the data
array using its global thread index: Thread 0 accesses element 0, thread 1
accesses element 1, thread 2 accesses element 2, and so on. Thus all threads
jointly process the first blockDim.x"gridDim.x elements of the input. In the sec-
ond iteration, all threads add blockDim.x"gridDim.x to their indices and jointly
process the next section of blockDim.x"gridDim.x elements.

When the index of a thread exceeds the valid range of the input buffer (its pri-
vate i variable value is greater than or equal to length), the thread has completed
processing its partition and will exit the loop. Since the size of the buffer might
not be a multiple of the total number of threads, some of the threads might not
participate in the processing of the last section. Therefore some threads will exe-
cute one fewer loop iteration than others.

9.6 Aggregation
Some datasets have a large concentration of identical data values in localized
areas. For example, in pictures of the sky, there can be large patches of pixels of
identical value. Such a high concentration of identical values causes heavy con-
tention and reduced throughput of parallel histogram computation.

FIGURE 9.14

Histogram kernel with coarsening using interleaved partitioning.
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For such datasets a simple and yet effective optimization is for each thread to
aggregate consecutive updates into a single update if they are updating the same
element of the histogram (Merrill, 2015). Such aggregation reduces the number of
atomic operations to the highly contended histogram elements, thus improving the
effective throughput of the computation.

Fig. 9.15 shows an aggregated text histogram kernel. The key changes com-
pared to the kernel in Fig. 9.14 are as follows: Each thread declares an additional
accumulator variable (line 09) that keeps track of the number of updates aggre-
gated thus far and a prevBinIdx variable (line 10) that tracks the index of the his-
togram bin that was last encountered and is being aggregated. Each thread
initializes the accumulator variable to zero, indicating that no updates has been
initially aggregated, and the prevBinIdx to 21 so that no alphabet input will
match it.

FIGURE 9.15

An aggregated text histogram kernel.
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When an alphabet data is found, the thread compares the index of the histo-
gram element to be updated with that being aggregated (line 16). If the index is
the same, the thread simply increments the accumulator (line 17), extending the
streak of aggregated updates by one. If the index is different, the streak of aggre-
gated updates to the histogram element has ended. The thread uses atomic opera-
tion to add the accumulator value to the histogram element whose index is
tracked by prevBinIdx (lines 19!21). This effectively flushes out the total contri-
bution of the previous streak of aggregated updates.

With this scheme, the update is always at least one element behind. In the
extreme case in which there is no streak, all the updates will simply always be
one element behind. This is the reason why after a thread has completed scanning
all input elements and exited the loop, the threads need to check whether there is
a need to flush out the accumulator value (line 27). If so, the accumulator value
is flushed to the right histo_s element (line 28).

One important observation is that the aggregated kernel requires more state-
ments and variables. Thus if the contention rate is low, an aggregated kernel may
execute at lower speed than the simple kernel. However, if the data distribution
leads to heavy contention in atomic operation execution, aggregation may result
in significantly higher speed. The added if-statement can potentially exhibit con-
trol divergence. However, if there is either no contention or heavy contention,
there will be little control divergence, since the threads would either all be flush-
ing the accumulator value or all be in a streak. In the case in which some threads
will be in a streak and some will be flushing out their accumulator values, the
control divergence is likely to be compensated by the reduced contention.

9.7 Summary
Computing histograms is important for analyzing large datasets. It also represents
an important class of parallel computation patterns in which the output location
of each thread is data-dependent, which makes it infeasible to apply the owner-
computes rule. It is therefore a natural vehicle for introducing the concept of
read-modify-write race conditions and the practical use of atomic operations that
ensure the integrity of concurrent read-modify-write operations to the same mem-
ory location.

Unfortunately, as we explained in this chapter, atomic operations have much
lower throughput than simpler memory read or write operations because their
throughput is approximately the inverse of two times the memory latency. Thus
in the presence of heavy contention, histogram computation can have surprisingly
low computation throughput. Privatization is introduced as an important optimiza-
tion technique that systematically reduces contention and can further enable the
use of shared memory, which supports low latency and thus high throughput. In
fact, supporting fast atomic operations among threads in a block is an important
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use case of the shared memory. Coarsening was also applied to reduce the number
of private copies that need to be merged, and different coarsening strategies that
use contiguous partitioning and interleaved partitioning were compared. Finally,
for datasets that cause heavy contention, aggregation can also lead to significantly
higher execution speed.

Exercises
1. Assume that each atomic operation in a DRAM system has a total latency of

100 ns. What is the maximum throughput that we can get for atomic
operations on the same global memory variable?

2. For a processor that supports atomic operations in L2 cache, assume that each
atomic operation takes 4 ns to complete in L2 cache and 100 ns to complete
in DRAM. Assume that 90% of the atomic operations hit in L2 cache. What is
the approximate throughput for atomic operations on the same global memory
variable?

3. In Exercise 1, assume that a kernel performs five floating-point
operations per atomic operation. What is the maximum floating-point
throughput of the kernel execution as limited by the throughput of the
atomic operations?

4. In Exercise 1, assume that we privatize the global memory variable into
shared memory variables in the kernel and that the shared memory access
latency is 1 ns. All original global memory atomic operations are converted
into shared memory atomic operation. For simplicity, assume that the
additional global memory atomic operations for accumulating privatized
variable into the global variable adds 10% to the total execution time. Assume
that a kernel performs five floating-point operations per atomic operation.
What is the maximum floating-point throughput of the kernel execution as
limited by the throughput of the atomic operations?

5. To perform an atomic add operation to add the value of an integer variable
Partial to a global memory integer variable Total, which one of the following
statements should be used?
a. atomicAdd(Total, 1);
b. atomicAdd(&Total, &Partial);
c. atomicAdd(Total, &Partial);
d. atomicAdd(&Total, Partial);

6. Consider a histogram kernel that processes an input with 524,288 elements to
produce a histogram with 128 bins. The kernel is configured with 1024
threads per block.
a. What is the total number of atomic operations that are performed on global

memory by the kernel in Fig. 9.6 where no privatization, shared memory,
and thread coarsening are used?
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b. What is the maximum number of atomic operations that may be performed
on global memory by the kernel in Fig. 9.10 where privatization and
shared memory are used but not thread coarsening?

c. What is the maximum number of atomic operations that may be performed
on global memory by the kernel in Fig. 9.14 where privatization, shared
memory, and thread coarsening are used with a coarsening factor of 4?
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A reduction derives a single value from an array of values. The single value could
be the sum, the maximum value, the minimal value, and so on among all ele-
ments. The value can also be of various types: integer, single-precision floating-
point, double-precision floating-point, half-precision floating-point, characters,
and so on. All these types of reductions have the same computation structure.
Like a histogram, reduction is an important computation pattern, as it generates a
summary from a large amount of data. Parallel reduction is an important parallel
pattern that requires parallel threads to coordinate with each other to get correct
results. Such coordination must be done carefully to avoid performance bottle-
necks, which are commonly found in parallel computing systems. Parallel reduc-
tion is therefore a good vehicle for illustrating these performance bottlenecks and
introducing techniques for mitigating them.

10.1 Background
Mathematically, a reduction can be defined for a set of items based on a binary
operator if the operator has a well-defined identity value. For example, a floating-
point addition operator has an identity value of 0.0; that is, an addition of any
floating-point value v and value 0.0 results in the value v itself. Thus a reduction
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can be defined for a set of floating-point numbers based on the addition operator
that produces the sum of all the floating-point numbers in the set. For example,
for the set {7.0, 2.1, 5.3, 9.0, 11.2}, the sum reduction would produce 7.0+2.1
+5.3+9.0+11.25 34.6.

A reduction can be performed by sequentially going through every element of
the array. Fig. 10.1 shows a sequential sum reduction code in C. The code initia-
lizes the result variable sum to the identity value 0.0. It then uses a for-loop to
iterate through the input array that holds the set of values. During the ith iteration,
the code performs an addition operation on the current value of sum and the ith
element of the input array. In our example, after iteration 0, the sum variable con-
tains 0.0+7.05 7.0. After iteration 1, the sum variable contains 7.0+2.15 9.1.
Thus after each iteration, another value of the input array would be added (accu-
mulated) to the sum variable. After iteration 5, the sum variable contains 34.6,
which is the reduction result.

Reduction can be defined for many other operators. A product reduction
can be defined for a floating-point multiplication operator whose identity
value is 1.0. A product reduction of a set of floating-point numbers is the
product of all these numbers. A minimum (min) reduction can be defined for
a minimum comparison operator that returns the smaller value of the two
inputs. For real numbers, the identity value for the minimum operator is +N.
A maximum (max) reduction can be defined for a maximum (max) compari-
son operator that returns the larger value of the two input. For real numbers,
the identity value for the maximum operator is 2N.

Fig. 10.2 shows a general form of reduction for an operator, which is defined as a
function that takes two inputs and returns a value. When an element is visited during
an iteration of the for-loop, the action to take depends on the type of reduction being
performed. For example, for a max reduction the Operator function performs a com-
parison between the two inputs and returns the larger value of the two. For a min
reduction the values of the two inputs are compared by the operator function, and the

FIGURE 10.1

A simple sum reduction sequential code.

FIGURE 10.2

The general form of a reduction sequential code.

212 CHAPTER 10 Reduction



smaller value is returned. The sequential algorithm ends when all the elements have
been visited by the for-loop. For a set of N elements the for-loop iterates N iterations
and produces the reduction result at the exit of the loop.

10.2 Reduction trees
Parallel reduction algorithms have been studied extensively in the literature. The
basic concept of parallel reduction is illustrated in Fig. 10.3, where time pro-
gresses downwards in the vertical direction and the activities that threads perform
in parallel in each time step are shown in the horizontal direction.

During the first round (time step), four max operations are performed in paral-
lel on the four pairs of the original elements. These four operations produce par-
tial reduction results: the four larger values from the four pairs of original
elements. During the second time step, two max operations are performed in par-
allel on the two pairs of partial reduction results and produce two partial results
that are even closer to the final reduction result. These two partial results are the
largest value of the first four elements and the largest value of the second four
elements in the original input. During the third and final time step, one max
operation is performed to generate the final result, the largest value 7 from the
original input.

FIGURE 10.3

A parallel max reduction tree.
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Note that the order of performing the operations will be changed from a
sequential reduction algorithm to a parallel reduction algorithm. For example, for
the input at the top of Fig. 10.3, a sequential max reduction like the one in
Fig. 10.2 would start first by comparing the identity value (2N) in acc with the
input value 3 and update acc with the winner, which is 3. It will then compare the
value of acc (3) with the input value 1 and update acc with the winner, which is
3. This will be followed by comparing the value of acc (3) with the input value 7
and updating acc with the winner, which is 7. However, in the parallel reduction
of Fig. 10.3 the input value 7 is first compared with the input value 0 before it is
compared against the maximum of 3 and 1.

As we have seen, parallel reduction assumes that the order of applying the
operator to the input values does not matter. In a max reduction, no matter what
the order is for applying the operator to the input values, the outcome will be the
same. This property is guaranteed mathematically if the operator is associative.
An operator Θ is associative if (a Θ b) Θ c5 a Θ (b Θ c). For example, integer
addition is associative ((1+2)+35 1+(2+3)5 6), whereas integer subtraction is
not associative ((12 2)2 3 6¼ 12 ð22 3ÞÞ. That is, if an operator is associative,
one can insert parentheses at arbitrary positions of an expression involving the
operator and the results are all the same. With this equivalence relation, one can
convert any order of operator application to any other order while preserving the
equivalence of results. Strictly speaking, floating-point additions are not associa-
tive, owing to potentially rounding results for different ways of introducing
parentheses. However, most applications accept floating-point operation results to
be the same if they are within a tolerable difference from each other. Such defini-
tion allows developers and compiler writers to treat floating-point addition as an
associative operator. Interested readers are referred to Appendix A for a detailed
treatment.

The conversion from the sequential reduction in Fig. 10.2 to the reduction tree
in Fig. 10.3 requires that the operator be associative. We can think of a reduction
as a list of operations. The difference of ordering between Fig. 10.2 and Fig. 10.3
is just inserting parenthesis at different positions of the same list. For Fig. 10.2,
the parentheses are:

((((((3 max 1) max 7) max 0) max 4) max 1) max 6) max 3
Whereas the parentheses for Fig. 10.3 are:
((3 max 1) max (7 max 0)) max ((4 max 1) max (6 max 3))
We will apply an optimization in Section 10.4 that not only rearranges the

order of applying the operator but also rearranges the order of the operands. To
rearrange the order of the operands, this optimization further requires the operator
to be commutative. An operator is commutative if a Θ b5 b Θ a. That is, the
position of the operands can be rearranged in an expression and the results are the
same. Note that the max operator is also commutative, as are many other opera-
tors such as min, sum, and product. Obviously, not all operators are commutative.
For example, addition is commutative (1+25 2+1), whereas integer subtraction is
not (12 2 6¼22 1).
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The parallel reduction pattern in Fig. 10.3 is called a reduction tree because it
looks like a tree whose leaves are the original input elements and whose root is
the final result. The term reduction tree is not to be confused with tree data struc-
tures, in which the nodes are linked either explicitly with pointers or implicitly
with assigned positions. In reduction trees the edges are conceptual, reflecting
information flow from operations performed in one time step to those in the next
time step.

The parallel operations result in significant improvement over the sequen-
tial code in the number of time steps needed to produce the final result. In
the example in Fig. 10.3 the for-loop in the sequential code iterates eight
times, or takes eight time steps, to visit all of the input elements and produce
the final result. On the other hand, with the parallel operations in Fig. 10.3
the parallel reduction tree approach takes only three time steps: four max
operations during the first time step, two during the second, and one during
the third. This is a decrease of 5/85 62.5% in terms of number of time steps,
or a speedup of 8/35 2.67. There is, of course, a cost to the parallel
approach: One must have enough hardware comparators to perform up to
four max operations in the same time step. For N input values, a reduction
tree performs 1/2 N operations during the first round, 1/4 N operations in the
second round, and so on. Therefore the total number of operations that are
performed is defined by the geometric series 1/2 N+1/4 N+1/8 N+. . . 1/N
N5N2 1 operations, which is similar to the sequential algorithm.

In terms of time steps, a reduction tree takes log2N steps to complete the
reduction process for N input values. Thus it can reduce N5 1024 input
values in just ten steps, assuming that there are enough execution resources.
During the first step, we need 1/2 N5 512 execution resources! Note that the
number of resources that are needed diminishes quickly as we progress in
time steps. During the final time step, we need to have only one execution
resource. The level of parallelism at each time step is the same as the number
of execution units that are required. It is interesting to calculate the average
level of parallelism across all time steps. The average parallelism is the total
number of operations that are performed divided by the number of time
steps, which is (N2 1)/log2N. For N5 1024 the average parallelism across
the ten time steps is 102.3, whereas the peak parallelism is 512 (during the
first time step). Such variation in the level of parallelism and resource con-
sumption across time steps makes reduction trees a challenging parallel pat-
tern for parallel computing systems.

Fig. 10.5 shows a sum reduction tree example for eight input values.
Everything we presented so far about the number of time steps and resources
consumed for max reduction trees is also applicable to sum reduction trees.
It takes log285 3 time steps to complete the reduction using a maximum of
four adders. We will use this example to illustrate the design of sum reduc-
tion kernels.
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Parallel Reduction in Sports and Competitions

Parallel reduction has been used in sports and competitions long before the
dawn of computing. Fig. 10.4 shows the schedule of the 2010 World Cup
quarterfinals, semifinals, and the final game in South Africa. It should be
clear that this is just a rearranged reduction tree. The elimination process of
the World Cup is a maximum reduction in which the maximum operator
returns the team that “beats” the other team. The tournament “reduction” is
done in multiple rounds. The teams are divided into pairs. During the first
round, all pairs play in parallel. Winners of the first round advance to the sec-
ond round, whose winners advance to the third round, and so on. With eight
teams entering a tournament, four winners will emerge from the first round
(quarterfinals in Fig. 10.4), two from the second round (semifinals in
Fig. 10.4), and one final winner (champion) from the third round (final in
Fig. 10.4). Each round is a time step of the reduction process.

It should be easy to see that even with 1024 teams, it takes only 10 rounds
to determine the final winner. The trick is to have enough resources to hold
the 512 games in parallel during the first round, 256 games in the second
round, 128 games in the third round, and so on. With enough resources, even
with 60,000 teams, we can determine the final winner in just 16 rounds. It is
interesting to note that while reduction trees can greatly speed up the reduc-
tion process, they also consume quite a bit of resources. In the World Cup
example, a game requires a large soccer stadium, officials, and staff as well
as hotels and restaurants to accommodate the massive number of fans in the
audience. The four quarterfinals in Fig. 10.4 were played in three cities
(Nelson Mandela Bay/Port Elizabeth, Cape Town, and Johannesburg) that all
together provided enough resources to host the four games. Note that the two
games in Johannesburg were played on two different days. Thus sharing
resources between two games made the reduction process take more time. We
will see similar tradeoffs in computation reduction trees.

FIGURE 10.4

The 2010 World Cup Finals as a reduction tree.
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10.3 A simple reduction kernel
We are now ready to develop a simple kernel to perform the parallel sum
reduction tree shown in Fig. 10.5. Since the reduction tree requires collabora-
tion across all threads, which is not possible across an entire grid, we will start
by implementing a kernel that performs a sum reduction tree within a single
block. That is, for an input array of N elements we will call this simple kernel
and launch a grid with one block of 1/2N threads. Since a block can have up to
1024 threads, we can process up to 2048 input elements. We will eliminate
this limitation in Section 10.8. During the first time step, all 1/2N threads will
participate, and each thread adds two elements to produce 1/2N partial sums.
During the next time step, half of the threads will drop off, and only 1/4N
threads will continue to participate to produce 1/4N partial sums. This process
will continue until the last time step, in which only one thread will remain and
produce the total sum.

Fig. 10.6 shows the code of the simple sum kernel function, and Fig. 10.7
illustrates the execution of the reduction tree that is implemented by this code.
Note that in Fig. 10.7 the time progresses from top to bottom. We assume that the
input array is in the global memory and that a pointer to the array is passed as an
argument when the kernel function is called. Each thread is assigned to a data
location that is 2$threadIdx.x (line 02). That is, the threads are assigned to the
even locations in the input array: thread 0 to input[0], thread 1 to input[2],
thread 2 to input[4], and so on, as shown in the top row of Fig. 10.7. Each
thread will be the “owner” of the location to which it is assigned and will be
the only thread that writes into that location. The design of the kernel follows
the “owner computes” approach, in which every data location is owned by a
unique thread and can be updated only by that owner thread.

FIGURE 10.5

A parallel sum reduction tree.
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The top row of Fig. 10.7 shows the assignment of threads to the locations of the
input array, and each of the subsequent rows shows the writes to the input array loca-
tions at each time step, that is, iteration of the for-loop in Fig. 10.6 (line 03). The
locations that the kernel overwrites in each iteration of the for-loop are marked as
filled positions of the input array in Fig. 10.7. For example, at the end of the first iter-
ation, locations with even indices are overwritten with the partial sums of pairs of the
original elements (0%1, 2%3, 4%5, etc.) in the input array. At the end of the second
iteration, the locations whose indices are multiples of 4 are overwritten with the
partial sum of four adjacent original elements (0%3, 4%7, etc.) in the input array.

FIGURE 10.6

A simple sum reduction kernel.

FIGURE 10.7

The assignment of threads (“owners”) to the input array locations and progress of
execution over time for the SimpleSumReudctionKernel in Fig. 10.6. The time
progresses from top to bottom, and each level corresponds to one iteration of the for-loop.
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In Fig. 10.6 a stride variable is used for the threads to reach for the appropriate par-
tial sums for accumulation into their owner locations. The stride variable is initialized to
1 (line 03). The value of the stride variable is doubled in each iteration so the stride var-
iable value will be 1, 2, 4, 8, etc., until it becomes greater than blockIdx.x, the total
number of threads in the block. As shown in Fig. 10.7, each active thread in an iteration
uses the stride variable to add into its owned location the input array element that is of
distance stride away. For example, in iteration 1, Thread 0 uses stride value 1 to add
input[1] into its owned position input[0]. This updates input[0] to the partial sum of the
first pair of original values of input[0] and input[1]. In the second iteration, Thread 0
uses stride value 2 to add input[2] to input[0]. At this time, input[2] contains the sum of
the original values of input[2] and input[3] and input[0] contains the sum of the original
values of input[0] and input[1]. So, after the second iteration, input[0] contains the sum
of the original values of the first four elements of the input array. After the last iteration,
input[0] contains the sum of all original elements of the input array and thus the result
of the sum reduction. This value is written by Thread 0 as the final output (line 10).

We now turn to the if-statement in Fig. 10.6 (line 04). The condition of the if-
statement is set up to select the active threads in each iteration. As shown in
Fig. 10.7, during iteration n, the threads whose thread index (threadIdx.x) values
are multiples of 2n are to perform addition. The condition is threadIdx.x % stride
5 5 0, which tests whether the thread index value is a multiple of the value of the
stride variable. Recall that the value of stride is 1, 2, 4, 8, . . . through the iterations,
or 2n for iteration n. Thus the condition indeed tests whether the thread index values
are multiples of 2n. Recall that all threads execute the same kernel code. The threads
whose thread index value satisfies the if-condition are the active threads that perform
the addition statement (line 05). The threads whose thread index values fail to satisfy
the condition are the inactive threads that skip the addition statement. As the itera-
tions progress, fewer and fewer threads remain active. At the last iteration, only
thread 0 remains active and produces the sum reduction result.

The __syncthreads() statement (line 07 of Fig. 10.6) in the for-loop ensures that
all partial sums that were calculated by the iteration have been written
into their destination locations in the input array before any one of threads is allowed
to begin the next iteration. This way, all threads that enter an iteration will be able to
correctly use the partial sums that were produced in the previous iteration. For exam-
ple, after the first iteration the even elements will be replaced by the pairwise partial
sums. The __syncthreads() statement ensures that all these partial sums from the
first iteration have indeed been written to the even locations of the input array and
are ready to be used by the active threads in the second iteration.

10.4 Minimizing control divergence
The kernel code in Fig. 10.6 implements the parallel reduction tree in Fig. 10.7 and
produces the expected sum reduction result. Unfortunately, its management of active
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and inactive threads in each iteration results in a high degree of control divergence. For
example, as shown in Fig. 10.7, only those threads whose threadIdx.x values are
even will execute the addition statement during the second iteration. As we explained
in Chapter 4, Compute Architecture and Scheduling, control divergence can signifi-
cantly reduce the execution resource utilization efficiency, or the percentage of
resources that are used in generating useful results. In this example, all 32 threads in a
warp consume execution resources, but only half of them are active, wasting half of
the execution resources. The waste of execution resources due to divergence increases
over time. During the third iteration, only one-fourth of the threads in a warp are
active, wasting three-quarters of the execution resources. During iteration 5, only one
out of the 32 threads in a warp are active, wasting 31/32 of the execution resources.

If the size of the input array is greater than 32, entire warps will become inac-
tive after the fifth iteration. For example, for an input size of 256, 128 threads or
four warps would be launched. All four warps would have the same divergence pat-
tern, as we explained in the previous paragraph for iterations 1 through 5. During
the sixth iteration, warp 1 and warp 3 would become completely inactive and thus
exhibit no control divergence. On the other hand, warp 0 and warp 2 would have
only one active thread, exhibiting control divergence and wasting 31/32 of the exe-
cution resource. During the seventh iteration, only warp 0 would be active, exhibit-
ing control divergence and wasting 31/32 of the execution resource.

In general, the execution resource utilization efficiency for an input array of size
N can be calculated as the ratio between the total number of active threads to the
total number of execution resources that are consumed. The total number of execu-
tion resources that are consumed is proportional to the total number of active warps
across all iterations, since every active warp, no matter how few of its threads are
active, consumes full execution resources. This number can be calculated as follows:

N=64$5þ N=64$1/ 2 þ N=64$1/4 þ . . .þ 1
! "$32

Here, N/64 is the total number of warps that are launched, since N/2 threads will
be launched and every 32 threads form a warp. The N/64 term is multiplied by 5
because all launched warps are active for five iterations. After the fifth iteration the
number of warps is reduced by half in each successive iteration. The expression in
parentheses gives the total number of active warps across all the iterations. The sec-
ond term reflects that each active warp consumes full execution resources for all 32
threads regardless of the number of active threads in these warps. For an input array
size of 256, the consumed execution resource is (4$5+2+1)$325 736.

The number of execution results committed by the active threads is the total
number of active threads across all iterations:

N=64$ 32þ 16þ 8þ 4þ 2þ 1ð Þ þ N=64$1/ 2$1þ N=64$1/4$1þ . . .þ 1

The terms in the parenthesis give the active threads in the first five iterations
for all N/64 warps. Starting at the sixth iteration, the number of active warps is
reduced by half in each iteration, and there is only one active thread in each
active warp. For an input array size of 256, the total number of committed results
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is 4$(32+16+8+4+2+1)+2+15 255. This result should be intuitive because the
total number of operations that are needed to reduce 256 values is 255.

Putting the previous two results together, we find that the execution
resource utilization efficiency for an input array size of 256 is 255/7365 0.35.
This ratio states that the parallel execution resources did not achieve their full
potential in speeding up this computation. On average, only about 35% of the
resources consumed contributed to the sum reduction result. That is, we used
only about 35% of the hardware’s potential to speed up the computation.

Based on this analysis, we see that there is widespread control divergence across
warps and over time. As the reader might have wondered, there may be a better
way to assign threads to the input array locations to reduce control divergence and
improve resource utilization efficiency. The problem with the assignment illustrated
in Fig. 10.7 is that the partial sum locations become increasingly distant from each
other, and thus the active threads that own these locations are also increasingly dis-
tant from each other as time progresses. This increasing distance between active
threads contributes to the increasing level of control divergence.

There is indeed a better assignment strategy that significantly reduces control
divergence. The idea is that we should arrange the threads and their owned posi-
tions so that they can remain close to each other as time progresses. That is, we
would like to have the stride value decrease, rather than increase, over time. The
revised assignment strategy is shown in Fig. 10.8 for an input array of 16 elements.
Here, we assign the threads to the first half of the locations. During the first itera-
tion, each thread reaches halfway across the input array and adds an input element

FIGURE 10.8

A better assignment of threads to input array locations for reduced control divergence.
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to its owner location. In our example, thread 0 adds input[8] to its owned position
input[0], thread 1 adds input[9] to its owned position input[1], and so on. During
each subsequent iteration, half of the active threads drop off, and all remaining
active threads add an input element whose position is the number of active threads
away from its owner position. In our example, during the third iteration there are
two remaining active threads: Thread 0 adds input[2] into its owned position input
[0], and thread 1 adds input[3] into its owned position input[1]. Note that if we
compare the operation and operand orders of Fig. 10.8 to Fig. 10.7, there is effec-
tively a reordering of the operands in the list rather than just inserting parentheses
in different ways. For the result to always remain the same with such reordering,
the operation must be commutative as well as being associative.

Fig. 10.9 shows a kernel with some subtle but critical changes to the simple ker-
nel in Fig. 10.6. The owner position variable i is set to threadIdx.x rather than
2$threadIdx.x (line 02). Thus the owner positions of all threads are now adjacent to
each other, as illustrated in Fig. 10.8. The stride value is initialized as blockDim.x
and is reduced by half until it reaches 1 (line 03). In each iteration, only the threads
whose indices are smaller than the stride value remain active (line 04). Thus all
active threads are of consecutive thread indices, as shown in Fig. 10.8. Instead of
adding neighbor elements in the first round, it adds elements that are half a section
away from each other, and the section size is always twice the number of remaining
active threads. All pairs that are added during the first round are blockDim.x away
from each other. After the first iteration, all the pairwise sums are stored in the first
half of the input array, as shown in Fig. 10.8. The loop divides the stride by 2 before
entering the next iteration. Thus for the second iteration the stride variable value is
half of the blockDim.x value. That is, the remaining active threads add elements that
are a quarter of a section away from each other during the second iteration.

The kernel in Fig. 10.9 still has an if-statement (line 04) in the loop. The num-
ber of threads that execute an addition operation (line 06) in each iteration is the
same as in Fig. 10.6. Then why should there be a difference in control divergence
between the two kernels? The answer lies in the positions of threads that perform
the addition operation relative to those that do not. Let us consider the example

FIGURE 10.9

A kernel with less control divergence and improved execution resource utilization efficiency.
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of an input array of 256 elements. During the first iteration, all threads are active,
so there is no control divergence. During the second iteration, threads 0 through
63 execute the add statement (active), while threads 64 through 127 do not (inac-
tive). The pairwise sums are stored in elements 0 through 63 during the second
iteration. Since the warps consist of 32 threads with consecutive threadIdx.x
values, all threads in warp 0 through warp 1 execute the add statement, whereas
all threads in warp 2 through warp 3 become inactive. Since all threads in each
warp take the same path of execution, there is no control divergence!

However, the kernel in Fig. 10.9 does not completely eliminate the divergence
caused by the if-statement. The reader should verify that for the 256-element
example, starting with the fourth iteration, the number of threads that execute the
addition operation will fall below 32. That is, the final five iterations will have
only 16, 8, 4, 2, and 1 thread(s) performing the addition. This means that the ker-
nel execution will still have divergence in these iterations. However, the number
of iterations of the loop that has divergence is reduced from ten to five. We can
calculate the total number of execution resources consumed as follows:

N=64$1þ N=64$1/ 2 þ . . .þ 1þ 5$1
! "$32

The part in parentheses reflects the fact that in each subsequent iteration, half
of the warps become entirely inactive and no longer consume execution resources.
This series continues until there is only one full warp of active threads. The last
term (5$1) reflects the fact that for the final five iterations, there is only one
active warp, and all its 32 threads consume execution resources even though only
a fraction of the threads are active. Thus the sum in the parentheses gives the total
number of warp executions through all iterations, which, when multiplied by 32,
gives the total amount of execution resources that are consumed.

For our 256-element example the execution resources that are consumed are
(4+2+1+5$1)$325 384, which is almost half of 736, the resources that were con-
sumed by the kernel in Fig. 10.6. Since the number of active threads in each
iteration did not change from Fig. 10.7 to Fig. 10.8, the efficiency of the new ker-
nel in Fig. 10.9 is 255/3845 66%, which is almost double the efficiency of the
kernel in Fig. 10.6. Note also that since the warps are scheduled to take turns
executing in a streaming multiprocessor of limited execution resources, the total
execution time will also improve with the reduced resource consumption.

The difference between the kernels in Fig. 10.6 and Fig. 10.9 is small but can
have a significant performance impact. It requires someone with clear understand-
ing of the execution of threads on the single-instruction, multiple-data hardware
of the device to be able to confidently make such adjustments.

10.5 Minimizing memory divergence
The simple kernel in Fig. 10.6 has another performance issue: memory diver-
gence. As we explained in Chapter 5, Memory Architecture and Data Locality, it
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is important to achieve memory coalescing within each warp. That is, adjacent
threads in a warp should access adjacent locations when they access global mem-
ory. Unfortunately, in Fig. 10.7, adjacent threads do not access adjacent locations.
In each iteration, each thread performs two global memory reads and one global
memory write. The first read is from its owned location, the second read is from
the location that is of stride distance away from its owned location, and the write
is to its owned location. Since the locations owned by adjacent thread are not
adjacent locations, the accesses that are made by adjacent threads will not be fully
coalesced. During each iteration the memory locations that are collectively
accessed by a warp are of stride distance away from each other.

For example, as shown in Fig. 10.7, when all threads in a warp perform their
first read during the first iteration, the locations are two elements away from each
other. As a result, two global memory requests are triggered, and half the data
returned will not be used by the threads. The same behavior occurs for the second
read and the write. During the second iteration, every other thread drops out, and
the locations that are collectively accessed by the warp are four elements away
from each other. Two global memory requests are again performed, and only one-
fourth of the data returned will be used by the threads. This will continue until
there is only one active thread for each warp that remains active. Only when there
is one active thread in the warp will the warp perform one global memory
request. Thus the total number of global memory requests is as follows:

N=64$5$2þ N=64$1þ N=64$1/ 2 þ N=64$1/4 þ . . .þ 1
! "$3

The first term (N/64$5$2) corresponds to the first five iterations, in which all
N/64 warps have two or more active threads, so each warp performs two global
memory requests. The remaining terms account for the final iterations, in which
each warp has only one active thread and performs one global memory request
and half of the warps drop out in each subsequent iteration. The multiplication by
3 accounts for the two reads and one write by each active thread during each iter-
ation. In the 256-element example the total number of global memory requests
performed by the kernel is (4$5$2+4+2+1)$35 141.

For the kernel in Fig. 10.9 the adjacent threads in each warp always access adja-
cent locations in the global memory, so the accesses are always coalesced. As a
result, each warp triggers only one global memory request on any read or write. As
the iterations progress, entire warps drop out, so no global memory access will be
performed by any thread in these inactive warps. Half of the warps drop out in
each iteration until there is only one warp for the final five iterations. Therefore the
total number of global memory requests performed by the kernel is as follows:

N=64þ N=64$1/ 2 þ N=64$1/4 þ . . .þ 1
! "

þ 5
! "$3

For the 256-element example the total number of global memory requests per-
formed is ((4+2+1)+5)$35 36. The improved kernel results in 141/365 3.93
fewer global memory requests. Since DRAM bandwidth is a limited resource, the
execution time is likely to be significantly longer for the simple kernel in Fig. 10.6.
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For a 2048-element example the total number of global memory requests that
are performed by the kernel in Fig. 10.6 is (32$5$2+32+16+8+4+2+1)$35 1149,
whereas the number of global memory requests that are performed by the kernel
in Fig. 10.9 is (32+16+8+4+2+1+5)$35 204. The ratio is 5.6, even more than in
the 256-element example. This is because of the inefficient execution pattern of
the kernel in Fig. 10.6, in which there are more active warps during the initial
five iterations of the execution and each active warp triggers twice the number of
global memory requests as the convergent kernel in Fig. 10.9.

In conclusion, the convergent kernel offers more efficiency in using both exe-
cution resources and DRAM bandwidth. The advantage comes from both reduced
control divergence and improved memory coalescing.

10.6 Minimizing global memory accesses
The convergent kernel in Fig. 10.9 can be further improved by using shared mem-
ory. Note that in each iteration, threads write their partial sum result values out to
the global memory, and these values are reread by the same threads and other
threads in the next iteration. Since the shared memory has much shorter latency
and higher bandwidth than the global memory, we can further improve the execu-
tion speed by keeping the partial sum results in the shared memory. This idea is
illustrated in Fig. 10.10.

The strategy for using the shared memory is implemented in the kernel shown
in Fig. 10.11. The idea is to use each thread to load and add two of the original

FIGURE 10.10

Using shared memory to reduce accesses to the global memory.
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elements before writing the partial sum into the shared memory (line 04). Since
the first iteration is already done when accessing the global memory locations
outside the loop, the for-loop starts with blockDim.x/2 (line 04) instead of
blockDim.x. The __syncthreads() is moved to the beginning of the loop to
ensure that we synchronize between the shared memory accesses and the first iter-
ation of the loop. The threads proceed with the remaining iterations by reading
and writing the shared memory (line 08). Finally, at the end of the kernel, thread
0 writes the sum into output, maintaining the same behavior as in the previous
kernels (lines 11%13).

Using the kernel in Fig. 10.11, the number of global memory accesses are
reduced to the initial loading of the original contents of the input array and the
final write to input[0]. Thus for an N-element reduction the number of global
memory accesses is just N+1. Note also that both global memory reads in
Fig. 10.11 (line 04) are coalesced. So with coalescing, there will be only (N/32)
+1 global memory requests. For the 256-element example the total number of
global memory requests that are triggered will be reduced from 36 for the kernel
in Fig. 10.9 to 8+15 9 for the shared memory kernel in Fig. 10.10, a 43
improvement. Another benefit of using shared memory, besides reducing the
number of global memory accesses, is that the input array is not modified. This
property is useful if the original values of the array are needed for some other
computation in another part of the program.

10.7 Hierarchical reduction for arbitrary input length
All the kernels that we have studied so far assume that they will be launched with
one thread block. The main reason for this assumption is that __syncthreads() is
used as a barrier synchronization among all the active threads. Recall that
__syncthreads() can be used only among threads in the same block. This limits

FIGURE 10.11

A kernel that uses shared memory to reduce global memory accesses.
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the level of parallelism to 1024 threads on current hardware. For large input
arrays that contain millions or even billions of elements, we can benefit from
launching more threads to further accelerate the reduction process. Since we do
not have a good way to perform barrier synchronization among threads in differ-
ent blocks, we will need to allow threads in different blocks to execute
independently.

Fig. 10.12 illustrates the concept of hierarchical, segmented multiblock reduc-
tion using atomic operations, and Fig. 10.13 shows the corresponding kernel
implementation. The idea is to partition the input array into segments so that each
segment is of appropriate size for a block. All blocks then independently execute
a reduction tree and accumulate their results to the final output using an atomic
add operation.

The partitioning is done by assigning a different value to the segment variable
according to the thread’s block index (line 03). The size of each segment is

FIGURE 10.12

Segmented multiblock reduction using atomic operations.

FIGURE 10.13

A segmented multiblock sum reduction kernel using atomic operations.
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2$blockDim.x. That is, each block processes 2$blockDim.x elements. Thus when
we multiply the size of each segment by blockIdx.x of a block, we have the
starting location of the segment to be processed by the block. For example, if we
have 1024 threads in a block, the segment size would be 2$10245 2048. The
starting locations of segments would be 0 for block 0, 2048 (2048$1) for block 1,
4096 (2048$2) for block 2, and so on.

Once we know the starting location for each block, all threads in a block can
simply work on the assigned segment as if it is the entire input data. Within a block,
we assign the owned location to each thread by adding the threadIdx.x to the seg-
ment starting location for the block to which the thread belongs (line 04). The local
variable i holds the owned location of the thread in the global input array, whereas
t holds the owned location of the thread in the shared input_s array. Line 06 is
adapted to use i instead of t when accessing the global input array. The for-loop
from Fig. 10.11 is used without change. This is because each block has its own pri-
vate input_s in the shared memory, so it can be accessed with t5threadIdx.x as
if the segment is the entire input.

Once the reduction tree for-loop is complete, the partial sum for the segment
is in input_s[0]. The if-statement in line 16 of Fig. 10.13 selects thread 0 to con-
tribute the value in input_s[0] to output, as illustrated in the bottom part of
Fig. 10.12. This is done with an atomic add, as shown in line 14 of Fig. 10.13.
Once all blocks of the grid have completed execution, the kernel will return, and
the total sum is in the memory location pointed to by output.

10.8 Thread coarsening for reduced overhead
The reduction kernels that we have worked with so far all try to maximize paral-
lelism by using as many threads as possible. That is, for a reduction of N ele-
ments, N/2 threads are launched. With a thread block size of 1024 threads, the
resulting number of thread blocks is N/2048. However, in processors with limited
execution resources the hardware may have only enough resources to execute a
portion of the thread blocks in parallel. In this case, the hardware will serialize
the surplus thread blocks, executing a new thread block whenever an old one has
completed.

To parallelize reduction, we have actually paid a heavy price to distribute the
work across multiple thread blocks. As we saw in earlier sections, hardware under-
utilization increases with each successive stage of the reduction tree because of
more warps becoming idle and the final warp experiencing more control diver-
gence. The phase in which the hardware is underutilized occurs for every thread
block that we launch. It is an inevitable price to pay if the thread blocks are to actu-
ally run in parallel. However, if the hardware is to serialize these thread blocks, we
are better off serializing them ourselves in a more efficient manner. As we dis-
cussed in Chapter 6, Performance Considerations, thread granularity coarsening, or
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thread coarsening for brevity, is a category of optimizations that serialize some of
the work into fewer threads to reduce parallelization overhead. We start by showing
an implementation of parallel reduction with thread coarsening applied by assigning
more elements to each thread block. We then further elaborate on how this imple-
mentation reduces hardware underutilization.

Fig. 10.14 illustrates how thread coarsening can be applied to the example in
Fig. 10.10. In Fig. 10.10, each thread block received 16 elements, which is two
elements per thread. Each thread independently adds the two elements for which
it is responsible; then the threads collaborate to execute a reduction tree. In
Fig. 10.14 we coarsen the thread block by a factor of 2. Hence each thread block
receives twice the number of elements, that is, 32 elements, which is four ele-
ments per thread. In this case, each thread independently adds four elements
before the threads collaborate to execute a reduction tree. The three steps to add
the four elements are illustrated by the first three rows of arrows in Fig. 10.14.
Note that all threads are active during these three steps. Moreover, since the
threads independently add the four elements for which they are responsible, they
do not need to synchronize, and they do not need to store their partial sums to
shared memory until after all four elements have been added. The remaining steps
in performing the reduction tree are the same as those in Fig. 10.10.

Fig. 10.15 shows the kernel code for implementing reduction with thread
coarsening for the multiblock segmented kernel. Compared to Fig. 10.13, the ker-
nel has two main differences. The first difference is that when the beginning of
the block’s segment is identified, we multiply by COARSE_FACTOR to reflect the
fact that the size of the block’s segment is COARSE_FACTOR times larger (line 03).
The second difference is that when adding the elements for which the thread is
responsible, rather than just adding two elements (line 06 in Fig. 10.13), we use a
coarsening loop to iterate over the elements and add them based on

FIGURE 10.14

Thread coarsening in reduction.
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COARSE_FACTOR (lines 06%09 in Fig. 10.15). Note that all threads are active
throughout this coarsening loop, the partial sum is accumulated to the local vari-
able sum, and no calls to __syncthreads() are made in the loop because the
threads act independently.

Fig. 10.16 compares the execution of two original thread blocks without coars-
ening serialized by the hardware, shown in Fig. 10.16A with one coarsened thread
block performing the work of two thread blocks, shown in Fig. 10.16B. In

FIGURE 10.15

Sum reduction kernel with thread coarsening.

FIGURE 10.16

Comparing parallel reduction with and without thread coarsening.
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Fig. 10.16A the first thread block performs one step in which each thread adds
the two elements for which it is responsible. All threads are active during this
step, so the hardware is fully utilized. The remaining three steps execute the
reduction tree in which half the threads drop out each step, underutilizing the
hardware. Moreover, each step requires a barrier synchronization as well as
accesses to shared memory. When the first thread block is done, the hardware
then schedules the second thread block, which follows the same steps but on a
different segment of the data. Overall, the two blocks collectively take a total of
eight steps, of which two steps fully utilize the hardware and six steps underuti-
lize the hardware and require barrier synchronization and shared memory access.

By contrast, in Fig. 10.16B the same amount of data is processed by only a
single thread block that is coarsened by a factor of 2. This thread block initially
takes three steps in which each thread adds the four elements for which it is
responsible. All threads are active during all three steps, so the hardware is fully
utilized, and no barrier synchronizations or accesses to shared memory are per-
formed. The remaining three steps execute the reduction tree in which half the
threads drop out each step, underutilizing the hardware, and barrier synchroniza-
tion and accesses to shared memory are needed. Overall, only six steps are needed
(instead of eight), of which three steps (instead of two) fully utilize the hardware
and three steps (instead of six) underutilize the hardware and require barrier syn-
chronization and shared memory access. Therefore thread coarsening effectively
reduces the overhead from hardware underutilization, synchronization, and access
to shared memory.

Theoretically, we can increase the coarsening factor well beyond two.
However, one must keep in mind that as we coarsen threads, less work will
be done in parallel. Therefore increasing the coarsening factor will reduce the
amount of data parallelism that is being exploited by the hardware. If we
increase the coarsening factor too much, such that we launch fewer thread
blocks than the hardware is capable of executing, we will no longer be able to
take full advantage of the parallel hardware execution resources. The best
coarsening factor ensures that there are enough thread blocks to fully utilize
the hardware, which usually depends on the total size of the input as well as
the characteristics of the specific device.

10.9 Summary
The parallel reduction pattern is important, as it plays a key row in many data-
processing applications. Although the sequential code is simple, it should be clear
to the reader that several techniques, such as thread index assignment for reduced
divergence, using shared memory for reduced global memory accesses, segmented
reduction with atomic operations, and thread coarsening, are needed to achieve
high performance for large inputs. The reduction computation is also an important
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foundation for the prefix-sum pattern that is an important algorithm component
for parallelizing many applications and will be the topic of Chapter 11, Prefix
Sum (Scan).

Exercises
1. For the simple reduction kernel in Fig. 10.6, if the number of elements is

1024 and the warp size is 32, how many warps in the block will have
divergence during the fifth iteration?

2. For the improved reduction kernel in Fig. 10.9, if the number of elements is
1024 and the warp size is 32, how many warps will have divergence during
the fifth iteration?

3. Modify the kernel in Fig. 10.9 to use the access pattern illustrated below.

4. Modify the kernel in Fig. 10.15 to perform a max reduction instead of a sum
reduction.

5. Modify the kernel in Fig. 10.15 to work for an arbitrary length input that is
not necessarily a multiple of COARSE_FACTOR$2$blockDim.x. Add an extra
parameter N to the kernel that represents the length of the input.

6. Assume that parallel reduction is to be applied on the following input array:

6 2 77 4 5 8 3 1
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Show how the contents of the array change after each iteration if:

a. The unoptimized kernel in Fig. 10.6 is used.

Inittial array: 66 2 7 4 5 8 3 1

b. The kernel optimized for coalescing and divergence in Fig. 10.9 is used.

Initial array: 6 2 7 4 5 8 3 1
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Chapter Outline

11.1 Background ................................................................................................236
11.2 Parallel scan with the Kogge-Stone algorithm ..............................................238
11.3 Speed and work efficiency consideration .....................................................244
11.4 Parallel scan with the Brent-Kung algorithm .................................................246
11.5 Coarsening for even more work efficiency ....................................................251
11.6 Segmented parallel scan for arbitrary-length inputs ......................................253
11.7 Single-pass scan for memory access efficiency ...........................................256
11.8 Summary ....................................................................................................259
Exercises ............................................................................................................260
References ..........................................................................................................261

Our next parallel pattern is prefix sum, which is also commonly known as scan.
Parallel scan is frequently used to parallelize seemingly sequential operations, such as
resource allocation, work assignment, and polynomial evaluation. In general, if a com-
putation is naturally described as a mathematical recursion in which each item in a
series is defined in terms of the previous item, it can likely be parallelized as a parallel
scan operation. Parallel scan plays a key role in massively parallel computing for a
simple reason: Any sequential section of an application can drastically limit the overall
performance of the application. Many such sequential sections can be converted into
parallel computation with parallel scan. For this reason, parallel scan is often used as a
primitive operation in parallel algorithms that perform radix sort, quick sort, string
comparison, polynomial evaluation, solving recurrences, tree operations, and stream
compaction. The radix sort example will be presented in Chapter 13, Sorting.

Another reason why parallel scan is an important parallel pattern is that it is a
typical example of where the work performed by some parallel algorithms can have
higher complexity than the work performed by a sequential algorithm, leading to a
tradeoff that needs to be carefully made between algorithm complexity and paralleli-
zation. As we will show, a slight increase in algorithm complexity can make parallel
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scan run more slowly than sequential scan for large datasets. Such consideration is
becoming even more important in the age of “big data,” in which massive datasets
challenge tradition algorithms that have high computational complexity.

11.1 Background
Mathematically, an inclusive scan operation takes a binary associative operator
" and an input array of n elements [x0, x1, . . ., xn21], and returns the following
output array:

x0; x0"x1ð Þ; . . .; x0"x1". . ."xn21ð Þ½ $

For example, if " is addition, an inclusive scan operation on the input array
[3 1 7 0 4 1 6 3] would return [2, 3+1, 3+1+7, 3+1+7+0, . . ., 3+1+7+0+4+1+6+3]
=[3 4 11 11 15 16 22 25]. The name “inclusive” scan comes from the fact that
each output element includes the effect of the corresponding input element.

We can illustrate the applications for inclusive scan operations using an exam-
ple of cutting sausage for a group of people. Assume that we have a 40-inch sau-
sage to be served to eight people. Each person has ordered a different amount in
terms of inches: 3, 1, 7, 0, 4, 1, 6, and 3. That is, Person 0 wants 3 inches of sau-
sage, Person 1 wants 1 inch, and so on. We can cut the sausage either sequentially
or in parallel. The sequential way is very straightforward. We first cut a 3-inch
section for Person 0. The sausage is now 37 inches long. We then cut a one-inch
section for Person 1. The sausage becomes 36 inches long. We can continue to
cut more sections until we serve the 3-inch section to Person 7. At that point, we
have served a total of 25 inches of sausage, with 15 inches remaining.

With an inclusive scan operation, we can calculate the locations of all the cut-
ting points based on the amount ordered by each person. That is, given an addi-
tion operation and an order input array [3 1 7 0 4 1 6 3], the inclusive scan
operation returns [3 4 11 11 15 16 22 25]. The numbers in the return array are the
cutting locations. With this information, one can simultaneously make all the
eight cuts that will generate the sections that each person ordered. The first cut
point is at the 3-inch location, so the first section will be 3 inches, as ordered by
Person 0. The second cut point is at the 4-inch location; therefore the second sec-
tion will be 1-inch long, as ordered by Person 1. The final cut point will be at the
25-inch location, which will produce a 3-inch-long section, since the previous cut
point is at the 22-inch point. This gives Person 7 what she ordered. Note that
since all the cut points are known from the scan operation, all cuts can be done in
parallel or in any arbitrary sequence.

In summary, an intuitive way of thinking about inclusive scan is that the oper-
ation takes a request from a group of people and identifies all the cut points that
allow the orders to be served all at once. The order could be for sausage, bread,
campground space, or a contiguous chunk of memory in a computer. As long as
we can quickly calculate all the cut points, all orders can be served in parallel.
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An exclusive scan operation is similar to an inclusive scan operation with a
slightly different arrangement of the output array:

i; x0; x0"x1ð Þ; . . .; x0"x1". . ."xn22ð Þ½ $

That is, each output element excludes the effect of the corresponding input
element. The first output element is i, the identity value for operator ", while
the last output element only reflects the contribution of up to xn22. An identity
value for a binary operator is defined as a value that, when used as an input oper-
and, causes the operation to generate an output value that is the same as the other
input operand’s value. In the case of the addition operator, the identity value is 0,
as any number added with zero will result in itself.

The applications of an exclusive scan operation are pretty much the same as
those for inclusive scan. The inclusive scan provides slightly different informa-
tion. In the sausage example, an exclusive scan would return [0 3 4 11 11 15 16
22], which are the beginning points of the cut sections. For example, the section
for Person 0 starts at the 0-inch point. For another example, the section for
Person 7 starts at the 22-inch point. The beginning point information is important
in applications such as memory allocation, in which the allocated memory is
returned to the requester via a pointer to its beginning point.

Note that it is easy to convert between the inclusive scan output and the exclusive
scan output. One simply needs to shift all elements and fill in an element. When con-
verting from inclusive to exclusive, one can simply shift all elements to the right and
fill in identity value for the 0th element. When converting from exclusive to inclu-
sive, one needs to shift all elements to the left and fill in the last element with the
previous last element " the last input element. It is just a matter of convenience that
we can directly generate an inclusive or exclusive scan depending on whether we
care about the cut points or the beginning points for the sections. Therefore we will
present parallel algorithms and implementations only for inclusive scan.

Before we present parallel scan algorithms and their implementations, we would like
to show a sequential inclusive scan algorithm and its implementation. We will assume
that the operator involved is addition. The code in Fig. 11.1 assumes that the input ele-
ments are in the x array and the output elements are to be written into the y array.

The code initializes the output element y[0] with the value of input element x
[0] (line 02). In each iteration of the loop (lines 03%05), the loop body adds one
more input element to the previous output element (which stores the accumulation
of all the previous input elements) to generate one more output element.

It should be clear that the work done by the sequential implementation of
inclusive scan in Fig. 11.1 is linearly proportional to the number of input ele-
ments; that is, the computational complexity of the sequential algorithm is OðNÞ.

In Sections 11.2%11.5, we will present alternative algorithms for performing
parallel segmented scan, in which every thread block will perform a scan on a
segment, that is, a section, of elements in the input array in parallel. We will then
present in Sections 11.6 and 11.7 methods that combine the segmented scan
results into the scan output for the entire input array.
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11.2 Parallel scan with the Kogge-Stone algorithm
We start with a simple parallel inclusive scan algorithm by performing a reduc-
tion operation for each output element. One might be tempted to use each thread
to perform sequential reduction as shown in Fig. 10.2 for one output element.
After all, this allows the calculations for all output elements to be performed in
parallel. Unfortunately, this approach will be unlikely to improve the execution
time over the sequential scan code in Fig. 11.1. This is because the calculation of
yn21 will take n steps, the same number of steps taken by the sequential scan
code, and each step (iteration) in the reduction involves the same amount of work
as each iteration of the sequential scan. Since the completion time of a parallel
program is limited by the thread that takes the longest time, this approach is
unlikely be any faster than sequential scan. In fact, with limited computing
resources, the execution time of this naı̈ve parallel scan algorithm can be much
longer than that of the sequential algorithm. The computation cost, or the total
number of operations performed, would unfortunately be much higher for the pro-
posed approach. Since the number of reduction steps for output element i would
be i, the total number of steps performed by all threads would be

Xn21

i¼0

i ¼
n ' ðn2 1Þ

2

That is, the proposed approach has a computation complexity of O(N2), which
is higher than the complexity of the sequential scan, which is O(N), while offering
no speedup. The higher computational complexity means that considerably more
execution resources need to be provisioned. This is obviously a bad idea.

A better approach is to adapt the parallel reduction tree in Chapter 10,
Reduction and Minimizing Divergence, to calculate each output element with a
reduction tree of the relevant input elements. There are multiple ways to design
the reduction tree for each output element. Since the reduction tree for element i
involves i add operations, this approach would still increase the computational
complexity to O(N2) unless we find a way to share the partial sums across the
reduction trees of different output elements. We present such a sharing approach
that is based on the Kogge-Stone algorithm, which was originally invented for
designing fast adder circuits in the 1970s (Kogge & Stone, 1973). This algorithm
is still being used in the design of high-speed computer arithmetic hardware.

01    void sequential_scan(float *x, float *y, unsigned int N) {
02        y[0] = x[0];
03        for(unsigned int i = 1; i < N; ++i) {
04            y[i] = y[i - 1] + x[i];
05        }
06    }

FIGURE 11.1

A simple sequential implementation of inclusive scan based on addition.
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The algorithm, illustrated in Fig. 11.2, is an in-place scan algorithm that oper-
ates on an array XY that originally contains input elements. It iteratively evolves
the contents of the array into output elements. Before the algorithm begins, we
assume that XY[i] contains input element xi. After k iterations, XY[i] will contain
the sum of up to 2k input elements at and before the location. For example, after
one iteration, XY[i] will contain xi21+xi and at the end of iteration 2, XY[i] will
contain xi23+xi22+xi21+xi, and so on.

Fig. 11.2 illustrates the algorithm with a 16-element input example. Each ver-
tical line represents an element of the XY array, with XY[0] in the leftmost posi-
tion. The vertical direction shows the progress of iterations, starting from the top
of the figure. For inclusive scan, by definition, y0 is x0, so XY[0] contains its final
answer. In the first iteration, each position other than XY[0] receives the sum of
its current content and that of its left neighbor. This is illustrated by the first row
of addition operators in Fig. 11.2. As a result, XY[i] contains xi21+xi. This is
reflected in the labeling boxes under the first row of addition operators in
Fig. 11.2. For example, after the first iteration, XY[3] contains x2+x3, shown as

FIGURE 11.2

A parallel inclusive scan algorithm based on Kogge-Stone adder design.
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P
x2. . .x3. Note that after the first iteration, XY[1] is equal to x0+x1, which is the

final answer for this position. So, there should be no further changes to XY[1] in
subsequent iterations.

In the second iteration, each position other than XY[0] and XY[1] receives the
sum of its current content and that of the position that is two elements away. This
is illustrated in the labeled boxes below the second row of addition operators. As
a result, XY[i] becomes xi23+xi-2+xi-1+xi. For example, after the second iteration,
XY[3] becomes x0+x1+x2+x3, shown as

P
x0. . .x3. Note that after the second itera-

tion, XY[2] and XY[3] have reached their final answers and will not need to be
changed in subsequent iterations. The reader is encouraged to work through the
rest of the iterations.

Fig. 11.3 shows the parallel implementation of the algorithm illustrated in
Fig. 11.2. We implement a kernel that performs local scans on different segments
(sections) of the input that are each small enough for a single block to handle.
Later, we will make final adjustments to consolidate these sectional scan results
for large input arrays. The size of a section is defined as a compile-time constant
SECTION_SIZE. We assume that the kernel function will be called using
SECTION_SIZE as the block size, so there will be the same number of threads and
section elements. We assign each thread to evolve the contents of one XY
element.

The implementation shown in Fig. 11.3 assumes that input values were
originally in a global memory array X, whose address is passed into the ker-
nel as an argument (line 01). We will have all the threads in the block collab-
oratively load the X array elements into a shared memory array XY (line 02).
This is done by having each thread calculate its global data index
i=blockIdx.x(blockDim.x+threadIdx.x (line 03) for the output vector ele-
ment position it is responsible for. Each thread loads the input element at

01    __global__ void Kogge_Stone_scan_kernel(float *X, float *Y, unsigned int N){
02        __shared__ float XY[SECTION_SIZE];
03        unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
04        if(i < N) {
05            XY[threadIdx.x] = X[i];
06        } else {
07            XY[threadIdx.x] = 0.0f;
08        }
09        for(unsigned int stride = 1; stride < blockDim.x; stride *= 2) {
10            __syncthreads();
11 float temp;
12            if(threadIdx.x >= stride) 
13                temp = XY[threadIdx.x] + XY[threadIdx.x-stride];
14            __ syncthreads();
15            if(threadIdx.x >= stride)
16                XY[threadIdx.x] = temp;
17        }
18        if(i < N) {
19            Y[i] = XY[threadIdx.x]; 
20        }
21    }

FIGURE 11.3

A Kogge-Stone kernel for inclusive (segmented) scan.
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that position into the shared memory at the beginning of the kernel (lines
04%08). At the end of the kernel, each thread will write its result into the
assigned output array Y (lines 18%20).

We now focus on the implementation of the iterative calculations for each XY
element in Fig. 11.3 as a for-loop (lines 09%17). The loop iterates through the
reduction tree for the XY array position that is assigned to a thread. When the
stride value becomes greater than a thread’s threadIdx.x value, it means that the
thread’s assigned XY position has already accumulated all the required input
values and the thread no longer needs to be active (lines 12 and 15). Note that we
use a barrier synchronization (line 10) to make sure that all threads have finished
their previous iteration before any of them starts the next iteration. This is the
same use of __syncthreads() as in the reduction discussion in Chapter 10,
Reduction and Minimizing Divergence.

There is, however, a very important difference compared to reduction in
updating of the XY elements (lines 12%16) in each iteration of the for-loop.
Note that each active thread first stores the partial sum for its position into a
temp variable (in a register). After all threads have completed a second barrier
synchronization (line 14), all of them store their partial sum values to their
XY positions (line 16). The need for the extra temp and __syncthreads() has
to do with a write-after-read data dependence hazard in these updates. Each
active thread adds the XY value at its own position (XY[threadIdx.x]) and
that at a position of another thread (XY[threadIdx.x-stride]). If a thread i
writes to its output position before another thread i+stride has had the chance
to read the old value at that position, the new value can corrupt the addition
performed by the other thread. The corruption may or may not occur, depend-
ing on the execution timing of the threads involved, which is referred to as a
race condition. Note that this race condition is different from the one we saw
in Chapter 9, Parallel Histogram, with the histogram pattern. The race condi-
tion in Chapter 9, Parallel Histogram, was a read-modify-write race condition
that can be solved with atomic operations. For the write-after-read race condi-
tion that we see here, a different solution is required.

The race condition can be easily observed in Fig. 11.2. Let us examine the
activities of thread 4 (x4) and thread 6 (x6) during iteration 2, which is repre-
sented as the addition operations in the second row from the top. Note that
thread 6 needs to add the old value of XY[4] (x3+x4) to the old value XY[6]
(x5+x6) to generate the new value of XY[6] (x3+x4+x5+x6). However, if thread 4
stores its addition result for the iteration (x1+x2+x3+x4) into XY[4] too early,
thread 6 could end up using the new value as its input and store
(x1+x2+x3+x4+x5+x6) into XY[6]. Since x1+x2 will be added again to XY[6] by
thread 6 in the third iteration, the final answer in XY[6] will become
(2x1+2x2+x3+x4+x5+x6), which is obviously incorrect. On the other hand, if
thread 6 happens to read the old value in XY[4] before thread 4 overwrites it
during iteration 2, the results will be correct. That is, the execution result of the
code may or may not be correct, depending on the timing of thread execution,
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and the execution results can vary from run to run. Such lack of reproducibility
can make debugging a nightmare.

The race condition is overcome with the temporary variable used in line 13
and the __syncthreads( ) barrier in line 14. In line 13, all active threads first per-
form addition and write into their private temp variables. Therefore none of the
old values in XY locations will be overwritten. The barrier __syncthread( ) in
line 14 ensures that all active threads have completed their read of the old XY
values before any of them can move forward and perform a write. Thus it is safe
for the statement in line 16 to overwrite the XY locations.

The reason why an updated XY position may be used by another active
thread is that the Kogge-Stone approach reuses the partial sums across reduc-
tion trees to reduce the computational complexity. We will study this point
further in Section 11.3. The reader might wonder why the reduction tree ker-
nels in Chapter 10, Reduction and Minimizing Divergence, did not need to use
temporary variables and an extra __syncthreads(). The answer is that there is
no race condition caused by a write-after-read hazard in these reduction ker-
nels. This is because the elements written to by the active threads in an itera-
tion are not read by any of the other active threads during the same iteration.
This should be apparent by inspecting Fig. 10.7 and 10.8. For example, in
Fig. 10.8, each active thread takes its inputs from its own position (input
[threadIdx.x]) and a position that is of stride distance to the right (input
[threadIdx.x+stride]). None of the stride distance positions are updated by
any active threads during any given iteration. Therefore all active threads will
always be able to read the old value of their respective input[threadIdx.x].
Since the execution within a thread is always sequential, each thread will
always be able to read the old value in input[threadIdx.x] before writing the
new value into the position. The reader should verify that the same property
holds in Fig. 10.7.

If we want to avoid having a second barrier synchronization on every itera-
tion, another way to overcome the race condition is to use separate arrays for
input and output. If separate arrays are used, the location that is being written to
is different from the location that is being read from, so there is no longer any
potential write-after-read race condition. This approach would require having two
shared memory buffers instead of one. In the beginning, we load from the global
memory to the first buffer. In the first iteration we read from the first buffer and
write to the second buffer. After the iteration is over, the second buffer has the
most up-to-date results, and the results in the first buffer are no longer needed.
Hence in the second iteration we read from the second buffer and write to the first
buffer. Following the same reasoning, in the third iteration we read from the first
buffer and write to the second buffer. We continue alternating input/output buffers
until the iterations complete. This optimization is called double-buffering.
Double-buffering is commonly used in parallel programming as a way to over-
come write-after-read race conditions. We leave the implementation of this opti-
mization as an exercise for the reader.
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Furthermore, as is shown in Fig. 11.2, the actions on the smaller positions of
XY end earlier than those on the larger positions (see the if-statement condition).
This will cause some level of control divergence in the first warp when stride
values are small. Note that adjacent threads will tend to execute the same number
of iterations. The effect of divergence should be quite modest for large block
sizes, since divergence will arise only in the first warp. The detailed analysis is
left as an exercise for the reader.

Although we have shown only an inclusive scan kernel, we can easily convert
an inclusive scan kernel to an exclusive scan kernel. Recall that an exclusive scan
is equivalent to an inclusive scan with all elements shifted to the right by one
position and element 0 filled with the identity value. This is illustrated in
Fig. 11.4. Note that the only real difference is the alignment of elements on top
of the picture. All labeling boxes are updated to reflect the new alignment. All
iterative operations remain the same.

FIGURE 11.4

A parallel exclusive scan algorithm based on Kogge-Stone adder design.
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We can now easily convert the kernel in Fig. 11.3 into an exclusive scan ker-
nel. The only modification we need to make is to load 0 into XY[0] and X[i-1]
into XY[threadIdx.x], as shown in the following code:

By substituting these four lines of code for lines 04%08 of Fig. 11.3, we con-
vert the inclusive scan kernel into an exclusive scan kernel. We leave the work to
finish the exclusive scan kernel as an exercise for the reader.

11.3 Speed and work efficiency consideration
One important consideration in analyzing parallel algorithms is work efficiency.
The work efficiency of an algorithm refers to the extent to which the work that is
performed by the algorithm is close to the minimum amount of work needed for
the computation. For example, the minimum number of additions required by the
scan operation is N2 1 additions, or O(N), which is the number of additions that
the sequential algorithm performs. However, as we saw in the beginning of
Section 11.2, the naı̈ve parallel algorithm performs N((N2 1)/2 additions, or O
(N2), which is substantially larger than the sequential algorithm. For this reason,
the naı̈ve parallel algorithm is not work efficient.

We now analyze the work efficiency of the Kogge-Stone kernel in Fig. 11.3,
focusing on the work of a single thread block. All threads iterate up to log2N
steps, where N is the SECTION_SIZE. In each iteration the number of inactive
threads is equal to the stride size. Therefore we can calculate the amount of work
done (one iteration of the for-loop, represented by the add operation in Fig. 8.1)
for the algorithm as

X

stride

N % strideð Þ; for strides 1; 2; 4; . . .N=2 log2N terms
! "

The first part of each term is independent of stride, and its summation adds up
to N(log2 (N). The second part is a familiar geometric series and sums up to
(N2 1). So, the total amount of work done is

N(log2ðNÞ % ðN2 1Þ

The good news is that the computational complexity of the Kogge-Stone
approach is O(N(log2(N)), better than the O(N2) complexity of a naı̈ve approach
that performs complete reduction trees for all output elements. The bad news is
that the Kogge-Stone algorithm is still not as work efficient as the sequential
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algorithm. Even for modest-sized sections, the kernel in Fig. 11.3 does much
more work than the sequential algorithm. In the case of 512 elements, the kernel
does approximately eight times more work than the sequential code. The ratio
will increase as N becomes larger.

Although the Kogge-Stone algorithm performs more computations than the
sequential algorithm, it does so in fewer steps because of parallel execution.
The for-loop of the sequential code executes N iterations. As for the kernel code,
the for-loop of each thread executes up to log2N iterations, which defines the min-
imal number of steps needed for executing the kernel. With unlimited execution
resources, the reduction in the number of steps of the kernel code over the
sequential code would be approximately N/log2(N). For N=512, the reduction in
the number of steps would be about 512/9=56.93 .

In a real CUDA GPU device, the amount of work done by the Kogge-Stone
kernel is more than the theoretical N(log2(N)2 (N2 1). This is because we are
using N threads. While many of the threads stop participating in the execution of
the for-loop, some of them still consume execution resources until the entire warp
completes execution. Realistically, the amount of execution resources consumed
by the Kogge-Stone is closer to N(log2(N).

We will use the concept of computation steps as an approximate indicator for com-
paring between scan algorithms. The sequential scan should take approximately N steps
to process N input elements. For example, the sequential scan should take approxi-
mately 1024 steps to process 1024 input elements. With P execution units in the
CUDA device, we can expect the Kogge-Stone kernel to execute for (N(log2(N))/P
steps. If P is equal to N, that is, if we have enough execution units to process all input
element in parallel, then we need log2(N) steps, as we saw earlier. However, P could
be smaller than N. For example, if we use 1024 threads and 32 execution units to pro-
cess 1024 input elements, the kernel will likely take (1024(10)/32=320 steps. In this
case, we expect to achieve a 1024/320=3.23 reduction in the number of steps.

The additional work done by the Kogge-Stone kernel over the sequential code
is problematic in two ways. First, the use of hardware for executing the parallel
kernel is much less efficient. If the hardware does not have enough resources
(i.e., if P is small), the parallel algorithm could end up needing more steps than
the sequential algorithm. Hence the parallel algorithm will be slower. Second, all
the extra work consumes additional energy. This makes the kernel less appropri-
ate for power-constrained environments such as mobile applications.

The strength of the Kogge-Stone kernel is that it can achieve very good execu-
tion speed when there is enough hardware resources. It is typically used to calcu-
late the scan result for a section with a modest number of elements, such as 512
or 1024. This, of course, assumes that GPUs can provide sufficient hardware
resources and use the additional parallelism to tolerate latencies. As we have
seen, its execution has a very limited amount of control divergence. In newer
GPU architecture generations its computation can be efficiently performed with
shuffle instructions within warps. We will see later in this chapter that it is an
important component of the modern high-speed parallel scan algorithms.
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11.4 Parallel scan with the Brent-Kung algorithm
While the Kogge-Stone kernel in Fig. 11.3 is conceptually simple, its work effi-
ciency is quite low for some practical applications. Just by inspecting Figs. 11.2
and 11.4, we can see that there are potential opportunities for further sharing of
some intermediate results. However, to allow more sharing across multiple
threads, we need to strategically calculate the intermediate results and distribute
them to different threads, which may require additional computation steps.

As we know, the fastest parallel way to produce sum values for a set of values is
a reduction tree. With sufficient execution units, a reduction tree can generate the
sum for N values in log2(N) time units. The tree can also generate several sub-sums
that can be used in the calculation of some of the scan output values. This observa-
tion was used as a basis for the Kogge-Stone adder design and also forms the basis
of the Brent-Kung adder design (Brent & Kung, 1979). The Brent-Kung adder design
can also be used to implement a parallel scan algorithm with better work efficiency.

Fig. 11.5 illustrates the steps for a parallel inclusive scan algorithm based on the
Brent-Kung adder design. In the top half of Fig. 11.5, we produce the sum of all 16 ele-
ments in four steps. We use the minimal number of operations needed to generate the
sum. During the first step, only the odd element of XY[i] will be updated to XY[i-1]
+XY[i]. During the second step, only the XY elements whose indices are of the form of
4(n2 1, which are 3, 7, 11, and 15 in Fig. 11.5, will be updated. During the third step,
only the XY elements whose indices are of the form 8(n2 1, which are 7 and 15, will
be updated. Finally, during the fourth step, only XY[15] is updated. The total number of
operations performed is 8+4+2+1=15. In general, for a scan section of N elements, we
would do (N/2)+(N/4)+. . .+2+1=N2 1 operations for this reduction phase.

The second part of the algorithm is to use a reverse tree to distribute the partial
sums to the positions that can use them to complete the result of those positions. The

FIGURE 11.5

A parallel inclusive scan algorithm based on Brent-Kung adder design.
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distribution of partial sums is illustrated in the bottom half of Fig. 11.5. To understand
the design of the reverse tree, we should first analyze the needs for additional values to
complete the scan output at each position of XY. It should be apparent from an inspec-
tion of Fig. 11.5 that the additions in the reduction tree always accumulate input ele-
ments in a continuous range. Therefore we know that the values that have been
accumulated into each position of XY can always be expressed as a range of input ele-
ments xi. . .xj, where xi is the starting position and xj is the ending position (inclusive).

Fig. 11.6 shows the state of each position (column), including both the values already
accumulated into the position and the need for additional input element values at each
level (row) of the reverse tree. The state of each position initially and after each level of
additions in the reverse tree is expressed as the input elements, in the form xi. . .xj, that
have already been accounted for in the position. For example, x8. . .x11 in row Initial and
column 11 indicates that the values of x8, x9, x10, and x11 have been accumulated into
XY[11] before the reverse tree begins (right after the reduction phase shown in the bot-
tom portion of Fig. 11.5). At the end of the reduction tree phase, we have quite a few
positions that are complete with the final scan values. In our example, XY[0], XY[1],
XY[3], XY[7], and XY[15] are all complete with their final answers.

The need for additional input element values is indicated by the shade of each
cell in Fig. 11.6: White means that the position needs to accumulate partial sums
from three other positions, light gray means 2, dark gray means 1, and black
means 0. For example, initially, XY[14] is marked white because it has only the
value of x14 at the end of the reduction tree phase and needs to accumulate the
partial sums from XY[7] (x0. . .x7), XY[11] (x8. . .x11), and XY[13] (x12. . .x13) to
complete its final scan value (x0. . .x14). The reader should verify that because of
the structure of the reduction tree, the XY positions for an input of size N ele-
ments will never need the accumulation from more than log2(N)2 1 partial sums
from other XY positions. Furthermore, these partial sum positions will always be
1, 2, 4, . . . (powers of 2) away from each other. In our example, XY[14] needs
log2(16)2 1=3 partial sums from positions that are 1 (between XY[14] and XY
[13]), 2 (between XY[13] and XY[11]), and 4 (between XY[11] and XY[7]).

To organize our second half of the addition operations, we will first show all
the operations that need partial sums from four positions away, then two positions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Initial x0 x0.x1 x2 x0.x3 x4 x4..x5 x6 x0..x7 x8 x8..x9 x10 x8.x11 x12 x12.x13 x14 x0.x15

Level 
1

x0..x11

Level 
2

x0..x5 x0..x9 x0..x13

Level 
3

x0.x2 x0.x4 x0..x6 x0..x8 x0..x10 x0..x12 x0..x14

FIGURE 11.6

Progression of values in XY after each level of additions in the reverse tree.
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away, then one position away. During the first level of the reverse tree, we add
XY[7] to XY[11], which brings XY[11] to the final answer. In Fig. 11.6, position
11 is the only one that advances to its final answer. During the second level, we
complete XY[5], XY[9], and XY[13], which can be completed with the partial
sums that are two positions away: XY[3], XY[7], and XY[11], respectively.
Finally, during the third level, we complete all even positions XY[2], XY[4], XY
[6], XY[8], XY[10], and XY[12] by accumulating the partial sums that are one
position away (immediate left neighbor of each position).

We are now ready to implement the Brent-Kung approach to scan. We could
implement the reduction tree phase of the parallel scan using the following loop:

Note that this loop is similar to the reduction in Fig. 10.6. There are only two
differences. The first difference is that we accumulate the sum value toward the
highest position, which is XY[blockDim.x-1], rather than XY[0]. This is because
the final result of the highest position is the total sum. For this reason, each active
thread reaches for a partial sum to its left by subtracting the stride value from its
index. The second difference is that we want the active threads to have a thread
index of the form 2n2 1 rather than 2n. This is why we add 1 to the threadIdx.x
before the modulo (%) operation when we select the threads for performing addi-
tion in each iteration.

One drawback of this style of reduction is that it has significant control diver-
gence problems. As we saw in Chapter 10, Reduction and Minimizing Divergence,
a better way is to use a decreasing number of contiguous threads to perform the
additions as the loop advances. Unfortunately, the technique we used to reduce
divergence in Fig. 10.8 cannot be used in the scan reduction tree phase, since it
does not generate the needed partial sum values in the intermediate XY positions.
Therefore we resort to a more sophisticated thread index to data index mapping
that maps a continuous section of threads to a series of data positions that are of
stride distance apart. The following code does so by mapping a continuous section
of threads to the XY positions whose indices are of the form k(2n2 1:
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By using such a complex index calculation in each iteration of the for-loop, a
contiguous set of threads starting from thread 0 will be used in every iteration to
avoid control divergence within warps. In our small example in Fig. 11.5, there
are 16 threads in the block. In the first iteration, stride is equal to 1. The first
eight consecutive threads in the block will satisfy the if-condition. The XY index
values calculated for these threads will be 1, 3, 5, 7, 9, 11, 13, and 15. These
threads will perform the first row of additions in Fig. 11.5. In the second iteration,
stride is equal to 2. Only the first four threads in the block will satisfy the if-
condition. The index values calculated for these threads will be 3, 7, 11, and 15.
These threads will perform the second row of additions in Fig. 11.5. Note that
since each iteration will always be using consecutive threads, the control diver-
gence problem does not arise until the number of active threads drops below the
warp size.

The reverse tree is a little more complex to implement. We see that the stride
value decreases from SECTION_SIZE/4 to 1. In each iteration we need to “push”
the value of XY elements from positions that are multiples of twice the stride
value minus 1 to the right by stride positions. For example, in Fig. 11.5 the stride
value decreases from 4 (22) down to 1. In the first iteration we would like to push
(add) the value of XY[7] into XY[11], where 7 is 2(222 1 and distance (stride) is
22. Note that only thread 0 will be used for this iteration, since the index calcu-
lated for other threads will be too large to satisfy the if-condition. In the second
iteration we push the values of XY[3], XY[7], and XY[11] to XY[5], XY[9],
and XY[13], respectively. The indices 3, 7, and 11 are 1(2(212 1, 2(2(212 1,
and 3(2(212 1, respectively. The destination positions are 21 positions away from
the source positions. Finally, in the third iteration we push the values at all the
odd positions to their even position right-hand neighbor (stride=2)).

On the basis of the discussions above, the reverse tree can be implemented
with the following loop:

The calculation of index is similar to that in the reduction tree phase. The XY
[index+stride] +=XY[index] statement reflects the push from the threads’
mapped location into a higher position that is stride away.

The final kernel code for a Brent-Kung parallel scan is shown in Fig. 11.7.
The reader should notice that we never need to have more than SECTION_SIZE/2
threads for either the reduction phase or the distribution phase. Therefore we
could simply launch a kernel with SECTION_SIZE/2 threads in a block. Since we
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can have up to 1024 threads in a block, each scan section can have up to 2048
elements. However, we will need to have each thread load two X elements at the
beginning and store two Y elements at the end.

As was in the case of the Kogge-Stone scan kernel, one can easily adapt the
Brent-Kung inclusive parallel scan kernel into an exclusive scan kernel with a
minor adjustment to the statement that loads X elements into XY. Interested read-
ers should also read Harris et al., 2007, for an interesting natively exclusive scan
kernel that is based on a different way of designing the reverse tree phase of the
scan kernel.

We now turn our attention to the analysis of the number of operations in the
reverse tree stage. The number of operations is (16/8)2 1+(16/4)2 1+(16/2)2 1.
In general, for N input elements the total number of operations would be (22 1)
+(42 1)+. . .+(N/42 1)+(N/22 1), which is N2 12 log2(N). Therefore the total
number of operations in the parallel scan, including both the reduction tree (N2 1
operations) and the reverse tree (N2 12 log2(N) operations) phases, is
2(N2 22 log2(N). Note that the total number of operations is now O(N), as
opposed to O(N(log2N) for the Kogge-Stone algorithm.

The advantage of the Brent-Kung algorithm over the Kogge-Stone algorithm
is quite clear. As the input section becomes bigger, the Brent-Kung algorithm
never performs more than 2 times the number of operations performed by the
sequential algorithm. In an energy-constrained execution environment the Brent-
Kung algorithm strikes a good balance between parallelism and efficiency.

While the Brent-Kung algorithm has a much higher level of theoretical work
efficiency than the Kogge-Stone algorithm, its advantage in a CUDA kernel
implementation is more limited. Recall that the Brent-Kung algorithm is using
N/2 threads. The major difference is that the number of active threads drops much

01    __global__ void Brent_Kung_scan_kernel(float *X, float *Y, unsigned int N) {
02        __shared__ float XY[SECTION_SIZE];
03        unsigned int i = 2*blockIdx.x*blockDim.x + threadIdx.x;
04        if(i < N) XY[threadIdx.x] = X[i];
05        if(i + blockDim.x < N) XY[threadIdx.x + blockDim.x] = X[i + blockDim.x];
06        for(unsigned int stride = 1; stride <= blockDim.x; stride *= 2) {
07            __syncthreads();
08            unsigned int index = (threadIdx.x + 1)*2*stride - 1;
09            if(index < SECTION_SIZE) { 
10                XY[index] += XY[index - stride];
11            }
12        }
13    for (int stride = SECTION_SIZE/4; stride > 0; stride /= 2) {
14            __syncthreads();
15            unsigned int index = (threadIdx.x + 1)*stride*2 - 1;
16            if(index + stride < SECTION_SIZE) {
17                XY[index + stride] += XY[index];
18            }
19        }
20        __syncthreads();
21        if (i < N) Y[i] = XY[threadIdx.x];
22        if (i + blockDim.x < N) Y[i + blockDim.x] = XY[threadIdx.x + blockDim.x];
23    }

FIGURE 11.7

A Brent-Kung kernel for inclusive (segmented) scan.
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faster through the reduction tree than the Kogge-Stone algorithm. However, some
of the inactive threads may still consume execution resources in a CUDA device
because they are bound to other active threads by SIMD. This makes the advan-
tage in work efficiency of Brent-Kung over Kogge-Stone less drastic in a CUDA
device.

The main disadvantage of Brent-Kung over Kogge-Stone is its potentially
longer execution time despite its higher work efficiency. With infinite execution
resources, Brent-Kung should take about twice as long as Kogge-Stone, owing to
the need for additional steps to perform the reverse tree phase. However, the
speed comparison can be quite different when we have limited execution
resources. Using the example in Section 11.3, if we process 1024 input elements
with 32 execution units, the Brent-Kung kernel is expected to take approximately
(2(10242 22 10)/32=63.6 steps. The reader should verify that with control diver-
gence there will be about five more steps when the total number of active threads
drops below 32 in each phase. This results in a speedup of 1024/73.6=14 over
sequential execution. This is in comparison with the 320 time units and speedup
of 3.2 for Kogge-Stone. The comparison would be to Kogge-Stone’s advantage,
of course, when there are many more execution resources and/or when the laten-
cies are much longer.

11.5 Coarsening for even more work efficiency
The overhead of parallelizing scan across multiple threads is like reduction in that
it includes the hardware underutilization and synchronization overhead of the tree
execution pattern. However, scan has an additional parallelization overhead, and
that is reduced work efficiency. As we have seen, parallel scan is less work effi-
cient than sequential scan. This lower work efficiency is an acceptable price to
pay to parallelize if the threads were actually to run in parallel. However, if the
hardware were to serialize them, we would be better off serializing them our-
selves via thread coarsening to improve work efficiency.

We can design a parallel segmented scan algorithm that achieves even better
work efficiency by adding a phase of fully independent sequential scans on sub-
sections of the input. Each thread block receives a section of the input that is
larger than the original section by the coarsening factor. At the beginning of the
algorithm we partition the block’s section of the input into multiple contiguous
subsections: one for each thread. The number of subsections is the same as the
number of threads in the thread block.

The coarsened scan is divided into three phases as shown in Fig. 11.8. During the
first phase, we have each thread perform a sequential scan on its contiguous subsec-
tion. For example, in Fig. 11.8 we assume that there are four threads in a block. We
partition the 16-element input section into four subsections with four elements each.
Thread 0 will perform scan on its section (2, 1, 3, 1) and generate (2, 3, 6, 7). Thread
1 will perform scan on its section (0, 4, 1, 2) and generate (0, 4, 5, 7), and so on.
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Note that if each thread directly performs scan by accessing the input from
global memory, their accesses would not be coalesced. For example, during the
first iteration, thread 0 would be accessing input element 0, thread 1 would be
accessing input element 4, and so on. Therefore we improve memory coalescing
by using shared memory to absorb the memory accesses that cannot be coalesced,
as was mentioned in Chapter 6, Performance Considerations. That is, we transfer
data between shared memory and global memory in a coalesced manner and per-
form the memory accesses with the unfavorable access pattern in shared memory.
At the beginning of the first phase, all threads collaborate to load the input into
the shared memory in an iterative manner. In each iteration, adjacent threads load
adjacent elements to enable memory coalescing. For example, in Fig. 11.8 we
have all threads collaborate and load four elements in a coalesced manner:
Thread 0 loads element 0, thread 1 loads element 1, and so on. All threads then
move to load the next four elements: Thread 0 loads element 4, thread 1 loads
element 5, and so on.

Once all input elements are in the shared memory, the threads access their
own subsection from the shared memory and perform a sequential scan on it.
This is shown as Phase 1 in Fig. 11.8. Note that at the end of Phase 1 the last ele-
ment of each section (highlighted as black in the second row) contains the sum of
all input elements in the section. For example, the last element of section 0 con-
tains value 7, the sum of the input elements (2, 1, 3, 1) in the section.

During the second phase, all threads in each block collaborate and perform a
scan operation on a logical array that consists of the last element of each section.

FIGURE 11.8

A three-phase parallel scan for higher work efficiency.
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This can be done with a Kogge-Stone or Brent-Kung algorithm, since there are
only a modest number of elements (number of threads in a block). Note that the
thread-to-element mappings need to be slightly modified from those in Figs. 11.3
and 11.7, since the elements that need to be scanned are of stride (four elements
in Fig. 11.8) distance away from each other.

In the third phase, each thread adds the new value of the last element of its prede-
cessor’s section to its elements. The last elements of each subsection do not need to
be updated during this phase. For example, in Fig. 11.8, thread 1 adds the value 7 to
elements (0, 4, 5) in its section to produce (7, 11, 12). The last element of the section
is already the correct value 14 and does not need to be updated.

With this three-phase approach, we can use a much smaller number of threads
than the number of elements in a section. The maximal size of the section is no lon-
ger limited by the number of threads one can have in a block but rather by the size
of the shared memory; all elements of the section need to fit into the shared memory.

The major advantage of thread coarsening for scan is its efficient use of exe-
cution resources. Assume that we use Kogge-Stone for phase 2. For an input list
of N elements, if we use T threads, the amount of work done by each phase is
N2 T for phase 1, T(log2T for phase 2, and N2 T for phase 3. If we use P execu-
tion units, we can expect that the execution will take (N2 T+T(log2T+N2 T)/P
steps. For example, if we use 64 threads and 32 execution units to process 1024
elements, the algorithm should take approximately (10242 64+64(6+10242 64)/
32=72 steps. We leave the implementation of the coarsened scan kernel as an
exercise for the reader.

11.6 Segmented parallel scan for arbitrary-length inputs
For many applications the number of elements to be processed by a scan opera-
tion can be in the millions or even billions. The kernels that we have presented so
far perform local block-wide scans on sections of the input, but we still need a
way to consolidate the results from different sections. To do so, we can use a
hierarchical scan approach, as illustrated in Fig. 11.9.

For a large dataset we first partition the input into sections so that each of
them can fit into the shared memory of a streaming multiprocessor and be pro-
cessed by a single block. Assume that we call one of the kernels in Figs. 11.3 and
11.7 on a large input dataset. At the end of the grid execution, the Y array will
contain the scan results for individual sections, called scan blocks in Fig. 11.9.
Each element in a scan block only contains the accumulated values of all preced-
ing elements in the same scan block. These scan blocks need to be combined into
the final result; that is, we need to call another kernel that adds the sum of all ele-
ments in preceding scan blocks to each element of a scan block.

Fig. 11.10 shows a small example of the hierarchical scan approach of
Fig. 11.9. In this example there are 16 input elements that are divided into four
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FIGURE 11.9

A hierarchical scan for arbitrary length inputs.

FIGURE 11.10

An example of hierarchical scan.
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scan blocks. We can use the Kogge-Stone kernel, the Brent-Kung kernel, or a
coarsened kernel to process the individual scan blocks. The kernel treats the four
scan blocks as independent input datasets. After the scan kernel terminates, each
Y element contains the scan result within its scan block. For example, scan block
1 has inputs 0, 4, 1, 2. The scan kernel produces the scan result for this section,
which is 0, 4, 5, 7. Note that these results do not contain the contributions from
any of the elements in scan block 0. To produce the final result for this scan
block, the sum of all elements in scan block 0, that is, 2+1+3+1=7, should be
added to every result element of scan block 1. For another example the inputs in
scan block 2 are 0, 3, 1, 2. The kernel produces the scan result for this scan block,
which is 0, 3, 4, 6. To produce the final results for this scan block, the sum of all
elements in both scan block 0 and scan block 1, that is, 2+1+3+1+0+4+1+2=14,
should be added to every result element of scan block 2.

It is important to note that the last output element of each scan block gives the
sum of all input elements of the scan block. These values are 7, 7, 6, and 11 in
Fig. 11.10. This brings us to the second step of the segmented scan algorithm
in Fig. 11.9, which gathers the last result elements from each scan block into an
array and performs a scan on these output elements. This step is also illustrated in
Fig. 11.10, where the last scan output elements of all scan blocks are collected
into a new array S. While the second step of Fig. 11.10 is logically the same as
the second step of Fig. 11.8, the main difference is that Fig. 11.10 involves
threads from different thread blocks. As a result, the last element of each section
needs to be collected (written) into a global memory array so that they can be vis-
ible across thread blocks.

Gathering the last result of each scan block can be done by changing the code
at the end of the scan kernel so that the last thread of each block writes its result
into an S array using its blockIdx.x as the array index. A scan operation is then
performed on S to produce output values 7, 14, 20, 31. Note that each of these
second-level scan output values are the accumulated sum from the beginning
location X[0] to the end location of each scan block. That is, the value in S[0]=7
is the accumulated sum from X[0] to the end of scan block 0, which is X[3]. The
value in S[1]=14 is the accumulated sum from X[0] to the end of scan block 1,
which is X[7]. Therefore the output values in the S array give the scan results at
“strategic” locations of the original scan problem. In other words, in Fig. 11.10
the output values in S[0], S[1], S[2], and S[3] give the final scan results for the
original problem at positions X[3], X[7], X[11], and X[15], respectively. These
results can be used to bring the partial results in each scan block to their final
values.

This brings us to the last step of the segmented scan algorithm in Fig. 11.10.
The second-level scan output values are added to the values of their correspond-
ing scan blocks. For example, in Fig. 11.10, the value of S[0] (value 7) will be
added to Y[0], Y[1], Y[2], Y[3] of thread block 1, which completes the results in
these positions. The final results in these positions are 7, 11, 12, 14. This is
because S[0] contains the sum of the values of the original input X[0] through
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X[3]. These final results are 14, 17, 18, and 20. The value of S[1] (14) will be
added to Y[8], Y[9], Y[10], Y[11], which completes the results in these positions.
The value of S[2] (20) will be added to Y[12], Y[13], Y[14], Y[15]. Finally, the
value of S[3] is the sum of all elements of the original input, which is also the
final result in Y[15].

Readers who are familiar with computer arithmetic algorithms should recog-
nize that the principle behind the segmented scan algorithm is quite similar to the
principle behind carry look-ahead in hardware adders of modern processors. This
should be no surprise, considering that the two parallel scan algorithms that we
have studied so far are also based on innovative hardware adder designs.

We can implement the segmented scan with three kernels. The first kernel is
largely the same as the three-phase kernel. (We could just as easily use the
Kogge-Stone kernel or the Brent-Kung kernel.) We need to add one more parame-
ter S, which has the dimension of N/SECTION_SIZE. At the end of the kernel, we
add a conditional statement for the last thread in the block to write the output
value of the last XY element in the scan block to the blockIdx.x position of S:

The second kernel is simply one of the three parallel scan kernels configured
with a single thread block, which takes S as input and writes S as output without
producing any partial sums.

The third kernel takes the S array and Y array as inputs and writes its output
back into Y. Assuming that we launch the kernel with SECTION_SIZE threads in
each block, each thread adds one of the S elements (selected by the blockIdx.x-1)
to one Y element:

In other words, the threads in a block add the sum of all previous scan blocks
to the elements of their scan block. We leave it as an exercise for the reader to
complete the details of each kernel and complete the host code.

11.7 Single-pass scan for memory access efficiency
In the segmented scan mentioned in Section 11.6, the partially scanned results
(scan blocks) are stored into global memory before launching the global scan
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kernel, and then reloaded back from the global memory by the third kernel. The
time for performing these extra memory stores and loads is not overlapped with
the computation in the subsequent kernels and can significantly affect the speed
of the segmented scan algorithms. To avoid such a negative impact, multiple
techniques have been proposed (Dotsenko et al., 2008; Merrill & Garland, 2016;
Yan et al., 2013). In this chapter a stream-based scan algorithm is discussed. The
reader is encouraged to read the references to understand the other techniques.

In the context of CUDA C programming, a stream-based scan algorithm (not
to be confused with CUDA streams to be introduced in Chapter 20, Programming
a Heterogeneous Computing Cluster), or domino-style scan algorithm, refers to a
segmented scan algorithm in which partial sum data is passed in one direction
through the global memory between adjacent thread blocks in the same grid.
Stream-based scan builds on a key observation that the global scan step (the mid-
dle part of Fig. 11.9) can be performed in a domino fashion and does not truly
require a grid-wide synchronization. For example, in Fig. 11.10, scan block 0 can
pass its partial sum value 7 to scan block 1 and complete its job. scan block 1
receives the partial sum value 7 from scan block 0, sums up with its local partial
sum value 7 to get 14, passes its partial sum value 14 to scan block 2, and then
completes its final step by adding 7 to all partial scan values in its scan block.
This process continues for all thread blocks.

To implement a domino-style scan algorithm, one can write a single kernel to
perform all three steps of the segmented scan algorithm in Fig. 11.9. Thread block
i first performs a scan on its scan block, using one of the three parallel algorithms
we presented in Sections 11.2 through 11.5. It then waits for its left neighbor
block, i2 1, to pass the sum value. Once it receives the sum from block i2 1, it
adds the value to its local sum and passes the cumulative sum value to its right
neighbor block, i+1. It then moves on to add the sum value received from block
i2 1 to all partial scan values to produce all the output values of the scan block.

During the first phase of the kernel, all blocks can execute in parallel. They
will be serialized during the data-passing phase. However, as soon as each block
receives the sum value from its predecessor, it can perform its final phase in par-
allel with all other blocks that have received the sum values from their predeces-
sors. As long as the sum values can be passed through the blocks quickly, there
can be ample parallelism among blocks during the third phase.

To make this domino-style scan work, adjacent (block) synchronization is
needed (Yan et al., 2013). Adjacent synchronization is a customized synchroniza-
tion to allow the adjacent thread blocks to synchronize and/or exchange data.
Particularly, in scan, the data are passed from scan block i2 1 to scan block i, as
in a producer-consumer chain. On the producer side (scan block i2 1), a flag is
set to a particular value after the partial sum has been stored to memory, while on
the consumer side (scan block i), the flag is checked to see whether it is that par-
ticular value before the passed partial sum is loaded. As has been mentioned, the
loaded value is further added with the local sum and then is passed to the next
block (scan block i+1). Adjacent synchronization can be implemented by using
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atomic operations. The following code segment illustrates the use of atomic
operations to implement adjacent synchronization:

This code section is executed by only one leader thread in each block (e.g.,
thread with index 0). The rest of threads will wait at __syncthreads() in the last
line. In block bid, the leader thread checks flags[bid], a global memory array,
repeatedly until it is set. Then it loads the partial sum from its predecessor by
accessing the global memory array scan_value[bid] and stores the value into its
local shared memory variable previous_sum. It adds the previous_sum with its
local partial sum local_sum and stores the result into the global memory array
scan_value[bid+1]. The memory fence function __threadfence() is required to
ensure that the scan_value[bid+1] value arrives to the global memory before the
flag is set with atomicAdd().

Although it may appear that the atomic operations on the flags array and the
accesses to the scan_value array incur global memory traffic, these operations are
mostly performed in the second-level caches of recent GPU architectures (Chapter 9,
Parallel Histogram). Any such stores and loads to the global memory will likely be
overlapped with the phase 1 and phase 3 computational activities of other blocks. On
the other hand, when executing the three-kernel segmented scan algorithm in
Section 11.5, the stores to and loads from the S array in the global memory are in a
separate kernel and cannot be overlapped with phase 1 or phase 3.

There is one subtle issue with domino-style algorithms. In GPUs, thread
blocks may not always be scheduled linearly according to their blockIdx values,
which means that scan block i may be scheduled and performed after scan block i
+1. In this situation the execution order arranged by the scheduler might contra-
dict the execution order assumed by the adjacent synchronization code and cause
performance degradation or even a deadlock. For example, the scheduler may
schedule scan block i through scan block i+N before it schedules scan block
i2 1. If scan block i through scan block i+N occupy all the streaming multipro-
cessors, scan block i2 1 would not be able to start execution until at least one of
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them finishes execution. However, all of them are waiting for the sum value from
scan block i2 1. This causes the system to deadlock.

There are multiple techniques to resolve this issue (Gupta et al., 2012; Yan
et al., 2013). Here, we discuss only one particular method, dynamic block index
assignment, and leave the rest as a reference for readers. Dynamic block index
assignment decouples the assignment of the thread block index from the built-in
blockIdx.x. In the single-pass scan, the value of the bid variable of each block is
no longer tied to the value of blockIdx.x. Instead, it is determined by using the
following code at the beginning of the kernel:

The leader thread atomically increments a global counter variable pointed to
by blockCounter. The global counter stores the dynamic block index of the next
block that is scheduled. The leader thread then stores the acquired dynamic block
index value into a shared memory variable bid_s so that it is accessible by all
threads of the block after __syncthreads(). This guarantees that all scan blocks
are scheduled linearly and prevents a potential deadlock. In other words, if a
block obtains a bid value of i, then it is guaranteed that a block with value i2 1
has been scheduled because it has executed the atomic operation.

11.8 Summary
In this chapter we studied parallel scan, also known as prefix sum, as an impor-
tant parallel computation pattern. Scan is used to enable parallel allocation of
resources to parties whose needs are not uniform. It converts seemingly sequential
computation based on mathematical recurrence into parallel computation, which
helps to reduce sequential bottlenecks in many applications. We show that a sim-
ple sequential scan algorithm performs only N2 1, or O(N), additions for an input
of N elements.

We first introduced a parallel Kogge-Stone segmented scan algorithm that is
fast and conceptually simple but not work-efficient. The algorithm performs O
(N(log2N) operations, which is more than its sequential counterpart. As the size
of the dataset increases, the number of execution units that are needed for a paral-
lel algorithm to break even with the simple sequential algorithm also increases.
Therefore Kogge-Stone scan algorithms are typically used to process modest-
sized scan blocks in processors with abundant execution resources.
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We then presented a parallel Brent-Kung segmented scan algorithm that is
conceptually more complicated. Using a reduction tree phase and a reverse tree
phase, the algorithm performs only 2(N2 3, or O(N), additions no matter how
large the input datasets are. Such a work-efficient algorithm whose number of
operations grows linearly with the size of the input set is often also referred to as
a data-scalable algorithm. Although the Brent-Kung algorithm has better work
efficiency than the Kogge-Stone algorithm, it requires more steps to complete.
Therefore in a system with enough execution resources, the Kogge-Stone algo-
rithm is expected to have better performance despite being less work efficient.

We also applied thread coarsening to mitigate the hardware underutilization
and synchronization overhead of parallel scan and to improve its work efficiency.
Thread coarsening was applied by having each thread in the block perform a
work-efficient sequential scan on its own subsection of input elements before the
threads collaborate to perform the less work-efficient block-wide parallel scan to
produce the entire block’s section.

We presented a hierarchical scan approach to extend the parallel scan algorithms
to handle input sets of arbitrary sizes. Unfortunately, a straightforward, three-kernel
implementation of the segmented scan algorithm incurs redundant global memory
accesses whose latencies are not overlapped with computation. For this reason we
also presented a domino-style hierarchical scan algorithm to enable a single-pass,
single-kernel implementation and improve the global memory access efficiency of
the hierarchical scan algorithm. However, this approach requires a carefully designed
adjacent block synchronization mechanism using atomic operations, thread memory
fence, and barrier synchronization. Special care also must be taken to prevent dead-
locks by using dynamic block index assignment.

There are further optimization opportunities for even higher performance
implementations using, for example, warp-level shuffle operations. In general,
implementing and optimizing parallel scan algorithms on GPUs are complex pro-
cesses, and the average user is more likely to use a parallel scan library for GPUs
such as Thrust (Bell and Hoberock, 2012) than to implement their own scan ker-
nels from scratch. Nevertheless, parallel scan is an important parallel pattern, and
it offers an interesting and relevant case study of the tradeoffs that go into opti-
mizing parallel patterns.

Exercises
1. Consider the following array: [4 6 7 1 2 8 5 2]. Perform a parallel inclusive

prefix scan on the array, using the Kogge-Stone algorithm. Report the
intermediate states of the array after each step.

2. Modify the Kogge-Stone parallel scan kernel in Fig. 11.3 to use double-
buffering instead of a second call to __syncthreads() to overcome the write-
after-read race condition.
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3. Analyze the Kogge-Stone parallel scan kernel in Fig. 11.3. Show that control
divergence occurs only in the first warp of each block for stride values up to
half of the warp size. That is, for warp size 32, control divergence will occur
to iterations for stride values 1, 2, 4, 8, and 16.

4. For the Kogge-Stone scan kernel based on reduction trees, assume that we
have 2048 elements. Which of the following gives the closest approximation
of how many add operations will be performed?

5. Consider the following array: [4 6 7 1 2 8 5 2]. Perform a parallel inclusive
prefix scan on the array, using the Brent-Kung algorithm. Report the
intermediate states of the array after each step.

6. For the Brent-Kung scan kernel, assume that we have 2048 elements. How
many add operations will be performed in both the reduction tree phase and
the inverse reduction tree phase?

7. Use the algorithm in Fig. 11.4 to complete an exclusive scan kernel.
8. Complete the host code and all three kernels for the segmented parallel scan

algorithm in Fig. 11.9.
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Our next parallel pattern is an ordered merge operation, which takes two sorted
lists and generates a combined sorted list. Ordered merge operations can be used
as a building block of sorting algorithms, as we will see in Chapter 13, Sorting.
Ordered merge operations also form the basis of modern map-reduce frameworks.
This chapter presents a parallel ordered merge algorithm in which the input data
for each thread is dynamically determined. The dynamic nature of the data access
makes it challenging to exploit locality and tiling techniques for improved mem-
ory access efficiency and performance. The principles behind dynamic input data
identification are also relevant to many other important computations, such as set
intersection and set union. We present increasingly sophisticated buffer manage-
ment schemes for achieving increasing levels of memory access efficiency for
order merged and other operations that determine their input data dynamically.

12.1 Background
An ordered merge function takes two sorted lists A and B and merges them into a
single sorted list C. For this chapter we assume that the sorted lists are stored in
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arrays. We further assume that each element in such an array has a key. An order
relation denoted by # is defined on the keys. For example, the keys may be sim-
ply integer values, and # may be defined as the conventional less than or equal
to relation between these integer values. In the simplest case, the elements consist
of just keys.

Suppose that we have two elements e1 and e2 whose keys are k1 and k2,
respectively. In a sorted list based on the relation # , if e1 appears before e2, then
k1 # k2. A merge function based on an ordering relation R takes two sorted input
arrays A and B having m and n elements, respectively, where m and n do not
have be to equal. Both array A and array B are sorted on the basis of the ordering
relation R. The function produces an output sorted array C having m + n ele-
ments. Array C consists of all the input elements from arrays A and B and is
sorted by the ordering relation R.

Fig. 12.1 shows the operation of a simple merge function based on the con-
ventional numerical ordering relation. Array A has five elements (m=5), and array
B has four elements (n=4). The merge function generates array C with all its 9
elements (m + n) from A and B. These elements must be sorted. The arrows in
Fig. 12.1 show how elements of A and B should be placed into C to complete the
merge operation. Whenever the numerical values are equal between an element of
A and an element of B, the element of A should appear first in the output list C.
This requirement ensures the stability of the ordered merge operation.

In general, an ordering operation is stable if elements with equal key values
are placed in the same order in the output as the order in which they appear in the
input. The example in Fig. 12.1 demonstrates stability both with and across the
input lists of the merge operation. For example, the two elements whose values
are 10 are copied from B into C while maintaining their original order. This illus-
trates stability within an input list of the merge operation. For another example
the A element whose value is 7 goes into C before the B element of the same
value. This illustrates stability across input lists of the merge operation. The sta-
bility property allows the ordering operation to preserve previous orderings that
are not captured by the key that is used in the current ordering operation. For
example, the lists A and B might have been previously sorted according to a dif-
ferent key before being sorted by the current key to be used for merging.

FIGURE 12.1

Example of a merge operation.
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Maintaining stability in the merge operation allows the merge operation to pre-
serve the work that was done in the previous steps.

The merge operation is the core of merge sort, an important parallelizable sort
algorithm. As we will see in Chapter 13, Sorting, a parallel merge sort function
divides the input list into multiple sections and distributes them to parallel
threads. The threads sort the individual section(s) and then cooperatively merge
the sorted sections. Such a divide-and-concur approach allows efficient paralleli-
zation of sorting.

In modern map-reduce distributed computing frameworks, such as Hadoop,
the computation is distributed to a massive number of compute nodes. The reduce
process assembles the result of these compute nodes into the final result. Many
applications require that the results be sorted according to an ordering relation.
These results are typically assembled by using the merge operation in a reduction
tree pattern. As a result, efficient merge operations are critical to the efficiency of
these frameworks.

12.2 A sequential merge algorithm
The merge operation can be implemented with a straightforward sequential algo-
rithm. Fig. 12.2 shows a sequential merge function.

The sequential function in Fig. 12.2 consists of two main parts. The first part
consists of a while-loop (line 05) that visits the A and B list elements in order.
The loop starts with the first elements: A[0] and B[0]. Every iteration fills one

FIGURE 12.2

A sequential merge function.
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position in the output array C; either one element of A or one element of B will
be selected for the position (lines 06!10). The loop uses i and j to identify the A
and B elements that are currently under consideration; i and j are both 0 when the
execution first enters the loop. The loop further uses k to identify the current posi-
tion to be filled in the output list array C. In each iteration, if element A[i] is less
than or equal to B[j], the value of A[i] is assigned to C[k]. In this case, the execu-
tion increments both i and k before going to the next iteration. Otherwise, the
value of B[j] is assigned to C[k]. In this case, the execution increments both j and
k before going to the next iteration.

The execution exits the while-loop when it reaches either the end of array A
or the end of array B. The execution moves on to the second part, which is on the
right Fig. 12.2. If array A is the one that has been completely visited, as indicated
by the fact that i is equal to m, then the code copies the remaining elements of
array B to the remaining positions of array C (lines 13!15). Otherwise, array B
is the one that was completely visited, so the code copies the remaining elements
of A to the remaining positions of C (lines 17!19). Note that the if-else construct
is unnecessary for correctness. We can simply have the two while-loops (lines
13!15 and 17!19) follow the first while-loop. Only one of the two while-loops
will be entered, depending on whether A or B was exhausted by the first while-
loop. However, we include the if-else construct to make the code more intuitive
for the reader.

We can illustrate the operation of the sequential merge function using the sim-
ple example from Fig. 12.1. During the first three (0!2) iterations of the while-
loop, A[0], A[1], and B[0] are assigned to C[0], C[1], and C[2], respectively. The
execution continues until the end of iteration 5. At this point, list A is completely
visited, and the execution exits the while loop. A total of six C positions have
been filled by A[0] through A[4] and B[0]. The loop in the true branch of the if-
construct is used to copy the remaining B elements, that is, B[1] through B[3],
into the remaining C positions.

The sequential merge function visits every input element from both A and B
once and writes into each C position once. Its algorithm complexity is O(m + n),
and its execution time is linearly proportional to the total number of elements to
be merged.

12.3 A parallelization approach
Siebert and Traff (2012) proposed an approach to parallelizing the merge opera-
tion. In their approach, each thread first determines the range of output positions
(output range) that it is going to produce and uses that output range as the input
to a co-rank function to identify the corresponding input ranges that will be
merged to produce the output range. Once the input and output ranges have been
determined, each thread can independently access its two input subarrays and one
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output subarray. Such independence allows each thread to perform the sequential
merge function on their subarrays to do the merge in parallel. It should be clear
that the key to the proposed parallelization approach is the co-rank function. We
will now formulate the co-rank function.

Let A and B be two input arrays with m and n elements, respectively. We
assume that both input arrays are sorted according to an ordering relation. The
index of each array starts from 0. Let C be the sorted output array that is gener-
ated by merging A and B. Obviously, C has m + n elements. We can make the
following observation:

Observation 1: For any k such that 0# k,m + n, there is either (case 1) an i
such that 0# i,m and C[k] receives its value from A[i] or (case 2) a j such that
0# j, n and C[k] receives its value from B[j] in the merge process.

Fig. 12.3 shows the two cases of observation 1. In the first case, the C element
in question comes from array A. For example, in Fig. 12.3A, C[4] (value 9)
receives its values from A[3]. In this case, k=4 and i=3. We can see that the pre-
fix subarray C[0]!C[3] of C[4] (the subarray of four elements that precedes C
[4]) is the result of merging the prefix subarray A[0]!A[2] of A[3] (the subarray
of three elements that precedes A[3]) and the prefix subarray B[0] of B[1] (the

FIGURE 12.3

Examples of observation 1.
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subarray of 42 3=1 element that precedes B[1]). The general formula is that sub-
array C[0]!C[k 2 1] (k elements) is the result of merging A[0]!A[i 2 1] (i ele-
ments) and B[0]!B[k2 i2 1] (k2 i elements).

In the second case, the C element in question comes from array B. For exam-
ple, in Fig. 12.3B, C[6] receives its value from B[1]. In this case, k=6 and j=1.
The prefix subarray C[0]!C[5] of C[6] (the subarray of six elements that pre-
cedes C[6]) is the result of merging the prefix subarray A[0]!A[4] (the subarray
of five elements that precedes A[5]) and B[0] (the subarray of 1 element that pre-
cedes B[1]). The general formula for this case is that subarray C[0]!C[k 2 1] (k
elements) is the result of merging A[0]!A[k 2 j 2 1] (k 2 j elements) and B
[0]!B[j2 1] (j elements).

In the first case, we find i and derive j as k 2 i. In the second case, we find j
and derive i as k - j. We can take advantage of the symmetry and summarize the
two cases into one observation:

Observation 2: For any k such that 0# k,m + n, we can find i and j such that
k=i + j, 0# i,m and 0# j, n and the subarray C[0]!C[k 2 1] is the result of
merging subarray A[0]!A[i2 1] and subarray B[0]!B[j2 1].

Siebert and Traff (2012) also proved that i and j, which define the prefix sub-
arrays of A and B that are needed to produce the prefix subarray of C of length k,
are unique. For an element C[k] the index k is referred to as its rank. The unique
indices i and j are referred to as its co-ranks. For example, in Fig. 12.3A, the rank
and co-rank of C[4] are 4, 3, and 1. For another example the rank and co-rank of
C[6] are 6, 5, and 1.

The concept of co-rank gives us a path to parallelizing the merge function.
We can divide the work among threads by dividing the output array into subar-
rays and assigning the generation of one subarray to each thread. Once the assign-
ment has been done, the rank of output elements to be generated by each thread
is known. Each thread then uses the co-rank function to determine the two input
subarrays that it needs to merge into its output subarray.

Note that the main difference between the parallelization of the merge func-
tion and the parallelization of all our previous patterns is that the range of input
data to be used by each thread cannot be determined with a simple index calcula-
tion. The range of input elements to be used by each thread depends on the actual
input values. This makes the parallelized merge operation an interesting and chal-
lenging parallel computation pattern.

12.4 Co-rank function implementation
We define the co-rank function as a function that takes the rank (k) of an element
in an output array C and information about the two input arrays A and B and
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returns the co-rank value (i) for the corresponding element in the input array A.
The co-rank function has the following signature:

where k is the rank of the C element in question, A is a pointer to the input A
array, m is the size of the A array, B is a pointer to the input B array, n is the
size of the input B array, and the return value is i, the co-rank of k in A.The caller
can then derive the j, the co-rank value of k in B, as k2 i.

Before we study the implementation details of the co-rank function, it is bene-
ficial to first learn about the ways in which a parallel merge function will use it.
Such use of the co-rank function is illustrated in Fig. 12.4, where we use two
threads to perform the merge operation. We assume that thread 0 generates C
[0]!C[3] and thread 1 generates C[4]!C[8].

Intuitively, each thread calls the co-rank function to derive the beginning posi-
tions of the subarrays of A and B that will be merged into the C subarray that is
assigned to the thread. For example, thread 1 calls the co-rank function with
parameters (4, A, 5, B, 4). The goal of the co-rank function for thread 1 is to
identify for its rank value k1=4 the co-rank values i1=3 and j1=1. That is, the
subarray starting at C[4] is to be generated by merging the subarrays starting at A
[3] and B[1]. Intuitively, we are looking for a total of four elements from A and
B that will fill the first four elements of the output array prior to where thread 1
will merge its elements. By visual inspection we see that the choice of i1=3 and
j1=1 meets our need. Thread 0 will take A[0]!A[2] and B[0], leaving out A[3]
(value 9) and B[1] (value 10), which is where thread 1 will start merging.

If we changed the value of i1 to 2, we need to set the j1 value to 2 so that we
can still have a total of four elements prior to thread 1. However, this means that
we would include B[1] whose value is 10 in thread 0’s elements. This value is
larger than A[2] (value 8) that would be included in thread 1’s elements. Such a
change would make the resulting C array not properly sorted. On the other hand,

FIGURE 12.4

Example of co-rank function execution.
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if we changed the value of i1 to 4, we need to set the j1 value to 0 to keep the
total number of elements at 4. However, this would mean that we include A[3]
(value 9) in thread 0’s elements, which is larger than B[0] (value 7), which would
be incorrectly included in thread 1’s elements. These two examples point to a
search algorithm can quickly identify the value.

In addition to identifying where its input segments start, thread 1 also needs to
identify where they end. For this reason, thread 1 also calls the co-rank function
with parameters (9, A, 5, B, 4). From Fig. 12.4 we see that the co-rank function
should produce co-rank values i2=5 and j2=4. That is, since C[9] is beyond the
last element of the C array, all elements of the A and B arrays should have been
exhausted if one were trying to generate a C subarray starting at C[9]. In general,
the input subarrays to be used by thread t are defined by the co-rank values for
thread t and thread t + 1: A[it]!A[it+1] and B[jt]!B[jt+1].

The co-rank function is essentially a search operation. Since both input arrays
are sorted, we can use a binary search or even a higher radix search to achieve a
computational complexity of O(log N) for the search. Fig. 12.5 shows a co-rank
function based on binary search. The co-rank function uses two pairs of marker
variables to delineate the range of A array indices and the range of B array indi-
ces being considered for the co-rank values. Variables i and j are the candidate
co-rank return values that are being considered in the current binary search itera-
tion. Variables i_low and j_low are the smallest possible co-rank values that
could be generated by the function. Line 02 initializes i to its largest possible

FIGURE 12.5

A co-rank function based on binary search.
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value. If the k value is greater than m, line 02 initializes i to m, since the co-rank
i value cannot be larger than the size of the A array. Otherwise, line 02 initializes
i to k, since i cannot be larger than k. The co-rank j value is initialized as k 2 i
(line 03). Throughout the execution the co-rank function maintains this important
invariant relation. The sum of the i and j variables is always equal to the value of
the input variable k (the rank value).

The initialization of the i_low and j_low variables (lines 4 and 5) requires a
little more explanation. These variables allow us to limit the scope of the search
and make it faster. Functionally, we could set both values to zero and let the rest
of the execution elevate them to more accurate values. This makes sense when
the k value is smaller than m and n. However, when k is larger than n, we know
that the i value cannot be less than k 2 n. The reason is that the greatest number
of C[k] prefix subarray elements that can come from the B array is n. Therefore a
minimum of k 2 n elements must come from A. Therefore the i value can never
be smaller than k 2 n; we may as well set i_low to k 2 n. Following the same
argument, the j_low value cannot be less than k 2 m, which is the least number
of elements of B that must be used in the merge process and thus the lower bound
of the final co-rank j value.

We will use the example in Fig. 12.6 to illustrate the operation of the co-rank
function in Fig. 12.5. The example assumes that three threads are used to merge
arrays A and B into C. Each thread is responsible for generating an output subar-
ray of three elements. We will first trace through the binary search steps of the
co-rank function for thread 1, which is responsible for generating C[3]!C[5]. The
reader should be able to determine that thread 1 calls the co-rank function with
parameters (3, A, 5, B, 4).

As is shown in Fig. 12.5, line 2 of the co-rank function initializes i to 3, which is
the k value, since k is smaller than m (value 5) in this example. Also, i_low is set 0.
The i and i_low values define the section of A array that is currently being searched
to determine the final co-rank i value. Thus only 0, 1, 2, and 3 are being considered
for the co-rank i value. Similarly, the j and j_low values are set to 0 and 0.

FIGURE 12.6

Iteration 0 of the co-rank function operation example for thread 1.
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The main body of the co-rank function is a while-loop (line 08) that iteratively
zooms into the final co-rank i and j values. The goal is to find a pair of i and j values
that result in A[i-1]#B[j] and B[j-1],A[i]. The intuition is that we choose the i
and j values so none of the values in the A subarray used for generating the previous
output subarray (referred to as the previous A subarray) should be greater than any
elements in the B subarray used for generating the current output subarray (referred
to as the current B subarray). Note that the largest A element in the previous subarray
could be equal to the smallest element in the current B subarray, since the A ele-
ments take precedence in placement into the output array whenever a tie occurs
between an A element and a B element because of the stability requirement.

In Fig. 12.5 the first if-construct in the while-loop (line 09) tests whether the cur-
rent i value is too high. If so, it will adjust the marker values so that it reduces the
search range for i by about half toward the smaller end. This is done by reducing the
i value by about half the difference between i and i_low. In Fig. 12.7, for iteration 0
of the while-loop, the if-construct finds that the i value (3) is too high, since A[i 2
1], whose value is 8, is greater than B[j], whose value is 7. The next few statements
proceed to reduce the search range for i by reducing its value by delta=(3 2 0 + 1)
c 1=2 (lines 10 and 13) while keeping the i_low value unchanged. Therefore the
i_low and i values for the next iteration will be 0 and 1.

The code also makes the search range for j to be comparable to that of i by
shifting it to above the current j location. This adjustment maintains the property
that the sum of i and j should be equal to k. The adjustment is done by assigning
the current j value to j_low (line 11) and adding the delta value to j (line 12). In
our example the j_low and j values for the next iteration will be 0 and 2.

During iteration 1 of the while-loop, illustrated in Fig. 12.7, the i and j values
are 1 and 2. The if-construct (line 9) finds the i value to be acceptable since A[i
2 1] is A[0] whose value is 1, while B[j] is B[2] whose value is 10, so A[i2 1]
is less than B[j]. Thus the condition of the first if-construct fails, and the body of
the if-construct is skipped. However, the j value is found to be too high during
this iteration, since B[j 2 1] is B[1] (line 14), whose value is 10, while A[i] is A

FIGURE 12.7

Iteration 1 of the co-rank function operation example for thread 1.
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[1], whose value is 7. Therefore the second if-construct will adjust the markers
for the next iteration so that the search range for j will be reduced by about half
toward the lower values. This is done by subtracting delta=(j 2 j_low + 1) c
1=1 from j (lines 15 and 18). As a result, the j_low and j values for the next itera-
tion will be 0 and 1. It also makes the next search range for i the same size as
that for j but shifts it up by delta locations. This is done by assigning the current i
value to i_low (line 16) and adding the delta value to i (line 17). Therefore the
i_low and i values for the next iteration will be 1 and 2, respectively.

During iteration 2, illustrated in Fig. 12.8, the i and j values are 2 and 1. Both if-
constructs (lines 9 and 14) will find both i and j values acceptable. For the first if-
construct, A[i 2 1] is A[1] (value 7) and B[j] is B[1] (value 10), so the condition
A[i2 1]#B[j] is satisfied. For the second if-construct, B[j2 1] is B[0] (value 7) and A
[i] is A[2] (value 8), so the condition B[j2 1],A[i] is also satisfied. The co-rank func-
tion sets a flag to exit the while-loop (lines 20 and 08) and returns the final i value 2 as
the co-rank i value (line 23). The caller thread can derive the final co-rank j value as
k2 i=32 2=1. An inspection of Fig. 12.8 confirms that co-rank values 2 and 1 indeed
identify the correct A and B input subarrays for thread 1.

The reader should repeat the same process for thread 2 as an exercise. Also,
note that if the input streams are much longer, the delta values will be reduced by
half in each step, so the algorithm is of log2(N) complexity, where N is the maxi-
mum of the two input array sizes.

12.5 A basic parallel merge kernel
For the rest of this chapter we assume that the input A and B arrays reside in the
global memory. We further assume that a kernel is launched to merge the two
input arrays to produce an output array C that is also in the global memory.
Fig. 12.9 shows a basic kernel that is a straightforward implementation of the par-
allel merge function described in Section 12.3.

FIGURE 12.8

Iteration 2 of the co-rank function operation example for thread 0.
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As we can see, the kernel is simple. It first divides the work among threads by
calculating the starting point of the output subarray to be produced by the current
thread (k_curr) and that of the next thread (k_next). Keep in mind that the total
number of output elements may not be a multiple of the number of threads. Each
thread then makes two calls to the co-rank function. The first call uses k_curr as
the rank parameter, which is the first (lowest-indexed) element of the output sub-
array that the current thread is to generate. The returned co-rank value, i_curr,
gives the lowest-indexed input A array element that belongs to the input subarray
to be used by the thread. This co-rank value can also be used to get j_curr for the
B input subarray. The i_curr and j_curr values mark the beginning of the input
subarrays for the thread. Therefore &A[i_curr] and &B[j_curr] are the pointers to
the beginning of the input subarrays to be used by the current thread.

The second call uses k_next as the rank parameter to get the co-rank values
for the next thread. These co-rank values mark the positions of the lowest-
indexed input array elements to be used by the next thread. Therefore i_next 2
i_curr and j_next 2 j_curr give the sizes of the subarrays of A and B to be used
by the current thread. The pointer to the beginning of the output subarray to be
produced by the current thread is &C[k_curr]. The final step of the kernel is to
call the merge_sequential function (from Fig. 12.2) with these parameters.

The execution of the basic merge kernel can be illustrated with the example in
Fig. 12.8. The k_curr values for the three threads (threads 0, 1, and 2) will be 0,
3, and 6. We will focus on the execution of thread 1 whose k_curr value will be
3. The i_curr and j_curr values determined from the first co-rank function call are
2 and 1. The k_next value for thread 1 will be 6. The second call to the co-rank
function helps determine the i_next and j_next values of 5 and 1. Thread 1 then
calls the merge function with parameters (&A[2], 3, &B[1], 0, &C[3]). Note that
the 0 value for parameter n indicates that none of the three elements of the output
subarray for thread 1 should come from array B. This is indeed the case in
Fig. 12.8: output elements C[3]2C[5] all come from A[2]2A[4].

FIGURE 12.9

A basic merge kernel.
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While the basic merge kernel is quite simple and elegant, it falls short in
memory access efficiency. First, it is clear that when executing the merge_se-
quential function, adjacent threads in a warp are not accessing adjacent memory
locations when they read and write the input and output subarray elements. For
the example in Fig. 12.8, during the first iteration of the merge_sequential func-
tion execution, the three adjacent threads would read A[0], A[2], and B[0]. They
will then write to C[0], C[3], and C[6]. Thus their memory accesses are not coa-
lesced, resulting in poor utilization of memory bandwidth.

Second, the threads also need to access A and B elements from the global
memory when they execute the co-rank function. Since the co-rank function does
a binary search, the access patterns are somewhat irregular and will be unlikely to
be coalesced. As a result, these accesses can further reduce the efficiency of uti-
lizing the memory bandwidth. It would be helpful if we can avoid these uncoa-
lesced accesses to the global memory by the co-rank function.

12.6 A tiled merge kernel to improve coalescing
In Chapter 6, Performance Considerations, we mentioned three main strategies for
improving memory coalescing in kernels: (1) rearranging the mapping of threads
to data, (2) rearranging the data itself, and (3) transferring the data between the
global memory and the shared memory in a coalesced manner and performing
the irregular accesses in the shared memory. For the merge pattern we will use
the third strategy, which leverages shared memory to improve coalescing. Using
shared memory also has the advantage of capturing the small amount of data
reuse across the co-rank functions and the sequential merge phase.

The key observation is that the input A and B subarrays to be used by the
adjacent threads are adjacent to each other in memory. Essentially, all threads in
a block will collectively use larger, block-level subarrays of A and B to generate
a larger, block-level subarray of C. We can call the co-rank function for the entire
block to get the starting and ending locations for the block-level A and B subar-
rays. Using these block-level co-rank values, all threads in the block can coopera-
tively load the elements of the block-level A and B subarrays into the shared
memory in a coalesced pattern.

Fig. 12.10 shows the block-level design of a tiled merge kernel. In this exam-
ple, we assume that three blocks will be used for the merge operation. At the bot-
tom of the figure, we show that C is partitioned into three block-level subarrays.
We delineate these partitions with gray vertical bars. On the basis of the partition,
each block calls the co-rank functions to partition the input array into subarrays
to be used for each block. We also delineate the input partitions with gray vertical
bars. Note that the input partitions can vary significantly in size according to the
actual data element values in the input arrays. For example, in Fig. 12.8 the input
A subarray is significantly larger than the input B subarray for thread 0. On the
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other hand, the input A subarray is significantly smaller than the input B subarray
for thread 1. Obviously, the combined size of the two input subarrays must
always be equal to the size of the output subarray for each thread.

We will declare two shared memory arrays A_S and B_S for each block.
Owing to the limited shared memory size, A_S and B_S may not be able to cover
the entire input subarrays for the block. Therefore we will take an iterative
approach. Assume that the A_S and B_S arrays can each hold x elements, while
each output subarray contains y elements. Each thread block will perform its
operation in y/x iterations. During each iteration, all threads in a block will coop-
eratively load x elements from the block’s input A subarray and x elements from
its input B subarray.

The first iteration of each thread is illustrated in Fig. 12.10. We show that for
each block, a light gray section of the input A subarray is loaded into A_S, and a
light gray section of the input B subarray is loaded into B_S. With x A elements and
x B elements in the shared memory, the thread block has enough input elements to
generate at least x output array elements. All threads are guaranteed to have all the
input subarray elements they need for the iteration. One might ask why loading a
total of 2x input elements can guarantee the generation of only x output elements.
The reason is that in the worst case, all elements of the current output section may
all come from one of the input sections. This uncertainty of input usage makes the
tiling design for the merge kernel much more challenging than the previous patterns.
One can be more accurate in loading the input tiles by first calling the co-rank func-
tion for the current and next output sections. In this case, we pay an additional binary
search operation to save on redundant data loading. We leave this alternative imple-
mentation as an exercise. We will also increase the efficiency of memory bandwidth
utilization with a circular buffer design in Section 12.7.

FIGURE 12.10

Design of a tiled merge kernel.
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Fig. 12.10 also shows that threads in each block will use a portion of the A_S
and a portion of the B_S in each iteration, shown as dark gray sections, to gener-
ate a section of x elements in their output C subarray. This process is illustrated
with the dotted arrows going from the A_S and B_S dark gray sections to the C
dark gray sections. Note that each thread block may well use a different portion
of its A_S versus B_S sections. Some blocks may use more elements from A_S,
and others may use more from B_S. The actual portions that are used by each
block depend on the input data element values.

Fig. 12.11 shows the first part of a tiled merge kernel. A comparison against
Fig. 12.9 shows remarkable similarity. This part is essentially the block-level ver-
sion of the setup code for the thread-level basic merge kernel. Only one thread in
the block needs to calculate the co-rank values for the rank values of the begin-
ning output index of the current block and that of the beginning output index of
the next block. The values are placed into the shared memory so that they can be
visible to all threads in the block. Having only one thread to call the co-rank func-
tions reduces the number of global memory accesses by the co-rank functions and
should improve the efficiency of the global memory accesses. A barrier synchro-
nization is used to ensure that all threads wait until the block-level co-rank values
are available in the shared memory A_S[0] and A_S[1] locations before they pro-
ceed to use the values.

Recall that since the input subarrays may be too large to fit into the shared
memory, the kernel takes an iterative approach. The kernel receives a tile_size
argument that specifies the number of A elements and B elements to be accom-
modated in the shared memory. For example, a tile_size value of 1024 means that
1024 A array elements and 1024 B array elements are to be accommodated in the

FIGURE 12.11

Part 1: Identifying block-level output and input subarrays.
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shared memory. This means that each block will dedicate (1024 + 1024)3
4=8192 bytes of shared memory to hold the A and B array elements.

As a simple example, assume that we would like to merge an A array of
33,000 elements (m=33,000) with a B array of 31,000 elements (n=31,000). The
total number of output C elements is 64,000. Further assume that we will use 16
blocks (gridDim.x=16) and 128 threads in each block (blockDim.x=128). Each
block will generate 64,000/16=4000 output C array elements.

If we assume that the tile_size value is 1024, the while-loop in Fig. 12.12 will
need to take four iterations for each block to complete the generation of its 4000
output elements. During iteration 0 of the while-loop, the threads in each block
will cooperatively load 1024 elements of A and 1024 elements of B into the
shared memory. Since there are 128 threads in a block, they can collectively load
128 elements in each iteration of the for-loop (line 26). So the first for-loop in
Fig. 12.12 will iterate 8 times for all threads in a block to complete the loading of
the 1024 A elements. The second for-loop will also iterate 8 times to complete
the loading the 1024 B elements. Note that threads use their threadIdx.x values to
select the element to load, so consecutive threads load consecutive elements. The
memory accesses are coalesced. We will come back later and explain the if-
conditions and how the index expressions for loading the A and B elements are
formulated.

Once the input tiles are in the shared memory, individual threads can divide
up the input tiles and merge their portions in parallel. This is done by assigning a
section of the output to each thread and running the co-rank function to determine
the sections of shared memory data that should be used for generating that output
section. The code in Fig. 12.13 completes this step. Keep in mind that this is a
continuation of the while-loop that started in Fig. 12.12. During each iteration of
the while-loop, threads in a block will generate a total of tile_size C elements,
using the data that we loaded into shared memory. (The exception is the last

FIGURE 12.12

Part 2: Loading A and B elements into the shared memory.
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iteration, which will be addressed later.) The co-rank function is run on the data
in shared memory for individual threads. Each thread first calculates the starting
position of its output range and that of the next thread and then uses these starting
positions as the inputs to the co-rank function to identify its input ranges. Each
thread will then call the sequential merge function to merge its portions of A and
B elements (identified by the co-rank values) from the shared memory into its
designated range of C elements.

Let us resume our running example. In each iteration of the while-loop, all
threads in a block will be collectively generating 1024 output elements, using the
two input tiles of A and B elements in the shared memory. (Once again, we will
deal with the last iteration of the while-loop later.) The work is divided among
128 threads, so each thread will be generating eight output elements. While we
know that each thread will consume a total of eight input elements in the shared
memory, we need to call the co-rank function to find out the exact number of A
elements versus B elements that each thread will consume and their start and end
locations. For example, one thread may use three A elements and five B elements,
while another may use six A elements and two B elements, and so on.

Collectively, the total number of A elements and B elements that are used by
all threads in a block for the iteration will add up to 1024 in our example. For
example, if all threads in a block use 476 A elements, we know that they also
used 10242 476=548 B elements. It may even be possible that all threads end up
using 1024 A elements and 0 B elements. Keep in mind that a total of 2048 ele-
ments are loaded in the shared memory. Therefore in each iteration of the while-
loop, only half of the A and B elements that were loaded into the shared memory
will be used by all the threads in the block.

We are now ready to examine more details of the kernel function. Recall that
we skipped the explanation of the index expressions for loading the A and B

FIGURE 12.13

Part 3: All threads merge their individual subarrays in parallel.
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elements from the global memory into the shared memory. For each iteration of
the while-loop, the starting point for loading the current tile in the A and B array
depends on the total number of A and B elements that have been consumed by all
threads of the block during the previous iterations of the while-loop. Assume that
we keep track of the total number of A elements that were consumed by all the
previous iterations of the while-loop in variable A_consumed. We initialize
A_consumed to 0 before entering the while-loop. During iteration 0 of the while-
loop, all blocks start their tiles from A[A_curr] since A_consumed is 0 at the
beginning of iteration 0. During each subsequent iteration of the while-loop, the
tile of A elements will start at A[A_curr + A_consumed].

Fig. 12.14 illustrates the index calculation for iteration 1 of the while-loop. In
our running example in Fig. 12.10 we show the A_S elements that are consumed
by the block of threads during iteration 0 as the dark gray portion of the tile in
A_S. During iteration 1 the tile to be loaded from the global memory for block 0
should start at the location right after the section that contains the A elements
consumed in iteration 0. In Fig. 12.14, for each block, the section of A elements
that is consumed in iteration 0 is shown as the small white section at the begin-
ning of the A subarray (marked by the vertical bars) assigned to the block. Since
the length of the small section is given by the value of A_consumed, the tile to be
loaded for iteration 1 of the while-loop starts at A[A_curr + A_consumed].
Similarly, the tile to be loaded for iteration 1 of the while-loop starts at B[B_curr
+ B_consumed].

Note that in Fig. 12.13, A_consumed (line 48) and C_completed are accumu-
lated through the while-loop iterations. Also, B_consumed is derived from the
accumulated A_consumed and C_completed values, so it is also accumulated
through the while-loop iterations. Therefore they always reflect the number of A

FIGURE 12.14

Iteration 1 of the while-loop in the running example.
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and B elements that are consumed by all the iterations so far. At the beginning of
each iteration the tiles to be loaded for the iteration always start with A[A_curr +
A_consumed] and B[B_curr + B_consumed].

During the last iterations of the while-loop, there may not be enough input A
or B elements to fill the input tiles in the shared memory for some of the thread
blocks. For example, in Fig. 12.14, for thread block 2, the number of remaining
A elements for iteration 1 is less than the tile size. An if-statement should be used
to prevent the threads from attempting to load elements that are outside the input
subarrays for the block. The first if-statement in Fig. 12.12 (line 27) detects such
attempts by checking whether the index of the A_S element that a thread is trying
to load exceeds the number of remaining A elements given by the value of the
expression A_length 2 A_consumed. The if-statement ensures that the threads
load only the elements that are within the remaining section of the A subarray.
The same is done for the B elements (line 32).

With the if-statements and the index expressions, the tile loading process
should work well as long as A_consumed and B_consumed give the total number
of A and B elements consumed by the thread block in previous iterations of the
while-loop. This brings us to the code at the end of the while-loop in Fig. 12.13.
These statements update the total number of C elements generated by the while-
loop iterations thus far. For all but the last iteration, each iteration generates addi-
tional tile_size C elements.

The next two statements update the total number of A and B elements con-
sumed by the threads in the block. For all but the last iteration the number of
additional A elements consumed by the thread block is the returned value of

As we mentioned before, the calculation of the number of elements consumed
may not be correct at the end of the last iteration of the while-loop. There may
not be a full tile of elements left for the final iteration. However, since the while-
loop will not iterate any further, the A_consumed, B_consumed, and
C_completed values will not be used so the incorrect results will not cause any
harm. However, one should remember that if for any reason these values are
needed after exiting the while-loop, the three variables will not have the correct
values. The values of A_length, B_length, and C_length should be used instead,
since all the elements in the designated subarrays to the thread block will have
been consumed at the exit of the while-loop.

The tiled kernel achieves substantial reduction in global memory accesses by
the co-rank function and makes the global memory accesses coalesce. However,
as is, the kernel has a significant deficiency. It makes use of only half of the data
that is loaded into the shared memory in each iteration. The unused data in the
shared memory is simply reloaded in the next iteration. This wastes half of the
memory bandwidth. In the next section we will present a circular buffer scheme
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for managing the tiles of data elements in the shared memory, which allows the
kernel to fully utilize all the A and B elements that have been loaded into the
shared memory. As we will see, this increased efficiency comes with a substantial
increase in code complexity.

12.7 A circular buffer merge kernel
The design of the circular buffer merge kernel, which will be referred to as mer-
ge_circular_buffer_kernel, is largely the same as that of the merge_tiled_kernel
kernel in the previous section. The main difference lies in the management of the
A and B elements in the shared memory to enable full utilization of all the ele-
ments loaded from the global memory. The overall structure of the merge_tiled_
kernel is shown in Figs. 12.12 through 12.14; it assumes that the tiles of the A
and B elements always start at A_S[0] and B_S[0], respectively. After each
while-loop iteration the kernel loads the next tile, starting from A_S[0] and B_S
[0]. The inefficiency of the merge_tiled_kernel comes from the fact that part of
the next tiles of elements are in the shared memory, but we reload the entire tile
from the global memory and write over these remaining elements from the previ-
ous iteration.

Fig. 12.15 shows the main idea of merge_circular_buffer_kernel. We will con-
tinue to use the example from Figs. 12.10 and 12.14. Two additional variables,
A_S_start and B_S_start, are added to allow each iteration of the while-loop in

FIGURE 12.15

A circular buffer scheme for managing the shared memory tiles.
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Fig. 12.12 to start its A and B tiles at dynamically determined positions inside
A_S[0] and B_S[0], respectively. This added tracking allows each iteration of the
while-loop to start the tiles with the remaining A and B elements from the previ-
ous iteration. Since there is no previous iteration when we first enter the while-
loop, these two variables are initialized to 0 before entering the while-loop.

During iteration 0, since the values of A_S_start and B_S_start are both 0, the
tiles will start with A_S[0] and B_S[0]. This is illustrated in Fig. 12.15A, where
we show the tiles that will be loaded from the global memory (A and B) into the
shared memory (A_S and B_S) as light gray sections. Once these tiles have been
loaded into the shared memory, merge_circular_buffer_kernel will proceed with
the merge operation in the same way as the merge_tile_kernel.

We also need to update the A_S_start and B_S_start variables for use in the
next iteration by advancing the value of these variables by the number of A and
B elements consumed from the shared memory during the current iteration. Keep
in mind that the size of each buffer is limited to tile_size. At some point, we will
need to reuse the buffer locations at the beginning part of the A_S and B_S
arrays. This is done by checking whether the new A_S_start and B_S_start values
exceed the tile_size. If so, we subtract tile_size from them as shown in the follow-
ing if-statement:

Fig. 12.15B illustrates the update of the A_S_start and B_S_start variables. At
the end of iteration 0 a portion of the A tile and a portion of the B tile have been
consumed. The consumed portions are shown as white sections in A_S and B_S
in Fig. 12.15B. We update the A_S_start and B_S_start values to the position
immediately after the consumed sections in the shared memory.

Fig. 12.15C illustrates the operations for filling the A and B tiles at the begin-
ning of iteration 1 of the while-loop. A_S_consumed is a variable that is added to
track the number of A elements used in the current iteration. The variable is
useful for filling the tile in the next iteration. At the beginning of each iteration
we need to load a section of up to A_S_consumed elements to fill up the A tile in
the shared memory. Similarly, we need to load a section of up to B_S_consumed
elements to fill up the B tile in the shared memory. The two sections that are
loaded are shown as dark gray sections in Fig. 12.15C. Note that the tiles effec-
tively “wrap around” in the A_S and B_S arrays, since we are reusing the space
of the A and B elements that were consumed during iteration 0.

Fig. 12.15D illustrates the updates to A_S_start and B_S_start at the end of
iteration 1. The sections of elements that were consumed during iteration 1 are
shown as the white sections. Note that in A_S, the consumed section wraps
around to the beginning part of A_S. The value of the A_S_start variable is also
wrapped around by the % modulo operator. It should be clear that we will need
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to adjust the code for loading and using the tiled elements to support this circular
usage of the A_S and B_S arrays.

Part 1 of merge_circular_buffer_kernel is identical to that of merge_tiled_ker-
nel in Fig. 12.11, so we will not present it. Fig. 12.16 shows part 2 of the circular
buffer kernel. Refer to Fig. 12.12 for variable declarations that remain the same.
New variables A_S_start, B_S_start, A_S_consumed, and B_S_consumed are ini-
tialized to 0 before we enter the while-loop.

Note that the exit conditions of the two for-loops have been adjusted. Instead
of always loading a full tile, as was the case in the merge kernel in Fig. 12.12,
each for-loop in Fig. 12.16 is set up to load only the number of elements that are
needed to refill the tiles, given by A_S_consumed. The section of the A elements
to be loaded by a thread block in the ith for-loop iteration starts at global memory
location A[A_curr + A_consumed + i]. Note that i is incremented by blockDim.x
after each iteration. Thus the A element to be loaded by a thread in the ith for-
loop iteration is A[A_curr + A_consumed + i + threadIdx.x]. The index for each
thread to place its A element into the A_S array is A_S_start + (tile_size 2
A_S_consumed) + I + threadIdx, since the tile starts at A_S[A_S_start] and there
are (tile_size2 A_S_consumed) elements remaining in the buffer from the previ-
ous iteration of the while-loop. The modulo (%) operation checks whether the
index value is greater than or equal to tile_size. If it is, it is wrapped back into
the beginning part of the array by subtracting tile_size from the index value. The
same analysis applies to the for-loop for loading the B tile and is left as an exer-
cise for the reader.

Using the A_S and B_S arrays as circular buffers also incurs additional com-
plexity in the implementation of the co-rank and merge functions. Part of the
additional complexity could be reflected in the thread-level code that calls these
functions. However, in general, it is better if one can efficiently handle the com-
plexities inside the library functions to minimize the increased level of complex-
ity in the user code. We show such an approach in Fig. 12.17. Fig. 12.17A shows

FIGURE 12.16

Part 2 of a circular buffer merge kernel.
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the implementation of the circular buffer. A_S_start and B_S_start mark the
beginning of the tile in the circular buffer. The tiles wrap around in the A_S and
B_S arrays, shown as the light gray section to the left of A_S_start and
B_S_start.

Keep in mind that the co-rank values are used for threads to identify the start-
ing position, ending position, and length of the input subarrays that they are to
use. When we employ circular buffers, we could provide the co-rank values as
the actual indices in the circular buffer. However, this would incur quite a bit of
complexity in the merge_circular_buffer_kernel code. For example, the a_next
value could be smaller than the a_curr value, since the tile is wrapped around in
the A_S array. Thus one would need to test for the case and calculate the length
of the section as a_next-a_curr + tile_size. However, in other cases when a_next
is larger than a_curr, the length of the section is simply a_next2 a_curr.

Fig. 12.17B shows a simplified model for defining, deriving, and using the
co-rank values with the circular buffer. In this model, each tile appears to be in a
continuous section starting at A_S_start and B_S_start. In the case of the B_S tile
in Fig. 12.17A, b_next is wrapped around and would be smaller than b_curr in
the circular buffer. However, as is shown in Fig. 12.17B, the simplified model
provides the illusion that all elements are in a continuous section of up to tile_size
elements; thus a_next is always larger than or equal to a_curr, and b_next is
always larger than or equal to b_curr. It is up to the implementation of the
co_rank_circular and merge_sequential_circular functions to map this simplified
view of the co-rank values into the actual circular buffer indices so that they can
carry out their functionalities correctly and efficiently.

The co_rank_circular and merge_sequential_circular functions have the same
set of parameters as the original co_rank and merge functions plus three addi-
tional parameters: A_S_start, B_S_start, and tile_size. These three additional
parameters inform the functions where the current starting point of the buffers are
and how big the buffers are. Fig. 12.18 shows the revised thread-level code based

FIGURE 12.17

A simplified model for the co-rank values when using a circular buffer.
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on the simplified model for the co-rank value using circular buffers. The only
change to the code is that the co_rank_circular and merge_sequential_circular
functions are called instead of the co_rank and merge functions. This demon-
strates that a well-designed library interface can reduce the impact on the user
code when employing sophisticated data structures.

Fig. 12.19 shows an implementation of the co-rank function that provides the
simplified model for the co-rank values while correctly operating on circular buf-
fers. It treats i, j, i_low, and j_low values in exactly the same way as the co-rank
function in Fig. 12.5. The only change is that i, i 2 1, j, and j 2 1 are no longer
used directly as indices in accessing the A_S and B_S arrays. They are used as
offsets that are to be added to the values of A_S_start and B_S_start to form the
index values i_cir, i_m_1_cir, j_cir, and j_m_1_cir. In each case, we need to test
whether the actual index values need to be wrapped around to the beginning part
of the buffer. Note that we cannot simply use i_cir2 1 to replace i2 1. We need
to form the final index value and check for the need to wrap it around. It should
be clear that the simplified model also helps to keep the co-rank function code
simple: All the manipulations of the i, j, i_low, and j_low values remain the
same; they do not need to deal with the circular nature of the buffers.

FIGURE 12.18

Part 3 of a circular buffer merge kernel.
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Fig. 12.20 shows an implementation of the merge_sequential_circular func-
tion. Similarly to the co_rank_circular function, the logic of the code remains
essentially unchanged from the original merge function. The only change is in the
way in which i and j are used to access the A and B elements. Since the merge_
sequential_circular function will be called only by the thread-level code of
merge_circular_buffer_kernel, the A and B elements that are accessed will be in
the A_S and B_S arrays. In all four places where i or j is used to access the A or
B elements, we need to form the i_cir or j_cir and test whether the index value
needs to be wrapped around to the beginning part of the array. Otherwise, the
code is the same as that of the merge function in Fig. 12.2.

Although we did not list all parts of merge_circular_buffer_kernel, the reader
should be able to put it all together on the basis of the parts that we discussed.
The use of tiling and circular buffers adds quite a bit of complexity. In particular,
each thread uses quite a few more registers to keep track of the starting point and
the remaining number of elements in the buffers. All these additional usages can
potentially reduce the occupancy, or the number of thread-blocks that can be
assigned to each of the streaming multiprocessors when the kernel is executed.
However, since the merge operation is memory bandwidth bound, the computa-
tional and register resources are likely underutilized. Thus increasing the number
of registers that are used and address calculations to conserve memory bandwidth
is a reasonable tradeoff.

FIGURE 12.19

A co_rank_circular function that operates on circular buffers.
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12.8 Thread coarsening for merge
The price of parallelizing merge across many threads is primarily the fact that
each thread has to perform its own binary search operations to identify the co-
ranks of its output indices. The number of binary search operations that are per-
formed can be reduced by reducing the number of threads that are launched,
which can be done by assigning more output elements per thread. All the kernels
that are presented in this chapter already have thread coarsening applied because
they are all written to process multiple elements per thread. In a completely
uncoarsened kernel, each thread would be responsible for a single output element.
However, this would require a binary search operation to be performed for every
single element, which would be prohibitively expensive. Hence coarsening is
essential for amortizing the cost of the binary search operation across a substantial
number of elements.

12.9 Summary
In this chapter we introduced the ordered merge pattern whose parallelization
requires each thread to dynamically identify its input position ranges. Because the
input ranges are data dependent, we resort to a fast search implementation of the

FIGURE 12.20

Implementation of the merge_sequential_circular function.
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co-rank function to identify the input range for each thread. The fact that the input
ranges are data dependent also creates extra challenges when we use a tiling tech-
nique to conserve memory bandwidth and enable memory coalescing. As a result,
we introduced the use of circular buffers to allow us to make full use of the data
loaded from global memory. We showed that introducing a more complex data
structure, such as a circular buffer, can significantly increase the complexity of
the code that uses the data structure. Thus we introduce a simplified buffer access
model for the code that manipulates and uses the indices to remain largely
unchanged. The actual circular nature of the buffers is exposed only when these
indices are used to access the elements in the buffer.

Exercises
1. Assume that we need to merge two lists A=(1, 7, 8, 9, 10) and B=(7, 10, 10, 12).

What are the co-rank values for C[8]?
2. Complete the calculation of co-rank functions for thread 2 in Fig. 12.6.
3. For the for-loops that load A and B tiles in Fig. 12.12, add a call to the co-

rank function so that we can load only the A and B elements that will be
consumed in the current generation of the while-loop.

4. Consider a parallel merge of two arrays of size 1,030,400 and 608,000.
Assume that each thread merges eight elements and that a thread block size of
1024 is used.
a. In the basic merge kernel in Fig. 12.9, how many threads perform a binary

search on the data in the global memory?
b. In the tiled merge kernel in Figs. 12.11!12.13, how many threads perform

a binary search on the data in the global memory?
c. In the tiled merge kernel in Figs. 12.11!12.13, how many threads perform

a binary search on the data in the shared memory?
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Sorting algorithms place the data elements of a list into a certain order. Sorting is
foundational to modern data and information services, since the computational
complexity of retrieving information from datasets can be significantly reduced if
the dataset is in proper order. For example, sorting is often used to canonicalize
the data for fast comparison and reconciliation between data lists. Also, the effi-
ciency of many data-processing algorithms can be improved if the data is in cer-
tain order. Because of their importance, efficient sorting algorithms have been the
subject of many computer science research efforts. Even with these efficient algo-
rithms, sorting large data lists is still time consuming and can benefit from paral-
lel execution. Parallelizing efficient sorting algorithms is challenging and requires
elaborate designs. This chapter presents the parallel designs for two important
types of efficient sorting algorithms: radix sort and merge sort. Most of the chap-
ter is dedicated to radix sort; merge sort is discussed briefly on the basis of the
parallel merge pattern that was covered in Chapter 12, Merge. Other popular par-
allel sorting algorithms, such as transposition sort and sampling sort, are also
briefly discussed.
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13.1 Background
Sorting is one of the earliest applications for computers. A sorting algorithm
arranges the elements of a list into a certain order. The order to be enforced by a
sorting algorithm depends on the nature of these elements. Examples of popular
orders are numerical order for numbers and lexicographical order for text strings.
More formally, any sorting algorithm must satisfy the following two conditions:

1. The output is in either nondecreasing or nonincreasing order. For
nondecreasing order, each element is no smaller than the previous element
according to the desired order. For nonincreasing order, each element is no
larger than the previous element according to the desired order.

2. The output is a permutation of the input. That is, the algorithm must retain all
of the original input elements while reordering them into the output.

In its simplest form, the elements of a list can be sorted according to the
values of each element. For example, the list [5, 2, 7, 1, 3, 2, 8] can be sorted
into a nondecreasing order output [1, 2, 2, 3, 5, 7, 8].

A more complex and common use case is that each element consists of a key
field and a value field and the list should be sorted on the basis of the key field.
For example, assume that each element is a tuple (age, income in thousands of
dollars). The list [(30,150), (32,80), (22,45), (29,80)] can be sorted by using the
income as the key field into a nonincreasing order [(30,150), (32,80), (29,80),
(22,45)].

Sorting algorithms can be classified into stable and unstable algorithms. A
stable sort algorithm preserves the original order of appearance when two ele-
ments have equal key value. For example, when sorting the list [(30,150),
(32,80), (22,45), (29,80)] into a nonincreasing order using income as the key
field, a stable sorting algorithm must guarantee that (32, 80) appears before
(29,80) because the former appear before the latter in the original input. An
unstable sorting algorithm does not offer such a guarantee. Stable algorithms are
required if one wishes to use multiple keys to sort a list in a cascaded manner.
For example, if each element has a primary key and a secondary key, with
stable sorting algorithms, one can first sort the list according to the secondary key
and then sort one more time with the primary key. The second sort will preserve
the order produced by the first sort.

Sorting algorithms can also be classified into comparison-based and
noncomparison-based algorithms. Comparison-based sorting algorithms cannot
achieve better than O N ! logNð Þ complexity when sorting a list of N elements
because they must perform a minimal number of comparisons among the ele-
ments. In contrast, some of the noncomparison-based algorithms can achieve bet-
ter than O N ! logNð Þ complexity, but they may not generalize to arbitrary types of
keys. Both comparison-based and noncomparison-based sorting algorithms can be
parallelized. In this chapter we present a parallel noncomparison-based sorting
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algorithm (radix sort) as well as a parallel comparison-based sorting algorithm
(merge sort).

Because of the importance of sorting, the computer science research commu-
nity has produced a great spectrum of sorting algorithms based on a rich variety
of data structures and algorithmic strategies. As a result, introductory computer
science classes often use sorting algorithms to illustrate a variety of core algo-
rithm concepts, such as big O notation; divide-and-conquer algorithms; data struc-
tures such as heaps and binary trees; randomized algorithms; best-, worst-, and
average-case analysis; time-space tradeoffs; and upper and lower bounds. In this
chapter we continue this tradition and use two sorting algorithms to illustrate sev-
eral important parallelization and performance optimization techniques (Satish
et al., 2009).

13.2 Radix sort
One of the sorting algorithms that is highly amenable to parallelization is radix
sort. Radix sort is a noncomparison-based sorting algorithm that works by distrib-
uting the keys that are being sorted into buckets on the basis of a radix value (or
base in a positional numeral system). If the keys consist of multiple digits, the
distribution of the keys is repeated for each digit until all digits are covered. Each
iteration is stable, preserving the order of the keys within each bucket from the
previous iteration. In processing keys that are represented as binary numbers,
choosing a radix value that is a power of 2 is convenient because it makes iterat-
ing over the digits and extracting them easy. Each iteration essentially handles a
fixed-size slice of the bits from the key. We will start by using a radix of 2 (i.e.,
a 1-bit radix) and then extend to larger radix values later in the chapter.

Fig. 13.1 shows an example of how a list of 4-bit integers can be sorted with
radix sort using a 1-bit radix. Since the keys are 4 bits long and each iteration
processes 1 bit, four iterations are required in total. In the first iteration the least
significant bit (LSB) is considered. All the keys in the iteration’s input list whose
LSB is 0 are placed on the left side of the iteration’s output list, forming a bucket
for the 0 bits. Similarly, all the keys in the iteration’s input list whose LSB is 1
are placed on the right side of the iteration’s output list forming a bucket for the
1 bits. Note that within each bucket in the output list, the order of the keys is pre-
served from that in the input list. In other words, keys that are placed in the same
bucket (i.e., that have the same LSB) must appear in the same order in the output
list as they did in the input list. We will see why this stability requirement is
important when we discuss the next iteration.

In the second iteration in Fig. 13.1, the output list from the first iteration
becomes the new input list, and the second LSB of each key is considered. As in
the first iteration, the keys are separated into two buckets: a bucket for the keys
whose second LSB is 0 and another bucket for the keys whose second LSB is 1.
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Since the order from the previous iterations is preserved, we observe that the keys
in the second iteration’s output list are now sorted by the lower two bits. In other
words, all the keys whose lower two bits are 00 come first, followed by those
whose lower two bits are 01, followed by those whose lower two bits are 10, fol-
lowed by those whose lower two bits are 11.

In the third iteration in Fig. 13.1 the same process is repeated while consider-
ing the third bit in the keys. Again, since the order from previous iterations is pre-
served, the keys in the output list of the third iteration are sorted by the lower
three bits. Finally, in the fourth and last iteration the same process is repeated
while considering the fourth or most significant bit. At the end of this iteration
the keys in the final output list are sorted by all four bits.

13.3 Parallel radix sort
Each iteration in radix sort depends on the entire result of the previous iteration.
Hence the iterations are performed sequentially with respect to each other. The

FIGURE 13.1

A radix sort example.
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opportunity for parallelizing radix sort arises within each iteration. For the rest of
this chapter we will focus on the parallelization of a single radix sort iteration,
with the understanding that the iterations will be executed one after the other. In
other words, we will focus on the implementation of a kernel that performs a sin-
gle radix sort iteration and will assume that the host code calls this kernel once
for each iteration.

One straightforward approach to parallelize a radix sort iteration on GPUs is
to make each thread responsible for one key in the input list. The thread must
identify the position of the key in the output list and then store the key to that
position. Fig. 13.2 illustrates this parallelization approach that is applied to the
first iteration from Fig. 13.1. Threads in Fig. 13.2 are illustrated as curvy arrows,
and thread blocks are illustrated as boxes around the arrows. Each thread is
responsible for the key below it in the input list. In this example the 16 keys are
processed by a grid with four thread blocks having four threads each. In practice,
each thread block may have up to 1024 threads, and the input is much larger,
resulting in many more thread blocks. However, we have used a small number of
threads per block to simplify the illustration.

With every thread assigned to a key in the input list, the challenge remains for
each thread to identify the destination index of its key in the output list.
Identifying the destination index of the key depends on whether the key maps to
the 0 bucket or the 1 bucket. For keys mapping to the 0 bucket, the destination
index can be found as follows:

des!na!on of a zero = # zeros before
= # keys before - # ones before
= key index - # ones before

The destination index of a key that maps to the 0 bucket (i.e., destination
of a 0) is equivalent to the number of keys before the key that also map to the
0 bucket (i.e., # zeros before). Since all keys map to either the 0 bucket or the

FIGURE 13.2

Parallelizing a radix sort iteration by assigning one input key to each thread.
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1 bucket, the number of keys before the key mapping to the 0 bucket is equivalent
to the total number of keys before the key (i.e., # keys before) minus the number
of keys before the key mapping to the 1 bucket (i.e., # ones before). The total
number of keys before the key is just the index of the key in the input list (i.e.,
the key index), which is trivially available. Hence the only nontrivial part of find-
ing the destination index of a key that maps to the 0 bucket is counting the num-
ber of keys before it that map to the 1 bucket. This operation can be done by
using an exclusive scan, as we will see shortly.

For keys mapping to the 0 bucket, the destination index can be found as
follows:

des!na!on of a one = # zeros in total + # ones before
= (# keys in total - # ones in total) + # ones before
= input size - # ones in total + # ones before

All keys mapping to the 0 bucket must come before the keys mapping to the 1
bucket in the output array. For this reason, the destination index of a key that
maps to the 1 bucket (i.e., destination of a 1) is equivalent to the total number of
keys mapping to the 0 bucket (i.e., # zeros in total) plus the number of keys
before the key that map to the 1 bucket (i.e., # ones before). Since all keys map
to either the 0 bucket or the 1 bucket, the total number of keys mapping to the 0
bucket is equivalent to the total number of keys in the input list (i.e., # keys in
total) minus the total number of keys mapping to the 1 bucket (i.e., # ones in
total). The total number of keys in the input list is just the input size, which is
trivially available. Hence the nontrivial part of finding the destination index of a
key that maps to the 1 bucket is counting the number of keys before it that map
to the 1 bucket, which is the same information that is needed for the 0 bucket
case. Again, this operation can be done by using an exclusive scan, as we will see
shortly. The total number of keys mapping to the 1 bucket can be found as a
byproduct of the exclusive scan.

Fig. 13.3 shows the operations that each thread performs to find its key’s des-
tination index in the example in Fig. 13.2. The corresponding kernel code to per-
form these operations is shown in Fig. 13.4. First, each thread identifies the index
of the key for which it is responsible (line 03), performs a boundary check
(line 04), and loads the key from the input list (line 06). Next, each thread
extracts from the key the bit for the current iteration to identify whether it is a 0
or a 1 (line 07).

Here, the iteration number iter tells us the position of the bit in which we are
interested. By shifting the key to the right by this amount, we move the bit to the
rightmost position. By applying a bitwise-and operation (&) between the shifted
key and a 1, we zero out all the bits in the shifted key except the rightmost bit.
Hence the value of bit will be the value of the bit in which we are interested. In
the example in Fig. 13.3, since the example is for iteration 0, the LSB is
extracted, as shown in the row labeled bits.
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Once each thread has extracted the bit in which it is interested from the key, it
stores the bit to memory (line 08), and the threads collaborate to perform an
exclusive scan on the bits (line 10). We discussed how to perform an exclusive
scan in Chapter 11, Prefix Sum (Scan). The call to exclusive scan is performed
outside the boundary check because threads may need to perform a barrier syn-
chronization in the process, so we need to ensure that all threads are active. To
synchronize across all threads in the grid, we assume that we can use sophisti-
cated techniques similar to those used in the single-pass scan discussed in
Chapter 11, Prefix Sum (Scan). Alternatively, we could terminate the kernel, call
another kernel from the host to perform the scan, and then call a third kernel to
perform the operations after the scan. In this case, each iteration would require
three grid launches instead of one.

FIGURE 13.3

Finding the destination of each input key.

FIGURE 13.4

Radix sort iteration kernel code.
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The array resulting from the exclusive scan operation contains, at each posi-
tion, the sum of the bits before that position. Since these bits are either 0 or 1, the
sum of the bits before the position is equivalent to the number of the 1’s before
the position (i.e., the number of keys that map to the 1 bucket). In the example in
Fig. 13.3 the result of the exclusive scan is shown in the row labeled # ones
before. Each thread accesses this array to obtain the number of 1’s before its posi-
tion (line 12) and the total number of 1’s in the input list (line 13). Each thread
can then identify the destination of its key, using the expressions that we derived
previously (lines 14$15). Having identified its destination index, the thread can
proceed to store the key for which it is responsible at the corresponding location
in the output list (line 16). In the example in Fig. 13.3 the destination indices are
shown in the row labeled destination. The reader can refer to Fig. 13.2 to verify
that the values that are obtained are indeed the right destination indices of each
element.

13.4 Optimizing for memory coalescing
The approach we just described is effective at parallelizing a radix sort iteration.
However, one major source of inefficiency in this approach is that the writes to
the output list exhibit an access pattern that cannot be adequately coalesced.
Consider how each thread in Fig. 13.2 writes its key to the output list. In the first
thread block, the first thread writes to the 0 bucket, the second thread writes to
the 1 bucket, the third thread writes to the 0 bucket, and the fourth thread writes
to the 1 bucket. Hence threads with consecutive index values are not necessarily
writing to consecutive memory locations, resulting in poor coalescing and requir-
ing multiple memory requests to be issued per warp.

Recall from Chapter 6, Performance Considerations, that there are various
approaches to enable better memory coalescing in kernels: (1) rearranging the
threads, (2) rearranging the data that the threads access, or (3) performing the
uncoalesceable accesses on shared memory and transferring data between shared
memory and global memory in a coalesced way. To optimize for coalescing in
this chapter, we will use the third approach. Instead of having all threads write
their keys to global memory buckets in an uncoalesced manner, we will have
each thread block maintain its own local buckets in the shared memory. That is,
we will no longer perform a global sort as shown in Fig. 13.4. Rather, the threads
in each block will first perform a block-level local sort to separate the keys map-
ping to the 0 bucket and the keys mapping to the 1 bucket in shared memory.
After that, the buckets will be written from shared memory to global memory in a
coalesced manner.

Fig. 13.5 shows an example of how memory coalescing can be enhanced for
the example in Fig. 13.2. In this example, each thread block first performs a local
radix sort on the keys that it owns and stores the output list into the shared
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memory. The local sort can be done in the same way as the global sort was done
previously and requires each thread block to perform only a local exclusive scan
instead of requiring a global one. After the local sort, each thread block writes its
local buckets to the global buckets in a more coalesced way. For example, in
Fig. 13.5, consider how the first thread block writes out its buckets to global
memory. The first two threads both write to adjacent locations in global memory
when writing the 0 bucket, while the last two threads also write to adjacent loca-
tions in global memory when writing the 1 bucket. Hence the majority of writes
to global memory will be coalesced.

The main challenge in this optimization is for each thread block to identify
the beginning position of each of its local buckets in the corresponding global
bucket. The beginning position of a thread block’s local buckets depends on the
sizes of the local buckets in the other thread blocks. In particular, the position of
a thread block’s local 0 bucket is after all the local 0 buckets of the preceding
thread blocks. On the other hand, the position of a thread block’s local 1 bucket
is after all the local 0 buckets of all the thread blocks and all the local 1 buckets
of the preceding thread blocks. These positions can be obtained by performing an
exclusive scan on the thread blocks’ local bucket sizes.

Fig. 13.6 shows an example of how an exclusive scan can be used to find the
position of each thread block’s local buckets. After completing the local radix
sort, each thread block identifies the number of keys in each of its local buckets.
Next, each thread block stores these values in a table as shown in Fig. 13.6. The
table is stored in row-major order, meaning that it places the sizes of the local 0
buckets for all thread blocks consecutively, followed by the sizes of the local 1
buckets. After the table has been constructed, an exclusive scan is executed on
the linearized table. The resulting table consists of the beginning positions of
each thread block’s local buckets, which are the values we are looking for.

FIGURE 13.5

Optimizing for memory coalescing by sorting locally in shared memory before sorting into
the global memory.
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Once a thread block has identified the beginning position of its local buckets
in global memory, the threads in the block can proceed to store their keys from
the local buckets to the global buckets. To do so, each thread needs to keep track
of the number of keys in the 0 bucket versus the 1 bucket. During the write phase,
threads in each block will be writing a key in either of the buckets depending on
its thread index values. For example, for block 2 in Fig. 13.6, thread 0 writes the
single key in the 0 bucket, and threads 1$3 write the three keys in the 1 bucket.
In comparison, for block 3 in Fig. 13.6, threads 0$2 write the three keys in the 0
bucket, and thread 3 writes the 1 key in the one bucket. Hence each thread needs
to test whether it is responsible for writing a key in the local 0 bucket or the 1
bucket. Each block tracks the number of keys in each of its two local buckets so
that the threads can determine where their threadIdx values fall and participate in
the writing of the 0 bucket keys or 1 bucket keys. We leave the implementation
of this optimization as an exercise for the reader.

13.5 Choice of radix value
So far, we have seen how radix sort can be parallelized by using a 1-bit radix as
an example. For the 4-bit keys in the example, four iterations (one for each bit)

FIGURE 13.6

Finding the destination of each thread block’s local buckets.
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are needed for the keys to be fully sorted. In general, for N-bit keys, N iterations
are needed to fully sort the keys. To reduce the number of iterations that are
needed, a larger radix value can be used.

Fig. 13.7 shows an example of how radix sort can be performed using a 2-bit
radix. Each iteration uses two bits to distribute the keys to buckets. Hence the 4-
bit keys can be fully sorted by using only two iterations. In the first iteration the
lower two bits are considered. The keys are distributed across four buckets corre-
sponding to the keys where the lower two bits are 00, 01, 10, and 11. In the sec-
ond iteration the upper two bits are considered. The keys are then distributed
across four buckets based on the upper two bits. Similar to the 1-bit example, the
order of the keys within each bucket is preserved from the previous iteration.
Preserving the order of the keys within each bucket ensures that after the second
iteration the keys are fully sorted by all four bits.

Similar to the 1-bit example, each iteration can be parallelized by assigning a
thread to each key in the input list to find the key’s destination index and store it
in the output list. To optimize for memory coalescing, each thread block can sort
its keys locally in the shared memory and then write the local buckets to global
memory in a coalesced manner. An example of how to parallelize a radix sort
iteration and optimize it for memory coalescing using the shared memory is
shown in Fig. 13.8.

The key distinction between the 1-bit example and the 2-bit example is how
to separate the keys into four buckets instead of two. For the local sort inside of
each thread block, a 2-bit radix sort is performed by applying two consecutive 1-
bit radix sort iterations. Each of these 1-bit iterations requires its own exclusive
scan operation. However, these operations are local to the thread block, so there
is no coordination across thread blocks in between the two 1-bit iterations. In gen-
eral, for an r-bit radix, r local 1-bit iterations are needed to sort the keys into 2r

local buckets.

FIGURE 13.7

Radix sort example with 2-bit radix.
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After the local sort is complete, each thread block must find the position of
each of its local buckets in the global output list. Fig. 13.9 shows an example of
how the destination of each local bucket can be found for the 2-bit radix example.
The procedure is similar to the 1-bit example in Fig. 13.6. Each thread block
stores the number of keys in each local bucket to a table, which is then scanned
to obtain the global position of each of the local buckets. The main distinction
from the 1-bit radix example is that each thread block has four local buckets
instead of two, so the exclusive scan operation is performed on a table with four
rows instead of two. In general, for an r-bit radix the exclusive scan operation is
performed on a table with 2r rows.

We have seen that the advantage of using a larger radix is that it reduces the
number of iterations that are needed to fully sort the keys. Fewer iterations means
fewer grid launches, global memory accesses, and global exclusive scan opera-
tions. However, using a larger radix also has disadvantages. The first disadvan-
tage is that each thread block has more local buckets where each bucket has
fewer keys. As a result, each thread block has more distinct global memory
bucket sections that it needs to write to and less data that it needs to write to each
section. For this reason, the opportunities for memory coalescing decrease as the
radix gets larger. The second disadvantage is that the table on which the global
exclusive scan is applied gets larger with a larger radix. For this reason, the over-
head of the global exclusive scan increases as the radix increases. Therefore the
radix cannot be made arbitrarily large. The choice of radix value must strike a
balance between the number of iterations on one hand and the memory coalescing
behavior as well as the overhead of the global exclusive scan on the other hand.
We leave the implementation of radix sort with a multibit radix as an exercise for
the reader.

FIGURE 13.8

Parallelizing a radix sort iteration and optimizing it for memory coalescing using the shared
memory for a 2-bit radix.
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13.6 Thread coarsening to improve coalescing
The price of parallelizing radix sort across many thread blocks is poor coalescing
of writes to global memory. Each thread block has its own local buckets that it
writes to global memory. Having more thread blocks means having fewer keys
per thread block, which means that the local buckets are going to be smaller,
exposing fewer opportunities for coalescing when they are written to global mem-
ory. If these thread blocks were to be executed in parallel, the price of poor coa-
lescing might be worth paying. However, if these thread blocks were to be
serialized by the hardware, the price would be paid unnecessarily.

To address this issue, thread coarsening can be applied whereby each thread is
assigned to multiple keys in the input list instead of just one. Fig. 13.10 illustrates
how thread coarsening can be applied to a radix sort iteration for the 2-bit radix
example. In this case, each thread block is responsible for more keys than was the
case in the example in Fig. 13.8. Consequently, the local buckets of each thread
block are larger, exposing more opportunities for coalescing. When we compare

FIGURE 13.9

Finding the destination of each block’s local buckets for a 2-bit radix.
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Fig. 13.8 and Fig. 13.10, it is clear that in Fig. 13.10 it is more likely the case
that consecutive threads write to consecutive memory locations.

Another price for parallelizing radix sort across many thread blocks is the
overhead of performing the global exclusive scan to identify the destination of
each thread block’s local buckets. Recall from Fig. 13.9 that the size of the
table on which the exclusive scan is performed is proportional to the number of
buckets as well as the number of blocks. By applying thread coarsening, the num-
ber of blocks is reduced, thereby reducing the size of the table and the overhead
of the exclusive scan operation. We leave the application of thread coarsening to
radix sort as an exercise for the reader.

13.7 Parallel merge sort
Radix sort is suitable when keys are to be sorted in lexicographic order. However,
if keys are to be sorted on the basis of a complex order defined by a complex
comparison operator, then radix sort is not suitable, and a comparison-based sort-
ing algorithm is necessary. Moreover, an implementation of a comparison-based
sorting algorithm can be more easily adapted to different types of keys by simply
changing the comparison operator. In contrast, adapting an implementation of a
noncomparison-based sorting algorithm such as radix sort to different types of
keys may involve creating different versions of the implementation. These consid-
erations may make comparison-based sorting more favorable in some cases,
despite their higher complexity.

One comparison-based sort that is amenable to parallelization is merge sort.
Merge sort works by dividing the input list into segments, sorting each segment

FIGURE 13.10

Radix sort for a 2-bit radix with thread coarsening to improve memory coalescing.
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(using merge sort or another sorting algorithm), and then performing an ordered
merge of the sorted segments.

Fig. 13.11 shows an example of how merge sort can be parallelized. Initially,
the input list is divided into many segments, each of which are sorted indepen-
dently, using some efficient sorting algorithm. After that, every pair of segments
is merged into a single segment. This process is repeated until all the keys
become part of the same segment.

At each stage, the computation can be parallelized by performing different
merge operations in parallel as well as parallelizing within merge operations. In
the earlier stages, there are more independent merge operations that can be per-
formed in parallel. In the later stages, there are fewer independent merge opera-
tions, but each merge operation merges more keys, exposing more parallelism
within the merge operation. For example, in Fig. 13.11 the first merge stage con-
sists of four independent merge operations. Hence our grid of eight thread blocks
may assign two thread blocks to process each merge operation in parallel. In the
next stage, there are only two merge operations, but each operation merges twice
the number of keys. Hence our grid of eight thread blocks may assign four thread
blocks to process each merge operation in parallel. We saw how to parallelize a
merge operation in Chapter 12, Merge. We leave the implementation of merge
sort based on parallel merge as an exercise for the reader.

FIGURE 13.11

Parallelizing merge sort.

30713.7 Parallel merge sort



13.8 Other parallel sort methods
The algorithms outlined above are only two of the many possible ways to sort
data in parallel. In this section, we briefly outline some of the other methods that
may be of interest to readers.

Among the simplest of parallel sorting methods is the odd-even transposition
sort. It begins by comparing, in parallel, every even/odd pair of keys, namely,
those with indices k and k + 1 starting at the first even index. The position of the
keys is swapped if the key at position k + 1 is less than the key at position k.
This step is then repeated for every odd/even pair of keys, namely, those with
indices k and k + 1 starting at the first odd index. These alternating phases are
repeated until both are completed with no keys needing to be swapped. The odd-
even transposition sort is quite similar to sequential bubble sort algorithms, and
like bubble sort, it is inefficient on large sequences, since it may perform O N2

! "

work of a sequence of N elements.
Transposition sort uses a fixed pattern of comparisons and swaps elements

when they are out of order. It is easily parallelized because each step compares
pairs of keys that do not overlap. There is an entire category of sorting methods
that use fixed patterns of comparison to sort sequences, often in parallel. These
methods are usually referred to as sorting networks, and the best-known parallel
sorting networks are Batcher’s bitonic sort and odd-even merge sort (Batcher,
1968). Batcher’s algorithms operate on sequences of fixed length and are more
efficient than odd-even transposition sort, requiring only O N ! log2N

! "
compari-

sons for a sequence of N elements. Even though the cost of these algorithms is
asymptotically worse than the O N ! logNð Þ cost of methods such as merge sort, in
practice, they are often the most efficient methods on small sequences because of
their simplicity.

Most comparison-based parallel sorts that do not use the fixed set of compari-
sons that are typical of sorting networks can be divided into two broad categories.
The first partitions the unsorted input into tiles, sorts each tile, and then performs
most of its work in combining these tiles to form the output. The merge sort that
we described in this chapter is an example of such an algorithm; most of the
work is performed in the merge tree that combines sorted tiles. The second cate-
gory focuses most of its work on partitioning the unsorted sequence, such that
combining partitions is relatively trivial. Sample sort algorithms (Frazer and
McKellar, 1970) are the typical example of this category. Sample sort begins by
selecting p2 1 keys from the input (e.g., at random), sorts them, and then uses
them to partition the input into p buckets such that all keys in bucket k are greater
than all keys in any bucket j , k and less than all in any bucket j . k. This step
is analogous to a p-way generalization of the two-way partitioning that is per-
formed by quicksort. Having partitioned the data in this way, each bucket can be
sorted independently, and the sorted output is formed by merely concatenating the
buckets in order. Sample sort algorithms are often the most efficient choice for
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extremely large sequences in which data must be distributed across multiple phys-
ical memories, including across the memories of multiple GPUs in a single node.
In practice, oversampling the keys is common, since modest oversampling will
result in balanced partitions with high probability (Blelloch et al., 1991).

Just as merge sort and sample sort typify bottom-up and top-down strategies
for comparison-based sorting, radix sorting algorithms can be designed to follow
a bottom-up or top-down strategy. The radix sort that we described in this chapter
is more completely described as an LSB or, more generally, least significant digit
(LSD), radix sort. The successive steps of the algorithm start with the LSD of the
key and work toward the most significant digit (MSD). A MSD radix sort adopts
the opposite strategy. It begins by using the MSD to partition the input into buck-
ets that correspond to the possible values of that digit. This same partitioning is
then applied independently in each bucket, using the next MSD. Upon reaching
the LSD, the entire sequence will have been sorted. Like sample sort, MSD radix
sort is often a better choice for very large sequences. Whereas the LSD radix sort
requires global shuffling of data in each step, each step of MSD radix sort oper-
ates on progressively more localized regions of the data.

13.9 Summary
In this chapter we have seen how to sort keys (and their associated values) on
GPUs in parallel. In most of the chapter we focused on radix sort, which sorts
keys by distributing them across buckets. The distribution process is repeated for
each digit in the key while preserving the order from the previous digit’s iteration
to ensure that the keys are sorted according to all the digits at the end. Each itera-
tion is parallelized by assigning a thread to each key in the input list and having
that thread find the destination of the key in the output list, which involves collab-
orating with other threads to perform an exclusive scan operation.

One of the key challenges in optimizing radix sort is achieving coalesced
memory accesses in writing the keys to the output list. An important optimization
to enhance coalescing is to have each thread block perform a local sort to local
buckets in shared memory and then write each local bucket to global memory in
a coalesced manner. Another optimization is to increase the size of the radix to
reduce the number of iterations that are needed and thus the number of grids that
are launched. However, the radix size should not be increased too much because
it would result in poorer coalescing and more overhead from the global exclusive
scan operation. Finally, applying thread coarsening is effective at improving
memory coalescing as well as reducing the overhead of the global exclusive scan.

Radix sort has the advantage of having computation complexity that is lower
than O Nlog Nð Þð Þ. However, radix sort only works for limited types of keys such
as integers. Therefore we also look at the parallelization of comparison-based
sorting that is applicable to general types of keys. A class of comparison-based
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sorting algorithms that is amenable to parallelization is merge sort. Merge sort
can be parallelized by performing independent merge operations of different input
segments in parallel as well as parallelizing within each merge operation, as we
saw in Chapter 12, Merge.

The process of implementing and optimizing parallel sorting algorithms on
GPUs is complex, and the average user is more likely to use a parallel sorting
library for GPUs, such as Thrust (Bell and Hoberock, 2012), than to implement
one’s own sorting kernels from scratch. Nevertheless, parallel sorting remains an
interesting case study of the tradeoffs that go into optimizing parallel patterns.

Exercises
1. Extend the kernel in Fig. 13.4 by using shared memory to improve memory

coalescing.
2. Extend the kernel in Fig. 13.4 to work for a multibit radix.
3. Extend the kernel in Fig. 13.4 by applying thread coarsening to improve

memory coalescing.
4. Implement parallel merge sort using the parallel merge implementation from

Chapter 12, Merge.
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Our next parallel pattern is sparse matrix computation. In a sparse matrix the
majority of the elements are zeros. Storing and processing these zero elements
are wasteful in terms of memory capacity, memory bandwidth, time, and
energy. Many important real-world problems involve sparse matrix computation.
Because of the importance of these problems, several sparse matrix storage for-
mats and their corresponding processing methods have been proposed and
widely used in the field. All these methods employ some type of compaction
techniques to avoid storing or processing zero elements at the cost of introduc-
ing some level of irregularity into the data representation. Unfortunately, such
irregularity can lead to underutilization of memory bandwidth, control flow
divergence, and load imbalance in parallel computing. It is therefore important
to strike a good balance between compaction and regularization. Some storage
formats achieve a higher level of compaction at a high level of irregularity.
Others achieve a more modest level of compaction while keeping the represen-
tation more regular. The relative performance of a parallel computation using
each storage format is known to be heavily dependent on the distribution of
nonzero elements in the sparse matrices. Understanding the wealth of work in
sparse matrix storage formats and their corresponding parallel algorithms gives
a parallel programmer important background for addressing compaction and
regularization challenges in solving related problems.
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14.1 Background
A sparse matrix is a matrix in which most of the elements are zeros. Sparse matri-
ces arise in many scientific, engineering, and financial modeling problems. For
example, matrices can be used to represent the coefficients in a linear system of
equations. Each row of the matrix represents one equation of the linear system. In
many science and engineering problems the large number of variables and equa-
tions that are involved are sparsely coupled. That is, each equation involves only a
small number of variables. This is illustrated in Fig. 14.1, in which each column of
the matrix corresponds to the coefficients for a variable: column 0 for x0, column 1
for x1, and so on. For example, the fact that row 0 has nonzero elements in columns
0 and 1 indicates that only variables x0 and x1 are involved in equation 0. It should
be clear that variables x0, x2, and x3 are present in equation 1, variables x1 and x2
are present in equation 2, and only variable x3 is present in equation 3. Sparse
matrices are typically stored in a format, or representation, that avoids storing zero
elements.

Matrices are often used in solving linear systems of N equations of N vari-
ables in the form of A!X + Y = 0, where A is an N 3 N matrix, X is a vector of
N variables, and Y is a vector of N constant values. The objective is to solve for
the X variable values that will satisfy all the equations. An intuitive approach is
to invert the matrix so that X = A21 ! (2Y). This can be done for matrices of
moderate size through methods such as Gaussian elimination. While it is theoreti-
cally possible to use these methods to solve the equations that are represented by
sparse matrices, the sheer size of many sparse matrices can overwhelm this intui-
tive approach. Furthermore, an inverse sparse matrix is often much larger than the
original because the inversion process tends to generate many additional nonzero
elements, which are called “fill-ins.” As a result, it is often impractical to com-
pute and store the inverse matrix in solving real-world problems.

Linear systems of equations represented in sparse matrices can be better
solved with an iterative approach. When the sparse matrix A is positive-definite
(i.e., xTAx . 0 for all nonzero vectors x in Rn), one can use conjugate gradient
methods to iteratively solve the corresponding linear system with guaranteed con-
vergence to a solution (Hestenes and Stiefel, 1952). Conjugate gradient methods
guess a solution for X, and perform A!X + Y, and see whether the result is close

FIGURE 14.1

A simple sparse matrix example.
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to a 0 vector. If not, we can use a gradient vector formula to refine the guessed X
and perform another iteration of A!X + Y. These iterative solution methods for
linear systems are closely related to the iterative solution methods for differential
equations that we introduced in Chapter 8, Stencil.

The most time-consuming part of iterative approaches to solving linear sys-
tems of equations is in the evaluation of A!X + Y, which is a sparse matrix-
vector multiplication and accumulation. Fig. 14.2 shows a small example of
matrix-vector multiplication and accumulation in which A is a sparse matrix. The
dark squares in A represent nonzero elements. In contrast, both X and Y are typi-
cally dense vectors. That is, most of the elements of X and Y hold nonzero
values. Owing to its importance, standardized library function interfaces have
been created to perform this operation under the name SpMV (sparse matrix vec-
tor multiplication and accumulation). We will use SpMV to illustrate the impor-
tant tradeoffs between different storage formats in parallel sparse matrix
computation.

The main objective of the different sparse matrix storage formats is to remove
all the zero elements from the matrix representation. Removing all the zero ele-
ments not only saves storage but also eliminates the need to fetch these zero ele-
ments from memory and perform useless multiplication or addition operations
with them. This can significantly reduce the consumption of memory bandwidth
and computation resources.

There are various design considerations that go into the structure of a sparse
matrix storage formats. The following is a list of some of the key considerations:

• Space efficiency (or compaction): the amount of memory capacity that is
required to represent the matrix using the storage format

• Flexibility: the extent to which the storage format makes it easy to modify the
matrix by adding or removing nonzeros

• Accessibility: the kinds of data that the storage format makes it easy to access
• Memory access efficiency: the extent to which the storage format enables an

efficient memory access pattern for a particular computation (one facet of
regularization)

• Load balance: the extent to which the storage format balances the load across
different threads for a particular computation (another facet of regularization)

FIGURE 14.2

A small example of matrix-vector multiplication and accumulation.
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Throughout this chapter we will introduce different storage formats and exam-
ine how these storage formats compare in each of these design considerations.

14.2 A simple SpMV kernel with the COO format
The first sparse matrix storage format that we will discuss is the coordinate list
(COO) format. The COO format is illustrated in Fig. 14.3. COO stores the non-
zero values in a one-dimensional array, which is shown as the value array. Each
nonzero element is stored with both its column index and its row index. We have
both colIdx and rowIdx arrays to accompany the value array. For example, A
[0,0] of our small example is stored at the entry with index 0 in the value array
(1 in value[0]) with both its column index (0 in colIdx[0]) and its row index
(0 in rowIdx[0]) stored at the same position in the other arrays.

COO completely removes all zero elements from the storage. It does incur
storage overhead by introducing the colIdx and rowIdx arrays. In our small
example, in which the number of zero elements is not much larger than the num-
ber of nonzero elements, the storage overhead is actually more than the space that
is saved by not storing the zero elements. However, it should be clear that for
sparse matrices in which the vast majority of elements are zeros, the overhead
that is introduced is far less than the space that is saved by not storing zeros. For
example, in a sparse matrix in which only 1% of the elements are nonzero values,
the total storage for the COO representation, including all the overhead, would be
around 3% of the space required to store both zero and nonzero elements.

One approach to performing SpMV in parallel using a sparse matrix repre-
sented in the COO format is to assign a thread to each nonzero element in the
matrix. An example of this parallelization approach is illustrated in Fig. 14.4, and
the corresponding code is shown in Fig. 14.5. In this approach, each thread identi-
fies the index of the nonzero element for which it is responsible (line 02) and
ensures that it is within bounds (line 03). Next, the thread identifies the row index
(line 04), column index (line 05), and value (line 06) of the nonzero element for
which it is responsible from the rowIdx, colIdx, and value arrays, respectively. It
then looks up the input vector value at the location corresponding to the column
index, multiplies it by the nonzero value, then accumulates the result to the output

FIGURE 14.3

Example of the coordinate list (COO) format.
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value at the corresponding row index (line 07). An atomic operation is used for
the accumulation because multiple threads may update the same output element,
as is the case with the first two threads mapped to row 0 of the matrix in
Fig. 14.4. It should be obvious that any SpMV computation code will reflect the
storage format assumed. Therefore we add the storage format to the name of the
kernel to clarify the combination that was used. We also refer to the SpMV code
in Fig. 14.5 as SpMV/COO.

Now we examine the COO format under the design considerations listed in
Section 14.1: space efficiency, flexibility, accessibility, memory access efficiency,
and load balance. For space efficiency we defer the discussion for later, when we
have introduced other formats. For flexibility we observe that we can arbitrarily
reorder the elements in a COO format without losing any information as long as
we reorder the rowIdx, colIdx, and value arrays in the same way. This is illus-
trated by using our small example in Fig. 14.6, where we have reordered the

FIGURE 14.4

Example of parallelizing SpMV with the COO format.

FIGURE 14.5

A parallel SpMV/COO kernel.

FIGURE 14.6

Reordering coordinate list (COO) format.

31514.2 A simple SpMV kernel with the COO format



elements of rowIdx, colIdx, and value. Now value[0] actually contains an ele-
ment from row 1 and column 3 of the original sparse matrix. Because we have
also shifted the row index and column index values along with the data value, we
can correctly identify this element’s location in the original sparse matrix.

In the COO format, we can process the elements in any order we want. The
correct y element that is identified by rowIdx[i] will receive the correct contri-
bution from the product of value[i] and x[colIdx[i]]. If we make sure that
we somehow perform this operation for all elements of value, we will calculate
the correct final answer regardless of the order in which we process these
elements.

The reader may ask why we would want to reorder these elements. One reason
is that the data may be read from a file that does not provide the nonzeros in a
particular order, and we still need a consistent way of representing the data. For
this reason, COO is a popular choice of storage format when the matrix is initially
being constructed. Another reason is that not having to provide any ordering
enables nonzeros to be added to the matrix by simply appending entries at the
end of each of the three arrays. For this reason, COO is a popular choice of stor-
age format when the matrix is modified throughout the computation. We will see
another benefit of the flexibility of the COO format in Section 14.5.

The next design consideration that we look at is accessibility. COO makes it
easy to access, for a given nonzero, its corresponding row index and column
index. This feature of COO enables parallelization across nonzero elements
in SpMV/COO. On the other hand, COO does not make it easy to access, for a
given row or column, all the nonzeros in that row or column. For this reason,
COO would not be a good choice of format if the computation required a row-
wise or column-wise traversal of the matrix.

For memory access efficiency we refer to the physical view in Fig. 14.4 for
how the threads access the matrix data from memory. The access pattern is such
that consecutive threads access consecutive elements in each of the three arrays
that form the COO format. Therefore accesses to the matrix by SpMV/COO are
coalesced.

For load balance we recall that each thread is responsible for a single nonzero
value. Hence all threads are responsible for the same amount of work, which
means that we do not expect any control divergence to take place in SpMV/COO
except for the threads at the boundary.

The main drawback of SpMV/COO is the need to use atomic operations. The
reason for using atomic operations is that multiple threads are assigned to non-
zeros in the same row and therefore need to update the same output value. The
atomic operations can be avoided if all the nonzeros in the same row are assigned
to the same thread such that the thread will be the only one updating the corre-
sponding output value. However, recall that the COO format does not give this
accessibility. In the COO format, it is not easy to access, for a given row, all the
nonzeros in that row. In the next section we will see another storage format that
provides this accessibility.
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14.3 Grouping row nonzeros with the CSR format
In the previous section we saw that parallelizing SpMV with the COO format suf-
fers from the use of atomic operations because the same output value is updated
by multiple threads. These atomic operations can be avoided if the same thread is
responsible for all the nonzeros of a row, which requires the storage format to
give us the ability to access, for a given row, all the nonzeros in that row. This
kind of accessibility is provided by the compressed sparse row (CSR) storage
format.

Fig. 14.7 illustrates how the matrix in Fig. 14.1 can be stored by using the
CSR format. Like the COO format, CSR stores the nonzero values in a one-
dimensional array shown as the value array in Fig. 14.2. However, these nonzero
values are grouped by row. For example, we store the nonzero elements of row 0
(1 and 7) first, followed by the nonzero elements of row 1 (5, 3, and 9), followed
by the nonzero elements of row 2 (2 and 8), and finally the nonzero elements of
row 3 (6).

Also similar to the COO format, CSR stores for each nonzero element in the
value array its column index at the same position in the colIdx array. Naturally,
these column indices are grouped by row as the values are. In Fig. 14.7 the non-
zeros of each row are sorted by their column indices in increasing order. Sorting
the nonzeros in this way results in favorable memory access patterns, but it is not
necessary. The nonzeros within each row may not necessarily be sorted by their
column index, and the kernel that is presented in this section will still work cor-
rectly. When the nonzeros within each row are sorted by their column index, the
layout of the value array (and the colIdx array) for CSR can be viewed as the
row-major layout of the matrix after eliminating all the zero elements.

The key distinction between the COO format and the CSR format is that the
CSR format replaces the rowIdx array with a rowPtrs array that stores the starting
offset of each row’s nonzeros in the colIdx and value arrays. In Fig. 14.7 we
show a rowPtrs array whose elements are the indices for the beginning locations
of each row. That is, rowPtrs[0] indicates that row 0 starts at location 0 of the
value array, rowPtrs[1] indicates that row 1 starts at location 2, and so on. Note
that rowPtrs[4] stores the starting location of a nonexistent “row 4.” This is for
convenience, as some algorithms need to use the starting location of the next row

FIGURE 14.7

Example of compressed sparse row (CSR) format.
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to delineate the end of the current row. This extra marker gives a convenient way
to locate the ending location of row 3.

To perform SpMV in parallel using a sparse matrix represented in the CSR
format, one can assign a thread to each row of the matrix. An example of this par-
allelization approach is illustrated in Fig. 14.8, and the corresponding code is
shown in Fig. 14.9. In this approach, each thread identifies the row that it is
responsible for (line 02) and ensures that it is within bounds (line 03). Next, the
thread loops through the nonzero elements of its row to perform the dot product
(lines 05"06). To find the row’s nonzero elements, the thread looks up their start-
ing index in the rowPtrs array (rowPtrs[row]). It also finds where they end by
looking up the starting index of the next row’s nonzeros (rowPtrs[row + 1]). For
each nonzero element the thread identifies its column index (line 07) and value
(line 08). It then looks up the input value at the location corresponding to the col-
umn index, multiplies it by the nonzero value, and accumulates the result to a
local variable sum (line 09). The sum variable is initialized to 0 before the dot
product loop begins (line 04) and is accumulated to the output vector after the
loop is over (line 11). Notice that the accumulation of the sum to the output vector
does not require atomic operations. The reason is that each row is traversed by a
single thread, so each thread will write to a distinct output value, as illustrated in
Fig. 14.8.

FIGURE 14.8

Example of parallelizing SpMV with the CSR format.

FIGURE 14.9

A parallel SpMV/CSR kernel.
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Now we examine the CSR format under the design considerations listed in
Section 14.1: space efficiency, flexibility, accessibility, memory access efficiency,
and load balance. For space efficiency we observe that CSR is more space effi-
cient than COO. COO requires three arrays, rowIdx, colIdx, and value, each of
which has as many elements as the number of nonzeros. In contrast, CSR requires
only two arrays, colIdx and value, with as many elements as the number of non-
zeros. The third array, rowPtrs, requires only as many elements as the number of
rows plus one, which makes it substantially smaller than the rowIdx array in
COO. This difference makes CSR more space efficient than COO.

For flexibility we observe that CSR is less flexible than COO when it comes
to adding nonzeros to the matrix. In COO a nonzero can be added by simply
appending it to the ends of the arrays. In CSR a nonzero to be added must be
added to the specific row to which it belongs. This means that the nonzero ele-
ments of the later rows would all need to be shifted, and the row pointers of the
later rows would all need to be incremented accordingly. For this reason, adding
nonzeros to a CSR matrix is substantially more expensive than adding them to a
COO matrix.

For accessibility, CSR makes it easy to access, for a given row, the nonzeros
in that row. This feature of CSR enables parallelization across rows in SpMV/
CSR, which is what allows it to avoid atomic operations in comparison with
SpMV/COO. In a real-world sparse matrix application there are usually thousands
to millions of rows, each of which contains tens to hundreds of nonzero elements.
This makes parallelization across rows seem very appropriate: There are many
threads, and each thread has a substantial amount of work. On the other hand, for
some applications the sparse matrix may not have enough rows to fully utilize all
the GPU threads. In these kinds of applications the COO format can extract more
parallelism, since there are more nonzeros than rows. Moreover, CSR does not
make it easy to access, for a given column, all the nonzeros in that column. Thus
an application may need to maintain an additional, more column-oriented layout
of the matrix if easy access to all elements of a column is needed.

For memory access efficiency we refer to the physical view in Fig. 14.8 for
how the threads access the matrix data from memory during the first iteration of
the dot product loop. The access pattern is such that consecutive threads access
data elements that are far apart. In particular, threads 0, 1, 2, and 3 will access
value[0], value[2], value[5], andvalue[7], respectively, in the first iteration of
their dot product loop. They will then access value[1], value[3], value[6], and
no data, respectively, in the second iteration, and so on. As a result, the accesses
to the matrix by the parallel SpMV/CSR kernel in Fig. 14.9 are not coalesced.
The kernel does not make efficient use of memory bandwidth.

For load balance we observe that the SpMV/CSR kernel can potentially have
significant control flow divergence in all warps. The number of iterations that are
taken by a thread in the dot product loop depends on the number of nonzero ele-
ments in the row that is assigned to the thread. Since the distribution of nonzero
elements among rows can be random, adjacent rows can have very different
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number of nonzero elements. As a result, there can be widespread control flow
divergence in most or even all warps.

In summary, we have seen that the advantages of CSR over COO are that it has
better space efficiency and that it gives us access to all the nonzeros of a row,
allowing us to avoid atomic operations by parallelizing the computation across
rows in SpMV/CSR. On the other hand, the disadvantages of CSR over COO are
that it provides less flexibility with adding nonzero elements to the sparse matrix, it
exhibits a memory access pattern that is not amenable to coalescing, and it causes
high control divergence. In the following sections we discuss additional storage for-
mats that sacrifice some space efficiency as compared to CSR in order to improve
memory coalescing and reduce control divergence. Note that converting from COO
to CSR on the GPU is an excellent exercise for the reader, using multiple funda-
mental parallel computing primitives, including histogram and prefix sum.

14.4 Improving memory coalescing with the ELL format
The problem of noncoalesced memory accesses can be addressed by applying
data padding and transposition on the sparse matrix data. These ideas were used
in the ELL storage format, whose name came from the sparse matrix package in
ELLPACK, a package for solving elliptic boundary value problems (Rice and
Boisvert, 1984).

A simple way to understand the ELL format is to start with the CSR format,
as is illustrated in Fig. 14.10. From a CSR representation that groups nonzeros by
row, we determine the rows with the maximal number of nonzero elements. We

FIGURE 14.10

Example of ELL storage format.

320 CHAPTER 14 Sparse matrix computation



then add padding elements to all other rows after the nonzero elements to make
them the same length as the maximal rows. This makes the matrix a rectangular
matrix. For our small sparse matrix example we determine that row 1 has the
maximal number of elements. We then add one padding element to row 0, one
padding element to row 2, and two padding elements to row 3 to make all them
the same length. These additional padding elements are shown as squares with an
! in Fig. 14.11. Now the matrix has become a rectangular matrix. Note that the
colIdx array also needs to be padded the same way to preserve its correspon-
dence to the values array.

We can now lay the padded matrix out in column-major order. That is, we
will place all elements of column 0 in consecutive memory locations, followed by
all elements of column 1, and so on. This is equivalent to transposing the rectan-
gular matrix in the row-major order used by the C language. In terms of our small
example, after the transposition, value[0] through value[3] now contain 1, 5, 2,
6, which are the 0th elements of all rows. This is illustrated in the bottom left por-
tion of Fig. 14.10. Similarly, colIdx[0] through colIdx[3] contain the column
positions of 0th elements of all rows. Note that we no longer need the rowPtrs,
since the beginning of row r is now simply value[r]. With the padded elements
it is also very easy to move from the current element of row r to the next element
by simply adding the number of rows in the original matrix to the index. For
example, the 0th element of row 2 is in value[2], and the next element is in
value[2+4], which is equivalent to value[6], where 4 is the number of rows in
the original matrix in our small example.

We illustrate how to parallelize SpMV using the ELL format in Fig. 14.11,
along with a parallel SpMV/ELL kernel in Fig. 14.12. Like CSR, each thread is
assigned to a different row of the matrix (line 02), and a boundary check ensures
that the row is within bounds (line 03). Next, a dot product loop goes through the
nonzero elements of each row (line 05). Note that the SpMV/ELL kernel assumes
that the input matrix has a vector ellMatrix.nnzPerRow that records the number
of nonzeros in each row and allows each thread to iterate only through the non-
zeros in its assigned row. If the input matrix does not have this vector, the kernel
can simply iterate through all elements, including the padding elements, and still

FIGURE 14.11

Example of parallelizing SpMV with the ELL format.
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execute correctly, since the padding elements have value zero and will not affect
the output values. Next, since the compressed matrix is stored in column-major
order, the index i of the nonzero element in the one-dimensional array can be
found by multiplying the iteration number t by the number of rows and adding
the row index (line 06). Next, the thread loads the column index (line 07) and
nonzero value (line 08) from the ELL matrix arrays. Note that the accesses to
these arrays are coalesced because the index i is expressed in terms of row, which
itself is expressed in terms of threadIdx.x, meaning that consecutive threads
have consecutive array indices. Next, the thread looks up the input value, multi-
plies it by the nonzero value, and accumulates the result to a local variable sum
(line 09). The sum variable is initialized to 0 before the dot product loop begins
(line 04) and is accumulated to the output vector after the loop is over (line 11).

Now we examine the ELL format under the design considerations listed in
Section 14.1: space efficiency, flexibility, accessibility, memory access efficiency,
and load balance. For space efficiency we observe that the ELL format is less space
efficient than the CSR format, owing to the space overhead of the padding ele-
ments. The overhead of the padding elements highly depends on the distribution of
nonzeros in the matrix. In situations in which one or a small number of rows have
an exceedingly large number of nonzero elements, the ELL format will result in an
excessive number of padded elements. Consider our sample matrix; in the ELL for-
mat we have replaced a 4 3 4 matrix with a 4 3 3 matrix, and with the overhead
from the column indices we are storing more data than was contained in the origi-
nal 4 3 4 matrix. For a more realistic example, if a 1000 3 1000 sparse matrix
has 1% of its elements of nonzero value, then on average, each row has ten nonzero
elements. With the overhead, the size of a CSR representation would be about 2%
of the uncompressed total size. Assume that one of the rows has 200 nonzero
values while all other rows have less than 10. Using the ELL format, we will pad
all other rows to 200 elements. This makes the ELL representation about 40% of
the uncompressed total size and 20 times larger than the CSR representation. This
calls for a method to control the number of padded elements when we convert from
the CSR format to the ELL format, which we will introduce in the next section.

FIGURE 14.12

A parallel SpMV/ELL kernel.
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For flexibility we observe that ELL is more flexible than CSR when it comes
to adding nonzeros to the matrix. In CSR, adding a nonzero to a row would
require shifting all the nonzeros of the subsequent rows and incrementing their
row pointers. However, in ELL, as long as a row does not have the maximum
number of nonzeros in the matrix, a nonzero can be added to the row by simply
replacing a padding element with an actual value.

For accessibility, ELL gives us the accessibility of both CSR and COO. We
saw in Fig. 14.12 how ELL allows us to access, given a row index, the nonzeros
of that row. However, ELL also allows us to access, given the index of a nonzero
element, the row and column index of that element. The column index is trivial
to find, as it can be accessed from the colIdx array at the same location i.
However, the row index can also be accessed, owing to the regular nature of the
padded matrix. Recall that the index i of the nonzero element was calculated in
Fig. 14.9 as follows:

Therefore if instead i is given and we would like to find row, it can be found
as follows:

because row is always less than ellMatrix.numRows, so row%ellMatrix.numRows
is simply row itself. This accessibility of ELL allows parallelization across both
rows as well as nonzero elements.

For memory access efficiency we refer to the physical view in Fig. 14.11 for
how the threads access the matrix data from memory during the first iteration of
the dot product loop. The access pattern is such that consecutive threads access
consecutive data elements. With the elements arranged in column-major order, all
adjacent threads are now accessing adjacent memory locations, enabling memory
coalescing and thus making more efficient use of memory bandwidth. Some GPU
architectures, especially in the older generations, have more strict address align-
ment rules for memory coalescing. One can force each iteration of the SpMV/
ELL kernel to be fully aligned to architecturally specified alignment units such as
64 bytes by adding a few rows to the end of the matrix before transposition.

For load balance we observe that SpMV/ELL still exhibits the same load
imbalance as SpMV/CSR because each thread still loops over the number of non-
zeros in the row for which it is responsible. Therefore ELL does not address the
problem of control divergence.

In summary, the ELL format improves on the CSR format by allowing more flex-
ibility to add nonzeros by replacing padding elements, better accessibility, and, most
important, more opportunities for memory coalescing in SpMV/ELL. However, ELL
has worse space efficiency than CSR, and the control divergence of SpMV/ELL is as
bad as that of SpMV/CSR. In the next section we will see how we can improve on
the ELL format to address the problems of space efficiency and control divergence.
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14.5 Regulating padding with the hybrid ELL-COO format
The problems of low space efficiency and control divergence in the ELL format
are most pronounced when one or a small number of rows have exceedingly large
number of nonzero elements. If we have a mechanism to “take away” some ele-
ments from these rows, we can reduce the number of padded elements in ELL
and also reduce the control divergence. The answer lies in an important use case
for the COO format.

The COO format can be used to curb the length of rows in the ELL format.
Before we convert a sparse matrix to ELL, we can take away some of the elements
from the rows with exceedingly large numbers of nonzero elements and place the
elements into a separate COO storage. We can use SpMV/ELL on the remaining
elements. With the excess elements removed from the extra-long rows, the number
of padded elements for other rows can be significantly reduced. We can then use a
SpMV/COO to finish the job. This approach of employing two formats to collabo-
ratively complete a computation is often referred to as a hybrid method.

Fig. 14.13 illustrates how an example matrix can be represented using the
hybrid ELL-COO format. We see that in the ELL format alone, rows 1 and 6
have the largest number of nonzero elements, causing the other rows to have
excessive padding. To address this issue, we remove the last three nonzero ele-
ments of row 2 and the last two nonzero elements of row 6 from the ELL repre-
sentation and move them into a separate COO representation. By removing these
elements, we reduce the maximal number of nonzero elements among all rows in
the small sparse matrix from 5 to 2. As shown in Fig. 14.13, we reduced the num-
ber of padded elements from 22 to 3. More important, all threads now need to
take only two iterations.

The reader may wonder whether the additional work done to separate COO
elements from an ELL format could incur too much overhead. The answer is that
it depends. In situations in which a sparse matrix is used in only one SpMV cal-
culation, this extra work can indeed incur significant overhead. However, in many
real-work applications, the SpMV is performed on the same sparse kernel

FIGURE 14.13

Hybrid ELL-COO example.
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repeatedly in an iterative solver. In each iteration of the solver the x and y vectors
vary, but the sparse matrix remains the same, since its elements correspond to the
coefficients of the linear system of equations being solved, and these coefficients
do not change from iteration to iteration. Therefore the work done to produce
both the hybrid ELL and COO representation can be amortized across many itera-
tions. We will come back to this point in the next section.

Now we examine the hybrid ELL-COO format under the design considerations
listed in Section 14.1: space efficiency, flexibility, accessibility, memory access
efficiency, and load balance. For space efficiency we observe that the hybrid
ELL-COO format has better space efficiency than the ELL format alone because
it reduces the amount of padding used.

For flexibility we observe that the hybrid ELL-COO format is more flexible
than just ELL when it comes to adding nonzeros to the matrix. With ELL we can
add nonzero elements by replacing padding elements for rows that have them.
With hybrid COO-ELL we can also add nonzeros by replacing padding elements.
However, we can also append nonzeros to the COO part of the format if the row
does not have any padding elements that can be replaced in the ELL part.

For accessibility we observe that the hybrid ELL-COO format sacrifices
accessibility compared to the ELL format alone. In particular, it is not always
possible to access, given a row index, all the nonzeros in that row. Such an
access can be done only for the rows that fit in the ELL part of the format. If the
row overflows to the COO part, then finding all the nonzeros of the row would
require searching the COO part, which is expensive.

For memory access efficiency, both SpMV/ELL and SpMV/COO exhibit coa-
lesced memory accesses to the sparse matrix. Hence their combination will also
result in a coalesced access pattern.

For load balance, removing nonzeros from the long rows in the ELL part of
the format reduces control divergence of the SpMV/ELL kernel. These nonzeros
are placed in the COO part of the format, which does not affect control diver-
gence, since SpMV/COO does not exhibit control divergence, as we have seen.

In summary, the hybrid ELL-COO format, in comparison with the ELL format
alone, improves space efficiency by reducing padding, provides more flexibility
for adding nonzeros to the matrix, retains the coalesced memory access pattern,
and reduces control divergence. The price that is paid is a small limitation in
accessibility, in which it becomes more difficult to access all the nonzeros of a
given row if that row overflows to the COO part of the format.

14.6 Reducing control divergence with the JDS format
We have seen that the ELL format can be used to achieve coalesced memory
access patterns when accessing the sparse matrix in SpMV and that the hybrid
ELL-COO format can further improve space efficiency by reducing padding and
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can also reduce control divergence. In this section we will look at another format
that can achieve coalesced memory access patterns in SpMV and also reduce con-
trol divergence without the need to perform any padding. The idea is to sort the
rows according to their length, say, from the longest to the shortest. Since the
sorted matrix looks largely like a triangular matrix, the format is often referred to
as the jagged diagonal storage (JDS) format.

Fig. 14.14 illustrates how a matrix can be stored using the JDS format. First,
the nonzeros are grouped by row, as in the CSR and ELL formats. Next, the rows
are sorted by the number of nonzeros in each row in increasing order. As we sort
the rows, we typically maintain an additional row array that preserves the index
of the original row. Whenever we exchange two rows in the sorting process, we
also exchange the corresponding elements of the row array. Thus we can always
keep track the original position of all rows. After the rows have been sorted, the
nonzeros in the value array and their corresponding column indices in the colIdx
array are stored in column-major order. A iterPtr array is added to track the
beginning of the nonzero elements for each iteration.

Fig. 14.15 illustrates how SpMV can be parallelized by using the JDS format.
Each thread is assigned to a row of the matrix and iterates through the nonzeros
of that row, performing the dot product along the way. The threads use the
iterPtr array to identify where the nonzeros of each iteration begin. It should
be clear from the physical view on the right side of Fig. 14.15, which depicts the
first iteration for each thread, that the threads access the nonzeros and column
indices in the JDS arrays in a coalesced manner. The code for implementing
SpMV/JDS is left as an exercise.

In another variation of the JDS format, the rows, after being sorted, can be
partitioned into sections of rows. Since the rows have been sorted, all rows in a

FIGURE 14.14

Example of JDS storage format.
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section will likely have more or less uniform numbers of nonzero elements. We
can then generate the ELL representation for each section. Within each section
we need to pad the rows only to match the row with the maximum number of ele-
ments in that section. This would reduce the number of padding elements substan-
tially in comparison to one ELL representation of the entire matrix. In this
variation of JDS, the iterPtr array would not be needed. Instead, one would
need a section pointer array that points to the beginning of each ELL section only
(as opposed to each iteration).

The reader should ask whether sorting rows will result in incorrect solutions to
the linear system of equations. Recall that we can freely reorder equations of a lin-
ear system without changing the solution. As long as we reorder the y elements
along with the rows, we are effectively reordering the equations. Therefore we will
end up with the correct solution. The only extra step is to reorder the final solution
back to the original order using the row array. The other question is whether sorting
will incur significant overhead. The answer is similar to what we saw in the hybrid
ELL-COO method. As long as the SpMV/JDS kernel is used in an iterative solver,
one can afford to perform such sorting as well as the reordering of the final solution
x elements and amortize the cost among many iterations of the solver.

Now we examine the ELL format under the design considerations listed in
Section 14.1: space efficiency, flexibility, accessibility, memory access efficiency,
and load balance. For space efficiency the JDS format is more space efficient
than the ELL format because it avoids padding. The variant of JDS that uses ELL
for each section has padding, but the amount of padding is less than that with the
ELL format.

For flexibility the JDS format does not make it easy to add nonzeros to a row
of the matrix. It is even less flexible than the CSR format because adding non-
zeros changes the sizes of the rows, which may require rows to be resorted.

For accessibility the JDS format is similar to the CSR format in that it allows
us to access, given a row index, the nonzero elements of that row. On the other
hand, it does not make it easy to access, given a nonzero, the row index and col-
umn index of that nonzero, as the COO and ELL formats do.

FIGURE 14.15

Example of parallelizing SpMV with the JDS format.
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For memory access efficiency the JDS format is like the ELL format in that it
stores the nonzeros in column-major order. Accordingly, the JDS format enables
accesses to the sparse matrix to happen in a coalesced manner. Because JDS does
not require padding, the starting location of memory accesses in each iteration, as
shown in the physical view of Fig. 14.15, can vary in arbitrary ways. As a result,
there is no simple, inexpensive way to force all iterations of the SpMV/JDS kernel to
start at architecturally specified alignment boundaries. This lack of option to force
alignment can make memory accesses for JDS less efficient than those in ELL.

For load balance, the unique feature of JDS is that it sorts the rows of the
matrix such that threads in the same warp are likely to iterate over rows of similar
length. Therefore JDS is effective at reducing control divergence.

14.7 Summary
In this chapter we presented sparse matrix computation as an important parallel
pattern. Sparse matrices are important in many real-world applications that
involve modeling complex phenomenon. Furthermore, sparse matrix computation
is a simple example of data-dependent performance behavior of many large
real-world applications. Due to the large amount of zero elements, compaction
techniques are used to reduce the amount of storage, memory accesses, and com-
putation performed on these zero elements. Using this pattern, we introduce the
concept of regularization using hybrid methods and sorting/partitioning. These
regularization methods are used in many real-world applications. Interestingly,
some of the regularization techniques reintroduce zero elements into the com-
pacted representations. We use hybrid methods to mitigate the pathological cases
in which we could introduce too many zero elements. Readers are referred to Bell
and Garland (2009) and encouraged to experiment with different sparse datasets
to gain more insight into the data-dependent performance behavior of the various
SpMV kernels presented in this chapter.

It should be clear that both the execution efficiency and memory bandwidth
efficiency of the parallel SpMV kernels depend on the distribution of the input
data matrix. This is quite different from most of the kernels we have studied so
far. However, such data-dependent performance behavior is quite common in
real-world applications. This is one of the reasons why parallel SpMV is such an
important parallel pattern. It is simple, yet it illustrates an important behavior in
many complex parallel applications.

We would like to make an additional remark on the performance of sparse
matrix computation as compared to dense matrix computation. In general, the
FLOPS ratings that are achieved by either CPUs or GPUs are much lower for
sparse matrix computation than for dense matrix computation. This is especially
true for SpMV, in which there is no data reuse in the sparse matrix. The OP/B is
essentially 0.25, limiting the achievable FLOPS rate to a small fraction of the
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peak performance. The various formats are important for both CPUs and GPUs,
since both are limited by memory bandwidth when performing SpMV. People are
often surprised by the low FLOPS rating of this type of computation on both
CPUs and GPUs in the past. After reading this chapter, you should be no longer
be surprised.

Exercises
1. Consider the following sparse matrix:

1 0 7 0
0 0 8 0
0 4 3 0
2 0 0 1

Represent it in each of the following formats: (1) COO, (2) CSR, (3) ELL,
and (4) JDS.

2. Given a sparse matrix of integers with m rows, n columns, and z nonzeros,
how many integers are needed to represent the matrix in (1) COO, (2) CSR,
(3) ELL, and (4) JDS? If the information that is provided is not enough to
allow an answer, indicate what information is missing.

3. Implement the code to convert from COO to CSR using fundamental parallel
computing primitives, including histogram and prefix sum.

4. Implement the host code for producing the hybrid ELL-COO format and using
it to perform SpMV. Launch the ELL kernel to execute on the device, and
compute the contributions of the COO elements on the host.

5. Implement a kernel that performs parallel SpMV using a matrix stored in the
JDS format.
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A graph is a data structure that represents the relationships between enti-
ties. The entities involved are represented as vertices, and the relations are
represented as edges. Many important real-world problems are naturally
formulated as large-scale graph problems and can benefit from massively
parallel computation. Prominent examples include social networks and driv-
ing direction map services. There are multiple strategies for parallelizing
graph computations, some of which are centered on processing vertices in
parallel, while others are centered on processing edges in parallel. Graphs
are intrinsically related to sparse matrices. Thus graph computation can
also be formulated in terms of sparse matrix operations. However, one can
often improve the efficiency of graph computation by exploiting properties
that are specific to the type of graph computation being performed. In this
chapter we will focus on graph search, a graph computation that underlies
many real-world applications.
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15.1 Background
A graph data structure represents the relations between entities. For example, in
social media, the entities are users, and the relations are connections between
users. For another example, in driving direction map services, the entities are
locations, and the relations are the roadways between the locations. Some rela-
tions are bidirectional, such as friend connections in a social network. Other rela-
tions are directional, such as one-way streets in a road network. In this chapter
we will focus on directional relations. Bidirectional relations can be represented
with two directional relations, one for each direction.

Fig. 15.1 shows an example of a simple graph with directional edges. A direc-
tional relation is represented as an arrowed edge going from a source vertex to a
destination vertex. We assign a unique number to each vertex, also called the ver-
tex id. There is one edge going from vertex 0 to vertex 1, one edge going from
vertex 0 to vertex 2, and so on.

An intuitive representation of a graph is an adjacency matrix. If there is an
edge going from a source vertex i to a destination vertex j, the value of element
A[i][j] of the adjacency matrix is 1. Otherwise, it is 0. Fig. 15.2 shows the adja-
cency matrix for the simple graph in Fig. 15.1. We see that A[1][3] and A[4][5]
are 1, since there are edges going from vertex 1 to vertex 3. For clarity we leave
the 0 values out of the adjacency matrix. That is, if an element is empty, its value
is understood to be 0.

If a graph with N vertices is fully connected, that is, every vertex is connected
with all other vertices, each vertex should have (N2 1) outgoing edges. There
should be a total of N(N2 1) edges, since there is no edge going from a vertex to
itself. For example, if our nine-vertex graph were fully connected, there should be
eight edges going out of each vertex. There should be a total of 72 edges.
Obviously, our graph is much less connected; each vertex has three or fewer out-
going edges. Such a graph is referred to as being sparsely connected. That is, the
average number of outgoing edges from each vertex is much smaller than N2 1.

FIGURE 15.1

A simple graph example with 9 vertices and 15 directional edges.
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At this point, the reader has most likely made the correct observation that sparsely
connected graphs can probably benefit from a sparse matrix representation. As we
have seen in Chapter 14, Sparse Matrix Computation, using a compressed representa-
tion of the matrix can drastically reduce the amount of storage required and the num-
ber of wasted operations on the zero elements. Indeed, many real-world graphs are
sparsely connected. For example, in a social network such as Facebook, Twitter, or
LinkedIn, the average number of connections for each user is much smaller than the
total number of users. This makes the number of nonzero elements in the adjacency
matrix much smaller than the total number of elements.

Fig. 15.3 shows three representations of our simple graph example using three
different storage formats: compressed sparse row (CSR), compressed sparse col-
umn (CSC), and coordinate (COO). We will refer to the row indices and pointers
arrays as the src and srcPtrs arrays, respectively, and the column indices and
pointers arrays as the dst and dstPtrs arrays, respectively. If we take CSR as an
example, recall that in a CSR representation of a sparse matrix each row pointer
gives the starting location for the nonzero elements in a row. Similarly, in a CSR
representation of a graph, each source vertex pointer (srcPtrs) gives the starting
location of the outgoing edges of the vertex. For example, srcPtrs[3]=7 gives
the starting location of the nonzero elements in row 3 of the original adjacency
matrix. Also, srcPtrs[4]=9 gives the starting location of the nonzero elements in
row 4 of the original matrix. Thus we expect to find the nonzero data for row 3 in
data[7] and data[8] and the column indices (destination vertices) for these ele-
ments in dst[7] and dst[8]. These are the data and column indices for the two
edges leaving vertex 3. The reason we call the column index array dst is that the
column index of an element in the adjacency matrix gives the destination vertex
of the represented edge. In our example, we see that the destination of the two
edges for source vertex 3 are dst[7]=4 and dst[8]=8. We leave it as an exercise
to the reader to draw similar analogies for the CSC and COO representations.

FIGURE 15.2

Adjacency matrix representation of the simple graph example.
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Note that the data array in this example is unnecessary. Since the value of all
its elements is 1, we do not need to store it. We can make the data implicit, that
is, whenever a nonzero element exists, we can just assume that it is 1. For exam-
ple, the existence of each column index in the destination array of a CSR repre-
sentation implies that an edge exists. However, in some applications the
adjacency matrix may store additional information about the relationship, such as
the distance between two locations or the date on which two social network users
became connected. In those applications the data array will need to be explicitly
stored.

Sparse representation can lead to significant savings in storing the adjacency
matrix. For our example, assuming that the data array can be eliminated, the
CSR representation requires storage for 25 locations versus the 92=81 locations if
we stored the entire adjacency matrix. For real-life problems in which a very
small fraction of the adjacency matrix elements are nonzero, the savings can be
tremendous.

FIGURE 15.3

Three sparse matrix representations of the adjacency matrix: (A) CSR, (B) CSC, (C) COO.
COO, coordinate; CSC, compressed sparse column; CSR, compressed sparse row.
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Different graphs may have drastically different structures. One way to charac-
terize these structures is to look at the distribution of the number of edges that are
connected to each vertex (the vertex degree). A road network, expressed as a
graph, would have a relatively uniform degree distribution with a low average
degree per vertex because each road intersection (vertex) would typically have
only a low number of roads connected to it. On the other hand, a graph of Twitter
followers, in which each incoming edge represents a “follow,” would have a
much broader distribution of vertex degrees, with a large-degree vertex represent-
ing a popular Twitter user. The structure of the graph may influence the choice of
algorithm to implement a particular graph application.

Recall from Chapter 14, Sparse Matrix Computation, that each sparse
matrix representation gives different accessibility to the represented data.
Hence the choice of which representation to use for the graph has implica-
tions for which information about the graph is made easily accessible to the
graph traversal algorithm. The CSR representations give easy access to the
outgoing edges of a given vertex. The CSC representation gives easy access
to the incoming edges of a given vertex. The COO representation gives easy
access to the source and destination vertices of a given edge. Therefore the
choice of the graph representation goes hand-in-hand with the choice of the
graph traversal algorithm. We demonstrate this concept throughout this chap-
ter by examining different parallel implementations of breadth-first search, a
widely used graph search computation.

15.2 Breadth-first search
An important graph computation is breadth-first search (BFS). BFS is often used
to discover the shortest number of edges that one needs to traverse to go from
one vertex to another vertex of the graph. In the graph example in Fig. 15.1 we
may need to find all the alternative routes that we could take going from the loca-
tion represented by vertex 0 to that represented by vertex 5. By visual inspection
we see that there are three possible paths: 0-1-3-4-5, 0-1-4-5, and
0-2-5, with 0-2-5 being the shortest. There are different ways of summa-
rizing the outcome of a BFS traversal. One way is, given a vertex that is referred
to as the root, to label each vertex with the smallest number of edges that one
needs to traverse to go from the root to that vertex.

Fig. 15.4(A) shows the desired BFS result with vertex 0 as the root. Through
one edge, we can get to vertices 1 and 2. Thus we label these vertices as belong-
ing to level 1. By traversing another edge, we can get to vertices 3 (through ver-
tex 1), 4 (through vertex 1), 5 (through vertex 2), 6 (through vertex 2), and 7
(through vertex 2). Thus we label these vertices as belonging to level 2. Finally,
by traversing one more edge, we can get to vertex 8 (through any of vertices 3, 4,
or 6).
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The BFS result would be quite different with another vertex as the root.
Fig. 15.4(B) shows the desired result of BFS with vertex 2 as the root. The level
1 vertices are 5, 6, and 7. The level 2 vertices are 8 (through vertex 6) and 0
(through vertex 7). Only vertex 1 is at level 3 (through vertex 0). Finally, the
level 4 vertices are 3 and 4 (both through vertex 1). It is interesting to note that
the outcome is quite different for each vertex even though we moved the root to a
vertex that is only one edge away from the original root.

One can view the labeling actions of BFS as constructing a BFS tree that is
rooted in the root node of the search. The tree consists of all the labeled vertices
and only the edges traversed during the search that go from a vertex at one level
to vertices at the next level.

Once we have all the vertices labeled with their level, we can easily find a
path from the root vertex to any of the vertices where the number of edges trav-
eled is equivalent to the level. For example, in Fig. 15.4(B), we see that vertex 1
is labeled as level 3, so we know that the smallest number of edges between the
root (vertex 2) and vertex 1 is 3. If we need to find the path, we can simply start
from the destination vertex and trace back to the root. At each step, we select the
predecessor whose level is one less than that of the current vertex. If there are
multiple predecessors with the same level, we can randomly pick one. Any vertex
thus selected would give a sound solution. The fact that there are multiple prede-
cessors to choose from means that there are multiple equally good solutions to
the problem. In our example we can find a shortest path from vertex 2 to vertex 1
by starting from vertex 1, choosing vertex 0, then vertex 7, and then vertex 2.
Therefore a solution path is 2-7-0-1. This of course assumes that each

FIGURE 15.4

(A and B) Two examples of breadth-first search results for two different root vertices. The
labels adjacent to each vertex indicate the number of hops (depth) from the root vertex.
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vertex has a list of the source vertices of all the incoming edges so that one can
find the predecessors of a given vertex.

Fig. 15.5 shows an important application of BFS in computer-aided design
(CAD). In designing an integrated circuit chip, there are many electronic compo-
nents that need to be connected to complete the design. The connectors of these
components are called net terminals. Fig. 15.5(A) shows two such net terminals
as round dots; one belongs to a component in the upper left part, and the other
belongs to another component in the lower right part of the chip. Assume that the
design requires that these two net terminals be connected. This is done by run-
ning, or routing, a wire of a given width from the first net terminal to the second
net terminal.

The routing software represents the chip as a grid of wiring blocks in which
each block can potentially serve as a piece of a wire. A wire can be formed by
extending in either the horizontal or the vertical direction. For example, the black
J-shape in the lower half of the chip consists of 21 wiring blocks and connects
three net terminals. Once a wiring block is used as part of a wire, it can no longer
be used as part of any other wires. Furthermore, it forms a blockage for wiring
blocks around it. No wires can be extended from a used block’s lower neighbor
to its upper neighbor or from its left neighbor to its right neighbor, and so on.
Once a wire is formed, all other wires must be routed around it. Routing blocks
can also be occupied by circuit components, which impose the same blockage
constraint as when they are used as part of a wire. This is why the problem is
called a maze routing problem. The previously formed circuit components and
wires form a maze for the wires that have yet to be formed. The maze routing
software finds a route for each additional wire given all the constraints from the
previously formed components and wires.

The maze routing application represents the chip as a graph. The routing
blocks are vertices. An edge from vertex i to vertex j indicates that one can
extend a wire from block i to block j. Once a block is occupied by a wire or a
component, it is either marked as a blockage vertex or taken away from the
graph, depending on the design of the application. Fig. 15.5 shows that the

(A)Breadth-first search (B) Identifying a routing path

FIGURE 15.5

Maze routing in integrated circuits—an application for breadth-first search: (A) breadth-
first search, (B) identifying a routing path.
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application solves the maze routing problem with a BFS from the root net termi-
nal to the target net terminal. This is done by starting with the root vertex and
labeling the vertices into levels. The immediate vertical or horizontal neighbors (a
total of four) that are not blockages are marked as level 1. We see that all four
neighbors of the root are reachable and will be marked as level 1. The neighbors
of level 1 vertices that are neither blockages nor visited by the current search will
be marked as level 2. The reader should verify that there are four level 1 vertices,
eight level 2 vertices, twelve level 3 vertices, and so on in Fig. 15.5(A). As we can
see, the BFS essentially forms a wavefront of vertices for each level. These wave-
fronts start small for level 1 but can grow very large very quickly in a few levels.

Fig. 15.5(B) shows that once the BFS is complete, we can form a wire by
finding a shortest path from the root to the target. As was explained earlier, this
can be done by starting with the target vertex and tracing back to the predecessors
whose levels are one lower than that of the current vertex. Whenever there are
multiple predecessors that have equivalent levels, there are multiple routes that
are of the same length. One could design heuristics to choose the predecessor in a
way that minimizes the difficulty of constraints for wires that have yet to be
formed.

15.3 Vertex-centric parallelization of breadth-first search
A natural way to parallelize graph algorithms is to perform operations on different
vertices or edges in parallel. In fact, many parallel implementations of graph algo-
rithms can be classified as vertex-centric or edge-centric. A vertex-centric parallel
implementation assigns threads to vertices and has each thread perform an opera-
tion on its vertex, which usually involves iterating over the neighbors of that ver-
tex. Depending on the algorithm, the neighbors of interest may be those that are
reachable via the outgoing edges, the incoming edges, or both. In contrast, an
edge-centric parallel implementation assigns threads to edges and has each thread
perform an operation on its edge, which usually involves looking up the source
and destination vertices of that edge. In this section we look at two different
vertex-centric parallel implementations of BFS: one that iterates over outgoing
edges and one that iterates over incoming edges. In the next section we look at an
edge-centric parallel implementation of BFS and compare.

The parallel implementations that we will look at follow the same strategy
when it comes to iterating over levels. In all implementations we start by labeling
the root vertex as belonging to level 0. We then call a kernel to label all the
neighbors of the root vertex as belonging to level 1. After that, we call a kernel to
label all the unvisited neighbors of the level 1 vertices as belonging to level 2.
Then we call a kernel to label all the unvisited neighbors of the level 2 vertices as
belonging to level 3. This process continues until no new vertices are visited and
labeled.
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The reason a separate kernel is called for each level is that we need to wait until
all vertices in a previous level have been labeled before proceeding to label vertices
in the next level. Otherwise, we risk labeling a vertex incorrectly. In the rest of this
section we focus on implementing the kernel that is called for each level. That is,
we will implement a BFS kernel that, given a level, labels all the vertices that
belong to that level on the basis of the labels of the vertices from previous levels.

The first vertex-centric parallel implementation assigns each thread to a vertex
to iterate over the vertex’s outgoing edges (Harish and Narayanan, 2007). Each
thread first checks whether its vertex belongs to the previous level. If so, the
thread will iterate over the outgoing edges to label all the unvisited neighbors as
belonging to the current level. This vertex-centric implementation is often referred
to as a top-down or push implementation.1 Since this implementation requires
accessibility to the outgoing edges of a given source vertex (i.e., nonzero elements
of a given row of the adjacency matrix), a CSR representation is needed.

Fig. 15.6 shows the kernel code for the vertex-centric push implementation,
and Fig. 15.7 shows an example of how this kernel performs a traversal from
level 1 (previous level) to level 2 (current level). The kernel starts by assigning a
thread to each vertex (line 03), and each thread ensures that its vertex id is within
bounds (line 04). Next, each thread checks whether its vertex belongs to the pre-
vious level (line 05). In Fig. 15.7, only the threads assigned to vertices 1 and 2
will pass this check. The threads that pass this check will then use the CSR
srcPtrs array to locate the outgoing edges of the vertex and iterate over them
(lines 06!07). For each outgoing edge, the thread finds the neighbor at the desti-
nation of the edge using the CSR dst array (line 08). The thread then checks

FIGURE 15.6

A vertex-centric push (top-down) BFS kernel. BFS, breadth-first search.

1 If we are constructing a BFS tree, this implementation can be seen as assigning threads to parent
vertices in the BFS tree in search of their children, hence the name top-down. This terminology
assumes that the root of the tree is on the top and the leaves of the tree are at the bottom. Push
refers to each active vertex’s action of pushing its depth via its outgoing edges to all its neighbors.
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whether the neighbor has not been visited by checking whether the neighbor has
been assigned to a level yet (line 09).

Initially, all vertex levels are set to UINT_MAX, which means that the vertex is
unreachable. Hence a neighbor has not been visited if its level is still UINT_MAX. If
the neighbor has not been visited, the thread will label the neighbor as belonging to
the current level (line 10). Finally, the thread will set a flag indicating that a new
vertex has been visited (line 11). This flag is used by the launching code to decide
whether a new grid needs to be launched to process a new level or we have reached
the end. Note that multiple threads can assign 1 to the flag and the code will still
execute correctly. This property is termed idempotence. In an idempotent operation
such as this one, we do not need an atomic operation because the threads are not
performing a read-modify-write operation. All threads write the same value, so the
outcome is the same regardless of how many threads perform a write operation.

The second vertex-centric parallel implementation assigns each thread to a
vertex to iterate over the vertex’s incoming edges. Each thread first checks
whether its vertex has been visited yet. If not, the thread will iterate over the
incoming edges to find whether any of the neighbors belong to the previous level.
If the thread finds a neighbor that belongs to the previous level, the thread will
label its vertex as belonging to the current level. This vertex-centric implementa-
tion is often referred to as a bottom-up or pull implementation.2 Since this

FIGURE 15.7

Example of a vertex-centric push BFS traversal from level 1 to level 2. BFS, breadth-first
search.

2 If we are constructing a BFS tree, this implementation can be seen as assigning threads to poten-
tial child vertices in the BFS tree in search of their parents, hence, the name bottom-up. Pull refers
to each vertex’s action of reaching back to its predecessors and pulling active status from them.
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implementation requires accessibility to the incoming edges of a given destination
vertex (i.e., nonzero elements of a given column of the adjacency matrix), a CSC
representation is needed.

Fig. 15.8 shows the kernel code for the vertex-centric pull implementation,
and Fig. 15.9 shows an example of how this kernel performs a traversal from
level 1 to level 2. The kernel starts by assigning a thread to each vertex (line 03),
and each thread ensures that its vertex id is within bounds (line 04). Next, each
thread checks whether its vertex has not been visited yet (line 05). In Fig. 15.9
the threads that are assigned to vertices 3!8 all pass this check. The threads that

FIGURE 15.8

A vertex-centric pull (bottom-up) BFS kernel. BFS, breadth-first search.

FIGURE 15.9

Example of a vertex-centric pull (bottom-up) traversal from level 1 to level 2.

34115.3 Vertex-centric parallelization of breadth-first search



pass this check will then use the CSC dstPtrs array to locate the incoming edges
of the vertex and iterate over them (lines 06!07). For each incoming edge, the
thread finds the neighbor at the source of the edge, using the CSC src array (line
08). The thread then checks whether the neighbor belongs to the previous level
(line 09). If so, the thread will label its vertex as belonging to the current level
(line 10) and set a flag indicating that a new vertex has been visited (line 11).
The thread will also break out of the loop (line 12).

The justification for breaking out of the loop is as follows. For a thread to
establish that its vertex is in the current level, it is sufficient for the thread’s ver-
tex to have one neighbor in the previous level. Therefore it is unnecessary for the
thread to check the rest of the neighbors. Only the threads whose vertices do not
have any neighbors in the previous level will end up looping over the entire
neighbors list. In Fig. 15.9, only the thread assigned to vertex 8 will loop over the
entire neighbor list without breaking.

In comparing the push and pull vertex-centric parallel implementations, there
are two key differences to consider that have an important impact on perfor-
mance. The first difference is that in the push implementation a thread loops over
its vertex’s entire neighbor list, whereas in the pull implementation a thread may
break out of the loop early. For graphs with low degree and low variance, such as
road networks or CAD circuit models, this difference may not be important
because the neighbor lists are small and similar in size. However, for graphs with
high degree and high variance, such as social networks, the neighbor lists are
long and may vary substantially in size, resulting in high load imbalance and con-
trol divergence across threads. For this reason, breaking out of the loop early can
provide substantial performance gains by reducing load imbalance and control
divergence.

The second important difference between the two implementations is that in
the push implementation, only the threads assigned to vertices in the previous
level loop over their neighbor list, whereas in the pull implementation, all the
threads assigned to any unvisited vertex loop over their neighbor list. For earlier
levels, we expect to have a relatively small number of vertices per level and a
large number of unvisited vertices in the graph. For this reason, the push imple-
mentation typically performs better for earlier levels because it iterates over fewer
neighbor lists. In contrast, for later levels, we expect to have more vertices per
level and fewer unvisited vertices in the graph. Moreover, the chances of finding
a visited neighbor in the pull approach and exiting the loop early are higher. For
this reason the pull implementation typically performs better for later levels.

Based on this observation, a common optimization is to use the push imple-
mentation for earlier levels, then switch to the pull implementation for later
levels. This approach is often referred to as a direction-optimized implementation.
The choice of when to switch between implementations usually depends on the
type of graph. Low-degree graphs usually have many levels, and it takes a while
to reach a point at which the levels have many vertices and a substantial number
of vertices have already been visited. On the other hand, high-degree graphs
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usually have few levels, and the levels grow very quickly. The high-degree graphs
in which it takes only a few levels to get from any vertex to any other vertex are
usually referred to as small world graphs. Because of these properties, switching
from the push implementation to the pull implementation usually happens much
earlier for high-degree graphs than for low-degree graphs.

Recall that the push implementation uses a CSR representation of the graph,
whereas the pull implementation uses a CSC representation of the graph. For this
reason, if a direction-optimized implementation is to be used, both a CSR and a
CSC representation of the graph need to be stored. In many applications, such as
social networks or maze routing, the graph is undirected, which means that the
adjacency matrix is symmetric. In this case, the CSR and CSC representations are
equivalent, so only one of them needs to be stored and can be used by both
implementations.

15.4 Edge-centric parallelization of breadth-first search
In this section we look at an edge-centric parallel implementation of BFS. In this
implementation, each thread is assigned to an edge. It checks whether the source
vertex of the edge belongs to the previous level and whether the destination ver-
tex of the edge is unvisited. If so, it labels the unvisited destination vertex as
belonging to the current level. Since this implementation requires accessibility to
the source and destination vertices of a given edge (i.e., row and column indices
of a given nonzero), a COO data structure is needed.

Fig. 15.10 shows the kernel code for the edge-centric parallel implementation,
while Fig. 15.11 shows an example of how this kernel performs a traversal from
level 1 to level 2. The kernel starts by assigning a thread to each edge (line 03),
and each thread ensures that its edge id is within bounds (line 04). Next, each
thread finds the source vertex of its edge, using the COO src array (line 05), and
checks whether the vertex belongs to the previous level (line 06). In Fig. 15.11,
only the threads assigned to the outgoing edges of vertices 1 and 2 will pass this

FIGURE 15.10

An edge-centric BFS kernel. BFS, breadth-first search.
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check. The threads that pass this check will locate the neighbor at the destination
of the edge, using the COO dst array (line 07), and check whether the neighbor
has not been visited (line 08). If not, the thread will label the neighbor as belong-
ing to the current level (line 09). Finally, the thread will set a flag indicating that
a new vertex has been visited (line 10).

The edge-centric parallel implementation has two main advantages over the
vertex-centric parallel implementations. The first advantage is that the edge-
centric implementation exposes more parallelism. In the vertex-centric implemen-
tations, if the number of vertices is small, we may not launch enough threads to
fully occupy the device. Since a graph typically has many more edges than verti-
ces, the edge-centric implementation can launch more threads. Hence the edge-
centric implementation is usually more suitable for small graphs.

The second advantage of the edge-centric implementation over the vertex-
centric implementations is that it exhibits less load imbalance and control diver-
gence. In the vertex-centric implementations, each thread iterates over a different
number of edges, depending on the degree of the vertex to which it is assigned.
In contrast, in the edge-centric implementation, each thread traverses only one
edge. With respect to the vertex-centric implementation the edge-centric imple-
mentation is an example of rearranging the mapping of threads to work or data to
reduce control divergence, as was discussed in Chapter 6, Performance
Considerations. The edge-centric implementation is usually more suitable for
high-degree graphs that have a large variation in the degrees of vertices.

The disadvantage of the edge-centric implementation is that it checks every
edge in the graph. In contrast, the vertex-centric implementations can skip an
entire edge list if the implementation determines that a vertex is not relevant for

FIGURE 15.11

Example of an edge-centric traversal from level 1 to level 2.
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the level. For example, consider the case in which some vertex v has n edges and
is not relevant for a particular level. In the edge-centric implementation our
launch includes n threads, one for each edge, and each of these threads indepen-
dently inspects v and discovers that the edge is irrelevant. In contrast, in the
vertex-centric implementations, our launch includes only one thread for v that
skips all n edges after inspecting v once to determine that it is irrelevant. Another
disadvantage of the edge-centric implementation is that it uses COO, which
requires more storage space to store the edges compared to CSR and CSC, which
are used by the vertex-centric implementations.

The reader may have noticed that the code examples in the previous section
and this one resemble our implementations of sparse matrix-vector multiplication
(SpMV) in Chapter 14, Sparse Matrix Computation. In fact, with a slightly differ-
ent formulation we can express a BFS level iteration entirely in terms of SpMV
and a few other vector operations, in which the SpMV operation is the dominant
operation. Beyond BFS, many other graph computations can also be formulated
in terms of sparse matrix computations, using the adjacency matrix (Jeremy and
Gilbert, 2011). Such a formulation is often referred to as the linear-algebraic
formulation of graph problems and is the focus of an API specification known as
GraphBLAS. The advantage of linear-algebraic formulations is that they can
leverage mature and highly optimized parallel libraries for sparse linear algebra to
perform graph computations. The disadvantage of linear-algebraic formulations is
that they may miss out on optimizations that take advantage of specific properties
of the graph algorithm in question.

15.5 Improving efficiency with frontiers
In the approaches that we discussed in the previous two sections, we checked
every vertex or edge in every iteration for their relevance to the level in question.
The advantage of this strategy is that the kernels are highly parallel and do not
require any synchronization across threads. The disadvantage is that many unnec-
essary threads are launched and a lot of wasted work is performed. For example,
in the vertex-centric implementations we launch a thread for every vertex in the
graph, many of which simply discover that the vertex is not relevant and do not
perform any work. Similarly, in the edge-centric implementation we launch a
thread for every edge in the graph; many of the threads simply discover that the
edge is not relevant and do not perform any useful work.

In this section we aim to avoid launching unnecessary threads and eliminate
the redundant checks that they perform in each iteration. We will focus on the
vertex-centric push approach that was presented in Section 15.3. Recall that in the
vertex-centric push approach, for each level, a thread is launched for each vertex
in the graph. The thread checks whether its vertex is in the previous level, and if
so, it labels all the vertex’s unvisited neighbors as belonging to the current level.
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On the other hand, the threads whose vertices are not in the current level do not
do anything. Ideally, these threads should not even be launched. To avoid launch-
ing these threads, we can have the threads processing the vertices in the previous
level collaborate to construct a frontier of the vertices that they visit. Hence for
the current level, threads need to be launched only for the vertices in that frontier
(Luo et al., 2010).

Fig. 15.12 shows the kernel code for the vertex-centric push implementation
that uses frontiers, and Fig. 15.13 shows an example of how this kernel performs
a traversal from level 1 to level 2. A key distinction from the previous approach is
that the kernel takes additional parameters to represent the frontiers. The additional
parameters include the arrays prevFrontier and currFrontier to store the vertices
in the previous and current frontiers, respectively. They also include pointers to the
counters numPrevFrontier and numCurrFrontier that store the number of vertices
in each frontier. Note that the flag for indicating that a new vertex has been visited
is no longer needed. Instead, the host can tell that the end has been reached when
the number of vertices in the current frontier is 0.

We now look at the body of the kernel in Fig. 15.12. The kernel starts by
assigning a thread to each element of the previous frontier (line 05), and each
thread ensures that its element id is within bounds (line 06). In Fig. 15.13, only
vertices 1 and 2 are in the previous frontier, so only two threads are launched.
Each thread loads its element from the previous frontier, which contains the index
of the vertex that it is processing (line 07). The thread uses the CSR srcPtrs
array to locate the outgoing edges of the vertex and iterate over them (lines
08!09). For each outgoing edge, the thread finds the neighbor at the destination
of the edge, using the CSR dst array (line 10). The thread then checks whether
the neighbor has not been visited; if not, it labels the neighbor as belonging to the
current level (line 11). An important distinction from the previous implementation
is that an atomic operation is used to perform the checking and labeling operation.
The reason will be explained shortly. If a thread succeeds in labeling the

FIGURE 15.12

A vertex-centric push (top-down) BFS kernel with frontiers. BFS, breadth-first search.

346 CHAPTER 15 Graph traversal



neighbor, it must add the neighbor to the current frontier. To do so, the thread
increments the size of the current frontier (line 12) and adds the neighbor to the
corresponding location (line 13). The size of the current frontier needs to be
incremented atomically (line 12) because multiple threads may be incrementing it
simultaneously, so we need to ensure that no race condition takes place.

We now turn our attention to the atomic operation on line 11. As a thread iter-
ates through the neighbors of its vertex, it checks whether the neighbor has been
visited; if not, it labels the neighbor as belonging to the current level. In the
vertex-centric push kernel without frontiers in Fig. 15.12, this checking and label-
ing operation is performed without atomic operations (09!10). In that implemen-
tation, if multiple threads check the old label of the same unvisited neighbor
before any of them are able to label it, multiple threads may end up labeling the
neighbor. Since all threads are labeling the neighbor with the same label (the
operation is idempotent), it is okay to allow the threads to label the neighbor
redundantly. In contrast, in the frontier-based implementation in Fig. 15.12, each
thread not only labels the unvisited neighbor but also adds it to the frontier.
Hence if multiple threads observe the neighbor as unvisited, they will all add the
neighbor to the frontier, causing it to be added multiple times. If the neighbor is
added multiple times to the frontier, it will be processed multiple times in the
next level, which is redundant and wasteful.

FIGURE 15.13

Example of a vertex-centric push (top-down) BFS traversal from level 1 to level 2 with
frontiers. BFS, breadth-first search.

34715.5 Improving efficiency with frontiers



To avoid having multiple threads observe the neighbor as unvisited, the check-
ing and updating of the neighbor’s label should be performed atomically. In other
words, we must check whether the neighbor has not been visited, and if not, label
it as part of the current level all in one atomic operation. An atomic operation
that can perform all of these steps is compare-and-swap, which is provided by the
atomicCAS intrinsic function. This function takes three parameters: the address of
the data in memory, the value to which we want to compare the data, and the
value to which we would like to set the data if the comparison succeeds. In our
case (line 11), we would like to compare level[neighbor] to UINT_MAX to check
whether the neighbor is unvisited and set level[neighbor] to currLevel if the
comparison succeeds. As with other atomic operations, atomicCAS returns the old
value of the data that was stored. Therefore we can check whether the compare-
and-swap operation succeeded by comparing the return value of atomicCAS with
the value that atomicCAS compared with, which in this case is UINT_MAX.

As was mentioned earlier, the advantage of this frontier-based approach over the
approach described in the previous section is that it reduces redundant work by only
launching threads to process the relevant vertices. The disadvantage of this frontier-
based approach is the overhead of the long-latency atomic operations, especially when
these operations contend on the same data. For the atomicCAS operation (line 11) we
expect the contention to be moderate because only some threads, not all, will visit
the same unvisited neighbor. However, for the atomicAdd operation (line 12) we expect
the contention to be high because all threads increment the same counter to add vertices
to the same frontier. In the next section we look at how this contention can be reduced.

15.6 Reducing contention with privatization
Recall from Chapter 6, Performance Considerations, that one optimization that can
be applied to reduce the contention of atomic operations on the same data is privati-
zation. Privatization reduces contention of atomics by applying partial updates to a
private copy of the data, then updating the public copy when done. We saw an exam-
ple of privatization in the histogram pattern in Chapter 9, Parallel Histogram, where
threads in the same block updated a local histogram that was private to the block,
then updated the public histogram at the end.

Privatization can also be applied in the context of concurrent frontier updates
(increments to numCurrFrontier) to reduce the contention on inserting into the
frontier. We can have each thread block maintain its own local frontier through-
out the computation and update the public frontier when done. Hence threads will
contend on the same data only with other threads in the same block. Moreover,
the local frontier and its counter can be stored in shared memory, which enables
lower-latency atomic operations on the counter and stores to the local frontier.
Furthermore, when the local frontier in shared memory is stored to the public
frontier in global memory, the accesses can be coalesced.
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Fig. 15.14 shows the kernel code for the vertex-centric push implementation
that uses privatized frontiers, while Fig. 15.15 illustrates the privatization of the
frontiers. The kernel starts by declaring a private frontier for each thread block in
shared memory (lines 07!08). One thread in the block initializes the frontier’s
counter to 0 (lines 09!11), and all threads in the block wait at the __syncthreads
barrier for the initialization to complete before they start using the counter (line
12). The next part of the code is similar to the previous version: Each thread loads
its vertex from the frontier (line 17), iterates over its outgoing edges (lines
18!19), finds the neighbor at the destination of the edge (line 20), and atomically
checks whether the neighbor is unvisited and visits it if it is unvisited (line 21).

FIGURE 15.14

A vertex-centric push (top-down) BFS kernel with privatization of frontiers. BFS, breadth-
first search.
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If the thread succeeds in visiting the neighbor, that is, the neighbor is unvis-
ited, it adds the neighbor to the local frontier. The thread first atomically incre-
ments the local frontier counter (line 22). If the local frontier is not full (line 23),
the thread adds the neighbor to the local frontier (line 24). Otherwise, if the local
frontier has overflowed, the thread restores the value of the local counter (line 26)
and adds the neighbor in the global frontier by atomically incrementing the global
counter (line 27) and storing the neighbor at the corresponding location (line 28).

After all threads in a block have iterated over their vertices’ neighbors, they
need to store the privatized local frontier to the global frontier. First, the threads
wait for each other to complete to ensure that no more neighbors will be added to
the local frontier (line 33). Next, one thread in the block acts on behalf of the others
to allocate space in the global frontier for all the elements in the local frontier (lines
36!39) while all the threads wait for it (line 40). Finally, the threads iterate over
the vertices in the local frontier (line 43!44) and store them in the public frontier
(line 45!46). Notice that the index into the public frontier currFrontierIdx is
expressed in terms of currFrontierIdx_s, which is expressed in terms of
threadIdx.x. Therefore threads with consecutive thread index values store to con-
secutive global memory locations, which means that the stores are coalesced.

15.7 Other optimizations
Reducing launch overhead

In most graphs, the frontiers of the initial iterations of a BFS can be quite small.
The frontier of the first iteration has only the neighbors of the source. The frontier

FIGURE 15.15

Privatization of frontiers example.
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of the next iteration has all the unvisited neighbors of the current frontier vertices.
In some cases, the frontiers of the last few iterations can also be small. For these
iterations the overhead of terminating a grid and launching a new one may out-
weigh the benefit of parallelism. One way to deal with these iterations with small
frontiers is to prepare another kernel that uses only one thread block but may per-
form multiple consecutive iterations. The kernel uses only a local block-level fron-
tier and uses __syncthreads() to synchronize across all threads in between levels.

This optimization is illustrated in Fig. 15.16. In this example, levels 0 and 1
can each be processed by a single thread block. Rather than launching a separate
grid for levels 0 and 1, we launch a single-block grid and use __syncthreads() to
synchronize between levels. Once the frontier reaches a size that overflows the
block-level frontier, the threads in the block copy the block-level frontier contents
to the global frontier and return to the host code. The host code will then call the
regular kernel in the subsequent level iterations until the frontier is small again.
The single-block kernel thus eliminates the launch overhead for the iterations
with small frontiers. We leave its implementation as an exercise for the reader.

Improving load balance

Recall that in the vertex-centric implementations the amount of work to be
done by each thread depends on the connectivity of the vertex that is

FIGURE 15.16

Executing multiple levels in one grid for levels with small frontiers: (A) launching a new
grid for each level, (B) consecutive small levels in one grid.
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assigned to it. In some graphs, such as social network graphs, some vertices
(celebrities) may have degrees that are several orders of magnitude higher
than those of other vertices. When this happens, one or a few of the threads
can take excessively long and slow down the execution of the entire grid. We
have seen one way to address this issue, which is by using an edge-centric
parallel implementation instead. Another way in which we can potentially
address this issue is by sorting the vertices of a frontier into buckets depend-
ing on their degree and processing each bucket in a separate kernel with an
appropriately sized group of processors. One notable implementation
(Merrill and Garland, 2012) uses three different buckets for vertices
with small, medium, and large degrees. The kernel processing the small
buckets assigns each vertex to a single thread; the kernel processing the
medium buckets assigns each vertex to a single warp; and the kernel proces-
sing the large buckets assigns each vertex to an entire thread block. This
technique is particularly useful for graphs with a high variation in vertex
degrees.

Further challenges

While BFS is among the simplest graph applications, it exhibits the challenges
that are characteristic of more complex applications: problem decomposition for
extracting parallelism, taking advantage of privatization, implementing fine-
grained load balancing, and ensuring proper synchronization. Graph computa-
tion is applicable to a wide range of interesting problems, particularly in the
areas of making recommendations, detecting communities, finding patterns
within a graph, and identifying anomalies. One significant challenge is to handle
graphs whose size exceeds the memory capacity of the GPU. Another interest-
ing opportunity is to preprocess the graph into other formats before beginning
computation in order to expose more parallelism or locality or to facilitate load
balancing.

15.8 Summary
In this chapter we have seen the challenges that are associated with parallelizing
graph computations, using breadth-first search as an example. We started with a
brief introduction to the representation of graphs. We discussed the differences
between vertex-centric and edge-centric parallel implementations and observed
the tradeoffs between them. We also saw how to eliminate redundant work by
using frontiers and optimized the use of frontiers by using privatization. We also
briefly discussed other advanced optimizations to reduce synchronization over-
head and improve load balance.
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Exercises
1. Consider the following directed unweighted graph:

a. Represent the graph using an adjacency matrix.
b. Represent the graph in the CSR format. The neighbor list of each vertex

must be sorted.
c. Parallel BFS is executed on this graph starting from vertex 0 (i.e., vertex 0

is in level 0). For each iteration of the BFS traversal:
i. If a vertex-centric push implementation is used:

1. How many threads are launched?
2. How many threads iterate over their vertex’s neighbors?

ii. If a vertex-centric pull implementation is used:
1. How many threads are launched?
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2. How many threads iterate over their vertex’s neighbors?
3. How many threads label their vertex?

iii. If an edge-centric implementation is used:
1. How many threads are launched?
2. How many threads may label a vertex?

iv. If a vertex-centric push frontier-based implementation is used:
1. How many threads are launched?
2. How many threads iterate over their vertex’s neighbors?

2. Implement the host code for the direction-optimized BFS implementation
described in Section 15.3.

3. Implement the single-block BFS kernel described in Section 15.7.
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This chapter presents an application case study on deep learning, a recent
branch of machine learning using artificial neural networks. Machine learn-
ing has been used in many application domains to train or adapt application
logic according to the experience gleaned from datasets. To be effective, one
often needs to conduct such training with a massive amount of data. While
machine learning has existed as a subject of computer science for a long
time, it has recently gained a great deal of practical industry acceptance for
two reasons. The first reason is the massive amounts of data available from
the pervasive use of the internet. The second reason is the inexpensive, mas-
sively parallel GPU computing systems that can effectively train application
logic with these massive datasets. We will start with a brief introduction to
machine learning and deep learning and then consider in more detail one of
the most popular deep learning algorithms: convolutional neural networks
(CNN). CNN have a high compute to memory access ratio and high levels of
parallelism, which make them a perfect candidate for GPU acceleration. We
will first present a basic implementation of a convolutional neural network.
Next, we will show how we can improve this basic implementation with
shared memory. We will then show how one can formulate the convolutional
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layers as matrix multiplication, which can be accelerated by using highly
optimized hardware and software in modern GPUs.

16.1 Background
Machine learning, a term coined by Arthur Samuel of IBM in 1959 (Samuel,
1959), is a field of computer science that studies methods for learning applica-
tion logic from data rather than designing explicit algorithms. Machine learning
is most successful in computing tasks in which designing explicit algorithms is
infeasible, mostly because there is not enough knowledge in the design of such
explicit algorithms. That is, one can give examples of what should happen in
various situations but not general rules for making such decisions for all possi-
ble inputs. For example, machine learning has contributed to the recent
improvements in application areas such as automatic speech recognition, com-
puter vision, natural language processing, and recommender systems. In these
application areas, one can provide many input examples and what should come
out for each input, but there is no algorithm that can correctly process all
possible inputs.

The kinds of application logic that are created with machine learning can be
organized according to the types of tasks that they perform. There is a wide range
of machine learning tasks. Here, we show a few out of a large number:

1. Classification: to determine to which of the k categories an input belongs. An
example is object recognition, such as determining which type of food is
shown in a photo.

2. Regression: to predict a numerical value given some inputs. An example is to
predict the price of a stock at the end of the next trading day.

3. Transcription: to convert unstructured data into textual form. An example is
optical character recognition.

4. Translation: to convert a sequence of symbols in one language to a
sequence of symbols in another. An example is translating from English
to Chinese.

5. Embedding: to convert an input to a vector while preserving relationships
between entities. An example is to convert a natural language sentence into a
multidimensional vector.

The reader is referred to a large body of literature on the mathematical back-
ground and practical solutions to the various tasks of machine learning. The pur-
pose of the chapter is to introduce the computation kernels that are involved in
the neural network approach to the classification task. A concrete understanding
of these kernels will allow the reader to understand and develop kernels for deep
learning approaches to other machine learning tasks. Therefore in this section we
will go into details about the classification task to establish the background
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knowledge that is needed to understand neural networks. Mathematically, a classi-
fier is a function f that maps an input to k categories or labels:

f : Rn - 1; 2; . . . ; kf g

The function f is parameterized by θ that maps input vector x to numerical
code y, that is,

y ¼ f ðx; θÞ

The parameter θ is commonly referred to as the model. It encapsulates weights
that are learned from data. This definition of θ is best illustrated with a concrete
example. Let us consider a linear classifier called a perceptron (Rosenblatt,
1957): y ¼ sign W $ xþ bð Þ, where W is vector of weights of the same length as x
and b is a bias constant. The sign function returns value 1 if its input is positive,
0 if its input is 0, and 21 if its input is negative. That is, the sign function as a
classifier activates, that is, finalizes, the mapping of the input value into three cat-
egories:{2 1, 0, 1}; therefore it is often called the activation function. Activation
functions introduce nonlinearity into an otherwise linear function of a perceptron.
In this case, the model θ is the combination of the vector W and the constant b.
The structure of the model is a sign function whose input is a linear expression of
input x elements where the coefficients are elements of W, and the constant is b.

Fig. 16.1 shows a perceptron example in which each input is a two-
dimensional (2D) vector ðx1; x2Þ. The linear perceptron’s model θ consists of a
weight vector ðw1;w2Þ and a bias constant b. As shown in Fig. 16.1, the linear
expression w1x1 þ w2$x2 þ b defines a line in the x1 2 x2 space that cuts the space
into two parts: the part in which all points make the expression greater than zero
and the part in which all points make the expression less than zero. All points on
the line make the expression equal to 0.

Visually, given a combination of w1;w2ð Þ and b values, we can draw a line in
the ðx1; x2Þ space, as shown in Fig. 16.1. For example, for a perceptron whose
model is w1;w2ð Þ ¼ 2; 3ð Þ and b52 6, we can easily draw a line by connecting
the two intersection points with the x1 axis (ð2 b

w1
, 0) = (3, 0)) and the x2 axis

FIGURE 16.1

A perceptron linear classifier example in which the input is a two-dimensional vector.
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((0, 2 b
w2
) = (0, 2)). The line thus drawn corresponds to the equation 2x1 + 3x2 2 6

= 0 With this drawing, we can easily visualize the outcome of input points: Any
point above the line (shown as blue dots in Fig. 16.1) is classified as class 1, any
point on the line is classified as class 0, and any point below the line (shown as
orange dots in Fig. 16.1) is classified as class 21.

The process of computing the class for an input is commonly referred to as
inference for the classifier. In the case of a perceptron we simply plug the input
coordinate values into y ¼ sign W $ xþ bð Þ: In our example, if the input point is
(5, 21), we can perform inference by plugging its coordinates into the perceptron
function:

y ¼ sign 2 ! 5þ 3 ! 2 1ð Þ þ 6ð Þ ¼ signð13Þ ¼ 1

Therefore (5, 21) is classified to class 1, that is, it is among the blue dots.

Multilayer classifiers

Linear classifiers are useful when there is a way to draw hyperplanes (i.e., lines
in a 2D space and planes in a three-dimensional [3D] space) that partition the
space into regions and thus define each class of data points. Ideally, each class of
data points should occupy exactly one such region. For example, in a 2D, 2-class
classifier, we need to be able to draw a line that separates points of one class
from those of the other. Unfortunately, this is not always feasible.

Consider the classifiers in Fig. 16.2. Assume that all input’s coordinates fall in
the range of [0, 1]. The classifier should classify all points whose x1 and x2 values
are both greater than 0.5 (points that fall in the upper right quadrant of the
domain) as class 1 and the rest as class 21. This classifier could be approxi-
mately implemented with a line like that shown in Fig. 16.2(A). For example, a
line 2x1 + 2x2 2 3 = 0 would classify most of the points properly. However, some
of the orange points whose x1 and x2 are both greater than 0.5 but the sum is less
than 1.5, for example, (0.55, 0.65), would be misclassified into class 21 (blue).
This is because any line will necessarily either cut away part of the upper right
quadrant or include part of the rest of the domain. There is no single line that can
properly classify all possible inputs.

A multilayer perceptron (MLP) allows the use of multiple lines to implement
more complex classification patterns. In a multilayer perceptron, each layer con-
sists of one or more perceptrons. The outputs of perceptrons in one layer are the
inputs to those in the next layer. An interesting and useful property is that while
the inputs to the first layer have an infinite number of possible values, the output
of the first layer and thus the input to the second layer can have only a modest
number of possible values. For example, if the perceptron from Fig. 16.1 was
used as a first layer, its outputs would be restricted to {2 1, 0, 1}.

Fig. 16.2(B) shows a two-layer perceptron that can precisely implement the
desired classification pattern. The first layer consists of two perceptrons. The first
one, y1 ¼ signðx1 2 0:5Þ, classifies all points whose x1 coordinate is greater than

358 CHAPTER 16 Deep learning



0.5 as class 1; that is, the output value is 1. The rest of the points are classified as
either class 21 or class 0. The second classifier in the first layer,
y2 ¼ signðx2 2 0:5Þ, classifies all points whose x2 coordinate is greater than 0.5
into class 1. The rest of the points are classified as class 21.

Therefore the output of the first layer (y1, y2) can only be one of the following
nine possibilities: (21, 21), (21, 0), (21,1), (0, 21) (0, 0) (0, 1) (1, 21), (1, 0),
(1,1). That is, there are only nine possible input pair values to the second layer.
Out of these nine possibilities, (1, 1) is special. All the original input points in the
orange category are mapped to (1, 1) by the first layer. Therefore we can use a
simple perceptron in the second layer to draw a line between (1, 1) and the eight
other possible points in the y1-y2 space, shown in Fig. 16.2B. This can be done by
a line 2y1 + 2y2 2 3 = 0 or many other lines that are small variations of it.

Let us use the (0.55, 0.65) input that was misclassified by the single-layer per-
ceptron in Fig. 16.2A. When processed by the two-layer perceptron, the upper
perceptron of first layer in Fig. 16.2B generates y1 ¼ 1; and the lower perceptron
generates y2 ¼ 1. On the basis of these input values, the perceptron in the second
layer generates z ¼ 1, the correct classification for (0.55, 0.65).

Note that a two-layer perceptron still has significant limitations. For exam-
ple, assume that we need to build a perceptron to classify the input points
shown in Fig. 16.3A. The values of the orange input points can result in input

FIGURE 16.2

A multilayer perceptron example.
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values (21, 21) or (1, 1) to the second layer. We see that there is no way to
draw a single line to properly classify the points in the second layer. We show
in Fig. 16.2B that we can add another line by adding another perceptron in the
second layer. The function would be z2 ¼ signð2 2y1 2 2y2 2 3Þ or small varia-
tions of it. The reader should verify that all blue points in Fig. 16.3B
will be mapped to the (21, 21) in the z1-z2 space. Whereas (1, 1) and
(21, 21) in the y12y2 space are mapped to (1, 21) and (21, 1) in the z1 2 z2
space. Now we can draw a line z1 þ z2 þ 1 ¼ 0 or small variations of it to
properly classify the points, as shown in Fig. 16.3C. Obviously, if we need to
partition the input domain into more regions, we might need even more layers
to perform proper classification.

Layer 1 in Fig. 16.2B is a small example of a fully connected layer, in which
every output (i:e:; y1; y2) is a function of every input ði:e:; x1; x2Þ. In general,
in a fully connected layer, every one of the m outputs is a function of all the n
inputs. All the weights of a fully connected layer form an m 3 n weight matrix
W, where each of the m rows is the weight vector (of size n elements) to be
applied to the input vector (of size n elements) to produce one of the m outputs.
Therefore the process of evaluating all the outputs from the inputs of a fully con-
nected layer is a matrix-vector multiplication. As we will see, fully connected
layers are core components of many types of neural networks, and we will further
study the GPU implementations.

Fully connected layers become extremely expensive when m and n become
large. The main reason is that a fully connected layer requires an m 3 n weight
matrix. For example, in an image recognition application, n is the number of pixels
in the input image, and m is the number of classifications that need to be performed
on the input pixels. In this case, n is in the millions for high-resolution images, and
m can be in the hundreds or more depending on the variety of objects that need to
be recognized. Also, the objects can be of different scales and orientations in the
images; many classifiers may need to be in place to deal with these variations.
Feeding all these classifiers with all inputs is both expensive and likely wasteful.

FIGURE 16.3

Need for perceptrons with more than two layers.
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Convolutional layers reduce the cost of fully connected layers by reducing the
number of inputs each classifier takes and sharing the same weights across classi-
fiers. In a convolutional layer, each classifier takes only a patch of the input
image and performs convolution on the pixels in the patch based on the weights.
The output is called an output feature map, since each pixel in the output is the
activation result of a classifier. Sharing weights across classifiers allows the con-
volutional layers to have large numbers of classifiers, that is, large m values,
without an excessive number of weights. Computationally, this can be implemen-
ted as a 2D convolution. However, this approach effectively applies the same
classifier to a different part of an image. One can have different sets of weights
applied to the same input and generate multiple output feature maps, as we will
see later in this chapter.

Training models

So far, we have assumed that the model parameters used by a classifier are some-
how available. Now we turn to training, or the process of using data to determine
the values of the model parameters θ, including the weights w1;w2ð Þ and the bias
b. For simplicity we will assume supervised training, in which input data labeled
with desired output values are used to determine the weight and bias values.
Other training modalities, such as semisupervised and reinforcement learning,
have also been developed to reduce the reliance on labeled data. The reader is
referred to the literature to understand how training can be accomplished under
such circumstances.

Error function
In general, training treats the model parameters as unknown variables and solves
an inverse problem given the labeled input data. In the perceptron example in
Fig. 16.1, each data point that is used for training would be labeled with its
desired classification result: 21, 0, or 1. The training process typically starts with
an initial guess of the w1;w2ð Þ and b values and performs inference on the input
data and generates classification results. These classification results are compared
to the labels. An error function, sometimes referred to as a cost function, is
defined to quantify the difference between the classification result and the corre-
sponding label for each data point. For example, assume that y is the classification
output class and t is the label. The following is an example error function:

E ¼
ðy2tÞ2

2

This error function has the nice property that the error value is always positive
as long as there is any difference, positive or negative, between the values of y
and t. If we need to sum up the error across many input data points, both positive
and negative differences will contribute to the total rather than canceling each
other out. One can also define the error as the absolute value of the difference,
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among many other options. As we will see, the coefficient 1
2 simplifies the compu-

tation involved in solving the model parameters.

Stochastic gradient descent
The training process will attempt to find the model parameter values that mini-
mize the sum of the error function values for all the training data points. This can
be done with a stochastic gradient descent approach, which repeatedly runs dif-
ferent permutations of the input dataset through the classifier, evolves the parame-
ter values, and checks whether the parameter values have converged in that their
values have stabilized and changed less than a threshold since the last iteration.
Once the parameter values converge, the training process ends.

Epoch
During each iteration of the training process, called an epoch, the training input
dataset is first randomly shuffled, that is, permutated, before it is fed to the classi-
fier. This randomization of the input data ordering helps to avoid suboptimal solu-
tions. For each input data element, its classifier output y value is compared with
the label data to generate the error function value. In our perceptron example, if a
data label is (class) 1 and the classifier output is (class) 21, the error function
value using E ¼ ðy2tÞ2

2 would be 2. If the error function value is larger than a
threshold, a backpropagation operation is activated to make changes to the para-
meters so that the inference error can be reduced.

Backpropagation
The idea of backpropagation is to start with the error function and look back
into the classifier and identify the way in which each parameter contributes to
the error function value (LeCun et al., 1990). If the error function value
increases when a parameter’s value increases for a data element, we should
decrease the parameter value so that the error function value can decrease for
this data point. Otherwise, we should increase the parameter value to reduce the
error function value for the data point. Mathematically, the rate and direction in
which a function’s value changes as one of its input variables changes are the
partial derivative of the function over the variable. For a perceptron the model
parameters and the input data points are considered input variables for the pur-
pose of calculating the partial derivatives of the error function. Therefore the
backpropagation operation will need to derive the partial derivative values of
the error function over the model parameters for each input data element that
triggers the backpropagation operation.

Let us use the perceptron y ¼ sign w1x1 þ w2x2 þ bð Þ to illustrate the backpro-
pagation operation. Assume error function E ¼ ðy2tÞ2

2 and that the backpropagation
is triggered by a training input data element (5, 2). The goal is to modify the
w1;w2, and b values so that the perceptron will more likely classify (5, 2) cor-
rectly. That is, we need to derive the values of partial derivatives @E

@w1
, @E
@w2

, and @E
@b

in order to make changes to the w1;w2, and b values.
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Chain rule
We see that E is a function of y and y is a function of w1;w2, and b. Thus we can
use the chain rule to derive these partial derivatives. For w1;

@E
@w1

5
@E
@y

@y
@w1

@E
@y is straightforward:

@E
@y

5
@ ðy2tÞ2

2

@y
5 y2 t

However, we face a challenge with @y
@w1

: Note that the sign function is not
a differentiable function, as it is not continuous at 0. To solve this problem,
the machine learning community commonly use a smoother version of the
sign function that is differentiable near zero and close to the sign function
value for x values away from 0. A simple example of such a smoother ver-
sion is the sigmoid function s ¼ 12 e2x

1þe2x . For x values that are negative with
large absolute value, the sigmoid expression is dominated by the e2x

terms, and the sigmoid function value will be approximately 21. For x values
that are positive with large absolute values, the e2x terms diminish, and the
function value will be approximately 1. For x values that are close to 0, the
function value increases rapidly from near 21 to near 1. Thus the sigmoid
function closely approximates the behavior of a sign function and yet is con-
tinuous differentiable for all x values. With this change from sign to sigmoid,
the perceptron is y ¼ sigmoid w1x1 þ w2x2 þ bð Þ. We can express @y

@w1
as

@sigmoid kð Þ
@k

@k
@w1

using the chain rule with an intermediate variable
k ¼ w1x1 þ w2x2 þ b. Based on calculus manipulation, @k

@w1
is simply x1 and

@sigmoid kð Þ
@k

¼
12 e2k

1þ e2k

! "
0 ¼ 12 e2k

# $0 1

1þ e2k

! "
þ 12 e2k
# $ 1

1þ e2k

! "
0

¼ e2k 1

1þ e2k

! "
þ 12 e2k

# $
213

1

1þ e2k

! "2

2e2k
# $

 !

5
2e2k

1þ e2kð Þ2

Putting it all together, we have

@E
@w1

5 y2 tð Þ
2e2k

ð1þ e2kÞ2
x1

Similarly,

@E
@w2

5 y2 tð Þ
2e2k

ð1þ e2kÞ2
x2

@E
@b

¼ y2 tð Þ
2e2k

ð1þ e2kÞ2
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where

k ¼ w1x1 þ w2x2 þ b

It should be clear that all the three partial derivative values can be completely
determined by the combination of the input data (x1, x2 and t) and the current
values of the model parameters (w1;w2 and bÞ: The final step for the backpropa-
gation is to modify the parameter values. Recall that the partial derivative of a
function over a variable gives the direction and rate of change in the function
value as the variable changes its value. If the partial derivative of the error func-
tion over a parameter has a positive value given the combination of input data
and current parameter values, we want to decrease the value of the parameter so
that the error function value will decrease. On the other hand, if the partial deriva-
tive of the error function of the variable has a negative value, we want to increase
the value of the parameter so that the error function value will decrease.

Learning rate
Numerically, we would like to make bigger changes to the parameters to whose
change the error function is more sensitive, that is, when the absolute value of the
partial derivative of the error function over this parameter is a large value. These
considerations lead to us to subtract from each parameter a value that is propor-
tional to the partial derivative of the error function over that parameter. This is
accomplished by multiplying the partial derivatives with a constant ε, called the
learning rate constant in machine learning, before it is subtracted from the param-
eter value. The larger ε is, the faster the values of the parameters evolve so the
solution can potentially be reached with fewer iterations. However, large ε also
increases the chance of instability and prevents the parameter values from con-
verging to a solution. In our perceptron example, the modifications to the para-
meters are as follows:

w1  w1 2 ε
@E
@w1

w2  w2 2 ε
@E
@w2

b  b2 ε
@E
@b

For the rest of this chapter we will use a generic symbol θ to represent the
model parameters in formula and expressions. That is, we will represent the three
expressions above with one generic expression:

θ  θ 2 ε
@E
@

The reader should understand that for each of these generic expressions one
can replace θ with any of the parameters to apply the expression to the parameter.
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Minibatch
In practice, because the backtracking process is quite expensive, it is not triggered
by individual data points whose inference result differs from its label. Rather,
after the inputs are randomly shuffled in an epoch, they are divided into segments
called minibatches. The training process runs an entire minibatch through the
inference and accumulates their error function values. If the total error in the
minibatch is too large, backpropagation is triggered for the minibatch. During
backpropagation the inference results of each data point in the minibatch are
checked, and if it is not correct, the data is used to derive partial derivative values
that are used to modify the model parameter values as described above.

Training multilayer classifiers
For multilayer classifiers the backpropagation starts with the last layer and modi-
fies the parameter values in that layer as we discussed above. The question is
how we should modify the parameters of the previous layers. Keep in mind that
we can derive @E

@θ based on @E
@y, as we have demonstrated for the final layer. Once

we have @E
@y for the previous layer, we have everything we need to calculate the

modifications to the parameters in that layer.
A simple and yet important observation is that the output of the previous layer

is also the input to the final layer. Therefore @E
@y of the previous layer is really the

@E
@x of the final layer. Therefore the key is to derive @E

@x for the final layer after we
modify the parameter values of the final layer. As we can see below, @E

@x is not
that different from @E

@θ , that is,
@E
@x ¼

@E
@y

@y
@x.

@E
@y can be simply reused from the derivations for the parameters. @y

@x is also
quite straightforward since the inputs play the same role as the parameters as far
as y is concerned. We simply need to do a partial derivative of the intermediate
function k with respect to the inputs. For our perceptron example, we have

@E
@x1

5 y2 tð Þ
2e2k

ð1þ e2kÞ2
w1

@E
@x2

5 y2 tð Þ
2e2k

ð1þ e2kÞ2
w2

where k ¼ w1x1 þ w2x2 þ b. In the perceptron example in Fig. 16.2B, x1 of the
final layer (layer 2) is y1, output of the top perceptron of layer 1 and x2 is y2, out-
put of the bottom perceptron of layer 1. Now we are ready to proceed with the
calculation of @E

@θ for the two perceptrons in the previous layer. Obviously, this
process can be repeated if there are more layers.

Feedforward networks
By connecting layers of classifiers and feeding the output of each layer to the
next, we form a feedforward network. Fig. 16.2B shows an example of a two-
layer feedforward network. All our discussions on inference with and training of
multilayer perceptrons (MLP) assume this property. In a feedforward network, all
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outputs of an earlier layer go to one or more of the later layers. There are no con-
nections from a later layer output to an earlier layer input. Therefore the backpro-
pagation can simply iterate from the final stage backwards with no complications
caused by feedback loops.

16.2 Convolutional neural networks
A deep learning procedure (LeCun et al., 2015) uses a hierarchy of feature extrac-
tors to learn complex features, which can achieve more accurate pattern recogni-
tion results if there is enough training data to allow the system to properly train
the parameters of all the layers of feature extractors to automatically discover an
adequate number of relevant patterns. There is one category of deep learning pro-
cedures that are easier to train and that can be generalized much better than
others. These deep learning procedures are based on a particular type of feedfor-
ward network called the convolutional neural network (CNN).

The CNN was invented in late 1980s (LeCun et al., 1998). By the early
1990s, CNNs had been applied to automated speech recognition, optical char-
acter recognition (OCR), handwriting recognition, and face recognition
(LeCun et al., 1990). However, until the late 1990s the mainstream of com-
puter vision and that of automated speech recognition had been based on care-
fully engineered features. The amount of labeled data was insufficient for a
deep learning system to compete with recognition or classification functions
crafted by human experts. It was a common belief that it was computationally
infeasible to automatically build hierarchical feature extractors that have
enough layers to perform better than human-defined application-specific fea-
ture extractors.

Interest in deep feedforward networks was revived around 2006 by a group
of researchers who introduced unsupervised learning methods that could create
multilayer, hierarchical feature detectors without requiring labeled data (Hinton
et al., 2006, Raina et al., 2009). The first major application of this approach was
in speech recognition. The breakthrough was made possible by GPUs that
allowed researchers to train networks ten times faster than traditional CPUs.
This advancement, coupled with the massive amount of media data available
online, drastically elevated the position of deep learning approaches. Despite
their success in speech, CNN were largely ignored in the field of computer
vision until 2012.

In 2012 a group of researchers from the University of Toronto trained a large,
deep convolutional neural network to classify 1000 different classes in the
ILSVRC contest (Krizhevsky et al., 2012). The network was huge by the norms
of the time: It had approximately 60 million parameters and 650,000 neurons. It
was trained on 1.2 million high-resolution images from the ImageNet database.
The network was trained in only one week on two GPUs using a CUDA-based
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convolutional neural network library written by Alex Krizhevsky (Krizhevsky).
The network achieved breakthrough results with a winning test error rate of
15.3%. In comparison, the second-place team that used the traditional computer
vision algorithms had an error rate of 26.2%. This success triggered a revolution
in computer vision, and CNN became a mainstream tool in computer vision, natu-
ral language processing, reinforcement learning, and many other traditional
machine learning areas.

This section presents the sequential implementation of CNN inference and train-
ing. We will use LeNet-5, the network that was designed in the late 1980s for digit
recognition (LeCun et al., 1990). As shown in Fig. 16.4, LeNet-5 is composed of
three types of layers: convolutional layers, subsampling layers, and fully connected
layers. These three types of layers continue to be the key components of today’s
neural networks. We will consider the logical design and sequential implementation
of each type of layer. The input to the network is shown as a gray image with a
handwritten digit represented as a 2D 32 3 32 pixel array. The last layer computes
the output, which is the probability that the original image belongs to each one of
the ten classes (digits) that the network is set up to recognize.

Convolutional neural network inference

The computation in a convolutional network is organized as a sequence of layers.
We will call inputs to and outputs from layers feature maps or simply features.
For example, in Fig. 16.4 the computation of the C1 convolutional layer at the
input end of the network is organized to generate six output feature maps from
the INPUT pixel array. The output to be produced for input feature maps consists
of pixels, each of which is produced by performing a convolution between a small
local patch of the feature map pixels produced by the previous layer (INPUT in
the case of C1) and a set of weights (i.e., convolution filters as defined in
Chapter 7: Convolution) called a filter bank. The convolution result is then fed
into an activation function such as sigmoid to produce an output pixel in the

FIGURE 16.4

LeNet-5, a convolutional neural network for handwritten digit recognition. The letter A in
the input should be classified as none of the ten classes (digits).
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output feature map. One can think of the convolutional layer for each pixel of an
output feature map as a perceptron whose inputs are the patch of pixels in the
input feature maps. That is, the value of each output pixel is the sum of convolu-
tion results from the corresponding patches in all input feature maps.

Fig. 16.5 shows a small convolutional layer example. There are three input
feature maps, two output feature maps, and six filter banks. Different pairs of
input and output feature map pairs in a layer use different filter banks. Since there
are three input feature maps and two output feature maps in Fig. 16.5, we need
3 3 2 = 6 filter banks. For the C3 layer of LeNet in Fig. 16.4 there are six input
feature maps and 16 output feature maps. Thus a total of 6 3 16 = 96 filter
banks are used in C3.

Fig. 16.5B illustrates more details of the calculations done by a convolutional
layer. We omitted the activation function for the output pixels for simplicity.
We show that each output feature map is the sum of convolutions of all input fea-
ture maps. For example, the upper left corner element of output feature map 0
(value 14) is calculated as the convolution between the circled patch of input fea-
ture maps and the corresponding filter banks:

1; 2; 1; 1ð Þ $ 1; 1; 2; 2ð Þ þ 0; 2; 0; 3ð Þ $ 1; 1; 1; 1ð Þ þ 1; 2; 0; 1ð Þ $ 0; 1; 1; 0ð Þ
¼ 1þ 2þ 2þ 2þ 0þ 2þ 0þ 3þ 0þ 2þ 0þ 0
¼ 14

One can also think of the three input maps as a 3D input feature map and the
three filter banks as a 3D filter bank. Each output feature map is simply the 3D
convolution result of the 3D input feature map and the 3D filter bank. In
Fig. 16.5B the three 2D filter banks on the left form a 3D filter bank, and the
three on the right form a second 3D filter bank. In general, if a convolutional
layer has n input feature maps and m output feature maps, n&m different 2D filter
banks will be used. One can also think about these filter banks as m 3D filter
banks. Although not shown in Fig. 16.4, all 2D filter banks used in LeNet-5 are
53 5 convolution filters.

FIGURE 16.5

Forward propagation path of a convolutional layer.
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Recall from Chapter 7, Convolution, that generating a convolution output
image from an input image and a convolution filter requires one to make assump-
tions about the “ghost cells.” Instead of making such assumptions, the LeNet-5
design simply uses two elements at the edge of each dimension as ghost cells.
This reduces the size of each dimension by four: two at the top, two at the bot-
tom, two at the left, and two at the right. As a result, we see that for layer C1, the
32 3 32 INPUT image results in an output feature map that is a 28 3 28 image.
Fig. 16.4 illustrates this computation by showing that a pixel in the C1 layer is
generated from a square (5 3 5, although not explicitly shown) patch of INPUT
pixels.

We assume that the input feature maps are stored in a 3D array X[C, H, W],
where C is the number of input feature maps, H is the height of each input map
image, and W is the width of each input map image. That is, the highest-
dimension index selects one of the feature maps (often referred to as channels),
and the indices of the lower two dimensions select one of the pixels in an input
feature map. For example, the input feature maps for the C1 layer are stored in X
[1, 32, 32], since there is only one input feature map (INPUT in Fig. 16.4) that
consists of 32 pixels in each of the x and y dimensions. This also reflects the fact
that one can think of the 2D input feature maps to a layer altogether as forming a
3D input feature map.

The output feature maps of a convolutional layer are also stored in a 3D array
Y[M, H 2 K + 1, W 2 K + 1], where M is the number of output feature maps
and K is the height (and width) of each 2D filter. For example, the output feature
maps for the C1 layer are stored in Y[6, 28, 28], since C1 generates six output
feature maps using 53 5 filters. The filter banks are stored in a four-dimensional
array W[M, C, K, K].1 There are M 3 C filter banks. Filter bank W[m, c,_,_] is
used when using input feature map X[c,_,_] to calculate output feature map Y[m,
_,_]. Recall that each output feature map is the sum of convolutions of all input
feature maps. Therefore we can consider the forward propagation path of a convo-
lutional layer as set of M 3D convolutions in which each 3D convolution is speci-
fied by a 3D filter bank that is a C 3 K 3 K submatrix of W.

Fig. 16.6 shows a sequential C implementation of the forward propagation
path of a convolutional layer. Each iteration of the outermost (m) for-loop (lines
04'12) generates an output feature map. Each iteration of the next two levels
(h and w) of for-loops (lines 05'12) generates one pixel of the current output fea-
ture map. The innermost three loop levels (lines 08'11) perform the 3D convolu-
tion between the input feature maps and the 3D filter banks.

The output feature maps of a convolutional layer typically go through a sub-
sampling layer (also known as a pooling layer). A subsampling layer reduces the
size of image maps by combining pixels. For example, in Fig. 16.4, subsampling
layer S2 takes the six input feature maps of size 28 3 28 and generates six

1 Note that W is used for both the width of images and the name of the filter bank (weight) matrix.
In each case the usage should be clear from the context.
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feature maps of size 14 3 14. Each pixel in a subsampling output feature map is
generated from a 2 3 2 neighborhood in the corresponding input feature map.
The values of these four pixels are averaged to form one pixel in the output fea-
ture map. The output of a subsampling layer has the same number of output fea-
ture maps as the previous layer, but each map has half the number of rows and
columns. For example, the number of output feature maps (six) of the subsam-
pling layer S2 is the same as the number of its input feature maps, or the output
feature maps of the convolutional layer C1.

Fig. 16.7 shows a sequential C implementation of the forward propagation
path of a subsampling layer. Each iteration of the outermost (m) for-loop (lines
02'11) generates an output feature map. The next two levels (h and w) of for-
loops (lines 03'11) generates individual pixels of the current output map. The
two innermost for-loops (lines 06'09) sum up the pixels in the neighborhood. K
is equal to 2 in our LeNet-5 subsampling example in Fig. 16.4. A bias value b[m]
that is specific to each output feature map is then added to each output feature

03  int W_out = W – K + 1; 

04  for(int m = 0;  m < M;  m++) // for each output feature map
05  for(int h = 0; h < H_out; h++) // for each output element
06  for(int w = 0; w < W_out; w++) {
07  Y[m, h, w] = 0;
08  for(int c = 0;  c < C; c++) // sum over all input feature maps
09   for(int p = 0; p < K; p++) // KxK  filter
10   for(int q = 0; q < K; q++)  
11  Y[m, h, w] +=  X[c, h + p, w + q] * W[m, c, p, q];
12 }
13   }

01  void convLayer_forward(int M, int C, int H, int W, int K, float* X, float* W,
float* Y) {

02  int H_out = H – K + 1;

FIGURE 16.6

A C implementation of the forward propagation path of a convolutional layer.

01 void subsamplingLayer_forward(int M, int H, int W, int K, float* Y, float* 
S){  
02 for(int m = 0;  m < M;  m++) // for each output feature map
03 for(int h = 0; h < H/K; h++) // for each output element, 
04 for(int w = 0; w < W/K; w++) { // this code assumes that H and W 
05 S[m, x, y] = 0.; // are multiples of K
06 for(int p = 0; p < K; p++) { // loop over KxK input samples 
07 for(int q = 0; q < K; q++)
08 S[m, h, w] += Y[m, K*h + p, K*w+ q] /(K*K);
09 }

// add bias and apply non-linear activation
10 S[m, h, w] = sigmoid(S[m, h, w] + b[m]);
11 }
12 }

FIGURE 16.7

A sequential C implementation of the forward propagation path of a subsampling layer.
The layer also includes an activation function, which is included in a convolutional layer if
there is no subsampling layer after the convolutional layer.
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map, and the sum goes through a sigmoid activation function. The reader should
recognize that each output pixel is generated by the equivalent of a perceptron
that takes four of the input pixels in each feature map as its input and generates a
pixel in the corresponding output feature map. ReLU is another frequently used
activation function that is a simple nonlinear filter that passes only nonnegative
values: Y = X, if X $ 0 and 0 otherwise.

To complete our example, convolutional layer C3 has 16 output feature maps,
each of which is a 10 3 10 image. This layer has 6 3 16 = 96 filter banks, and
each filter bank has 5 3 5 = 25 weights. The output of C3 is passed into the sub-
sampling layer S4, which generates 16 5 3 5 output feature maps. Finally, the
last convolutional layer C5 uses 16 3 120 = 1920 5 3 5 filter banks to generate
120 one-pixel output features from its 16 input feature maps.

These feature maps are passed through fully connected layer F6, which has 84
output units, in which each output is fully connected to all inputs. The output is
computed as a product of a weight matrix W with an input vector X, and then a
bias is added and the output is passed through sigmoid. For the F6 example, W is
a 1203 84 matrix. In summary, the output is an 84-element vector Y6 = sigmoid
(W & X + b). The reader should recognize that this is equivalent to 84 percep-
trons, and each perceptron takes all 120 one-pixel x values generated by the C5
layer as its input. We leave the detailed implementation of a fully connected layer
as an exercise.

The final stage is an output layer that uses Gaussian filters to generate a vector
of ten elements, which correspond to the probability that the input image contains
one of the ten digits.

Convolutional neural network backpropagation

Training of CNNs is based on the stochastic gradient descent method and the
backpropagation procedure that were discussed in Section 16.1 (Rumelhart et al.,
1986). The training dataset is labeled with the “correct answer.” In the handwrit-
ing recognition example the labels give the correct letter in the image. The label
information can be used to generate the “correct” output of the last stage: the cor-
rect probability values of the ten-element vector, where the probability of the cor-
rect digit is 1.0 and those for all other digits are 0.0.

For each training image, the final stage of the network calculates the loss
(error) function as the difference between the generated output probability vector
element values and the “correct” output vector element values. Given a sequence
of training images, we can numerically calculate the gradient of the loss function
with respect to the elements of the output vector. Intuitively, it gives the rate at
which the loss function value changes when the values of the output vector ele-
ments change.

The backpropagation process starts by calculating the gradient of loss function
@E
@y for the last layer. It then propagates the gradient from the last layer toward the
first layer through all layers of the network. Each layer receives as its input @E

@y
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gradient with respect to its output feature maps (which is just the @E
@x of the later

layer) and computes its own @E
@x gradient with respect to its input feature maps, as

shown in Fig. 16.8B. This process repeats until it finishes adjusting the input layer
of the network.

If a layer has learned parameters (“weights”) w, then the layer also computes
its @E

@w gradient of loss with respect to its weights, as shown in Fig. 16.8A. For
example, the fully connected layer is given as y = w $ x. The backpropagation of
the gradient @E

@y is given by the following equation:

@E
@x

5wT @E
@y

and
@E
@w

5
@E
@y

xT

This equation can be derived on an element-by-element basis, as we did for
the two-layer perceptron example. Recall that each fully connected layer output
pixel is calculated by a perceptron that takes the pixels in the input feature map
as input. As we showed for training MLP in Section 16.1, @E

@x for one of the inputs
x is the sum of products between @E

@y for each output y element to which the input
element contributes and the w value via which the x value contributes to the y
value. Because each row of the w matrix relates all the x elements (columns) to a
y element (one of the rows) for the fully connected layer, each column of w (i.e.,
row of wT) relates all y (i:e:; @E

@yÞ elements back to an x (i.e., @E
@x) element, since

transposition switches the roles of rows and columns. Thus the matrix-vector mul-
tiplication wT @E

@y results in a vector that has the @E
@x values for all input x elements.

Similarly, since each w element is multiplied by one x element to generate a y
element, the @E

@w of each w element can be calculated as the product of an element
of @E

@y with an x element. Thus the matrix multiplication between @E
@y (a single-

column matrix) and xT (a single-row matrix) results in a matrix of @E
@w values for

all w elements of the fully connected layer. This can also be seen as an outer
product between the @E

@y and x vectors.
Let’s turn our attention to the backpropagation for a convolutional layer. We

will start from the calculation of @E
@x from @E

@y, which will ultimately be used to

FIGURE 16.8

Backpropagation of (A) @E
@w and (B) @E

@x for a layer in CNN.
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calculate the gradients for the previous layer. The gradient @E
@x with respect to the

channel c of input x is given as the sum of the “backward convolution” with the
corresponding W(m, c) over all the m layer outputs:

@E
@x

c; h;wð Þ ¼
XM21

m¼0

XK21

p¼0

XK21

q¼0

!
@E
@y

m; h2 p;w2 qð Þ ! w m; c; k2 p; k2 qð Þ
"

The backward convolution through the h2 p and w2 q indexing allows the
gradients of all output y elements that received contributions from an x element
in the forward convolution to contribute to the gradient of that x element
through the same weights. This is because in the forward inference of the con-
volutional layer, any change in the value of the x element is multiplied by these
w elements and contributes to the change in the loss function value through
these y elements. Fig. 16.9 shows the indexing pattern using a small example
with 3 3 3 filter banks. The nine shaded y elements in the output feature map
are the y elements that receive contributions from xh,w in forward interference.
For example, input element xh,w contributes to yh22,w22 through multiplication
with w2,2 and to yh,w through multiplication with w0,0. Therefore during back-
propagation, @E

@xh;w
should receive contribution from the @E

@y values of these nine
elements, and the computation is equivalent to a convolution with a transposed
filter bank wT.

Fig. 16.10 shows the C code for calculating each element of @E
@x for each input

feature map. Note that the code assumes that @E
@y has been calculated for all the

output feature maps of the layer and passed in with a pointer argument dE_dY.
This is a reasonable assumption, since @E

@y for the current layer is the @E
@x for its

immediate next layer, whose gradients should have been calculated in the back-
propagation before reaching the current layer. It also assumes that the space of @E

@x
has been allocated in the device memory whose handle is passed in as a pointer
argument dE_dX. The function generates all the elements of @E

@x.

FIGURE 16.9

Convolutional layer. Backpropagation of (A) @E/@w and (B) @E/@x.
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The sequential code for calculating @E
@w for a convolutional layer computation is

similar to that of @E
@x and is shown in Fig. 16.11. Since each W(m, c) affects all ele-

ments of output Y(m), we should accumulate gradients for each W(m, c) over all
pixels in the corresponding output feature map:

@E
@W

m; c; p; qð Þ ¼
XHout21

h¼0

XWout21

w¼0

X c; hþ p; wþ qð Þ ! @E
@Y

m; h;wð Þ
! "

Note that while the calculation of @E
@x is important for propagating the gradient

to the previous layer, the calculation of the @E
@w is key to the adjustments to the

weight values of the current layer.

01 void convLayer_backward_x_grad(int M, int C, int H_in, int W_in, int K,
float* dE_dY, float* W, float* dE_dX) {

02 int H_out = H_in – K + 1;
03 int W_out = W_in – K + 1; 
04 for(int c = 0;  c < C; c++)
05 for(int h = 0; h < H_in; h++)
06 for(int w = 0; w < W_in; w++) 
07   dE_dX[c, h, w] = 0;

08 for(int m = 0;  m < M;  m++) 
09 for(int h = 0; h < H-1; h++)
10 for(int w = 0; w < W-1; w++) 
11 for(int c = 0;  c < C; c++)
12 for(int p = 0; p < K; p++)
13 for(int q = 0; q < K; q++)  
14                if(h-p >= 0 && w-p >=0 && h-p < H_out and w-p < W_OUT)
15 dE_dX[c, h, w] += dE_dY[m, h-p, w-p] * W[m, c, k-p, k-q];
16 }

FIGURE 16.10
@E
@x calculation of the backward path of a convolutional layer.

01  void convLayer_backward_w_grad(int M, int C, int H, int W, int K, float* 
dE_dY, float* X, float* dE_dW) {

02 int H_out = H – K + 1;
03     int W_out = W – K + 1; 
04 for(int m = 0; m < M; m++)
05  for(int c = 0; c < C; c++)
06   for(int p = 0; p < K; p++)
07    for(int q = 0; q < K; q++)  
08      dE_dW[m, c, p, q] = 0.;

09    for(int m = 0;  m < M; m++)
10     for(int h = 0; h < H_out; h++)
11       for(int w = 0; w < W_out; w++) 
12        for(int c = 0;  c < C; c++)
13        for(int p = 0; p < K; p++)
14            for(int q = 0; q < K; q++)  
15        dE_dW[m, c, p, q] += X[c, h+p, w+q] * dE_dY[m, c, h, w];
16   }

FIGURE 16.11
@E
@w calculation of the backward path of a convolutional layer.
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After the @E
@w values at all filter bank element positions have been computed,

weights are updated to minimize the expected error using the formula presented
in Section 16.1: w w2 ε& @E

@w, where ε is the learning rate constant. The initial
value of ε is set empirically and reduced through the epochs according to the rule
defined by user. The value of ε is reduced through the epochs to ensure that the
weights converge to a minimal error. Recall that the negative sign of the adjust-
ment term causes the change to be opposite to the direction of the gradient so that
the change will likely reduce the error. Recall also that the weight values of the
layers determine how the input is transformed through the network. The adjust-
ment of these weight values of all the layers adapts the behavior of the network.
That is, the network “learns” from a sequence of labeled training data and adapts
its behavior by adjusting all weight values at all its layers for inputs whose infer-
ence results were incorrect and triggered backpropagation.

As we discussed in Section 16.1, backpropagation is typically triggered
after a forward pass has been performed on a minibatch of N images from the
training dataset, and the gradients have been computed for this minibatch. The
learned weights are updated with the gradients that are calculated for the mini-
batch, and the process is repeated with another minibatch.2 This adds one
additional dimension to all previously described arrays, indexed with n, the
index of the sample in the minibatch. It also adds one additional loop over
samples.

Fig. 16.12 shows the revised forward path implementation of a convolutional
layer. It generates the output feature maps for all the samples of a minibatch.

01  void convLayer_batched(int N, int M, int C, int H, int W, int K, float* X,
float* W, float* Y) { 

02 int H_out = H – K + 1;
03 int W_out = W – K + 1;  
04 for(int n = 0;  n < N;  n++) // for each sample in the mini-batch
05 for(int m = 0;  m < M;  m++) // for each output feature map
06  for(int h = 0; h < H_out; h++) // for each output element
07   for(int w = 0; w < W_out; w++) {
08    Y[n, m, h, w] = 0;
09    for (int c = 0;  c < C; c++ // sum over all input feature maps
10       for (int p = 0; p < K; p++) // KxK  filter
11         for (int q = 0; q < K; q++)  
12          Y[n,m,h,w] = Y[n,m,h,w] + X[n, c, h+p, w+q]*W[m,c,p,q];
13  }
14      }

FIGURE 16.12

Forward path of a convolutional layer with minibatch training.

2 If we work by the “optimization book,” we should return used samples back to the training set
and then build a new minibatch by randomly picking the next samples. In practice, we iterate
sequentially over the whole training set. In machine learning, a pass through the training set is
called an epoch. Then we shuffle the whole training set and start the next epoch.
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16.3 Convolutional layer: a CUDA inference kernel
The computation pattern in training a convolutional neural network is like matrix
multiplication: It is both compute intensive and highly parallel. We can process
different samples in a minibatch, different output feature maps for the same sam-
ple, and different elements for each output feature map in parallel. In Fig. 16.12
the n-loop (line 04, over samples in a minibatch), the m-loop (line 05, over output
feature maps), and the nested h-w-loops (lines 06'07, over pixels of each output
feature map) are all parallel loops in that their iterations can be executed in paral-
lel. These four loop levels together offer a massive level of parallelism.

The innermost three loop levels, the c-loop (over the input feature maps or
channels) and the nested p-q-loops (over the weights in a filter bank), also
offer a significant level of parallelism. However, to parallelize them, one
would need to use atomic operations in accumulating into the Y elements,
since different iterations of these loop levels can perform read-modify-write
on the same Y elements. Therefore we will keep these loops serial unless we
really need more parallelism.

Assuming that we exploit the four levels of “easy” parallelism (n, m, h, w) in
the convolutional layer, the total number of parallel iterations is the product
N&M&H_out&W_out. This high degree of available parallelism makes the convolu-
tional layer an excellent candidate for GPU acceleration. We can easily design a
kernel with thread organizations that are designed to capture the parallelism.

We first need to make some high-level design decisions about the thread orga-
nization. Assume that we will have each thread compute one element of one out-
put feature map. We will use 2D thread blocks, in which each thread block
computes a tile of TILE_WIDTH 3 TILE_WIDTH pixels in one output feature
map. For example, if we set TILE_WIDTH = 16, we would have a total of 256
threads per block. This captures part of the nested h-w-loop level parallelism in
processing the pixels of each output feature map.

Blocks can be organized into a 3D grid in several different ways. Each option
designates the grid dimensions to capture the n, m, and h-w parallelism in differ-
ent combinations. We will present the details of one of the options and leave it as
an exercise for the reader to explore different options and evaluate the potential
pros and cons of each option. The option that we present in detail is as follows:

1. The first dimension (X) corresponds to the (M) output features maps covered
by each block.

2. The second dimension (Y) reflects the location of a block’s output tile inside
the output feature map.

3. The third dimension (Z) in the grid corresponds to samples (N) in the minibatch.

Fig. 16.13 shows the host code that launches a kernel based on the thread
organization proposed above. The number of blocks in the X and Z dimensions of
the grid are straightforward; They are simply M, the number of output feature
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maps, and N, the number of samples in a minibatch. The arrangement in the Y
dimension is a little more complex and is illustrated in Fig. 16.14. Ideally, we
would like to dedicate two dimensions of the grid indices to the vertical and hori-
zontal tile indices for simplicity. However, we have only one dimension for both,
since we are using X for the output feature map index and Z for the sample index
in a minibatch. Therefore we linearize the tile indices to encode both the horizon-
tal and vertical tile indices of output feature map tiles.

In the example in Fig. 16.14, each sample has four output feature maps
(M = 4), and each output feature map consists of 2 3 2 tiles (H_grid = 2 in line
02 and W_grid = 2 in line 03) of 16 3 16 = 256 pixels each. The grid organiza-
tion assigns each block to calculate one of these tiles.

01   # define TILE_WIDTH 16
02   W_grid = W_out/TILE_WIDTH; // number of horizontal tiles per output map
03   H_grid = H_out/TILE_WIDTH; // number of vertical tiles per output map
04   T = H_grid * W_grid;
05   dim3 blockDim(TILE_WIDTH, TILE_WIDTH, 1);
06   dim3 gridDim(M, T, N);
07   ConvLayerForward_Kernel<<< gridDim, blockDim>>>(…);

FIGURE 16.13

Host code for launching a convolutional layer kernel.

FIGURE 16.14

Mapping output feature map tiles to blocks in the X-Y dimension of the grid.
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We have already assigned each output feature map to the X dimension, which
is reflected as the four blocks in the X dimension, each corresponding to one of
the output feature maps. As shown in the bottom of Fig. 16.14, we linearize the
four tiles in each output feature map and assign them to the blocks in the Y
dimension. Thus tiles (0, 0), (0, 1), (1, 0), and (1, 1) are mapped using row-major
order to the blocks with blockIdx.y values 0, 1, 2, and 3, respectively. Thus the
total number of bocks in the Y dimension is 4 (T = H_grid&W_grid = 4 in line
04). Thus we will launch a grid with gridDim (4, 4, N) in lines 06'07.

Fig. 16.15 shows a kernel based on the thread organization above. Note that in
the code, we use multidimensional indices in array accesses for clarity. We leave
it to the reader to translate this pseudo-code into regular C, assuming that X, Y,
and W must be accessed via linearized indexing based on row-major layout
(Chapter 3, Multidimensional Grids and Data).

Each thread starts by generating the n (batch), m (feature map), h (vertical),
and w (horizontal) indices of its assigned output feature map pixel. The n (line
06) and m (line 03) indices are straightforward, given the host code. For the h
index calculation in line 04, the blockIdx.y value is first divided by W_grid to
recover the tile index in the vertical direction, as illustrated in Fig. 16.13. This
tile index is then expanded by the TILE_WIDTH and added to the threadIdx.y to
form the actual vertical pixel index into the output feature map (line 04). The der-
ivation of the horizontal pixel index is similar (line 05).

The kernel in Fig. 16.15 has a high degree of parallelism but consumes
too much global memory bandwidth. As in the convolution pattern discus-
sions in Chapter 7, Convolution, the execution speed of the kernel will be
limited by the global memory bandwidth. As we also saw in Chapter 7,
Convolution, we can use constant memory caching and shared memory tiling
to dramatically reduce the global memory traffic and improve the execution
speed of the kernel. These optimizations to the convolution inference kernel
are left as an exercise for the reader.

03      int m = blockIdx.x;
04      int h = (blockIdx.y / W_grid)*TILE_WIDTH + threadIdx.y;
05      int w = (blockIdx.y % W_grid)*TILE_WIDTH + threadIdx.x;
06      int n = blockIdx.z;
07  float acc = 0.;
08  for (int c = 0;  c < C; c++) { // sum over all input channels
09 for (int p = 0; p < K; p++) // loop over KxK  filter
10      for (int q = 0; q < K; q++)  
11 acc += X[n, c, h + p, w + q] * W[m, c, p, q];
12  }
13  Y[n, m, h, w] = acc;
14  }

01  __global__ void
02  ConvLayerForward_Kernel(int C, int W_grid, int K, float* X, float* W, 

float* Y) {

FIGURE 16.15

Kernel for the forward path of a convolutional layer.
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16.4 Formulating a convolutional layer as GEMM
We can build an even faster convolutional layer by representing it as an equiva-
lent matrix multiplication operation and then using a highly efficient GEMM
(general matrix multiply) kernel from the CUDA linear algebra library cuBLAS.
This method was proposed by Chellapilla et al. (2006). The central idea is unfold-
ing and duplicating input feature map pixels in such a way that all elements that
are needed to compute one output feature map pixel will be stored as one sequen-
tial column of the matrix that is thus produced. This formulates the forward oper-
ation of the convolutional layer to one large matrix multiplication.3

Consider a small example convolutional layer that takes as input C = 3 fea-
ture maps, each of which is of size 3 3 3, and produces M = 2 output features,
each of which is of size 2 3 2, as shown in Fig. 16.5 and again, for conve-
nience, at the top of Fig. 16.16. It uses M 3 C = 6 filter banks, each of which
is 2 3 2. The matrix version of this layer will be constructed in the following
way.

First, we will rearrange all input pixels. Since the results of the convolutions
are summed across input features, the input features can be concatenated into one
large matrix. Each input feature map becomes a section of rows in the large
matrix. As shown in Fig. 16.16, input feature maps 0, 1, and 2 become the top,
middle, and bottom sections, respectively, of the “input features X_unrolled”
matrix.

The rearrangement is done so that each column of the resulting matrix con-
tains all the input values necessary to compute one element of an output feature.
For example, in Fig. 16.16, all the input feature pixels that are needed for calcu-
lating the value at (0, 0) of output feature map 0 are circled in the input feature
maps:

Y0;0;0 5 1; 2; 1; 1ð Þ $ 1; 1; 2; 2ð Þ þ 0; 2; 0; 3ð Þ $ 1; 1; 1; 1ð Þ þ 1; 2; 0; 1ð Þ $ 0; 1; 1; 0ð Þ
5 1þ 2þ 2þ 2þ 0þ 2þ 0þ 3þ 0þ 2þ 0þ 0
5 14

where the first term of each inner product is a vector formed by linearizing the
patch of x pixels circled in Fig. 16.16. The second term is a vector that is formed
by linearizing the filter bank that is used for the convolution. In both cases, line-
arization is done by using the row-major order. It is also clear that we can refor-
mulate the three inner products into one inner product:

Y0;0;0 5 1; 2; 1; 1; 0; 2; 0; 3; 1; 2; 0; 1ð Þ $ 1; 1; 2; 2; 1; 1; 1; 1; 0; 1; 1; 0ð Þ
5 1þ 2þ 2þ 2þ 0þ 2þ 0þ 3þ 0þ 2þ 0þ 0
5 14

3 See also https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/ for a
very detailed explanation.
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As shown in the bottom of Fig. 16.16, the concatenated vector from the filter
banks becomes row 0 of the filter matrix, and the concatenated vector from the
input feature maps becomes column 0 of the input feature map unrolled matrix.
During matrix multiplication the row of the filter bank matrix and the column of
the input feature matrix will produce one pixel of the output feature map.

Note that matrix multiplication of the 2 3 12 filter matrix and the 12 3 8
input feature map matrix produces a 2 3 8 output feature map matrix. The top
section of the output feature map matrix is the linearized form of output feature
map 0, and the bottom is output feature map 1. Both are already in row-major
order, so they can be used as individual input feature maps for the next layer. As

FIGURE 16.16

Formulation of convolutional layer as GEMM.
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for the filter banks, each row of the filter matrix is simply the row-major order
view of the original filter bank. Thus the filter matrix is simply the concatenation
of all the original filter banks. There is no physical rearrangement or relocation of
filter elements that are involved.

We make an important observation that the patches of input feature map
pixels for calculating different pixels of the output feature map overlap with
each other, owing to the nature of convolution. This means that each input fea-
ture map pixel is replicated multiple times as we produce the expanded input
feature matrix. For example, the center pixel of each 3 3 3 input feature map
is used four times to compute the four pixels of an output feature, so it will be
duplicated four times. The middle pixel on each edge is used two times, so it
will be duplicated two times. The four pixels at corners of each input feature
are used only one time and will not need to be duplicated. Therefore the total
number of pixels in the expanded input feature matrix section is 4! 1 + 2! 4 +
1! 4 = 16. Since each original input feature map has only nine pixels, the
GEMM formulation incurs an expansion ratio of 16/9 = 1.8 for representing
input feature maps.

In general, the size of the unrolled input feature map matrix can be derived
from the number of input feature map elements that are required to generate each
output feature map element. The height, or the number of rows, of the expanded
matrix is the number of input feature elements contributing to each output feature
map element, which is C&K&K: each output element is the convolution of K&K
elements from each input feature map and there are C input feature maps. In our
example, the K is 2 since the filter bank is 2 3 2 and there are three input fea-
ture maps. Thus the height of the expanded matrix should be 3! 2! 2 = 12,
which is exactly the height of the matrix shown in Fig. 16.16.

The width, or the number columns, of the expanded matrix is the number
of elements in each output feature map. If each output feature map is an
H_out 3 W_out matrix, the number of columns of the expanded matrix is
H_out&W_out. In our example, each output feature map is a 2 3 2 matrix,
yielding four columns in the expanded matrix. Note that the number of out-
put feature maps M does not play into the duplication. This is because all
output feature maps are computed from the same expanded input feature map
matrix.

The ratio of expansion for the input feature maps is the size of the expanded
matrix over the total size of the original input feature maps. The reader should
verify that the expansion ratio is as follows:

C ! K ! K ! H out ! W out

C ! H in ! W in

where H_in and W_in are the height and width, respectively, of each input feature
map. In our example the ratio is (3! 2! 2! 2! 2)/(3! 3! 3) = 16/9. In general,
if the input feature maps and output feature maps are much larger than the filter
banks, the ratio of expansion will approach K&K.
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The filter banks are represented as a filter bank matrix in a fully linearized
layout, in which each row contains all weight values that are needed to produce
one output feature map. The height of the filter bank matrix is the number of
output feature maps (M). Computing different output feature maps involves
sharing a single expanded input feature map matrix. The width of the filter
bank matrix is the number of weight values that are needed for generating each
output feature map element, which is C&K&K. Recall that there is no duplica-
tion when placing the weight values into the filter bank matrix. For example,
the filter bank matrix is simply a concatenated arrangement of the six filter
banks in Fig. 16.16.

When we multiply the filter bank matrix W by the expanded input matrix
X_unrolled, the output feature maps are computed as a matrix Y of height M
and width H_out&W_out. That is, each row of Y is a complete output feature
map.

Let’s discuss now how we can implement this algorithm in CUDA. Let’s first
discuss the data layout. We can start from the layout of the input and output
matrices.

1. We assume that the input feature map samples in a minibatch will be supplied
in the same way as those for the basic CUDA kernel. It is organized as an N
3 C 3 H 3 W array, where N is the number of samples in a minibatch, C
is the number of input feature maps, H is the height of each input feature
map, and W is the width of each input feature map.

2. As we showed in Fig. 16.16, the matrix multiplication will naturally produce
an output Y stored as an M 3 (H_out&W_out) array. This is what the original
basic CUDA kernel would produce.

3. Since the filter bank matrix does not involve duplication of weight values, we
assume that it will be prepared ahead of time and organized as an M 3 C 3
K2 array as illustrated in Fig. 16.16.

The preparation of the unrolled input feature map matrix X_unroll is more
complex. Since each expansion increases the size of input by up to K2 times,
the expansion ratio can be very large for typical K values of 5 or larger. The
memory footprint for keeping all sample input feature maps for a minibatch
can be prohibitively large. To reduce the memory footprint, we will allocate
only one buffer for X_unrolled [C & K & K& H_out & W_out]. We will reuse this
buffer by looping over samples in the minibatch. During each iteration we
convert the sample input feature map from its original form into the unrolled
matrix.

Fig. 16.17 shows a sequential function that produces the X_unroll array by
gathering and duplicating the elements of an input feature map X. The function
uses five levels of loops. The innermost two levels of for-loop (w and h, lines
08'13) place one input feature map element for each of the output feature map
elements. The next two levels (p and q, lines 06'14) repeat the process for each
of the K&K filter matrix elements. The outermost loop repeats the process of all
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input feature maps. This implementation is conceptually straightforward and can
be quite easily parallelized since the loops do not impose dependencies among
their iterations. Also, successive iterations of the innermost loop (w, lines 10'13)
read from a localized tile of one of the input feature maps in X and write into
sequential locations (same row in X_unroll) in the expanded matrix X_unroll.
This should result in efficient memory bandwidth usage on a CPU.

We are now ready to design a CUDA kernel which implements the input fea-
ture map unrolling. Each CUDA thread will be responsible for gathering (K&K)
input elements from one input feature map for one element of an output feature
map. The total number of threads will be (C & H_out & W_out). We will use one-
dimensional thread blocks and extract multidimensional indices from the linear-
ized thread index.

Fig. 16.18 shows an implementation of the unroll kernel. Note that each thread
will build a K&K section of a column, shown as a shaded box in the Input
Features X_Unrolled array in Fig. 16.16. Each such section contains all elements
of a patch of the input feature map X from channel c, required for performing a
convolution operation with the corresponding filter to produce one element of
output Y.

Comparing the loop structures of Figs. 16.17 and 16.18 shows that the inner-
most two loop levels in Fig. 16.17 have been changed into outer level loops in
Fig. 16.18. This interchange allows the work for collecting the input elements
that are needed for calculating output elements to be done in parallel by multiple
threads. Furthermore, having each thread collect all input feature map elements
from an input feature map that are needed for generating an output generates a
coalesced memory write pattern. As illustrated in Fig. 16.16, adjacent threads will

06 for(int p = 0; p < K; p++) {
07 for(int q = 0; q < K; q++) {  
08  for(int h = 0; h < H_out; h++) {
09 int h_unroll = w_base + p*K + q;
10 for(int w = 0; w < W_out; w ++) {
11 int w_unroll = h * W_out + w;
12 X_unroll[h_unroll, w_unroll) = X(c, h + p, w + q); 
13  }
14   }
15     }
16            }
17        }
18 }

01 void unroll(int C, int H, int W, int K, float* X, float* X_unroll) {
02 int H_out = H – K + 1;
03 int W_out = W – K + 1;    
04 for(int c = 0; c < C; c++) {

// Beginning row index of the section for channel C input feature
// map in the unrolled matrix

05 w_base = c * (K*K);

FIGURE 16.17

A C function that generates the unrolled X matrix. The array accesses are in
multidimensional indexing form for clarity and need to be linearized for the code to be
compilable.
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be writing adjacent X_unroll elements in a row as they all move vertically to
complete their sections. The read access patterns to X are similar and can be ana-
lyzed by an inspection of the w_out values for adjacent threads. We leave the
detailed analysis of the read access pattern as an exercise.

An important high-level assumption is that we keep the input feature maps,
filter bank weights, and output feature maps in the device memory. The filter
bank matrix is prepared once and stored in the device global memory for use by
all input feature maps. For each sample in the minibatch, we launch the
unroll_Kernel to prepare an expanded matrix and launch a matrix multiplication
kernel, as outlined in Fig. 16.16.

Implementing convolutions with matrix multiplication can be very efficient,
since matrix multiplication is highly optimized on all hardware platforms. Matrix
multiplication is especially fast on GPUs because it has a high ratio of floating-
point operations per byte of global memory data access. This ratio increases as
the matrices get larger, meaning that matrix multiplication is less efficient on
small matrices. Accordingly, this approach to convolution is most effective when
it creates large matrices for multiplication.

As we mentioned earlier, the filter bank matrix is an M 3 (C!K!K) matrix
and the expanded input feature map matrix is a (C!K!K) 3 (H_out!W_out)

01 __global__ void
02  unroll_Kernel(int C, int H, int W, int K, float* X, float* X_unroll) {
03 int t = blockIdx.x * blockDim.x + threadIdx.x;
04 int H_out = H – K + 1;
05 int W_out = W – K + 1;  

// Width of the unrolled input feature matrix
06 int W_unroll = H_out * W_out;
07 if (t < C * W_unroll) {

// Channel of the input feature map being collected by the thread
08 int c = t / W_unroll; 

// Column index of the unrolled matrix to write a strip of
// input elements into (also, the linearized index of the output
// element for which the thread is collecting input elements)

09 int w_unroll = t % W_unroll;
// Horizontal and vertical indices of the output element

10 int h_out = w_unroll / W_out;
11 int w_out = w_unroll % W_out;

// Starting row index for the unrolled matrix section for channel c
12 int w_base = c * K * K;
13 for(int p = 0; p < K; p++) 
14 for(int q = 0; q < K; q++) {

// Row index of the unrolled matrix for the thread to write
// the input element into for the current iteration

15 int h_unroll = w_base + p*K + q;
16 X_unroll[h_unroll, w_unroll] = X[c, h_out + p, w_out + q];
17 }
18 }
19 }

FIGURE 16.18

A CUDA kernel implementation for unrolling input feature maps. The array accesses are
in multidimensional indexing form for clarity and need to be linearized for the code to be
compilable.
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matrix. Note that except for the height of the filter bank matrix, the sizes of all
dimensions depend on products of the parameters to the convolution, not the para-
meters themselves. While individual parameters can be small, their products tend
to be large. For example, it is often true that in early layers of a convolutional
network, C is small, but H_out and W_out are large. On the other hand, at the
end of the network, C is large, but H_out and W_out are small. Hence the product
C&H_out&W_out is usually large for all layers. This means that the sizes of the
matrices tend to be consistently large for all layers, and so the performance using
this approach tends to be high.

One disadvantage of forming the expanded input feature map matrix is that
it involves duplicating the input data up to K&K times, which can require the
allocation of a prohibitively large amount of memory. To work around this limi-
tation, implementations such as the one shown in Fig. 16.16 materialize the
X_unroll matrix piece by piece, for example, by forming the expanded input
feature map matrix and calling matrix multiplication iteratively for each sample
of the minibatch. However, this limits the parallelism in the implementation,
and can sometimes lead to cases where the matrix multiplications are too small
to effectively utilize the GPU. Another disadvantage of this formulation is that
it lowers the computational intensity of the convolutions because X_unroll must
be written and read, in addition to reading X itself, requiring significantly more
memory traffic than the direct approach. Accordingly, the highest performance
implementation has even more complex arrangements in realizing the unrolling
algorithm to both maximize GPU utilization while keeping the reading from
DRAM minimal. We will come back to this point when we present the CUDNN
approach in the next section.

16.5 CUDNN library
CUDNN is a library of optimized routines for implementing deep learning
primitives. It was designed to make it much easier for deep learning frame-
works to take advantage of GPUs. It provides a flexible and easy-to-use C-
language deep learning API that integrates neatly into existing deep learning
frameworks (e.g., Caffe, Tensorflow, Theano, Torch). The library requires
that input and output data be resident in the GPU device memory, as we dis-
cussed in the previous section. This requirement is analogous to that of
cuBLAS.

The library is thread-safe in that its routines can be called from different
host threads. Convolutional routines for the forward and backward paths use a
common descriptor that encapsulates the attributes of the layer. Tensors and fil-
ters are accessed through opaque descriptors, with the flexibility to specify the
tensor layout using arbitrary strides along each dimension. The most important
computational primitive in CNN is a special form of batched convolution.
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In this section we describe the forward form of this convolution. The CUDNN
parameters that govern this convolution are listed Table 16.1.

There are two inputs to the convolution:

1. D is a four-dimensional N 3 C 3 H 3 W tensor, which contains the input
data.4

2. F is a four-dimensional K 3 C 3 R 3 S tensor, which contains the
convolutional filters.

The input data array (tensor) D ranges over N samples in a minibatch, C input
feature maps per sample, H rows per input feature map, and W columns per input
feature map. The filters range over K output feature maps, C input feature maps,
R rows per filter bank, and S columns per filter bank. The output is also a four-
dimensional tensor O that ranges over N samples in the minibatch, K output fea-
ture maps, P rows per output feature map, and Q columns per output feature map,
where P = f(H; R; u; pad_h) and Q = f(W; S; v; pad_w), meaning that the height
and width of the output feature maps depend on the input feature map and filter
bank height and width, along with padding and striding choices. The striding
parameters u and v allow the user to reduce the computational load by computing
only a subset of the output pixels. The padding parameters allow the user to spec-
ify how many rows or columns of 0 entries are appended to each feature map for
improved memory alignment and/or vectorized execution.

Table 16.1 Convolution parameters for CUDNN. Note that the CUDNN
naming convention is slightly different from what we used in previous
sections.

Parameter Meaning

N Number of images in minibatch
C Number of input feature maps
H Height of input image
W Width of input image
K Number of output feature maps
R Height of filter
S Width of filter
u Vertical stride
v Horizontal stride
pad_h Height of zero padding
pad_w Width of zero padding

4 Tensor is a mathematical term for arrays that have more than two dimensions. In mathematics,
matrices have only two dimensions. Arrays with three or more dimensions are called tensors. For
the purpose of this book, a T-dimensional tensor can be treated simply as a T-dimensional array.
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CUDNN (Chetlur et al., 2014) supports multiple algorithms for implementing
a convolutional layer: matrix multiplication'based GEMM (Tan et al., 2011) and
Winograd (Lavin & Scott, 2016), FFT-based (Vasilache et al., 2014), and so on.
The GEMM-based algorithm to implement the convolutions with a matrix multi-
plication is similar to the approach presented in Section 16.4. As we discussed at
the end of Section 16.4, materializing the expanded input feature matrix in global
memory can be costly in terms of both global memory space and bandwidth con-
sumption. CUDNN avoids this problem by lazily generating and loading the
expanded input feature map matrix X_unroll into on-chip memory only, rather
than by gathering it in off-chip memory before calling a matrix multiplication
routine. NVIDIA provides a matrix multiplication'based routine that achieves a
high utilization of the maximal theoretical floating-point throughput on GPUs.
The algorithm for this routine is similar to the algorithm described by Tan et al.
(2011). Fixed-size submatrices of the input matrices A and B are successively
read into on-chip memory and are then used to compute a submatrix of the output
matrix C. All indexing complexities that are imposed by the convolution are han-
dled in the management of tiles in this routine. We compute on tiles of A and B
while fetching the next tiles of A and B from off-chip memory into on-chip
caches and other memories. This technique hides the memory latency that is asso-
ciated with the data transfer, allowing the matrix multiplication computation to be
limited only by the time it takes to perform the arithmetic calculations.

Since the tiling that is required for the matrix multiplication routine is inde-
pendent of any parameters from the convolution, the mapping between the tile
boundaries of X_unroll and the convolution problem is nontrivial. Accordingly,
the CUDNN approach entails computing this mapping and using it to load the
correct elements of A and B into on-chip memories. This happens dynamically as
the computation proceeds, which allows the CUDNN convolution implementation
to exploit optimized infrastructure for matrix multiplication. It requires additional
indexing arithmetic compared to a matrix multiplication, but it fully leverages the
computational engine of matrix multiplication to perform the work. After the
computation is complete, CUDNN performs the required tensor transposition to
store the result in the user’s desired data layout.

16.6 Summary
This chapter started with a brief introduction to machine learning. It then dove
more deeply into the classification task and introduced perceptrons, a type of lin-
ear classifier that is foundational for understanding modern CNN. We discussed
how the forward inference and backward propagation training passes are imple-
mented for both single-layer and MLP. In particular, we discussed the need for
differentiable activation functions and how the model parameters can be updated
through chain rules in a multilayer perceptron network during the training
process.
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Based on the conceptual and mathematical understanding of perceptrons, we
presented a basic convolutional neural network and the implementation of its
major types of layers. These layers can be viewed as special cases and/or simple
adaptations of perceptrons. We then built on the convolution pattern in Chapter 7,
Convolution, to present a CUDA kernel implementation of the convolutional
layer, the most computationally intensive layer of CNN.

We then presented techniques for formulating convolutional layers as matrix
multiplications by unrolling the input feature maps into a matrix. The conversion
allows the convolutional layers to benefit from highly optimized GEMM libraries
for GPUs. We also presented the C and CUDA implementations of the unrolling
procedure for the input matrix and discussed the pros and cons of the unrolling
approach.

We ended the chapter with an overview of the CUDNN library, which is used
by most deep learning frameworks. Users of these frameworks can benefit from the
highly optimized layer implementations without writing CUDA kernels themselves.

Exercises
1. Implement the forward pass for the pooling layer described in Section 16.2.
2. We used an [N 3 C 3 H 3 W] layout for input and output features. Can

we reduce the memory bandwidth by changing it to an [N 3 H 3 W 3 C]
layout? What are potential benefits of using a [C 3 H 3 W 3 N] layout?

3. Implement the backward pass for the convolutional layer described in
Section 16.2.

4. Analyze the read access pattern to X in the unroll_Kernel in Fig. 16.18 and
show whether the memory reads that are done by adjacent threads can be
coalesced.
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In this chapter we start with the background and problem formulation of a rela-
tively simple application that has traditionally been constrained by the limited
capabilities of mainstream computing systems. We show that parallel execution
not only speeds up the existing approaches but also allows the applications
experts to pursue an approach that has been known to provide benefit but was
previously ignored because of the excessive computational requirements. This
approach represents an increasingly important class of computational methods
that derive statistically optimal estimation of unknown values from a very large
amount of observational data. We use an example algorithm and its implementa-
tion source code from such an approach to illustrate how a developer can system-
atically determine the kernel parallelism structure, assign variables into different
types of memories, steer around limitations of the hardware, validate results, and
assess the impact of performance improvements.

17.1 Background
Magnetic resonance imaging (MRI) is commonly used as a medical procedure to
safely and noninvasively probe the structure and function of biological tissues in
all regions of the body. Images that are generated by using MRI have had a pro-
found impact in both clinical and research settings. MRI consists of two phases:
acquisition (scan) and reconstruction. During the acquisition phase, the scanner
samples data in the k-space domain (i.e., the spatial frequency domain or Fourier
transform domain) along a predefined trajectory. These samples are then
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transformed into the desired image during the reconstruction phase. Intuitively,
the reconstruction phase estimates the shape and texture of the tissues on the basis
of the observation k-space data collected from the scanner.

The application of MRI is often limited by high noise levels, significant imag-
ing artifacts, and/or long data acquisition times. In clinical settings, short scan
times not only increase scanner throughput but also reduce patient discomfort,
and this tends to mitigate motion-related artifacts. High image resolution and
fidelity are important because they enable early detection of pathology, leading to
improved prognoses for patients. However, the goals of short scan time, high res-
olution, and high signal-to-noise ratio (SNR) often conflict; improvements in one
metric tend to come at the expense of one or both of the others. New technologi-
cal breakthroughs are needed to enable simultaneous improvement on all of three
dimensions. This study presents a case in which massively parallel computing
provides such a breakthrough.

The reader is referred to MRI textbooks such as Liang and Lauterbur (1999) for
the physics principles behind MRI. For this case study, we will focus on the compu-
tational complexity in the reconstruction phase and how the complexity is affected
by the k-space sampling trajectory. The k-space sampling trajectory used by the MRI
scanner can significantly affect the quality of the reconstructed image, the time com-
plexity of the reconstruction algorithm, and the time required for the scanner to
acquire the samples. Eq. (17.1) shows a formulation that relates the k-space samples
to the reconstructed image for a class of reconstruction methods:

m
_

rð Þ ¼
X

j

W kj
! "

s kj
! "

ei2πkj r (17.1)

In Eq. (17.1), m(r) is the reconstructed image, s(k) is the measured k-space
data, and W(k) is the weighting function that accounts for nonuniform sampling;
that is, W(k) decreases the influence of data from k-space regions where a higher
density of samples points are taken. For this class of reconstructions, W(k) can
also serve as an apodization filtering function that reduces the influence of noise
and reduces artifacts due to finite sampling.

If data are acquired at uniformly spaced Cartesian grid points in the k-space
under ideal conditions, then the W(k) weighting function is a constant and can
thus be factored out of the summation in Eq. (17.1). Furthermore, with the uni-
formly spaced Cartesian grid samples, the exponential terms in Eq. (17.1) are uni-
formly spaced in the k-space. As a result, the reconstruction of m(r) becomes an
inverse fast Fourier transform (FFT) on s(k), an extremely efficient computation
method. A collection of data measured at such uniformed spaced Cartesian grid
points is referred to as a Cartesian scan trajectory. Fig. 17.1A depicts a Cartesian
scan trajectory. In practice, Cartesian scan trajectories allow straightforward
implementation on scanners and are widely used in clinical settings today.

Although the inverse FFT reconstruction of Cartesian scan data is computa-
tionally efficient, non-Cartesian scan trajectories often have an advantage in
reduced sensitivity to patient motion, better ability to provide self-calibrating field
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inhomogeneity information, and reduced requirements for scanner hardware per-
formance. As a result, non-Cartesian scan trajectories such as spirals (shown in
Fig. 17.1(C)), radial lines (also known as projection imaging), and rosettes have
been proposed to reduce motion-related artifacts and address scanner hardware
performance limitations. These improvements have recently allowed the recon-
structed image pixel values to be used for measuring subtle phenomenon such as
tissue chemical anomalies before they become anatomical pathology.

Fig. 17.2 shows such an MRI reconstruction-based measurement that generates
a map of sodium, a heavily regulated substance in normal human tissues. The
information can be used to track tissue health in stroke and cancer treatment pro-
cesses. Because sodium is much less abundant than water molecules in human tis-
sues, measuring sodium levels reliably requires a higher SNR through a higher
number of samples and therefore needs to mitigate the extra scan time with non-
Cartesian scan trajectories. The improved SNR enables reliable collection of

FIGURE 17.1

Scanner k-space trajectories and their associated reconstruction strategies: (A) Cartesian
trajectory with FFT reconstruction, (B) spiral (or non-Cartesian trajectory in general)
followed by gridding to enable FFT reconstruction, (C) spiral (non-Cartesian) trajectory with
a linear solver$based reconstruction.

FIGURE 17.2

Non-Cartesian k-space sample trajectory and accurate linear solver$based reconstruction
enable new capabilities with exciting medical applications.
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in vivo concentration data on chemical substances, such as sodium, in human tis-
sues. The variation or shifting of the sodium concentration suggests early signs of
disease development or tissue death. For example, the sodium map of a human
brain shown in Fig. 17.2 can be used to give early indication of brain tumor tissue
responsiveness to chemotherapy protocols, enabling individualized medicine.

Image reconstruction from non-Cartesian trajectory data presents both chal-
lenges and opportunities. The main challenge arises from the fact that the expo-
nential terms are no longer uniformly spaced; the summation does not have the
form of an FFT anymore. Therefore one can no longer perform reconstruction by
directly applying an inverse FFT to the k-space samples. In a commonly used
approach called gridding, the samples are first interpolated onto a uniform
Cartesian grid and then reconstructed by using the FFT (see Fig. 17.1B). For
example, a convolution approach to gridding takes a k-space data point, con-
volves it with a gridding convolution mask, and accumulates the results on a
Cartesian grid. As we saw in Chapter 7, Convolution, is quite computationally
intensive and is an important pattern for massively parallel computing. The reader
already has the skills for accelerating convolution gridding computation with par-
allel computing and thus facilitating the application of the current FFT approach
to non-Cartesian trajectory data.

In this chapter we will cover an iterative, statistically optimal image recon-
struction method that can accurately model imaging physics and bound the noise
error in the resulting image pixel values. Such statistically optimal methods are
gaining importance in the wake of big data analytics. However, such iterative
reconstruction methods have been impractical for large-scale three-dimensional
(3D) problems, owing their excessive computational requirements compared to
gridding. Recently, these reconstructions have become viable in clinical settings
because of the wide availability of GPUs. An iterative reconstruction algorithm
that used to take hours using high-end sequential CPUs to reconstruct an image of
moderate resolution now takes only minutes using both CPUs and GPUs, a delay
that is acceptable in clinical settings.

17.2 Iterative reconstruction
Haldar and Liang proposed a linear solver$based iterative reconstruction algo-
rithm (Stone et al., 2008) for non-Cartesian scan data, as shown in Fig. 17.1C.
The algorithm allows for explicitly modeling the physics of the scanner data
acquisition process and can thus reduce the artifacts in the reconstructed image.
However, it is computationally expensive. We use this as an example of innova-
tive methods that have required too much computation time to be considered
practical. We will show that massively parallel execution can reduce the recon-
struction time to the order of a minute so that the new imaging capabilities, such
as sodium imaging, can be deployed in clinical settings.
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Fig. 17.3 shows a solution of the quasi-Bayesian estimation problem formula-
tion of the iterative linear solver$based reconstruction approach, where ρ is a
vector containing voxel values for the reconstructed image, F is a matrix that
models the physics of imaging process, D is a vector of data samples from the
scanner, and W is a matrix that can incorporate prior information such as anatom-
ical constraints. FH and WH are the Hermitian transpose (or conjugate transpose)
of F and W, respectively, by taking the transpose and then taking the complex
conjugate of each entry (the complex conjugate of aþ ib being a2 ibÞ. In clinical
settings, the anatomical constraints represented in W are derived from one
or more high-resolution, high-SNR water molecule scans of the patient. These
water molecule scans reveal features such as the location of anatomical structures.
The matrix W is derived from these reference images. The problem is to solve for
ρ given all the other matrices and vectors.

On the surface, the computational solution to the problem formulation in
Fig. 17.3 should be very straightforward. It involves matrix multiplication and addi-
tion (FHF+λWHW), matrix-vector multiplication (FHD), matrix inversion (FHF
+λWHW)21, and finally matrix multiplication ((FHF+λWHW)21&FHD). However, the
sizes of the matrices make this straightforward approach extremely time-consuming.
The dimensions of FH and F matrices are determined by the number of voxels in the
3D reconstructed image and the number of k-space samples used in the reconstruc-
tion. Even in a modest resolution 1283-voxel reconstruction, there are 1283=2 million
columns in F with N elements in each column, where N is the number of k-space
samples that are used (size of D). Obviously, F is extremely large. Such massive
dimensions are commonly encountered in big data analytics when one tries to use
iterative solver methods to estimate the major contributing factors of a massive
amount of noisy observational data.

The sizes of the matrices that are involved are so large that the matrix opera-
tions that are involved in a direct solution of the equation in Fig. 17.3 using

FIGURE 17.3

An iterative linear solver$based approach to reconstructing non-Cartesian k-space sample
data.
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methods such as Gaussian elimination are practically intractable. An iterative
method for matrix inversion, such as the conjugate gradient (CG) algorithm, is
therefore preferred. The CG algorithm reconstructs the image by iteratively solving
the equation in Fig. 17.3 for ρ. During each iteration the CG algorithm updates the
current image estimate ρ to improve the value of the quasi-Bayesian cost function.
The computational efficiency of the CG technique is determined largely by the effi-
ciency of matrix-vector multiplication operations involving FHF+λWHW and ρ, as
these operations are required during each iteration of the CG algorithm.

Fortunately, the matrix W often has a sparse structure that permits efficient
implementation of WHW, and the matrix FHF is Toeplitz, which enables efficient
matrix-vector multiplication via the FFT. Stone et al. (2008) present a GPU-
accelerated method for calculating Q, a data structure that allows us to quickly
calculate matrix-vector multiplication involving FHF without actually calculating
FHF itself. The calculation of Q can take days on a high-end CPU core. Since F
models the physics of the image process, it needs to be done only once for a
given scanner and planned trajectory. Thus Q needs to be calculated only once
and is used for multiple scans using the same scan trajectory.

The matrix-vector multiply to calculate FHD takes about one order of magni-
tude less time than Q but can still take about 3 hours for a 1283-voxel reconstruc-
tion on a high-end sequential CPU. Recall that D is the vector of data samples
from the scanner. Thus since FHD needs to be computed for every image acquisi-
tion, it is desirable to reduce the computation time of FHD to minutes.1 We will
show the details of this process. As it turns out, the core computational structure
of Q is identical to that of FHD; Q just involves much more computation because
it deals with matrix multiplication rather than just matrix-vector multiplication.
Thus it suffices to discuss one of them from the parallelization perspective. We
will focus on FHD, since this is the one that will need to be run for each data
acquisition.

The “find ρ” step in Fig. 17.3 performs the actual CG based on FHD. As we
explain earlier, precalculation of Q makes this step much less computationally
intensive than FHD, accounting for less than 1% of the execution of the recon-
struction of each image on a sequential CPU. As a result, we will leave the CG
solver out of the parallelization scope and focus on FHD in this chapter. However,
we will revisit its status at the end of the chapter.

17.3 Computing FHD
Fig. 17.4 shows a sequential C implementation of the computations for the
core step of computing a data structure for computing FHD. The computations

1 Note that the FHD computation can be approximated with gridding and can run in a few seconds
with perhaps reduced quality of the final reconstructed image.

396 CHAPTER 17 Iterative magnetic resonance imaging reconstruction



start with an outer loop that iterates through the k-space samples (line 01). A
quick glance at Fig. 17.4 shows that the C implementation of FHD is an excel-
lent candidate for acceleration because it exhibits substantial data parallelism.
The algorithm first computes the real and imaginary components of Mu (rMu
and iMu) at the current sample point in the k-space. It then enters an inner n-
loop that computes the contribution of the current k-space sample to the real
and imaginary components of FHD at each voxel in the image space. Keep in
mind that M is the total number of k-space samples and N is the total number
of voxels in the reconstructed image. The value of FHD at any voxel depends
on the values of all k-space sample points. However, no voxel elements of
FHD depend on any other voxel elements of FHD. Therefore all elements of
FHD can be computed in parallel. Specifically, all iterations of the outer loop
can be done in parallel, and all iterations of the inner loop can be done in
parallel. However, the calculations of the inner loop have a dependence on
the calculation done by the preceding statements in the same iteration of the
outer loop.

Despite the algorithm’s abundant inherent parallelism, potential performance bot-
tlenecks are evident. First, in the loop that computes the elements of FHD, the ratio
of floating-point operations to memory accesses is at best 0.75 OP/B and at worst
0.25 OP/B. The best case assumes that the sin and cos trigonometry operations are
computed by using five-element Taylor series that require 13 and 12 floating-point
operations, respectively. The worst case assumes that each trigonometric operation is
computed as a single operation in hardware. As we saw in Chapter 5, Memory
Architecture and Data Locality, a substantially higher floating-point arithmetic to
global memory access ratio is needed for the kernel not to be limited by memory
bandwidth. Thus the memory accesses will clearly limit the performance of the ker-
nel unless the ratio is drastically increased.

Second, the ratio of floating-point arithmetic to floating-point trigonometry
functions is only 13:2. Thus a GPU-based implementation must tolerate or avoid
stalls due to the long latency and low throughput of the sin and cos operations.
Without a good way to reduce the cost of trigonometry functions, the perfor-
mance will likely be dominated by the time that is spent in these functions.

01  for (int m = 0; m < M; m++) {
02  rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
03    iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];
04  for (int n = 0; n < N; n++) {
05  float expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);
06  float cArg = cos(expFhD);
07  float sArg = sin(expFhD);
08  rFhD[n] +=  rMu[m]*cArg – iMu[m]*sArg;
09  iFhD[n] +=  iMu[m]*cArg + rMu[m]*sArg;
10  }
11  }

FIGURE 17.4

Computation of FHD.
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We are now ready to take the steps in converting FHD from sequential C code
to a CUDA kernel.

Step 1: Determine the kernel parallelism structure

The conversion of the loops in Fig. 17.4 into a CUDA kernel is conceptually
straightforward. Since all iterations of the outer loop of Fig. 17.4 can be executed
in parallel, we can simply convert the outer loop into a CUDA kernel by mapping
its iterations to CUDA threads. Fig. 17.5 shows a kernel from such a straightfor-
ward conversion. Each thread implements an iteration of the original outer loop;
that is, we use each thread to calculate the contribution of one k-space sample to
all FHD elements. The original outer loop has M iterations, and M can be in the
millions. We obviously need to have a large number of thread blocks to generate
enough threads to implement all these iterations.

To make performance tuning easy, we declare a constant
FHD_THREADS_PER_BLOCK that defines the number of threads in each thread
block when we invoke the cmpFhD kernel. Thus we will use M/
FHD_THREADS_PER_BLOCK for the grid size and FHD_THREADS_PER_BLOCK for the
block size when invoking the kernel. Within the kernel, each thread calculates the
original iteration of the outer loop that it is assigned to cover, using the familiar
formula blockIdx.x&FHD_THREADS_PER_BLOCK + threadIdx.x. For example,
assume that there are 1,000,000 k-space samples and we decide to use 1024
threads per block. The grid size at kernel innovation will be 1,000,000/1024=977
blocks. The block size will be 1,024. The calculation of m for each thread will be
equivalent to blockIdx.x&1024+threadIdx.

While the kernel of Fig. 17.5 exploits ample parallelism, it suffers from a
major problem: All threads write into all rFhD and iFhD voxel elements. This
means that the kernel must use atomic operations in the global memory in the
inner loop in order to keep threads from trashing each other’s contributions to the
voxel value (lines 10$11). As we saw in Chapter 9, Parallel Histogram, heavy

01  #define FHD_THREADS_PER_BLOCK 1024
02  __global__ void cmpFhD(float* rPhi, iPhi, rD, iD,
03  kx, ky, kz, x, y, z, rMu, iMu, rFhD, iFhD, int N) {
04  int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;
05  rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
06  iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];
07 for (int n = 0; n < N; n++) {
08  float expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);
09  float cArg = cos(expFhD);  float sArg = sin(expFhD);
10  atomicAdd(&rFhD[n],rMu[m]*cArg – iMu[m]*sArg);
11  atomicAdd(&iFhD[n],iMu[m]*cArg + rMu[m]*sArg);
12    }
13  }

FIGURE 17.5

First version of the FHD kernel.

398 CHAPTER 17 Iterative magnetic resonance imaging reconstruction



use of atomic operations on global memory data can seriously reduce the perfor-
mance of parallel execution. Furthermore, the size of the rFhD and iFhD arrays,
which is the total number of voxels in the reconstructed image, makes privatiza-
tion in shared memory infeasible. We need to explore other options.

The arrangement for each thread to take an input element (k-space sample in
this application) and update all or many output elements (voxels of the recon-
structed image in this application) is referred to as the scatter approach.
Intuitively, each thread scatters the effect of an input to many output values.
Unfortunately, threads in the scatter approach can update the same output ele-
ments and potentially trash each other’s contributions. Thus atomic operations are
needed for a scatter approach in general and tend to negatively impact the perfor-
mance of parallel execution.

A potentially better alternative to the scatter approach is to use each thread to
calculate one output element by collecting the contributions from all input ele-
ments, which is referred to as the gather approach. The gather approach ensures
that the threads update only their designated output elements and never interfere
with each other. In our application, parallelization based on the gather approach
assigns each thread to calculate one pair of rFhD and iFhD elements from all k-
space samples. As a result, there is no interference between threads and no need
for atomic operations.

To adopt the gather approach, we need to make the n-loop the outer loop so
that we can assign each iteration of the n-loop to a thread. This can be done by
swapping the inner loop and the outer loop in Fig. 17.4 so that each of the new
outer loop iterations processes one rFhD/iFhD element pair. That is, each of the
new outer loop iterations will execute the new inner loop that accumulates the
contribution of all k-space samples to the rFhD/iFhD element pair handled by the
outer loop iteration. This transformation of the loop structure is called loop inter-
change. It requires a perfectly nested loop, meaning that there is no statement
between the outer for-loop statement and the inner for-loop statement. However,
this is not true for the FhD code in Fig. 17.4. We need to find a way to move the
calculation of rMu and iMu elements out of the way.

From a quick inspection of Fig. 17.4 we see that the FHD calculation can be
split into two separate loops, as is shown in Fig. 17.6, using a technique called
loop fission or loop splitting. This transformation takes the body of a loop and
splits it into two loops. In the case of FHD the outer loop consists of two parts:
the statements before the inner loop and the inner loop itself. As is shown in
Fig. 17.6, we can perform loop fission on the outer loop by placing the statements
before the inner loop into a first loop and the inner loop into a second loop.

An important consideration in loop fission is that the transformation changes
the relative execution order of the two parts of the original outer loop. In the orig-
inal outer loop, both parts of the first iteration execute before the second iteration.
After fission the first part of all iterations will execute; they are then followed by
the second part of all iterations. The reader should be able to verify that this
change of execution order does not affect the execution results for FHD. This is
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because the execution of the first part of each iteration does not depend on the
result of the second part of any preceding iterations of the original outer loop.
Loop fission is a transformation that is often done by advanced compilers that are
capable of analyzing the (lack of) dependence between statements across loop
iterations.

With loop fission the FHD computation is now done in two steps. The first
step is a single-level loop that calculates the rMu and iMu elements for use in the
second loop. The second step corresponds to the second loop that calculates the
FHD elements based on the rMu and iMu elements calculated in the first step.
Each step can now be converted into its own CUDA kernel. The two CUDA ker-
nels will execute sequentially with respect to each other. Since the second loop
needs to use the results from the first loop, separating these two loops into two
kernels that execute in sequence does not sacrifice any parallelism.

The cmpMu() kernel in Fig. 17.7 implements the first loop. The conversion
of the first loop from sequential C code to a CUDA kernel is straightforward:
Each thread executes one iteration of the original C code. Since the M value
can be very big, reflecting the large number of k-space samples, such a map-
ping can result in a large number of threads. Since each thread block can have
up to 1024 threads in each block, we will need to use multiple blocks to allow
the large number of threads. This can be accomplished by having a number of
threads in each block, specified by MU_THREADS_PER_BLOCK in Fig. 17.7, and by
employing M/MU_THREADS_PER_BLOCK blocks needed to cover all M iterations of

01  for (int m = 0; m < M; m++) {
02   rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
03   iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];
04  }
05  for (int m = 0; m < M; m++) {
06   for (int n = 0; n < N; n++) {
07    float expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);
08    float cArg = cos(expFhD);
09    float sArg = sin(expFhD);
10    rFhD[n] +=  rMu[m]*cArg – iMu[m]*sArg;
11    iFhD[n] +=  iMu[m]*cArg + rMu[m]*sArg;
12   }
13  }

FIGURE 17.6

Loop fission on the FHD computation.

01  #define MU_THREADS_PER_BLOCK 1024
02 __global__ void cmpMu(float* rPhi, iPhi, rD, iD, rMu, iMu) { 
03   int m = blockIdx.x*MU_THREAEDS_PER_BLOCK + threadIdx.x;
04   rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
05   iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];
06  }

FIGURE 17.7

The cmpMu kernel.
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the original loop. For example, if there are 1,000,000 k-space samples, the ker-
nel could be invoked with a configuration of 1024 threads per block and
1,000,000/1024 = 977 blocks. This is done by defining MU_THREADS_PER_BLOCK
as 1024 and using it as the block size and M/MU_THREADS_PER_BLOCK as the grid
size during kernel innovation.

Within the kernel, each thread can identify the iteration assigned to it by using
its blockIdx and threadIdx values. Since the threading structure is one-
dimensional, only blockIdx.x and threadIdx.x need to be used. Because each
block covers a section of the original iterations, the iteration covered by a thread
is blockIdx.x&MU_THREADS_PER_BLOCK + threadIdx. For example, assume that
MU_THREADS_PER_BLOCK = 1024. The thread with blockIdx.x=0 and threadIdx.
x=37 covers the 37th iteration of the original loop, whereas the thread with
blockIdx.x=5 and threadIdx.x=2 covers the 5122nd (5&1024+2) iteration of the
original loop. Using this iteration number to access the Mu, Phi, and D arrays
ensures that the arrays are covered by the threads in the same way they were cov-
ered by the iterations of the original loop. Because every thread writes into its
own Mu element, there is no potential conflict between any of these threads.

Determining the structure of the second kernel requires a little more work. An
inspection of the second loop in Fig. 17.6 shows that there are at least three
options in designing the second kernel. In the first option, each thread corre-
sponds to one iteration of the inner loop. This option creates the most number of
threads and thus exploits the largest amount of parallelism. However, the number
of threads would be N&M, with N in the millions and M in hundreds of thousands.
Their product would result in too many threads in the grid, more than are needed
to fully utilize the device.

A second option is to use each thread to implement an iteration of the outer
loop. This option employs fewer threads than the first option. Instead of generat-
ing N&M threads, this option generates M threads. Since M corresponds to the
number of k-space samples and a large number of samples, on the order of a hun-
dred thousand, are typically used to calculate FHD, this option still exploits a
large amount of parallelism. However, this kernel suffers the same problem as the
kernel in Fig. 17.5. That is, each thread will write into all rFhD and iFhD ele-
ments, thus creating an extremely large number of conflicts between threads. As
is the case of Fig. 17.5, the code in Fig. 17.8 requires atomic operations that will
significantly slow down the parallel execution. Thus this option does not work
well.

A third option is to use each thread to compute one pair of rFhD and iFhD
output elements. This option requires us to interchange the inner and outer loops
and then use each thread to implement an iteration of the new outer loop. The
transformation is shown in Fig. 17.9. Loop interchange is necessary because the
loop being implemented by the CUDA threads must be the outer loop. Loop inter-
change makes each of the new outer loop iterations process a pair of rFhD and
iFhD output elements and makes each inner loop collect the contributions of all
input elements to this pair of output elements.
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Loop interchange is permissible here because all iterations of both levels of
loops are independent of each other. They can be executed in any order relative
to one another. Loop interchange, which changes the order of the iterations, is
allowed when these iterations can be executed in any order. This option allows us
to convert the new outer loop into a kernel to be executed by N threads. Since N
corresponds to the number of voxels in the reconstructed image, the N value can
be very large for higher-resolution images. For a 1283 image, there are 1283 =
2,097,152 threads, resulting in a large amount of parallelism. For higher resolu-
tions, such as 5123, we may need to either use multidimensional grids, launch
multiple grids, or assign multiple voxels to a single thread. The threads in this
third option all accumulate into their own rFhD and iFhD elements, since every
thread has a unique n value. There is no conflict between threads. This makes this
third option the best choice among the three options.

The kernel that is derived from the interchanged loops is shown in Fig. 17.10. The
outer loop has been stripped away; each thread covers an iteration of the outer (n)
loop, where n is equal to blockIdx.x&FHD_THREADS_PER_BLOCK + threadIdx.x. Once
this iteration (n) value has been identified, the thread executes the inner (m) loop based
on that n value. This kernel can be invoked with a number of threads in each
block, specified by a global constant FHD_THREADS_PER_BLOCK. Assuming that N is the
variable that stores the number of voxels in the reconstructed image,

01  #define FHD_THREADS_PER_BLOCK 1024
02  __global__ void cmpFhD(float* rPhi, iPhi, phiMag, 
03    kx, ky, kz, x, y, z, rMu, iMu, int N) {

04 int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;
05 for (int n = 0; n < N; n++) {
06 float expFhD = 2*PI*(kx[m]*x[n]+ky[m]*y[n]+kz[m]*z[n]);
07 float cArg = cos(expFhD);  
08 float sArg = sin(expFhD);
09  atomicAdd(&rFhD[n],rMu[m]*cArg – iMu[m]*sArg);
10   atomicAdd(&iFhD[n],iMu[m]*cArg + rMu[m]*sArg);
11  }
12  }

FIGURE 17.8

Second option of the FHD kernel.

01  for (int n = 0; n < N; n++) {
02   for (int m = 0; m < M; m++) {
03    float expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);
04    float cArg = cos(expFhD);
05    float sArg = sin(expFhD);
06    rFhD[n] +=  rMu[m]*cArg – iMu[m]*sArg;
07       iFhD[n] +=  iMu[m]*cArg + rMu[m]*sArg;
08  }
09 }  

FIGURE 17.9

Loop interchange of the FHD computation.
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N/FHD_THREADS_PER_BLOCK blocks cover all N iterations of the original loop. For exam-
ple, if there are 2,097,152 voxels, the kernel could be invoked with a configuration of
1024 threads per block and 2,097,152/1024 = 2048 blocks. In Fig. 17.10 this is done
by assigning 1024 to FHD_THREADS_PER_BLOCK and using it as the block size and
N/FHD_THREADS_PER_BLOCK as the grid size during kernel innovation.

Step 2: Getting around the memory bandwidth limitation

The simple cmpFhD kernel in Fig. 17.10 will perform significantly better than the
kernels in Figs. 17.5 and 17.8 but will still result in limited speedup, owing to
memory bandwidth limitations. A quick analysis shows that the execution is lim-
ited by the low compute to global memory access ratio of each thread. In the orig-
inal loop, each iteration performs at least 14 memory accesses: kx[m], ky[m], kz
[m], x[n], y[n], z[n], rMu[m] twice, iMu[m] twice, rFhD[n] read and write, and
iFhD[n] read and write. Meanwhile, about 13 floating-point multiplication, addi-
tion, or trigonometry operations are performed in each iteration. Therefore the
compute to global memory access ratio is 13/(14&4)=0.23 OP/B, which is too low
according to our analysis in Chapter 5, Memory Architecture and Data Locality.
We can immediately improve the compute to global memory access ratio by
assigning some of the array elements to automatic variables. As we discussed in
Chapter 5, Memory Architecture and Data Locality, the automatic variables will
reside in registers, thus converting reads and writes to the global memory into
reads and writes to on-chip registers. A quick review of the kernel in Fig. 17.10
shows that for each thread, the same x[n], y[n], and z[n] elements are used
across all iterations of the for-loop (lines 05$06). This means that we can load
these elements into automatic variables before the execution enters the loop. The
kernel can then use the automatic variables inside the loop, thus converting global
memory accesses to register accesses. Furthermore, the loop repeatedly reads
from and writes into rFhD[n] and iFhD[n]. We can have the iterations read from
and write into two automatic variables and write only the contents of these

01  #define FHD_THREADS_PER_BLOCK 1024
02  __global__ void cmpFhD(float* rPhi, iPhi, phiMag, 
03 kx, ky, kz, x, y, z, rMu, iMu, int M) {

04 int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;
05 for (int m = 0; m < M; m++) {
06 float expFhD = 2*PI*(kx[m]*x[n]+ky[m]*y[n]+kz[m]*z[n]);
07 float cArg = cos(expFhD);  
08 float sArg = sin(expFhD);
09   rFhD[n] +=  rMu[m]*cArg – iMu[m]*sArg;
10   iFhD[n] +=  iMu[m]*cArg + rMu[m]*sArg;
11 }
12 }

FIGURE 17.10

Third option of the FHD kernel.
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automatic variables into rFhD[n] and iFhD[n] after the execution exits the loop.
The resulting code is shown in Fig. 17.11. By increasing the number of registers
used by 5 for each thread, we have reduced the memory access done in each itera-
tion from 14 to 7. Thus we have increased the compute to global memory access
ratio from 0.23 OP/B to 0.46 OP/B. This is a good improvement and a good use
of the precious register resource.

Recall that the register usage can limit the occupancy, that is, the number of
blocks that can run in a streaming multiprocessor (SM). By increasing the register
usage by 5 in the kernel code, we increase the register usage of each thread block by
5&FHD_THREADS_PER_BLOCK. Assuming that we have 1024 threads per block, we just
increased the block register usage by 5120. Since each SM can accommodate a com-
bined register usage of 65,536 registers among all blocks assigned to it (in SM
Version 3.5 or higher), we need to be careful, as any further increase of register
usage can begin to limit the number of blocks that can be assigned to an SM.
Fortunately, the register usage is not a limiting factor to parallelism for this kernel.

We want to further improve the compute to global memory access ratio by
eliminating more global memory accesses in the cmpFhD kernel. The next candi-
dates to consider are the k-space samples kx[m], ky[m], and kz[m]. These array
elements are accessed differently than the x[n], y[n], and z[n] elements: Different
elements of kx, ky, and kz are accessed in each iteration of the loop in Fig. 17.11.
This means that we cannot load a k-space element into a register and expect to
access that element off a register through all the iterations. Therefore registers
will not help here. However, we should notice that the k-space elements are not
modified by the kernel. Also, each k-space element is used across all threads in
the grid. This means that we might be able to place the k-space elements into the
constant memory. Perhaps the constant cache can eliminate most of the DRAM
accesses.

02  __global__ void cmpFhD(float* rPhi, iPhi, phiMag, 
kx, ky, kz, x, y, z, rMu, iMu, int M) {

03  int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;
// assign frequently accessed coordinate and output
// elements into registers

04  float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];
05  float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];
06  for (int m = 0; m < M; m++) {
07   float expFhD = 2*PI*(kx[m]*xn_r+ky[m]*yn_r+kz[m]*zn_r);
08   float cArg = cos(expFhD);  
09   float sArg = sin(expFhD);
10   rFhDn_r +=  rMu[m]*cArg – iMu[m]*sArg;
11   iFhDn_r +=  iMu[m]*cArg + rMu[m]*sArg;
12  }
13  rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;
14  }

01  #define FHD_THREADS_PER_BLOCK 1024

FIGURE 17.11

Using registers to reduce memory accesses in the FHD kernel.
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An analysis of the loop in Fig. 17.11 reveals that the k-space elements are
indeed excellent candidates for the constant memory. The index used for acces-
sing kx, ky, and kz is m. We know that m is independent of threadIdx, which
implies that all threads in a warp will be accessing the same element of kx, ky,
and kz. This is an ideal access pattern for cached constant memory: Every time
an element is brought into the cache, it will be used at least by all 32 threads in a
warp for a current generation device. This means that for every 32 accesses to the
constant memory, at least 31 of them will be served by the cache. This allows the
cache to effectively eliminate 96% or more of the accesses to the global memory.
Better yet, each time when a constant is accessed from the cache, it can be broad-
cast to all the threads in a warp. This makes constant memory almost as efficient
as registers for accessing k-space elements.2

However, there is a technical issue involved in placing the k-space elements
into the constant memory. Recall that constant memory has a capacity of 64KB.
However, the size of the k-space samples can be much larger, on the order of mil-
lions. A typical way of working around the limitation of constant memory capacity
is to break a large dataset down into chunks of 64KB or smaller. The developer
must reorganize the kernel so that the kernel will be invoked multiple times, with
each invocation of the kernel consuming only a chunk of the large dataset. This
turns out to be quite easy for the cmpFhD kernel.

A careful examination of the loop in Fig. 17.11 reveals that all threads will
sequentially march through the k-space sample arrays. That is, all threads in the
grid access the same k-space element during each iteration. For large datasets
the loop in the kernel simply iterates more times. This means that we can divide
the loop into sections, with each section processing a chunk of the k-space ele-
ments that fit into the 64KB capacity of the constant memory.3 The host code
now invokes the kernel multiple times. Each time the host invokes the kernel, it
places a new chunk into the constant memory before calling the kernel function.
This is illustrated in Fig. 17.12. (For more recent devices and CUDA versions, a
“const __restrict__” declaration of kernel parameters makes the corresponding
input data available in the read-only data cache, which is a simpler way of getting
the same effect as using constant memory.)

In Fig. 17.12 the cmpFhD kernel is called from a loop. The code assumes that
kx, ky, and kz arrays are in the host memory. The dimension of kx, ky, and kz is
given by M. At each iteration the host code calls the cudaMemcpyToSymbol() func-
tion to transfer a chunk of the k-space data into the device constant memory, as
was discussed in Chapter 7 Convolution, The kernel is then invoked to process

2 The reason why a constant memory access is not exactly as efficient as a register access is that a
memory load instruction is still needed for access to the constant memory.
3 Note that not all accesses to read-only data are as favorable for constant memory as what we
have here. In some applications, threads in different blocks access different input elements in the
same iteration. Such more diverged access pattern makes it much harder to fit enough of the data
into the constant memory for a kernel launch.
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the chunk. Note that when M is not a perfect multiple of CHUNK_SIZE, the host
code will need to have an additional round of cudaMemcpyToSymbol() and one
more kernel invocation to finish the remaining k-space data.

Fig. 17.13 shows a revised kernel that accesses the k-space data from the con-
stant memory. Note that pointers to kx, ky, and kz are no longer in the parameter
list of the kernel function. The kx_c, ky_c, and kz_c arrays are accessed as global
variables declared under __constant__ keyword, as shown in Fig. 17.12. By
accessing these elements from the constant cache, the kernel now has effectively
only four global memory accesses to the rMu and iMu arrays. The compiler will typ-
ically recognize that the four array accesses are made to only two locations. It will

__constant__ float kx_c[CHUNK_SIZE], ky_c[CHUNK_SIZE], kz_c[CHUNK_SIZE];
…

void main() {
for (int i = 0; i < M/CHUNK_SIZE; i++);

cudaMemcpyToSymbol(kx_c,&kx[i*CHUNK_SIZE],4*CHUNK_SIZE, 
cudaMemCpyHostToDevice); 

cudaMemcpyToSymbol(ky_c,&ky[i*CHUNK_SIZE],4*CHUNK_SIZE, 
cudaMemCpyHostToDevice);

cudaMemcpyToSymbol(kz_c,&kz[i*CHUNK_SIZE],4*CHUNK_SIZE, 
cudaMemCpyHostToDevice);

…
cmpFhD<<<FHD_THREADS_PER_BLOCK, N/FHD_THREADS_PER_BLOCK>>>(rPhi,

iPhi, phiMag, x, y, z, rMu, iMu, CHUNK_SIZE);
}
/* Need to call kernel one more time if M is not */
/* perfect multiple of CHUNK SIZE */

}

FIGURE 17.12

Host code sequence for chunking k-space data to fit into constant memory.

01  #define FHD_THREADS_PER_BLOCK 1024
02  __global__ void cmpFhD(float* rPhi, iPhi, phiMag, 
03  x, y, z, rMu, iMu, int M) {
04  int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;
05  float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];
06  float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];
07  for (int m = 0; m < M; m++) {
08   float expFhD = 2*PI*(kx_c[m]*xn_r+ky_c[m]*yn_r+kz_c[m]*zn_r);
09   float cArg = cos(expFhD);  
10   float sArg = sin(expFhD);
11   rFhDn_r +=  rMu[m]*cArg – iMu[m]*sArg;
12   iFhDn_r +=  iMu[m]*cArg + rMu[m]*sArg;
13 }
14  rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;
15  }

FIGURE 17.13

Revised FHD kernel to use constant memory.
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perform only two global accesses, one to rMu[m] and one to iMu[m]. The values will
be stored in temporary register variables for use in the other two. This makes the
final number of memory accesses equal to 2. The compute to memory access ratio is
up to 1.63 OP/B. This is still not quite ideal but is sufficiently high that the memory
bandwidth limitation is no longer the only factor that limits performance. As we will
see, we can perform a few other optimizations that make the computation more effi-
cient and further improve performance.

If we ran the code in Figs. 17.12 and 17.13, we would have found out that the
performance enhancement was not as high as we expected for some devices. As it
turns out, the code shown in these figures does not result in as much memory
bandwidth reduction as we expected. The reason is that the constant cache does
not perform very well for the code. This has to do with the design of the constant
cache and the memory layout of the k-space data. As is shown in Fig. 17.14A,
each constant cache entry is designed to store multiple consecutive words. This
design reduces the cost of constant cache hardware. When an element is brought
into the cache, several elements around it are also brought into the cache. This is
illustrated as shaded sections surrounding kx[i], ky[i], and kz[i], which are shown
as dark boxes in Fig. 17.14. Three cache lines in the constant cache are needed to
support the efficient execution of each iteration of a warp.

In a typical execution we will have a fairly large number of warps that are
concurrently executing on an SM. Since different warps can be at very differ-
ent iterations, they may require many constant cache entries altogether. For
example, if we define each thread block to have 1024 threads and expect to
assign two blocks to execute concurrently in each SM, we will have (1024/
32)3 2=64 warps executing concurrently in an SM. If each of them requires a
minimum of three cache lines in the constant cache to sustain efficient execu-
tion, in the worst case, we need a total of 643 3=192 cache lines. Even if we
assume that, on average, three warps will be executing at the same iteration

FIGURE 17.14

Effect of k-space data layout on constant cache efficiency: (A) k-space data stored in
separate arrays, (B) k-space data stored in an array whose elements are structs.

40717.3 Computing FHD



and thus can share cache lines, we still need 64 cache lines. This is referred to
as the working set of all the active warps.

Because of cost constraints, the constant caches of some devices have a small
number of cache lines, such as 32. When there are not enough cache lines to
accommodate the entire working set, the data that are being accessed by different
warps begin to compete with each other for the cache lines. By the time a warp
moves to its next iteration, the next elements to be accessed have already been
purged to make room for the elements that have been accessed by other warps.
As it turns out, the constant cache capacity in some devices is indeed insufficient
to accommodate the entries for all the warps that are active in an SM. As a result,
the constant cache fails to eliminate many of the global memory accesses.

The problem of inefficient use of cache entries has been well studied in the lit-
erature and can be solved by adjusting the memory layout of the k-space data.
The solution is illustrated in Fig. 17.14B, and the code based on this solution is
shown in Figs. 17.15 and 17.16. Rather than having the x, y, and z components of
the k-space data stored in three separate arrays, the solution stores these compo-
nents in an array whose elements make up a struct. In the literature this style of
declaration is often referred to as array of structures. The declaration of the array
is shown in Fig. 17.15 (lines 01$03). We assume that the memory allocation and
initialization code (not shown) has placed the x, y, and z components of the k-

FIGURE 17.15

Adjusting k-space data layout to improve cache efficiency.

FIGURE 17.16

Adjusting for the k-space data memory layout in the FHD kernel.
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space data into the fields properly. By storing the x, y, and z components in the
three fields of an array element, the developer forces these components to be
stored in consecutive locations of the constant memory. Therefore all three com-
ponents that are used by an iteration of a warp can now fit into one cache entry,
reducing the number of entries needed to support the execution of all the active
warps. Note that since we have only one array to hold all k-space data, we can
just use one CUDA Memcpy To Symbol to copy the entire chunk to the device
constant memory. Assuming that each k-space sample is a single-precision float-
ing-point number, the size of the transfer is adjusted from 4&CHUNK_SIZE to
12&CHUNK_SIZE to reflect the transfer of all the three components in one CUDA
Memcpy To Symbol call.

With the new data structure layout, we also need to revise the kernel so that
the access is done according to the new layout. The new kernel is shown in
Fig. 17.16. Note that kx[m] has become k[m].x, ky[m] has become k[m].y, and so
on. This small change to the code can result in significant enhancement of its exe-
cution speed on some devices.4

Step 3: Using hardware trigonometry functions

CUDA offers hardware implementations of mathematical functions that provide
much higher throughput than their software counterparts. A motivation for GPUs
to offer such hardware implementations for trigonometry functions such as sin( )
and cos( ) is to improve the speed of view angle transformations in graphics
applications. These functions are implemented as hardware instructions executed
by the SFU (special function units). The procedure for using these functions is
quite easy. In the case of the cmpFhD kernel, what we need to do is to change the
calls to sin( ) and cos( ) functions into their hardware versions: __sin() and
__cos() (two “_” characters before the function name). These are intrinsic func-
tions that are recognized by the compiler and translated into SFU instructions.
Because these functions are called in a heavily executed loop body, we expect
that the change will result in a significant performance improvement. The result-
ing cmpFhD kernel is shown in Fig. 17.17.

However, we need to be careful about the reduced accuracy in switching from
software functions to hardware functions. Hardware implementations currently have
less accuracy than software libraries (the details are available in the CUDA C
Programming Guide). In the case of MRI we need to make sure that the hardware
implementation provides enough accuracy, as defined in Fig. 17.18. The testing pro-
cess involves a “perfect” image (I0) of a fictitious object, sometimes referred to as a

4 The reader might notice that the adjustment from multiple arrays to an array of structures is the
opposite of what is often done to global memory data. When adjacent threads in a warp access con-
secutive elements of an array of structures in global memory, it is much better to store the fields of
the structure into multiple arrays so that the global memory accesses are coalesced. The key differ-
ence here is that all threads in a warp are accessing the same elements, not consecutive ones.
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phantom object. We use a reverse process to generate a corresponding “scanned” k-
space data that is synthesized. The synthesized scanned data is then processed by the
proposed reconstruction system to generate a reconstructed image (I). The values of
the voxels in the perfect and reconstructed images are then fed into the peak signal-
to-noise ratio (PSNR) formula in Fig. 17.18.

The criteria for passing the test depend on the application for which the image
is intended. In our case, we worked with experts in clinical MRI to ensure that
the PSNR changes due to hardware functions were well within the accepted limits
for their applications. In applications in which the images are used by physicians
to form an impression of injury or to evaluate a disease, one also needs to have
visual inspection of the image quality. Fig. 17.19 shows the visual comparison of
the original “true” image. It then shows that the PSNR that is achieved by CPU
double-precision and single-precision implementations are both 27.6 dB, well
above the acceptable level for the application. A visual inspection also shows that
the reconstructed image indeed corresponds well with the original image.

The advantage of iterative reconstruction compared to a simple bilinear inter-
polation gridding/iFFT is also obvious in Fig. 17.19. The image reconstructed
with the simple gridding/iFFT has a PSNR of only 16.8 dB, substantially lower
than the PSNR of 27.6 dB that is achieved by the iterative reconstruction method.

01  #define FHD_THREADS_PER_BLOCK 1024
02 __global__ void cmpFhD(float* rPhi, iPhi, phiMag, 
03 x, y, z, rMu, iMu, int M) {

04 int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;
05 float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];
06 float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];
07 for (int m = 0; m < M; m++) {
08 float expFhD = 2*PI*(k[m].x*xn_r+k[m].y*yn_r+k[m].z*zn_r);
09 float cArg = __cos(expFhD);
10 float sArg = __sin(expFhD);
11 rFhDn_r +=  rMu[m]*cArg – iMu[m]*sArg;
12 iFhDn_r +=  iMu[m]*cArg + rMu[m]*sArg;
13 }
14 rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;
15 }

FIGURE 17.17

Using hardware __sin() and __cos() functions.

FIGURE 17.18

Metrics used to validate the accuracy of hardware functions. I0 is the perfect image. I is
the reconstructed image. PSNR is peak signal-to-noise ratio.
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FIGURE 17.19

Validation of floating-point precision and accuracy of the different FHD implementations.

41117.3 Computing FHD



A visual inspection of the gridding/iFFT image in Fig. 17.19 (image 2) shows
that there are severe artifacts that can significantly affect the usability of the
image for diagnostic purposes. These artifacts do not occur in the images from
the iterative reconstruction method.

When we moved from double-precision arithmetic to single-precision arithme-
tic on the CPU, there was no measurable degradation of PSNR, which remained
at 27.6 dB. When we moved the trigonometry function from the software library
to the hardware units, we observed a negligible degradation of PSNR, from
27.6 dB to 27.5 dB. The slight loss of PSNR is within an acceptable range for the
application. A visual inspection confirms that the reconstructed image does not
have significant artifacts compared to the original image.

Step 4: Experimental performance tuning

Up to this point, we have not determined the appropriate values for the configura-
tion parameters of the kernel. One kernel configuration parameter is the number
of threads per block. Using an adequate number of threads per block is needed to
fully utilize the thread capacity of each SM. Another kernel configuration param-
eter is the number of times one should unroll the body of the for-loop in
Fig. 17.17 (line 07). This can be set by using a “#pragma unroll” followed by the
number of unrolls that we want the compiler to perform on a loop. On one hand,
unrolling the loop can reduce the number of overhead instructions and potentially
reduce the number of clock cycles to process each k-space sample data. On the
other hand, too much unrolling can potentially increase the usage of registers and
reduce the number of blocks that can fit into an SM.

Note that the effects of these configurations are not isolated from each other.
Increasing one parameter value can potentially use the resource that could have
been used to increase another parameter value. As a result, one needs to evaluate
these parameters jointly in an experimental manner. There can be a large number
of combinations to try. In the case of FHD, the performance improves about 20%
by systematically searching all the combinations and choosing the one with the
best measured runtime, as compared to a heuristic tuning search effort that
explores only some promising trends. Ryoo et al. (2008) present a Pareto optimal
curve$based method to screen away most of the inferior combinations.

17.4 Summary
In this chapter we presented the key steps for parallelizing and optimizing a loop-
intensive application—iterative reconstruction of MRI images—from its sequen-
tial form. We started with the appropriate organization of parallelization: the scat-
ter approach versus the gather approach. We showed that transforming from a
scatter approach to a gather approach is key to avoiding atomic operations, which
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can significantly reduce the performance of parallel execution. We discussed the
practical techniques, that is, loop fission and loop interchange, that are needed to
enable the gather approach to parallelization.

We further presented the application of optimization techniques, such as pro-
moting array elements into registers, using constant memory/cache for input ele-
ments, and using hardware functions to improve the performance of the parallel
kernel. There is about a 103 speed improvement going from the basic version to
the final optimized version, as was discussed.

Before parallelization and optimization, FHD used to account for nearly
100% of the execution time. An interesting observation is that in the end, the
CG solver (the “find ρ” step in Fig. 17.3) can actually take more time than
FHD. This is because we have accelerated FHD dramatically. Any further
acceleration will now require acceleration of the CG solver. After successful
parallelization and optimization, FHD accounts for only about 50%. The other
50% is largely spent in the CG solver. This is a well-known phenomenon in
parallelizing real applications. Because some time-consuming phases of the
execution are accelerated by successful parallelization efforts, the execution
time becomes dominated by other phases that used to account for insignificant
portions of the execution.

Exercises
1. Loop fission splits a loop into two loops. Use the FHD code in Fig. 17.4 and

enumerate the execution order of the two parts of the outer loop body: (1) the
statements before the inner loop and (2) the inner loop.

a. List the execution order of these parts from different iterations of the outer
loop before fission.

b. List the execution order of these parts from the two loops after fission.
c. Determine whether the execution results in parts (a) and (b) of this exercise

will be identical. The execution results are identical if all data required by a
part are properly generated and preserved for its consumption before that part
executes and the execution result of the part is not overwritten by other parts
that should come after the part in the original execution order.

2. Loop interchange swaps the inner loop into the outer loop and vice versa. Use
the loops from Fig. 17.9 and enumerate the execution order of the instances of
loop body before and after the loop exchange.

a. List the execution order of the loop body from different iterations before loop
interchange. Identify these iterations with the values of m and n.

b. List the execution order of the loop body from different iterations after loop
interchange. Identify these iterations with the values of m and n.

c. Determine whether the execution results in parts (a) and (b) of this exercise
will be identical. The execution results are identical if all data required by a
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part are properly generated and preserved for its consumption before that part
executes and the execution result of the part is not overwritten by other parts
that should come after the part in the original execution order.

3. In Fig. 17.11, identify the difference between the access to x[] and kx[] in the
nature of indices used. Use the difference to explain why it does not make
sense to try to load kx[n] into a register for the kernel shown in Fig. 17.11.
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The previous case study used a statistical estimation application to illustrate the pro-
cess of selecting an appropriate level of a loop nest for parallel execution, transform-
ing the loops for reduced memory access interference, using constant memory for
magnifying the memory bandwidth for read-only data, using registers to reduce the
consumption of memory bandwidth, and using special hardware functional units to
accelerate trigonometry functions. In this case study, we use a molecular dynamics
application based on regular grid data structures to illustrate the use of optimization
techniques that achieve global memory access, coalescing and improved computa-
tion throughput. As we did in the previous case study, we present a series of imple-
mentations of an electrostatic potential map calculation kernel in which each version
improves on the previous one. Each version adopts one or more practical techniques
from Chapter 6, Performance Considerations. Some of the techniques were used in
the previous case study, but some are different: systematic reuse of computational
results, thread granularity coarsening, and fast boundary condition checking. This
application case study shows that the effective use of these practical techniques can
significantly improve the execution throughput of the application.

18.1 Background
This case study is based on visual molecular dynamics (VMD) (Humphrey et al.,
1996), a popular software system that was designed for displaying, animating, and
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analyzing biomolecular systems. VMD has more than 200,000 registered users. It is
an important foundation for a modern “computational microscope” with which biolo-
gists can observe tiny life forms, such as viruses, that are too small for traditional
microscopy techniques. While it has strong built-in support for analyzing biomolecu-
lar systems, such as calculating electrostatic potential values at spatial grid points of
a molecular system (the focus of this chapter), it has also been a popular tool for dis-
playing other large datasets, such as sequencing data, quantum chemistry simulation
data, and volumetric data, owing to its versatility and user extensibility.

While VMD is designed to run on a diverse range of hardware, including lap-
tops, desktops, clusters, and supercomputers, most users use VMD as a desktop sci-
ence application for interactive three-dimensional (3D) visualization and analysis.
For computation that runs too long for interactive use, VMD can also be used in a
batch mode to render movies for later use. A motivation for accelerating VMD is
to make batch mode jobs fast enough for interactive use. This can drastically
improve the productivity of scientific investigations. With CUDA devices widely
available in desktop PCs, such acceleration can have broad impact on the VMD
user community. To date, multiple aspects of VMD have been accelerated with
CUDA, including electrostatic potential map calculation, ion placement, molecular
orbital calculation and display, and imaging of gas migration pathways in proteins.

The computation covered in this case study is the calculation of electrostatic
potential maps in a grid space. This calculation is often used in the placement of
ions into a molecular structure for molecular dynamics simulation. Fig. 18.1

FIGURE 18.1

Electrostatic potential map used in building stable structures for molecular dynamics simulation.
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shows the placement of ions into a protein structure in preparation for a molecular
dynamics simulation. In this application the electrostatic potential map is used to
identify spatial locations where ions (red dots) can fit in according to physical
laws. The function can also be used to calculate time-averaged electrical field
potential maps during molecular dynamics simulation, which is useful for the sim-
ulation process as well as the visualization and analysis of simulation results.

There are several methods for calculating electrostatic potential maps. Among
them, direct Coulomb summation (DCS) is a highly accurate method that is par-
ticularly suitable for GPUs (Stone et al., 2007). The DCS method calculates the
electrostatic potential value of each grid point as the sum of contributions from
all atoms in the system. This is illustrated in Fig. 18.2. The contribution of atom i
to a lattice point j is the charge of atom i divided by the distance from lattice
point j to atom i. Since this needs to be done for all grid points and all atoms, the
number of calculations is proportional to the product of the total number of atoms
in the system and the total number of grid points. For a realistic molecular system
this product can be very large. Therefore the calculation of the electrostatic poten-
tial map has been traditionally done as a batch job in VMD.

18.2 Scatter versus gather in kernel design
Fig. 18.3 shows the base C code of the DCS code. The function is written to pro-
cess a two-dimensional (2D) slice of a 3D grid. The function will be called
repeatedly for all the slices of the modeled space. The structure of the function is
quite simple with three levels of for loops. The outer two levels iterate over the y
dimension and the x dimension of the grid point space. For each grid point, the
innermost for loop iterates over all atoms, calculating the contribution of electro-
static potential energy from all atoms to the grid point. Note that each atom is
represented by four consecutive elements of the atoms[] array. The first three ele-
ments store the x, y, and z coordinates of the atom and the fourth element the
electrical charge of the atom. At the end of the innermost loop, the accumulated

FIGURE 18.2

The contribution of atom[i] to the electrostatic potential at lattice point j (potential[j]) is
atom[i]. charge/rij. In the direct coulomb summation method, the total potential at lattice
point j is the sum of contributions from all atoms in the system.

41718.2 Scatter versus gather in kernel design



value of the grid point is written out to the grid data structure. The outer loops
then iterate and take the execution to the next grid point.

Note that the DCS function in Fig. 18.3 calculates the x and y coordinates of
each grid point on the fly by multiplying the grid point index values by the spacing
between grid points. This is a uniform grid method in which all grid points are
spaced at the same distance in all three dimensions. The function takes advantage
of the fact that all the grid points in the same slice have the same z coordinate.
This value is precalculated by the caller of the function and passed in as a function
parameter (z). There are, however, several optimizations that can be done to the
sequential C code in Fig. 18.3 to significantly improve its execution speed.

Fig. 18.4 shows a C code for DCS with a few optimizations to improve its execution
speed and efficiency. First, the innermost loop (n-loop) in Fig. 18.3 has been exchanged
into the outermost loop (line 05 in Fig. 18.4). Thus the code iterates over all atoms. For
each atom the inner loops (i-loop and j-loop) scatter the contribution of the atom to all
the grid points. As we discussed in Chapter 17, Iterative Magnetic Resonance Imaging
Reconstruction, the loop interchange is permissible because the three levels of loops in
Fig. 18.3 are perfectly nested and all the iterations are independent of each other.

The loop interchange enables two optimizations. First, the z components of
the distance between an atom and all grid points in the plane are identical and
can be calculated once for the entire slice of the grid point. Therefore the calcula-
tion can be done outside the two inner loops (lines 6!7). Similarly, the y compo-
nents of distance between an atom and all grid points in the same row are
identical and can be done outside the innermost loop (lines 11!12). In compari-
son, the y and z components of the distance were both calculated in the innermost
loop in Fig. 18.3. This drastic reduction in the number of calculations makes the

06 for (int i=0; i<grid.x; i++) {
// calculate x coordinate based on i

07 float x = gridspacing * (float) i;
08 float energy = 0.0f;
09 for (int n=0; n<atomarrdim; n+=4) {  
10 float dx = x - atoms[n  ];
11 float dy = y - atoms[n+1];  
12 float dz = z - atoms[n+2];  
13 energy += atoms[n+3] / sqrtf(dx*dx + dy*dy+ dz*dz);
14 }
15 energygrid[grid.x*grid.y*z + grid.x*j + i] = energy;
16 }
17 } 
18  }

01 void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, 
02 const float *atoms, int numatoms) {
03 int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom
04 for (int j=0; j<grid.y; j++) {

// calculate y coordinate of the grid point based on j
05 float y = gridspacing * (float) j;

FIGURE 18.3

An unoptimized direct Coulomb summation C code for a two-dimensional slice.
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C code in Fig. 18.4 much faster. These optimizations cannot be done in Fig. 18.3
because the innermost loop iterates over all atoms, so one must recalculate the x,
y, and z components of the distance as they change from atom to atom.

For GPU execution we assume that the host program inputs and maintains the
atomic charges and their coordinates in the system memory. It also maintains the grid
point data structure in the system memory. The DCS kernel is designed to process a
2D slice of the electrostatic potential grid point structure (not to be confused with
thread grids). These grid points are like the grid points for discretization that were dis-
cussed in Chapter 8, Stencil. For each 2D slice, the CPU transfers its grid data to the
device global memory. Similar to the k-space data (Chapter 17, Iterative Magnetic
Resonance Imaging Reconstruction), the atom information is divided into chunks to fit
into the constant memory. For each chunk of the atom information, the CPU transfers
the chunk into the device constant memory, invokes the DCS kernel to calculate the
contribution of the current chunk to the current slice, and prepares to transfer the next
chunk. After all chunks of the atom information have been processed for the current
slice, the slice is transferred back to update the grid point data structure in the CPU sys-
tem memory. The system then moves on to the next slice.

Let us now focus on the design of DCS kernel. It is natural to parallelize the opti-
mized C code in Fig. 18.4. The resulting kernel is shown in Fig. 18.5. The defined
constant CHUNK_SIZE specifies the number of atoms that should be transferred into
the GPU constant memory for each kernel call. The value of CHUNK_SIZE"4 should be
less than or equal to 64K. The kernel uses each thread to implement an iteration of
the outermost loop in Fig. 18.4 and scatters the contribution of its assigned atom to

01 void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, 
02              const float *atoms, int numatoms) {
03 int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom

// starting point of the slice in the energy grid
04 int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;

//  calculate potential contribution of each atom
05   for (int n=0; n<atomarrdim; n+=4) {     
06 float dz = z - atoms[n+2];  // all grid points in a slice have the same 
07 float dz2 = dz*dz; // z  value, no recalculation in inner loops
08      float charge = atoms[n+3];
09  for (int j=0; j<grid.y; j++) {
10   float y = gridspacing * (float) j;
11 float dy = y - atoms[n+1];  // all grid points in a row have the same 
12 float dy2 = dy*dy; // y value
13   int grid_row_offset =  grid_slice_offset+ grid.x*j;
14   for (int i=0; i<grid.x; i++) {
15 float x = gridspacing * (float) i;
16 float dx = x - atoms[n    ];
17 energygrid[grid_row_offset+i] += charge / sqrtf(dx*dx + dy2+ dz2);
18 }
19 }
20   }
21  }

FIGURE 18.4

An optimized direct Coulomb summation C code for a two-dimensional slice.
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all grid points. Unfortunately, as we learned in Chapter 17, Iterative Magnetic
Resonance Imaging Reconstruction, this scatter approach to parallelization requires
atomic operations for updating the energy grid points (lines 17!18), which signifi-
cantly reduces the speed of parallel execution.

As we learned in Chapter 17, Iterative Magnetic Resonance Imaging
Reconstruction, we can instead use a gather approach in which each thread calcu-
lates the accumulated contributions of all atoms to one grid point. This is a preferred
approach, since each thread will be writing into its own grid point and there is no
need to use atomic operations. However, this requires the loops to be arranged in
the ordering of the unoptimized C code in Fig. 18.3; that is, we would be paralleliz-
ing a slower C implementation. This exemplifies a frequently experienced dilemma
in parallelizing applications: The optimized sequential code is not as amenable to
parallelization as the unoptimized sequential code is. The downside is that we can
end up with drastically slower execution within each thread, which can reduce the
speed benefit of parallelization. We will return to this point later in this chapter.

Fig. 18.6 shows a kernel based on the gather approach. The kernel is based on the
unoptimized C code in Fig. 18.3. We form a 2D thread grid that matches the 2D
potential grid point organization. To do so, we need to modify the two outer loops in
lines 04!06 of Fig. 18.3 into perfectly nested loops so that we can use each thread to
execute one iteration of the two-level loop. We can either perform a loop fission (as
we did in the previous case study) or move the calculation of the y coordinate (line 05
of Fig. 18.3) into the inner loop. The former would require us to create a new array to
hold all y values and would result in two kernels communicating data through the

01 __constant__ float atoms[CHUNK_SIZE*4];
02 void  __global__ cenergy(float *energygrid, dim3 grid, float gridspacing,
03                          float z) {
04 int n = (blockIdx.x * blockDim .x + threadIdx.x) * 4;
05 float dz = z-atoms[n+2];  // all grid points in a slice have the same 
06 float dz2 = dz*dz; // z value

// starting position of the slice in the energy grid
07 int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;
08 float charge = atoms[n+3];
09 for (int j=0; j<grid.y; j++) {
10 float y = gridspacing * (float) j;
11 float dy = y-atoms[n+1]; // all grid points in a row have the same 
12 float dy2 = dy*dy; // y value

// starting position of the row in the energy grid
13 int grid_row_offset =  grid_slice_offset+ grid.x*j;
14 for (int i=0; i<grid.x; i++) {
15 float x = gridspacing * (float) i;
16 float dx = x - atoms[n    ];
17 atomicAdd(&energygrid[grid_row_offset+i],
18 charge / sqrtf(dx*dx+dy2+dz2));
19 }
20 }
21 }

FIGURE 18.5

Direct Coulomb summation kernel using the scatter approach.
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global memory. The latter increases the number of times that the y coordinate will be
calculated. In this case, we choose to perform the latter, since there is only a small
amount of calculation that can be easily accommodated in the inner loop without sig-
nificantly increasing the execution time of the inner loop. The amount of work to be
absorbed into the inner loop is much smaller than that in Chapter 17, Iterative
Magnetic Resonance Imaging Reconstruction. The former would have added a kernel
launch overhead for a kernel in which threads do little work. The selected transforma-
tion allows all i and j iterations to be executed in parallel. This is a tradeoff between
the amount of calculation done and the level of parallelism achieved.

Inside the kernel code in Fig. 18.6, the outer two levels of the loop in Fig. 18.3
have been removed and are replaced by the execution configuration parameters in
the kernel invocation (lines 04!05 of Fig. 18.6). Within each thread grid, the
thread blocks are organized to calculate the electrostatic potential of tiles of the
grid structure. In the simplest kernel, each thread calculates the value at one grid
point. In more sophisticated kernels, each thread calculates multiple grid points and
exploits the redundancy between the calculations of the grid points to improve exe-
cution speed. This is an example of the thread coarsening optimization discussed in
Chapter 6, Performance Considerations and will be discussed in the next section.

The performance of the kernel in Fig. 18.6 is quite good, since its execution speed
is not hampered by atomic operations. Also, a quick glance over the code shows that
each thread does nine floating-point operations for every four memory elements
accessed. These atoms[] array elements for each atom are cached in a hardware con-
stant cache memory in each streaming multiprocessor (SM) and are broadcast to many
threads. The massive reuse of these constant memory elements across threads makes
the constant cache extremely effective, eliminating the vast majority of the DRAM
accesses. As a result, global memory bandwidth is not a limiting factor for this kernel.

01 __constant__ float atoms[CHUNK_SIZE*4];
02 void __global__ cenergy(float *energygrid, dim3 grid, float gridspacing,
03 float z, int numatoms) {
04 int i = blockIdx.x * blockDim.x + threadIdx.x;
05 int j = blockIdx.y * blockDim.y + threadIdx.y;
06 int atomarrdim = numatoms * 4;
07 int k = z / gridspacing;
08 float y = gridspacing * (float) j;
09 float x = gridspacing * (float) i;
10 float energy = 0.0f;

// calculate potential contribution from all atoms
11 for (int n=0; n<atomarrdim; n+=4) {     
12 float dx = x - atoms[n  ];
13 float dy = y - atoms[n+1];
14 float dz = z - atoms[n+2];
15 energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);
16 }
17 energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;
18 }

FIGURE 18.6

Direct Coulomb summation kernel using the gather approach.
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18.3 Thread coarsening
Although the kernel in Fig. 18.6 avoids the global memory bottleneck through con-
stant caching, it still needs to execute four constant memory access instructions for
every nine floating-point operations performed. These memory access instructions
consume hardware resources that could otherwise be used to increase the execution
throughput of floating-point instructions. Furthermore, the execution of these memory
access instructions consumes energy, an important limiting factor for many large-scale
parallel computing systems. This section shows that we can use the thread coarsening
technique to fuse several threads together so that the atoms[] data can be fetched once
from the constant memory, stored in registers, and used for multiple grid points.

Furthermore, as shown in Fig. 18.7, all energy grid points along the same row (y
dimension) have the same y coordinate. Therefore the difference between the y coordi-
nate of an atom and the y coordinate of any grid point along a row has the same value.
In the DCS kernel in Fig. 18.6, this calculation is redundantly done by all threads for
all grid points in a row when calculating the distance between the atom and the grid
points. We can eliminate this redundancy and improve the execution efficiency.

The idea is to have each thread calculate the electrostatic potential for multiple
energy grid points in the same row. The kernel in Fig. 18.8 has each thread calcu-
late four grid points. For each atom the code calculates dy, the difference of the y
coordinates, only once (line 21). It then calculates the expression dy"dy + dz"dz
and saves it to the automatic variable dysqdzsq, which is assigned to a register
(line 23). This value is the same for all four grid points. The electrical charge
information is also accessed from constant memory and stored in the automatic
variable charge (line 24). Therefore the calculation of energy0 through energy3
can all just use the values stored in the registers.

Similarly, the x coordinate of the atom is also read from constant memory and
used to calculate dx0 through dx3 (lines 17!20). Altogether, this kernel elimi-
nates three accesses to constant memory for the y coordinate of its atom, three
accesses for the x coordinate of its atom, three accesses for the charge of the
atom, three floating-point subtraction operations, five floating-point multiply
operations, and nine floating-point add operations in processing an atom for four
grid points. A quick inspection of the kernel code in Fig. 18.8 shows that each

FIGURE 18.7

Reusing computation results among multiple grid points.
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iteration of the loop performs four constant memory accesses, three floating-point
subtractions, eleven floating-point additions, six floating-point multiplications,
and four floating-point divisions for four grid points.

The reader should also verify that the version of DCS kernel in Fig. 18.6 per-
forms 16 constant memory accesses, 12 floating-point subtractions, 12 floating-
point additions, 12 floating-point multiplications, and 12 floating-point divi-
sions—a total of 48 floating-point operations for the same four grid points. Going
from Fig. 18.6!Fig. 18.8, there is a total reduction from 16 constant memory
accesses and 48 operations down to 4 constant memory accesses and 24 floating-
point operations, a sizable reduction. One can expect a sizable improvement in
both the execution time and the energy consumption of the kernel.

The cost of the optimization is that more registers are used by each thread.
This can potentially reduce the number of threads that can be accommodated by
each SM. However, since the number of registers stays within the permissible
limit, it does not limit the occupancy of GPU execution resources.

01 __constant__ float atoms[CHUNK_SIZE*4];
02  #define COARSEN_FACTOR 4
03 void __global__ cenergy(float *energygrid, dim3 grid, float gridspacing,
04 float z, int numatoms) {
05 int i = blockIdx.x * blockDim.x*COARSEN_FACTOR + threadIdx.x;
06 int j = blockIdx.y * blockDim.y + threadIdx.y;
07 int atomarrdim = numatoms * 4;
08 int k = z / gridspacing;
09 float y = gridspacing * (float) j;
10 float x = gridspacing * (float) i;
11 float energy0 = 0.0f;
12 float energy1 = 0.0f;
13 float energy2 = 0.0f;
14 float energy3 = 0.0f;
15 // calculate potential contribution from all atoms
16 for (int n=0; n<atomarrdim; n+=4) {     
17 float dx0 = x - atoms[n  ];
18 float dx1 = dx0 + gridspacing;
19 float dx2 = dx0 + 2*gridspacing;
20 float dx3 = dx0 + 3*gridspacing;
21 float dy = y - atoms[n+1];
22 float dz = z - atoms[n+2];
23 float dysqdzsq = dy*dy + dz*dz;
24        float charge = atoms[n+3];
25 energy0 += charge / sqrtf(dx0*dx0 + dysqdzsq);
26 energy1 += charge / sqrtf(dx1*dx1 + dysqdzsq);
27 energy2 += charge / sqrtf(dx2*dx2 + dysqdzsq);
28 energy3 += charge / sqrtf(dx3*dx3 + dysqdzsq);
29 }
30 energygrid[grid.x*grid.y*k + grid.x*j + i ] += energy0;
31 energygrid[grid.x*grid.y*k + grid.x*j + i+1] += energy1;
32 energygrid[grid.x*grid.y*k + grid.x*j + i+2] += energy2;
33 energygrid[grid.x*grid.y*k + grid.x*j + i+3] += energy3;
34 }

FIGURE 18.8

Direct Coulomb summation kernel with thread coarsening.
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18.4 Memory coalescing
While the performance of the DCS kernel in Fig. 18.8 is quite high, a quick profil-
ing run reveals that the threads perform memory writes inefficiently. In lines
30!33, each thread writes four neighboring grid points. Unfortunately, the write
pattern of adjacent threads in each warp will result in uncoalesced global memory
writes. There are two problems that cause the uncoalesced write pattern in the ker-
nel. First, each thread calculates four adjacent neighboring grid points. Thus for
each statement that writes to the energygrid[] array, the threads in a warp are not
accessing adjacent locations. Note that two adjacent threads access memory loca-
tions that are four elements apart. Thus the 32 locations to be written by all the
threads in a warp are spread out, with three elements in between the loaded/written
locations. This problem can be solved by assigning adjacent grid points to adjacent
threads in each block. We first assign blockDim.x consecutive grid points in the x
dimension to the threads. We then assign the next blockDim.x consecutive grid
points to the same threads. We repeat the assignment until each thread has the num-
ber of grid points desired. This assignment is illustrated in Fig. 18.9.

The kernel code with coarsened thread granularity and coalescing-aware
assignment of grid points to threads is shown in Fig. 18.10. Note that the x coor-
dinates that are used to calculate the atom-to-grid-point distances for a thread’s
assigned grid points are offset by blockDim.x"gridspacing. This reflects the fact
that the x coordinates of the four grid points assigned to a thread are blockDim.x
grid points away from each other. After the end of the loop, the indices of the
memory writes to the energygrid array are blockDim.x away from each other as
well. Hence all writes to the energygrid array will be coalesced, and the perfor-
mance of the kernel will be improved over that of Fig. 18.8.

FIGURE 18.9

Organizing threads and memory layout for coalesced writes.
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18.5 Cutoff binning for data size scalability
We can typically come up with multiple algorithms to solve a given problem.
Some algorithms require fewer steps of computation than others, some expose a
higher degree of parallel execution than others, some have better numerical stabil-
ity than others, and some consume less memory bandwidth than others.
Unfortunately, there is often not a single algorithm that is better than others in all
the four aspects. Given a problem and a decomposition strategy, a parallel pro-
grammer often needs to select an algorithm that achieves the best compromise for
a given hardware system.

In general, alternative algorithms for solving the same problem should reach
the same solution. Under this requirement, one can optimize the computation for
better efficiency and/or more parallelism. In some applications, one can often
come up with even more aggressive algorithm strategies if the problem can be
solved with slight variation in the final solution. An important algorithm strategy,

01 __constant__ float atoms[CHUNK_SIZE*4];
02  #define COARSEN_FACTOR 4
03  void __global__ cenergy(float *energygrid, dim3 grid, float gridspacing,
04                         float z, int numatoms) {
05   int i = blockIdx.x * blockDim.x*COARSEN_FACTOR + threadIdx.x;
06   int j = blockIdx.y * blockDim.y + threadIdx.y;
07   int atomarrdim = numatoms * 4;
08   int k = z / gridspacing;
09   float y = gridspacing * (float) j;
10   float x = gridspacing * (float) i;
11   float energy0 = 0.0f;
12     float energy1 = 0.0f;
13     float energy2 = 0.0f;
14     float energy3 = 0.0f;
15 // calculate potential contribution from all atoms
16 for (int n=0; n<atomarrdim; n+=4) {     
17 float dx0 = x - atoms[n  ];
18 float dx1 = dx0 +   blockDim.x * gridspacing;
19 float dx2 = dx0 + 2*blockDim.x * gridspacing;
20        float dx3 = dx0 + 3*blockDim.x * gridspacing;
21 float dy = y - atoms[n+1];
22 float dz = z - atoms[n+2];
23        float dysqdzsq = dy*dy + dz*dz;
24        float charge = atoms[n+3];
25 energy0 += charge / sqrtf(dx0*dx0 + dysqdzsq);
26        energy1 += charge / sqrtf(dx1*dx1 + dysqdzsq);
27        energy2 += charge / sqrtf(dx2*dx2 + dysqdzsq);
28        energy3 += charge / sqrtf(dx3*dx3 + dysqdzsq);
29 }
30 energygrid[grid.x*grid.y*k + grid.x*j + i ] += energy0;
31 energygrid[grid.x*grid.y*k + grid.x*j + i + blockDim.x] += energy1;
32 energygrid[grid.x*grid.y*k + grid.x*j + i + 2*blockDim.x] += energy2;
33 energygrid[grid.x*grid.y*k + grid.x*j + i + 3*blockDim.x] += energy3;
34 }

FIGURE 18.10

Direct Coulomb summation kernel with thread coarsening and memory coalescing.
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referred to as cutoff summation, can significantly improve the execution efficiency
of grid algorithms such as the electrostatic potential calculation by sacrificing a
small amount of accuracy. This is based on the observation that many grid calcu-
lation problems are based on physical laws in which numerical contributions from
particles or samples that are far away from a grid point can be collectively treated
with an implicit method at much lower computational complexity.

The cutoff summation strategy is illustrated for the electrostatic potential cal-
culation in Fig. 18.11. Fig. 18.11(A) shows the direct summation algorithms that
were discussed in the previous sections of this chapter. Each grid point receives
contributions from all atoms. While this is a very parallel approach and achieves
excellent speedup, it does not scale well to very large energy grid systems in
which the number of atoms increases proportionally to the volume of the system.
The amount of computation increases with the square of the volume. For large
volume systems, such increase makes the computation excessively long even for
massively parallel devices.

We know that each grid point needs to receive accurate contributions from
atoms that are close to it. The atoms that are far away from a grid point will have
a tiny contribution to the energy value at the grid point because the contribution
is inversely proportional to the distance. Fig. 18.11(B) illustrates this observation
with a circle drawn around a grid point. The contributions to the grid point energy
from atoms outside the circle (dark atoms) are small and can be handled with a
separate implicit method. If we can devise an algorithm in which each grid point
receives contributions only from atoms within a fixed radius of its coordinate, the
computational complexity of the algorithm will be reduced to being linearly pro-
portional to the volume of the system. This would make the computation time of
the algorithm linearly proportional to the volume of the system. Such algorithms
have been used extensively in sequential computation.

In sequential computing, a simple cutoff algorithm handles one atom at a
time. For each atom the algorithm iterates through the grid points that fall within
a radius of the atom’s coordinate. This is a straightforward procedure, since the

FIGURE 18.11

(A) Cutoff summation versus (B) direct summation.
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grid points are in an array that can be easily indexed as a function of their coordi-
nates. A C implementation of the cutoff algorithm can be derived with minor
modifications to the C implementation of DCS in Fig. 18.4 by restricting the
range of i and j of the inner loops to the energy grid points that fall into the
radius. However, this simple procedure does not carry over easily to parallel exe-
cution. The reason is what we discussed in Section 18.2: The atom-centric paral-
lelization does not work well, owing to its scatter memory update behavior.

Therefore we need to find a cutoff binning algorithm based on the grid-
centric decomposition: Each thread calculates the energy value at one grid
point. Fortunately, there is a well-known approach to adapting a direct summa-
tion algorithm, such as the one in Fig. 18.10, into a cutoff binning algorithm.
Rodrigues et al. presents such an algorithm for the electrostatic potential prob-
lem (Rodrigues et al., 2008).

The key idea of the algorithm is to first sort the input atoms into bins accord-
ing to their coordinates. Each bin corresponds to a box in the energy grid space,
and it contains all atoms whose coordinates fall into the box. These bins are
implemented as multidimensional arrays: the x, y, and z dimensions as well as the
fourth dimension that is a vector of atoms in the bin.

We define a “neighborhood” of bins for a grid point as the collection of bins
that contain all the atoms that can contribute to the energy value of the grid point.
Fig. 18.12 shows an example of the neighborhood bins for a grid point. Note that
nine bins around the grid point overlap with the circle of cutoff distance. For the
correct cutoff summation we need to make sure that all atoms in these nine bins
are considered for contribution to the grid point. Note that some of the atoms in
the neighborhood bins may not fall into the radius. Therefore in processing an
atom from one of the neighborhood bins, all threads need to check whether the
atom falls into its radius. This can cause some control divergence among threads
in a warp.

FIGURE 18.12

Neighborhood bins for a grid point.
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Although Fig. 18.12 shows only one layer (2D) of bins that immediately sur-
round the bin containing a grid point as its neighborhood, a real algorithm will
typically have multiple 3D bins in a grid point’s neighborhood. In this approach,
all threads iterate through their own neighborhood. They use their block and
thread indices to identify the coordinates of their assigned grid point and use these
coordinates to identify the appropriate bins to examine. One can think of the
neighborhood bins as a stencil in the energy grid space. However, the calculations
that are involved in determining the neighborhood bins given a cutoff radius can
be a complex geometric problem whose solution can be time consuming.
Therefore the neighborhood bins are usually defined for all threads in a block and
are prepared before launching the grid.

Fig. 18.13 shows a per-block design of neighborhood bins. Based on the block
dimensions and the grid spacing, one can calculate the area (volume in 3D) of energy
grid space covered by each block. We show the areas covered by the blocks as
squares in Fig. 18.13. For simplicity we assume that each of these areas is also cov-
ered by a bin; that is, all atoms that fall into the same square will be collected into the
same bin. For example, if the grid spacing is 0.5 Å and the blocks are 83 83 8, each
block would cover a 4 Å3 4 Å3 4Å cube in the energy grid space. If we assume a
typical cutoff distance of 12 Å for molecular-level force calculation, we need to iden-
tify all bins that can potentially be fully or partially covered by any of the 512 circles,
each of which is centered at one of the grid points covered by one of the threads in
the block. We can also use a conservative approximation by drawing a supercircle
that is centered at the center of the bin with a radius that is the cutoff distance plus
half of the bin diagonal. The rationale is that this supercircle would cover all the
circles that are centered at the corners of the bin. We can simply create a list of
the relative positions of the bins that are fully or partially covered by the supercircle.

FIGURE 18.13

Identifying the neighborhood bins for all grid points processed by a block.
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Fig. 18.14 shows a small example of identifying neighborhood bins. We see
that for each bin, there are 9 bins that are fully covered by the supercircle and 12
bins that are partially covered. We can generate a list of 9 + 12=21 neighborhood
bins that each thread in a block needs to examine for atoms that are within the
cutoff distance of the grid point covered by the thread. These bins are expressed
as the relative offset of the bin coordinates. For example, the 9 bins that are fully
covered by the supercircle can be expressed as the list (21, 21), (0, 21),
(1,2 1), (21, 0), (0, 0), (1, 0), (21, 1), (0, 1), and (1, 1), as illustrated in the top
portion of Fig. 18.14. The list would be supplied to the kernel, most likely as a
constant memory array. During kernel execution, all threads in a block would iter-
ate through the neighborhood list. For each neighborhood bin, the threads apply
the offsets to the coordinates of the bin covered by the block and derive the coor-
dinate of the neighbor bin, as illustrated in the bottom portion of Fig. 18.14. They
collaborate to load the atoms in the bin into the shared memory and then each
thread individually checks whether these atoms fall within the cutoff distance of
its assigned grid point. Each thread could make different decisions about includ-
ing or excluding each atom for contributing to the energy value at its assigned
grid point.

The improvement in computational complexity in a cutoff binning algorithm
mainly comes from the fact that each thread now examines a much smaller subset
of atoms, defined by the neighborhood bins, in a large grid system. However, this
makes constant memory much less attractive for holding the atoms. Since thread
blocks will be accessing different neighborhoods, the limited-sized constant mem-
ory will unlikely be able to hold all the atoms that are needed by all active thread
blocks. This motivates the use of global memory to hold a much larger set of
atoms. To mitigate the bandwidth consumption, threads in a block collaborate in
loading the atom information in each common neighborhood bin into the shared
memory. All threads then examine the atoms out of shared memory.

FIGURE 18.14

Neighborhood list using relative offsets.
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One subtle issue with binning is that bins may end up with different numbers
of atoms. Since the atoms are statistically distributed in the grid system, some
bins may have lots of atoms, and some bins may end up with no atoms at all. To
guarantee memory coalescing, it is important that all bins be of the same size and
aligned at appropriate coalescing boundaries. This would require us to fill many
bins with dummy atoms whose electrical charge is 0, which causes two negative
effects. First, the dummy atoms still occupy global memory and shared memory
storage. They also consume data transfer bandwidth to the device. Second, the
dummy atoms extend the execution time of the thread blocks whose bins have
few real atoms.

A good approach is setting the bin size at a reasonable level that covers the
number of atoms in the vast majority of the bins, typically much smaller than the
largest possible number of atoms in a bin. The binning process maintains an over-
flow list. In processing an atom, if the atom’s home bin is full, the atom is added
to the overflow list instead. After the device completes a kernel, the resulting grid
point energy values are transferred back to the host. The host executes a sequen-
tial cutoff algorithm on the atoms in the overflow list to complete the missing
contributions from these overflow atoms.

As long as the overflow atoms account for only a small percentage (e.g., less
than 3%) of the atoms, the additional sequential processing time of the overflow
atoms is typically shorter than that of the device execution time. One can also
design the kernel so that each kernel invocation calculates the energy values for a
subvolume of grid points. After each kernel completes, the host launches the next
kernel and processes the overflow atoms for the completed kernel. Thus the host
will be processing the overflow atoms while the device executes the next kernel.
This approach can hide most, if not all, of the delays in processing overflow
atoms, since it is done in parallel with the execution of the next kernel.

18.6 Summary
This chapter presents a series of decisions and tradeoffs in parallelizing the calcu-
lation of electrostatic potential energy in a regularly spaced energy grid. We show
that parallelizing a highly optimized sequential C implementation of the DCS
method leads to a slow scatter kernel that requires heavy use of atomic opera-
tions. We then show that one can parallelize a less optimized sequential C code
into a gather kernel that has much higher parallel execution speed. We also show
that through thread coarsening, we can reclaim much of the efficiency of the opti-
mized sequential execution. We further demonstrate that by carefully choosing
the grid points to fold into each thread, the kernel can have completely coalesced
memory write patterns.

While DCS is a highly accurate method for calculating the electrostatic poten-
tial energy map of a molecular system, it is not a scalable method. The number of
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operations that are performed by the method grows proportionally with the num-
ber of atoms and the number of grid points. When we increase the physical vol-
ume of the molecular system to be simulated, we should expect both the number
of grid points and the number of atoms to increase proportionally to the physical
size. As a result, the number of operations to be performed will be approximately
proportional to the square of the physical volume; that is, the number of opera-
tions to be performed will grow quadratically with the volume of the system
being simulated. This makes the use of DCS method not suitable for simulating
realistic biological systems. We show that by slightly reducing the accuracy, a
cutoff summation method implemented with the binning technique can dramati-
cally improve the complexity of the computation while retaining a high level of
parallelism.

Exercises
1. Complete the host code for configuring the grid and calling the kernel in

Fig. 18.6 with all the execution configuration parameters.
2. Compare the number of operations (memory loads, floating-point arithmetic,

branches) executed in each iteration of the kernel in Fig. 18.8 with that in
Fig. 18.6 for a coarsening factor of 8. Keep in mind that each iteration of the
former corresponds to eight iterations of the latter.

3. Give two potential disadvantages associated with increasing the amount of
work done in each CUDA thread, as shown in Section 18.3.

4. Use Fig. 18.13 to explain how control divergence can arise when threads in a
block process a bin in the neighborhood list.
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We have so far concentrated on practical knowledge in parallel programming,
which consists of CUDA programming interface features, the GPU architecture,
performance optimization techniques, parallel patterns, and application case stud-
ies. In this chapter we switch our discussions to concepts that are more abstract.
We generalize parallel programming into a computational thinking process of
designing or selecting parallel algorithms and decomposing a domain problem
into well-defined and coordinated work units that can each be efficiently per-
formed by the selected algorithms. A programmer with strong computational
thinking skills not only analyzes but also transforms the structure of a domain
problem: which parts are inherently serial, which parts are amenable to high-
performance parallel execution, and the domain-specific tradeoffs that are
involved in moving parts from the former category to the latter. With good algo-
rithm selection and problem decomposition the programmer can achieve an
appropriate compromise between parallelism, work efficiency, and resource con-
sumption. A strong combination of domain knowledge and computational think-
ing skills is often needed for creating successful computational solutions to
challenging domain problems. This chapter will give the reader more insight into
parallel programming and computational thinking in general.

19.1 Goals of parallel computing
Before we discuss the fundamental concepts of parallel programming, it is impor-
tant for us to first review the three main reasons why people pursue parallel com-
puting. The first goal is to solve a given problem in less time. For example, an
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investment firm may need to run a financial portfolio scenario risk analysis pack-
age on all its portfolios during after-trading hours. Such an analysis could require
200 hours on a sequential computer. However, the portfolio management process
may require that analysis be completed in 4 hours to be in time for major deci-
sions based on the resulting information. Using parallel computing may speed up
the analysis and allow it to complete within the required time window.

The second goal of using parallel computing is to solve bigger problems
within a given amount of time. In our financial portfolio analysis example the
investment firm may be able to run the portfolio scenario risk analysis on its cur-
rent portfolio within a given time window using sequential computing. However,
the firm is planning on expanding the number of holdings in its portfolio. The
enlarged problem size would cause the sequential analysis to exceed the allowed
time window. Parallel computing that reduces the running time of the bigger
problem size can help to accommodate the planned expansion to the portfolio.

The third goal of using parallel computing is to achieve better solutions for a
given problem and a given amount of time. The investment firm may have been
using an approximate model in its portfolio scenario risk analysis. Using a more
accurate model may increase the computational complexity and increase the run-
ning time on a sequential computer beyond the allowed window. For example, a
more accurate model may require consideration of interactions between more
types of risk factors using a more numerically complex formula. Parallel comput-
ing that reduces the running time of the more accurate model may complete the
analysis within the allowed time window.

In practice, parallel computing may be driven by a combination of these three
goals.

It should be clear from our discussion that parallel computing is motivated pri-
marily by increased speed. The first goal is achieved by increased speed in running
the existing model on the current problem size. The second goal is achieved by
increased speed in running the existing model on a larger problem size. The third
goal is achieved by increased speed in running a more complex model on the cur-
rent problem size. Obviously, the increased speed through parallel computing can
be used to achieve a combination of these goals. For example, parallel computing
can reduce the runtime of a more complex model on a larger problem size.

It should also be clear from our discussion that applications that are good can-
didates for parallel computing typically involve large problem sizes and high
complexity. That is, these applications process a large amount of data, require
much computation in each iteration, and/or perform many iterations on the data.
Applications that do not involve large problem sizes or incur high modeling com-
plexity tend to complete within a small amount of time and do not offer much
motivation for increased speed.

A real application often consists of multiple modules that work together.
Fig. 19.1 shows an overview of the major modules of a molecular dynamics
application. For each atom in the system the application needs to calculate the
various forms of forces, such as vibrational, rotational, and nonbonded, that are

434 CHAPTER 19 Parallel programming and computational thinking



exerted on the atom. Each form of force is calculated with a different method. At
the high level, a programmer needs to decide how the work is organized. Note
that the amount of work can vary dramatically between these modules. The non-
bonded force calculation typically involves interactions among many atoms and
incurs many more calculations than the vibrational and rotational forces.
Therefore these modules tend to be realized as separate passes over the force data
structure.

The programmer needs to decide whether each pass is worth implementing in
a CUDA device. For example, the programmer may decide that the vibrational
and rotational force calculations do not involve sufficient amount of work to war-
rant execution on a GPU device. Such a decision would lead to a CUDA program
that launches a kernel that calculates nonbonding force fields for all the grid
points while continuing to calculate the vibrational and rotational forces for the
grid points on the host. The module that updates atom positions and velocities
may also run on the host. It first combines the vibrational and rotational forces
from the host and the nonbonding forces from the device. It then uses the com-
bined forces to calculate the new atomic positions and velocities.

The portion of work done by the device will ultimately decide the application-
level speedup that is achieved by parallelization. For example, assume that the
nonbonding force calculation accounts for 95% of the original sequential execu-
tion time and it is accelerated by 1003 using a GPU. Further assume that the rest
of the application remains on the host and receives no speedup. The application-
level speedup is 1/(5%1 95%/100)5 1/(5%1 0.95%)5 1/(5.95%)5 173 . In the
case in which the execution of the host and the CUDA device can be overlapped,
the execution time of the parallel section is completely hidden in the host execu-
tion time. The application-level speedup would be 1/(5%)5 203. This is a dem-
onstration of Amdahl’s law: The application speedup due to parallel computing is
limited by the sequential portion of the application. In this case, even though the

Neighbor List

Vibrational and 
Rotational Forces

Nonbonded Force

Next Time Step

Update atomic positions and velocities

FIGURE 19.1

Major tasks of a molecular dynamics application.
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sequential portion of the application is quite small (5%), it limits the application-
level speedup to 203 despite the nonbonding force calculation having a speedup
of 1003 and being completely hidden in the shadow of the host execution of the
sequential portion. This example illustrates a major challenge in accelerating large
applications: The accumulated execution time of small activities that are not
worth parallel execution on a CUDA device can become a limiting factor in the
speedup that is seen by the end users. We saw this phenomenon in the iterative
MRI application study in Chapter 17, Iterative Magnetic Resonance Imaging
Reconstruction, in which the CG computation becomes a limiting factor of
speedup even though it accounts for only about 1% of the execution time of the
original application.

Amdahl’s law often motivates task-level parallelization. Although some of
these smaller activities do not warrant fine-grained massive parallel execution, it
may be desirable to execute some of these activities in parallel with each other
when the dataset is large enough. This could be achieved by using a multicore
host to execute such tasks in parallel. Alternatively, we could try to simulta-
neously execute multiple small kernels, each corresponding to one task. CUDA
devices support task parallelism with streams, which will be discussed in
Chapter 20, Programming a Heterogeneous Computing Cluster.

An alternative approach to reducing the effect of sequential tasks is to exploit data
parallelism in a hierarchical manner. For example, in a Message Passing Interface
(MPI, 2009) implementation a molecular dynamics application would typically distrib-
ute large chunks of the spatial grids and their associated atoms to nodes of a net-
worked computing cluster. By using the host of each node to calculate the vibrational
and rotational force for its chunk of atoms, we can take advantage of multiple host
CPUs and achieve speedup for these lesser modules. Each node can use a CUDA
device to calculate the nonbonding force at a higher level of speedup. The nodes will
need to exchange data to accommodate forces that go across chunks and atoms that
move across chunk boundaries. We will discuss more details of joint MPI-CUDA pro-
gramming in Chapter 20, Programming a Heterogeneous Computing Cluster. The
main point here is that MPI and CUDA can be used in a complementary, hierarchical
way in applications to jointly achieve a higher level of speed with large datasets.

The process of parallel programming can typically be divided into three steps:
algorithm selection, problem decomposition, and performance optimization and
tuning. The last step was the focus of previous chapters and received general
treatment in Chapter 6, Performance Considerations. In the next two sections of
this chapter we will discuss the first two steps with generality as well as depth.

19.2 Algorithm selection
An algorithm is a step-by-step procedure in which each step is precisely stated
and can be carried out by a computer. An algorithm must exhibit three essential
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properties: definiteness, effective computability, and finiteness. Definiteness
refers to the notion that each step is precisely stated; there is no room for ambigu-
ity as to what is to be done. Effective computability refers to the fact that each
step can be carried out by a computer. Finiteness means that the algorithm must
be guaranteed to terminate.

Given a problem, one can typically come up with multiple algorithms to solve
the problem. Some require fewer steps of computation than others (i.e., have
lower algorithmic complexity), some expose a higher degree of parallel execution
than others, some are more generally applicable than others, and some have better
accuracy or numerical stability than others. Unfortunately, there is often not a sin-
gle algorithm that is better than others in all these aspects. A parallel programmer
often needs to select an algorithm that achieves the best compromise for a given
hardware system.

We have seen examples of assessing the tradeoffs between different algo-
rithms for a computation in several chapters throughout this book. For the prefix
sum computation in Chapter 11, Prefix Sum (Scan), we compared two different
algorithms for performing parallel prefix sum, namely, the Kogge-Stone algorithm
and the Brent-Kung algorithm. Our analysis showed that the Brent-Kung algo-
rithm has lower algorithmic complexity. It requires fewer operations to perform
the same computation, which makes it more work efficient. However, we also
showed that the Kogge-Stone algorithm exposes more parallelism than the Brent-
Kung algorithm, allowing it to complete in fewer iterations. This tradeoff between
algorithmic complexity and the amount of parallelism exposed by an algorithm is
a classic tradeoff that is encountered by parallel programmers. The best algorithm
usually depends on the characteristics of the parallel hardware being targeted as
well as the extent to which the higher complexity of an algorithm can be miti-
gated with hybrid approaches that combine two parallel algorithms or combine a
parallel algorithm with a lower-complexity sequential algorithm via thread
coarsening.

For the sorting pattern in Chapter 13, Sorting, we compared two different
algorithms for performing parallel sorting, namely, radix sort and merge sort.
Radix sort can achieve lower algorithmic complexity than merge sort because it
is a noncomparison sorting algorithm. It is also highly amenable to parallelization.
However, radix sort is not generally applicable because it can be used only with
certain types of keys. Merge sort, which is a comparison-based sort, is more gen-
erally applicable and can be used with any type of key that has a well-defined
comparison operator. The tradeoff between generality and parallel execution effi-
ciency is yet another tradeoff that parallel programmers encounter when selecting
a parallel algorithm.

For the electrostatic potential map computation in Chapter 18, Electrostatic
Potential Map, we compared two different algorithms for performing the computa-
tion, namely, direct Coulomb summation (DCS) and cutoff summation (Rodrigues
et al., 2008). These two approaches expose the same amount of parallelism and
have the same level of generality; however, they present the classic tradeoff
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between algorithmic complexity and accuracy. In Chapter 18, Electrostatic
Potential Map, we showed that the cutoff summation algorithm can significantly
improve the execution efficiency of grid computation by sacrificing a small amount
of accuracy. The challenge that is addressed by this technique is that the amount of
computation performed by fully accurate methods such as DCS increases with the
square of the volume. For large volume systems, such increase makes the computa-
tion excessively long even for massively parallel devices. The cutoff summation
method is based on the observation that many grid calculation problems are based
on physical laws in which numerical contributions from particles or samples that
are far away from a grid point are tiny and can be collectively treated with an
implicit method at much lower algorithmic complexity. Although this tradeoff
between algorithmic complexity and accuracy is not unique to parallel program-
ming and is also encountered with sequential implementations, it may present addi-
tional challenges to parallel programmers. We show an example of these additional
challenges for the cutoff summation algorithm in the rest of this section.

In sequential computing, a simple cutoff algorithm handles one atom at a time.
For each atom the algorithm iterates through the grid points that fall within a radius
of the atom’s coordinate. This is a straightforward procedure, since the grid points
are in an array that can be easily indexed as a function of their coordinates.
However, this simple procedure does not carry easily to parallel execution. The rea-
son is that the atom-centric decomposition does not work well, owing to its scatter
memory access behavior. Therefore we need to use a cutoff binning algorithm based
on the grid-centric decomposition: Each thread calculates the energy value at one
grid point. The key idea of the algorithm is to first sort the input atoms into bins
according to their coordinates. Each bin corresponds to a box in the grid space and
contains all atoms whose coordinate falls into the box. We define a “neighborhood”
of bins for a grid point to be the collection of bins that contain all the atoms that
can contribute to the energy value of a grid point. We described an efficient way of
managing neighborhood bins for all grid points in Chapter 18, Electrostatic Potential
Map. In this algorithm, all blocks iterate through their own neighborhood bins, while
all threads in a block scan through the atoms in these neighborhood bins together
but make individual decisions on whether each atom falls within its cutoff radius.

One subtle issue with binning is that bins may end up with different numbers
of atoms. Some bins may have many atoms, and some bins may have no atom at
all. A well-known solution is to set the bin size at a reasonable level, typically
much smaller than the largest possible number of atoms in a bin. The binning pro-
cess maintains an overflow list. When atoms are sorted into bins, if an atom’s
home bin is full, the atom is added to the overflow list instead. After the device
has completed executing a cutoff summation kernel for calculating an electrostatic
potential map, atoms in the overflow list need to be processed to complete the
missing contributions.

Fig. 19.2 shows a comparison of scalability and performance of the various
electrostatic potential map algorithms and implementations. Note that the CPU-
SSE3 curve is based on a sequential cutoff summation algorithm. For a map with
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small volumes, around 1000 Å3, the host (CPU with SSE) executes faster than the
DCS kernel, as shown in Fig. 19.2. This is because there is not enough work to
fully utilize a CUDA device for such a small volume. However, for moderate
volumes, between 2000 and 500,000 Å3, the direct summation kernel performs
significantly better than the host, owing to its massive parallelism. However, as
we anticipated, the direct summation kernel scales poorly when the volume size
reaches about 1,000,000 Å3 and runs longer than the sequential algorithm on the
CPU! This is because the algorithmic complexity of the DCS kernel is higher
than the sequential cutoff algorithm and thus the amount of work done by kernel
grows much faster than that done by the sequential algorithm. For volume sizes
larger than 1,000,000 Å3 the amount of work is so large that it swamps the hard-
ware execution resources.

Fig. 19.2 also shows the running time of three binning-based implementations of
the cutoff summation algorithm. The SmallBin implementation corresponds to the
neighborhood bin list approach discussed in Chapter 18, Electrostatic Potential Map,
and allows the blocks running the same kernel to process different neighborhoods of
atoms. The SmallBin implementation does incur more instruction overhead for load-
ing atoms from global memory into shared memory. For a moderate volume there is
a limited number of atoms in the entire system. The ability to examine a smaller
number of atoms does not provide sufficient advantage to overcome the additional
instruction overhead. The SmallBin-Overlap implementation overlaps the sequential
overflow atom processing with the next kernel execution. It provides a slight but
noticeable improvement in running time over the SmallBin implementation. The
SmallBin-Overlap implementation achieves a 173 speedup over an efficiently
implemented sequential CPU-SSE cutoff summation implementation and maintains
the same scalability for large volumes.

FIGURE 19.2

Scalability and performance of DCS versus cutoff binning.
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19.3 Problem decomposition
After an appropriate algorithm has been selected, for a problem to be solved with
parallel computing, the problem must be formulated in such a way that it can be
decomposed into subproblems that can be safely solved at the same time. Under
such formulation and decomposition the programmer writes code and organizes
data to solve these subproblems concurrently. Finding parallelism in large compu-
tational problems is often conceptually simple but can be challenging in practice.
The key is to identify the work to be performed by each unit of parallel execution
so that the inherent parallelism of the problem is well utilized.

The two most common strategies for decomposing a problem for parallel exe-
cution are the output-centric and input-centric decompositions. As the names
imply, an output-centric decomposition assigns threads to process different units
of the output data in parallel, whereas an input-centric decomposition assigns
threads to process different units of the input data in parallel. These decomposi-
tion strategies are illustrated in Fig. 19.3. While both decomposition strategies
lead to the same execution results, they can exhibit very different performance in
a given hardware system. The output-centric decomposition usually exhibits the
gather memory access behavior, in which each thread gathers or collects the
effect of input values into an output value. Fig. 19.3A illustrates the gather access
behavior. Gather-based access patterns are usually more desirable in CUDA
devices because the threads can accumulate their results in their private registers.
Also, multiple threads can share input values and can effectively use constant
memory caching or shared memory to conserve global memory bandwidth.

The input-centric decomposition, by contrast, usually exhibits the scatter
memory access behavior, in which each thread scatters or distributes the effect of
an input value into the output values. The scatter behavior is illustrated in
Fig. 19.3B. Scatter-based access patterns are usually undesirable in CUDA
devices because multiple threads can update the same grid point at the same time.
The grid points must be stored in a memory that can be written by all the threads
involved. Atomic operations must be used to prevent race conditions and loss of
values during simultaneous writes to an output value by multiple threads. These
atomic operations are significantly slower than the register accesses that are used
in the output-centric decomposition.

However, aside from the gather versus scatter access patterns, other considera-
tions may go into deciding whether an output-centric or input-centric decomposition
(or another decomposition) is more suitable for a particular application. These con-
siderations include the amount of parallelism that is exposed by the decomposition,
the ease of identifying which input data contributes to which output data, the load
balance induced by the decomposition, and others, depending on the application.

The distinction between input-centric and output-centric decompositions was most
evident in Chapters 17, Iterative Magnetic Resonance Imaging Reconstruction, and
18, Electrostatic Potential Map, where the two strategies were both implemented and
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explicitly compared. However, problem decomposition is an implicit design decision
that has been made throughout many computations discussed in this book. We revisit
these computations to highlight the problem decomposition that was chosen in each
case and why it is advantageous over alternative decompositions.

The image processing (Chapter 3, Multidimensional Grids and Data), matrix
multiplication (Chapters 3, 5, and 6), Convolution (Chapter 7), and Stencil
(Chapter 8) computations were all parallelized by using an output-centric decompo-
sition. That is, the threads in these computations are assigned to output elements
(image pixels, matrix entries, or grid points) and iterate over the input elements that
contribute to them. Alternatively, an input-centric decomposition would assign
threads to the input elements and have each thread iterate over the output elements
to which its input element contributes and make an update using atomic operations.
The clear advantage of the output-centric decomposition over the input-centric
decomposition in these cases is avoiding atomics by using a gather access pattern
instead of a scatter access pattern. On the other hand, none of the other considera-
tions make the input-centric decomposition favorable. There are enough output
elements to expose a high degree of parallelism, identifying which input elements
are needed by each output element is straightforward, and all output elements
require the same amount of work to be computed, so there is no load imbalance.

The histogram computation (Chapter 9, Parallel Histogram) was parallelized
by using an input-centric decomposition. That is, each thread is assigned to an
input element (or chunk of elements) and updates the output bins on the basis of
the input value(s). Since multiple threads may update the same output bin, atomic
operations are needed (scatter access pattern). Alternatively, an output-centric
decomposition would assign threads to output bins and have each thread search
for the inputs that map to the bin and update the bin accordingly. This decomposi-
tion would eliminate the atomic operations because each bin would be updated by
a single thread (gather access pattern). However, the output-centric decomposition
would create many other problems. First, the number of output bins is typically
much smaller than the number of input values, so parallelism is substantially
reduced. Second, a thread cannot know which input values map to its output bin
without inspecting those input values, so each thread will need to iterate over
every input value, which is not work efficient. Third, even if threads had some
way of quickly identifying which input values mapped to their output bins, each
bin would have a different number of input values mapping to it, which would
create load imbalance across threads. All these considerations make the input-
centric decomposition more favorable for the histogram computation.

The merge operation (Chapter 12, Merge) was parallelized by using an
output-centric decomposition; that is, each thread is assigned to an element
(or chunk of elements) in the output array and performs a binary search to find
the corresponding input element(s) and merge them. While many other compu-
tations that favor the output-centric decomposition do so because of the benefit
of gathering over scattering, this consideration is not relevant for the merge
operation. Every output element in the merge operation is contributed to by
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only one input element, so an input-centric merge operation would not need to
use atomics. However, an input-centric merge operation either would make it more
expensive to find the mapping between the input element(s) for which a thread is
responsible and the corresponding output element(s) or would incur high load imbal-
ance by having each input thread be responsible for a different number of input ele-
ments. For this reason, the output-centric decomposition is preferred.

For sparse matrix computations (Chapter 14, Sparse Matrix Computation) the
SpMV/COO kernel used input-centric decomposition, in which threads were
assigned to nonzeros in the input matrix and atomically updated the correspond-
ing element in the output vector (scatter access pattern). The remaining kernels
used output-centric decomposition, in which threads were assigned to output vector
elements and iterated over input nonzeros (gather access pattern). Although the input-
centric SpMV/COO kernel performed atomics, it had other advantages over the
output-centric kernels, such as extracting more parallelism and having better load bal-
ance. Ultimately, the best decomposition for this computation depends on the input
dataset. Moreover, the hybrid ELL-COO format showcases an example in which a
hybrid output-centric and input-centric decomposition may be beneficial.

For graph traversal (Chapter 15, Graph Traversal) the vertex-centric push imple-
mentation and the edge-centric implementation used input-centric decomposition.
That is, threads were assigned to vertices or edges and updated the levels of neigh-
boring vertices. In contrast, the vertex-centric pull implementation used output-
centric decomposition in which each thread updated only the level of the vertex to
which it was assigned. The tradeoff between scatter and gather access patterns is
not a concern in selecting between different decompositions because the updates to
the level values are idempotent and do not require atomics. However, the amount
of parallelism that is extracted and the load balance that is achieved play an impor-
tant role in deciding which decomposition is more favorable, and the best decompo-
sition ultimately depends on the input dataset. The reader is encouraged to review
Chapter 15, Graph Traversal, for a more detailed handling of this topic.

The iterative MRI reconstruction problem (Chapter 17, Iterative Magnetic
Resonance Imaging Reconstruction) and the electrostatic potential calculation prob-
lem (Chapter 18, Electrostatic Potential Map) both favor the output-centric decom-
position because of the benefit over the gather pattern of the scatter pattern in
avoiding atomic operations. These chapters already handle the distinction between
the two decomposition strategies in depth. The iterative MRI reconstruction prob-
lem (Chapter 17, Iterative Magnetic Resonance Imaging Reconstruction) processes
a large amount of k-space sample data. Each k-space sample data is also used
many times for calculating its contributions to the reconstructed voxel data. For
high-resolution reconstruction, each sample data is used a large number of times.
We showed that a good decomposition of the FhD problem in MRI reconstruction
is an output-centric decomposition that forms subproblems, each of which calcu-
lates the value of an FhD element using the gather strategy.

Similarly, the electrostatic potential calculation problem (Chapter 18,
Electrostatic Potential Map) involves the calculation of the contribution of many
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input atoms to the potential energy at a large number of output grid points. A
realistic molecular system model typically involves at least hundreds of thousands
of atoms and millions of energy grid points. The electrostatic charge information
of each atom is used many times in calculating its contributions to the energy
grid points. We showed that the decomposition of the electrostatic potential map
calculation problem can be atom-centric (i.e., input-centric) or grid-centric
(i.e., output-centric). In an atom-centric decomposition, each thread is responsible
for calculating the effect of one atom on all grid points. In contrast, a grid-centric
decomposition uses each thread to calculate the effect of all atoms on a grid point.
The grid-centric (i.e., output-centric) decomposition proved to be better because it
uses the more favorable gather access pattern. The amount of parallelism that is
exposed by both decompositions is sufficient. For the cutoff summation algorithm
the difficulty of mapping input data to output data in the grid-centric decomposi-
tion is overcome with the use of binning, and the load imbalance caused by bin-
ning is overcome with the SmallBin-Overlap implementation that was discussed
in the previous section.

19.4 Computational thinking
Computational thinking is arguably the most important aspect of parallel application
development (Wing, 2006). We define computational thinking as the thought pro-
cesses of formulating domain problems in terms of computation steps and algorithms.
Like any other thought processes and problem-solving skills, computational thinking
is an art. As we mentioned in Chapter 1, Introduction, we believe that computational
thinking is best taught with an iterative approach in which students bounce back and
forth between practical experience and abstract concepts.

There is a very large volume of literature on a wide range of algorithms, prob-
lem decompositions, and optimization strategies that can be hard to understand. It
is beyond the scope of this book to provide comprehensive coverage of all the
available techniques. We discuss a substantial set of techniques in each of the algo-
rithm, problem decomposition, and optimization steps that have broad applicability.
While these techniques are demonstrated using CUDA C implementations, they
help the readers build up the foundation for computational thinking in general. We
believe that humans understand best when we learn from the bottom up. That is,
we first learn the concepts in the context of a particular programming model, which
provides us with solid footing before we generalize our knowledge to other pro-
gramming models. An in-depth experience with the CUDA C implementations also
enables us to gain maturity, which will help us learn parallel programming and
computational thinking concepts that may not even be pertinent to the GPUs.

There is a myriad of skills that are needed for a parallel programmer to be an
effective computational thinker. We summarize these foundational skills as follows:
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• Computer architecture: memory organization, caching and locality, memory
bandwidth, SIMT versus SPMD versus SIMD execution, and floating-point
precision versus accuracy. These concepts are critical in understanding the
tradeoffs between algorithms, problem decompositions, and optimizations.

• Programming interfaces and compilers: parallel execution models, types of
available memories, types of synchronization support, array data layout, and
thread granularity transformation. These concepts are needed for thinking
through the arrangements of data structures and loop structures to achieve
better performance.

• Domain knowledge: problem formulation, hard versus soft constraints,
numerical methods, precision, accuracy, and numerical stability.
Understanding these ground rules allows a developer to be much more
creative in applying algorithm techniques.

Our goal for this book is to provide a solid foundation for all these areas.
Readers should continue to broaden their knowledge in these areas after finishing
this book. Most important, the best way of building up more computational think-
ing skills is to keep solving challenging problems with excellent computational
solutions.

A good goal for effective use of computing is making science better, not just
faster. This requires reexamining prior assumptions and really thinking about how
to apply the big hammer of massively parallel processing. Put another way, there
will probably be no Nobel Prizes or Turing Awards awarded for “just recompile”
or using more threads with the same computational approach. Truly important sci-
entific discoveries will more likely come from fresh computational thinking.
Consider this an exhortation to use this bonanza of computing power to solve
new problems in new ways.

There are three approaches for attacking computation-hungry applications
with increasing order of difficulty, complexity, and, not surprisingly, potential for
payoff. Let us call these “good,” “better,” and “best.”

The “good” approach is simply to “accelerate” legacy program codes. The
most basic effort is simply to recompile and run on a new platform or architecture
without adding any domain insight or expertise in parallelism. This can be
enhanced by using optimized libraries, tools, or directives, such as CuBLAS,
CuFFT, Thrust, Matlab, or OpenACC. This approach does not require any algo-
rithm selection, problem decomposition, or optimization and tuning efforts. It can
be immediately rewarding for domain scientists, since minimal computer science
knowledge or programming skills are required to obtain decent speedups.
However, it does not realize the full potential of parallel computing.

The “better” approach involves rewriting existing codes using parallel pro-
gramming skills to take advantage of new architectures or creating new codes
from scratch. This approach is an opportunity for clever thinking about problem
decomposition and optimization selection and is good work for nondomain com-
puter scientists, as minimal domain knowledge is required. However, it also does
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not realize the full potential of parallel computing because of the absence of
domain-specific knowledge, which is needed for effective algorithm selection.

The “best” approach involves a holistic attempt at application parallelization
involving all three key steps: algorithm selection, problem decomposition, and
optimization and tuning. We wish not only to map a known algorithm to a paral-
lel program and optimize it, but also to rethink the numerical methods and algo-
rithms that are used in the solution. The cutoff binning approach in Chapter 18,
Electrostatic Potential Map, is a good example. The approach requires domain
expertise to trade accuracy for dramatically reduced algorithmic complexity and
requires problem decomposition and optimization skills to use the grid-centric
decomposition with the binning techniques designed by computer scientists. In
this approach, there is the potential for the biggest performance advantage and
fundamental new discoveries and capabilities. For example, one may be able to
perform high-fidelity simulation of a biochemical system whose size is considered
beyond reach with traditional methods. This approach is interdisciplinary and
requires both computer science and domain insight, but the payoff is worth the
effort. It is truly an exciting time to be a computational scientist!

19.5 Summary
In summary, we have discussed the main steps of parallel programming and
computational thinking, namely, algorithm selection, problem decomposition, and
optimization and tuning. Given a computational problem, the programmer will
typically have to select from a variety of algorithms. Some of these algorithms
achieve different tradeoffs while maintaining the same numerical accuracy.
Others involve sacrificing some level of accuracy to achieve much more scalable
running times. For the selected algorithm, different choices of problem decompo-
sition can result in different levels of interference between threads, parallelism
exposed, load imbalance, and other performance considerations during parallel
execution. Computational thinking skills allow an algorithm designer to work
around the roadblocks and reach a good solution.
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So far, we have focused on programming a heterogeneous computing system with one
host and one device. In high-performance computing (HPC), applications require the
aggregate computing power of a cluster of computing nodes. Many of the HPC clusters
today have one or more hosts and one or more devices in each node. Historically, these
clusters have been programmed predominately with Message Passing Interface (MPI).
In this chapter we will present an introduction to joint MPI/CUDA programming. We
will present only the MPI concepts that programmers need to understand to scale their
heterogeneous applications to multiple nodes in a cluster environment. In particular, we
will focus on domain partitioning, point-to-point communication, and collective com-
munication in the context of scaling a CUDA kernel into multiple nodes.

20.1 Background
Although practically no top supercomputers used GPUs before 2009, the need for
better energy efficiency has led to fast adoption of GPUs in recent years. Many of
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the top supercomputers in the world today use both CPUs and GPUs in each
node. The effectiveness of this approach is validated by their high rankings in the
Green500 list, which reflects their high energy efficiency.

The dominating programming interface for computing clusters today is MPI
(Gropp et al., 1999), which is a set of API functions for communication between
processes running in a computing cluster. MPI assumes a distributed memory
model in which processes exchange information by sending messages to each
other. When an application uses API communication functions, it does not need
to deal with the details of the interconnect network. The MPI implementation
allows the processes to address each other using logical numbers, in much the
same way as using phone numbers in a telephone system: Telephone users can
dial each other using phone numbers without knowing exactly where the called
person is and how the call is routed.

In a typical MPI application, data and work are partitioned among processes.
As is shown in Fig. 20.1, each node can contain one or more processes, shown as
clouds within nodes. As these processes progress, they may need data from each
other. This need is satisfied by sending and receiving messages. In some cases,
the processes also need to synchronize with each other and generate collective
results when collaborating on a large task. This is done with collective communi-
cation API functions.

20.2 A running example
As a running example we will use a three-dimensional (3D) stencil computation
that was introduced in Chapter 8, Stencil. We assume that the computation calcu-
lates heat transfer based on a finite difference method for solving a partial differ-
ential equation that describes the physical laws of heat transfer. In particular, we
will use the Jacobi iterative method, in which in each iteration or time step, the
value of a grid point is calculated as a weighted sum of neighbors (north, east,
south, west, up, down) and its own value from the previous time step. To achieve
high numerical stability, multiple indirect neighbors in each direction are also
used in the computation of a grid point. This is a higher-order stencil

FIGURE 20.1

Programmer’s view of MPI processes. MPI, Message Passing Interface.
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computation, as we discussed in Chapter 8, Stencil. For the purpose of this chap-
ter we assume that four points in each direction will be used.

As is shown in Fig. 20.2, there are a total of 24 neighbor points for calculating
the next step value of a grid point. Each point in the grid has x, y, and z coordi-
nates. For a grid point where the coordinate value is x = i, y = j, and z = k, or (i,
j, k), its 24 neighbors are (i 2 4, j, k), (i 2 3, j, k), (i 2 2, j, k), (i 2 1, j, k), (i +
1, j, k), (i + 2, j, k), (i + 3, j, k), (i + 4, j, k), (i, j2 4, k), (i, j2 3, k), (i, j2 2, k),
(i, j 2 1, k), (i, j + 1, k), (i, j + 2, k), (i, j + 3, k), (i, j + 4, k), (i, j, k 2 4), (i, j, k
2 3), (i, j, k2 2), (i, j, k2 1), (i, j, k + 1), (i, j, k + 2), (i, j, k + 3) and (i, j, k +
4). Since the data value of each grid point for the next time step is calculated on
the basis of the current data values of 25 points (24 neighbors and itself), this is a
25-point stencil computation.

We assume that the system is modeled as a structured grid in which spacing
between grid points is constant within each direction. This allows us to use a 3D
array in which each element stores the state of a grid point, as we discussed in
Chapter 8, Stencil. The physical distance between adjacent elements in each
dimension can be represented by a grid spacing variable. Note that this grid data
structure is similar to that used in the electrostatic potential calculation in
Chapter 18, Electrostatic Potential Map. Fig. 20.3 illustrates a 3D array that repre-
sents a rectangular ventilation duct, with x and y dimensions as the cross sections
of the duct and the z dimension the direction of the heat flow along the duct.

We assume that the data is placed in the memory space in the row-major lay-
out, where x is the lowest dimension, y is the next, and z is the highest. That is,
all elements with y = 0 and z = 0 will be placed in consecutive memory loca-
tions according to their x coordinate. Fig. 20.4 shows a small example of the

FIGURE 20.2

A 25-point stencil computation example, with four neighbors in each of the x, y, and z
directions.
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grid data layout. This small example has only 16 data elements in the grid: two
elements in the x dimension, two in the y dimension, and four in the z dimen-
sion. Both x elements with y = 0 and z = 0 are placed in memory first. They are
followed by all elements with y = 1 and z = 0. The next group will be elements
with y = 0 and z = 1.

When one uses a computing cluster, it is common to divide the input data into
several partitions, called domain partitions, and assign each partition to a node in
the cluster. In Fig. 20.3 we show that the 3D array is divided into four domain
partitions: D0, D1, D2, and D3. Each of the partitions will be assigned to an MPI
compute process.

The domain partitions can be further illustrated with Fig. 20.4. The first sec-
tion, or slice, of four elements (z = 0) is in the first partition; the second section
(z = 1) is in the second partition; the third section (z = 2) is in the third partition;
and the fourth section (z = 3) is in the fourth partition. This is obviously a toy
example. In a real application there are typically hundreds or even thousands of
elements in each dimension. For the rest of this chapter it is useful to remember
that all elements in a z slice are in consecutive memory locations.

20.3 Message passing interface basics
Like CUDA, MPI programs are based on the SPMD parallel programming model.
All MPI processes execute the same program. The MPI system provides a set of

FIGURE 20.3

3D Grid array for the modeling heat transfer in a duct.

FIGURE 20.4

A small example of memory layout for the 3D grid.
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API functions to establish communication systems that allow the processes to
communicate with each other. Fig. 20.5 shows five essential MPI functions that
set up and tear down the communication system for an MPI application.

We will use a simple MPI program, shown in Fig. 20.6, to illustrate the usage
the API functions. To launch an MPI application in a cluster, a user needs to sup-
ply the executable file of the program to the mpirun command or the mpiexec
command in the login node of the cluster. Each process starts by initializing the
MPI runtime with an MPI_Init() call (line 05). This initializes the communica-
tion system for all the processes that are running the application. Once the MPI
runtime has been initialized, each process calls two functions to prepare for com-
munication. The first function is MPI_Comm_rank() (line 06), which returns a
unique number to each calling process, which is called the MPI rank or process

FIGURE 20.5

Basic MPI functions for establishing and closing a communication system.

01  #include "mpi.h“
02 int main(int argc, char *argv[]) {
03 int pad = 0, dimx  = 480+pad, dimy  = 480, dimz  = 400, nreps = 100;
04 int pid=-1, np=-1;
05 MPI_Init(&argc, &argv);
06 MPI_Comm_rank(MPI_COMM_WORLD, &pid);
07 MPI_Comm_size(MPI_COMM_WORLD, &np);
08 if(np < 3) {
09 if(0 == pid) printf(“Needed 3 or more processes.\n");
10 MPI_Abort( MPI_COMM_WORLD, 1 ); return 1;
11 }
12 if(pid < np - 1)
13       compute_process(dimx, dimy, dimz / (np - 1), nreps);
14 else
15        data_server( dimx,dimy,dimz );
16 MPI_Finalize();
17 return 0;
18   }

FIGURE 20.6

A simple MPI main program.

45320.3 Message passing interface basics



id for the process. The numbers that are received by the processes vary from 0 to
the number of processes minus 1. The MPI rank for a process is analogous to the
expression blockIdx.x!blockDim.x+threadIdx.x for a CUDA thread. It uniquely
identifies the process in a communication, which is also equivalent to the phone
number in a telephone system. The main differences are that MPI ranks are one-
dimensional.

The MPI_Comm_rank() function in line 06 of Fig. 20.6 takes two parameters.
The first is an MPI built-in type MPI_Comm that specifies the scope of the request,
that is, the collection of processes that form the group identified by a MIP_Comm
variable. Each variable of the MPI_comm type is commonly referred to as a com-
municator. MPI_Comm and other MPI built-in types are defined in the “mpi.h”
header file (line 01), which should be included in all C program files that use
MPI. An MPI application can create one or more communicators, each of which
is a group of MPI processes for the purpose of communication. MPI_Comm_rank
() assigns a unique id to each process in a communicator. In Fig. 20.6 the
parameter value that is passed is MPI_COMM_WORLD, which is used as a default
and means that the communicator includes all MPI processes that are running
the application.1

The second parameter of the MPI_Comm_rank() function is a pointer to an inte-
ger variable into which the function will deposit the returned rank value. In
Fig. 20.6 a variable pid is declared for this purpose. After the MPI_Comm_rank()
has returned, the pid variable will contain the unique id for the calling process.

The second API function is MPI_Comm_size() (line 07), which returns the total
number of MPI processes running in the communicator. The MPI_Comm_size()
function takes two parameters. The first one is of MPI_Comm type that gives the
scope of the request. In Fig. 20.6 the parameter value that is passed in is
MPI_COMM_WORLD, which means that the scope of the MPI_Comm_size() is all the
processes in the application. Since the scope is all MPI processes, the returned
value is the total number of MPI processes that are running the application. This
value is configured by the user when the application is executed by using the
mpirun command or the mpiexec command. However, the user may not have
requested a sufficient number of processes. Also, the system may or may not be
able to create all the processes that the user requested. Therefore it is a good prac-
tice for an MPI application program to check the actual number of processes that
are running.

The second parameter is a pointer to an integer variable into which the
MPI_Comm_size() function will deposit the return value. In Fig. 20.6 a variable np
is declared for this purpose. After the function returns, the variable np contains
the number of MPI processes that are running the application. In Fig. 20.6 we
assume that the application requires at least 3 MPI processes. Therefore it checks

1 Interested readers should refer to the MPI reference manual (Gropp et al., 1999) for details on
creating and using multiple communicators in an application, in particular the definition and use
intracommunicators and intercommunicators.
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whether the number of processes is at least 3 (line 08). If not, it calls
MPI_Comm_abort() function to terminate the communication connections and
return with an error flag value 1 (line 10).

Fig. 20.6 also shows a common pattern for reporting errors or other chores.
There are multiple MPI processes, but we need to report the error only once. The
application code designates the process with pid = 0 to do the reporting (line 09).
This is similar to the pattern in CUDA kernels in which some tasks need to be
done by only one of the threads in a thread-block.

As is shown in Fig. 20.5, the MPI_Comm_abort() function takes two parameters
(line 10). The first sets the scope of the request. In Fig. 20.6 the scope is set as
MPI_COMM_WORLD, which means all MPI processes that are running the application.
The second parameter is a code for the type of error that caused the abort. Any
number other than 0 indicates that an error has happened.

If the number of processes satisfies the requirement, the application program
goes on to perform the calculation. In Fig. 20.6, the application uses np 2 1 pro-
cesses (pid from 0 to np 2 2) to perform the calculation (lines 12"13) and one
process (the last one whose pid is np 2 1) to perform I/O service for the other
processes (lines 14"15). We will refer to the process that performs the I/O ser-
vices as the data server and the processes that perform the calculation as compute
processes. In Fig. 20.6, if the pid of a process is within the range from 0 to np2 2,
it is a compute process and calls the compute_process() function (line 13). If the
process pid is np 2 1, it is the data server and calls the data_server() function
(line 15). This is similar to the pattern in which threads perform different actions
according to their thread ids.

After the application has completed its computation, it notifies the MPI run-
time with a call to MPI_Finalize(), which frees all MPI communication resources
that are allocated to the application (line 16). The application can then exit with a
return value 0, which indicates that no error has occurred (line 17).

20.4 Message passing interface point-to-point
communication

MPI supports two major types of communication. The first is the point-to-point
type, which involves one source process and one destination process. The source
process calls the MPI_Send() function, and the destination process calls the
MPI_Recv() function. This is analogous to a caller dialing a call and a receiver
answering a call in a telephone system.

Fig. 20.7 shows the syntax for using the MPI_Send() function. The first param-
eter is a pointer to the starting location of the memory area where the data to be
sent can be found. The second parameter is an integer that gives that number of
data elements to be sent. The third parameter is of the MPI built-in type
MPI_Datatype. It specifies the type of each data element that is being sent as far
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as the MPI library implementation is concerned. The values that can be held by
a variable or argument of the MPI_Datatype are defined in mpi.h and include
MPI_DOUBLE (double-precision floating-point), MPI_FLOAT (single-precision
floating-point), MPI_INT (integer), and MPI_CHAR (character). The exact sizes of
these types depend on the size of the corresponding C types in the host proces-
sor. See the MPI reference manual for more sophisticated use of MPI types
(Gropp et al., 1999).

The fourth parameter for MPI_Send() is an integer that gives the MPI rank of
the destination process. The fifth parameter gives a tag that can be used to clas-
sify the messages that are sent by the same process. The sixth parameter is a com-
municator that specifies the context in which the destination MPI rank is defined.

Fig. 20.8 shows the syntax for using the MPI_Recv() function. The first param-
eter is a pointer to the area in memory where the received data should be depos-
ited. The second parameter is an integer that gives the maximum number of
elements that the MPI_Recv() function is allowed to receive. The third parameter
is an MPI_Datatype that specifies the type of each element to be received. The

FIGURE 20.7

Syntax for the MPI_Send() function.

FIGURE 20.8

Syntax for the MPI_Recv() function.
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fourth parameter is an integer that gives the process id of the source of the mes-
sage. The fifth parameter is an integer that specifies the tag value that is expected
by the destination process. If the destination process does not want to be limited
to a particular tag value, it can use MPI_ANY_TAG, which means that the receiver is
willing to accept messages of any tag value from the source.

We will first use the data server to illustrate the use of point-to-point commu-
nication. In a real application the data server process would typically perform
data input and output operations for the compute processes. However, input and
output have too much system-dependent complexity. Since I/O is not the focus of
our discussion, we will avoid the complexity of I/O operations in a cluster envi-
ronment. That is, instead of reading data from a file system, we will just have the
data server initialize the data with random numbers and distribute the data to the
compute processes. The first part of the data server code is shown in Fig. 20.9.

The data server function takes four parameters. The first three parameters
specify the size of the 3D grid: the number of elements in the x dimension, dimx;
the number of elements in the y dimension, dimy; and the number of elements in

01  void data_server(int dimx, int dimy, int dimz, int nreps) {
02 int np;

/* Set MPI Communication Size */
03 MPI_Comm_size(MPI_COMM_WORLD, &np);
04 unsigned int num_comp_nodes = np – 1, first_node = 0, last_node = np - 2;
05 unsigned int num_points = dimx * dimy * dimz;
06 unsigned int num_bytes  = num_points * sizeof(float);
07 float *input=0, *output=0;

/* Allocate input data */
08 input = (float *)malloc(num_bytes);
09 output = (float *)malloc(num_bytes);
10 if(input == NULL || output == NULL) {
11 printf("server couldn't allocate memory\n");
12 MPI_Abort( MPI_COMM_WORLD, 1 );
13 }

/* Initialize input data */
14 random_data(input, dimx, dimy ,dimz , 1, 10);

/* Calculate number of shared points */
15 int edge_num_points = dimx * dimy * ((dimz / num_comp_nodes) + 4);
16 int int_num_points  = dimx * dimy * ((dimz / num_comp_nodes) + 8);
17 float *send_address = input;

/* Send data to the first compute node */
18 MPI_Send(send_address, edge_num_points, MPI_FLOAT, first_node,

0, MPI_COMM_WORLD );
19 send_address += dimx * dimy * ((dimz / num_comp_nodes) - 4);

/* Send data to "internal" compute nodes */
20 for(int process = 1; process < last_node; process++) {
21 MPI_Send(send_address, int_num_points, MPI_FLOAT, process,

0, MPI_COMM_WORLD);
22 send_address += dimx * dimy * (dimz / num_comp_nodes);

}
/* Send data to the last compute node */

23 MPI_Send(send_address, edge_num_points, MPI_FLOAT, last_node,
0, MPI_COMM_WORLD);

FIGURE 20.9

Data server process code (part 1).
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the z dimension, dimz. The fourth parameter specifies the number of iterations
that need to be done for all the data points in the grid.

In Fig. 20.9, line 02 declares variable np that will contain the number of pro-
cesses running the application. Line 03 calls MPI_Comm_size(), which will deposit
the number of processes running the application into np. Line 04 declares and
initializes several helper variables. The variable num_comp_procs contains the
number of compute processes. Since we are reserving one process as the data
server, there are np 2 1 compute processes. The variable first_proc gives the
process id of the first compute process, which is 0. The variable last_proc gives
the process id of the last compute process, which is np2 2. That is, line 04 desig-
nates the first np 2 1 processes, 0 through np 2 2, as compute processes. The
process with the largest rank serves as the data server. This reflects the design
decision, and this decision will also be reflected in the compute process code.

Line 05 declares and initializes the num_points variable that gives the total
number of grid data points to be processed, which is simply the product of the
number of elements in each dimension, or dimx ! dimy ! dimz. Line 06 declares
and initializes the num_bytes variable, which gives the total number of bytes
needed to store all the grid data points. Since each grid data point is a float,
this value is num_points ! sizeof(float).

Line 07 declares two pointer variables: input and output. These two pointers
will point to the input data buffer and the output data buffer. Lines 08 and 09
allocate memory for the input and output buffers and assign their addresses to
their respective pointers. Line 10 checks whether the memory allocations were
successful. If either of the memory allocation fails, the corresponding pointer will
have received a NULL pointer from the malloc() function. In this case, the code
aborts the application and reports an error (lines 11"12).

Lines 15 and 16 calculate the number of grid point array elements that should
be sent to each compute process. As is shown in Fig. 20.3, there are two types of
compute processes: edge processes and internal processes. The first process
(process 0, which computes D1) and the last process (process 3, which computes
D4) compute an edge partition that has neighbors only on one side. Partition D1,
which is assigned to process 0, has a neighbor only on the right side (D2).
Partition D4, which is assigned to the last compute process, has a neighbor only
on the left side (D3). We call the compute processes that compute edge partitions
the edge processes. Each of the other processes computes an internal partition
that has neighbors on both sizes. For example, process 1 computes partition D2,
which has a left neighbor (D1) and a right neighbor (D3). We call the processes
that compute internal partitions internal processes.

Recall that in the Jacobi iterative method, each calculation step for a grid
point needs the values of its immediate neighbors from the previous step. This
creates a need for halo cells for grid points at the left and right boundaries of a
partition, which are shown as slices defined by dashed lines at the edge of each
partition in Fig. 20.3. Note that these halo slices are similar to those in the stencil
pattern that was presented in Chapter 8, Stencil. Since we are computing a
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25-point stencil with four elements in each direction, each process needs to
receive four slices of halo cells that contain all neighbors for each side of the
boundary grid points of its partition. For example, in Fig. 20.3, partition D2 needs
four halo slices from D1 and four halo slices from D3. Note that a halo slice for
D2 is a boundary slice for D1 or D3.

Recall that the total number of grid points is dimx!dimy!dimz. Since we are
partitioning the grid along the z dimension, the number of grid points in each par-
tition should be dimx!dimy!(dimz/num_comp_procs). Recall that we will need four
neighbor slices in each direction in order to calculate values within each partition.
Therefore the number of grid points that should be sent to each internal process is
dimx!dimy!((dimz/num_comp_procs) + 8). As for an edge process, there is only
one neighbor. As in the case of convolution, we assume that zero values will be
used for the ghost cells and that no input data needs to be sent for them. For
example, partition D1 needs only the four neighbor slices from D2 on the right
side. Therefore the number of grid points to be sent to an edge process is
dimx!dimy!((dimz/num_comp_procs) + 4). That is, each process receives four
slices of halo grid points from the neighbor partition on each side.

Line 17 of Fig. 20.9 sets the send_address pointer to point to the beginning
of the input grid point array. To send the appropriate partition to each process, we
will need to add the appropriate offset to this beginning address for each
MPI_Send(). We will come back to this point later.

We are now ready to complete the code for the data server. Line 18 sends pro-
cess 0 its partition. Since this is the first partition, its starting address is also the
starting address of the entire grid, which was set up in line 17. Process 0 is an
edge process, and it does not have a left neighbor. Therefore the number of grid
points to be sent is the value edge_num_points, that is, dimx!dimy!((dimz/num_-
comp_procs) + 4). The third parameter specifies that the type of each element is
an MPI_FLOAT which is C float (single-precision, 4 bytes). The fourth parameter
specifies that the value of first_node, that is, 0, is the MPI rank of the destina-
tion process. The fifth parameter specifies 0 for the MPI tag. This is because we
are not using tags to distinguish between messages sent from the data server. The
sixth parameter specifies that the communicator to be used for interpreting
the sender and receiver rank values for the message should be all MPI processes
for the current application.

Line 19 of Fig. 20.9 advances the send_address pointer to the beginning of
the data partition for process 1. From Fig. 20.3 there are dimx!dimy!(dimz/num_-
comp_procs) elements in partition D1, which means that D2 starts at the location
that is dimx!dimy!(dimz/num_comp_procs) elements from the starting location of
input. Recall that we also need to send the halo cells from D1. Therefore we
adjust the starting address for the MPI_Send() back by four slices, which results
in the expression for advancing the send_address pointer in line 19: dimx!dimy!

((dimz/num_comp_procs) - 4).
Line 20 is a loop that sends out the MPI messages to the internal processes

(process 1 through process np 2 3). In our small example for four compute
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processes, np is 5, so the loop sends the MPI messages to process 1 and process
2. These internal processes need to receive halo grid points for neighbors on both
sides. Therefore the second parameter of the MPI_Send() in line 21 uses
int_num_nodes, that is, dimx!dimy!((dimz/num_comp_procs) + 8). The rest of the
parameters are similar to that for the MPI_Send() in line 18 with the obvious
exception that the destination process is specified by the loop variable process,
which is incremented from 1 to np2 3 (the last_node is np2 2).

Line 22 advances the send address for each internal process by the number of
grid points in each partition: dimx!dimy!dimz/num_comp_nodes. Note that the start-
ing locations of the halo grid points for internal processes are dimx!dimy!dimz/
num_comp_procs points apart. Although we need to pull back the starting address
by four slices to accommodate halo grid points, we do so for every internal pro-
cess, so the net distance between the starting locations remains the number of
grid points in each partition.

Line 23 sends the data to the process np 2 2, the last compute process that
has only one neighbor on the left. The reader should be able to reason through all
the parameter values that are used. Note that we are not quite done with the data
server code. We will come back later for the final part of the data server that col-
lects the output values from all compute processes.

We now turn our attention to the compute processes that receive the input
from the data server process. In Fig. 20.10, lines 03"04 establish the process id
for the process and the total number of processes for the application. Line 05
establishes that the data server is process np2 1. Lines 06"07 calculate the num-
ber of grid points and the number of bytes that should be processed by each inter-
nal process. Lines 08"09 calculate the number of grid points and the number of
bytes in each halo (4 slices).

Lines 10"12 allocate the host memory and device memory for the input data.
Although the edge processes need less halo data, they still allocate the same

01 void compute_node_stencil(int dimx, int dimy, int dimz, int nreps ) {
02 int np, pid;
03     MPI_Comm_rank(MPI_COMM_WORLD, &pid);
04 MPI_Comm_size(MPI_COMM_WORLD, &np);
05 int server_process = np - 1;
06 unsigned int num_points       = dimx * dimy * (dimz + 8);
07 unsigned int num_bytes        = num_points * sizeof(float);
08 unsigned int num_halo_points = 4 * dimx * dimy;
09 unsigned int num_halo_bytes  = num_halo_points * sizeof(float);

/* Allocate host memory */
10 float *h_input  = (float *)malloc(num_bytes);

/* Allocate device memory for input and output data */
11 float *d_input = NULL;
12 cudaMalloc((void **)&d_input,  num_bytes );
13 float *rcv_address = h_input + ((0 == pid) ? num_halo_points : 0);
14 MPI_Recv(rcv_address, num_points, MPI_FLOAT, server_process,

MPI_ANY_TAG, MPI_COMM_WORLD, &status );
15 cudaMemcpy(d_input, h_input, num_bytes, cudaMemcpyHostToDevice);

FIGURE 20.10

Compute process code (part 1).
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amount of memory for simplicity; part of the allocated memory will not be used
by the edge processes. Line 13 sets the starting address of the host memory for
receiving the input data from the data server. For all compute processes except
process 0, the starting receiving location is simply the starting location of the
allocated memory for the input data. However, for process 0, we adjust the
receiving location by four slices. This is because for simplicity we assume that
the host memory for receiving the input data is arranged in the same way for all
compute processes: four slices of halo elements from the left neighbor followed
by the partition, followed by four slices of halo elements from the right neigh-
bor. However, as we showed in line 15 of Fig. 20.9, the data server will not
send any halo data from the left neighbor to process 0. That is, for process 0,
the MPI message from the data server contains only the partition and the halo
from the right neighbor. Therefore line 13 adjusts the starting host memory
location by four slices so that process 0 will correctly interpret the input data
from the data server.

Line 14 receives the MPI message from the data server. Most of the para-
meters should be familiar. The last parameter reflects any error condition that
has occurred when the data are received. The second parameter specifies that
all compute processes will receive the full amount of data from the data
server. However, the data server will send less data to process 0 and process np
2 2. This is not reflected in the code because MPI_Recv() allows the second
parameter to specify a larger number of data points than are actually received
and will place only the actual number of bytes received from the sender into
the receiving memory. In the case of process 0, the input data from the data
server contains only the partition and the halo from the right neighbor. The
received input will be placed by skipping the first four slices of the allocated
memory, which correspond to the halo for the (nonexistent) left neighbor. This
effect is achieved with the term ((0==pid)? num_halo_points: 0) on line 13.
In the case of process np 2 2, the input data contains the halo from the left
neighbor and the partition. The received input will be placed from the begin-
ning of the allocated memory, leaving the last four slices of the allocated
memory unused.

Line 15 copies the received input data to the device memory. In the case of
process 0, the left halo points are not valid. In the case of process np 2 2, the
right halo points are not valid. However, for simplicity, all compute nodes send
the full size to the device memory. The assumption is that the kernels will be
launched in such a way that these invalid portions will be correctly ignored. After
line 15, all the input data are in the device memory.

Fig. 20.11 shows part 2 of the compute process code. Lines 16"18 allocate
host memory and device memory for the output data. The output data buffer in
the device memory will be used with the input data buffer in a double-buffering
scheme. That is, they will switch roles in each iteration. We will return to this
point and cover the rest of the code in Fig. 20.11 later. We are now ready to pres-
ent the code that performs computation steps on the grid points.
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20.5 Overlapping computation and communication
A simple way to perform the computation steps is for each compute process to
perform a computation step on its entire partition, exchange halo data with the
left and right neighbors, and repeat. While this is a very simple strategy, it is not
very effective. The reason is that this strategy forces the system to be in one of
the two modes. In the first mode, all compute processes are performing computa-
tion steps. During this time, the communication network is not used. In the second
mode, all compute processes are exchanging halo data with their left and right
neighbors. During this time, the computation hardware is not well utilized.
Ideally, we would like to achieve better performance by utilizing both the com-
munication network and the computation hardware all the time. This can be
achieved by dividing the computation tasks of each compute process into two
stages, as illustrated in Fig. 20.12.

During the first stage (stage 1), each compute process calculates its boundary
slices that will be needed as halo cells by its neighbors in the next iteration. Let’s
continue to assume that we use four slices of halo data. Fig. 20.12 shows the four
halo slices as a dashed transparent piece and the four boundary slices as a colored
piece. Note that the colored piece of process i will be copied into the dashed
piece of process I + 1 and the colored piece of process I + 1 will be copied into
the dashed piece of process i during the next communication. For process 0, the
first phase calculates the right four slices of boundary data. For an internal node
it calculates the left four slices and the right four slices of its boundary data. For
process n2 2, it calculates the left four pieces of its boundary data. The rationale
is that these boundary slices are needed by their neighbors for the next iteration.
If these boundary slices are calculated first, the data can be communicated to the
neighbors while the compute processes calculate the rest of their internal grid
points.

16 float *h_output = NULL, *d_output = NULL, *d_vsq = NULL;
17 float *h_output = (float *)malloc(num_bytes);
18 cudaMalloc((void **)&d_output, num_bytes );
19 float *h_left_boundary = NULL, *h_right_boundary = NULL;
20 float *h_left_halo = NULL, *h_right_halo = NULL;

/* Allocate host memory for halo data */
21 cudaHostAlloc((void **)&h_left_boundary, num_halo_bytes,

cudaHostAllocDefault);
22 cudaHostAlloc((void **)&h_right_boundary, num_halo_bytes, 

cudaHostAllocDefault);
23 cudaHostAlloc((void **)&h_left_halo, num_halo_bytes, 

cudaHostAllocDefault);
24    cudaHostAlloc((void **)&h_right_halo,    num_halo_bytes, 

cudaHostAllocDefault);
/* Create streams used for stencil computation */

25 cudaStream_t stream0, stream1;
26 cudaStreamCreate(&stream0);
27 cudaStreamCreate(&stream1);

FIGURE 20.11

Compute process code (part 2).
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During the second stage (stage 2), each compute process performs two activi-
ties in parallel. The first is to communicate its new boundary values to its neigh-
bor processes. This is done by first copying the data from the device memory into
the host memory, followed by sending MPI messages to the neighbors. As we
will discuss later, we need to be careful that the data that is received from the
neighbors is used in the next iteration, not the current iteration. The second activ-
ity is to calculate the rest of the data in the partition. If the communication activ-
ity takes a shorter amount of time than the calculation activity, we can hide the
communication delay and fully utilize the computing hardware all the time. This
is usually achieved by having enough slices in the internal part of each partition
to allow each compute process to perform enough computation to hide the
communication.

To support the parallel activities in stage 2, we need to use two advanced fea-
tures of the CUDA programming model: pinned memory allocation and streams.
A pinned memory allocation requests that the memory that is allocated not be
paged out by the operating system. This is done with the cudaHostAlloc() API
call. Lines 21"24 in Fig. 20.11 allocate pinned memory buffers for the left and
right boundary slices and the left and right halo slices. The left and right bound-
ary slices need to be sent from the device memory to the left and right neighbor
processes. The buffers are used as a host memory staging area for the device to
copy data into and are then used as the source buffer for MPI_Send() to neighbor
processes. The left and right halo slices need to be received from neighbor pro-
cesses. The buffers are used as a host memory staging area for MPI_Recv() to use
as destination buffers and then to copy data from them to the device memory.
These buffers are sometimes referred to as bounce buffers, as their main role is to
serve as temporary buffers that allow the data to be bounced from the device
memory to the remote MPI process and vice versa.

FIGURE 20.12

A two-stage strategy for overlapping computation with communication.
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Note that the host memory allocation for the bounce buffers is done with
cudaHostAlloc() function rather than the standard malloc() function. The differ-
ence is that the cudaHostAlloc() function allocates a pinned memory buffer,
sometimes also referred to as page locked memory buffer. We need to know a lit-
tle more background on the memory management in operating systems in order to
fully understand the concept of pinned memory buffers.

In a modern computer system the operating system manages virtual memory
spaces for applications. Each application has access to a large, consecutive
address space. In reality the system has a limited amount of physical memory that
needs to be shared among all running applications. This sharing is performed by
partitioning the virtual memory space into pages and mapping only the actively
used pages into physical memory. When there is much demand for memory, the
operating system needs to page out some of the pages from the physical memory
to mass storage such as disks. Therefore an application may have its data paged
out at any time during its execution.

The implementation of cudaMemcpy() uses a type of hardware called a direct
memory access (DMA) device. When a cudaMemcpy() function is called to copy
between the host and device memories, its implementation uses a DMA operation
to complete the task. On the host memory side, the DMA hardware operates on
physical addresses; that is, the operating system needs to give a translated physi-
cal address to the DMA device. However, there is a chance that the data may be
paged out before the DMA operation is complete. The physical memory locations
for the data may be reassigned to other data corresponding to a different virtual
memory location. In this case, the DMA operation can potentially be corrupted,
since its data can be overwritten by the paging activity.

A common solution to this data corruption problem is for the CUDA runtime
to perform the copy operation in two steps. For a host-to-device copy, the CUDA
runtime first copies the source host memory data into a pinned memory buffer,
which means that the memory locations are marked so that the paging mechanism
will not page out the data. It then uses the DMA device to copy the data from the
pinned memory buffer to the device memory. For a device-to-host copy, the CUDA
runtime first uses a DMA device to copy the data from the device memory into a
pinned memory buffer. It then copies the data from the pinned memory buffer to
the destination host memory location. By using an extra pinned memory buffer, the
DMA copy will be safe from any paging activities.

There are two problems with this approach. One is that the extra copy adds
delay to the cudaMemcpy() operation. The second is that the extra complexity
involved leads to a synchronous implementation of the cudaMemcpy() function.
That is, the host program cannot continue to execute until the cudaMemcpy()
function has completed its operation and returned. This serializes all copy
operations. To support fast copies with more parallelism, CUDA provides a
cudaMemcpyAsync() function.

The cudaMemcpyAsync() function requires that the host memory buffer be allo-
cated as a pinned memory buffer. This is done in lines 21"24 in Fig. 20.11 for
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the host memory buffers of the left boundary, right boundary, left halo, and right
halo slices. These buffers are allocated with the cudaHostAlloc() function, which
ensures that the allocated memory is pinned or page locked from paging activi-
ties. Note that the cudaHostAlloc() function takes three parameters. The first two
are the same as cudaMalloc(). The third specifies some options for more
advanced usage. For most basic use cases, we can simply use the default value
cudaHostAllocDefault.

The second advanced CUDA feature that is used for overlapping communica-
tion with computation is streams, a feature that supports managed concurrent exe-
cution of CUDA API functions. A stream is an ordered sequence of operations.
When the host code calls a cudaMemcpyAsync() function or launches a kernel, it
can specify a stream as one of its parameters. By specifying a stream in a
cudaMemcpyAsync() call, the copy operation is placed into a stream. All opera-
tions in the same stream will be done sequentially according to the order in which
they are placed into that stream. However, operations in different streams can be
executed in parallel without any ordering constraint.

Line 25 of Fig. 20.11 declares two variables that are of CUDA built-in type
cudaStream_t. These variables are then used in calling the cudaStreamCreate()
function. Each call to cudaStreamCreate() creates a new stream and deposits an
identifier of the stream into its parameter. After the calls in lines 26 and 27, the
host code can use either stream 0 or stream 1 in subsequent cudaMemcpyAsync()
calls and kernel calls.

Fig. 20.13 shows part 3 of the compute process. Line 28 declares an MPI sta-
tus variable that will be used for MPI send and receive. Lines 29"30 calculate
the process id of the left and right neighbors of the compute process. The left_-
neighbor and right_neighbor variables will be used by compute processes as

/* Upload stencil cofficients */
31 upload_coefficients(coeff, 5);
32 int left_halo_offset   = 0;
33 int right_halo_offset  = dimx * dimy * (4 + dimz);
34 int left_stage1_offset  = 0;
35 int right_stage1_offset = dimx * dimy * (dimz - 4);
36 int stage2_offset       = num_halo_points;
37 MPI_Barrier( MPI_COMM_WORLD );
38 for(int i=0; I < nreps; i++) {

/* Compute boundary values needed by other nodes first */
39 call_stencil_kernel(d_output + left_stage1_offset, 

d_input + left_stage1_offset, dimx, dimy, 12, stream0);
40 call_stencil_kernel(d_output + right_stage1_offset,

d_input + right_stage1_offset, dimx, dimy, 12, stream0);
/* Compute the remaining points */

41 call_stencil_kernel(d_output + stage2_offset, d_input + 
stage2_offset, dimx, dimy, dimz, stream1);

28 MPI_Status status;
29 int left_neighbor  = (pid > 0)    ? (pid - 1) : MPI_PROC_NULL;
30 int right_neighbor = (pid < np - 2) ? (pid + 1) : MPI_PROC_NULL;

FIGURE 20.13

Compute process code (part 3).
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parameters when they send messages to and receive messages from their neigh-
bors. For process 0, there is no left neighbor, so line 29 assigns an MPI constant
MPI_PROC_NULL to left_neighbor to note this fact. For process np 2 2, there is
no right neighbor, so line 30 assigns MPI_PROC_NULL to right_neighbor. For all the
internal processes, lines 29"30 assign pid 2 1 to left_neighbor and pid + 1 to
right_neighbor.

Line 31 in Fig. 20.13 calls a function to copy the stencil coefficients to the
GPU constant memory. The details will not be shown here because the reader
should already be familiar with constant memory. Lines 32"36 set up several off-
sets that will be used to call kernels and exchange data so that the computation
and communication can be overlapped. These offsets define the regions of grid
points that will need to be calculated at each stage of Fig. 20.13. They are also
visualized in Fig. 20.12.

Note that the total number of slices in each device memory is four slices of
left halo points (dashed white) plus four slices of left boundary points plus
dimx!dimy!(dimz2 8) internal points plus four slices of right boundary points plus
four slices of right halo points (dashed white). As illustrated in Fig. 20.14, vari-
able left_stage1_offset defines the starting point of the slices that are needed
in order to calculate the left boundary slices. This includes 12 slices of data: four
slices of left neighbor halo points, four slices of boundary points, and four slices
of internal points. These slices are the leftmost in the partition, so the offset value
is set to 0 by line 34. Variable right_stage2_offset defines the starting point of
the slices that are needed for calculating the right boundary slices. This also
includes 12 slices: four slices of internal points, four slices of right boundary
points, and four slices of right halo cells. The beginning point of these 12 slices
can be derived by subtracting 12 from the total number of slices dimz + 8.
Therefore the starting offset for these 12 slices is set to dimx!dimy!(dimz2 4) by
line 35 (Fig. 20.12).

Line 37 in Fig. 20.13 is an MPI barrier synchronization, which is similar to the
CUDA __syncthreads() across threads in a block. MPI barrier forces all MPI pro-
cesses that are specified by the input argument to wait for each other. None of the

FIGURE 20.14

Device memory offsets used for data exchange with neighbor processes.
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processes can continue their execution beyond this point until all have reached this
point. The reason why we want the barrier synchronization here is to ensure that all
compute nodes have received their input data and are ready to perform the compu-
tation steps. Since they will be exchanging data with each other, we would like to
make them all start at about the same time. Thus we will not be in a situation in
which a few tardy processes delay all other processes during the data exchange.
MPI_Barrier() is a collective communication function. We will discuss collective
communication API functions in more detail in the next section.

Line 38 starts a loop that performs the computation steps. For each iteration,
each compute process will perform one cycle of the two-stage process shown in
Fig. 20.12. Line 39 calls a function that will generate the four slices of the left
boundary points in stage 1. We assume that the function will set up the grid con-
figuration and call the stencil kernel that performs one computation step on a
region of grid points as described in Chapter 8, Stencil. The call_stencil_ker-
nel() function takes several parameters. The first parameter is a pointer to the
output data area for the kernel. The second parameter is a pointer to the input
data area. In both cases, we add the left_stage1_offset to the input and output
data in the device memory. The next three parameters specify the dimensions of
the portion of the grid to be processed. Note that we need to have four slices on
each side in order to correctly perform the computation for all the points in the
four left boundary slices. Line 40 does the same for the right boundary points in
stage 1. Note that these kernels will be called within stream 0 and will be exe-
cuted sequentially.

Line 41 calls the call_stencil_kernel() function, which will call a stencil
kernel function to generate the dimx!dimy!(dimz 2 8) internal points in stage 2.
Note that this also requires four slices of input boundary values on each side, so
the total number of input slices is dimx!dimy!dimz. The kernel is called in stream
1 and will be executed in parallel with those called by lines 39 and 40.

Fig. 20.15 shows part 4 of the compute process code. Line 42 copies the four
slices of left boundary points to the host memory in preparation for data exchange
with the left neighbor process. Line 43 copies the four slices of the right boundary
points to the host memory in preparation for data exchange with the right neigh-
bor process. Both are asynchronous copies in stream 0 and will wait for the two
kernels in stream 0 to complete before they copy data. Line 44 is a synchroniza-
tion that forces the process to wait for all operations in stream 0 to complete
before it can continue. This ensures that the left and right boundary points are in
the host memory before the process proceeds with data exchange.

During the data exchange phase, we will have all MPI processes send their
boundary slices to their left neighbors. That is, all processes will have their right
neighbors sending data to them. It is therefore convenient to have an MPI func-
tion that sends data to a destination and receives data from a source. This reduces
the number of MPI function calls. The MPI_Sendrecv() function in Fig. 20.16 is
such a function. It is a combination of MPI_Send() and MPI_Recv() so we will not
elaborate further on the meaning of the parameters.
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Line 45 sends four slices of left boundary points to the left neighbor and
receives four slices of right halo points from the right neighbors. Line 46 sends
four slices of right boundary points to the right neighbor and receives four
slices of left halo points from the left neighbor. In the case of process 0, its
left_neighbor has been set to MPI_PROC_NULL in line 27, so the MPI runtime

FIGURE 20.16

Syntax for the MPI_Sendrecv() function.

/* Copy the data needed by other nodes to the host */
42 cudaMemcpyAsync(h_left_boundary, d_output + num_halo_points,

num_halo_bytes, cudaMemcpyDeviceToHost, stream0 );
43 cudaMemcpyAsync(h_right_boundary,

d_output + right_stage1_offset + num_halo_points,
num_halo_bytes, cudaMemcpyDeviceToHost, stream0 );

44 cudaStreamSynchronize(stream0);
/* Send data to left, get data from right */

45 MPI_Sendrecv(h_left_boundary, num_halo_points, MPI_FLOAT,
left_neighbor,  i, h_right_halo,  num_halo_points,
MPI_FLOAT, right_neighbor, i, MPI_COMM_WORLD, &status );

/* Send data to right, get data from left */
46 MPI_Sendrecv(h_right_boundary, num_halo_points, MPI_FLOAT,

right_neighbor, i, h_left_halo, num_halo_points,
MPI_FLOAT, left_neighbor,  i, MPI_COMM_WORLD, &status );

47 cudaMemcpyAsync(d_output+left_halo_offset,  h_left_halo,
num_halo_bytes, cudaMemcpyHostToDevice, stream0);

48 cudaMemcpyAsync(d_output+right_halo_offset, h_right_halo,
num_halo_bytes, cudaMemcpyHostToDevice, stream0 );

49 cudaDeviceSynchronize();

50 float *temp = d_output;
51 d_output = d_input; d_input = temp;
52 }

FIGURE 20.15

Compute process code (part 4).
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will not send out the message in line 45 or receive the message in line 46 for
process 0. Likewise, the MPI runtime will not receive the message in line 45 or
send out the message in line 46 for process np 2 2. Therefore the conditional
assignments in lines 29 and 30 of Fig. 20.13 eliminate the need for special if-
then-else statements in lines 45 and 46.

After the MPI messages have been sent and received, lines 47 and 48 transfer
the newly received halo points to the d_output buffer of device memory. These
copies are done in stream 0, so they will execute in parallel with the kernel
launched in stream 1 on line 38.

Line 49 is a synchronization operation for all device activities. This call forces
the process to wait for all device activities, including kernels and data copies, to
complete. When the cudaDeviceSynchronize() function returns, all d_output
data from the current computation step are in place: left halo data from the left
neighbor process, boundary data from the kernel launched in line 36, internal data
from the kernel launched in line 38, right boundary data from the kernel launched
in line 37, and right halo data from the right neighbor.

Lines 50 and 51 swap the d_input and d_output pointers. This changes the
output of the d_ouput data of the current computation step into the d_input data
of the next computation step. The execution then proceeds to the next computa-
tion step by going to the next iteration of the loop of line 35. This will continue
until all compute processes have completed the number of computations specified
by the parameter nreps.

Fig. 20.17 shows part 5, the final part of the compute process code. Line 53 is
a barrier synchronization that forces all processes to wait for each other to finish
their computation steps. Lines 54"56 swap d_output with d_input. This is
because lines 50 and 51 swapped d_output with d_input in preparation for the

/* Wait for previous communications */
53 MPI_Barrier(MPI_COMM_WORLD);

54 float *temp = d_output;
55 d_output = d_input;
56 d_input = temp;

/* Send the output, skipping halo points */
57 cudaMemcpy(h_output, d_output, num_bytes, cudaMemcpyDeviceToHost);

float *send_address = h_output + num_ghost_points; 
58 MPI_Send(send_address, dimx * dimy * dimz, MPI_REAL,

server_process, DATA_COLLECT, MPI_COMM_WORLD);
59 MPI_Barrier(MPI_COMM_WORLD);

/* Release resources */
60 free(h_input); free(h_output);
61 cudaFreeHost(h_left_ghost_own); cudaFreeHost(h_right_ghost_own);
62 cudaFreeHost(h_left_ghost); cudaFreeHost(h_right_ghost);
63 cudaFree( d_input ); cudaFree( d_output );
64  }

FIGURE 20.17

Compute process code (part 5).
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next computation step. However, this is unnecessary for the last computation step,
so we use lines 54"56 to undo the swap. Line 57 copies the final output to the
host memory. Line 58 sends the output to the data server. Line 59 waits for all
processes to complete. Lines 60"63 free all the resources before returning to the
main program.

Fig. 20.18 shows part 2, the final part of the data server code, which continues
from Fig. 20.9. Line 24 is a barrier synchronization that waits for all compute
nodes to complete their computation steps and send their outputs. This barrier
corresponds to the barrier at line 59 of the compute process. Lines 26 and 27
receive the output data from all the compute processes. Line 28 stores the output
into an external storage. Finally, lines 29 and 30 free resources before returning
to the main program.

20.6 Message passing interface collective communication
We saw an example of the MPI collective communication API in the previous
section: MPI_Barrier. The other commonly used group collective communication
types are broadcast, reduce, gather, and scatter (Gropp et al., 1999). Barrier syn-
chronization MPI_Barrier() is perhaps the most commonly used collective com-
munication function. As we saw in the stencil example, barriers are used to
ensure that all MPI processes are ready before they begin to interact with each
other. We will not elaborate on the other types of MPI collective communication
functions, but we encourage the reader to read the details of these functions. In
general, collective communication functions are highly optimized by the MPI run-
time developers and system vendors. Using them usually leads to better perfor-
mance as well as readability and productivity than trying to achieve the same
functionality with combinations of send and receive calls.

/* Wait for nodes to compute */
24 MPI_Barrier(MPI_COMM_WORLD);

/* Collect output data */
25 MPI_Status status;
26 for(int process = 0; process < num_comp_nodes; process++)
27 MPI_Recv(output + process * num_points / num_comp_nodes,

num_points / num_comp_nodes, MPI_REAL, process,
DATA_COLLECT, MPI_COMM_WORLD, &status );

/* Store output data */
28 store_output(output, dimx, dimy, dimz);

/* Release resources */
29 free(input);
30 free(output);
}

FIGURE 20.18

Data server code (part 2).
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20.7 CUDA aware message passing interface
Modern MPI implementations are aware of the CUDA programming model and
are designed to minimize the communication latency between GPUs. Currently,
direct interaction between CUDA and MPI is supported by MVAPICH2, IBM
Platform MPI, and OpenMPI.

CUDA-aware MPI implementations are capable of sending messages from
the GPU memory in one node to the GPU memory in a different node. This
effectively removes the need for device-to-host data transfers before sending
MPI messages and host-to-device data transfers after receiving an MPI mes-
sage. This has the potential to simplify the host code and memory data layout.
In our stencil example, if we used a CUDA-aware MPI implementation, we
will no longer need host-pinned memory allocations and asynchronous mem-
ory copies.

The first simplification is that we no longer need to allocate host-pinned memory
buffers to transfer the halo points to the host memory to prepare for MPI_Send().
This means that we can safely remove lines 21"24 in Fig. 20.11. However, we still
need to use CUDA streams and two separate GPU kernels to start communicating
across nodes as soon as the halo elements have been computed.

The second simplification is that we no longer need to asynchronously
copy the halo data from the host to the device memory after MPI_Recv(). As a
result, we can also remove lines 42 and 43 in Fig. 20.15. Since the MPI calls
now accept device memory addresses, we need to modify the calls to
MPI_SendRecv to use them. Note that these memory addresses actually corre-
spond to the device addresses of the asynchronous memory copies in the previ-
ous versions. Since the CUDA-aware MPI implementations will directly
update the contents of the GPU memory, we also remove lines 47 and 48 in
Fig. 20.15. Fig. 20.19 shows the modifications to he MPI_SendRecv state-
ments in lines 45 and 46 in Fig. 20.15, so that they directly read from and
write to the device memory.

Besides removing the data transfers during the halo exchange using
MPI_SendRecv(), it would also be possible to remove the initial and final memory
copies by receiving/sending the input/output directly from the GPU memory.

MPI_SendRecv(d_output + num_halo_points, num_halo_points, MPI_FLOAT,
le!_neighbor, i, d_output + le!_halo_offset, num_halo_points,
MPI_FLOAT, right_neighbor, i, MPI_COMM_WORLD, &status);

MPI_SendRecv(d_output + right_stage1_offset, num_halo_points, 
num_halo_points, MPI_FLOAT, right_neighbor, i, 
d_output + right_halo_offset, num_halo_points,
MPI_FLOAT, le!_neighbor, i, MPI_COMM_WORLD, &status);

FIGURE 20.19

Revised MPI SendRec calls in using CUDA-aware MPI.
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20.8 Summary
In this chapter we covered basic patterns of joint CUDA/MPI programming for
HPC clusters with heterogeneous computing nodes. All processes in an MPI
application run the same program. However, each process can follow different
control flow and function call paths to specialize their roles, as illustrated by the
data server and the compute processes in our example. We also used the stencil
pattern to show how compute processes exchange data. We presented the use of
CUDA streams and asynchronous data transfers to enable the overlap of computa-
tion and communication. We also showed how to use the MPI barrier to ensure
that all processes are ready to exchange data with each other. Finally, we briefly
outlined the use of CUDA-aware MPI to simplify the exchange of data in the
device memory. We would like to point out that while MPI is a very different
programming system, all major MPI concepts that we covered in this chapter,
namely, SPMD, MPI ranks, and barriers, have counterparts in the CUDA pro-
gramming model. This confirms our belief that by teaching parallel programming
well with one model, our students can quickly and easily pick up other program-
ming models. We would like to encourage the reader to build on the foundation
provided by this chapter and study more advanced MPI features and other impor-
tant patterns.

Exercises
1. Assume that the 25-point stencil computation in this chapter is applied to a

grid whose size is 64 grid points in the x dimension, 64 in the y dimension,
and 2048 in the z dimension. The computation is divided across 17 MPI
ranks, of which 16 ranks are compute processes and 1 rank is the data server
process.
a. How many output grid point values are computed by each compute

process?
b. How many halo grid points are needed:

i. By each internal compute process?
ii. By each edge compute process?

c. How many boundary grid points are computed in stage 1 of Fig. 20.12:
i. By each internal compute process?
ii. By each edge compute process?

d. How many internal grid points are computed in stage 2 of Fig. 20.12:
i. By each internal compute process?
ii. By each edge compute process?

e. How many bytes are sent in stage 2 of Fig. 20.12:
i. By each internal compute process?
ii. By each edge compute process?
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2. If the MPI call MPI_Send(ptr_a, 1000, MPI_FLOAT, 2000, 4, MPI_COMM_WORLD)
results in a data transfer of 4000 bytes, what is the size of each data element
being sent?
a. 1 byte
b. 2 bytes
c. 4 bytes
d. 8 bytes

3. Which of the following statements is true?
a. MPI_Send() is blocking by default.
b. MPI_Recv() is blocking by default.
c. MPI messages must be at least 128 bytes.
d. MPI processes can access the same variable through shared memory.

4. Modify the example code to remove the calls to cudaMemcpyAsync() from the
compute processes’ code by using GPU memory addresses on MPI_Send and
MPI_Recv.
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CUDA dynamic parallelism is an extension to the CUDA programming model
that enables a kernel to call other kernels, thereby allowing threads executing on
the device to launch new grids of threads. In early versions of CUDA, grids could
be launched only from the host code. Algorithms that involved recursion, irregu-
lar loop structures, time-space variation, or other constructs that do not fit a flat
and single level of parallelism needed to be implemented with multiple kernel
calls from the host, which increases the burden on the host, the amount of host-
device communication, and the total execution time. In some cases, programmers
resort to loop serialization and other awkward techniques to support these algo-
rithmic needs at the cost of software maintainability. The support for dynamic
parallelism allows algorithms that dynamically discover new work to prepare and
launch new grids without burdening the host or impacting the software maintain-
ability. This chapter describes the extended capabilities of CUDA that enable
dynamic parallelism, including the modifications and additions to the CUDA pro-
gramming interface, as well as guidelines and best practices for exploiting this
added capacity.
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21.1 Background
Many real-world applications employ algorithms that have either a variation of
work across space or a dynamically varying amount of work performed over
time. For example, Fig. 21.1 shows a turbulence simulation example in which the
level of required modeling details varies across both space and time. As the com-
bustion flow moves from left to right, the range of activities and intensity
increases. The level of details required to model the right side of the model is
much higher than that for the left side of the model. On one hand, using a fixed
fine grid would incur too much work for no gain for the left side of the model.
On the other hand, using a fixed coarse grid would sacrifice too much accuracy
for the right side of the model. Ideally, one should use fine grids for the parts of
the model that require more details and coarse grids for the parts that do not.

Thus far, we have assumed that all kernels are called from the host code. The
amount of work done by a thread grid is predetermined in calling the kernel func-
tion. With the single-program, multiple-data programming style for the kernel
code, it is tedious if not extremely difficult to have thread blocks use different
grid spacing. As a result, this limitation favors the use of a fixed and uniform
(regular) grid system. To achieve the desired accuracy, such a fixed grid

FIGURE 21.1

Fixed versus dynamic grids for a turbulence simulation model.
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approach, as illustrated in the upper right portion of Fig. 21.1, typically needs to
accommodate the most demanding parts of the model and maintain unnecessary
extra data as well as perform unnecessary extra work in parts that do not require
as much detail.

A more desirable approach is shown as the dynamic grid in the lower right
portion of Fig. 21.1. As the simulation algorithm detects fast-changing simulation
quantities in some areas of the model, it refines the grid in those areas to achieve
the desired level of accuracy. Such refinement does not need to be done for the
areas that do not exhibit such intensive activity. Thus the algorithm can dynami-
cally direct more computational resources to the areas of the model that benefit
from additional work.

Fig. 21.2 shows a conceptual comparison of behavior between a system with-
out dynamic parallelism and another one with dynamic parallelism with respect to
the simulation model in Fig. 21.1. Without dynamic parallelism the host thread
must launch all grids. If new work is discovered, such as refining an area in the
model during the execution of a grid, the grid needs to terminate, report back to
the host, and have the host launch new grids. This is illustrated in Fig. 21.2A, in
which the host launches a grid, receives information from this grid after its termi-
nation, and launches subsequent grids for any new work that is discovered by the
completed grid. The figure depicts the subsequent grids as being launched one
after the other; however, sophisticated optimizations may be applied, such as

FIGURE 21.2

Grid launch patterns for algorithms with dynamic work variation, (A) without and (B) with
dynamic parallelism.
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launching independent grids in different streams or combining them so that they
can run in parallel.

Fig. 21.2B shows that with dynamic parallelism the threads that discover new
work can just go ahead and launch grids to do the work. In our example, when a
thread discovers that an area in the model needs to be refined, it can launch a
new grid to perform the computation on the refined area without the overhead of
terminating the grid, reporting back to the host, and having the host launch the
new grid.

21.2 Dynamic parallelism overview
From the perspective of programmers, dynamic parallelism means that they can
write a statement within a kernel that calls another kernel function. In Fig. 21.3
the main function (host code) launches three kernels: A, B, and C. These are ker-
nel calls in the host code, as we have been assuming throughout this book. What
is new in Fig. 21.3 is that one of the kernels, B, calls three kernels X, Y, and Z.
This would have been illegal in early CUDA systems that do not support dynamic
parallelism.

 

GPU

A

B

C

X

Y

Z

CPU

FIGURE 21.3

A simple example of a kernel (B) launching three kernels (X, Y, and Z).
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The syntax for calling a kernel from inside of a kernel is the same as that for
calling a kernel from the host code:

• Dg is of type dim3 and specifies the dimensions and size of the grid.
• Db is of type dim3 and specifies the dimensions and size of each thread block.
• Ns is of type size_t and specifies the number of bytes of shared memory that

are dynamically allocated per-thread block for this call, which is in addition to
the statically allocated shared memory. Ns is an optional argument that
defaults to 0.

• S is of type cudaStream_t and specifies the stream associated with this call.
The stream must have been allocated in the same thread block in which the
call is being made. S is an optional argument that defaults to 0. Streams were
discussed in Chapter 20, Programming a Heterogeneous Computing Cluster.

To demonstrate how dynamic parallelism can be used, we provide simple
examples of kernels without and with dynamic parallelism. The examples are
based on a hypothetical parallel algorithm that does not compute useful results
but provides a conceptually simple computational pattern that recurs in many
applications. It serves to illustrate the difference between the two approaches and
how one can use the dynamic parallelism to extract more parallelism while reduc-
ing control flow divergence when the amount of work done by each thread in an
algorithm can vary dynamically.

Fig. 21.4 shows a simple example kernel coded without dynamic parallelism.
In this example, each thread of the kernel performs some computation (line 05),
then loops over a list of data elements for which it is responsible (line 07), and
performs another computation for each data element (line 08).

This computation pattern recurs frequently in many applications. For example,
in graph search, each thread could visit a vertex and then loop over a list of

FIGURE 21.4

A simple example of a hypothetical parallel algorithm coded in CUDA without dynamic
parallelism.

47921.2 Dynamic parallelism overview



neighboring vertices. The reader should find this kernel structure similar to that
of the vertex-centric BFS kernel in Figure 15.14. For another example, in sparse
matrix computations, each thread could first identify the starting location of a row
of nonzero elements and loop over the nonzero values. In simulations such as the
example at the beginning of this chapter, each thread could first process a coarse
grid element and then loop over finer grid elements if there is a need for refining
the grid.

There are two main problems with writing applications in the style shown in
Fig. 21.4. First, if the work in the loop (lines 07!09) can be profitably performed
in parallel, then we have missed out on an opportunity to extract more parallelism
from the application. Second, if the number of iterations in the loop varies signifi-
cantly between threads in the same warp, then the resulting control divergence
can degrade the performance of the program.

Fig. 21.5 shows a version of the same program that uses dynamic parallelism.
In this version the original kernel is separated into two: a parent kernel and a
child kernel. The parent kernel starts off the same as the original kernel, executed
by a grid of threads that are referred to as the parent grid. Instead of looping, the
parent kernel calls a child kernel to continue the work (lines 07!08). The child
kernel is executed by grids of threads called the child grids, which perform the
work (line 18, Fig. 21.5) that was originally performed inside the loop body (lines
07!09, Fig. 21.4).

Writing the program in this way addresses both problems that were mentioned
about the original code. First, the loop iterations are now executed in parallel by
the child kernel threads instead of serially by the original kernel thread. Thus we
have extracted more parallelism from the program. Second, each thread now exe-
cutes a single loop iteration, which results in better load balance and eliminates

FIGURE 21.5

A revised example using CUDA dynamic parallelism.
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control divergence. Although these two goals could have been achieved by the
programmer rewriting the kernels differently, for example, by using an edge-
centric breadth-first implementation, such transformations for some applications
can be awkward, complicated, and error prone. Dynamic parallelism provides an
easy way to express such computational patterns.

21.3 An example: Bezier curves
We now show an example that is a more interesting and useful case: the adaptive
subdivision of spline curves. This example illustrates the case of having a variable
amount of child grid launches, according to the workload. The example is to cal-
culate Bezier curves (Bezier Curves), which are frequently used in computer gra-
phics to draw smooth, intuitive curves that are defined by a set of control points,
which are typically defined by a user.

Mathematically, a Bezier curve is defined by a set of control points P0 through
Pn, where n is called the control point’s order (n=1 for linear, 2 for quadratic, 3 for
cubic, etc.). The first and last control points are always the end points of the curve;
however, the intermediate control points (if any) generally do not lie on the curve.

Linear Bezier curves

Given two control points P0 and P1, a linear Bezier curve is simply a straight line
connecting these two points. The coordinates of the points on the curve are given
by the following linear interpolation formula:

B tð Þ ¼ P0 þ t P1 2P0ð Þ ¼ 12 tð ÞP0 þ tP1; tA½0; 1'

Quadratic Bezier curves

A quadratic Bezier curve is defined by three control points P0, P1, and P2. The
points on a quadratic curve are defined as a linear interpolation of corresponding
points on the linear Bezier curves from P0 to P1 and from P1 to P2. The calculation
of the coordinates of points on the curve is expressed by the following formula:

B tð Þ ¼ 12 tð Þ 12 tð ÞP0 þ tP1½ ' þ t½ 12 tð ÞP0 þ tP2'; tA½0; 1';

which can be simplified into the following formula:

B tð Þ ¼ ð12tÞ2P0 þ 2 12 tð ÞtP1 þ t2P2; tA 0; 1½ ':

Bezier curve calculation (without dynamic parallelism)

Fig. 21.6 shows part of a CUDA C program that calculates the coordinates of
points on a Bezier curve. The computeBezierLines kernel starting at line 13 is
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designed to use a block to calculate the curve points for a set of three control
points (of the quadratic Bezier formula). Each thread block first computes a mea-
sure of the curvature of the curve defined by the three control points. Intuitively,
the larger the curvature, the more points it takes to draw a smooth quadratic
Bezier curve for the three control points. This defines the amount of work to be
done by each block. This is reflected in lines 20 and 21, in which the total num-
ber of points to be calculated by the current thread block is proportional to the
curvature value.

In the for-loop in line 24, all threads calculate a consecutive set of Bezier
curve points in each iteration. The detailed calculation in the loop body is based
on the formula that we presented earlier. The key point is that the number of
iterations taken by threads in a block can be very different from the number taken
by threads in another block. Depending on the scheduling policy, such variation
of the amount of work done by each thread block can result in decreased utiliza-
tion of streaming multiprocessors (SMs) and thus reduced performance.

FIGURE 21.6

Bezier curve calculation without dynamic parallelism.
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Bezier curve calculation (with dynamic parallelism)

Fig. 21.7 shows a Bezier curve calculation code using dynamic parallelism. It breaks
the computeBezierLines kernel in Fig. 21.6 into two kernels. The first part,
computeBezierLines_parent, discovers the amount of work to be done for each con-
trol point. The second part, computeBezierLines_child, performs the calculation.

With the new organization the amount of work that is done for each set of
control points by the computeBezierLines_parent kernel is much smaller than
that for the original computeBezierLines kernel. Therefore we use one thread to
do this work in computeBezierLines_parent rather than using one block in
computeBezierLines. In line 58, we need to launch only one thread per set of
control points. This is reflected by dividing the N_LINES by BLOCK_DIM to form the
number of blocks in the kernel launch configuration.

FIGURE 21.7

Bezier calculation with dynamic parallelism.
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There are two key differences between the computeBezierLines_parent kernel and
the computeBezierLines kernel. First, the index that is used to access the control points
is formed on a thread basis (line 08 in Fig. 21.7) rather than a block basis (line 14 in
Fig. 21.6). This is because the work for each control point is done by a thread rather
than a block, as we mentioned earlier in the chapter. Second, the memory for storing the
calculated Bezier curve points is dynamically determined and allocated in line 15 in
Fig. 21.7. This allows the code to assign just enough memory to each set of control
points to be placed in the bLines variable. Note that in Fig. 21.6, each BezierLine ele-
ment is declared with the maximum possible number of points (line 09). On the other
hand, the declaration in Fig. 21.7 has only a pointer to a dynamically allocated storage.
Allowing a kernel to call the cudaMalloc() function can lead to substantial reduction of
memory usage for situations in which the curvature of control points varies significantly.

Once a thread of the computeBezierLines_parent kernel has determined
the amount of work needed by its set of control points, it calls the
computeBezierLines_child kernel and launches a child grid to do the work (line 19
in Fig. 21.7). In our example, every thread from the parent grid creates a new grid
for its assigned set of control points. This way, the work that is done by each thread
block is balanced. The amount of work that is done by each child grid varies.

Dynamic parallelism kernel calls have the same asynchronous semantics as kernel
calls from the host. That is, once the child kernel has been called, the parent thread
that called it may proceed to execute the subsequent code without waiting for the
child grid to complete. If the parent thread wishes to wait for its child grid to com-
plete, it must perform an explicit synchronization similar to what a host thread would
do. If no explicit synchronization is made, then the thread can finish executing, but
there is an implicit synchronization at the end. The implicit synchronization ensures
that all child grids have terminated before the parent grid terminates. We refer the
reader to the CUDA C++ Programming Guide for more details about the semantics
of parent-child grid synchronization (NVIDIA Corporation, 2021).

After computeBezierLines_parent terminates, the memory allocated inside
the kernel using cudaMalloc still needs to be freed. For this reason, an additional
kernel freeVertexMem is implemented (lines 42!47) to be called by the host.
This kernel frees all storage allocated to the vertices in the bLines_d data struc-
ture in parallel (line 61). This kernel is necessary because vertex storage allocated
on the device by a device kernel has to be freed by a device kernel. We refer the
reader to the CUDA C++ Programming Guide for more details about the use of
cudaMalloc and cudaFree on the device (NVIDIA Corporation, 2021).

21.4 A recursive example: quadtrees
Dynamic parallelism also allows programmers to implement recursive algorithms. In
this section we illustrate the use of dynamic parallelism for implementing recursion
with a quadtree (Finkel and Bentley, 1974). Quadtrees partition a two-dimensional
space by recursively subdividing it into four equally sized quadrants. Each quadrant
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is considered to be a node of the quadtree and contains a number of points. If the
number of points in a quadrant is greater than a fixed minimum, the quadrant will be
recursively subdivided into four more quadrants, that is, four child nodes.

Fig. 21.8 illustrates the construction of a quadtree with dynamic parallelism. In
this implementation, one node (quadrant) is assigned to one block. Initially (depth=0),
one block (block 0) is assigned the entire two-dimensional space (root node of the

FIGURE 21.8

Quadtree example. Each block is assigned to one quadrant. If the number of points in a
quadrant is more than two, the block launches four child blocks. Shadowed blocks are
active blocks in each level of depth.
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quadtree), which contains all points. It divides the space into four quadrants and
launches one block for each quadrant (depth=1). These child blocks (blocks 00
through 03) will again subdivide their quadrants if they contain more points than a
fixed minimum. In this example we assume that the minimum is two; thus blocks 00
and 02 do not launch children. Blocks 01 and 03 launch a grid with four blocks each.

As the flow graph in the right-hand side of Fig. 21.8 shows, a block first checks
whether the number of points in its quadrant is greater than the minimum required
for further division and whether the maximum depth has not been reached. If either
of the conditions fails, the work for the quadrant is complete, and the block returns.
Otherwise, the block computes the center of the bounding box that surrounds its
quadrant. The center is in the middle of four new quadrants. The number of points in
each of them is counted. A four-element scan operation is used to compute the offsets
to the locations where the points will be stored. Then the points are reordered so that
those points in the same quadrant are grouped together and placed into their section
of the point storage. Finally, the block launches a child grid with four blocks, one for
each of the four new quadrants.

Fig. 21.9 continues the small example in Fig. 21.8 and illustrates in detail how
the points are reordered at each level of depth. For the example we assume that each
quadrant must have more than two points to be further divided. The algorithm uses
two buffers to store the points and reorder them. The points should be in buffer 0 at
the end of the algorithm. Thus it might be necessary to swap the buffer contents
before leaving if the points are in buffer 1 when the terminating condition is met.

In the initial kernel call from the host code (for depth=0), block 0 is assigned
all the points that reside in buffer 0, shown in Fig. 21.9A. Block 0 further divides

(A)

(C)

(E)

(B)

(D)

FIGURE 21.9

Quadtree example. At each level of depth, a block groups all points in the same quadrant
together. (A) shows the initial input list in Buffer 0, (B) The list after being rearranged into four
sublists that correspond to the four quadrants, (C) shows the list after being rearranged to
reflect the second-level quadrants, (D) shows the list after being rearranged to reflect the
third-level quadrant, (E) the final list is copied into Buffer 0 for return to the caller.
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the quadrant into four child quadrants, groups together all points in the same child
quadrant, and stores the points according to the quadrants into buffer 1, as shown
in Fig. 21.9B. Its four children, block 00 to block 03, are assigned each of the four
new quadrants, shown as marked ranges in Fig. 21.9B. Blocks 00 and 02 will not
launch children, since the number of points in their respective assigned quadrant is
only 2. Blocks 01 and 03 reorder their points to group those in the same quadrant
and launch four child blocks each, as shown in Fig. 21.9C. Blocks 010, 011, 012,
013, 030, 031, and 032 do not launch children (they have two or fewer points) and
do not need to swap points (they are already in buffer 0). Only block 033 reorders
its points and launches four blocks, as shown in Fig. 21.9D. Blocks 0330 to 0333
will exit after swapping their points to buffer 0, which can be seen in Fig. 21.9E.

The kernel code in Fig. 21.10 implements the flow graph from Fig. 21.8. The
quadtree is implemented with a node array, in which each element contains all the

FIGURE 21.10

Quadtree with dynamic parallelism: recursive kernel (support code in Appendix A210.1).
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pertinent information for one node of the quadtree (definition given in Appendix
A21.1). As the quadtree is constructed, new nodes will be created and placed into
the array during the execution of the kernels. The kernel code assumes that the
node parameter points to the next available location in the node array.

Every block starts by checking the number of points in its node (quadrant). A
point is a pair of floats representing x and y coordinates (definition in Appendix
A21.1). If the number of points is less than or equal to the minimum or if the maxi-
mum depth is reached (line 11), the block will exit. The maximum depth may be
specified on the basis of application requirements or hardware constraints (see
Section 12.5). Before exiting, the block may need to write its points from buffer 1

FIGURE 21.11

Quadtree with dynamic parallelism: device functions (support code in Appendix A21.1).
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to buffer 0 if necessary. This is because the output is expected in buffer 0 after the
quadtree is complete. The transfer of points from buffer 1 to buffer 0 is done in the
device function check_num_points_and_depth() shown in Fig. 21.11.

Next, the center of the bounding box is computed (line 17). A bounding box
is defined by its top-left and bottom-right corners. The coordinates of the top-left
and the bottom-right corner points of the bounding box for the current node are
given as part of the node data by the caller. The coordinates of the center are
computed as the coordinates of the middle point between these two corner points.
The definition of a bounding box (including function compute_center()) is given
in Appendix A21.1.

FIGURE 21.11

(Continued)
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As the center separates the four quadrants, one can determine which quadrant
each point in the current node belongs to by comparing it with the center point.
The number of points in each quadrant are counted (line 26). The device function
count_points_in_children() can be found in Fig. 21.11. These are simplified
for clarity reasons. The threads of the block collaboratively go through the range
of points and use atomic operations to update the counters in shared memory for
each quadrant.

The device function scan_for_offsets() is called then (line 29). As can be
seen in Fig. 21.11, it performs a scan on the four counters in shared memory.
Then it adds the global offset of the parent quadrant to these values to derive the
starting offset for each quadrant’s group in the buffer.

Using the quadrants’ offsets, the points are reordered with reorder_points()
(line 32). For simplicity this device function (Fig. 21.11) uses an atomic operation
on one of the four quadrant counters to derive the location for placing each point.

Finally, the last thread of the block (line 35) determines the next available
location in the node array for children nodes (line 37), prepares the new node
contents for the child quadrants (line 40), and launches one child kernel with four
thread blocks (line 43). The device function prepare_children() prepares the
new node contents for the children by setting the limits of the children’s bounding
boxes and the range of points in each quadrant. The prepare_children() function
can be found in Figure 13.14 (line 75).

The rest of the definitions can be found in Appendix A21.1.

21.5 Important considerations
In this section we will briefly explain some important considerations for the exe-
cution behavior of programs that use dynamic parallelism. It is important for a
programmer to understand these considerations well in order to use dynamic par-
allelism confidently.

Memory and data visibility

When a parent thread passes a memory pointer to a child grid, it must ensure that
the memory being pointed to is accessible to the child grid so that the child grid
does not attempt to access invalid memory. The memory that can be accessed by
both parent threads and their child grids includes global memory, constant mem-
ory, and texture memory. A parent thread should not pass pointers to local mem-
ory or shared memory to their child grids because local memory and shared
memory are private to the thread and the thread block, respectively.

Besides ensuring that the memory that is passed by the parent thread to the
child grid is accessible to the child grid, programmers must also be aware of
when the data written to that memory by a parent thread will be visible to the
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child grid and vice versa. There are two points in the execution at which the par-
ent thread and the child grid have the same view of memory: when the parent
thread launches the child grid and when the child grid completes as signaled by
the completion of a synchronization API call by the parent thread. In other words,
when a parent thread launches a child grid, any updates to memory prior to that
launch will be seen by the child grid, but there is no such guarantee for updates
after that launch. Also, there is no guarantee that any updates to memory made by
the child grid will be visible to the parent thread until after the parent thread has
synchronized on the completion of the child grid.

We refer the reader to the CUDA C++ Programming Guide for more details
about memory and data visibility between parent threads and child grids
(NVIDIA Corporation, 2021).

Pending launch pool configuration

The pending launch pool is a buffer that tracks the kernels that are executing or
waiting to be executed. This pool is allocated a fixed amount of space, thereby sup-
porting a fixed number of pending kernel calls (2048 by default). If this number is
exceeded, a virtualized pool is used, leading to a significant slowdown, which can
be an order of magnitude or more. To avoid this slowdown, the programmer can
increase the size of the fixed pool by executing the cudaDeviceSetLimit() API
call from the host function to set the cudaLimitDevRuntimePendingLaunchCount
configuration.

For example, in the Bezier curve calculation in Section 21.3, if N_LINES is set to
4096, then 4096 child grids will be launched, so half of the launches will use the vir-
tualized pool. This will incur a significant performance penalty. However, if the
fixed-size pool is set to 4096, the execution time will be reduced substantially.

As a general recommendation, the size of the fixed-size pool should be
set to the expected number of launched grids (if it exceeds the default size).
In the Bezier curves example we would call cudaDeviceSetLimit
(cudaLimitDevRuntimePendingLaunchCount, N_LINES) before calling the
computeBezierLines_parent() kernel.

Streams

Just as host code can use streams to execute kernels concurrently, device threads can
use streams in launching grids with dynamic parallelism. The scope of a stream is
private to the block in which the stream was created. When a stream is not specified
in a kernel call, the default NULL stream in the block is used by all threads. This
means that all grids that are launched in the same block will be serialized even if
they were launched by different threads. However, it is often the case that grids
launched by different threads in a block are independent and can be executed concur-
rently. Therefore programmers must be careful to explicitly use different streams in
each thread if they wish to avoid the performance penalty from serialization.

49121.5 Important considerations



The Bezier curves example in Section 21.3 launches as many child grids as
there are parent threads in the computeBezierLines_parent() kernel (line 19 in
Fig. 21.7). If the default NULL stream is used, all the grids that are launched by
the same parent block will be serialized. Thus using the default NULL stream in
launching the computeBezierLines_child() kernel can result in a drastic reduc-
tion in parallelism compared to the original kernel without dynamic parallelism.

If more concurrency is desired, named streams must be created and used in
each thread. Fig. 21.12 shows the code that should replace line 19 in Fig. 21.7.
With this code, kernels that are launched from the same thread block will be
placed in different streams and can run concurrently. This would better utilize all
SMs, leading to a considerable reduction in the execution time.

Nesting depth

Kernels that are launched with dynamic parallelism may themselves call other ker-
nels, which may in turn call other kernels, and so on. We saw an example of such
a kernel in the quadtree application in Section 12.4. Each subordinate launch is
considered a new nesting level, and the total number of levels that are reached is
called the nesting depth. The maximum nesting depth supported by current hard-
ware is 24 levels. For this reason, kernels such as the one in the quadtree example
should check this limit before deciding whether to make a dynamic launch.

In the presence of parent-child synchronization there are additional constraints on
the nesting depth due to the amount of memory required by the system to store the
state of the parent grid. This constraint is referred to as the synchronization depth.
We refer the reader to the CUDA C++ Programming Guide for more details about
the nesting depth and synchronization depth (NVIDIA Corporation, 2021).

21.6 Summary
CUDA dynamic parallelism extends the CUDA programming model to allow ker-
nels to call other kernels. This allows each thread to dynamically discover work
and launch new grids according to the amount of work that is newly discovered.

FIGURE 21.12

Child kernel launch with named streams.
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It also supports dynamic allocation of device memory by threads. As we showed
in the Bezier curve calculation example, these extensions can lead to better work
balance across threads and blocks as well as more efficient memory usage.
CUDA Dynamic Parallelism also helps programmers to implement recursive algo-
rithms, as the quadtree example shows.

Besides ensuring better work balance, dynamic parallelism offers many advan-
tages in terms of programmability. However, it is important to keep in mind that
launching grids with a small number of threads could lead to severe underutiliza-
tion of the GPU resources. A general recommendation is launching child grids
with many blocks, or at least blocks with many threads if the number of blocks is
small.

Similarly, nested parallelism, which can be seen as a form of tree processing,
provides higher performance when tree nodes are thick (that is, each node deploys
many threads) and/or when the branch degree is large (i.e., each parent node has
many children). As the nesting depth is limited in hardware, only relatively shal-
low trees can be implemented efficiently.

To use dynamic parallelism effectively, programmers need to understand
details such as visibility of memory contents, pending launch count, and streams.
Careful use of memory and streams between parents and children in dynamic par-
allelism is critical for the correct execution and achieving the expected level of
parallelism in launching child grids.

Exercises
1. Which of the following statements are true for the Bezier curves example?

a. If N_LINES=1024 and BLOCK_DIM=64, the number of child kernels that are
launched will be 16.

b. If N_LINES=1024, the fixed-size pool should be reduced from 2048 (the
default) to 1024 to get the best performance.

c. If N_LINES=1024 and BLOCK_DIM=64 and per-thread streams are used, a
total of 16 streams will be deployed.

2. Consider a two-dimensional organization of 64 equidistant points. It is
classified with a quadtree. What will be the maximum depth of the quadtree
(including the root node)?
a. 21
b. 4
c. 64
d. 16

3. For the same quadtree, what will be the total number of child kernel
launches?
a. 21
b. 4

493Exercises



c. 64
d. 16

4. True or False: Parent kernels can define new __constant__ variables that
will be inherited by child kernels.

5. True or False: Child kernels can access their parents’ shared and local
memories.

6. Six blocks of 256 threads run the following parent kernel:

How many child kernels could run concurrently?
a. 1536
b. 256
c. 6
d. 1
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Our focus throughout this book has been on scalable parallel programming. CUDA
C and the GPU hardware have mostly played the role of the programming platform
for our examples and exercises. However, the parallel programming concepts and
skills that are learned on the basis of CUDA C can be easily adapted for other paral-
lel programming platforms. For example, as we saw in Chapter 20, Programming a
Heterogeneous Computing Cluster, Programming a Heterogeneous Computing
Cluster: An Introduction to CUDA Streams, most key concepts of Message Passing
Interface (MPI), such as processes, rank, and barriers, have counterparts in CUDA
C. Furthermore, as we also discussed in Chapter 20, Programming a Heterogeneous
Computing Cluster, CUDA-enabled GPUs have become widely available in high-
performance computing (HPC) systems. For many readers, CUDA C will likely be
an important application development and deployment platform rather than just a
learning vehicle. For this reason, it is important for the reader to understand the
advanced CUDA C features and practices that are designed to support high-
performance programming at the application level. For example, as we saw in
Chapter 20, Programming a Heterogeneous Computing Cluster, CUDA streams
enable an MPI HPC application to overlap communication with the computation.
Such capability is especially important for achieving whole-application performance
goals. With this in mind, this chapter will provide the reader with an overview of
the advanced features of CUDA C and GPU computing hardware that will be impor-
tant in achieving high performance and maintainability in your applications. For
each feature we will present the basic concepts as well as a brief history of its
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evolution through different generations of GPU computing. A good understanding of
the concepts and the evolution history will help to clear up some common confusion
about these features. The goal is to help the reader to establish a conceptual frame-
work for more detailed studies of these features.

22.1 Model of host/device interaction
So far, we have assumed a fairly simple model of interaction between host and
device in a heterogeneous computing system. In this simple model, as presented
in Chapter 2, Heterogeneous Data Parallel Computing, Heterogeneous Data
Parallel Computing, each device has a device memory (CUDA global memory)
that is separate from the host memory, or the system memory. The data to be pro-
cessed by a kernel running on a device needs to be transferred from the host
memory to the device memory by calling the cudaMemcpy() function. The data
that is produced by the device also needs to be transferred from the device mem-
ory to the host by calling the cudaMemcpy() function before it can be utilized by
the host. While the model is simple and easy to understand, it results in several
problems at the application level.

First, I/O devices such as disk controllers and network interface cards are
designed to operate efficiently on the host memory. Since the device memory is sepa-
rate from the host memory, input data need to be transferred from the host memory
to the device memory, and output data need to be transferred from the device mem-
ory to the host memory to be used in I/O operations. Such additional transfers
increase the I/O latency and reduce the achievable I/O throughput. For many applica-
tions the ability of I/O devices to operate directly on the device memory would
improve overall application performance and simplify the application code.

Second, the host memory is where the traditional programming systems
place their application data structures. Some of the data structures are large.
The device memory in early generations of CUDA-enabled GPUs were small
in comparison to the host memory, which forces application developers to par-
tition their large data structures into chunks that fit into the device memory.
For example, in Chapter 18, Electrostatic Potential Map, the three-dimensional
(3D) electrostatic energy grid array was partitioned into two-dimensional
slices that are transferred between the host memory and the device memory.
For many applications it would be much better if the entire data structures
could reside in the device memory. For some applications there may not even
be a good way to partition the data structure into smaller chunks. For these
applications it would be best if the GPU could directly access the data in the
host memory or have the CUDA runtime system software migrate the data that
is used during kernel execution.

These limitations of the host/device interaction model were rooted in the
limitations of the memory architecture of early generations of CUDA-enabled
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GPUs. In these early devices, the only viable host/device interaction model
for applications was the simple model that we assumed in the previous chap-
ters. As more applications adopted GPU computing, their needs motivated
CUDA system software developers and GPU hardware designers to provide a
better solution. Researchers have been aware of these needs and have pro-
posed solutions since the early days of CUDA (Gelado et al., 2010). The rest
of this section will go over a brief history of advancements that address these
limitations.

Zero-copy memory and unified virtual address space

In 2009, CUDA 2.2 introduced zero-copy access to system memory. This enables the
host code to supply a special device data pointer to host memory to a kernel. The
code that is running on the device can use this pointer to directly access the host
memory through the system interconnect, such as the PCIe bus, without calling to
cudaMemcpy(). Zero-copy memory is pinned host memory (Chapter 20, Programming
a Heterogeneous Computing Cluster,) and is allocated by calling cudaHostAlloc()
with cudaHostAllocMapped as the value of the flag argument. We mentioned that the
other values of the flag argument are for more advanced usage. The data pointer that
is returned by cudaHostAlloc() cannot be directly passed to the kernel; the host
code has to obtain a valid device data pointer, using cudaHostGetDevicePointer()
first, and pass the device data pointer that is returned by this function to the kernel.
This means that different data pointers for host and device codes are used to access
the same physical memory.

As we explained in Chapter 20, Programming a Heterogeneous Computing
Cluster, the host memory pages must be pinned to prevent the operating system
from accidentally paging out the data while the GPU is accessing them. Obviously,
the access will suffer from the long latency and limited bandwidth of the system
interconnect. The bandwidth of the system interconnect is typically less than 10% of
the global memory bandwidth. As we learned in Chapter 5, Memory Architecture
and Data Locality, a kernel’s performance is typically limited by the global memory
bandwidth unless we use tiling techniques to drastically reduce the number of global
memory accesses per floating-point operation performed. If most of the memory
accesses of a kernel are to zero-copy memory, the kernel’s execution speed can be
even more severely limited by the bandwidth of the system interconnect. Therefore
one should use zero-copy memory only for application data structures that are occa-
sionally and sparsely accessed by a kernel running on a GPU.

In 2011, CUDA 4 introduced the Unified Virtual Addressing. Until this CUDA
release, the host and the device had their own virtual address spaces, each of them
mapping host or device data pointers to physical host or device memory locations.
These disjoint virtual address spaces imply that the same physical memory location
could be accessed by different virtual addresses in the host and the device, which
effectively happens in using zero-copy memory. The Unified Virtual Address Space
(UVAS), first introduced by the GMAC library (Gelado et al., 2010) and adopted in
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CUDA 4, uses a single virtual address space that is shared by the host and the device.
The UVAS guarantees that each physical memory address is mapped to only one vir-
tual memory location. This enables the CUDA runtime to determine whether a data
pointer is referencing host or device memory by just inspecting its virtual memory
address. This feature removes the need to specify the data copy direction on
cudaMemcpy() calls.

It is important to note that the UVAS in CUDA 4 does not guarantee the
accessibility of the data that is referenced by a pointer. For example, the host
code cannot use a device pointer that is returned by cudaMalloc() to directly
access the device memory and vice versa. Zero-copy memory is the exception:
The host code can directly pass a pointer to zero-copy memory as a kernel launch
parameter to the device. When the kernel code dereferences this zero-copy
pointer, the pointer value is translated to a physical system memory location and
is accessed directly through the PCIe bus. Note that this approach does not neces-
sarily allow the kernel code to dereference a pointer value that is read from a
memory location, such as following a chain of pointers while traversing a linked
data structure, unless all memory has been allocated by using cudaHostAlloc().

The limitations in both the types of data structures that can be supported and
the bandwidth of data accesses of zero-copy memory motivate further improve-
ments in the memory model of GPU architectures beyond UVAS.

Large virtual and physical address spaces

One fundamental limitation of early CUDA-enabled GPUs is the size of their vir-
tual and physical addresses. These early devices support 32-bit virtual addresses
and up to 32-bit physical addresses. For these devices the size of the device mem-
ory is limited to 4 gigabytes, the maximum amount of memory that can be
addressed with 32 physical address bits. Furthermore, CUDA kernels can operate
only on datasets whose sizes are less than 4 gigabytes, the maximum number of
virtual memory locations that can be accessed through 32-bit pointers, regardless
of whether the dataset resides in the host memory or the device memory.
Furthermore, modern CPUs are based on 64-bit virtual addresses with 48 bits
actually utilized. These host virtual addresses cannot be accommodated by the
32-bit virtual addresses that are used by GPUs, which contributed to the limitation
of the types of data structures supported by zero-copy memory.

To remove this limitation, GPU generations starting with the Kepler GPU
architecture introduced in 2013 have adopted modern virtual memory architecture
with 64-bit virtual addresses and physical addresses of at least 40 bits. The obvi-
ous benefits are that these GPUs can incorporate more than 4 gigabytes of
DRAM and that CUDA kernels can now operate on large datasets. While the
enlarged virtual and physical address spaces obviously enable the use of large
device memories, they also open the door for much better host/device interaction
models. For example, the host and the device can now use exactly the same
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pointer value to access a piece of data, regardless of whether it is in the host
memory or the device memory.

The large GPU physical address space also allows the CUDA system software
to place device memory of different GPUs in the system into a unified physical
address space. The benefit is that one GPU can directly access the memory of any
other GPU that is attached to the same PCIe bus by simply dereferencing a data
pointer that is mapped to the physical address of such a GPU. Prior to the Kepler
GPU architecture, communication among different GPUs (e.g., halo exchange in
the stencil example in Chapter 20, Programming a Heterogeneous Computing
Cluster) was possible only through device-to-device memory copies triggered by
the host code. This resulted in extra memory consumed to store the data being cop-
ied from other GPUs and extra performance overheads due to the memory copy
operations. Direct access to other device memory in the system enables just passing
the device pointer to the other GPU in the kernel call and using it to load and/or
store the data that need to be communicated.

Unified memory

In 2013, CUDA 6 introduced unified memory, which creates a pool of managed
memory that is shared between the CPU and GPU, bridging the CPU-GPU divide.
Managed memory is accessible to both the CPU and GPU using a single pointer.
Variables in the managed memory can reside in the CPU physical memory, the
GPU physical memory, or even both. The CUDA runtime software and hardware
implement data migration and coherence support, such as the GMAC system
(Gelado et al., 2010). The net effect is that the managed memory looks like CPU
memory to code running on the CPU and like GPU memory to code running on
the GPU. Of course, the application must perform appropriate synchronization
operations such as barriers or atomic operations to coordinate any concurrent
accesses to the managed memory locations. A shared global virtual address space
allows all variables in an application to have unique addresses. Such memory
architecture, when exposed by programming tools and runtime systems to applica-
tions, can result in several major benefits.

One such benefit is the reduced amount of effort that is required for porting CPU
code to CUDA. In Fig. 22.1 we show a simple CPU code example on the left side.
With unified memory, the code can be ported to CUDA with two simple changes.
The first change is to use cudaMallocManaged() and cudaFree() in place of malloc()
and free(). The second change is to launch a kernel and perform device synchroniza-
tion rather than calling the qsort() function. Obviously, one still needs to write or
have access to a parallel qsort kernel. What we are showing is that the change to the
host code is straightforward and easy to maintain.

The performance of the CUDA 6 unified memory was limited by the hardware
capabilities of the Kepler and Maxwell GPU architectures. The contents of all managed
memory locations that had been modified by the CPU had to be flushed out to the GPU
device memory before any grid launch. The CPU and GPU could not simultaneously
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access a managed memory allocation, and the unified memory address space was lim-
ited to the size of the GPU physical memory. These limitations are due to the fact that
these GPU architectures lacked the ability to support coherence between the host and
device memories and that the data migration was mostly performed by software.

In 2016 the Pascal GPU architecture added features to further simplify programming
and sharing of memory between CPU and GPU, and further reduce the effort required
to use GPUs for significant speedups. Two main hardware features enable these
improvements: support for large address spaces and page fault handling capability.

The Pascal GPU architecture extends GPU addressing capabilities to 49-bit
virtual addressing. This extension is large enough to cover the 48-bit virtual
address spaces of modern CPUs as well as the GPU’s own memory. This allows
unified memory programs to access the full address spaces of all CPUs and GPUs
in the system as a single virtual address space rather than being limited by the
amount of data that can be copied to the device memory. As a result, the CPUs
and GPUs can truly share the pointer values, enabling the GPUs to traverse
pointer-based data structures in the host memory.

Memory page fault handling support in the Pascal GPU architecture is a cru-
cial new feature that provides more seamless unified memory functionality.
Combined with the system-wide virtual address space, the ability to handle page
faults eliminates the need for the CUDA system software to synchronize (flush)
all managed memory contents to the GPU before each grid launch. The CUDA
runtime can implement a coherence mechanism by allowing the host and the
device to invalidate each other’s copy when they modify a variable in the man-
aged memory. The invalidation can be done by using the page mapping and pro-
tection mechanisms. When launching a grid, the CUDA system software no
longer has to bring all GPU copies of the managed memory data up to date. If the
grid accesses a piece of data whose copy in the device memory has been invali-
dated by the host, the GPU will handle a page fault to bring the data up to date
and resume execution.

If a grid running on the GPU accesses a page that is not resident in its device
memory, it also will take a page fault, allowing the page to be automatically

FIGURE 22.1

Unified memory simplifies porting of CPU code (left) to CUDA code (right).
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migrated to the GPU memory on demand. Alternatively, the page may be mapped
into the GPU address space for access over the system interconnects (mapping on
access can sometimes be faster than migration) if the data is expected to be
accessed only occasionally. Note that unified memory is system-wide: GPUs
(and CPUs) can fault and migrate memory pages either from CPU memory or
from the memory of other GPUs in the system. If a CPU function dereferences a
pointer and accesses a variable that is mapped to the GPU physical memory, the
data access would still be serviced but perhaps at a longer latency. Such capabil-
ity allows the CUDA programs to more easily call legacy libraries that have not
been ported to GPUs. In the prior CUDA memory architecture the developer must
manually transfer data from the device memory to the host memory in order to
use legacy library functions to process them on the CPU.

The unified memory with page fault handling capability enables a much more
general CPU/GPU interaction mechanism than zero-copy memory. It allows the GPU
to traverse large data structures in the host memory. Starting with the Pascal architec-
ture, a GPU device can traverse a linked data structure even if the data structure does
not reside in zero-copy memory. This is because the same pointer value is used in
the host code and the device code to refer to the same variable. Thus the embedded
pointer values of a linked data structure built by the host can be traversed by the
device and vice versa. In some application areas, such as CAD, the host physical
memory system may have hundreds of gigabytes of capacity. These physical memory
systems are needed because the applications require the entire dataset to be “in core.”
With the ability to directly access very large CPU physical memories, it becomes fea-
sible for GPUs to accelerate these applications.

Virtual address space control

CUDA 11 introduced a set of low-level APIs to give programmers more flexibility
regarding memory allocation. The new API allows reserving a range of the virtual
address space using cuMemAddressReserve(). Later on, the programmer can allocate
physical memory on any device using cuMemCreate() and map it to any position in
the reserved range using cuMemMap(). These APIs enable building custom layouts of
data structures across multiple devices. For instance, it would be possible to allocate
a 3D volume across multiple devices while using a single pointer to reference it.

22.2 Kernel execution control
Function calls within kernel functions

Early CUDA versions did not allow function calls during kernel execution.
Although the source code of kernel functions can appear to have function calls,
the compiler must be able to inline all function bodies into the kernel object so
that there are no function calls in the kernel function at runtime. Although this
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model works reasonably well for performance-critical portions of many applica-
tions, it does not support the common software engineering practices in more
sophisticated applications. In particular, it does not support system calls, dynami-
cally linked library calls, recursive function calls, and virtual functions in object-
oriented languages such as C++.

Later device architectures, such as Kepler, supported function calls in kernel
functions at runtime. This feature is supported in CUDA 5 and beyond. The com-
piler is no longer required to inline the function bodies. It can still do so as a per-
formance optimization. This capability is partly enabled by a cached and fast
implementation of massively parallel call frame stacks for CUDA threads. It makes
CUDA device code much more “composable” by allowing different authors to
write different CUDA kernel components and assemble them all together without
heavy redesign costs. It also allows software vendors to release device libraries
without source code for intellectual property protection. However, some limitations
still exist. For example, support for virtual functions is limited to objects con-
structed by device code, and dynamic libraries for device code are not supported.

Support for function calls at runtime also enables recursion and significantly
eases the burden on programmers as they transition from legacy CPU-oriented
algorithms toward GPU-tuned code. In some cases, developers will be able to
“cut and paste” CPU code into a CUDA kernel and obtain a reasonably perform-
ing kernel, although continued performance tuning would still add benefit.

With the function call support, kernels can now call standard library functions
such as printf() and malloc(). In our experience, the ability to call printf() in
a kernel provides a subtle but important aid in debugging and supporting kernels
in production software. Many end users are nontechnical and cannot be easily
trained to run debuggers that will provide developers with more details on what
happened before a crash. The ability to call printf() in the kernel allows develo-
pers to add a mode to the application to dump internal state so that the end users
can submit meaningful bug reports.

CUDA 8 added support for C++11 and, with it, another form of function calls:
lambdas. When coupled with metaprogramming techniques, device lambdas enable
the development of high-performance reusable code. CUDA also supports passing
lambda functions as parameters to CUDA kernels. This feature can be used to write
generic kernels (e.g., a sorting kernel), in which the comparison function is just an
input parameter to the kernel. CUDA also added experimental support for
“extended lambdas,” which are enabled with the !extended-lambda compiler flag.
This feature allows programmers to annotate C++ lambdas with the __host__
__device__ modifiers, further simplifying the task of writing reusable code.

Exception handling in kernel functions

Early CUDA systems did not support exception handling in kernel code. While not a
significant limitation for performance-critical portions of many high-performance
applications, it often incurs software engineering cost in production quality
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applications that rely on exceptions to detect and handle rare conditions without exe-
cuting code to explicitly test for such conditions.

With the availability of limited exception handling support, CUDA debuggers
allow a user to perform step-by-step execution, to set breakpoints, and or to run a
kernel until an invalid memory access happens. In each case, the user can inspect
the values of the kernel’s local and global variables when the execution is sus-
pended. In our experience, the CUDA debugger is a very helpful tool to detect
out-of-bounds memory accesses and potential race conditions.

Simultaneous execution of multiple grids

The earliest CUDA systems allowed only one grid to execute on each GPU device at
any point in time. Multiple grids could be submitted for execution using CUDA
streams, but they were buffered in a queue that released the next grid after the current
one had completed execution. The Fermi GPU architecture and its successors allowed
multiple grids from the same application to be executed simultaneously, which
reduces the pressure for the application developer to “batch” multiple kernels into a
larger kernel in order to more fully utilize a device. Also, it is sometimes beneficial
to partition work into chunks that can execute with different levels of priority.

A typical example of the benefit of executing multiple grids simultaneously is
for parallel cluster applications that segment work into “local” and “remote” parti-
tions, in which remote work is involved in interactions with other nodes and resides
on the critical path of global progress (Chapter 20, Programming a Heterogeneous
Computing Cluster). In previous CUDA systems, grids needed to perform a lot of
work to utilize the device efficiently, and one had to be careful not to launch local
work such that global work could be blocked. This meant choosing between under-
utilizing the device while waiting for remote work to arrive or eagerly starting on
local work to keep the device productive at the cost of increased latency for com-
pleting remote work units (Phillips and Stone, 2009). With multiple grid execution
the application can use much smaller grid sizes for launching work, and as a result,
when high-priority remote work arrives, it can start running with low latency
instead of being stuck behind a large grid of local computation.

Hardware queues and dynamic parallelism

In the Kepler architecture and CUDA 5, the multiple grid launch facility was
extended by the addition of multiple hardware queues, which allow much more
efficient scheduling of thread blocks from multiple grids from multiple streams.
In addition, CUDA dynamic parallelism, which was covered in Chapter 21,
CUDA Dynamic Parallelism, allows GPU work creation: GPU grids can launch
child grids asynchronously, dynamically, and in a data-dependent or compute
load!dependent fashion. This reduces CPU-GPU interaction and synchronization,
since the GPU can now manage more complex workloads independently. The
CPU is in turn free to perform other useful computation.
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Interruptable grids

The Fermi GPU architecture allowed a running grid to be “canceled,” enabling the
creation of CUDA-accelerated apps that allow the user to abort a long-running cal-
culation at any time without requiring significant design effort on the part of the
programmer. This enables implementation of user-level task scheduling systems
that can better perform load balance between GPU nodes of a computing system
and allows more graceful handling of cases in which one GPU is heavily loaded
and may be running more slowly than its peers (Stone & Hwu, 2009).

Cooperative kernels

GPU kernels working on irregular data often suffer from load imbalance. CUDA 11
introduced the cooperative kernels to alleviate this problem. A cooperative kernel
can execute up to a maximum number of thread blocks that would completely fill
the GPU, and the CUDA runtime guarantees that all the thread blocks will execute
concurrently. This concurrency guarantee enables thread blocks to safely cooperate
without deadlock over shared mutual exclusion mechanisms (e.g., a mutex) that can
be used to protect shared data structures (e.g., work queues). Cooperative ker-
nels require a special API, cudaLaunchCooperativeKernel(), and provide a
device API to identify and partition groups of threads. Cooperative kernels are
not limited to a single device but can be called to run in multiple devices using
cudaLaunchCooperativeKernelMultiDevice().

22.3 Memory bandwidth and compute throughput
Double-precision speed

Early devices performed double-precision floating-point arithmetic with signifi-
cant speed reduction (around eight times slower) compared to single-precision.
The floating-point arithmetic units of Fermi and its successors were significantly
strengthened to perform double-precision arithmetic at about half the speed of
single-precision. Applications that are intensive in double-precision floating-point
arithmetic benefited tremendously.

In practice, the most significant benefit was obtained by developers who were
porting CPU-based numerical applications to GPUs. With the improved double-
precision speed, they had little incentive to spend the effort to evaluate whether their
applications or portions of their applications could fit into single-precision. This sig-
nificantly reduced the development cost for porting CPU applications to GPUs and
addressed a major criticism of GPUs in their earliest days by the HPC community.

Some applications that were operating on smaller input data types (8-bit,
16-bit, or single-precision floating-point) continued to benefit from using single-
precision arithmetic, owing to the reduced bandwidth of using 32-bit versus
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64-bit data. Applications such as medical imaging, remote sensing, radio astron-
omy, seismic analysis, and other natural data frequently fit into this category. The
Pascal GPU architecture introduced new hardware support for computing with
16-bit half-precision numbers to further improve the performance and energy effi-
ciency of applications whose data can fit into the half-precision representation.
For example, in A100 based on the Ampere architecture, the 16-bit half-precision
arithmetic throughput using tensor cores is 156 TFLOPS, a dramatic improvement
compared to its 19.5 TFLOPS single-precision throughput.

Better control flow efficiency

Starting with the Fermi GPU architecture, CUDA systems adopted a general compiler-
driven predication technique (Mahlke et al., 1995) that can more effectively handle
control flow than previous CUDA systems. While this technique was moderately suc-
cessful in VLIW systems, it provided even more dramatic speed improvements in
GPU warp-style SIMD execution systems. This capability broadens the range of appli-
cations that can take advantage of GPUs. In particular, major performance benefits can
potentially be realized for applications that are very data-driven, such as ray tracing,
quantum chemistry visualization, and cellular automata simulation.

Configurable caching and scratchpad

The shared memory in early CUDA systems served as a programmer-managed
scratchpad memory and increased the speed of applications in which key data
structures have localized and predictable access patterns. Starting with the Fermi
GPU architecture, the shared memory was enhanced to a larger on-chip memory
that can be configured to be partially cache memory and partially shared memory,
which allows coverage of both predictable and less predictable access patterns to
benefit from on-chip memory. This configurability allows programmers to appor-
tion the resources according to the best fit for their application.

Applications in an early design stage that are ported directly from CPU code
will benefit greatly from caching as the dominant part of the on-chip memory.
This further smoothes the performance-tuning process by increasing the level of
“easy performance” when a developer ports a CPU application to GPU.

Existing CUDA applications and those that have predictable access patterns
have the ability to increase their use of fast shared memory while retaining the
same device “occupancy” they had on previous-generation devices. For CUDA
applications whose performance or capabilities are limited by the size of the shared
memory, the increase in size will be a welcome improvement. For example, in sten-
cil computation (Chapter 8, Stencil, and Chapter 20, Programming a Heterogeneous
Computing Cluster), such as finite difference methods for computational fluid
dynamics, the increased shared memory capacity improves the memory bandwidth
efficiency and the performance of the application.
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Enhanced atomic operations

The atomic operations in the Fermi GPU architecture were much faster than those in
previous CUDA systems, and the atomic operations in Kepler were even faster. In
addition, the Kepler atomic operations were more general. The atomic operations over
shared memory variables in the Maxwell GPU architecture were further enhanced in
their throughput. Atomic operations are frequently used in random scatter computation
patterns, such as histograms (Chapter 9, Parallel Histogram: An Introduction to Atomic
Operations and Privatization). Faster atomic operations reduce the need for algorithm
transformations such as prefix sum (Chapter 11, Prefix Sum (Scan): An Introduction to
Work Efficiency in Parallel Algorithms) (Sengupta et al., 2007) and sorting
(Chapter 13, Sorting) (Satish et al., 2009) for implementing such random scattering
computations. These transformations tend to increase the number of kernel invocations
as well as the total number of operations that are needed to perform the target compu-
tation. Faster atomic operations can also reduce the need for involving the host CPU in
algorithms that do collective operations or where multiple thread blocks update shared
data structures, thus reducing the data transfer pressure between CPU and GPU.

Enhanced global memory access

The speed of random memory access is much faster in Fermi and Kepler than in
earlier GPU architectures. Programmers can be less concerned about memory coa-
lescing. This allows more CPU algorithms to be directly used in the GPU as an
acceptable base, further smoothing the path of porting applications that access a
diversity of data structures, such as ray tracing, and other applications that are
heavily object-oriented and may be difficult to convert into perfectly tiled arrays.

The Pascal GPU architecture incorporated HBM2 (High-Bandwidth Memory
version 2) 3D-stacked DRAM memory, which provided up to 33 the memory
bandwidth of previous-generation NVIDIA Maxwell architecture GPUs. Pascal
was also the first architecture to support the NVLink processor interconnect,
which gave Tesla P100 up to 53 the GPU-GPU and GPU-CPU communication
performance of PCI Express 3.0. This interconnect greatly improved the scalabil-
ity of multi-GPU computation within a node as well as the efficiency of data shar-
ing between GPUs and NVLink-capable CPUs.

22.4 Programming environment
Unified device memory space

In early CUDA devices, shared memory, local memory, and global memory formed
their own separate address spaces. The developer could use pointers into the global
memory but not others. Starting with the Fermi architecture that was introduced in
2009, these memories became parts of a unified address space. This unified address
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space enabled a single set of load/store instructions and pointer addresses to access
any of the GPU memory spaces (global, local, or shared memory) rather than dif-
ferent instructions and pointers for each. This made it easier to abstract away which
memory contains a particular operand, allowing the programmer to deal with this
only during allocation and making it simpler to pass CUDA data objects into other
procedures and functions, irrespective of which memory area they come from.

This made CUDA code modules much more “composable.” That is, a CUDA
device function can accept a pointer that may point to any of these memories. For
example, without unified GPU address space, a device function needs to have one
implementation for each type of memory in which one of its arguments can reside.
Unified GPU address space allows variables in all main types of GPU memories to
be accessed in the same way, thus allowing one device function to accept arguments
that can reside in different types of GPU memory. The code will run faster if a func-
tion argument pointer points to a shared memory location and more slowly if it points
to a global memory location. The programmer can still perform manual data place-
ment and transfers as a performance optimization. This capability has significantly
reduced the cost of building production-quality CUDA libraries. This also enabled
full C and C++ pointer support, which was a significant advancement at the time.

Future CUDA compilers will include enhanced support for C++ templates and
virtual function calls in kernel functions. Although the hardware enhancements,
such as runtime function calling capability, are in place, enhanced C++ language
support in the compiler has been taking more time. With these enhancements,
future CUDA compilers will support most mainstream C++ features. For example,
using C++ features such as new, delete, constructors, and destructors in kernel
functions is already supported.

New and evolved programming interfaces continue to improve the productivity of
heterogeneous parallel programmers. OpenACC allows developers to annotate their
sequential loops with compiler directives to enable a compiler to generate CUDA
kernels. One can use the Thrust library of parallel type-generic functions, classes, and
iterators to describe their computation and have the underlying mechanism generate
and configure the kernels that implement the computation. CUDA FORTRAN allows
FORTRAN programmers to develop CUDA kernels in their familiar language. In
particular, CUDA FORTRAN offers strong support for indexing into multidimen-
sional arrays. C++AMP allows developers to describe their kernels as parallel loops
that operate on logical data structures, such as multidimensional arrays in a C++
application. We fully expect that new innovations will continue to arise to further
boost the productivity of developers in this exciting area.

Profiling with critical path analysis

In heterogeneous applications that do significant computation on both CPUs and
GPUs, it can be a challenge to locate the best place to spend optimization effort.
Ideally, when optimizing code, one would like to target the locations in the applica-
tion that will provide the highest speedup for the least effort. To this end, CUDA 7.5
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introduced PC sampling, providing instruction-level profiling so that the user could
pinpoint specific lines of code that are taking the most time in his or her application.

However, a challenge facing the users of such profilers is that the longest-
running kernel in an application is not always the most critical optimization
target. As Fig. 22.2 shows, Kernel X is the longer-running kernel. However, its
execution time is fully overlapped with the CPU execution activity A. Any further
improvement in the execution time of Kernel X without simultaneous improve-
ment in the execution time of A is unlikely to improve the application perfor-
mance. While the execution time of Kernel Y is not as long as that of kernel X, it
is on the critical path of the application execution. The CPU is idling while wait-
ing for the completion of Kernel Y. Speeding up Kernel Y will reduce the time
the CPU spends waiting, so it is the best optimization target.

In 2016 the Visual Profiler in CUDA 8 provided a critical path analysis
between GPU kernels and CPU CUDA API calls, enabling more precise targeting
of optimization efforts. Fig. 22.3 shows critical path analysis in the CUDA 8

FIGURE 22.2

Importance of critical path analysis for identifying the key kernels to optimize.

FIGURE 22.3

Application critical path analysis in CUDA 8 Visual Profiler.
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Visual Profiler. GPU kernels, copies, and API calls that are not on the critical
path are grayed out. Only the activities that are on the critical path of the applica-
tion execution are highlighted in color. This allows the user to easily identify the
kernels and other activities to target the user’s optimization efforts.

22.5 Future outlook
The evolution of CUDA continues to increase its support for developer productiv-
ity and modern software engineering practices. With the new capabilities and pro-
gramming language support, the range of applications that will be able to get
reasonable performance at minimal development cost will expand significantly.
Developers have experienced the reduction in application development, porting,
and maintenance cost compared to previous CUDA systems. The existing applica-
tions that have been developed with Thrust and similar high-level tools that auto-
matically generate CUDA code will also likely get an immediate boost in their
performance. While the benefit of hardware enhancements in memory architec-
ture, kernel execution control, and compute core performance will be visible in
the associated SDK releases, the true potential of these enhancements may take
years to be fully exploited in the SDKs and runtimes. We predict an exciting time
for innovations from both industry and academia in programming tools and run-
time environments for GPU computing in the next few years.
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You made it! We have arrived at the finishing line. In this final chapter we will
briefly review the learning goals that you have achieved through this book.
Instead of drawing a conclusion, we will offer our vision for the future of mas-
sively parallel computing and how its advancements will affect the future course
of science and technology.

23.1 Goals revisited
As we stated in the Introduction, our primary goal is to teach you, the reader,
how to program massively parallel processors. We promised that it would become
easy once you develop the right intuition and go about it the right way. In particu-
lar, we promised to focus on computational thinking skills that would enable you
to think about problems in ways that are amenable to parallel computing. We also
promised to focus on the factors that limit the performance of parallel applica-
tions and provide a systematic approach for optimizing code to overcome these
factors.

We delivered on these promises through four steps. In step one, Chapters 2
through 6 introduce the essential concepts of parallel computing and CUDA C
and the key performance considerations in developing massively parallel code in
CUDA. They also introduce the pertinent computer architecture concepts needed
to understand the hardware limitations that must be addressed in high-performance
parallel programming. With this knowledge, a developer can be confident in writing
their parallel code and reasoning about the relative merit of alternative threading
arrangements, loop structures, and coding styles. We conclude this part with a
checklist of common optimization techniques that we apply throughout the rest of
the book to optimize the performance of various parallel patterns and applications.

In the second step, we introduce six major parallel patterns (Chapters 7
through 12) that have been proven useful in introducing parallelism into
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many applications. These chapters cover the concepts behind the most useful
patterns of parallel computation. Each pattern is illustrated with concrete
code examples. Each pattern is also used to introduce important techniques for
overcoming frequently encountered parallelization and performance obstacles
in parallel programming. We also use these patterns to showcase how the opti-
mizations introduced in the first step can be applied in a wide variety of
scenarios.

In the third step, we introduce additional advanced patterns and applications
(Chapters 13!19) to reinforce the knowledge and skills gained in the previous
step. While in this step, we continue to apply the optimizations that we practiced
in the previous step, we put more emphasis on exploring alternative forms of
problem decomposition to enable parallelization and analyze the tradeoffs
between different decompositions and their associated data structures. The final
chapter in this step is dedicated to recap the computational thinking skills
(Chapter 19, Parallel Programming and Computational Thinking) that help the
reader to generalize the concepts learnt in the previous chapters into the
high-level thinking required to tackle a new problem. With these insights,
high-performance parallel programming becomes a thought process, rather than a
black art.

The fourth step is to expose the reader to related advanced practices in parallel
programming. Chapter 20, Programming a Heterogeneous Computing Cluster,
presents the basic skills required to program an HPC cluster using MPI and
CUDA C. Chapter 21, CUDA Dynamic Parallelism, presents an introduction to
dynamic parallelism that helps parallel programmers to address more complex
parallel algorithms with dynamically varying workload in many real-world appli-
cations. Chapter 22, Advanced Practices and Future Evolution, summarizes other
advanced practices as well as expectations for the future evolution of massively
parallel processors.

We hope that you have enjoyed the book and agree with us that you are now
well equipped for programming massively parallel computing systems.

23.2 Future outlook
Since the introduction of the first CUDA-enabled GPU, the G80, in 2007, the
capability of GPUs as massively computing devices has improved at an amazing
4523 in computing throughput and 183 in memory bandwidth, as shown in
Fig. 23.1. These advancements have stimulated tremendous progress in HPC, AI,
and data analytics for both science and engineering, with significant impact on
many vertical areas such as finance, manufacturing, and medicine. For example,
as we have seen in Chapter 16, Deep Learning, GPUs have ignited a revolution in
deep learning from very large datasets, with applications in image recognition,
speech recognition, and video analytics.
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Since the first edition of this book in 2010, the field of parallel computing has
also advanced at an amazing pace. The spectrum of problems that can be solved
with scalable algorithms has broadened significantly. While the use of GPUs was
initially concentrated on regular, dense matrix computation and Monte Carlo meth-
ods, their use has quickly expanded into sparse methods, graph computation, and
adaptive refinement methods. In many areas, there has also been fast advancement
in algorithms. Some of the algorithms presented in the parallel pattern, advanced
patterns, and applications chapters represent significant recent advancements.

It is only natural for some of us to wonder if we have reached the end of the
fast advancement in parallel computing. From all indications, the answer is defi-
nitely no. We are only at the beginning of the parallel computing revolution. The
amazing advancement in computing in the past three decades has triggered a par-
adigm shift in industry. The major innovations used to be driven by physical
instruments assisted by computing devices. They are now driven by computing
assisted by physical instruments.

For example, two decades ago, GPS revolutionized the way we drive. GPS is
primarily based on satellite signal sensing assisted by computing methods that
determine the shortest path between two locations. More recently, peer reporting
and computing through the map apps in the phones and data services in the cloud
have further enabled drivers to change their routes based on the traffic condition.
Today, the most exciting revolution in the automobile industry is self-driving
cars, which is primarily based on machine-learning computing methods assisted
by physical sensors.

For another example, MRI and PET revolutionized medicine in the past two dec-
ades. These technologies are primarily based on electromagnetic and light sensors
assisted by computational image reconstruction methods. They allowed doctors to
see the pathology inside human bodies without surgery. Today, the field of medicine
is going through the revolution of individualized medicine, which is primarily driven
by computational genomics methods assisted by sequencing sensors.

FIGURE 23.1

From G80 to A100, a 13-year comparison.

51723.2 Future outlook



For yet another example, the semiconductor industry used to rely on advance-
ment in physical light sources assisted by computing methods that enforce design
rules in their push to reduce the device feature size in the manufacturing process.
Today, the advancement in physical light sources has practically stopped. The
advancement in feature size reduction is primarily driven by lithography masks
that are computationally designed to orchestrate the interference of light waves to
result in extremely precise etching patterns on the chips.

The same kind of paradigm shift has been taking place in many other areas.
Computing has become the primary driving force for virtually all exciting innova-
tions in our society. This has created an insatiable demand for faster computing
systems. As we discussed in Chapter 1, Introduction, parallel computing is the
only viable approach to the growth of computing performance. This powerful
demand will continue to motivate the industry to innovate and create more power-
ful parallel computing devices. One of the highest potential areas for improve-
ment is the level of parallelism in accessing storage data, which has been done
with a very low level of parallelism in the past. Radical improvements in acces-
sing massive storage data will likely inspire a whole generation of applications
that we currently cannot even imagine.

In conclusion, we are at the dawn of a golden age of computing. The industry
will continue to recruit and reward highly skilled parallel programmers. Your
work will make a real difference in the field of your choice.

Enjoy the ride!
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APPENDIX

ANumerical considerations

In the early days of computing, floating-point arithmetic capability was found
only in mainframes and supercomputers. Although many microprocessors that
were designed in the 1980s started to have floating-point coprocessors, their
floating-point arithmetic speed was extremely slow, about three orders of magni-
tude slower than that of mainframes and supercomputers. With advances in
microprocessor technology, many microprocessors that were designed in the
1990s, such as Intel Pentium III and AMD Athlon, started to have high-
performance floating-point capabilities that rivaled those of supercomputers.
High-speed floating-point arithmetic is a standard feature of microprocessors and
GPUs today. Floating-point representation allows for a larger dynamic range of
representable data values and more precise representation of tiny data values.
These desirable properties make floating-point arithmetic the preferred data repre-
sentative for modeling physical and artificial phenomena, such as combustion,
aerodynamics, light illumination, and financial risks. Large-scale evaluation of
these models has been driving the need for parallel computing. As a result, it is
important for application programmers to understand the nature of floating-point
arithmetic in developing their parallel applications. In particular, we will focus on
the accuracy of floating-point arithmetic operations, the precision of floating-
point number representation, the stability of numerical algorithms, and how they
should be taken into consideration in parallel programming.

A.1 Floating-point data representation
The IEEE-754 Floating-Point Standard is an effort to ensure that computer manu-
facturers conform to a common representation and arithmetic behavior for
floating-point data (IEEE Microprocessor Standards Committee, 2008). Most, if
not all, computer manufacturers in the world have accepted this standard. In par-
ticular, virtually all microprocessors that are designed in the future will either
fully conform to or almost fully conform to the IEEE-754 Floating-Point
Standard and its more recent IEEE-754 2008 revision. Therefore it is important
for application developers to understand the concepts and practical considerations
of this standard.

A floating-point number system starts with the representation of a numerical
value as bit patterns. In the IEEE Floating-Point Standard, a numerical value is
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represented in three groups of bits: sign (S), exponent (E), and mantissa (M).
With some exceptions that will be detailed later in this appendix, each (S, E, M)
pattern uniquely identifies a numerical value according to the following formula:

value5 21ð ÞS! 1:M! 2E-bias
! "

(A.1)

The interpretation of S is simple: S5 0 means a positive number, and S5 1 a
negative number. Mathematically, any number, including 21, when raised to the
power of 0, results in 1. Thus the value is positive. On the other hand, when 21
is raised to the power of 1, it is 21 itself. With a multiplication by 21, the value
becomes negative. However, the interpretation of M and E bits is much more
complex. We will use the following example to help explain the interpretation of
M and E bits.

Assume for the sake of simplicity that each floating-point number consists of a
1-bit sign, a 3-bit exponent, and a 2-bit mantissa. We will use this hypothetical
6-bit format to illustrate the challenges that are involved in encoding E and M. As
we discuss numerical values, we will sometimes need to express a number either in
decimal place value or in binary place value. Numbers that are expressed in deci-
mal place value will have a subscript D, and those that are expressed in binary place
value will have a subscript B. For example, 0.5D (5! 1021, since the place to the
right of the decimal point carries a weight of 1021) is the same as 0.1B (1! 221,
since the place to the right of the decimal point carries a weight of 221).

A.1.1 Normalized representation of M

Eq. (A.1) requires that all values be derived by treating the mantissa value as
1.M, which makes the mantissa bit pattern for each floating-point number unique.
For example, in this interpretation of the M bits, the only mantissa bit pattern that
is allowed for 0.5D is the one in which all bits that represent M are 0s:

0:5D 5 1:0B!221

Other potential candidates would be 0.1B! 20 and 10.0B! 222, but neither fits
the form of 1.M. The numbers that satisfy this restriction will be referred to as
normalized numbers. Because all mantissa values that satisfy the restriction are of
the form 1.XX, we can omit the “1.” part from the representation. Therefore the
mantissa value of 0.5 in a 2-bit mantissa representation is 00, which is derived
by omitting “1.” from 1.00. This makes a 2-bit mantissa effectively a 3-bit man-
tissa. In general, in IEEE format, an m-bit mantissa is effectively an (m1 1)-bit
mantissa.

A.1.2 Excess encoding of E

The number of bits that are used to represent E determines the range of numbers
that can be represented. Large positive E values result in very large floating-point
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absolute values. For example, if the value of E is 64, the floating-point number
that is being represented is between 264 (. 1018) and 265. You would be
extremely happy if this was the balance of your savings account! Large negative
E values result in very small floating-point values. For example, if the E value is
264, the number that is being represented is between 2264 (,10218) and 2263.
This is a very tiny fractional number. The E field allows a floating-point number
format to represent a wider range of numbers than integer number formats can.
We will come back to this point when we look at the representable numbers of a
format.

The IEEE standard adopts an excess or biased encoding convention for E. If E
bits are used to represent the exponent E, (2e212 1) is added to the two’s comple-
ment representation for the exponent to form its excess representation. A two’s
complement representation is a system in which the negative value of a number
can be derived by first complementing every bit of the value and adding 1 to the
result. In our 3-bit exponent representation, there are three bits in the exponent
(e5 3). Therefore the value 23212 15 011 will be added to the two’s comple-
ment representation of the exponent value.

The advantage of excess representation is that an unsigned comparator can be
used to compare signed numbers. As shown in Fig. A.1, in our 3-bit exponent
representation, the excess-3 bit patterns increase monotonically from 23 to 3
when they are viewed as unsigned numbers. We will refer to each of these bit pat-
terns as the code for the corresponding value. For example, the code for #3 is
000 and that for 3 is 110. Thus if one uses an unsigned number comparator to
compare excess-3 code for any number from 23 to 3, the comparator gives the
correct comparison result in terms of which number is larger, smaller, and so on.
For another example, if one compares excess-3 codes 001 and 100 with an
unsigned comparator, 001 is smaller than 100. This is the right conclusion, since
the values that they represent, 22 and 1, have exactly the same relation. This is a
desirable property for hardware implementation, since unsigned comparators are
smaller and faster than signed comparators.

Fig. A.1 also shows that the pattern of all 1’s in the excess representation is a
reserved pattern. Note that a 0 value and an equal number of positive and

2’s complement Decimal value Excess-3
101 –3 000
110 –2 001
111 –1 010
000 0 011
001 1 100
010 2 101
011 3 110
100 Reserved pattern 111

FIGURE A.1

Excess-3 encoding, sorted by excess-3 ordering.
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negative values result in an odd number of patterns. Having the pattern 111 as
either an even number or an odd number would result in an unbalanced number
of positive and negative numbers. The IEEE standard uses this special bit pattern
in special ways that will be discussed later in this appendix.

Now we are ready to represent 0.5D with our 6-bit format:

0:5D 5 0 01000;where S5 0; E5 010; and M5 1:ð Þ 00

That is, the 6-bit representation for 0.5D is 001000.
In general, with a normalized mantissa and an excess-coded exponent, the

value of a number with an n-bit exponent is

value5 21ð ÞS! 1:M!2 E2 2 n21ð Þ21ð Þð Þ (A.2)

A.2 Representable numbers
The representable numbers of a representation format are the numbers that can be
exactly represented in the format. For example, if one uses a 3-bit unsigned inte-
ger format, the representable numbers are shown in Fig. A.2.

Neither 21 nor 9 can be represented in the format given above. We can draw a
number line to identify all the representable numbers, as shown in Fig. A.3, in which
all representable numbers of the 3-bit unsigned integer format are marked with stars.

000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

FIGURE A.2

Representable numbers of a 3-bit unsigned integer format.

0 71 42 3 5 6–1 98

FIGURE A.3

Representable numbers of a 3-bit unsigned integer format.
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The representable numbers of a floating-point format can be visualized in a
similar manner. In Fig. A.4 we show all the representable numbers of what we
have so far and two variations. We use a 5-bit format to keep the size of
the table manageable. The format consists of 1-bit S, 2-bit E (excess-1 coded),
and 2-bit M (with “1.” part omitted). The no-zero column gives the
representable numbers of the format we discussed thus far. The reader is encour-
aged to generate at least part of the no-zero column using Eq. (A.2). Note that
with this format, 0 is not one of the representable numbers.

A quick look at how these representable numbers populate the number line, as
shown in Fig. A.5, provides further insights into these representable numbers. In
Fig. A.5 we show only the positive representable numbers. The negative numbers
are symmetric to their positive counterparts on the other side of 0.

We can make five observations. First, the exponent bits define the major inter-
vals of representable numbers. In Fig. A.5 there are three major intervals on each
side of 0 because there are two exponent bits. Basically, the major intervals are
between powers of 2. With two bits of exponents and one reserved bit pattern
(11), there are three powers of 2 (2215 0.5D, 2

05 1.0D, 2
15 2.0D), each of which

starts an interval of representable numbers. Keep in mind that there are also three
powers of 2 (22215 2 0.5D, 2205 2 1.0D, 2215 2 2.0D) on the left of zero
that are not shown in Fig. A.5.

The second observation is that the mantissa bits define the number of
representable numbers in each interval. With two mantissa bits we have four

No-zero Abrupt underflow
E M S=0 S=1 S=0 S=1 S=0 S=1

00
00 2–1 –(2–1) 0 0 0 0
01 2–1+1*2–3 –(2–1+1*2–3) 0 0 1*2–2 –1*2–2

10 2–1+2*2–3 –(2–1+2*2–3) 0 0 2*2–2 –2*2–2

11 2–1+3*2–3 –(2–1+3*2–3) 0 0 3*2–2 –3*2–2

01
00 20 –(20) 20 –(20) 20 –(20)
01 20+1*2–2 –(20+1*2–2) 20+1*2–2 –(20+1*2–2) 20+1*2–2 –(20+1*2–2)
10 20+2*2 –(20+2*2 ) 20+2*2–2 –(20+2*2–2) 20+2*2–2 –(20+2*2–2)
11 20+3*2 –(20+3*2 ) 20+3*2–2 –(20+3*2–2) 20+3*2–2 –(20+3*2–2)

10
00 21 –(21) 21 –(21) 21 –(21)
01 21+1*2–1 –(21+1*2–1) 21+1*2–1 –(21+1*2–1) 21+1*2–1 –(21+1*2–1)
10 21+2*2–1 –(21+2*2–1) 21+2*2–1 –(21+2*2–1) 21+2*2–1 –(21+2*2–1)
11 21+3*2–1 –(21+3*2–1) 21+3*2–1 –(21+3*2–1) 21+3*2–1 –(21+3*2–1)

11 Reserved pattern

Denormalized

–2

–2 –2

–2

FIGURE A.4

Representable numbers of no-zero, abrupt underflow, and denormalized formats.

0 1 2 3 4

FIGURE A.5

Representable numbers of the no-zero representation.
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representable numbers in each interval. In general, with N mantissa bits, we have
2N representable numbers in each interval. If a value to be represented falls within
one of the intervals, it will be rounded to one of these representable numbers.
Obviously, the larger the number of representable numbers in each interval, the
more precisely we can represent a value in the region. Therefore the number of
mantissa bits determines the precision of the representation.

The third observation is that 0 is not representable in this format. It is missing
from the representable numbers in the no-zero columns of Fig. A.5. Because 0 is
one of the most important numbers, not being able to represent 0 in a number
representation system is a serious deficiency. We will address this deficiency soon.

The fourth observation is that the representable numbers become closer to
each other toward the neighborhood of 0. Each interval is half the size of the pre-
vious interval as we move toward zero. In Fig. A.5 the rightmost interval is of
width 2, the next interval is of width 1, and the next interval is of width 0.5.
Although not shown in Fig. A.5, there are three intervals on the left of zero. They
contain the representable negative numbers. The leftmost interval is of width 2,
the next interval is of width 1, and the next interval is width 0.5. Since every
interval has the same representable numbers, four in Fig. A.5, the representable
numbers becomes closer to each other as we move toward zero. In other words,
the representative numbers become closer as their absolute values become smal-
ler. This is a desirable trend because as the absolute values of these numbers
become smaller, it is more important to represent them more precisely. The dis-
tance between representable numbers determines the maximal rounding error for
a value that falls into the interval. For example, if you have one billion dollars in
your bank account, you might not even notice that there is a $1 rounding error
in calculating your balance. However, if the total balance is $10, having a $1
rounding error would be much more noticeable!

The fifth observation is that, unfortunately, the trend of increasing density of
representable numbers and thus the increasing precision of representing numbers
in the intervals as we move toward 0 does not hold near 0. That is, there is a gap
of representable numbers in the immediate vicinity of 0. This is because the range
of normalized mantissa precludes 0. This is another serious deficiency. The repre-
sentation introduces significantly larger (43) errors in representing numbers
between 0 and 0.5 compared to the errors for the larger numbers between 0.5 and
1.0. In general, with m bits in the mantissa, this style of representation would
introduce 2m times more error in the interval closest to zero than in the next inter-
val. For numerical methods that rely on accurate detection of convergence condi-
tions based on very small data values, such deficiency can cause instability in
execution time and inaccuracy of results. Furthermore, some algorithms generate
small numbers and eventually use them as denominators. The errors in represent-
ing these small numbers can be greatly magnified in the division process and
cause numerical instability in these algorithms.

One method that can accommodate 0 into a normalized floating-point number sys-
tem is the abrupt underflow convention, which is illustrated in the second set of
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columns in Fig. A.4. Whenever E is 0, the number is interpreted as 0. In our 5-bit for-
mat, this method takes away eight representable numbers (four positive and four nega-
tive) in the vicinity of 0 (between 21.0 and 1 1.0) and makes them all 0. Because
of its simplicity, some minicomputers in the 1980s used the abrupt underflow conven-
tion. Even to this day, some arithmetic units that need to operate at high speed still
use the abrupt underflow convention. Although this method makes 0 a representable
number, it creates an even larger gap between representable numbers in the vicinity of
0, as shown in Fig. A.6. It is obvious, when compared with Fig. A.5, that the gap
of representable numbers has been enlarged significantly (by 23) from 0.5 to 1.0. As
we explained earlier, this is very problematic for many numerical algorithms whose
correctness reply on accurate representation of small numbers near zero.

The actual method that was adopted by the IEEE standard is called denormali-
zation. The method relaxes the normalization requirement for numbers very close
to 0. As is shown in Fig. A.6, whenever E5 0, the mantissa is no longer assumed
to be of the form 1.XX. Rather, it is assumed to be 0.XX. The value of the expo-
nent is assumed to be the same as in the previous interval. For example, in
Fig. A.4 the denormalized representation 00001 has exponent value 00 and man-
tissa value 01. The mantissa is assumed to be 0.01, and the exponent value is
assumed to be the same as that of the previous interval: 0 rather than 21. That is,
the value that 00001 represents is now 0.01! 205 222. Fig. A.7 shows the
representable numbers for the denormalized format. The representation now
has uniformly spaced representable numbers in the close vicinity of 0. Intuitively,
the denormalized convention takes the four numbers in the last interval of
representable numbers of a no-zero representation and spreads them out to cover
the gap area. This eliminates the undesirable gap in the previous two methods.
Note that the distances between representable numbers in the last two intervals
are actually identical. In general, if the n-bit exponent is 0, the value is

0:M!222 n21ð Þ12

As we can see, the denormalization formula is quite complex. The hardware
also needs to be able to detect whether a number falls into the denormalized

0 1 2 3 4

FIGURE A.6

Representable numbers of the abrupt underflow format.

0 1 2

FIGURE A.7

Representable numbers of a denormalization format.
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interval and choose the appropriate representation for that number. The amount of
hardware required to implement denormalization at high speed is quite signifi-
cant. Implementations that use a moderate amount of hardware often introduce
thousands of clock cycles of delay whenever a denormalized number needs to be
generated or used. This was the reason why early generations of CUDA devices
did not support denormalization. However, virtually all recent generations of
CUDA devices do support denormalization, thanks to the increasing number of
available transistors of more recent fabrication processes. More specifically, all
CUDA devices of compute capability 1.3 and up support denormalized double-
precision operands, and all devices of compute capability 2.0 and up support
denormalized single-precision operands.

In summary, the precision of a floating-point representation is measured by
the maximal error that we can introduce to a floating-point number by represent-
ing that number as one of the representable numbers. The smaller the error, the
higher is the precision. The precision of a floating-point representation can be
improved by adding more bits to the mantissa. Adding one bit to the representa-
tion of the mantissa improves the precision by reducing the maximal error by
half. Thus a number system has higher precision when it uses more bits for the
mantissa. This is reflected in double-precision versus single-precision numbers in
the IEEE standard.

A.3 Special bit patterns and precision in IEEE format
We now turn to more specific details of the actual IEEE format. When all expo-
nent bits are 1s, the number that is represented is an infinity value if the mantissa
is 0. It is not a number (NaN) if the mantissa is not 0. All special bit patterns of
the IEEE floating-point format are described in Fig. A.8.

All other numbers are normalized floating-point numbers. Single-precision
numbers have 1-bit S, 8-bit E, and 23-bit M. Double-precision numbers have
1-bit S, 11-bit E, and 52-bit M. Since a double-precision number has 29 more bits
for the mantissa, the largest error for representing a number is reduced to 1/229 of
that of the single-precision format! With the additional 3 bits of exponent, the
double-precision format also extends the number of intervals of representable
numbers. This extends the range of representable numbers to very large as well as
very small values.

All representable numbers fall between 2N (negative infinity) and 1N
(positive infinity). An N can be created by overflow, for example, a large num-
ber divided by a very small number. Any representable number divided by 1N
or 2N results in 0.

NaN is generated by operations whose input values do not make sense,
such as 0/0, 0!N, N/N, N 2N. NaN is also used for data that has not been
properly initialized in a program. There are two types of NaN in the IEEE
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standard: signaling and quiet. Signaling NaNs should be represented with the
most significant mantissa bit cleared, whereas quiet NaNs are represented with
the most significant mantissa bit set.

Signaling NaNs cause an exception when used as input to arithmetic operations.
For example, the operation (1.0 1 signaling NaN) raises an exception signal to the
operating system. Signaling NaNs are used in situations in which the programmer
would like to make sure that the program execution is interrupted whenever any
NaN values are used in floating-point computations. These situations usually mean
that there is something wrong with the execution of the program. In mission critical
applications the execution cannot continue until the validity of the execution can be
verified by a separate means. For example, software engineers often mark all the
uninitialized data as signaling NaN. This practice ensures the detection of using
uninitialized data during program execution. The current generation of GPU hard-
ware does not support signaling NaN, owing to the difficulty of supporting accurate
signaling during massively parallel execution.

A quiet NaN generates another quiet NaN without causing an exception when it
is used as input to an arithmetic operation. For example, the operation (1.0 1 quiet
NaN) generates a quiet NaN. Quiet NaNs are typically used in applications in which
the user can review the output and decide whether the application should be rerun
with a different input for more valid results. When the results are printed, quiet
NaNs are printed as “NaN” so that the user can spot them in the output file easily.

A.4 Arithmetic accuracy and rounding
Now that we have a good understanding of the IEEE floating-point format, we
are ready to discuss the concept of arithmetic accuracy. While the precision is
determined by the number of mantissa bits that are used in a floating-point num-
ber format, the accuracy is determined by the operations that are performed on a
floating-point number. The accuracy of a floating-point arithmetic operation is
measured by the maximal error that is introduced by the operation. The smaller
the error, the higher is the accuracy. The most common source of error in
floating-point arithmetic is when the operation generates a result that cannot be
exactly represented and thus requires rounding. Rounding occurs if the mantissa
of the result value needs too many bits to be represented exactly. For example, a

exponent mantissa meaning 
11…1 ≠ 0 NaN 
11…1 =0 (–1)S * ∞ 
00…0 ≠0 denormalized 
00…0 =0 0 

FIGURE A.8

Special bit patterns in the IEEE standard format.
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multiplication might generate a product value that consists of twice the number of
bits as either of the input values. For another example, adding two floating-point
numbers can be done by adding their mantissa values together if the two floating-
point values have identical exponents. When two input operands to a floating-
point addition have different exponents, the mantissa of the one with the smaller
exponent is repeatedly divided by 2 or right-shifted (that is, all the mantissa bits
are shifted to the right by one bit position) until the exponents are equal. As a
result, the final result can have more bits than the format can accommodate.

Alignment shifting of operands can be illustrated with a simple example based
on the 5-bit representation in Fig. A.4. Assume that we need to add 1.00B! 222(0,
00, 01) to 1.00! 21D (0, 10, 00), that is, we need to perform the operation
1.00B! 211 1.00B! 222. Owing to the difference in exponent values, the mantissa
value of the second number needs to be right-shifted by 3 bit positions before it is
added to the first mantissa value. That is, the addition becomes 1.00B! 211 0.001B!
21. The addition can now be performed by adding the mantissa values together. The
ideal result would be 1.001B! 21. However, we can see that this ideal result is not a
representable number in a 5-bit representation. It would have required three bits of
mantissa, and there are only two mantissa bits in the format. Therefore the best one
can do is to generate one of the closest representable numbers, which is either
1.01B! 21 or 1.00B! 21. By doing so, we introduce an error, 0.001B! 21, which is
half the place value of the least significant place. We refer to this as 0.5D ULP (units
in the last place). If the hardware is designed to perform arithmetic and rounding
operations perfectly, the most error that one should introduce should be no more than
0.5D ULP. To the best of our knowledge, this is the accuracy that is achieved by addi-
tion and subtraction operations in all CUDA devices today.

In practice, some of the more complex arithmetic hardware units, such as divi-
sion and transcendental functions, are typically implemented with polynomial
approximation algorithms. If the hardware does not use a sufficient number of
terms in the approximation, the result may have an error that is larger than 0.5D
ULP. For example, if the ideal result of an inversion operation is 1.00B! 21 but
the hardware generates a 1.10B! 21, owing to the use of an approximation algo-
rithm, the error is 2D ULP, since the error (1.10B2 1.00B5 0.10B) is two times
bigger than the units in the last place (0.01B). In practice, the hardware inversion
operations in some early devices introduce an error that is twice the place value
of the least place of the mantissa, or 2 ULP. Thanks to the more abundant transis-
tors in more recent generations of CUDA devices, their hardware arithmetic
operations are much more accurate.

A.5 Algorithm considerations
Numerical algorithms often need to sum up a large number of values. For example,
the dot product in matrix multiplication needs to sum up pairwise products of input
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matrix elements. Ideally, the order of summing these values should not affect the
final total, since addition is an associative operation. However, with finite precision
the order of summing these values can affect the accuracy of the final result.
For example, suppose we need to perform a sum reduction on four numbers in our
5-bit representation: 1.00B! 201 1.00B! 201 1.00B! 2221 1.00B! 222. If we
add up the numbers in strict sequential order, we have the following sequence of
operations:

1:00B! 20 1 1:00B!20 1 1:00B! 222 1 1:00B! 222

5 1:00B! 21 1 1:00B !222 1 1:00B !222

5 1:00B! 21 1 1:00B !222 5 1:00B !21

Note that in the second and third steps, the smaller operand simply disappears
because it is too small in comparison to the larger operand.

Now let’s consider a parallel algorithm in which the first two values are added
and the second two operands are added in parallel. The algorithm then adds up
the pairwise sum:

1:00B!20 1 1:00B!20
# $

1 1:00B!222 1 1:00B!222
# $

5 1:00B!21 1 1:00B! 221 5 1:01B! 21

The reader should recognize that this algorithm was is the reduction tree of
Chapter 10, Reduction and Minimizing Divergence, and it assumes the associativ-
ity of the add operation. Note that the results are different from the sequential
result. This is because the sum of the third and fourth values is large enough that
it now affects the addition result. This discrepancy between sequential algorithms
and parallel algorithms often surprises application developers who are not familiar
with floating-point precision and accuracy considerations. Although we showed a
scenario in which a parallel algorithm produced a more accurate result than a
sequential algorithm, the reader should be able to come up with a slightly differ-
ent scenario in which the parallel algorithm produces a less accurate result than a
sequential algorithm would. That is, the associativity of the add operation is not
strictly true for floating-point numbers. Experienced application developers either
make sure that the variation in the final result can be tolerated or ensure that
the data is sorted or grouped in such a way that the parallel algorithm results in
the most accurate results.

A common technique to maximize floating-point arithmetic accuracy is to
presort data before a reduction computation. In our sum reduction example, if
we presort the data according to ascending numerical order, we will have the
following:

1:00B! 222 1 1:00B! 222 1 1:00B! 20 1 1:00B !20

When we divide up the numbers into groups in a parallel algorithm, say, the
first pair in one group and the second pair in another group, numbers with numer-
ical values that are close to each other are in the same group. Obviously, the sign
of the numbers needs to be taken into account during the presorting process.
Therefore when we perform addition in these groups, we will likely have accurate
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results. Furthermore, some parallel algorithms use each thread to sequentially
reduce values within each group. Having the numbers sorted in ascending order
allows a sequential addition to get higher accuracy. This is a reason why sorting
is frequently used in massively parallel numerical algorithms. Interested readers
should study more advanced techniques, such as compensated summation algo-
rithm, also known as the Kahan summation algorithm, for getting an even more
robust approach to accurate summation of floating-point values (Kahan, 1965).

A.6 Linear solvers and numerical stability
While the order of operations may cause variation in the numerical outcome of
reduction operations, it may have even more serious implications for some types of
computation, such as solvers for linear systems of equations. In these solvers, differ-
ent numerical values of input may require different ordering of operations in order
to find a solution. If an algorithm fails to follow a desired order of operations for
an input, it may fail to find a solution even though the solution exists. Algorithms
that can always find an appropriate operation order and thus finding a solution to
the problem as long as it exists for any given input values are called numerically
stable. Algorithms that fall short are referred to as numerically unstable.

In some cases, numerical stability considerations can make it more difficult to
find efficient parallel algorithms for a computational problem. We can illustrate
this phenomenon with a solver that is based on Gaussian elimination. Consider
the following system of linear equations:

3X1 5Y1 2Z5 19 (A.3)

2X1 3Y1Z5 11 (A.4)

X1 2Y1 2Z5 11 (A.5)

As long as the three planes represented by these equations have an intersection
point, we can use Gaussian elimination to derive the solution that gives the coor-
dinate of the intersection point. We show the process of applying Gaussian elimi-
nation to this system in Fig. A.9, in which variables are systematically eliminated
from lower positioned equations.

In the first step, all equations are divided by their coefficient for the X vari-
able: 3 for Eq. (A.3), 2 for Eq. (A.4), and 1 for Eq. (A.5). This makes the coeffi-
cients for X in all equations the same. In step 2, Eq. (A.3) is subtracted from
Eqs. (A.4) and (A.5). These subtractions eliminate variable X from Eqs. (A.4)
and (A.5), as shown in Fig. A.9.

We can now treat Eqs. (A.4) and (A.5) as a smaller system of equations with
one fewer variable than the original equation. Since they do not have variable X,
they can be solved independently from Eq. (A.3). We can make more progress by
eliminating variable Y from Eq. (A.5). This is done in step 3 by dividing
Eqs. (A.4) and (A.5) by the coefficients for their Y variables: 21/6 for Eq. (A.4)
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and 1/3 for Eq. (A.5). This makes the coefficients for Y in both Eqs. (A.4) and
(A.5) the same. In step 4, Eq. (A.4) is subtracted from Eq. (A.5), which eliminates
variable Y from Eq. (A.5).

For systems with larger number of equations the process would be repeated
more. However, since we have only three variables in this example, the third
equation has only the Z variable. We simply need to divide Eq. (A.5) by the coef-
ficient for variable Z. This conveniently gives us the solution Z5 3.

With the solution for the Z variable in hand, we can substitute the Z value into
Eq. (A.4) to get the solution Y5 2. We can then substitute both Z5 3 and Y5 2
into Eq. (A.3) to get the solution X5 1. We now have the complete solution for
the original system. It should be obvious why step 6 and step 7 form the second
phase of the method called backward substitution. We go backwards from the last
equation to the first equation to get solutions for more and more variables.

In general, the equations are stored in matrix forms in computers. Since all
calculations involve only the coefficients and the right-hand-side values, we can

FIGURE A.9

Gaussian elimination and backward substitution for solving systems of linear equations.

531A.6 Linear solvers and numerical stability



just store these coefficients and right-hand-side values in a matrix. Fig. A.10
shows the matrix view of the Gaussian elimination and backward substitution pro-
cess. Each row of the matrix corresponds to an original equation. Operations on
equations become operations on matrix rows.

After Gaussian elimination the matrix becomes a triangular matrix. This is a
very popular type of matrix for various physics and mathematics reasons. We see
that the end goal is to make the coefficient part of the matrix into a diagonal
form, in which each row has only a value 1 on the diagonal line. This is called an
identity matrix because the result of multiplying any matrix multiplied by an
identity matrix is itself. This is also the reason why performing Gaussian elimina-
tion on a matrix is equivalent to multiplying the matrix by its inverse matrix.

In general, it is straightforward to design a parallel algorithm for the Gaussian
elimination procedure that we illustrated in Fig. A.10. For example, we can write

FIGURE A.10

Gaussian elimination and backward substitution in matrix view.
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a CUDA kernel and designate each thread to perform all calculations to be done
on a row of the matrix. For systems that can fit into shared memory, we can use a
thread block to perform Gaussian elimination. All threads iterate through the
steps. After each division step, all threads participate in barrier synchronization.
They all then perform a subtraction step, after which one thread will stop its par-
ticipation, since its designated row has no more work to do until the backward
substitution phase. After the subtraction step, all threads need to perform barrier
synchronization again to ensure that the next step will be done with the updated
information. When we have systems of equations with many variables, we can
expect a reasonable amount of speedup from the parallel execution.

Unfortunately, the simple Gaussian elimination algorithm that we have been
using can suffer from numerical instability. This can be illustrated with the fol-
lowing example:

5Y1 2Z5 16 (A.6)

2X1 3Y1Z5 11 (A.7)

X1 2Y1 2Z5 11 (A.8)

We will encounter a problem when we perform step 1 of the algorithm. The
coefficient for the X variable in Eq. (A.6) is zero. We will not be able to divide
Eq. (A.6) by the coefficient for variable X and eliminate the X variable from
Eqs. (A.7) and (A.8) by subtracting Eq. (A.6) from Eqs. (A.7) and (A.8).
The reader should verify that this system of equation is solvable and has the
same solution: X5 1, Y5 2, and Z5 3. Therefore the algorithm is numerically
unstable. It can fail to generate a solution for certain input values even though the
solution exists.

This is a well-known problem with Gaussian elimination algorithms and can
be addressed with a method that is commonly referred to as pivoting. The idea is
to find one of the remaining equations whose coefficient for the lead variable is
not zero. By swapping the current top equation with the identified equation, the
algorithm can successfully eliminate the lead variable from the rest of the equa-
tions. If we apply pivoting to the three equations, we end up with the following
set of equations:

2X1 3Y1Z5 11 (A.9)

5Y1 2Z5 16 (A.10)

X1 2Y1 2Z5 11 (A.11)

Note that the coefficient for X in Eq. (A.9) is no longer zero. We can proceed
with Gaussian elimination, as illustrated in Fig. A.11.

The reader should follow the steps in Fig. A.11. The most important additional
insight is that some equations might not have the variable that the algorithm is
eliminating at the current step (see row 2 of step 1 in Fig. A.11). The designated
thread does not need to do the division on the equation.
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In general, the pivoting step should choose the equation with the largest abso-
lute coefficient value among all the lead variables and swap its equation (row)
with the current top equation as well as swap the variable (column) with the cur-
rent variable. While pivoting is conceptually simple, it can incur significant
implementation complexity and performance overhead. In the case of our simple
CUDA kernel implementation, recall that each thread is assigned a row. Pivoting
requires an inspection and perhaps swapping of coefficient data spread across
these threads. This is not a big problem if all coefficients are in the shared mem-
ory. We can run a parallel max reduction using threads in the block as long as we
control the level of control flow divergence within warps.

However, if the system of linear equations is being solved by multiple thread
blocks or even multiple nodes of a compute cluster, the idea of inspecting data
that is spread across multiple thread blocks or multiple compute cluster nodes can
be an extremely expensive proposition. This is the main motivation for
communication-avoiding algorithms that avoid a global inspection of data such as
pivoting (Ballard et al., 2011). In general, there are two approaches to this prob-
lem. Partial pivoting restricts the candidates of the swap operation to come from a

FIGURE A.11

Gaussian elimination with pivoting.
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localized set of equations so that the cost of global inspection is limited.
However, this can slightly reduce the numerical accuracy of the solution.
Researchers have also demonstrated that randomization tends to maintain a high
level of numerical accuracy for the solution.

A.7 Summary
In this appendix we introduced the concepts of floating-point format and
representable numbers, which are foundational to the understanding of precision.
On the basis of these concepts, we explained the denormalized numbers and why
they are important in many numerical applications. In early CUDA devices,
denormalized numbers were not supported. However, more recent hardware
generations support denormalized numbers. We also explained the concept of
arithmetic accuracy of floating-point operations. It is important for CUDA pro-
grammers to understand the potential lower accuracy of fast arithmetic operations
implemented in the special function units. More important, the reader should now
have a good understanding of why parallel algorithms can often affect the accu-
racy of calculation results and how sorting and other techniques can be used to
improve the accuracy of computation.

Exercises
1. Draw the equivalent of Fig. A.5 for a 6-bit format (1-bit sign, 3-bit mantissa,

2-bit exponent). Use your result to explain what each additional mantissa bit
does to the set of representable numbers on the number line.

2. Draw the equivalent of Fig. A.5 for another 6-bit format (1-bit sign, 2-bit
mantissa, 3-bit exponent). Use your result to explain what each additional
exponent bit does to the set of representable numbers on the number line.

3. Assume that in a new processor design, owing to technical difficulty, the
floating-point arithmetic unit that performs addition can only do “round to
zero” (rounding by truncating the value toward 0). The hardware maintains a
sufficient number of bits that the only error that is introduced is due to
rounding. What is the maximal ULP error value for add operations on this
machine?

4. A graduate student wrote a CUDA kernel to reduce a large floating-point
array to the sum of all its elements. The array will always be sorted from the
smallest values to the largest values. To avoid branch divergence, the student
decided to implement the algorithm of Fig. A.4. Explain why this can reduce
the accuracy of the results.

5. Assume that in an arithmetic unit design, the hardware implements an
iterative approximation algorithm that generates two additional accurate
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mantissa bits of the result for the sin() function in each clock cycle. The
architect decided to allow the arithmetic function to iterate nine clock cycles.
Assume that the hardware fills in all remaining mantissa bits as 0’s. What
would be the maximal ULP error of the hardware implementation of the sin()
function in this design for IEEE single-precision numbers? Assume that the
omitted “1.” mantissa bit must also be generated by the arithmetic unit.
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Breadth-first search (BFS), 335!338, 336f

maze routing in integrated circuits, 337f

Brent-Kung adder design, 246

Brent-Kung algorithm, 246!251, 437

Built-in type cudaDeviceProp, 89

Built-in variable, 36!38, 43!44

C
C language

2D array, 52!53

ANSI C code, 42!43

ANSI C programming language, 27

ANSI C standard, 52!53

convention, 152

CUDA, 23

CUDA C extending, 38!39

malloc() function, 458

multidimensional array, 53

pointers in, 30

runtime library, 31!32

scoping rules, 160!161

traditional C compiler, 42!43

traditional C program, 27!30

C11 AMP, 511

C11 templates, 511

Cache

coherence mechanism, 504

constant, 159!163, 404

hierarchy of modern processors, 162f

L1 cache, 161!162

L2 cache, 161!162

large last-level on-chip caches, 4

tiled convolution using, 168!170

Caching, 159!163

configurable, 509

for halo cells, 168, 169f

hierarchy of modern processors, 162f

in modern GPUs, 17

Calling kernel functions, 40!42

Carpooling, 132

Cartesian grid, 394

Cartesian scan data, 392!393

Cartesian scan trajectory, 392

Cellular automata simulation, 509

Central processing unit (CPU), 1!2, 27, 175

algorithms, 510

CPU/GPU interaction mechanism, 505

design philosophy of, 4

serial code, 27!28

Chain rule, 363!364

Child grids, 480

launches, 481

Circular buffer merge kernel, 282!287. See also

Tiled merge kernel

circular buffer scheme for managing shared

memory tiles, 282f

co_rank_circular function that operates on

circular buffers, 287f

merge_sequential_circular function

implementation, 288f

simplified model for co-rank values using

circular buffer, 285f

Co-rank function, 266!268

execution, 269f

function based on binary search, 270f

implementation, 268!273

operation example, 271f, 272f, 273f

Coalesce, 125!126. See also Memory coalescing

coalesce accesses to matrix B, 130f

coalesced access pattern, 127f

uncoalesced access pattern, 129f

Coalescing, 275!282. See also Memory

coalescing

Coarsening factor, 139!141

Coarsening loop, 139!141

colIdx array, 314

Collective communication function, 466!467, 470

ColorToGrayscaleConversion function, 58

Column-major layout, 54!55, 128

Communication

avoiding algorithms, 534!535

connections, 454!455

system, 452!453

Communicators, 454

Commutative operator, 214

Compaction, 311

Compare-and-swap, 348

Comparison-based parallel sorts, 308!309

Comparison-based sorting algorithms,

294!295

Compensated summation algorithm, 529!530

Compile-time constant, 116

Complement representation system, 521

Compressed sparse column (CSC), 333

Compressed sparse row (CSR), 333

grouping row nonzeros with CSR format,

317!320

example of, 317f

example of parallelizing SpMV with, 318f

parallel SpMV/CSR kernel, 318f

parallel SpMV using, 329

storage format, 317, 333, 334f

Computational intensity, 94

Computational methods, 391

“Computational microscope,”, 415!416

Computational patterns, 480!481
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Computational thinking, 444!446, 515

algorithm selection, 436!439

goals of parallel computing, 433!436

problem decomposition, 440!444

skills needed for parallel programmer, 444!445

techniques, 14, 433

Compute architecture, 69!70

architecture of modern GPU, 70

block scheduling, 70!71

thread block assignment to SMs, 71f

control divergence, 79!82

CUDA-capable GPU, 70f

querying device properties, 87!89

resource partitioning and occupancy, 85!87

synchronization and transparent scalability,

71!74

warp scheduling and latency tolerance, 83!85

warps and SIMD hardware, 74!79

Compute capability, 88

Compute process, 455, 458, 460

Compute process code, 458, 460f, 461, 462f, 465f,

467, 468f, 469f

Compute to global memory access ratio, 94

Compute Unified Device Architecture (CUDA)/

CUDA C, 23, 31!32, 38!39, 47!48,

52!53, 73, 499!500

__syncthreads() statement, 73

compilers, 511

cores, 70

debugger, 507

device, 124!125, 416, 435, 525!526

execution of CUDA program, 27f

GPUs, 75

grids and blocks, 66!67

kernel, 37!38, 400

execution control, 505!508

function, 93

performance, 124

keyword__global__, 38!39

keywords for function declaration, 39f

model of host/device interaction, 500!505

unified memory, 503!505

virtual address space control, 505

zero-copy memory and unified virtual address

space, 501!502

program, 42!43, 257, 481!482

program structure, 27!28

programmers, 69!70

programming environment, 510!513

profiling with critical path analysis,

511!513

unified device memory space, 510!511

Programming Guide, 89

programming model, 463, 475

registers, 97, 115

runtime system launches, 70

shared memory, 161

streams, 471, 499!500

system software, 504

threads, 28

throughput computation, 508!510

Computer architecture, 445

Computer vision, 356

Computer-aided design (CAD), 337, 505

circuit models, 342

Computer-generated graphics, 1

Computing devices, 7

Configurable caching, 509

Conjugate gradient algorithm (CG algorithm),

395!396

Conjugate gradient method, 312!313

Constant cache, 159!163, 404

Constant memory, 159!163, 404

2D convolution kernel, 161f

cache hierarchy of modern processors, 162f

CUDA memory model, 159f

Constant variables, 102

__constant__ keyword, 102, 160

Contiguous partitioning, 204!205

Control

divergence, 79!82, 219!223

flow, 79!80

points, 481

Control flow efficiency, better, 509

Convolution, 152!156

1D convolution example, inside elements, 152f

2D convolution

boundary condition, 156f

example, 155f

blurring approaches, 58!59

boundary condition, 154f

constant memory and caching, 159!163

filters, 152

image convolutions, 154

kernel, 152

parallel convolution, 156!159

pattern, 58!59

tiled convolution

with halo cells, 163!168

using caches for halo cells, 168!170

Convolutional layer, 361, 376!378

backpropagation for, 372!373, 373f

backward path of, 374f

C implementation of forward propagation path,

370f

CUDA inference kernel, 376!378

formulating convolutional layer as GEMM,

379!385
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Convolutional layer (Continued)

forward path of convolutional layer with

minibatch training, 375f

forward propagation path of, 368f

host code for launching, 377f

kernel for forward path, 378f

output feature maps of, 369!370

Convolutional neural network (CNN), 366!375

Cooperative kernels, 508

Coordinate list format (COO format), 314

Corner turning, 128!129

Critical path analysis, 511!513

CuBLAS, 111, 379, 445

CUDA aware message passing interface, 471

revised MPI SendRec calls in using, 471f

CUDA dynamic parallelism, 490!492

background, 476!478

Bezier curves, 481!484

dynamic parallelism, 478!481

fixed vs. dynamic grids, 476f

memory and data visibility, 490!491

nesting depth, 492

pending launch pool configuration, 491

recursive example, 484!490

streams, 491!492

synchronization, 492

synchronization depth, 492

CUDA FORTRAN, 511

CUDA memory types, 96!103

__constant__ keyword, 102

__device__ keyword, 102

__shared__ keyword, 102

CUDA device memory model, 98f

CUDA variable declaration type, 101t

global memory in CUDA device, 97!99

memory vs. registers, 98f

pointers, 103

shared memory vs. registers in CUDA device

SM, 100f

CUDA Occupancy Calculator, 87

CUDA thread organization, 37!38

host code, 41!42, 49

multidimensional example of CUDA grid

organization, 50f

CUDA-enabled GPUs, 499!500

cudaDeviceProp, 89

cudaDeviceSynchronize() function, 469

CudaFree(), 33, 503

cudaGetDeviceProperties function, 88!89

CudaMalloc function, 31!32, 35, 103

CudaMemcpy function, 33, 35, 44

cudaMemcpyAsync() function, 464!465

CudaMemcpyDeviceToHost, 34

CudaMemcpyHostToDevice, 34

cudaMemcpyToSymble() function, 160, 405!406

cudaStreamCreate() function, 465

CUDNN library, 385!387

CuFFT, 445

CUTLASS, 111

Cutoff binning algorithm, 425!430

Cutoff summation, 425!426, 437!438

strategy, 426

D
Data characteristics, 12

Data delivery, 9

Data management techniques, 9

Data padding, 320

Data parallelism, 7, 23

Data reuse, 188

Data sharing, 13!14, 100, 510

Data size scalability, 425!430

Data structures, 295

Data transfer, 31!35

bandwidth, 133

device global memory and, 31!35

timing, 134

Data-dependent performance behavior, 328

Datasets, 415!416

Deadlock, 73

Deep learning

background, 356!366

convolutional layer, 376!378

convolutional neural networks, 366!375

backpropagation, 371!375

inference, 367!371

CUDNN library, 385!387

formulating convolutional layer as GEMM,

379!385

multilayer classifiers, 358!361

training models, 361!366

backpropagation, 362

chain rule, 363!364

epoch, 362

error function, 361!362

feedforward networks, 365!366

learning rate, 364

minibatch, 365

stochastic gradient descent, 362

training multilayer classifiers, 365

Definiteness, 436!437

Denormalization

format, 525

formula, 525!526

Destination vertex, 332

Device code, 27

Device global memory, 31!35
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CUDA API functions, 32f, 33f

host code allocation, 32

more complete version of vecAdd(), 34f

threads in grid execute same kernel code, 37f

vecAdd function, 31, 34

Device memory, 500

Device properties, querying, 87!89

__device__ keyword, 102!103

“__device__” function, 39

devProp. maxGridSize(), 89

devProp. maxThreadsPerBlock, 89

devProp. multiProcessorCount, 89

devProp. sharedMemPerBlock, 116

Digital high-definition (HD) TV, 8

Digital twins, 8

Dimensionality, 152

Direct Coulomb summation (DCS), 417, 418f,

419f, 437!438

code, 417

kernel, 419

Direct memory access device (DMA device), 464

Direct3D techniques, 7

Direction-optimized implementation, 342!343

Directional relations, 332

Discrete representation, 174

Discretization, 177

Discretized derivative, 175

Disks, 464

Distribution process, 309

Divide-and-concur approach, 265

Divide-and-conquer algorithms, 295

Domain knowledge, 445

Domain partitions, 452

Domains, 173

Domino-style scan algorithm, 257

Dot product, 62!63

Double data rate (DDR), 133

Double-buffering optimization, 242

Double-precision number (64-bit number), 175

Double-precision speed, 508!509

Driving direction map services, 331

dst array, 333

dstPtrs array, 333

Dynamic input data identification, 263

Dynamic parallelism. See CUDA dynamic

parallelism

Dynamic random-access memory (DRAM), 5, 10,

161

bandwidth, 224

bursting, 133

bursts, 125

designs, 124!125

system, 132!133

Dynamic resources partitioning, 85!86

E
Edge processes, 458

Edge-centric parallel implementation, 343!344

Edges, 331

Electrostatic potential map, 416f

background, 415!417

calculation, 415!416, 425!426

cutoff binning for data size scalability, 425!430

energy, 417!418

memory coalescing, 424

scatter vs. gather in kernel design, 417!421

thread coarsening, 422!423

ELL format, improving memory coalescing with,

320!323

example of, 320f

example of parallelizing SpMV with, 321f

parallel SpMV/ELL kernel, 322f

Embarrassingly parallel application, 12

Embedding, 356

Energy grid array, 500

Enhanced atomic operations, 510

Enhanced global memory access, 510

Epoch, 362

Error function, 361!362

Exception handling in kernel functions, 506!507

Excess encoding of E, 520!522

excess-3 encoding, sorted by excess-3 ordering,

521f

Excess representation, 521

Exclusive scan operation, 237

Execution configuration parameters, 40!41

Execution mode

of CUDA, 16

parallel, 445

Execution path, 79!80

Execution resource utilization efficiency, 219!220

Execution speed

CUDA kernels scalability in, 41!42

of kernel, 378

of matrix multiplication functions, 96

of parallel programs, 12, 123

of sequential programs, 3

Expanded matrix, 381

Exponent, 519!520

Exponent bits, 523

“Extended lambdas,", 506

Extent, 96

F
Face recognition, 366

Facebook, 333

Fadd instruction, 99

False dependence, 110
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Fast Fourier transform (FFT), 392

Feature extraction process, 192!193

Feature of dataset, 192

Feedforward networks, 365!366

Fermi GPU architecture, 508

“Fill-ins,", 312

Filter, 157

Filter array, 152

Filter bank, 367!368

matrix, 382

Financial portfolio analysis, 434

Finite-element method, 174

Finite-volume method, 174

First compute process, 458

Fixed partitioning method, 85

“Flat” memory space, 53!54

Flexibility, 313

Floating-point addition

instruction, 99

operator, 211!212, 214

Floating-point arithmetic accuracy, 529

Floating-point arithmetic capability, 519

Floating-point data representation, 519!522

excess encoding of E, 520!522

normalized representation of M, 520

Floating-point multiplication, 94

operator, 212

Floating-point number system, 212, 519!520

Floating-point operations (FLOP), 94

Floating-point representation, 526

Floating-point value, 211!212

FLOPS rating, 328!329

FORTRAN programs, 54!55

Forward propagation path, 369

Fourier transform domain, 391!392

Frontiers, improving efficiency with, 345!348

Fully connected graph, 332

Function calls within kernel functions,

505!506

G
G80, 7, 516

Gather approach, 399, 420

Gather memory access behavior, 440

Gaussian blur, 58!59

Gaussian elimination, 312, 395!396, 530, 532

General matrix multiply (GEMM), 379

formulating convolutional layer as, 379!385

GEMM-based algorithm, 387

Ghost cells, 154, 181, 369

Giga (109). See Giga floating-point operations per

second (GFLOPS)

Giga floating-point operations per second

(GFLOPS), 1, 94!96

Global memory, 70, 273, 300

access, 94, 225!226, 225f, 226f

ratio, 182

bandwidth, 94!96

tiled algorithms, 118

tiled matrix multiplication kernel using shared

memory, 108f

requests, 224

Global variables, 102!103

“__global__” keyword, 38!39

GMAC system, 503

GPGPU, 7

Gradient backpropagation, 371!372

Graph, 331

algorithms, 338

computation, 331, 352

data structure, 332

Graph search, 331, 335, 479!480

Graph traversal algorithm, 335

adjacency matrix representation, 333f

background, 332!335

breadth-first search, 335!338

edge-centric parallelization of breadth-first

search, 343!345

improving efficiency with frontiers, 345!348

optimizations, 350!352

improving load balance, 351!352

reducing launch overhead, 350!351

reducing contention with privatization, 348!350

three sparse matrix representations of adjacency

matrix, 334f

vertex-centric parallelization of breadth-first

search, 338!343

Graphics API, 7

Graphics chips, 5, 7

Graphics Double Data Rate, 70

Graphics processing unit (GPU), 3, 27, 90, 516

architecture, 69!70

complement CPU execution, 10

computing, 16

CUDA-enabled GPUs, 499!500

device, 136

memory, 385

hardware, 499!500

Grid, 27!28, 47!48

algorithms, 425!426

launch, 43

points, 177

GridDim variable, 49

GridDim. x variable, 49

Gridding approach, 394
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H
Hadoop, 265

Half-precision number (16-bit number), 175

Halo cells, 173

Handwriting recognition, 366

Hardware queues, 507

Hardware trigonometry functions, 409!412

Heaps, 295

Heterogeneous computing cluster, programming

background, 449!450

collective communication, 470

CUDA aware MPI, 471

MPI, 452!455

overlapping computation and communication,

462!470, 463f

point-to-point communication, 455!461

programmer’s view of MPI processes, 450f

Heterogeneous parallel computing, 3!7, 449

CPUs and GPUs, 4f

many-thread trajectory, 3

multicore trajectory, 3

Hiding memory latency, 133!138

channels and banks in DRAM systems, 133f

data transfer bandwidth of channel, 134f

matrix multiplication, 137f

Hierarchical reduction for arbitrary input length,

226!228

segmented multiblock reduction using atomic

operations, 227f

High-bandwidth memory (HBM), 70

High-Bandwidth Memory version 2 (HBM2), 510

High-definition (HD), 8

High-degree graphs, 342!343

High-performance computing (HPC), 2!3, 449

industry, 27

systems, 499!500

High-performance parallel programming, 14!15

High-speed floating-point arithmetic, 519

Higher-order stencil computation, 450!451

Histogram, 192!193

kernel, 194!198

Host code, 27, 32, 476!477

Host memory, 500

“__host__” function, 39

“__host__” keyword, 39

Hybrid ELL-COO format, 324!325

regulating padding with, 324!325

example, 324f

I
I/O devices, 5, 500

Idempotence, 340

Identity matrix, 532

Identity value, 211!212

IEEE floating-point format, 527!528

IEEE format, special bit patterns and precision in,

526!527, 527f

IEEE standard, 525

IEEE-754 Floating-Point Standard, 519

Image blur, 58!61

handling boundary conditions for pixels, 61f

image blur kernel, 60f

original image and blurred version, 58f

output pixel, 59f

Image-blurring function, 58!59

Inclusive scan operation, 236, 238f

Individualized medicine, 517

Inference, 358

Input parameters for kernel, 157

Input tile, 163!164, 180!181, 183!184

Input-centric decomposition, 440

Input-centric SpMV/COO kernel, 443

Installed base of processor, 6

Instruction

fetch/dispatch unit, 77!79

pointer, 2

Instruction register (IR), 78

Integer, 309!310

vector, 48

“Integrated” GPUs, 88

Interested readers, 214

Interleaved data distribution, 136

Interleaved partitioning, 205

Internal processes, 458

Interpolation technique, 174

Intrinsic functions, 197

Intuitive approach, 312

Iterative linear solver!based reconstruction

approach, 395

Iterative reconstruction, 394!396

iterPtr array, 326

J
Jacobi iterative method, 450!451, 458!459

Jagged diagonal storage format (JDS format),

325!326

reducing control divergence with, 325!328

example of, 326f

parallelizing SpMV example with, 327f

K
K-space domain, 391!392

Kahan summation algorithm, 529!530

Kepler GPU architecture, 502!503, 506!507

Kernel call, 43

Kernel execution configuration parameters, 66!67
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Kernel execution control, 505!508

cooperative kernels, 508

exception handling in kernel functions,

506!507

function calls within kernel functions, 505!506

hardware queues and dynamic parallelism, 507

interruptable grids, 508

simultaneous execution of multiple grids, 507

Kernel function, 27!28, 35!40, 47!49, 97,

160!161, 217, 240

Kernel launch, 43, 420!421

child kernel launch with named streams, 492f

parameter, 502

Kernel parallelism structure, 398!403

loop fission, 400f

loop interchange, 402f

Kernels, 27, 36, 70, 339, 492

Kogge-Stone algorithm, 238!244, 437

kernel for inclusive scan, 240f

parallel exclusive scan algorithm, 243f

parallel inclusive scan algorithm, 239f

L
Large virtual and physical address spaces,

502!503

Last-level on-chip caches, 4

Latency

hiding, 83!84, 123. See also Hiding memory

latency

tolerance, 83!85

Latency-oriented design, 4

Learning rate, 364

Least significant bit (LSB), 295

Least significant digit (LSD), 309

LeNet-5 design, 369

Lifetime, 101

of constant variable, 102

of shared variable, 102

Linear algebra functions, 62b

Linear Bezier curves, 481

Linear classifiers, 358

Linear equations system, 530, 534!535

Linear layout, 76

Linear perceptron’s model, 357

Linear solver!based iterative reconstruction

algorithm, 394

Linear solvers, 530!535

Linear system, 312

Linear-algebraic formulation, 345

Linearized index, 114

LinkedIn (social network), 333

Load balance, 313, 351!352

Local sort, 300!301

Locality, 107

Long-latency operation, 83!84

Loop fission technique, 399

Loop interchange, 399

Loop nest, 415

Loop parallelism, 40

Loop splitting technique, 399

Low-degree graphs, 342!343

Luminance value, 24!26

M
Machine learning, 356

computing methods, 517

convolutional layer, 376!378

convolutional neural networks, 366!375

CUDNN library, 385!387

Magnetic resonance imaging (MRI), 391!392

Cartesian scan trajectory, 392

CG algorithm, 395!396

chunking k-space data, 406f

computing FHD, 396!412

experimental performance tuning, 412

iterative reconstruction, 394!396

k-space

elements, 404

regions, 392

non-Cartesian k-space sample trajectory, 393f

non-Cartesian scan trajectories, 392!393

physics principles behind, 392

quasi-Bayesian estimation problem formulation,

395

ratio of floating-point operations, 397

revolutionized medicine technologies, 517

scanner k-space trajectories, 393f

Mantissa bits, 519!520, 523!524

Many-thread processors, 3

Map matrix, 384!385

Marketplace, 6

Matlab, 445

Matrix, 127

Matrix computation method, 517

Matrix inversion, 395!396

Matrix multiplication, 62!66, 111, 128!129, 376

matrix multiplication kernel, 64f

Matrix-vector multiplication, 395

Max reduction, 214

Maze routing problem, 337, 343

Medical imaging, 508!509

Memory, 70, 96!97

access efficiency, 94!96, 313

access throughput, 124!125

allocation, 237

function, 32
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architecture, 69!70

and data visibility, 490!491

divergence, 223!225

latency, 198!199

throughput, 198!199

Memory architecture and data locality

CUDA memory types, 96!103

importance of memory access efficiency, 94!96

memory usage impact on occupancy, 115!117

tiled matrix multiplication kernel, 107!112

tiling for reduced memory traffic, 103!107

Memory bandwidth, 5, 94!96, 146, 508!510

configurable caching and scratchpad, 509

double-precision speed, 508!509

enhanced atomic operations, 510

enhanced global memory access, 510

Memory bound programs, 94!96, 194

Memory coalescing, 124!133, 205, 223!224,

300!302, 424

reducing traffic congestion in highway systems,

131f

Memory management, 464

Merge operation, 265

Merge sort, 437

circular buffer merge kernel, 282!287

co-rank function implementation, 268!273

example of merge operation, 264f

Hadoop, 265

parallel merge kernel, 273!275

parallelization approach, 266!268

sequential merge algorithm, 265!266

thread coarsening for merge, 288

tiled merge kernel to improve coalescing,

275!282

Message passing interface (MPI), 13!14, 436,

449, 499!500

barrier synchronization, 466!467

basics, 452!455

closing communication system, 453f

functions for establishing communication

system, 453f

MPI/CUDA programming, 13!14, 436

MPI_Barrier() function, 466!467

MPI_Comm_rank() function, 454

MPI_Comm_size() function, 454

MPI_Recv() function, 455, 456f

MPI_Send() function, 455, 456f

MPI_Sendrecv() function, 467, 468f

overlapping computation and communication,

462!470

point-to-point communication, 455!461

process, 453!454

programmer’s view of MPI processes, 450f

rank, 453!454

Microprocessors, 1

Microscopes, 7!8

Minibatch, 365

Mobile applications, 245

Modern computer system, 464

Modern map-reduce frameworks, 263

Molecular dynamics, 415

application, 434!435

simulation, 416!417

Molecular visualization and analysis, 18

Monte Carlo method, 517

Most significant digit (MSD), 309

Multidimensional array, 53!54, 127

Multidimensional data, mapping threads to, 51!58

2D thread grid, 51f

memory space, 53b

row-major layout for 2D C array, 54f

Multidimensional grid organization, 47!51

CUDA grid organization, 50f

Multilayer classifiers, 358!361

Multilayer perceptron (MLP), 358, 365!366

N
National Institutes of Health (NIH), 6

Natural language processing, 356

Nesting depth, 492

Net terminals, 337

Neural networks, 9

Non-Cartesian MRI, 18

application of MRI, 392

computing FHD, 396!412

iterative reconstruction, 394!396

non-Cartesian k-space sample trajectory, 393f

non-Cartesian scan trajectories, 392!393

non-Cartesian trajectory data, 394

scanner k-space trajectories, 393f

Nonbonded forces, 434!435

Noncomparison-based sorting algorithms,

294!295

Nonzero element, 314

Normalized representation, 520

Not a number (NaN), 526!527

Number representation system, 524

Numerical algorithms, 528!529

Numerical considerations

algorithm considerations, 528!530

arithmetic accuracy and rounding, 527!528

floating-point data representation, 519!522

linear solvers and numerical stability, 530!535

Gaussian elimination and backward

substitution, 532f

Gaussian elimination with pivoting, 534f

solving systems of linear equations, 531f
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Numerical considerations (Continued)

representable numbers, 522!526

special bit patterns and precision in IEEE

format, 526!527, 527f

Numerical grids, 177

Numerical methods, 173

Numerical order, 529

Numerical stability, 530!535

Numerically stable values, 530

Numerically unstable values, 530

NVIDIA C compiler (NVCC), 42!43

O
Object images, 192!193

Occupancy, 85!87, 90

memory usage impact on, 115!117

Odd-even merge sort, 308

Odd-even transposition sort, 308

Off-chip memory, 70, 123

On-chip memory, 93, 163, 509

One destination process, 455

One dimension (1D)

array, 314

elements, 152

convolution, 152, 156

grids and blocks, 49

regular grid, 174

thread organizations, 51!52

One floating-point addition, 94

One source process, 455

Open Compute Language (OpenCL), 14

OpenACC, 445

OpenMP, 13

Operand data delivery logic, 4

Operand value, 99

Operator function, 212!213

Optical character recognition (OCR), 366

Optimal image reconstruction method, 394

Optimizations, 191, 350!352

checklist of, 141!145, 142t

Ordered merge operation, 263

Output interference, 194

Output tile, 163

Output-centric decomposition, 440

Output-centric kernels, 443

Overlapping communication with computation,

465

“Owner computes” approach, 217

P
Padding

data padding and transposition, 320

parallel SpMV/ELL kernel, 322f

regulating padding with hybrid ELL-COO

format, 324!325

Page locked memory buffer, 464

Parallel algorithm, 11!12, 235!236, 529

Parallel computation patterns, 191

Parallel convolution, 156!159

2D convolution kernel, 158f

kernel with boundary condition handling, 158f

mapping of threads to output elements, 157

parallelization and thread organization for 2D

convolution, 157f

Parallel execution, 196, 391

Parallel histogram

algorithms, 191

computation pattern, 191

Parallel inclusive scan algorithm, 238

Parallel merge kernel, 273!275

basic merge kernel, 274f

Parallel merge sort, 306!307

Parallel ordered merge algorithm, 263

Parallel patterns, 7, 12, 433, 515!516

Parallel programming, 3!4, 11!12, 15, 433!434,

499!500

Parallel programming interfaces, 13!14

Parallel programming models, 13, 123, 516

Parallel programs, 2!3, 12

Parallel radix sort, 296!300

Parallel reduction algorithm, 211, 213!214

Parallel reduction pattern, 215

in Sports and Competitions, 216b

Parallel scan, 235

background, 236!237

with Brent-Kung algorithm, 246!251

coarsening for even more work efficiency,

251!253

implementation of iterative calculations, 241

with Kogge-Stone algorithm, 238!244

Kogge-Stone kernel for inclusive scan, 240f

as primitive operation, 235

segmented parallel scan for arbitrary-length

inputs, 253!256

sequential algorithm of computation, 238

single-pass scan for memory access efficiency,

256!259

speed and work efficiency consideration,

244!245

Parallel sort methods, 308!309

Parallel sorting algorithms, 293

Parallel SpMV/CSR kernel, 319

Parallel stencil, 178!179

basic stencil sweep kernel, 178f

simplifying boundary condition, 178f

Parallelism, 7!9, 138, 183, 215, 350!351

Parallelization approach, 266!268, 446
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Parallelize reduction, 228!229

Parallelizing histogram computation, 194

Parent

grid, 480

parent-child synchronization, 492

thread, 484

Partial differential equation, 177, 450!451

Pascal GPU architecture, 504

PCIe bus, 501

Peak signal-to-noise ratio formula (PSNR

formula), 409!410

Pending launch pool configuration, 491

Perceptron, 357

Performance bottleneck, 145!146

Performance cliff, 86!87

Performance considerations

checklist of optimizations, 141!145

hiding memory latency, 133!138

knowing your computation’s bottleneck, 145!146

memory coalescing, 124!133

thread coarsening, 138!141

thread granularity, 123

Performance optimization techniques, 15, 69!70,

123, 433

Performance portability, 13

PET revolutionized medicine technologies, 517

Phantom object, 409!410

Physical laws, 416!417

Pinned memory

allocation, 463

buffer, 464

streams, 463

Pivoting method, 533

Point-to-point communication, 455!461

Pointer variable, 32

Polynomial evaluation, 235

Prefix sum, 235, 510

Privatization technique, 200!203

histogram kernel, 201f

private copies of histogram reduce contention,

201f

privatized text histogram kernel, 203f

reducing contention with, 348!350

Problem decomposition, 440!444

Processor cores, 2

Product reduction, 212

Profilers, 512

Program counter, 2

Programmers, 15

Programming

environment, 510!513

interfaces and compilers, 445

platform, 499!500

PTX files, 42!43

Q
Quadrants, 484!485

Quadratic Bezier curves, 481

Quadtree, 484!485

Quantum chemistry simulation data, 415!416

Quantum chemistry visualization, 509

Quasi-Bayesian estimation problem formulation,

395

Querying device properties, 87!89

Queues, 507

Quiet NaNs, 527

R
Race condition, 194, 241

Radial lines, 392!393

Radio astronomy, 508!509

Radius, 152

Radix sort, 295!296, 437

Radix value, 302!304

Random-access memory, 31

Randomized algorithms, 295

Rank, 268

Ray tracing, 509

Read-after-write dependence, 110

Read-modify-write, 194

race condition, 195

Recommender systems, 356

Reduction, 211!213

general form of reduction sequential code, 212f

hierarchical reduction for arbitrary input length,

226!228

minimizing control divergence, 219!223

kernel, 222f

threads to input array locations, 221f

minimizing global memory accesses, 225!226

minimizing memory divergence, 223!225

reduction trees, 213!216

simple reduction kernel, 217!219

parallel sum reduction tree, 217f

simple sum reduction sequential code, 212f

thread coarsening for reduced overhead,

228!231

Reduction tree, 213!216, 246

parallel max reduction tree, 213f

parallel reduction in sports and competitions,

216b

world cup finals as reduction tree, 216f

Redundant work, 348

Register file, 97!99

Registers, 97

in CUDA, 100

kernel with thread coarsening and register tiling,

187f
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Registers (Continued)

tiling kernel, 186!188

Regression, 356

Regularization, 311

Remote sensing, 508!509

Representable numbers, 522!526

Representable numbers of floating-point

format, 523

3-bit unsigned integer format, 522f

abrupt underflow format, 525f

algorithm considerations, 528!530

alignment shifting of operands, 528

arithmetic accuracy and rounding, 527!528

bit patterns and precision in IEEE format,

526!527, 527f

denormalization format, 525f

discrepancy between sequential algorithms and

parallel algorithms, 529

Gaussian elimination procedure, 532!533, 532f,

534f

major intervals, 523

mantissa bits, 523!524

NaN, 526!527

between negative infinity and positive infinity,

526

no-zero, abrupt underflow, and denormalized

formats, 523f

no-zero representation, 523f

precision of, 523!524

quiet NaNs, 527

reduction computation, 529

signaling NaNs, 527

Resource allocation, 235

Resource and capability queries, 87b

Resource assignment, 69!70

Resource partitioning, 85!87

Reverse tree, 249

RGB values, 25!26

Road network graph, 335, 342

Roofline model, 96

Rotational forces, 434!435

Routing blocks, 337

Routing software, 337

Row index, 164!165, 314

Row major layout, 54!55

for 2D C array, 54f

Row-major convention, 126!127

Runtime APIs, 14

S
Sample sort algorithms, 293, 308!309

Scalability, 15

Scalable parallel execution, 23

latency tolerance, 83!85, 83b

mapping threads to multidimensional data,

51!58

resource assignment, 69!70

scalable parallel program, 499!500

synchronization and transparent scalability,

71!74

thread scheduling, 80!81

Scalar variables, 101

Scan, 235

Scanner data acquisition process, 394

Scatter approach, 399

Scatter memory access behavior, 438

Scope, 100!101

Scratchpad, 509

Scratchpad memory, 100, 161

Segmented parallel scan, 253!256

Segmented reduction, 231!232

Segmented scan, 237

Seismic analysis, 508!509

Self-driving cars, 517

Semiconductor industry, 518

Sensors, 125

Sequencing data, 415!416

Sequential cutoff algorithm, 430, 438!439

Sequential merge algorithm, 265!266

Sequential merge function, 265f, 266

Set intersection, 263

Set union, 263

Shared memory, 71, 115, 300, 509

variables, 105, 107

__shared__ keyword, 102

Sign, 519!520

Signal-to-noise ratio (SNR), 392

Signaling NaNs, 527

Simulation process, 416!417

Single-CPU microprocessors, 1

Single-instruction, multiple-data (SIMD), 78

hardware, 74!79

streaming multiprocessors, 77f

warp diverging at for-loop, 81f

warp diverging at if-else statement, 80f

Single-pass scan, 256!259

Single-precisions number (32-bit number), 175

Single-program multiple-data (SPMD),

35!36

Small cache memories, 5!6

Small world graphs, 342!343

Smartphone, 8

Social network, 331!333, 342!343

graphs, 351!352

Sodium imaging, 394

Sodium map of Brain, 393!394, 393f

Software applications, 2
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Sorting, 294!295

choice of radix value, 302!304

networks, 308

optimizing for memory coalescing, 300!302

parallel merge sort, 306!307

parallel radix sort, 296!300

parallel sort methods, 308!309

radix sort, 295!296

thread coarsening to improve coalescing,

305!306

Source vertex, 332

Space efficiency, 313

Sparse matrix computation, 311

background, 312!314, 312f, 313f

data padding and transposition, 320

dot product, 318

Gaussian elimination, 312

grouping row nonzeros with CSR format,

317!320

improving memory coalescing with ELL format,

320!323

iterative approaches, 313

matrix-vector multiplication and accumulation,

313f

parallel SpMV/ELL kernel, 322f

real-world problems, 311

reducing control divergence with JDS format,

325!328, 326f

regulating padding with hybrid ELL-COO

format, 324!325

in science and engineering problems, 312

simple SpMV kernel with COO format,

314!316

solving linear systems of N equations of N

variables, 312

sparse matrix, 311!312

SpMV computation code, 314!315

Sparse matrix representation, 333

Sparse matrix storage formats, 311

Sparse matrix-vector multiplication (SpMV), 313,

345

accumulation, 313

code, 314!315

SpMV/COO kernel, 443

Sparsely connected graph, 332

Spatial frequency domain, 391!392

Special bit patterns and precision in IEEE format,

526!527, 527f

Speeding up real applications, 9!11

sequential and parallel application portions, 11f

Speedup, 9!10, 215

Spirals, 392!393

Stable sort algorithm, 294

Stencil, 174!177

2D grid, 177f

differentiable function, 174f

one-dimensional stencil examples, 176f

parallel stencil, 178!179

register tiling, 186!188

shared memory tiling for stencil sweep,

179!183

stencil-based algorithms, 173

thread coarsening, 183!186

two-dimensional five-point stencil, 176f

Stencil sweep, 177

shared memory tiling for, 179!183

Stochastic gradient descent approach, 362

Stream-based scan algorithm, 257

Streaming multiprocessors (SMs), 70, 93, 135,

161!162, 200, 404, 421, 482

shared memory vs. registers in CUDA device

SM, 100f

thread block assignment to, 71f

unit of thread scheduling in, 75

Streaming processors, 70

Streams, 491!492

Strip-mining technique, 110!111

Stub function, 34

Subarrays, 266!267

Supercomputing, 7!8

Synchronization, 71!74

depth, 492

operations, 12

__syncthreads (), 73, 110, 219, 226, 241, 350!351

T
Tensor cores, 94!96

Tera (1012). See Tera floating-point operations per

second (TFLOPS)

Tera floating-point operations per second

(TFLOPS), 1, 3

Thread(s), 2, 27!28, 47!48

blocks, 36

coarsening, 138!141, 183!186, 228!229,

305!306, 422!423

code for thread coarsening, 140f

granularity, 123

index value, 219

scheduling, 80!81

ThreadIdx variable, 37!40, 47!48, 50!52

ThreadIdx. x, 37!40, 76, 241

ThreadIdx. y, 76

Threading, 35!40

Three dimension (3D)

array, 48
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Three dimension (3D) (Continued)

block, 77

convolution, 152

differential equations, 178!179

electrostatic energy, 500

imaging, 8

space, 358

stencil computation, 450!451

third-order stencil, 180

thread organizations, 51!52

visualization, 416

Throughput, 94!96

throughput-oriented design, 5!6

Thrust, 310, 445

Tiled 2D convolution kernel, 166!167

Tiled convolution

with halo cells, 163!168

arithmetic-to-global memory access ratio,

168f

input tile vs. output tile, 163f

thread organization for using input tile

elements, 166f

using caches for halo cells, 168!170

Tiled matrix multiplication, 145

algorithm, 105

kernel, 107!112

calculation of matrix indices in tiled

multiplication, 109f

occupancy, 115

using shared memory, 108f

Tiled matrix multiplication kernel with boundary

checks, 114f

Tiled merge kernel, 275!282

design, 276f

identifying block-level output and input

subarrays, 277f

Tiles, 103

Tiling, 175, 179, 263

efficiency, 154, 156

for reduced memory traffic, 103!107

global memory accesses performed by

threads, 105f

matrix multiplication, 104f

tiled matrix multiplication, 106f

Time-space variation, 475

Tissue chemical anomalies, 392!393

Tolerate latency, 118

Top-down strategy, 309

implementation, 339

Training

models, 361!366

multilayer classifiers, 365

process, 361

Transcription, 356

Translation, 356

Transparent scalability, 71!74

“Transparent” outsourcing model, 31

Transposition, 320

sort, 293, 308

Trigonometry functions, 409

Twitter (social network), 333

Two-dimension (2D)

array, 54!55, 154

convolution, 152, 156

kernel, 168

data, 82

five-point stencil, 179

grid, 177

slice, 417!418

thread organizations, 51!52

vector, 357

U
Unified device memory space, 510!511

Unified memory, 503!505

Unified Virtual Address Space (UVAS), 501!502

Uniform grid method, 418

Units in last place (ULP), 528

Unstable sort algorithms, 294

Unstructured grids, 174

V
Variable declaration, 102

Vector addition kernel function, 28!31, 38f

simple traditional vector addition C code

example, 29f

Vertex-centric parallel implementation, 339

vertex-centric pull implementation, 340!343

vertex-centric push implementation, 339!340,

342!343, 349

Vertex-centric parallelization, 338!343

Vibrational forces, 434!435

Virtual address spaces, 501!502

Viruses, 415!416

Visual molecular dynamics (VMD), 415!416

Volumetric data, 415!416

von Neumann model, 97!99

memory vs. registers, 98f

W
Warp(s)

analyzing impact of control divergence, 82

scheduling, 83!85

and SIMD hardware, 74!79, 78b

blocks are partitioned into warps, 75f

placing 2D threads into linear layout, 76f
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and SIMD Hardware, 97!99

simple sum reduction kernel, 218f

While-loop statement, 272

Wiring block, 337

Work assignment, 235

Work efficiency, 12, 244!245

Work-efficient algorithm, 260

Work-efficient block-wide parallel scan, 260

Work-efficient sequential scan, 260

Write-after-read data dependence, 110, 241

Z
Zero elements, 313

Zero-copy memory, 501!502

Zero-overhead scheduling, 84!85, 84b
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