
1

The Droplet Search Algorithm for Kernel Scheduling

MICHAEL CANESCHE, UFMG, Brazil

VANDERSON M. ROSARIO, Cadence Design Systems, USA

EDSON BORIN, Unicamp, Brazil

FERNANDO MAGNO QUINTÃO PEREIRA, UFMG, Brazil

Kernel scheduling is the problem of finding the most efficient implementation for a computational kernel.

Identifying this implementation involves experimenting with the parameters of compiler optimizations, such

as the size of tiling windows and unrolling factors. This paper shows that it is possible to organize these

parameters as points in a coordinate space. The function that maps these points to the running time of

kernels, in general, will not determine a convex surface. However, this paper provides empirical evidence that

the origin of this surface—an unoptimized kernel—and its global optimum—the fastest kernel—reside on a

convex region. We call this hypothesis the “droplet expectation”. Consequently, a search method based on the

coordinate descent algorithm tends to find the optimal kernel configuration quickly if the hypothesis holds.

This approach—called Droplet Search—has been available in Apache TVM since April of 2023. Experimental

results with six large deep learning models on various computing devices (ARM, Intel, AMD, and NVIDIA)

indicate that Droplet Search is not only as effective as other AutoTVM search techniques but also two to ten

times faster. Moreover, models generated by Droplet Search are competitive with those produced by TVM’s

AutoScheduler (Ansor), despite the latter using four to five times more code transformations than AutoTVM.

CCS Concepts: • Software and its engineering→ Runtime environments; Compilers.

Additional Key Words and Phrases: Tensor Compiler, Optimization, Kernel Scheduling, Search

ACM Reference Format:
Michael Canesche, Vanderson M. Rosario, Edson Borin, and Fernando Magno Quintão Pereira. 2024. The

Droplet Search Algorithm for Kernel Scheduling. ACM Trans. Arch. Code Optim. 1, 1, Article 1 (January 2024),

28 pages. https://doi.org/10.1145/3650109

1 INTRODUCTION
In the context of this paper, a kernel is a function that reads and write data indexed by a linear

combination of natural numbers. Kernels are typically implemented as nests of affine loops. Ex-

amples of kernels include matrix multiplication, transposition, and convolutions. Following Jin

et al. [2022], we say that a deep learning model is a function implemented as alternating layers of

kernels and non-linear functions (sigmoid, ReLU, etc.). Examples of deep-learning models include

neural networks, such as BERT [Devlin et al. 2019], ResNet-18 [He et al. 2015], VGG-16 [Sengupta

et al. 2018], MobileNet [Howard et al. 2017], and MXNet [Chen et al. 2015].

Authors’ addresses: Michael Canesche, UFMG, Brazil, michael.canesche@dcc.ufmg.br; Vanderson M. Rosario, Cadence

Design Systems, USA, vrosario@cadence.com; Edson Borin, Unicamp, Brazil, edson@ic.unicamp.br; Fernando Magno

Quintão Pereira, UFMG, Brazil, fernando@dcc.ufmg.br.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

XXXX-XXXX/2024/1-ART1 $15.00

https://doi.org/10.1145/3650109

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1145/3650109
https://doi.org/10.1145/3650109

1:2 Michael Canesche, Vanderson M. Rosario, Edson Borin, and Fernando MagnoQuintão Pereira

The Space of Kernel Schedulings. A kernel is an abstract concept that supports different concrete

implementations [Jin et al. 2022]. Each implementation, in this paper, is called a kernel schedule. The
set of every schedule of a kernel is called its search space. The choice of implementation impacts

the performance of the kernel. Finding the best schedule for a kernel is an optimization problem

whose objective function is running time: the faster a kernel runs, the better that schedule is. The

problem of finding exact analytical solutions to kernel scheduling is open, even when fixing the

computer architecture [Tollenaere et al. 2023]. Hence, typical techniques are stochastic, take time

to converge and provide no guarantees of optimality [Lebedev and Belecky 2021].

Coordinates and Neighborhoods. Kernel schedules differ due to the application of code transfor-

mations, such as tiling, unrolling, and thread blocking. If we fix the sequence of transformations

that define the search space, then each schedule is uniquely determined by the transformation

parameters: unrolling factor and tiling window per loop, number of threads per block, etc. These
parameters admit a total order: if 𝑚 < 𝑛, 𝑛,𝑚 ∈ N, then an unrolling factor of 𝑛 is larger than

an unrolling factor of𝑚. This ordering determines coordinates on the space of kernel schedules;

hence, yielding a notion of a neighborhood. The neighborhood function relates kernel configurations
produced by transformation vectors that differ by a minimal difference on one parameter.

The Key Observation and the Implied Hypothesis: In a convex optimization space, every local

minimum is a global minimum. The space of kernel schedules is usually not convex, as Example 3.5,

in Section 2, will show. However, we believe that the following expectation applies to the vast

majority of machine learning models: It is possible to project the set of all kernel schedules onto a
system of coordinates, such that the region between the origin of this space and the fastest kernel
configuration form a convex hypersurface with respect to the running time of the kernels. Hence,
the optimum configuration can be reached from the origin by deriving the running time function

along a continuous neighborhood of kernel configurations. We call this observation the Droplet
Expectation, and formalize it in Section 3 (see Definition 3.6 on Page 8).

Based on this expectation, this paper describes a scheduling technique called Droplet Search,
which is currently part of Apache TVM

1
. This paper evaluates Droplet Search on six architectures

(two x86 CPUs, two ARMCPUs, and two NVIDIA GPUs); and on six models (BERT, ResNet-18, VGG-

16, MobileNet, MXNet, and Inception-v3). Section 4 shows that Droplet Search runs up to ten times

faster than the other four search algorithms in AutoTVM [Chen et al. 2018] and the search algorithm

in TVM’s Ansor [Zheng et al. 2020]. The kernels produced via Droplet Search tend to outperform

those produced by the other search approaches in AutoTVM, and approximate those produced by

Ansor, even though the latter might use up to four times more transformation parameters. These

results, summarized in Figure 11 (Page 15), come from the following contributions:

Intuition: the droplet expectation is not a theorem: in Section 4.4, we show that it is possible

to disprove it using analytical cost models involving discontinuous functions. However, the

hypothesis is expected to hold in cost models described by contiguous functions involving only

positive domain and coefficients: a property that Renganarayana and Rajopadhye [2008] call

“Positivity”. These models are rather common: Table II in Renganarayana and Rajopadhye’s

manuscript lists eight of them from previous work. More recent models [Olivry et al. 2021,

2020] share similar properties, as Section 4.4 discusses.

Simplicity: the implementation of droplet’s search in AutoTVM 0.14.0 (the pseudo code in Fig-

ure 4, Page 6) consists of 127 lines of commented Python code. For comparison, the implemen-

tation of TVMXGB’s search [Chen et al. 2018] uses 971 lines in three files (xgboost_tuner.py,
xgboost_cost_model.py and sa_model_optimizer.py).

1
Release v0.13.0 (https://github.com/apache/tvm/pull/14683).

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://github.com/apache/tvm/pull/14683

The Droplet Search Algorithm for Kernel Scheduling 1:3

Adaptability: Droplet Search works in any setting where AutoTVM does, including settings

like a Cortex A7, where Ansor cannot be used to optimize MobileNet [Howard et al. 2017].

Efficiency: Droplet Search converges more than twice as fast as the different algorithms

available in AutoTVM (random sampling, grid search, genetic search, and XGBoost) and

usually is more than four times faster than TVM’s AutoScheduler.

Effectiveness: in almost every experiment we ran, Droplet Search delivered kernels that either

match or outperform those produced by the other schedulers in AutoTVM. Compared to

Ansor, in a universe of 30 experiments, Droplet Search found faster kernels in eleven settings,

and lost in twelve. However, Ansor uses up to four times more transformations.

2 THE SEARCH SPACE
A kernel admits an abstract view, formed by an iteration space, a data space, and a computation

constrained into these zones
2
. As mentioned in Section 1, this view can be implemented in multiple

ways as long as the data dependencies encoded in the kernel’s computation are respected. Each

implementation differs in how the iteration space is traversed. This scheduling determines how the

kernel’s computation updates the data space. Example 2.1 clarifies these notions.

Example 2.1. Figure 1 shows an abstract view of the matrix multiplication kernel. The compu-

tations performed by the kernel can be indexed by triples (𝑖, 𝑗, 𝑘), which form its iteration space.

The bounds 𝑅𝐴, 𝐶𝐵 , and 𝐶𝐴 that delimit this space abide by two constraints. The first, 𝐶𝑎 = 𝑅𝐵 , is

mandatory for correctness; the second—𝑅𝐴 is even—we use for the sake of the example. Figure 1

also shows five implementations of the abstract kernel. These implementations produce the same

matrix C; however, the order in which the computations occur—the kernel schedule—might vary.

A ⊆ (0 … RA) ⨉ (0 … CA)

B ⊆ (0 … RB) ⨉ (0 … CB)

C ⊆ (0 … RC) ⨉ (0 … CC)

i ∈ (0 … RA)

j ∈ (0 … CB)

k ∈ (0 … CA)

Cij = Cij + Aik ⨉ Bkj

Data space: Iteration space:

Computation:

void mm(f64* A, f64* B, f64* C,
 int RA, int CA, int CB) {
 for (int i0 = 0; i0 < RA; i0++) {
 for (int j0 = 0; j0 < CB; j0++) {
 for (int k0 = 0; k0 < CA; k0++) {
 int ij = i0 * CB + j0;
 int ik = i0 * CA + k0;
 int kj = k0 * CB + j0;
 C[ij] += A[ik] * B[kj];
} } } }

void mm_jki(f64* A, f64* B, f64* C,
 int RA, int CA, int CB) {
 for (int j0 = 0; j0 < CB; j0++) {
 for (int k0 = 0; k0 < CA; k0++) {
 for (int i0 = 0; i0 < RA; i0++) {
 int ij = i0 * CB + j0;
 int ik = i0 * CA + k0;
 int kj = k0 * CB + j0;
 C[ij] += A[ik] * B[kj];
} } } }

void mm_jki_roll(f64* A, f64* B, f64* C,
 int RA, int CA, int CB) {
 for (int j0 = 0; j0 < CB; j0++) {
 for (int k0 = 0; k0 < CA; k0++) {
 for (int i0 = 0; i0 < RA; i0 += 2) {
 int ij = i0 * CB + j0;
 int ik = i0 * CA + k0;
 int kj = k0 * CB + j0;
 C[ij] += A[ik] * B[kj];
 ij = (i0+1) * CB + j0;
 ik = (i0+1) * CA + k0;
 kj = k0 * CB + j0;
 C[ij] += A[ik] * B[kj];
} } } }

void mm_jki_tile_8(f64* A, f64* B, f64* C,
 int RA, int CA, int CB) {
 for (int j0 = 0; j0 < CB; j0 += 8) {
 for (int k0 = 0; k0 < CA; k0 += 32) {
 for (int i0 = 0; i0 < RA; i0 += 16) {
 int jmax = j0 + 8 > CB ? CB : j0 + 8;
 for (int j1 = j0; j1 < jmax; ++j1) {
 int kmax = k0 + 32 > CA ? CA : k0 + 32;
 for (int k1 = k0; k1 < kmax; ++k1) {
 int imax = i0 + 16 > RA ? RA : i0 + 16;
 for (int i1 = i0; i1 < imax; ++i1) {
 int ij = i1 * CB + j1;
 int ik = i1 * CA + k1;
 int kj = k1 * CB + j1;
 C[ij] += A[ik] * B[kj];
} } } } } } }

void mm_jki_tile_16(f64* A, f64* B, f64* C,
 int RA, int CA, int CB) {
 for (int j0 = 0; j0 < CB; j0 += 16) {
 for (int k0 = 0; k0 < CA; k0 += 32) {
 for (int i0 = 0; i0 < RA; i0 += 16) {
 int jmax = j0 + 16 > CB ? CB : j0 + 16;
 for (int j1 = j0; j1 < jmax; ++j1) {
 int kmax = k0 + 32 > CA ? CA : k0 + 32;
 for (int k1 = k0; k1 < kmax; ++k1) {
 int imax = i0 + 16 > RA ? RA : i0 + 16;
 for (int i1 = i0; i1 < imax; ++i1) {
 int ij = i1 * CB + j1;
 int ik = i1 * CA + k1;
 int kj = k1 * CB + j1;
 C[ij] += A[ik] * B[kj];
} } } } } } }

(a) (b) (c)

(d) (e) (f)

CA = RB, RA % 2 = 0
Constraints:

01
02
03
04
05
06
07
08
09
10

Fig. 1. (a) The abstract representation of the matrix multiplication kernel. (b-c) Canonical schedules of the
kernel. (d-f) Schedules that result from applying loop tiling and loop unrolling with different parameters onto
the canonical schedule in (c).

2
Notions of iteration and data space are standard in the compiler literature. Such concepts appeared independently in the

works of Feautrier [1991] and Wolf and Lam [1991], eventually leading to the concept known today as the Polyhedral Model.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:4 Michael Canesche, Vanderson M. Rosario, Edson Borin, and Fernando MagnoQuintão Pereira

Transformation Vectors. As hinted in Example 2.1, in the context of this paper, the implementation

of kernels differ concerning code transformations. These transformations are guided by parameters.
Example 2.2 shows parameters for two well-known transformations: tiling and unrolling.

Example 2.2. Figure 1 (e) shows the kernel that comes from Figure 1 (c) after the application of

three instances of tiling: a transformation that partitions the iteration space into smaller regions. In

this example, tiling happens along the three axes of the iteration space. The dimensions of the tiling

window are 8, 32, and 16 points. Each one of these sizes is an optimization parameter. Figure 1 (f)

shows the kernel produced after an application of unrolling onto the innermost loop of the kernel

in Figure 1 (c). The unrolling factor, i.e., the transformation parameter, is 2.

The parameters of code transformations can be organized into transformation vectors. A trans-

formation vector is a tuple whose elements represent these parameters. The order in which these

parameters appear in the vector determines the order in which transformations are applied to

programs. Thus, if a given code transformation has multiple parameters, then these parameters

exist sequentially in the transformation vector. Example 2.3 shows how the parameters seen in

Example 2.2 can be represented as transformation vectors.

Example 2.3. Consider the ordered application of the two loop-related compiler optimizations

mentioned in Example 2.2 onto the abstract kernel in Figure 1 (a): tiling along dimensions 𝐴, 𝐵, and

𝐶 , and unrolling on dimensions 𝐴, 𝐵, and𝐶 . The vectors representing any application of these code

transformations have the format: ⟨tile𝐴 : 𝑡𝐴, tile𝐵 : 𝑡𝐵, tile𝐶 : 𝑡𝐶 , roll𝐴 : 𝑟𝐴, roll𝐵 : 𝑟𝐵, roll𝐶 :

𝑟𝐶⟩. Figure 2 shows the vectors that produce the kernels in Figure 1.

Fig-1c ⟨tileA: 0, tileB: 0, tileC: 0, rollA: 0, rollB: 0, rollC: 0⟩
Fig-1d ⟨tileA: 16, tileB: 16, tileC: 32, rollA: 0, rollB: 0, rollC: 0⟩

Fig-1e ⟨tileA: 16, tileB: 8, tileC: 32, rollA: 0, rollB: 0, rollC: 0⟩
Fig-1f ⟨tileA: 0, tileB: 0, tileC: 0, rollA: 2, rollB: 0, rollC: 0⟩

Fig. 2. The transformation vectors that produce kernels in Figure 1.

The iteration space of an abstract kernel can be traversed in many ways. If we ascribe one loop

per dimension of the iteration space, any ordering of these loops that respects data dependencies is

a valid traversal. The implementation of any such ordering, subject to a null transformation vector

(the vector representing the absence of transformations), is called a canonical schedule. A kernel

may have more than one canonical schedule, as Example 2.4 illustrates. Canonical schedules lead

to Kernel Transformation Spaces, which Definition 2.5 formalizes.

Example 2.4. Figures 1 (b) and (c) show canonical schedules for the abstract kernel in Figure 1 (a).

Any permutations of the loops in Lines 03-05 is a valid canonical schedule. Canonical schedules, by

definition, are not subject to code transformations: they represent the application of a null transfor-

mation vector. As a consequence, they do not show the effects of typical compiler optimizations,

such as loop invariant code motion. Thus, the invariant code in Line 06 of Figure 1 (b) remains

inside the innermost loop.

Definition 2.5 (Kernel Transformation Space). Let ⟨P1 : 𝑝1,P2 : 𝑝2, . . . ,P𝑛 : 𝑝𝑛⟩ be a transfor-
mation vector, such that each parameter 𝑝𝑖 comes from a range of parameters P𝑖 . The Cartesian

product P1 × P2 × . . . × P𝑛 plus a canonical kernel K form a kernel transformation space. Each

point of this space represents a configuration of K transformed by an instance of that Cartesian

product. K is called the origin of this space and the set of transformation parameters is called the

basis of this space. If the basis contains 𝑛 parameters, the space is called 𝑛-dimensional.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

The Droplet Search Algorithm for Kernel Scheduling 1:5

Example 2.6. The vectors in Example 2.3, plus the canonical kernel in Figure 1 (c), form a six-

dimensional transformation space. The origin of this space is the kernel in Figure 1 (c), and its basis

is formed by three parameters of loop tiling, and three parameters of loop unrolling.

Not every sequence of code transformations is valid. For instance, unrolling a loop by a factor

larger than that loop’s trip count is not meaningful. Thus, Definition 2.5 implicitly assumes that

the transformation space is produced by valid transformation vectors. Furthermore, the set of

kernels determined by Definition 2.5 is non-exhaustive, even under bounded parameters. Non-

exhaustiveness follows from two simplifications that we enumerate below, which are assumed in the

construction of the transformation space. These simplifications are also adopted in AutoTVM [Chen

et al. 2018], and have been incorporated into further work inspired by it [Zhang et al. 2021]:

(1) Code transformations are applied to the canonical kernel always in a fixed order. In other

words, it is possible that by varying the order in which transformations are applied, the space

could be extended with new concrete kernels.

(2) Every point in the transformation space comes directly from the canonical kernel via the

application of one transformation vector. Notice that successive applications of optimizations

could, in principle, produce kernels outside the transformation space.

The performance of the kernels that form the transformation space might vary. These variations

depend on the scheduling, on the target architecture and on the dimensions of the iteration and data

spaces. The problem of finding the best implementation of a kernel, given these constraints, is known

as the Kernel Scheduling Problem, a notion extensively discussed in previous work (see Section 5

for references). To keep this paper self-contained, Definition 2.7 restates this concept. Search

strategies for Kernel Scheduling are key to optimize deep learning models. Thus, Definition 2.7 is a

well-researched problem. Example 2.8 revisits some of these techniques.

Definition 2.7 (Kernel Scheduling Problem). Given a computing device, a transformation space

with origin K and basis (P1, . . . ,P𝑛), plus valid inputs for K , kernel scheduling asks for the fastest

implementation of K in the transformation space.

Example 2.8. Figure 3 provides a pictographic metaphor for different search techniques for the

kernel scheduling problem implemented in AutoTVM, and contrasts them with the Droplet Search

method that this paper introduces. Section 3 shall describe the droplet algorithm. In regards to the

other methodologies, the search proceeds as follows:

Grid: explores a bounded region of the transformation space. Regular ranges of transformation

parameters determine this region.

Random: points of the transformation space are sampled randomly. Sampling usually follows

a uniform distribution on predefined bounds placed onto the parameters.

Annealing: Simulated annealing [Kirkpatrick et al. 1988] is a refinement of random search,

where sampling alternates between regions that are close and distant from current best

points. Points within a neighborhood are sampled, and, from time to time, the center of this

neighborhood changes. The probability of such large jumps happening decreases with time.

3 DROPLET SEARCH
The Droplet Search is a greedy heuristic to explore the kernel transformation space. The proposed

technique is a variation of the Coordinate DescentAlgorithm3
, with extensions proposed by Richtárik

and Takác [2012] to enable synchronous parallelism. Figure 4 provides an overview of the search

3
It is not clear who invented Coordinate Descent. Descriptions of the algorithm can be found in classic textbooks [Zangwill

1969]. For a comprehensive overview, we recommend the work of Wright [2015].

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:6 Michael Canesche, Vanderson M. Rosario, Edson Borin, and Fernando MagnoQuintão Pereira

(d)(a) (c)(b)

Fig. 3. Pictographic metaphors for different search algorithms. (a,b) Grid search and Random sampling: every
configuration within the gray area—and only those—will be evaluated. (c) Simulated Annealing: solid lines
represent moves that go “down-hill”, i.e., towards faster kernel configurations; dashed edges represent moves
that go “up-hill”, i.e., which accept to explore slower configurations to escape from local minima. (d) Droplet
Search: the darker the color of a configuration, the faster the running time of that configuration.

algorithm evaluated in this paper, and Figure 3 (d) provides a graphical metaphor to illustrate

how the algorithm works: at each step—up to a maximum fixed number of iterations—search

chooses the most profitable kernel configuration that is considered a “neighbor” of the current best

configuration. The rest of this section discusses each part of this algorithm shown in Figure 4.

def search(num_iterations):

 candidate = origin

 visited = set()

 for i in range(num_iterations):

 neighborhood = get_neighbors(candidate).difference(visited)

 if len(neighborhood) < num_threads():

 neighborhood.union(speculate()).difference(visited)

 visited.union(neighborhood)

 ps = map(lambda n: Process(target=n.run).start(), neighborhood)

 map(lambda p: p.join(), ps)

 new_candidate = min(neighborhood, key=lambda e: e.running_time)

 if is_statistically_faster(new_candidate, candidate, 0.05):

 candidate = new_candidate

 else:

 return candidate

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

The origin of the coordinate descent is the

canonical kernel from Def. 2.5

The neighborhood function from Section 3.1

grabs one kernel to evaluate per thread

The `visited` set avoids double evaluation

Synchronous parallelism through speculation

is the subject of Section 3.4

Stop criteria are discussed in Section 3.3

We use a confidence level of 0.05 to

distinguish the running time of samples.

Fig. 4. Droplet Search, a Coordinate Descent variation proposed in this paper to solve the Scheduling Problem
from Definition 2.7.

The successful application of Coordinate Descent depends on a suitable “neighborhood function”,

subject of Section 3.1. Search tends to converge to a global optimal, based on the intuition that

Section 3.2 provides. Convergence is based on criteria discussed in Section 3.3. This closes with

discussions of two optimizations that speed search up: parallelization and speculation (Sec. 3.4).

3.1 The Neighborhood Function
Any code transformation used in this paper is parameterized by one positive integer. Example 2.2

(Page 4) describes some of these parameters. This assumption—transformations defined by one

positive integer—forces a total ordering over different instances of a code transformation. The

domain of a code transformation is the set of all the values of its parameters. This paper works only

with numeric domains; however, a domain does not need to be contiguous, as Example 3.1 shows.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

The Droplet Search Algorithm for Kernel Scheduling 1:7

Example 3.1. The list below shows different compiler optimizations and the ordering between

their instances. The example takes liberties for the sake of the illustration; i.e., vector lengths are
architecture-dependent, and not every size might be available:

Peeling, with parameter peel = 𝑛, 𝑛 ∈ [0, 1, 2, . . . , maxp] being the number of iterations to peel.

The set of values {0, 1, . . . , maxp} is the domain of the transformation.

Unrolling, with parameter roll = 𝑛, 𝑛 ∈ [0, 1, 2, . . . , maxr] being the unrolling factor.

Thread blocking, (in graphics-processing units) with parameter thread = 𝑛, 𝑛 ∈ [0, 1, 2, . . . ,
maxt] being the number of GPU threads per block.

Tiling, with parameter tile = 𝑛, 𝑛 ∈ [𝑁 /20, 𝑁 /15, 𝑁 /12, 𝑁 /10, 𝑁 /6, 𝑁 /4, 𝑁 /3, 𝑁 /2], where
𝑁 is the size of the iteration space. We assume that 𝑁 is a multiple of 60. Notice that this

example chooses perfect divisors of the iteration space, but different ranges are possible.

Vectorization, with parameter vect = 𝑛, 𝑛 ∈ [0, 2, 4, 8, 16] being the vector length.

In any of the above examples, we say that an instance of a transformation is less than another

instance based on the ordering between their parameters. For example, if we consider vectorization

(vect), then vect =𝑚 < vect = 𝑛 if, and only if,𝑚 < 𝑛.

The order between parameters leads to a notion of neighborhood, formalized as follows:

Definition 3.2 (Neighborhood). Consider two transformation vectors of an 𝑛-dimensional space:

𝑣1 = ⟨P1 : 𝑝1, . . . ,P𝑖−1 : 𝑝𝑖−1,P𝑖 : 𝑥,P𝑖+1 : 𝑝𝑖+1, . . . ,P𝑛 : 𝑝𝑛⟩; and 𝑣2 = ⟨P1 : 𝑝1, . . . ,P𝑖−1 : 𝑝𝑖−1,P𝑖 :

𝑦,P𝑖+1 : 𝑝𝑖+1, . . . ,P𝑛 : 𝑝𝑛⟩, such that each 𝑝 is a transformation parameter within range P. Vectors

𝑣1 and 𝑣2 are neighbors along dimension 𝑖, 1 ≤ 𝑖 ≤ 𝑛, if they differ only on dimension 𝑖 and if:

(1) 𝑥 < 𝑦 (without loss of generality);

(2) ∀𝑧 ∈ P𝑖 , 𝑧 ≠ 𝑥 , if 𝑧 < 𝑦, then 𝑧 < 𝑥 .

(3) ∀𝑧 ∈ P𝑖 , 𝑧 ≠ 𝑦, if 𝑧 > 𝑥 , then 𝑧 > 𝑦.

If two vectors are neighbors along one dimension, then they are called neighbors. The set of every
neighbor of a given transformation vector is called the neighborhood of that vector.

Each dimension of a transformation vector 𝑣 is considered separately when determining the

neighbors of 𝑣 . There exist at most two neighbors per transformation parameter; therefore, the

number of neighbors of 𝑣 grows linearly with the number of its dimensions. This observation

is essential for scalability: if the neighborhood of a vector considered variations in two or more

dimensions, then the size of the neighborhood would be exponential on the number of dimensions.

Example 3.3. Consider the following transformation vector: 𝑣 = ⟨tile𝐴 : 0, tile𝐵 : 8, tile𝐶 :

16, roll𝐴 : 4, roll𝐵 : 0, roll𝐶 : 0⟩, which applies onto the canonical kernel in Figure 1 (c). If we

let roll𝐴 = [2, 4, 8, 16, 24], then 𝑣 has two neighbors along dimension roll𝐴. These neighbors are
𝑣1 = ⟨. . . , roll𝐴 : 2, . . .⟩; and 𝑣2 = ⟨. . . , roll𝐴 : 8, . . .⟩.

3.2 Convexity
The goal of this paper is to find implementations for abstract kernels that minimize their running

times. To this purpose, we define the running time function RT as follows:

Definition 3.4 (The Running Time Function). Given: (i) a canonical Kernel K ; (ii) a transformation

vector 𝑣 with parameters P; (iii) a computer architecture 𝐴; and (iv) input data 𝐼 for the canonical

kernel; we define the running time function RT𝐴,𝐼,K (𝑣) : P ↦→ R as a function that maps the

implementation of K optimized by 𝑣 to the time it takes to process input 𝐼 on target 𝐴.

In practice, RT is obtained by running the kernel configurations. The notion of neighborhood

makes the transformation space a coordinate space: it is possible to define the distance between two

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:8 Michael Canesche, Vanderson M. Rosario, Edson Borin, and Fernando MagnoQuintão Pereira

transformation vectors. The running time function RT divides this coordinate space into two halves:

if RT𝐴,𝐼,K (𝑣) = 𝑡 , then we have a region formed by 𝑡lower < 𝑡 , and a region formed by 𝑡higher ≥ 𝑡 .

Thus, RT𝐴,𝐼,K determines a hypersurface onto the transformation space. This hypersurface is convex

if its local minima are equal to its global minimum. We say that vector 𝑣 is a minima of RT𝐴,𝐼,K
if RT𝐴,𝐼,K (𝑣) < RT𝐴,𝐼,K (𝑣 ′), for any 𝑣 ′ within the neighborhood of 𝑣 . A global minimum is the

smallest local minimum in a set. Example 3.5 illustrates these concepts.

Example 3.5. Figure 5 shows hypersurfaces produced by two running time functions. Each

function is parameterized by a different architecture and different inputs (the dimensions of the

iteration space). The functions are parameterized by the same canonical kernel—the configuration

in Figure 1(b). Two parameters form the transformation space: tile𝐴 ∈ [0, 20, 40, . . . , 120], and
tile𝐵 ∈ [0, 20, 40, . . . , 120]. The figure shows, for each running time function, its optimal config-

uration. The figure also shows at least one local minimum that differs from the optimum. These

hypersurfaces are not convex because they contain local minima that are not globally optimal.

20
40

60
80

100
120

0
20

40
60

80
100

120

x86-64 AMD Ryzen 7 3700X, 2.2GHz L1=256Kb, L2=4Mb, L3=32Mb, RAM=64

0

5

6

7

8

9

10

11

0.25

0.30

0.35

0.40

0.45

0.50

0
20

40
60

80
100

120
020406080100120

x86-64 AMD Ryzen 7 4800, 1.4GHz L1=256Kb, L2=4Mb, L3=8Mb, RAM=32

Tiling window on dimension B
Tiling window on dimension C Tiling window on dimension B

Tiling window on dim
ension C

Ru
nn

in
g

tim
e

(s
ec

)

Ru
nn

in
g

tim
e

(s
ec

)

Fig. 5. Performance variation for the kernel in Figure 1 (b), considering the following parameters of the
iteration space: (Left) 𝐴 = 1000, 𝐵 = 800,𝐶 = 700; and (Right) 𝐴 = 3500, 𝐵 = 1400,𝐶 = 2400. White pins show
optimal tiling configurations, and gray pins show points of local minima that are not globally optimal.

The hypersurfaces in Figure 5 are not convex. However, they have the following property: the

origin and the global optimum belong to the same convex region. This property remains true,

at least for the two settings in Figure 5, if we add more dimensions to the transformation space

considered in Example 3.5, such as an extra tiling window, or unrolling of the innermost loop, or

interchange of any pair of loops. Definition 3.6 states this observation as our working hypothesis.

Definition 3.6 (The Droplet Expectation). Let 𝑣opt be the optimum kernel of the running time

function RT𝐴,𝐼,K . We expect 𝑣opt andK , the unoptimized kernel, to belong into a a convex contiguous

subset of the hypersurface determined by RT𝐴,𝐼,K . Hence, we expect the existence of a chain of

neighbor vectors 𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑛−1, 𝑣𝑛 , where K = 𝑣0 and 𝑣𝑛 = 𝑣opt , with the following properties:

Contiguous chain: 𝑣𝑖 ∈ neighborhood (𝑣𝑖−1), 0 < 𝑖 ≤ 𝑛; and

Descending chain: RT (𝑣𝑖) < RT (𝑣𝑖−1), 0 < 𝑖 ≤ 𝑛.

A continuous hypersurface can be partitioned into convex regions: maximal convex sets formed

by the transitive closure of the neighborhood function. Whenever the Droplet Expectation is

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

The Droplet Search Algorithm for Kernel Scheduling 1:9

confirmed, the origin and global optimum belong to the same convex region. Thus, there exists a

“downhill path” from origin to optimum that can be found by Coordinate Descent (assuming an

idealized running time function without statistical variations). If the Droplet Expectation fails, then

the origin and global optimal belong into distinct convex regions. Figure 6 illustrates these ideas.

K

vopt

R
un

ni
ng

 T
im

e
of

 k
er

ne
l c

on
fig

ur
at

io
ns

v2

v3

v4

v5

v6

v1

K

vopt

v2

v3

v4

v5

v6

v1

Convex
region 1

Convex
region 2

Convex
region 1

Convex
region 2

Downhill path:
Contiguous

descending chain

The droplet expectation holds Expectation does not hold

K

vopt

(a) (b) (c)

Fig. 6. (a) Downhill path from origin to global optimum on a three-dimensional hypersurface. (b) Expectation
holds: origin and global optimum belong to the same convex region. (c) Expectation fails: origin and global
optimum belong to different convex regions. Configuration 𝑣3 is a local minimum, but not a global optimum.

Intuition. The hypothesis stated in Definition 3.6 is not a certainty: it is possible to disprove it

with analytical models involving discontinuous functions, as Section 4.4 shows. However, Section 4

demonstrates that the hypothesis holds on a variety of architectures and models. Indeed, the effect

of many compiler optimizations can be described by polynomial equations involving only positive

coefficients ranging on positive domains. The second derivative of such functions, if they exist,

will be always positive. This condition is sufficient to ensure convexity [Bertsekas 2009, Pro.1.1.10].

In the words of Renganarayana and Rajopadhye [2008], “The use of polynomial functions with this
property leads to convex optimization problems which can be solved for real solutions in polynomial
time”. Renganarayana and Rajopadhye call this property Positivity. Notice that the ordering of the

various optimization levels along each dimension of the search space is primarily responsible for

making the droplet expectation hold. For instance, going back to Example 3.5, the expansion of the

tiling window might be beneficial for performance until the number of elements in this window

overgrows the size of the L1 cache. After this point, any further increase will cause cache misses.

3.3 Stop Criterion
The existence of the convex path expected in Definition 3.6 does not ensure that such a path can

be discovered via a coordinate descent search procedure. Running time has a stochastic nature:

This nature implies that the actual evaluation of RT𝐴,𝐼,K on a kernel produced by a transformation

vector 𝑣 is prone to variations. Thus, coordinate descent might reach suboptimal configurations

that are apparently optimal due to measurement fluctuations on RT𝐴,𝐼,K (𝑣).
To increase the reliability of coordinate descent, multiple evaluations of each point of the

transformation space are in order. However, each further evaluation contributes to increasing the

total time necessary to solve scheduling. The implementation of Droplet Search that we analyze

in Section 4 performs three evaluations of each point visited in the process of solving scheduling.

Three evaluations are the default sampling procedure adopted by AutoTVM. We use Student’s Test

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:10 Michael Canesche, Vanderson M. Rosario, Edson Borin, and Fernando MagnoQuintão Pereira

(following Levine [1969]’s implementation) with significance level 𝛼 = 0.05 to compare the two

populations of three samples each
4
. In other words, the search stops if we reach a transformation

vector 𝑣 with no neighbor that yields a faster kernel configuration with a confidence level of 95%.

3.4 Synchronous Parallelism and Speculation
The algorithm in Figure 4 keeps a current candidate transformation vector, which is initialized

with the origin of the optimization space in Line 02 and is updated in Line 13 whenever a faster

kernel configuration is found. To find a faster configuration, every point in the neighborhood of the

current candidate is considered. The evaluation of these points happens in parallel, as Lines 09 and

10 of Figure 4 shows. However, we have observed that it is often difficult to fill up every available

thread with unvisited kernel configurations. Example 3.7 explains how this difficulty emerges.

Example 3.7. Figure 7 shows how parallel evaluation of kernel configurations happens. Points in

the neighborhood of the current candidate are evaluated in synchronous batches. Figure 7 represents

these points as gray boxes. Usually, there will be a non-empty intersection of configurations

between the neighborhood of the current candidate and the next candidate. Intersecting points will

be stored in the visited set seen in Figure 4. In this example, intersecting points are marked with

gray numbers in Figure 7 (b) and (c). Overlaps reduce parallelism: only five points are evaluated

concurrently; thus, resources will be underutilized in processors with more than five cores.

1 2
3 4

1 2
3 4

1 2
3 4

C

C

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

C

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4 C

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

(a) (b) (c) (d)

S

1 2
3 2

1 2
3 2

1 2
3 2

1 2
3 2

1 2
3 2

1 2
3 4

1 2
3 4

Fig. 7. (a-c) Progress of Droplet Search without speculation. Each number shows the order in which points
are evaluated. Gray boxes denote points currently evaluated. Gray numbers show points in the neighborhood
of the current candidate that was already evaluated. (d) Differential speculation: a subset of the extended
neighborhood of the current candidate is evaluated to maximize thread occupancy.

Differential Speculation. We resort to speculation to maximize thread occupancy. Speculation, in

the context of this paper, is the evaluation of kernel configurations in the extended neighborhood of
the current candidate. The extended neighborhood is formed by the neighbors of neighbors. The

algorithm in Figure 4 determines these extra points—the Speculative Set–in Line 07. This set is built

via differential speculation: the history of previous coordinates of the best candidates determines a

speculative set as follows: Let 𝑣𝑛−1 be the candidate at iteration 𝑛 − 1 of coordinate descent, and

let 𝑣𝑛 be the candidate at iteration 𝑛. By Definition 3.2, 𝑣𝑛−1 and 𝑣𝑛 differ in only one dimension,

e.g.: 𝑣𝑛−1 = ⟨. . . ,P : 𝑥𝑛−1, . . .⟩ and 𝑣𝑛 = ⟨. . . ,P : 𝑥𝑛, . . .⟩. We choose a new transformation vector

𝑣𝑠 = ⟨. . . ,P : 𝑥𝑛 + 𝑠, . . .⟩, where 𝑥𝑛 + 𝑠 is the value that follows 𝑥𝑛 within the parameter P. By

the nature of Coordinate Descent, it is likely that 𝑣𝑠 is not in the visited set. Nevertheless, if the

centroid of the speculative set is in the visited set, then Line 07 of Figure 4 still ensures that

4
Previous work has observed that speedups due to compiler optimizations may not follow a normal distribution [Álvares

et al. 2021]. Student’s Test is parametric; hence, not recommended for non-Gaussian distributions. However, non-parametric

tests also have shortcomings. In particular, they tend to require more samples. As an example, the minimum recommended

number of samples for Wilcoxon’s [Wilcoxon 1992] non-parametric test would be five, under a confidence level of 95%.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

The Droplet Search Algorithm for Kernel Scheduling 1:11

multiple evaluations will not happen. Given 𝑣𝑠 , we let the speculative set be its neighborhood. Line

07 of Figure 4 adds this set to the batch of configurations waiting to be evaluated.

Example 3.8. Figure 7 (d) provides some idea of how speculation works. We let S be the centroid

of a speculative set. This kernel configuration, S, is chosen by extending the overall direction of the

coordinate descent path speculatively: an action represented by the longer arrow in Figure 7 (d). In

this example, speculation increases the number of active threads from five to ten.

Even though we restrict speculation to the extended neighborhood of the current candidate, this

technique can still cause the line search of coordinate descent to leave a convex region. However,

Section 4.5 shows that such event is not happening in practice. Had we adopted larger speculation

steps, i.e., outside the extended neighborhood of the current candidate, then the risk of leaving the

convex region would be higher.

4 EVALUATION
This section compares Droplet Search with similar techniques employed in the implementation of

Apache TVM. To this effect, this section investigates the following research questions:

RQ1: Can we demonstrate the Droplet Expectation in different architectures, at least for

transformation vectors involving a small number of dimensions?

RQ2: How effective is Droplet Search on end-to-end models compared to other search tech-

niques on different computer architectures?

RQ3: What is the average number of samples that Droplet Search takes to converge to optimal

results, compared to other search techniques?

RQ4: Does the Droplet Search converge to a global optimum when applied to an industrial-

quality analytical cost model?

RQ5: How does the number of threads used in Droplet Search influence the convergence time

of the algorithm and the quality of the model that it finds, with and without speculation?

RQ6: How do kernels tuned via AutoTVM and Ansor compare to hand-written implementations

of kernels in TensorFlow?

RQ7: How does the behavior of Droplet Search vary, in terms of quality and speed, on each

individual kernel that constitutes a machine-learning model?

RQ8: What is the impact of the confidence level on the convergence rate of Droplet Search in

terms of search speed and quality of the final model?

Hardware. This section evaluates scheduling approaches on six computer architectures, which

Figure 8 enumerates. This mix contains two general-purpose desktop architectures (AMD and

Intel); two embedded system-on-chips (ARM) and two graphics processing units (NVIDIA).

Memory

Device Arch ISA
Clock

Max (GHz)
Ram
(GB)

Cache
L1 (KiB)

Cache
L2 (MiB)

Cache
L3 (KiB)

AMD R7-3700X x86-64 x86 4.4 64 256 4 32

Intel i7-3770 x86-64 x86 3.9 16 32 2.56 8

Cortex-A7 ARMv7-32 arm 2.0 4 32 2 -

Cortex-A72 ARMv8-A arm 1.5 4 80 4 -

RTX 3080 Ampere ptx 1.7 12 - - -

GTX 1650 Turing ptx 1.6 4 - - -

Fig. 8. The architectures evaluated in this paper.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:12 Michael Canesche, Vanderson M. Rosario, Edson Borin, and Fernando MagnoQuintão Pereira

Software. This section uses Apache TVM v0.11.1, released on March of 2023. We implemented

Droplet Search as part of AutoTVM. AutoTVM also provides four other search techniques: grid,

random, genetic (GA) and simulated annealing (XGB). XGB is described by Chen et al. [2018]. This

technique uses a cost model to guide simulated annealing. The constants that define this cost model

are learned during a training phase. We also compare our implementation of Droplet Search with

AutoScheduler (Ansor) [Zheng et al. 2020], also available in Apache TVM v0.11.1.

Benchmarks. This section evaluates kernel scheduling on five convolutional neural networks

and on one encoder stack of transformers (BERT). Figure 9 enumerates the models. The schedulers

in AutoTVM, including Droplet Search, use the same optimization parameters. We have not chosen

these parameters: they are pre-defined—per model—in the distribution of AutoTVM. Optimization

parameters differ depending on the computer architecture. In the CPUs, these parameters refer to

two optimizations: tiling and unrolling. In the GPUs, they concern two more: thread blocking: the
ability to partition CUDA threads into blocks, and shared memory tiling: the ability to bring data

from global to shared memory. All the parameters are divisors of boundaries of the iteration space.

For instance, the size of a tile window must be a divisor of the size of the iteration space along the

tiled dimension. This fact removes discontinuities from the search space (code that the compiler

inserts to handle boundary conditions), as Section 4.4 will explain.

Fig. 9. The machine-learning models evaluated in this paper. “S” is the number of possible configurations
formed by a given number “P” of transformation parameters. The largest neighborhood explored by Droplet
Search at any time contains 2 × P + 1 points. “K” is the number of kernels that form each model. The
implementation of the models vary according to the architecture. TVM’s implementation of MXNet does not
run on the ARM boards.

Ansor uses more optimizations than AutoTVM. Whereas AutoTVM is restricted to a single

transformation vector (in TVM’s parlance, a kernel template), Ansor creates several of them. The

extra templates effectively give Ansor access to inter-kernel optimizations, such as loop fusion

and fission: it can merge operators (i.e., kernels) in the computational graph, for instance. Figure 9

shows the number of parameters in the largest template that Ansor explores for each network. The

optimizers used in AutoTVM—Droplet Search included—are restricted to intra-kernel optimizations.

Nevertheless, we hope to demonstrate that even accessing a smaller pool of optimizations, Droplet

Search can be competitive with Ansor, which resorts to more extensive code transformations.

4.1 RQ1 – The Droplet Expectation
Definition 3.6 specifies a behavior likely to characterize typical implementations of linear kernels.

This expectation is not a guarantee; thus, while we anticipate to find a path from origin to optimum

along which performance improves gradually, such a path might not exist. In this case, Droplet

Search will be stuck on a local minimum. Nevertheless, this section provides some empirical

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

The Droplet Search Algorithm for Kernel Scheduling 1:13

evidence that the Droplet Expectation holds. Section 4.2 provides further evidence: the best kernel

configurations found by coordinate descent are similar to the best configurations found via more

extensive techniques, even when speculation is enabled.

Methodology. We have analyzed the behavior of two kernels: matrix multiplication and con-

volution on six architectures. In this experiment, we use two-dimensional spaces for the sake of

visualization. On CPUs (ARM or AMD), the transformation space is formed by the tiling of the two

innermost loops of each kernel. Tile sizes, in both dimensions, are 0, 8, 16, 24, . . . , 128; hence, we

have a 17 × 17 transformation space. On GPUs, the transformation space is formed by the number

of threads in two-dimensional thread blocks. The possible number of threads are 1, 2, 4, . . . , 32, also

forming a 17 × 17 transformation space. Convolution uses a 1,024 × 1,024 matrix with a 3 × 3 filter.

Multiplication uses the following matrix sizes: 1,000 × 700, 700 × 800, and 1,000 × 800.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0

mm2d - AMD 3700X - ijk

ti
le

-x

mm2d - Intel i7 3770 - ijk

ti
le

-x

mm2d - Intel i7 3770 - kji mm2d - Cortex A7 - ijk

ti
le

-x

tile-y tile-y block-y

conv3 - GTX1650 - ijk

b
lo

ck
-x

conv3 - AMD 3700X - ijk conv3 - Cortex A7 - ijk

mm2d - RTX3080 - ijk

mm2d - GTX1650 - ijk

b
lo

ck
-x

b
lo

ck
-x

Fig. 10. Visual representation of nine different 17 × 17 transformation spaces, showing the path traversed by
coordinate descent from origin to global optimum. Matrix multiplication is mm2d, and convolution is conv3.
Performance improves from green to red. Black cells denote invalid configurations. We show, on top of each
grid, the nesting order of loops, where the canonical configuration starts with the nested sequence ijk.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:14 Michael Canesche, Vanderson M. Rosario, Edson Borin, and Fernando MagnoQuintão Pereira

Discussion. The Droplet Expectation holds in every one of these 2 × 6 scenarios. Figure 10

shows representations for nine of these spaces, highlighting the path taken by coordinate descent.

Some configurations involving thread blocking on the GPU are not valid; thus, they are not

evaluated. In every scenario, the optimal kernel configuration is close to the origin, as the paths in

Figure 10 emphasize. The Droplet Expectation holds if we increase the number of dimensions in the

transformation space, or the number of kernels in the model. Section 4.2 discusses this experiment.

4.2 RQ2 – End-to-end Effectiveness
The goal of any kernel scheduling technique is to find efficient implementations of computational

graphs involving kernels. This section investigates how Droplet Search fares in such task, compared

with other scheduling techniques, when optimizing well-known machine learning models.

Methodology. We evaluate six end-to-end models on six architectures, with a hard limit of 10,000

evaluations per search technique. This—arbitrary—limit prevents experiments from running for

too long. The Droplet Search will stop after evaluating 10,000 kernel configurations; however, it

tends to stabilize earlier, as discussed in Section 4.8. The other search techniques do not have a

notion of premature convergence; hence, they evaluate 10,000 configurations. Notice that Figure 9

shows that every transformation space contains more than 10,000 configurations. All the search

algorithms evaluate kernel configurations in parallel. The parallelism in Droplet Search follows the

ideas from Section 3.4. We use a confidence interval of 95% when comparing a candidate kernel

configuration with kernels within its neighborhood. Section 4.3 discusses the impact of this last

choice.

Discussion. Figure 11 compares the effectiveness of different search techniques. Considering only

the search techniques in AutoTVM, Droplet Search generally yields the best kernels or ties for the

best (usually with XGB). Its search time, however, is faster. On the AMD CPU, for instance, Droplet

Search optimizes VGG-16 in 10% of the time the other scheduling approaches require. Ansor tends

to produce faster kernels than the techniques implemented in AutoTVM, including Droplet Search.

Ansor explores more optimization parameters: it has access to a large number of kernel templates,

whereas AutoTVM uses only one. Nevertheless, due to excessive memory consumption, Ansor (and

also AutoTVM’s XGB) could not be used to schedule our largest models in the ARM boards. We

have observed that Droplet Search does not perform well on the GPUs. In this case, the size of the

search space (from 200M to 2.7T configurations, as seen in Figure 9) forces coordinate descent to

converge due to the limit of iterations in every model, except ResNet-18. Incidentally, on ResNet-18

Droplet Search produces faster kernels than Ansor in any GPU.

4.3 RQ3 – Stop Criteria
As Section 3.3 explains, our current implementation of Droplet Search stops once it reaches a

candidate kernel configuration faster than all its neighbors. Statistical significance between runtime

differences is determined via Student’s T-Test applied over two populations consisting of three

samples each, with a confidence level of 95%. Yet, measurements might fluctuate, and premature

termination is possible. If we tighten the confidence level, termination might happen too early. If

we lose it, convergence can take too long, and coordinate descent might visit configurations that

are not statistically significantly faster. This section investigates how Droplet Search fares once we

vary the confidence level for comparing kernel configurations.

Methodology. We evaluate the five deep-learning models listed in Figure 9 on the Intel i7 using

five different levels of confidence: 99%, 95%, 90%, 75%, and no test. In the latter case, we use the

absolute arithmetic average of three samples to determine which kernel is faster.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

The Droplet Search Algorithm for Kernel Scheduling 1:15

Fig. 11. Comparison of kernel scheduling techniques. “Model (ms)” is the running time of the best schedule
for a given model. “Search (min)” is the time to find that configuration. Light-gray boxes denote statistically
similar results (with a confidence level of 95%). Black boxes denote statistically significant best kernel times.
Gray boxes with white fonts denote statistically significant best search times. Double borders denote the best
schedule produced by an algorithm from AutoTVM only (i.e., Ansor is not considered).

Discussion. We could observe almost no variation in the quality of the best kernel configuration

depending on the confidence level. This result seems to indicate, at least for the five models running

on the Intel i7 CPU, that there exists a number of “acceptable best” kernels with very similar

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:16 Michael Canesche, Vanderson M. Rosario, Edson Borin, and Fernando MagnoQuintão Pereira

Intel i7-3770

Droplet

p = 0.01 p = 0.05 p = 0.10 p = 0.25 no p-value

Benchmark
Time
(ms)

Tuner
(min)

Time
(ms)

Tuner
(min)

Time
(ms)

Tuner
(min)

Time
(ms)

Tuner
(min)

Time
(ms)

Tuner
(min)

resnet-18

vgg-16

mobilenet

mxnet

inception_v3

45.74 42.1 45.75 42.3 45.90 42.8 45.96 43.1 45.93 44.3

401.39 47.6 401.37 48.4 401.18 49.1 401.67 49.7 401.68 49.7

16.80 70.1 17.10 70.2 17.20 72.1 17.25 74.4 17.35 77.6

99.07 92.9 99.07 93.8 100.72 95.6 101.13 96.9 100.59 97.6

153.45 172.0 153.89 173.8 153.52 176.6 153.58 176.9 154.31 181.3

Fig. 12. Effect of confidence level (the stop criterion of Section 3.3) on the quality of the best kernel configu-
ration and on the running time of Droplet Search.

dynamic behavior. However, the search time increases—albeit slightly—once we move from high

confidence levels towards low confidence levels. This growth in search time happens because more

kernel configurations tend to be visited by the search procedure.

4.4 RQ4 – Analytical Models
Analytical cost models are systems of equations that predict the cost of a program (CPU cycles,

I/O operations, cache misses, etc.) given a model of the hardware. Recently, different research

groups have designed analytical cost models to estimate the performance of machine-learning

kernels [Olivry et al. 2021, 2020; Sumitani et al. 2023; Tollenaere et al. 2023; Zhang et al. 2021]. This

section investigates if the droplet expectation also holds in some of these models.

Methodology. This section evaluates cost models taken from three different sources. The first

models were proposed by Olivry et al. [2021]. They estimate a lower bound for the amount of

data movement between slow and fast memories. The second model is part of the Xtensa Neural

Network Compiler (XNNC), from Cadence Tensilica, and was made available to us through the

Cadence Academic Network
5
. This model estimates the number of execution cycles that a program

compiled by XNNC takes to execute on Cadence DSPs. Finally, we analyze the eight analytical

models listed in Table II of Renganarayana and Rajopadhye [2008]’s work.

4.4.1 Olivry et al.’s Cost Models. We evaluate the Olivry et al.’s model on the tiled version of

matrix-matrix multiplication in the authors’ original work (Listing 1 [Olivry et al. 2021]). This

program is the default example in Olivry et al.’s online tool
6
. We evaluate it in a system with two

caches, with 64KB and 256KB—the dimensions of the first two cache levels used in the Intel i7.

Discussion. Figure 13 shows hypersurfaces produced by the cost models generated via Olivry

et al.’s online tool. Each figure relates the size of a bidimensional tiling window with the I/O cost in

terms of memory transfers. The lower the cost, the faster the program is expected to run. Figure 13

(a) assumes one level of cache (with 64KB). The other two figures assume two levels (64K and

256KB). Figures 13 (b) and (c) are similar to the surfaces seen in Figure 5, which explore the same

program, albeit on an actual machine. In the three figures, the droplet expectation (Definition 3.6)

holds. This result is not a coincidence: Olivry et al.’s cost model involve only positive quantities

(domain and coefficients); thus, form convex surfaces.

4.4.2 Tensilica’s Cost Models. We evaluate the Tensilica model on an implementation of the tiled

ReLU kernel on two digital signal processors, called P1 and P6. We chose these two processors

because they are used as tests in the Tensilica tool. The DSPs do not have a cache; however, they

5
https://www.cadence.com/ko_KR/home/company/cadence-academic-network/university-program.html

6
Available at https://iocomplexity.corse.inria.fr/ioub on June 2023.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://www.cadence.com/ko_KR/home/company/cadence-academic-network/university-program.html
https://iocomplexity.corse.inria.fr/ioub

The Droplet Search Algorithm for Kernel Scheduling 1:17

Ti_1
Tj_0

Co
st

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

2.0
2.0

1.5

1.0

0.5

50
150

250 250

150

50

3.0

2.5

1.5

0.5

4.0

3.0

2.0

1.0

1k
3k

5k
7k 7k 7k 7k

5k
3k

1k

5k
3k

1k

5k
3k

1k

1e12

(a) Single cache L1.
Cost = Ni*Nj*Nk*(1/Tj_0 + 1/Ti_0 + 2/Nk)

(b) L1 and L2, varying Ti_1 and Tj_0. (c) L1 and L2, varying Ti_1 and Tk_0.
Cost = Ni*Nj*Nk*(1/Tj_1 + 1/Ti_1 + 2/Nk) + Ni*Nj*Nk*(2/Tk_0 + 1/Tj_0 + 1/Ti_1)

Fig. 13. Amount of memory transfers produced by Olivry et al. [2021]’s cost model applied onto Listing 1 in
Olivry et al.’s work: a tiled version of the kernel in Figure 1-b in this paper. We vary tiling dimensions Ti_0,
Ti_1, and Tk_0. The input matrices have sides Ni = Nj = Nk = 10K.

contain local memory and system memory. Hence, the compiler must implement direct memory

access (DMA) transfers from the system to local memory, and tiling reduces DMA operations.

Discussion. In contrast to Olivry et al.’s cost model, the equations produced by XNNC take

into consideration the fact that the tiling window might not be a perfect divisor of the loop’s

iteration space. If tiling does not perfectly divide the iteration space, then the XNNC compiler

generates epilogue code to fetch data outside the tiled loop. Consequently, the performance model

contains conditionals. For instance, Figure 14 (a) was produced by a (simplified) equation like

cost = 𝐶1 + (if𝑊%63 then 𝐶2 else 0) + 𝐶3 × (𝐻/64). The coefficients 𝐶𝑖 represent costs of

particular instructions;𝑊 and 𝐻 are tile sizes. Due to these conditionals, the cost models are

represented by discontinuous functions. In this case, the droplet expectation does not hold. However,

if we restrict valid neighborhoods to only perfect divisors of the iteration space, then the Droplet

Expectation holds. For instance, starting with tiling windows with size 16 or greater, coordinate

descent achieves the optimal configuration in any of the surfaces seen in Figure 14 after three

iterations. Notice that this restriction is unnecessary if some loss is acceptable. When applied to

large deep-learning networks—under the same XNNC analytical model—Droplet Search stays very

close to the global optimum, although sampling less than 1% of the space covered by an exhaustive

grid search.

4.4.3 Renganarayana and Rajopadhye’s Cost Models. Renganarayana and Rajopadhye [2008] show

that models used to solve the “Tile Size Selection (TSS) Problem” are represented by equations whose

coefficients and domains are all positive quantities. To support their observation, they list equations

taken from eight different analytical models from previous work. These equations all represent

instances of the bidimensional tile-size selection problem. They use variables that range on the

following quantities:

C : the size of the cache in the target computer architecture;

L : the length of the cache line;

h : the height of the rectangular tiling window;

w : the width of the rectangular tiling window; and

n : the side of an n × n array.

In this section, we fixC, L, and n, and plot the hypersurface formed by h andw, within a contiguous

range of values. This approach simulates Apache TVM’s grid search algorithm.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:18 Michael Canesche, Vanderson M. Rosario, Edson Borin, and Fernando MagnoQuintão Pereira

W

2 4 6 8 10 12 14 16

H

2
4

6
8
10

12
14

16

lo
g(

cy
cle

s +
 b

an
dw

id
th

 c
os

t)
11

12

13

14

15

W

2 4 6 8 10 12 14 16

D

0
5

10
15

20
25

30

lo
g(

cy
cle

s +
 b

an
dw

id
th

 c
os

t)

11

12

13

14

15

H

2 4 6 8 10 12 14 16

D

0
5

10
15

20
25

30

lo
g(

cy
cle

s +
 b

an
dw

id
th

 c
os

t)

11

12

13

14

15

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

15.0

Co
st

Fig. 14. Part of the tiling search space generated for a ReLU layer by the XNNC’s analytical cost model for
the P1 digital signal processor. The higher the cost (yellower), the slower the kernel is expected to behave,
when deployed onto the actual hardware. To emphasize the non-convex regions, we show only the first 16
sizes of possible tiling windows.

Discussion. Figure 15 shows hypersurfaces for the different equations analyzed by Renganarayana
and Rajopadhye. To ease visualization, we remove the h and w axes (all ranging on the interval

[1, . . . , 100]). The Droplet Expectation holds in all these analytical models. In fact, all of these

equations use exclusively positive coefficients; hence, yielding convex surfaces.

4.5 RQ5 – Parallelism and Speculation
As explained in Section 3.4, the implementation of Droplet Search evaluated in this paper uses

synchronous parallelism and speculation to speed convergence up. This section evaluates the effects

of these techniques on search time and on the quality of kernel configurations.

Methodology. We evaluate Droplet Search on the five different end-to-end models on the AMD

3700X CPU. This CPU runs 16 threads (two threads per core, with eight cores). This section

experiments with three versions of Droplet Search: its full implementation, an implementation that

features parallelism but no speculation, and an implementation that runs on a single thread. We

report p-values comparing three executions of the fastest models found with each approach.

Discussion. Figure 16 compares the different implementations of droplet search. Its single-

threaded implementation takes 664 seconds to converge (sum of tuning time over five networks).

The parallel version, with 16 threads, converges in 358 seconds. With speculation plus parallelism,

this time goes down to 291 seconds. Parallelism is a known limitation of coordinate descent. Our

implementation suffers from the shortcomings mentioned by Zheng et al. [2000]. The synchronous

nature of coordinate descent limits concurrency: the best candidate is chosen after every point of a

neighborhood is evaluated. Thus, progress only happens once the slowest point runs. Wang et al.

[2016] have shown that it is possible to improve parallelism if more candidate points co-exist. We

believe that early preemption of slow points could also speed our implementation up: once the best

candidate is found in a neighborhood, the other threads can be aborted. We leave such approaches—

multiple candidates and early preemption—open for future work. Speculation improves the running

time of our implementation of Droplet Search by a small margin. The parallel version of Droplet

Search, with speculation, is 27% faster than the non-speculative implementation (geomean over

speedups). This gain comes mostly from faster convergence.

Figure 16 (Right) shows that the extended neighborhood explored via speculation has no effect

on the speed of the kernel configurations found via Droplet Search. The search does not find always

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

The Droplet Search Algorithm for Kernel Scheduling 1:19

Domain of cost parameters:

h in range(1, 100, step=5)

w in range(1, 100, step=5)

n = 100 # side of 2D array

C = 32 # Cache's size

L = 32 # Cache Line size ESS: cost = C/(h * w)
(Esseghir 1993)

LRW: cost = 1/h + 1/w + (2h + w)/C
(Lam et al. 1991)

TSS: cost = (2h+w)/h * w
(Coleman and McKinley 1995)

EUC: cost = 1/h + 1/w
(Rivera and Tseng 1999)

MOON: cost = 1/h + 1/w + (h+w)/C
(Moon and Saavedra 1998)

TLI: cost = 1/h + 1/w + (h-w)/C + h*w/C2

(Chame and Moon 1999)
WMC: cost = C/h * w

(Wolf et al. 1998)
MHCF: cost = (1/h+1/2)*(1/n + 1/L) + 2/(h*w)

(Mitchell et al. 1997)

Varying
(A

xes)
Fixed

Fig. 15. Hypersurfaces formed by the models in Table II of Renganarayana and Rajopadhye [2008]’s work.

the same final configuration for every layer of every model; however, this phenomenon is due just

to statistical variations in the running time of similar kernels. As the figure shows, the p-values

reported by a T-Test on the speed of the different kernels is well above 0.05. Thus, the extended

neighborhood is not changing the behavior of our implementation of Droplet Search.

4.6 RQ6 – Comparison with TensorFlow
The goal of this section is to bring some perspective about our results to readers that are not

familiar with the Apache TVM ecosystem. To this end, we shall present a comparison between

three different approaches to develop end-to-end models: AutoTVM, Ansor and TensorFlow [Abadi

et al. 2016]. The latter is a Python-based library to write machine learning models. In contrast to

AutoTVM or Ansor, TensorFlow does not do, by itself, any form of scheduling: the programmer

must feed it with an optimized implementation of a machine learning model.

Methodology. This section compares the different kernel implementation approaches using a

benchmark collection formed by six kernels: matrix multiplication, 2D convolution, depthwise

separable convolution, pooling, matrix reduction and 2D ReLU. These kernels have been taken

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:20 Michael Canesche, Vanderson M. Rosario, Edson Borin, and Fernando MagnoQuintão Pereira

10k

7.5k

5k

2.5k

0

Bench

p-value
1 thread vs
speculation

p-value
16 threads vs
speculation

resnet-18

vgg-16

mobilenet

mxnet

inception_v3

0.8352 0.8853

0.8623 0.7325

0.7023 0.7835

0.5231 0.8568

0.1425 0.7864

Fig. 16. (Left) Number of iterations until convergence of variations of droplet search. (Middle) Running time
of different implementations of Droplet Search. (Right) P-values produced by a T-Test on populations of three
executions of the best model found by each technique. The closer to 1.0 is the p-value, the more statistically
similar are the two populations.

from the artifact made publicly available by Zhu et al. [2022], and are meant to run on graphics

processing units. We evaluate them into our RTX 3080 GPU and on an A6000
7
. Incidentally, we

have not been able to apply Zhu et al.’s tool onto these very kernels
8
.

Discussion. Figure 17 shows the comparison between different kernel implementation systems.

Notice that Figure 17 compares different kernel implementations. Ansor and AutoTVM (Droplet

Search and XGB) receive, as input the same code: a kernel implemented in Python with libraries

from Apache TVM. TensorFlow receives a different implementation: kernels also written in Python,

but with libraries from the TensorFlow package. As an example, the API to invoke the ReLU

(rectified linear unit) kernel is tf.nn.relu(a_tf) in TensorFlow, and topi.nn.relu(a_tvm) in
Apache TVM. In short, Figure 17 is comparing two different Python libraries.

In every experiment, Apache TVMhas produced faster (or equally faster) kernels than TensorFlow,

be it through AutoTVM or Ansor. However, without scheduling, TensorFlow outperforms Apache

TVM in two kernels: convolution and depthwise convolution. We have not observed a statistical

difference between implementations of the reduction and the ReLU kernels, regardless of the library

or the scheduling approach adopted to optimize them. In this regard, we observe that neither Ansor

nor AutoTVM implement search for pooling, reduction, and ReLU. The implementation of these

kernels, as provided by Zhu et al., does not come with a template of optimization parameters. The

other kernels, in contrast, come with templates that enable thread blocking and tiling with shared

memory. Loop unrolling is not enabled by these parameters. Nevertheless, Figure 17 confirms some

of the results earlier observed by Zhu et al.: Kernels produced by Apache TVM tend to outperform

similar kernels produced via TensorFlow. However, contrary to Zhu et al., we have observed smaller

differences.

7
The A6000 GPU is only used in this section. Access to this hardware was kindly provided by the Discovery Lab (https:
//discovery.ic.unicamp.br/).

8
Roller, the tool implemented by Zhu et al. relies on RT Cores to speedup the execution of kernels. This tool uses functions

that are exclusive of Cuda v10.2 and TensorFlow v1.15.2. However, the RTX 3080—the only GPU that we have with RT cores—

is only compatible with Cuda v12.0 and TensorFlow v2.13.0. We could not downgrade the version of Cuda. Furthermore, a

direct change of APIs, to upgrade the versions of Cuda and TensorFlow in Roller was not enough to let us reuse the tool:

the updated version of the tool compiles successfully; however, it does not produce kernels. We faced similar issues when

trying to reuse another artifact that targets RT cores: Heron [Bi et al. 2023]. Heron was implemented with the Cuda v11.0

API. We have also updated it to use Cuda v12.0. The updated version compiles and produces kernels; however, these kernels

crash during execution.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://discovery.ic.unicamp.br/
https://discovery.ic.unicamp.br/

The Droplet Search Algorithm for Kernel Scheduling 1:21

Microbenchs
Model
(ms)

Model
(ms)

Search
(min)

Model
(ms)

Search
(min)

Model
(ms)

Search
(min)

Model
(ms)

RTX3080 Original Droplet Autotvm (XGB) Ansor TensorFlow
matmul 0.01798 0.00577 2.50 0.00577 54.10 0.01266 37.96 0.24704

conv2d 414.85434 2.09061 24.38 2.18308 31.95 1.81956 72.39 43.88901
depthwise 63.78266 0.44082 44.46 0.44013 56.74 0.46296 64.67 25.03834
pooling 0.59630 0.59545 0.04 0.59525 0.04 0.96103 71.90 60.46896
reduce 0.31750 0.31340 0.02 0.31340 0.02 0.31243 2.69 9.07090
relu 0.00017 0.00017 0.02 0.00017 0.02 0.17265 0.18 4.73173

A6000 Original Droplet Autotvm (XGB) Ansor TensorFlow
matmul 0.01780 0.00626 2.61 0.00632 24.60 0.01166 39.20 0.38927
conv2d 367.64008 1.93585 60.13 1.79232 69.72 1.69408 69.72 20.15370
depthwise 52.25241 0.53334 44.05 0.53213 81.28 0.70036 67.01 14.51671
pooling 0.68824 0.68812 0.04 0.68820 0.05 1.13004 81.29 10.23547
reduce 0.38104 0.38100 0.02 0.38105 0.03 0.38019 2.97 6.10128
relu 0.00020 0.00020 0.02 0.00020 0.02 0.17265 0.38 3.76800

Fig. 17. Comparison between Apache TVM and TensorFlow on the six kernels made available by Zhu et al.
[2022], on two graphics processing units. This figure uses the same notation as Figures 11 and 18: dark boxes
indicate the fastest models, and gray boxes indicate the fastest search times. Light gray boxes indicate results
that are statistically similar. TensorFlow does not implement search.

4.7 RQ7 – Intra-Kernel Behavior
The models explored in Section 4.2 consist of multiple kernels: each layer is implemented as an

independent kernel. Droplet Search and all the other search techniques available in AutoTVM are

intra-kernel. Thus, kernels are optimized independently from each other. This section analyzes the

effects of Droplet Search on individual kernels and compares these effects with results obtained

by other scheduling techniques. By showing that Droplet Search finds similar configurations as

exhaustive techniques, we provide further evidence that the droplet expectation is common.

Methodology. We analyze each kernel of ResNet-18 and VGG-16 in separate, reporting search

time and kernel running time. Each kernel is extracted from its encompassing model via TVM’s

code generator. ResNet-18 and VGG-16 are our smallest networks, in number of kernels. We restrict

this study to only two models because the individual analysis of each kernel is time consuming

(meaning human time, not machine time). Nevertheless, we believe that these results could be

extrapolated to the other models, which sport similar implementations.

Discussion. Figure 18 shows how the search techniques fare on each layer of ResNet-18 and

VGG-16. We do not show results for Ansor, because, as Figure 9 shows, Ansor’s implementation

recognizes more layers on each model. Droplet Search never yields worse configurations than the

other search techniques. Furthermore, its search is faster, converging with fewer samples. In this

case, column “iter” in Figure 18 provides the number of kernel configurations evaluated by each

search technique. In contrast to Droplet Search, the other approaches used in AutoTVM do not have

a notion of convergence. The search stops once a determined number of kernel configurations is

visited. However, sampling is not equally divided among the kernels: AutoTVM draws more samples

for kernels that run for more time. As a example, the different search procedures of AutoTVM

sample Layer Five of ResNet-18 1,024 times, as Figure 18 shows. Droplet Search, in contrast, stops

after 120 iterations. The samples that Droplet Search evaluates depends more on the dimensions

of the layer, such as the number of channels, width and height of the filter used. The four largest

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:22 Michael Canesche, Vanderson M. Rosario, Edson Borin, and Fernando MagnoQuintão Pereira

resnet-18 Droplet Gridsearch Random GA XGB

Layer
Time
(ms)

Tuner
(s) iter

Time
(ms)

Tuner
(s) iter

Time
(ms)

Tuner
(s) iter

Time
(ms)

Tuner
(s) iter

Time
(ms)

Tuner
(s) iter

SUM

AVG

vgg-16 Droplet Gridsearch Random GA XGB

SUM

AVG

0 0.83 128 0.83 362.5 308 0.83 379.7 308 0.83 383.5 308 0.83 386.7 308

1 0.81 96 0.82 1079.2 980 0.81 1091.0 980 0.82 1098.4 980 0.82 1119.2 980

2 0.09 209 0.09 1115.8 980 0.09 1127.3 980 0.09 1128.4 980 0.09 1153.3 980

3 0.42 198 0.42 1045.9 896 0.42 1059.9 896 0.43 1052.8 896 0.42 1076.2 896

4 0.05 163 0.05 1019.4 896 0.05 1035.6 896 0.05 1033.7 896 0.05 1055.5 896

5 0.80 120 0.80 1130.1 1024 0.80 1137.3 1024 0.80 1149.0 1024 0.80 1168.1 1024

6 0.42 272 0.42 1020.4 864 0.43 1029.0 864 0.42 1026.5 864 0.42 1050.2 864

7 0.05 181 0.05 985.8 864 0.05 999.9 864 0.05 1000.4 864 0.05 1020.2 864

8 0.81 254 0.81 1086.9 972 0.81 1105.0 972 0.81 1114.9 972 0.82 1123.8 972

9 0.44 331 0.44 866.0 720 0.44 884.5 720 0.44 881.9 720 0.44 898.4 720

10 0.05 134 0.05 829.1 720 0.05 846.6 720 0.05 847.4 720 0.05 865.2 720

11 0.81 260 0.82 921.8 800 0.82 948.1 800 0.82 960.4 800 0.81 967.5 800

5.585 1522.5 2346 5.588 11463.0 10024 5.591 11643.9 10024 5.587 11677.1 10024 5.589 11884.3 10024

0.465 126.9 2346 0.466 955.3 835 0.466 970.3 835 0.466 973.1 835 0.466 990.4 835

0 0.60 57 1.21 377.8 308 0.60 380.2 308 0.60 382.1 308 0.60 384.3 308

1 13.13 112 15.74 1095.0 1078 13.14 1116.0 1078 13.13 1110.6 1078 13.16 1148.5 1078

2 6.30 107 7.63 1163.3 1232 6.29 1212.4 1232 6.30 1201.5 1232 6.30 1242.3 1232

3 12.74 107 15.14 1380.9 1408 12.74 1439.1 1408 12.80 1413.9 1408 12.91 1473.3 1408

4 6.34 121 7.98 1347.4 1440 6.36 1457.8 1440 6.34 1392.0 1440 6.36 1478.8 1440

5 121 17.84 1611.9 1620 12.80 1731.4 1620 12.79 1682.0 1620 12.79 1762.7 1620

6 6.26 104 8.52 1419.0 1440 6.27 1533.4 1440 6.27 1482.2 1440 6.28 1565.2 1440

7 12.77 124 16.14 1742.3 1600 12.84 1830.0 1600 12.79 1791.5 1600 12.76 1874.6 1600

8 107 4.77 1258.7 1200 3.24 1286.4 1200 3.24 1291.3 1200 3.24 1325.2 1200

74.13 957.9 960 94.97 11396.2 11326 74.28 11986.8 11326 74.27 11747.1 11326 74.40 12254.9 11326

8.24 106.4 107 10.55 1266.2 1258 8.25 1331.9 1258.4 8.25 1305.2 1258 8.27 1361.7 1258

72.6

125.5

131.2

223.8

123.5

111.4

129.7

131.9

113.2

107.8

139.0

112.9

71.1

114.5

108.0

110.7

112.0

12.73 116.9

93.9

122.4

108.43.24

Fig. 18. The search techniques of AutoTVM applied on individual layers of deep-learning models on the AMD
R7-3700X. Evaluations average three samples. Light gray boxes mark running times that are statistically
similar with confidence level of 95%. Black boxes denote statistically significant running times. Gray boxes
mark statistically significant search times. The sum of search times approximates the results in Figure 11.
The sum of kernel times, i.e., “Time (ms)”, is strictly less than the running times reported in Figure 11.

layers in Figure 18 are, in this order: the 6
𝑡ℎ
, the 8

𝑡ℎ
, the 9

𝑡ℎ
and the 11

𝑡ℎ
. Incidentally, these layers

account for the largest number of samples observed by Droplet Search.

4.8 RQ8 – Convergence Rate
The convergence rate of a search mechanism used to solve the kernel scheduling problem measures

how fast that technique closes on its final solution. As mentioned in Section 4.7, the different tech-

niques that AutoTVM uses to solve kernel scheduling iterate until a fixed number of configurations

are evaluated. We have observed that it is often possible to stop iterations before, once a sufficiently

good configuration is reached. That is the approach adopted in Droplet Search, as Section 3.3 ex-

plains. In what follows, we investigate how the quality of the final solution to scheduling improves

as the number of evaluations progresses.

Methodology. We set the maximum number of iterations of AutoTVM’s grid, random, genetic

and XGB search to 10,000. This number, 10K, includes the evaluations of kernel configurations

in neighborhoods or speculative sets that Droplet Search uses. Ansor shall use the same limit of

evaluations. We then inspect the speed of the best kernel configuration that each one of these

search techniques find RestNet-18 throughout the search. We show results for ResNet-18 only;

however, we have evaluated the convergence rate for the other models. Results tend to be similar.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

The Droplet Search Algorithm for Kernel Scheduling 1:23

Trials Trials

Fig. 19. Quality of the solution for kernel scheduling versus the number of evaluations (trials) used to find
that solution for ResNet-18. The blue star marks the convergence of the Droplet Search.

Discussion. Figure 19 shows the results of this experiment. Droplet Search usually converges to

the best solution before 10,000 evaluations. The fastest convergence was observed on the Intel CPU:

coordinate descent stabilized after 1,278 configurations were evaluated. Notice that convergence

happened before 2K evaluations in every CPU. The slowest convergence happened on the GTX GPU:

7,125 evaluations. Similarly, on the RTX, 6,502 configurations were evaluated. Similar results were

also observed on the other four models: Droplet Search stabilizes before 10K iterations; typically

before 3K iterations on the CPUs, and before 8K iterations on the GPUs.

5 RELATEDWORK
This paper aims to find the best concrete implementation for a given program. We recognize two

main approaches to this theme, which we shall call autotuning (e.g., compiler autotuning) and

scheduling (e.g., program autotuning, following Tollenaere et al. [2023] taxonomy). The latter is the

problem from Definition 2.7. These problems differ in two essential ways:

Training: In autotuning, the compiler is trained offline on many programs—its training set—

before being applied to an unknown program. Thus, the compiler uses information acquired

from general programs before optimizing a specific program. In scheduling, there is no

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:24 Michael Canesche, Vanderson M. Rosario, Edson Borin, and Fernando MagnoQuintão Pereira

pre-training phase: the compiler does not try to generalize the behavior of a universe of

programs to predict the behavior of an individual program.

Sampling: In autotuning, the compiler typically evaluates the target program once (although

there are exceptions, like in the work of Cavazos et al. [2007]), using, as a guide, the behavior

learned from observations made on the training set. In scheduling, the compiler is allowed

to run the target program multiple times. Information acquired from these executions will

guide the search for good optimizations.

Much of the current techniques employed in autotuning originate in the work of Cavazos and

his collaborators [Agakov et al. 2006; Ashouri et al. 2018, 2016; Cavazos et al. 2006; Cavazos and

O’Boyle 2006; Moss et al. 1997; Simon et al. 2013; Thomson et al. 2010]. The growing availability of

predictive models and benchmarks to train these models has made autotuning works common in

the recent literature [Brauckmann et al. 2020; Cummins et al. 2021a,b; Da Silva et al. 2021; Silva et al.

2021]. Figure 20 compares six autotuning-based techniques with six scheduling-based approaches.

Whereas autotuning typically concerns the optimization of general programs, scheduling is mainly

seen in the optimization of deep-learning models composed of kernels. Autotuning has been used,

for instance, to find good sequences of optimizations for clang [da Silva et al. 2021; Silva et al.

2021]; or to fine-tune the Hotspot JIT compiler [Cavazos and O’Boyle 2006].

Work Training Sampling Space Guide Target Platform
Rapidly Selecting Good Compiler Optimizations Using
Performance Counters Y ± 25 list

Performance
Counters Programs General

Exploring the Space of Optimization Sequences for Code-
Size Reduction: Insights and Tools Y 1 list

Program
features Programs General

Method-specific dynamic compilation using logistic
regression Y 1

vec[n], n is 4,
9, or 20

Program
features Functions JIT

Hybrid Optimizations: Which Optimization Algorithm to
Use? Y 1 vec[1]

Program
features Function JIT

Mapping Computations in Heterogeneous Multicore
Systems with Statistical Regression on Program Inputs Y 1 vec[8] Input features Functions Parallel
Compiler-Based Graph Representations for Deep Learning
Models of Code Y 1 vec[1]

Program
features Programs Parallel

Ansor : Generating High-Performance Tensor Programs for
Deep Learning N [1..] param list

Program
features Kernels ML

Automatic Generation of High-Performance Convolution
Kernels on ARM CPUs for Deep Learning N [1..] param list Grid search Convolutions ML
TVM: An automated end-to-end optimizing compiler for
deep learning N [1..] params

Program
features Kernels ML

Autotuning Convolutions Is Easier Than You Think N [1..] params
I/O complexity

model Convolutions ML

I/O Lower Bounds for Auto-tuning of Convolutions in CNNs N [1..] params
I/O complexity

model Kernels ML

This paper N [1..] params
Coordinate

descent Kernels ML

Fig. 20. Qualitative comparison between different previous work. See Section 5 for the meaning of columns.
We classify the first six works as autotuning and the last six as scheduling problems.

The transformation Space. Scheduling techniques usually fix the sequence of optimizations

that form the search space, and vary their parameters [Chen et al. 2018; Tollenaere et al. 2023;

Zhang et al. 2021]. However, there are scheduling approaches that accept different transformation

vectors [Essadki et al. 2023; Meng et al. 2022; Phothilimthana et al. 2021; Zheng et al. 2020]. Within

the TVM community, these different transformation vectors are called templates. For instance, a
common technique—adopted in TVM’s Ansor—is to assume that each interchange of loops forms

a different template. Figure 20 distinguishes fixed vectors as “params” and templated vectors as

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

The Droplet Search Algorithm for Kernel Scheduling 1:25

“param list”. Autotuning usually fix the parameters of each optimization; however, they have more

freedom to compose sequences of optimizations. For instance, Cavazos et al. [2007] form sequences

of 500 optimizations drawn from a universe of 121 possible compilation flags. This approach is also

adopted by Silva et al. [2021]: they produce lists of up to 100 elements drawn from approximately

80 compilation flags. Figure 20 uses the notation “list” to denote this way to build the search space.

In Figure 20, we denote fixed-length vectors as “vec[𝑛]”.

The Search Guide. Techniques used in autotuning or scheduling differ in how the search for good

transformation sequences is performed. In this paper, we use coordinate descent. Our approach

does not depend on static characteristics of the program; only on its dynamic behavior. Several

search techniques use program features (static characteristics) to steer the search. These techniques

are usually data-agnostic. An exception is the work of Da Silva et al. [2021], who use the runtime

values of inputs to choose program configurations. Da Silva et al. capitalize on the convexity of the

search space; however, in their case, tuning is guided by linear regression, not coordinate descent.

Recent scheduling techniques have used analytical models to prune the search space [Kaufman

et al. 2021; Mogers et al. 2022; Tollenaere et al. 2023; Zhang et al. 2021]. Mogers et al. [2022] have

shown, in the context of the Lift compiler [Steuwer et al. 2016], that pruning can be very effective,

as “only 1 out of 49,000 candidates [generated by random search to optimize convolution] satisfies the
constraints [hence is valid]”. Pruning is orthogonal to the search techniques that Section 5 evaluates.

For instance, an interesting continuation of the ideas in this paper would be to use Tollenaere

et al.’s cost model to remove from the active neighborhood kernel configurations that are unlikely

to improve on the best candidate seen by coordinate descent.

6 CONCLUSION
This paper has introduced a new kernel scheduling technique—droplet search—and has demon-

strated its effectiveness by optimizing the code of six different deep learning models on six different

hardware architectures. Droplet Search relies on the following observation: the optimization space

formed by code transformation parameters usually determines a convex region that includes the

origin of this space (no optimization) and the best kernel configuration that this space contains.

Experiments show that Droplet Search tends to find kernels as efficient as any of the other search

techniques available in AutoTVM; however, it does so faster. Droplet Search also compares well

with TVM’s Ansor, despite using a much smaller pool of optimizations.

Droplet Search is currently available in Apache TVM. This implementation still offers room for

improvements. In particular, its convergence rate on large search spaces can be slow. Furthermore,

this implementation could benefit more from parallelism, because it keeps only one best candidate

at any time. We conjecture that coordinate descent could be modified to use multiple line searches;

hence, offeringmore opportunities for parallelization. Finally, the current implementation of Droplet

Search explores the parameters of only four TVM optimizations: tiling, unrolling, thread blocking

and shared memory tiling. Adding more optimizations to this list would be a welcome improvement

to that implementation. All these ideas are directions that we hope to see explored in the future.

ACKNOWLEDGMENT
This project was sponsored by Cadence Design Systems, and the authors express their gratitude

to Eric Stotzer for facilitating Cadence’s financial support. Additionally, the authors acknowledge

the support of CNPq (grants 314645/2020-9 and 406377/2018-9), FAPEMIG (grant PPM-00333-18),

FAPESP (grant 2013/08293-7), and CAPES (Edital PrInt and grant 88887.668980/2022-00). Finally,

the authors extend their appreciation to the ACM TACO reviewers for their valuable suggestions,

which significantly contributed to the enhancement of this work.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:26 Michael Canesche, Vanderson M. Rosario, Edson Borin, and Fernando MagnoQuintão Pereira

REFERENCES
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit

Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A

System for Large-Scale Machine Learning. In OSDI (Savannah, GA, USA). USENIX Association, New York, USA, 265–283.

F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle, J. Thomson, M. Toussaint, and C. K. I. Williams.

2006. Using Machine Learning to Focus Iterative Optimization. In CGO. IEEE Computer Society, Washington, DC, USA,

295–305. https://doi.org/10.1109/CGO.2006.37

Andrei Rimsa Álvares, José Nelson Amaral, and Fernando Magno Quintão Pereira. 2021. Instruction visibility in SPEC

CPU2017. J. Comput. Lang. 66 (2021), 101062. https://doi.org/10.1016/j.cola.2021.101062

Amir H. Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina Silvano. 2018. A Survey on Compiler

Autotuning Using Machine Learning. Comput. Surv. 51, 5 (2018), 96:1–96:42. https://doi.org/10.1145/3197978

Amir Hossein Ashouri, Giovanni Mariani, Gianluca Palermo, Eunjung Park, John Cavazos, and Cristina Silvano. 2016.

COBAYN: Compiler Autotuning Framework Using Bayesian Networks. TACO 13, 2 (2016), 21:1–21:25. https://doi.org/

10.1145/2928270

D. Bertsekas. 2009. Convex Optimization Theory. Athena Scientific, Nashua, NH, USA. https://books.google.com.br/

books?id=0H1iQwAACAAJ

Jun Bi, Qi Guo, Xiaqing Li, Yongwei Zhao, Yuanbo Wen, Yuxuan Guo, Enshuai Zhou, Xing Hu, Zidong Du, Ling Li, Huaping

Chen, and Tianshi Chen. 2023. Heron: Automatically Constrained High-Performance Library Generation for Deep

Learning Accelerators. In ASPLOS (Vancouver, BC, Canada). Association for Computing Machinery, New York, NY, USA,

314–328. https://doi.org/10.1145/3582016.3582061

Alexander Brauckmann, Andrés Goens, Sebastian Ertel, and Jeronimo Castrillon. 2020. Compiler-Based Graph Representa-

tions for Deep Learning Models of Code. In CC. Association for Computing Machinery, New York, NY, USA, 201–211.

https://doi.org/10.1145/3377555.3377894

John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F. P. O’Boyle, and Olivier Temam. 2007. Rapidly

Selecting Good Compiler Optimizations Using Performance Counters. In CGO. IEEE Computer Society, USA, 185–197.

https://doi.org/10.1109/CGO.2007.32

John Cavazos, J. Eliot B. Moss, and Michael F. P. O’Boyle. 2006. Hybrid Optimizations: Which Optimization Algorithm to

Use?. In Proceedings of the 15th International Conference on Compiler Construction (Vienna, Austria) (CC’06). Springer-

Verlag, Berlin, Heidelberg, 124–138. https://doi.org/10.1007/11688839_12

John Cavazos and Michael F. P. O’Boyle. 2006. Method-Specific Dynamic Compilation Using Logistic Regression. In OOPSLA

(Portland, Oregon, USA). Association for Computing Machinery, New York, NY, USA, 229–240. https://doi.org/10.1145/

1167473.1167492

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng

Zhang. 2015. MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems. CoRR

abs/1512.01274 (2015), 6 pages. arXiv:1512.01274 http://arxiv.org/abs/1512.01274

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan, Haichen Shen, Leyuan Wang,

Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing

Compiler for Deep Learning. In OSDI (Carlsbad, CA, USA) (OSDI’18). USENIX Association, USA, 579–594.

Chris Cummins, Zacharias V. Fisches, Tal Ben-Nun, Torsten Hoefler, Michael F P O’Boyle, and Hugh Leather. 2021a.

ProGraML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations. In ICML,

Vol. 139. PMLR, Baltimore, Maryland, USA, 2244–2253.

Chris Cummins, Bram Wasti, Jiadong Guo, Brandon Cui, Jason Ansel, Sahir Gomez, Somya Jain, Jia Liu, Olivier Teytaud,

Benoit Steiner, Yuandong Tian, and Hugh Leather. 2021b. CompilerGym: Robust, Performant Compiler Optimization

Environments for AI Research. CoRR abs/2109.08267 (2021), 12 pages. arXiv:2109.08267

Anderson Faustino da Silva, Bruno Conde Kind, José Wesley de Souza Magalhães, Jerônimo Nunes Rocha, Breno

Campos Ferreira Guimarães, and Fernando Magno Quintão Pereira. 2021. AnghaBench: A Suite with One Mil-

lion Compilable C Benchmarks for Code-Size Reduction. In CGO. IEEE, Los Alamitos, CA, USA, 378–390. https:

//doi.org/10.1109/CGO51591.2021.9370322

Junio Cezar Ribeiro Da Silva, Lorena Leão, Vinicius Petrucci, Abdoulaye Gamatié, and Fernando Magno Quintão Pereira.

2021. Mapping Computations in Heterogeneous Multicore Systems with Statistical Regression on Program Inputs. ACM

Trans. Embed. Comput. Syst. 20, 6, Article 112 (oct 2021), 35 pages. https://doi.org/10.1145/3478288

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. In NAACL-HLT, Jill Burstein, Christy Doran, and Thamar Solorio (Eds.).

Association for Computational Linguistics, New York, US, 4171–4186. https://doi.org/10.18653/v1/n19-1423

Mohamed Essadki, Bertrand Michel, Bruno Maugars, Oleksandr Zinenko, Nicolas Vasilache, and Albert Cohen. 2023.

Code Generation for In-Place Stencils. In CGO. Association for Computing Machinery, New York, NY, USA, 2–13.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1109/CGO.2006.37
https://doi.org/10.1016/j.cola.2021.101062
https://doi.org/10.1145/3197978
https://doi.org/10.1145/2928270
https://doi.org/10.1145/2928270
https://books.google.com.br/books?id=0H1iQwAACAAJ
https://books.google.com.br/books?id=0H1iQwAACAAJ
https://doi.org/10.1145/3582016.3582061
https://doi.org/10.1145/3377555.3377894
https://doi.org/10.1109/CGO.2007.32
https://doi.org/10.1007/11688839_12
https://doi.org/10.1145/1167473.1167492
https://doi.org/10.1145/1167473.1167492
https://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1512.01274
https://arxiv.org/abs/2109.08267
https://doi.org/10.1109/CGO51591.2021.9370322
https://doi.org/10.1109/CGO51591.2021.9370322
https://doi.org/10.1145/3478288
https://doi.org/10.18653/v1/n19-1423

The Droplet Search Algorithm for Kernel Scheduling 1:27

https://doi.org/10.1145/3579990.3580006

Paul Feautrier. 1991. Dataflow analysis of array and scalar references. Int. J. Parallel Program. 20, 1 (1991), 23–53. https:

//doi.org/10.1007/BF01407931

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual Learning for Image Recognition. CoRR

abs/1512.03385 (2015), 12 pages. arXiv:1512.03385 http://arxiv.org/abs/1512.03385

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,

and Hartwig Adam. 2017. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. CoRR

abs/1704.04861 (2017), 9 pages. arXiv:1704.04861 http://arxiv.org/abs/1704.04861

Charles Jin, Phitchaya Mangpo Phothilimthana, and Sudip Roy. 2022. Neural Architecture Search Using Property Guided

Synthesis. Proc. ACM Program. Lang. 6, OOPSLA2, Article 166 (oct 2022), 30 pages. https://doi.org/10.1145/3563329

Samuel J. Kaufman, Phitchaya Mangpo Phothilimthana, Yanqi Zhou, Charith Mendis, Sudip Roy, Amit Sabne, and Mike

Burrows. 2021. A Learned Performance Model for Tensor Processing Units. In MLSys, Alex Smola, Alex Dimakis, and

Ion Stoica (Eds.). mlsys.org, Indio, CA, USA, 15 pages.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. 1988. Optimization by Simulated Annealing. MIT Press, Cambridge, MA,

USA, 551–567.

Mikhail Lebedev and Pavel Belecky. 2021. A Survey of Open-source Tools for FPGA-based Inference of Artificial Neural

Networks. In IVMEM. IEEE, New York, US, 50–56. https://doi.org/10.1109/IVMEM53963.2021.00015

David A. Levine. 1969. Algorithm 344: Student’s t-Distribution [S14]. Commun. ACM 12, 1 (jan 1969), 37–38. https:

//doi.org/10.1145/362835.362841

Jintao Meng, Chen Zhuang, Peng Chen, Mohamed Wahib, Bertil Schmidt, Xiao Wang, Haidong Lan, Dou Wu, Minwen

Deng, Yanjie Wei, and Shengzhong Feng. 2022. Automatic Generation of High-Performance Convolution Kernels on

ARM CPUs for Deep Learning. IEEE Trans. Parallel Distributed Syst. 33, 11 (2022), 2885–2899. https://doi.org/10.1109/

TPDS.2022.3146257

Naums Mogers, Lu Li, Valentin Radu, and Christophe Dubach. 2022. Mapping Parallelism in a Functional IR through

Constraint Satisfaction: A Case Study on Convolution for Mobile GPUs. In CC (Seoul, South Korea). Association for

Computing Machinery, New York, NY, USA, 218–230. https://doi.org/10.1145/3497776.3517777

Eliot Moss, Paul Utgoff, John Cavazos, Doina Precup, Darko Stefanovic, Carla Brodley, and David Scheeff. 1997. Learning to

Schedule Straight-Line Code. In NIPS. MIT Press, Cambridge, MA, USA, 929–935. https://doi.org/10.5555/3008904.3009034

Auguste Olivry, Guillaume Iooss, Nicolas Tollenaere, Atanas Rountev, P. Sadayappan, and Fabrice Rastello. 2021. IOOpt:

Automatic Derivation of I/O Complexity Bounds for Affine Programs. In PLDI (Virtual, Canada). Association for

Computing Machinery, New York, NY, USA, 1187–1202. https://doi.org/10.1145/3453483.3454103

Auguste Olivry, Julien Langou, Louis-Noël Pouchet, P. Sadayappan, and Fabrice Rastello. 2020. Automated Derivation

of Parametric Data Movement Lower Bounds for Affine Programs. In PLDI (London, UK). Association for Computing

Machinery, New York, NY, USA, 808–822. https://doi.org/10.1145/3385412.3385989

Phitchaya Mangpo Phothilimthana, Amit Sabne, Nikhil Sarda, Karthik Srinivasa Murthy, Yanqi Zhou, Christof Angermueller,

Mike Burrows, Sudip Roy, Ketan Mandke, Rezsa Farahani, Yu Emma Wang, Berkin Ilbeyi, Blake A. Hechtman, Bjarke

Roune, Shen Wang, Yuanzhong Xu, and Samuel J. Kaufman. 2021. A Flexible Approach to Autotuning Multi-Pass

Machine Learning Compilers. In PACT, Jaejin Lee and Albert Cohen (Eds.). IEEE, New York, 1–16. https://doi.org/10.

1109/PACT52795.2021.00008

Lakshminarayanan Renganarayana and Sanjay Rajopadhye. 2008. Positivity, Posynomials and Tile Size Selection. In SC.

IEEE Press, Austin, Texas, Article 55, 12 pages.

Peter Richtárik andMartin Takác. 2012. Parallel Coordinate Descent Methods for Big Data Optimization. CoRR abs/1212.0873

(2012), 43 pages. arXiv:1212.0873 http://arxiv.org/abs/1212.0873

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. 2018. Going Deeper in Spiking Neural Networks:

VGG and Residual Architectures. CoRR abs/1802.02627 (2018), 16 pages. arXiv:1802.02627 http://arxiv.org/abs/1802.02627

Anderson Faustino da Silva, Bernardo N. B. de Lima, and Fernando Magno Quintão Pereira. 2021. Exploring the Space

of Optimization Sequences for Code-Size Reduction: Insights and Tools. In Compiler Construction. Association for

Computing Machinery, New York, NY, USA, 47–58. https://doi.org/10.1145/3446804.3446849

Douglas Simon, John Cavazos, ChristianWimmer, and Sameer Kulkarni. 2013. Automatic Construction of Inlining Heuristics

Using Machine Learning. In CGO. IEEE Computer Society, Washington, DC, USA, 1–12. https://doi.org/10.1109/CGO.

2013.6495004

Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2016. Matrix Multiplication beyond Auto-Tuning: Rewrite-Based

GPU Code Generation. In CASES (Pittsburgh, Pennsylvania). Association for Computing Machinery, New York, NY,

USA, Article 15, 10 pages. https://doi.org/10.1145/2968455.2968521

Rafael Sumitani, Lucas Silva, Frederico Campos, and Fernando Pereira. 2023. A Class of Programs That Admit Exact

Complexity Analysis via Newton?S Polynomial Interpolation. In SBLP (Campo Grande, MS, Brazil). Association for

Computing Machinery, New York, NY, USA, 50–55. https://doi.org/10.1145/3624309.3624311

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1145/3579990.3580006
https://doi.org/10.1007/BF01407931
https://doi.org/10.1007/BF01407931
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://doi.org/10.1145/3563329
https://doi.org/10.1109/IVMEM53963.2021.00015
https://doi.org/10.1145/362835.362841
https://doi.org/10.1145/362835.362841
https://doi.org/10.1109/TPDS.2022.3146257
https://doi.org/10.1109/TPDS.2022.3146257
https://doi.org/10.1145/3497776.3517777
https://doi.org/10.5555/3008904.3009034
https://doi.org/10.1145/3453483.3454103
https://doi.org/10.1145/3385412.3385989
https://doi.org/10.1109/PACT52795.2021.00008
https://doi.org/10.1109/PACT52795.2021.00008
https://arxiv.org/abs/1212.0873
http://arxiv.org/abs/1212.0873
https://arxiv.org/abs/1802.02627
http://arxiv.org/abs/1802.02627
https://doi.org/10.1145/3446804.3446849
https://doi.org/10.1109/CGO.2013.6495004
https://doi.org/10.1109/CGO.2013.6495004
https://doi.org/10.1145/2968455.2968521
https://doi.org/10.1145/3624309.3624311

1:28 Michael Canesche, Vanderson M. Rosario, Edson Borin, and Fernando MagnoQuintão Pereira

John Thomson, Michael O’Boyle, Grigori Fursin, and Björn Franke. 2010. Reducing Training Time in a One-Shot Machine

Learning-Based Compiler. In Languages and Compilers for Parallel Computing, Guang R. Gao, Lori L. Pollock, John

Cavazos, and Xiaoming Li (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 399–407.

Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan,

and Fabrice Rastello. 2023. Autotuning Convolutions Is Easier Than You Think. ACM Trans. Archit. Code Optim. 20, 2,

Article 20 (mar 2023), 24 pages. https://doi.org/10.1145/3570641

XiaoWang, Amit Sabne, ShermanKisner, Anand Raghunathan, Charles Bouman, and SamuelMidkiff. 2016. High Performance

Model Based Image Reconstruction. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming (Barcelona, Spain) (PPoPP ’16). Association for Computing Machinery, New York, NY, USA,

Article 2, 12 pages. https://doi.org/10.1145/2851141.2851163

Frank Wilcoxon. 1992. Individual Comparisons by Ranking Methods. Springer New York, New York, NY, 196–202. https:

//doi.org/10.1007/978-1-4612-4380-9_16

Michael E. Wolf and Monica S. Lam. 1991. A Data Locality Optimizing Algorithm. In Proceedings of the ACM SIGPLAN 1991

Conference on Programming Language Design and Implementation (Toronto, Ontario, Canada) (PLDI ’91). Association

for Computing Machinery, New York, NY, USA, 30–44. https://doi.org/10.1145/113445.113449

Stephen J. Wright. 2015. Coordinate Descent Algorithms. Math. Program. 151, 1 (jun 2015), 3–34. https://doi.org/10.1007/

s10107-015-0892-3

W. Zangwill. 1969. Nonlinear Programming, A Unified Approach (1st ed.). Prentice Hall, USA.

Xiaoyang Zhang, Junmin Xiao, and Guangming Tan. 2021. I/O Lower Bounds for Auto-Tuning of Convolutions in CNNs. In

PPoPP. Association for Computing Machinery, New York, NY, USA, 247–261. https://doi.org/10.1145/3437801.3441609

Jun Zheng, Suhail S. Saquib, Ken D. Sauer, and Charles A. Bouman. 2000. Parallelizable Bayesian tomography algorithms with

rapid, guaranteed convergence. IEEE Trans. Image Process. 9, 10 (2000), 1745–1759. https://doi.org/10.1109/83.869186

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo,

Koushik Sen, Joseph E. Gonzalez, and Ion Stoica. 2020. Ansor: Generating High-Performance Tensor Programs for Deep

Learning. In OSDI. USENIX Association, USA, Article 49, 17 pages.

Hongyu Zhu, Ruofan Wu, Yijia Diao, Shanbin Ke, Haoyu Li, Chen Zhang, Jilong Xue, Lingxiao Ma, Yuqing Xia, Wei Cui,

Fan Yang, Mao Yang, Lidong Zhou, Asaf Cidon, and Gennady Pekhimenko. 2022. ROLLER: Fast and Efficient Tensor

Compilation for Deep Learning. In OSDI, Marcos K. Aguilera and Hakim Weatherspoon (Eds.). USENIX Association,

New York, USA, 233–248. https://www.usenix.org/conference/osdi22/presentation/zhu

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1145/3570641
https://doi.org/10.1145/2851141.2851163
https://doi.org/10.1007/978-1-4612-4380-9_16
https://doi.org/10.1007/978-1-4612-4380-9_16
https://doi.org/10.1145/113445.113449
https://doi.org/10.1007/s10107-015-0892-3
https://doi.org/10.1007/s10107-015-0892-3
https://doi.org/10.1145/3437801.3441609
https://doi.org/10.1109/83.869186
https://www.usenix.org/conference/osdi22/presentation/zhu

	Abstract
	1 Introduction
	2 The Search Space
	3 Droplet Search
	3.1 The Neighborhood Function
	3.2 Convexity
	3.3 Stop Criterion
	3.4 Synchronous Parallelism and Speculation

	4 Evaluation
	4.1 RQ1 – The Droplet Expectation
	4.2 RQ2 – End-to-end Effectiveness
	4.3 RQ3 – Stop Criteria
	4.4 RQ4 – Analytical Models
	4.5 RQ5 – Parallelism and Speculation
	4.6 RQ6 – Comparison with TensorFlow
	4.7 RQ7 – Intra-Kernel Behavior
	4.8 RQ8 – Convergence Rate

	5 Related Work
	6 Conclusion
	References

