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The difference between the mathematical mind ( esprit de geome
trie) and the perceptive mind ( esprit de finesse): the reason that math

ematicians are not perceptive is that they do not see what is before them, 

and that, accustomed to the exact and plain principles of mathematics, 

and not reasoning till they have well inspected and arranged their princi

ples, they are lost in matters of perception where the principles do not 

allow for such arrangement. ... These principles are so fine and so 

numerous that a very delicate and very clear sense is needed to perceive 

them, and to judge rightly and justly when they are perceived, without 

for the most part being able to demonstrate them in order as in math

ematics; because the principles are not known to us in the same way, and 

because it would be an endless matter to undertake it. We must see the 

matter at once, at one glance, and not by a process of reasoning, at least 

to a certain degree .... Mathematicians wish to treat matters of percep

tion mathematically, and make themselves ridiculous ... the mind ... 

does it tacitly, naturally, and without technical rules. 
-PASCAi., Pensees 
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Introduction to the MIT Press Edition 

This edition of What Computers Can't Do marks not only a change of 
publisher and a slight change of title; it also marks a change of status. 
The book now offers not a controversial position in an ongoing debate 
but a view of a bygone period of history. For now that the twentieth 
century is drawing to a close, it is becoming clear that one of the great 
dreams of the century is ending too. Almost half a century ago computer 
pioneer Alan Turing suggested that a high-speed digital computer, 
programmed with rules and facts, might exhibit intelligent behavior. 
Thus was born the field later called artificial intelligence (AI). After 
fifty years of effort, however, it is now clear to all but a few diehards that 
this attempt to produce general intelligence has failed. This failure does 
not mean that this sort of AI is impossible; no one has been able to come 
up with such a negative proof. Rather, it has turned out that, for the time 
being at le_ast, the research program based on the assumption that human 
beings produce intelligence using facts and rules has reached a dead 
end, and there is no reason to think it could ever succeed. Indeed, what 
John Haugeland has called Good Old-Fashioned AI (GOFAI) is a 
paradigm case of what philosophers of science call a degenerating 
research program. 

A degenerating research program, as defined by Imre Lakatos, is a 
scientific enterprise that starts out with great promise, offering a new 
approach that leads to impressive results in a limited domain. Almost 
inevitably researchers will want to try to apply the approach more 

I ix 
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broadly, starting with problems that are in some way similar to the 

original one. As long as it succeeds, the research program expands and 

attracts followers. If, however, researchers start encountering unex

pected but important phenomena that consistently resist the new tech

niques, the program will stagnate, and researchers will abandon it as 

soon as a progressive alternative approach becomes available. 

We can see this very pattern in the history of GOFAI. The program 

began auspiciously with Allen Newell and Herbert Simon's work at 

RAND. In the late 1950s Newell and Simon proved that computers 

could do more than calculate. They demonstrated that a computer's 

strings of bits could be made to stand for anything, including features 

of the real world, and that its programs could be used as rules for 

relating these features. The structure of an expression in the computer. 

then, could represent a state of affairs in the world \\·hose features had 

the same structure, and the computer could serve as a physical symbol 

system storing and manipulating such representations. In this way, 

Newell and Simon claimed, computers could be used to simulate 

important aspects of intelligence. Thus the information-processing 

model of the mind was born. 

Newell and Simon's early work was impressive. and by the late 

1960s, thanks to a series of micro-world successes such as Terry 

Winograd's SHRDLU, a program that could respond to English-like 

commands by moving simulated, idealized blocks (see pp. 12-13), Al 

had become a flourishing research program. The field had its Ph.D. 

programs, professional societies, international meetings, and even its 

gurus. It looked like all one had to do was extend, combine, and render 

more realistic the micro-worlds and one would soon have genuine 

artificial intelligence. Marvin Minsky, head of the M .I.T. AI project, 

announced: "Within a generation the problem of creating 'artificial 

intelligence' will be su bstan ti ally so 1 ved." 1 

Then, suddenly, the field ran into unexpected difficulties. The trouble 

started with the failure of attempts to program an understanding of 

children's stories (see pp. 57-62). The programs lacked the common 

sense of a four-year-old, and no one knew how to give them the 

background knowledge necessary for understanding even the simplest 

stories. An old rationalist dream was at the heart of the problem. GOFAI 
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is based on the Cartesian idea that all understanding consists in forming 
and using appropriate symbolic representations. For Descartes, these 
representations were complex descriptions built up out of primitive 
ideas or elements. Kant added the important idea that all concepts are 
rules for relating such elements, and Frege showed that rules could be 
formalized so that they could be manipulated without intuition or 
interpretation. Given the nature of computers as possible formal sym
bol processors, AI turned this rationalist vision into a research program 
and took up the search for the primitives and formal rules that captured 
everyday knowledge. Commonsense understanding had to be repre
sented as a huge data structure comprised of facts plus rules for relating 
and applying those facts. As it turned out, though, it was much harder 
than anyone expected to formulate, let alone formalize, the required 
theory of common sense. It was not, as Minsky had hoped, just a 
question of cataloging 10 million facts. Minsky's mood changed com
pletely in the course of fifteen years. In 1982 he told a reporter: "The AI 
problem is one of the hardest science has ever undertaken."2 

My work from 1965 on can be seen in retrospect as a repeatedly 
revised attempt to justify my intuition, based on my study of Martin 
Heidegger, Maurice Merleau-Ponty, and the later Wittgenstein, that the 
GOFAI research program would eventually fail. My first take on the 
inherent difficulties of the symbolic information-processing model of 
the mind was that our sense of relevance was holistic and required 
involvement in ongoing activity, whereas symbol representations were 
atomistic and totally detached from such activity. By the time of the 
second edition of What Computers Can't Do in 1979, the problem of 
representing what I had vaguely been referring to as the holistic context 
was beginning to be perceived by AI researchers as a serious obstacle. 
In my new introduction I therefore tried to show that what they called 
the commonsense-knowledge problem was not really a problem about 
how to represent knowledge; rather, the everyday commonsense back
ground understanding that allows us to experience what is currently 
relevant as we deal with things and people is a kind of know-how. The 
problem precisely was that this know-how, along with all the interests, 
feelings, motivations, and bodily capacities that go to make a human 
being, would have had to be conveyed to the computer as knowledge-
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as a huge and complex belief system- and making our inarticulate, 
preconceptual background understanding of what it is like to be a 
human being explicit in a symbolic representation seemed to me a 
hopeless task. 

For this reason I doubted that the commonsense-knowledge problem 
could be solved by GOFAI techniques, but I could not justify my 
suspicion that the know-how that made up the background of common 
sense could not itself be represented by data structures made up of facts 
and rules. Granted that our background knowledge consists largely of 
skills for dealing with things and people rather than facts about them, 
what I needed was an argument against those who assumed that such 
skills were representable in symbolic form. As it turned out, my brother 
Stuart provided the missing argument in his phenomenological account 
of skill acquisition .3 

Skill acquisition, he pointed out, usually begins with a student 
learning and applying rules for manipulating context-free elements. 
This is the grain of truth in the information-processing model. Thus a 
beginner at chess learns to follow strict rules relating such features as 
center control and material balance. After one begins to understand a 
domain, however, one sees meaningful aspects. not context-free fea
tures. Thus the more experienced chess player sees context-dependent 
characteristics such as unbalanced pawn structure or weakness on the 
king side. At the next stage, a competent performer learns to set goals 
and then look at the current situation in terms of what is relevant to 
achieving those goals. A further stage of proficiency is achieved when, 
after a great deal of experience, a player is able to see a situation as 
having a certain significance tending toward a certain outcome, and 
certain aspects of the situation stand out as salient in relation to that end. 
Given an appropriate board position. for example, almost all masters 
would observe after a few seconds of examination that to win white 
must attack the king side. 

Finally, after even more experience, one reaches the level where one 
sees immediately what must be done. A chess grandmaster, for ex
ample, not only sees the issues in a position almost immediately, but the 
right response just pops into his or her head. There is no reason to 
suppose that the beginner's features and rules, or any other features and 
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rules, play any role in such expert performance.4 That we once followed 

a rule in learning to tie our shoelaces does not show, as Edward 

Feigenbaum argues it does,5 that we must still be following that same 

rule unconsciously whenever we tie a lace. That would be like claiming 

that since we needed training wheels when learning how to ride a 

bicycle, we must now be using invisible training wheels whenever we 

ride. There is no reason to think that the rules that play a role in the 

acquisition of a skill play a role in its later application. 

When Mind Over Machine came out, however, Stuart and I faced the 

same objection that had been raised against my appeal to holism in What 

Computers Can't Do. You may have described how expertise feels, 

critics said, but our only way of explaining the production of intelligent 

behavior is by using symbolic representations, and so that must be the 

underlying causal mechanism. Newell and Simon resort to this type of 

defense of symbolic AI: 

The principal body of evidence for the symbol-system hypothesis . is 
negative evidence: the absence of specific competing hypotheses as to how 
intelligent activity might be accomplished whether by man or by machine.6 

In order to respond to this "what else could it be" defense of the physical 

symbol system research program, we appealed in Mind Over Machine 

to a somewhat vague and implausible idea that the brain might store 

holograms of situations paired with appropriate responses, allowing it 

to respond to situations in ways it had successfully responded to similar 

situations in the past. The crucial idea was that in hologram matching 

one had a model of similarity recognition that did not require analysis 

of the similarity of two patterns in terms of a set of common features. 

But the model was not convincing. No one had found anything resem

bling holograms in the brain. 

At this point, like Charlie Chaplin in Modern Times emerging from a 

manhole with a red flag just as the revolutionaries came swarming by, 

we happily found ourselves surrounded by the rapidly growing ranks of 

neural-network modelers. As the commonsense-knowledge problem 

continued to resist the techniques that had worked so well in problem 

solving, and as pattern recognition and learning turned out to be much 
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more intractable than anticipated, this alternative way of using comput
ers to produce intelligence reemerged as an attractive research program 
after a long period of dormancy. The triumphant arrival of the neural
net revolutionaries, also called connectionists, completed the degen
eration of the GOFAI research program. 

The proposal that we should set about creating artificial intelligence 
by modeling the brain's learning power rather than the mind· s symbolic 
representation of the world drew its inspiration not from philosophy but 
from what was soon to be called neuroscience. It was directly inspired 
by the work of D. 0. Hebb, who had suggested in 1949 that a mass of 
neurons could learn if the simultaneous excitation of neuron A and 
neuron B increased the strength of the connection between them.7 This 
lead was followed in the late 1950s by Frank Rosenblatt, who reasoned 
that since it was probably going to be hard to formalize intelligent 
behavior, AI should instead attempt to automate the procedures by 
which a network of neurons learns to discriminate patterns and respond 
appropriately. Researchers seeking symbolic representations were looking 
for a formal structure that would give computers the ability to solve a 
certain class of problems or discriminate certain types of patterns. 
Rosenblatt, conversely, wanted to build a physical device. or simulate 
such a device on a digital computer, that could generate its own 
abilities. 

When symbolic Al seemed to stall, Donald Norman's Parallel Dis
tributed Processing group and others started investigating variations of 
Rosenblatt' s project and chalked up surprising successes. Soon, frus
trated Al researchers, tired of clinging to a research program that Jerry 
Lettvin characterized in the early 1980s as "the only straw afloat," 
began defecting to the revived paradigm. Rumelhart, McClelland, and 
the PDP Research Group's two-volume work, Parallel Distributed 
Processing, had 6000 backorders the day it went on the market in 1986, 
and over 45,000 sets are now in print. Like the dissolution of the Soviet 
Union, the speed of collapse of the GOFAI research program has taken 
everyone, even those of us who expected it to happen sooner or later, by 
surprise.8 

Happily for Stuart and me, the neural-network modelers had a much 
more plausible answer to the question, If not symbols and rules, what 
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else? Their model showed that one need not store cases at all; instead, 

a designer could tune a simulated multilayer perceptron (MLP) neural 

network9 by training it to respond to specific situations and then having 

it respond to other situations in ways that are (the designer hopes) 

appropriate extrapolations of the responses it has learned. Indeed, the 

most striking difference between neural-network modeling and GOFAI 

is that the neural-network modeler provides not rules relating features 

of the domain but a history of training input-output pairs, and the 

network organizes itself by adjusting its many parameters so as to map 

inputs into outputs, that is, situations into responses. Thus computers 

running simulations of such nets do not count as physical symbol 

systems. Paul Smolensky, one of the PDP researchers, sums up the 

point: 

Connectionist systems are large networks of extremely simple processors, 
massively interconnected and running in parallel. Each processor has a nu
merical activation value which it communicates to other processors along 
connections of varying strengths. The activation value for each processor 
constantly changes in response to the activity of the processors to which it is 
connected. The values of some of the processors form the input to the system, 
and the values of other processors form the output. The connections between 
the processors determine how input is transformed to output. In connectionist 
systems, knowledge is encoded not in symbolic structures but rather in the 
pattern of numerical strengths of the connections between processors . 10 

In retrospect, the stages of my critique of attempts to use computers 

as physical symbol systems to simulate intelligence now fell into place. 

My early appeal to holism, my concern with commonsense understand

ing as know-how, Stuart's phenomenology of everyday skills, and the 

capacities of simulated neural networks all added up to a coherent 

position-one that predicted and explained why GOFAI research should 

degenerate just as it had. 

Here is where I would like to say "and the rest is history," but there 

are two issues that must be faced before we lay the whole controversy 

to rest. First, the GOFAI research program has refused to degenerate 

gracefully and is fighting on, and we have to ask why this is happening. 

Second, the question remains whether neural networks can be intelli-
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gent or whether network researchers, like AI researchers in the 1960s, 
are basing their hopes on ad hoc successes that may not be generaliz-
able . 

That GOF AI was not as dead as I believed was brought home to me 
by public television . Readers may have seen an impressive five-part 
series called "The Machine That Changed the World," one episode of 
which was devoted to AI . In that episode my objections to symbolic Al, 
and specifically my conclusion that in attempting to represent common 
sense GOFAI had run into a problem it could not solve , was played off 
against the claims of a lone AI researcher, Douglas Len at. In 1984 Lenat 
had shared my sense of AI ' s stagnat ion: 

By the mid- 1970s ,  after two decades of humblingly slow progress . workers in 
the new field of artific ial intelligence had come to a fundamental conclusion 
about intelligent behavior in general: it requires a tremendous amount of 
knowledge ,  which people often take for granted but which must be spoon- fed 
to a computer . . . .  Understanding even the easiest passages in common 
English , for example , requ ires a knowledge of the context. the speaker and the 
world at large that is far beyond the capabilities of present-day computer 
programs .1 1  

And by 199 1 his concern was even clearer : "Most of the current Al 
research we've read about is currently stalled. ' ' 1 2  Nevertheless , he is not 
discouraged . He heads a research team at the Microelectronics and 
Computer Technology Corporation (MCC) that is in the middle of a ten
year project aimed at formalizing consensus knowledge, that is, " the 
millions of abstractions, models. facts , rules of thumb, representations, 
etc ., that we all possess and that we assume everyone else does ." 1 3  

This is  not the sort of knowledge that i s  in  an ordinary encyclopedia . 
Rather, it is the taken-for-granted knowledge that is used by readers in 
understanding an encyclopedia article and, more generally, in under
standing what goes on in the world . Consensus knowledge ranges from 
"George Bush is President of the United States" to "George Bush wears 
underwear" to "When George Bush is in Washington , his left foot is 
also in Washington ." Lenat presents himself as the only person willing 
to take on the commonsense-knowledge problem as a major research 
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program instead of trying to finesse it . And he is confident that, thanks 
to his research , "artificial intelligence is within our grasp." 1 4  

Through cross-cut interviews, the Black Knight of AI , as I have been 
called , met the White Knight of symbolic information processing for a 
final joust. Lenat c laimed that his project was going well and had a 60 
percent chance of success . I came across as dubious but i ll- informed 
and made some unconvincing objections. Clearly , my claim that the 
GOFAI program is degenerating can be dismissed as merely reporting 
a transient sociological phenomenon unless I can defend my conviction 
that Lenat ' s  project is doomed. 

To understand my critique of the GOFAI approach to common sense, 
it helps to know its ancestry. Rationalists such as Descartes and Leibniz 
thought of the mind as defined by its capacity to form representations 
of all domains of activity. These representations were taken to be 
theories of the domains in question , the idea being that representing the 
fixed, context-free features of a domain and the principles governing 
their interaction explains the domain 's  intelligibility. On this view all 
that we know - even our general know-how for getting around in the 
world and coping with things and people-must be mirrored in the mind 
in propositional form. I shall call this view of the mind and its relation 
to the world "representationalism ." Representationalism assumes that 
underlying everyday understanding is a system of implicit bel iefs. 

This assumption is shared by intentionalist phi losophers such as 
Edmund Husserl and computationalists such as Jerry Fodor and GOFAI 
researchers. The specific  AI problem of representing all this knowledge 
in formal rules and features only arises after one has already assumed 
that common sense derives from a vast data base of propositional 
knowledge. When, instead of developing philosophical theories of the 
transcendental conditions that must hold if the mind is to represent the 
world , or proposing psychological models of how the storage and 
retrieval of propositional representations works , researchers in Al 
actually tried to formulate and organize everyday consensus knowl
edge , they ran into what has come to be called the commonsense
knowledge problem. There are real ly at least three problems grouped 
under this rubric : 
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1. How everyday knowledge must be organized so that one can make 

inferences from it. 

2. How skills or know-how can be represented as knowing-that. 

3. How relevant knowledge can be brought to bear in particular situations. 

While representationalists have written programs that attempt to deal 

with each of these problems, there is no generally accepted solution , nor 

is there a proof that these problems cannot be solved. What is clear is 

that all attempts to solve them have run into unexpected difficulties ,  and 

this in turn suggests that there may well be in-principle limitations on 

representationalism. At the very least these difficulties lead us to 

question why anyone would expect the representationalist project to 

succeed. 

Lenat, however, thinks that his predeces sors have simply not tried 

hard enough to systematize common sense. His goal is to organize 

commonsense knowledge using general categories that make no refer

ence to the specific uses to which the knowledge i s  to be put: 

Naturally , all programs are built on some primi t ives (predicates .  frames , slots ,  
rules , functions , scripts) . 1 5  But i f  you choose task-specific primit i ves , you ' ll 
w in in the short run (bu ilding a program for that narrow domain) but lose in the 
long run (you ' ll find yourself painted into a corner when you try to scale the 
program up) . 1 6  

Lenat relates his work to the traditional philosophical job of working 

out an ontology -a description of the various types of context-free 

entities and their relationships -and he sees that turning traditional 

ontology into a research program i s  no small task: 

A serious attempt at  [capturing consensus knowledge] would entail building a 
vast knowledge base, o.ne that is 104 to 105 larger than today' s  typical expert 
system , which would contain general facts and heur is t ics and contain a w ide 
sample of specific facts and heuris t ics for analogi z ing as well . . . . Moreover , 
this would include beliefs, knowledge of others ' (often grouped by culture , age 
group , or his torical era) limited awareness of what we know , various ways of 
representing things , knowledge of which approximations (micro- theories) are 
reasonable in various contexts ,  and so on. 1 7 
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The data structures must represent objects and their properties , 
individuals , collections , space , time , causality , events and their ele
ments , agency , institutions , and oddly , from a traditional philosophical 
point of v iew , recurrent social situations such as dinner at a restaurant 
or a birthday party. This data-base ontology ,  like any traditional 
rationalist ontology , must bottom out in primitive elements . 

Choosing a set of representation primitives (predicates , objects , functions)  has 
been called ontological engineering - that is , defining the categories and 
relationships of the domain . (This is empirical , experimental engineering , as 
contrasted with ontological theoriz ing , which philosophers have done for 
millennia . ) 1 8  

Lenat is  clear that his ontology must be able to represent our commonsense 
background know ledge-the understanding we normally take for granted . 
He would hold , however , that it is premature to try to give a computer 
the skills and feelings required for actually coping with things and 
people. No one in AI believes anymore that by 200 1 we will have an 
artificial intelligence like HAL . Lenat would be satisfied if the Cyc data 
base �ould understand books and articles , for example, if it could 
answer questions about their content and gain knowledge from them. In 
fact , i t  is a hard problem even to make a data base that can understand 
simple sentences in ordinary English , since such understanding re
quires vast background knowledge . Lenat collects some excellent 
examples of the d ifficulty involved. Take the following sentence: 

Mary saw a dog in the window. She wanted it. 1 9  

Lenat asks : 

Does "it" refer to the dog or the window? What if we' d  said "She smashed it ," 
or "She pressed her nose up against it" ?20 

Note that the sentence seems to appeal to our ability to imagine how 
we would feel in the situation, rather than requiring us to consult/acts 
about dogs and windows and how a typical human being would react. 
It also draws on know-how for getting around in the world , such as how 
to get closer to something on the other side of a barrier. In this way the 
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feel ings and bodily coping ski l l s  that were excluded to make Lenat ' s 
problem easier return . We need to be able to imagine feel ing and doing 
things i n  order to organize the knowledge we need to understand typical 
sentences .  There are also all the problems of "de ix i s  ," that i s ,  the way 
we locate things w i th respect to our own locations , as "over there ," 
"nearby ," e tc . All these problems point to the importance of the body . 
Lenat does not tel l  us how he proposes  to cap ture i n  propo s i t ional terms 
our bodi ly  sense of what i s  ins ide and outside , acce s s ible and inacces
sible , and what di stance we need to be from various sorts of th ings  to 
get an optimal grip on them .  He jus t  tel l s  us dogmatically that thi s  can 
be done . 

Our response- in principle and in CYC - i s  to describe perception.  emot ion, 
motion, etc . ,  down to some level of detail that enables the sys tem to understand 
humans doing those things . and/or to be able to reason s imply about them. 2 1  

In our  constructed telev i s ion debate my claim that an  intel l i gence 
needs a body was d i smi s sed by reference to the case of Madele ine . a 
wheelchair-bound woman described by Ol i \'er Sacks , who was bl i nd 
from birth , could not use her hand s to read brai l le . and yet acquired 
commonsense knowledge from books that ,vere read to her . But this 
case does not in fact support Len at . Madele ine is certainly not l ike a 
computer . She i s  an expert at speaking and interact ing w ith people and 
so has commonsense soc ial ski ll s . Moreover .  she has fee l ing s , both 
physical and emotional , and a body that has an in s ide and outside and 
can be moved around in the world . Thus she can empathize w ith others 
and to some extent share the skil lful way they encounter their world . 
Her expert i se  may well come from learning to discriminate many 
imagined cases and what typically occurs in  them , not from forming a 
model of the world in  Len at ' s sense . Indeed , Sacks says that Madeleine 
had "an imagination fi lled and sustained , so to speak ,  by the i mages of  
others , images conveyed by  language ."22 Thus the claim that Madele ine ' s  
acquis i t ion of commonsense knowledge from books despite her inabi l 
i ty to  see  and move  her  hands proves that a person can acquire and 
organize facts about the world on the model of a symbolic computer 
being fed rat ional ly ordered representations ignores the poss ib i l i ty  that 
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a person' s  bodily skills and imagination are a necessary condition for 

acquiring common sense even from books. 

Mark Johnson gives a good argument for the importance of imagina

tion even in conscious problem solving: 

Imagination i s  a pervasive structuring activity by means of which we achieve 

coherent , patterned , unified representations . It i s  indispensable for our abil ity 

to make sense of our experience , to find it  meaningful . The conclusion ought 

to be , therefore , that imagination i s  absolutely central to human rational ity , 

that i s ,  to our rational capacity to find connections , to draw inference s ,  and to 

solve problems .23 

To assume that Madeleine 's  body and imagination are irrelevant to her 

accumulation , organization, and use of facts, and that her skills them

selves are the result of just more storing and organizing of facts, begs 

the question. Why should we assume that the imagination and skills 

Madeleine brings to the task of learning and using common sense can 

be finessed by giving a computer facts and rules for organizing them? 

A way to see the implausibility of this claim is to ask how the 

computer- with its millions of facts organized for no particular pur

pose -might be able to retrieve just the relevant information for 

understanding a sentence uttered in a specific situation. This is a far 

harder problem than that of answering questions on the basis of stored 

data, which seems to be all that Lenat has considered until now. In order 

to retrieve relevant facts in a specific situation , a computer would have 

to categorize the situation, then search through all its facts following 

rules for finding those that could possibly be relevant in this type of 

situation, and finally deduce which of these facts are actually relevant 

in this particular situation. This sort of search would clearly become 

more difficult as one added more facts and more rules to guide it. 

Indeed, AI researchers have long recognized that the more a system 

knows about a particular state of affairs, the longer it takes to retrieve 

the relevant information, and this presents a general problem where 

scaling up is concerned. Conversely, the more a human being knows 

about a situation or individual, the easier it is to retrieve other relevant 

information. This suggests that human beings use forms of s torage and 



Introduction to the MIT Press Edition I x.xii 

retrieval quite different from the symbolic one representationalist 
philosophers and Lenat have assumed. 

Lenat admits that there is a problem: 

The natural tendency of any search program is to slow down (often combina
torially explosively) as additional assertions are added and the search space 
therefore grows . . . .  [T]he key to preserving effective intelligence of a growing 
program lies i n  judicious adding of meta-knowledge .24 

The problem is that the rules and meta-rules are just more meaningless 
facts and so may well make matters worse. 

In the end , Lenat 's  faith that Cvc will succeed is based neither on 
arguments nor on actual successes but on the untested traditional 
assumption that human beings have a vast library of commonsense 
knowledge and somehow solve the scaling-up problem by applying 
further know ledge: 

We're often asked how we expect to efficiently " index" - find relevant partial 
matches - as the knowledge base grows larger and larger . . . .  Our answer . . .  
often appears startl ing at first g lance : wait unti l our programs are finding 
many , far-flung analogies , but inefficiently . i .e. on ly through large searches. 
Then investigate what additional knowledge people bring to bear . to el iminate 
large parts of the search space in those cases . Cod ify the knowledge so 
extracted , and add it to the system . 2� 

But the conviction that people are storing context-free facts and 
using meta-rules to cut down the search space is precisely the dubious 
rationalist assumption in question . It must be tested by looking at the 
phenomenology of everyday know-how. Such an account is worked out 
by Heidegger and his followers such as Merleau-Ponty and the anthro
pologist Pierre Bourdieu. They find that what counts as the facts 
depends on our everyday skills. In describing a society in which gift
exchange is important, Bourdieu tells us : 

I f  it is not to constitute an insult, the counter-g ift must be deferred and 
different , because the immediate return of an exactly identical object clearly 
amounts to a refusal. . . .  It is al l a question of style, which means in this case 
timing and choice of occasion, for the same act - g iving , g iving in return ,  
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offering one ' s  services , paying a visi t , etc . - can have completely different 

meaning s  at different time s .26 

Yet members of the culture have no trouble understanding what to do . 
Once one has acquired the necessary social skill , one does not need to 
recognize the situation objectively as having the features of one in 
which gift-giving is appropriate and then decide rationally what gift to 
give. Normally one simply responds in the appropriate c ircumstances 
by giving an appropriate gift. That this is the normal response is what 
constitutes the circumstance as a gift-giving situation. The same , of 
course , holds for the know-how of what gift is appropriate. One does 
not have to figure out what is appropriate , or at least not the range of 
what is appropriate . Everyone ' s  skills are coordinated so that normally 
one is just solicited by the situation to give a certain type of gift , and the 
recipient , socialized into the same shared practices , finds it appropriate. 
Bourdieu comments : 

The active presence of past experiences . . .  deposited in each organi sm in the 

form of schemes of perception , thought , and action , tend to guarantee the 

' correctnes s '  of prac tices and their cons tancy over time , more re l iably than al l  

formal rule s and explicit norms . 27 

This sort of experience suggests that structuring a knowledge base so 
as to represent all facts about gift-giving is necessary only for a stranger 
or spectator who does not already have the appropriate skill. Bourdieu 
insists that it is a mistake -one often made by anthropologists , philoso
phers , and , we can add , AI researchers - to read the rules we need to 
appeal to in breakdown cases back into the normal situation and then to 
appeal to such representations for a causal explanation of how a skillful 
response is normally produced . 

The point of this example is that knowing how to give an appropriate 
gift at the appropriate time and in the appropriate way requires cultural 
savoir faire . So knowing what a gift is is not a bit of factual knowledge , 
separate from the skill or know-how for giving one . The distinction 
between what a gift is and what counts as a gift , which seems to 
distinguish facts from skills , is an illusion fostered by the philosophical 
belief in a nonpragmatic ontology. Since the organization and content 
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sleeping , tasting , growing , containing, moving , making noise, hearing, birth, 
death, strain, exhaustion, . . . 3 1  

The fact that these are somatic primitives does not seem to bother him 
at all . 

Lenat , nonetheless , asks the right question: "How can a program 
automatically find good mappings ?"32 But he gives the simplistic 
rationalist answer : "If A and B appear to have some unexplained 
similarities , then it ' s worth your time to hunt for additional shared 
properties ." 33  

This begs the question. Everything is similar to everything else in an 
indefinitely large number of ways. Why should v..1e suppose that any two 
items should be compared? Even if two frames have many slots in 
common, why should we think these are the important similarities ? 
Perhaps the important similarities cannot be symbolically represented 
at all . Both the defenders of the basic role of our sense of our active body 
with inside/outside , forward/backward, and up/down dimensions and 
those who hold that similarity of style is what defines what is worth 
comparing would hold that there is no reason to think that the con
straints on similarity can be represented symbolically. 

When John Searle tried to understand metaphors as proportions, he 
found that metaphors like "Sally is a block of ice" could not be analyzed 
by listing the features that Sal ly and a large, cold cube have in common . 

If we were to enumerate qui te l i teral ly  the various dist inct i ve qual i t ies of 
blocks of ice , none of them would be true of Sally .  Even if we were to throw 
in the various bel iefs that people have about blocks of ice , they st i ll would not 
be l i teral ly  true of Sally . . . . Be ing unemot ional is not a feature of blocks of 
ice because blocks of ice are not in that line of bus iness at al l ,  and i f  one wants 
to ins i st that blocks of ice are l i terally unrespons ive ,  then we need only point 
out that that feature is st i l l  insufficient to explain the metaphorical utterance 
meaning . . . because in that sense bonfires are "unrespons ive" as well .3' 

Searle concludes : 

There are . . .  whole classes of metaphors that function without any underly ing 
principles of s imilarity . It just seems to be a fact about our mental capaci ties 
that we are able to interpret certain sorts of metaphor without the appl ication 
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of any underlying ' rules ' or 'principles ' other than the sheer abi lity to make 
certain associations . I don' t  know any better way to describe these abil ities 
than to say that they are nonrepresentational mental capacities . 3s 

So  far we  have only discussed the facts and metaphors that are 
constituted by our social ski l l s . What about the facts of nature? Where 
a domain of facts is  independent of us , as is the domain of physical 
obj ects , do we  then need a theory of the domain? Not l ikely . The way 
peopl e  cope wi th things is  sometimes cal led commonsense physics . 
This leads to the comforting i l lus ion that just as the planets do not move 
around at random but obey general principles , so everyday objects do 
not stick , s l ide , fal l ,  and bounce in an unprincipled way but obey 
complex  and particular law s .  Attempts to work out commonsense 
physics for the s imp lest everyday objects , however , lead to formal 
princip les  that are subject to many exceptions and are so complex that 
i t  is hard to bel ieve they could be in a chi ld ' s  mind . 36 Lenat concludes 
from this  that what we know concerning how everyday objects behave 
cannot be principles but must be a lot of facts and rules . 

[The Cyc] methodology will collect, e .g ., all the facts and heuristics about 
"Water" that newspaper artic les assume their readers already know . This is in 
contrast to , for instance, naive physics and other approaches that aim to 
somehow capture a deeper theory of "Water" in al l its various forms .37 

B ut granted that there is no reason to think that there can be a theory of 
commonsense physics as there is of celestial physics , that is no reason 
to think that our know-how for dealing with physical obj ects can be 
spel l ed out in some al l -purpose data base concerning physical objects 
and their properties . Perhaps there is  no set of context-free facts 
adequate to capture the way everyday things such as water behave .  We 
may j ust have to l earn from vast experience how to respond to thou
sands of typical cases . That would explain  why chi ldren find i t  fascinat
ing to p lay w ith blocks and water day after day for years . They are 
probably l earning to discriminate the sorts of typical situations they 
w i l l  have to cope wi th in their everyday activitie s .  For natural kinds l ike 
water ,  then , as we l l  as for social kinds l ike gifts , common sense seems 
to be based on knowing-how rather than knowing-that , and this know-
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how may well be a way of storing our experience of the world that does 

not involve representing the world as symbolic AI required. 

This still leaves the important question of how human beings manage 

to engage in purposive behavior. The traditional view, accepted by 

GOFAI, has been that they use their theory of the domain in question to 

work out a plan for accomplishing whatever they are trying to do. But 

rather than suggesting that people store vast numbers of facts and then 

plan how to use them, the phenomena, which have to be trusted until 

psychology or neuroscience gives us any reason to think otherwise, 

suggest that when one has had a great deal of experience in a domain, 

one simply sees what needs to be done . It seems that when a person has 

enough experience to make him or her an expert in any domain, the field 

of experience becomes structured so that one directly experiences 

which events and things are relevant and how they are relevant. 

Heidegger ,  Merleau-Ponty, and the gestaltists would say that objects 

appear to an involved participant not in isolation and with context-free 

properties but as things that solicit responses by their significance. 

In the first edition of this book I noted that good chess players don't 

seem to figure out from scratch what to do each time they make a move. 

Instead, they zero in on a certain aspect of the current position and 

figure out what to do from there (pp. 102-106). In Mind Over Machine 

Stuart went further and pointed out that a mere master might need to 

figure out what to do, but a grandmaster just sees the board as demand

ing a certain move . 3 8  

We are all masters in our everyday world . Consider the experience of 

entering a familiar type of room. We know but do not appeal to the sort 

of facts that can be included in a room frame, such as that rooms have 

floors, ceilings, and walls, that walls can have windows in them, and 

that the floor can have furniture on it. Instead, our feeling for how rooms 

normally behave, a skill for dealing with them that we have developed 

by crawling and walking around many rooms, gives us a sense of 

relevance. We are skilled at not coping with the dust, unless we are 

janitors, and not paying attention to whether the windows are open or 

closed, unless it is hot , in which case we know how to do what is 

appropriate. Our expertise in dealing with rooms determines from 

moment to moment both what we cope with by using and what we cope 
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with by ignoring (while being ready to use it should an appropriate 

occasion arise). This global familiarity maps our past experience of the 

room onto our current activity, so that what is appropriate on each 

occasion is experienced as perceptually salient or simply elicits what 

needs to be done. 

In general, human beings who have had vast experience in the natural 

and social world have a direct sense of how things are done and what to 

expect. Our global familiarity thus enables us to respond to what is 

relevant and ignore what is irrelevant without planning based on 

purpose-free representations of context-free facts. Such familiarity 

differs entirely from our knowledge of an unfamiliar room, such as the 

room of an seventeenth-century nobleman. In that sort of room our 

knowledge resembles the sort of knowledge a data base might have. But 

even if a Jacobean drawing-room frame and its slots were all in place, 

we would still be disoriented. We would not know what to pay attention 

to or how to act appropriately . 

Global sensibilities (or the imagination thereof) determine situ

ational relevance because our world is organized by these preconceptual 

meanings. It is in terms of them that objects and events are experienced 

as something. Our everyday coping skills and the global familiarity 

they produce determine what counts as the facts and the relevance of all 

facts and so are already presupposed in the organization of the frames 

and slots GOFAI uses for representing these facts. That is why human 

beings cope more easily and expertly as they learn to discriminate more 

aspects of a situation, whereas, for data bases of frames and rules, 

retrieving what is relevant becomes more and more difficult the more 

they are told. 

Lenat does seem to be correct in seeing the Cyc project as the last 

defense of the AI dream of producing broad, flexible human intelli

gence. Indeed, just because of its courage and ambition, the Cyc 

project , more than any previous one, confronts the problems raised by 

the idea of basing intelligence on symbolic representations. As we have 

just seen , the somatic and stylistic background sensi ti vi ties that deter

mine what counts as similar to what and the background coping 

familiarity that determines what shows up as relevant are presupposed 

for the intelligent use of the facts and rules with which symbolic AI 
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starts. The hope that these background conditions can be analyzed in 

terms of the features whose isolation and recognition they make pos

sible is, on the face of it, implausible. The only arguments that are ever 

given in support of the physical symbol system hypothesis are the 

rationalist assumption that understanding equals analysis, so that all of 

experience must be analyzable (that is, there must be a theory of every 

intelligible domain), or the GOFAI response that the mind must be a 

symbol manipulator since no one knows what else it might be. Now that 

both of these arguments have lost plausibility , there remains only the 

pragmatic argument that GOFAI will demonstrate its possibility by 

producing an intelligent machine. So far that sort of claim has not been 

made good, and Cyc faces all the old problems in their most daunting 

form. The project has five more years to go , but Lenat has given us no 

reason to be optimistic. It seems highly likely that the rationalist dream 

of representationalist AI will be over by the end of the century. 

For three groups of AI researchers whose v.·ork now focuses on 

alternative approaches, GOFAI is already oYer . One of these ap

proaches, associated with the work of Philip Agre and David Chapman, 

attempts to produce programs that interact intelligently with a micro

world without using either context-free symbolic representations or 

internal model-based planning . The second, represented by the neural

network modelers, abandons representation altogether. This approach 

uses conventional features but produces outputs by a direct mapping 

from the inputs, with the mapping extrapolated from examples pro

vided by an expert. A third new approach to AI . called reinforcement 

learning, aims to develop a program that dispenses with the expert and 

uses actual performance in the skill domain in order to find, on its own, 

a successful input-output rule . It is worth considering the advantages 

and limitations of each of these approaches. 

The interactionists are sensitive to the Heideggerian critique of the 

use of symbolic models of the world and attempt to turn Heidegger ' s  

account of ongoing skillful coping39 into an alternative research pro

gram. At MIT, where this approach was developed, it is sometimes 

called Heideggerian AI. Terry Winograd, who was the first to introduce 

Heidegger into his computer science courses, has described this sur

prising new development : 
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For those who have followed the his tory of artificial intelligence ,  i t  i s  ironic 

that [the MIT] l aboratory should become a cradle of "Heideggeri an AI ." It was 

at MIT that Dreyfus  first formulated his critique , and , for twenty years , the 

intellectual atmosphere in the AI Lab was overtly hostile to recognizing the 

implic ations of what he s aid . Nevertheles s ,  some of the work now being done 

at that l aboratory seems to have been affected by Heidegger and Dreyfus .40 

The AI Lab work Winograd is referring to is the influential theory of 
activity developed by Agre and Chapman, implemented in two pro
grams , Pengi and Sonja , that play computer games. Agre and Chapman 
question the need for an internal symbolic model of the world that 
represents the context-free features of the skill domain . Following 
Heidegger,  they note that in our everyday coping we experience our
selves not as subjects with mental representation over against objects 
with fixed properties , but rather as absorbed in our current situation, 
responding directly to its demands. 

Interactive AI takes seriously the view I attributed to Heidegger in 
this book - that there is usually no need for a representation of the world 
in our mind since the best way to find out the current state of affairs is 
to look to the world as we experience it . Chapman tells us : 

If you want to find out something about the world that wil l  affect how you 

should ac t ,  you can u sual ly jus t  look and see . Concrete activity i s  principally 

concerned wi th the here -and-now .  You mostly don ' t  need to worry about 

things  that h ave gone before , are much in the fu ture , or are not physically 

present . You don ' t  need to maintain a world model ; the world i s  its own best 

repre sentation .4 1  

Agre and Chapman also adapt another Heideggerian thesis that Stuart 
and I developed in Mind Over Machine , namely that behavior can be 
purposive without the agent having in mind a goal or purpose . 

In a great many situations , i t ' s  obvious what to do next given the configuration 

of materials at hand . And once you ' ve done that the next thing to do i s  likely 

to be obvious too . Complex sequences of actions result , without needing a 

complex control structure to decide for you what to do .42 

What is original and important in Agre and Chapman's  work is that 
these ideas are taken out of the realm of armchair phenomenology and 
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made specific enough to be implemented in programs . What results is 
a system that represents the world not as a set of objects with properties 
but as current functions (what Heidegger called in-order-tos) . Thus, to 
take a Heideggerian example, I experience a hammer I am using not as 
an object with properties but as in-order-to-drive- in-the-nail .  Only if 
there is some disturbance does the skilled performer notice what I have 
called aspects of the situation . In Heidegger 's  example, the carpenter 
notices that the hammer is too heavy . Both of the above ways of being . 
which Heidegger calls the available (the ready-to-hand) and the un
available (the unready-to-hand), are to be distinguished from what he 
calls the occurrent (the present-at-hand) mode of being . the mode of 
being of stable objects . Objects can be recognized as the same even 
when they are used in different contexts or when some of their proper
ties change . Such reidentifiable objects with their changing features or 
properties have been the only mode of being represented in GOFAI 
models. The interactionists seek to represent the available and the 
unavailable modes . Chapman speaks in this respect of "deictic repre
sentations" : 

The sorts of repre sentations we are used to are objecti\·e : they repre sent the 
world without reference to the repre senting agent . Deictic repre sentations 
repre sent things in terms of the ir re lationship w ith the agent . The units of 
deictic repre sentation are en rities , which are things in a particular relationship 
to the agent , and re lational aspects of the se entitie s .  For example , the - cup -l
am-drinking-from i s  the name of an entity , and th e -cup -1-am -drinking -from
is-almost- empty i s  the name of an aspect of  i t .  The - cup - I-am -drinking-from i s  
defined in terms of  an agent and the time the aspect is used . The same 
representation refers to di fferent cups depending on whose representation it i s  
and when i t  is  used . I t  is defi ned functional /y ,  in terms of  the agent' s purpose : 
drink ing . 43  

The other important Heidegger- inspired innovation in interactive 
programming is its implementation of purposive action . A GOFAI 
planner searches the space of possible sequences of actions to deter
mine how to get from a symbolic representation of the current situation 
to a specified goal . The interactive approach to action stipulates a 
mapping from situations directly to actions . 
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Interactive AI has implemented Heidegger's phenomenology of everyday 
coping but has not attempted to implement his account of the back
ground familiarity on the basis of which certain equipment is seen as 
relevant and certain courses of act ion solicit my response. This gap 
shows up in Chapman's unsatisfying account of relevance. Chapman 
tells us that "agents represent only relevant aspects of the situation."44 

B ut this turns out to mean that, as in all GOFAI programs, the program
mer has predigested the domain and determined for the system what are 
the possibly relevant features at any given moment . 

So far it looks like Heideggerian AI is true to Heidegger's phenom
enology in what it leaves out - long-range planning and internal repre
sentations of reidentifiable objects with context-free features- but it 
lacks what any intelligent system needs, namely the ability to discrimi
nate relevant distinctions in the skill domain and to learn new distinc
t ions from experience . To provide this crucial capability, more and 
more researchers are looking to simulated neural networks. We there
fore turn to the question of whether such networks can exhibit what I 
have called familiarity or global sensitivity and, if not, whether they can 
cope in some other way with relevance and learning. (My use of "we" 
here is not royal but literal, since my brother Stuart has made indispens
able contributions to the rest of this introduct ion.) 

We have already mentioned that neural-network modeling, the fash
ionable answer to the what-else-could- it-be question, has swept away 
GOFAI and given AI researchers an optimism they have not had since 
the 1960s . After all, neural networks can learn to recognize patterns and 
pick out similar cases, and they can do this all in parallel, thus avoiding 
the bottleneck of serial processing. But neural networks raise deep 
philosophical questions. It seems that they undermine the fundamental 
rationalist assumption that one must have abstracted a theory of a 
domain in order to behave intelligently in that domain. In its simplest 
terms, as understood from Descartes to early Wittgenstein, finding a 
theory means finding the invariant features in terms of which one can 
map specific situations onto appropriate responses. In physical symbol 
systems the symbols in the representation are supposed to correspond 
to these features, and the program maps the features onto the response. 
As we saw, Lenat, the last heir to GOFAI, assumes that there must be 
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such context-free primitives in  which h i s  ontology would bottom out . 
When neural networks became fashionable , tradi t ional AI researchers 
assumed that the h idden nodes in  a trained net  would detect and learn 
the relevant features , rel iev ing the programmer of  the need to d i scover 
them by trial and error . B ut thi s turned out to be problemat ic .  

The input to neural networks mus t , o f  course , be expres sed i n  terms 
of stable , recognizable features of the domai n . For example , a network 
that i s  to be trained to play ches s  would take as its inputs  board pos i t ions 
defined i n  terms of types and locations of pieces . The quest ion i s  
whether a network that  has learned to play ches s  has detected h igher
order features , such as unbalanced pawn s tructure . that combine these 
input features in  such a way that any pos i t ion that shares the same 
higher-order features maps into the same moYe . If a g iven network 
archi tecture trained on a g iven set of example s could be shown to detect 
such higher-order features independently of its connection s trengths 
prior to training , then i t  could be said to have abs tracted the theory of  
the  domain . If ,  for example , such features turned out  to  be the  k inds  of 
features chess masters actual ly th ink abou t ,  then the net would have 
di scovered the theory of the ches s  domain that chess  theori s t s  and 
symbol ic AI researchers have sought for so long . If the se higher-order 
features were not the sort of features an expert in the domain could 
recognize , the belief that programmers of AI sy stems could invent 
higher-order feature s based on chess  knowledge would of course be 
shaken , but  the assumption that there must be a theory of any domain 
in which intel l igent behavior i s  poss ible would not have been called 
into question . 

The impl ications for rational i sm ,  however , may be much more serious . 
To defend the theory theory , rat ional i s ts might wel l  in s i s t  that , g iven 
any particular set  of connection s trengths as a starting point  for train ing 
a network with examples , we can always identify higher-order features ,  
even i f  these  features cannot be used consciously by experts . Cons ider 
the simple case of layers of binary un its activated by feedforward , but 
not lateral or feedback ,  connections . To construct such higher-order 
features from a network that has learned certa in assoc iat ions , we could 
interpret each node one level above the input nodes , on the bas i s  of the 
connections to i t ,  as detecting when any one of a certain set of  ident i -
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fiable input patterns is present. (Some of the patterns will be the ones 

used in training, and some will never have been used.) If the set of input 

patterns that a particular node detects is given a name (it almost 

certainly won' t  have one already), the node could be interpreted as 

detecting the highly abstract feature so named. Hence, every node one 

level above the input level could be characterized as a feature detector. 

Similarly, every node a level above those nodes could be interpreted as 

detecting a higher-order feature defined as the presence of one of a 

specified set of patterns among the first level of feature detectors. And 

so on up the hierarchy . A similar story could be constructed for neurons 

with graded (continuous, non binary) responses. One would then speak 

of the extent to which a higher-order feature is present. 

The fact that intelligence, defined as the knowledge of a certain set of 

associations appropriate to a domain, can always be accounted for in 

terms of relations among a number of such highly abstract features of 

a skill domain does not, however, preserve the rationalist intuition that 

these explanatory features capture the essential structure of the domain . 

The critical question is whether, if several different nets with different 

initial connection strengths were trained to produce a given set of input/ 

output mappings, the same higher-order features would be detectable in 

all of them or, at least, whether, at some level of abstraction, all of the 

nets could be seen as abstracting equivalent invariances. 

No such invariances have been found. The most thorough search 

concerns a neural network called NETtalk that converts printed text 

into speech. NETtalk is given several pages of text plus the correct 

pronunciation of the middle letter of every string of seven characters in 

the text. The net starts with random connection strengths, and its 

reading of the text sounds like noise . After many hours of training using 

backpropagation, a technique that changes the connection strengths 

repeatedly, each time bringing the actual output closer to the correct 

output, the net learns to read the text aloud in a way that a native speaker 

can easily understand .45 But careful analysis of the activity of the 

hidden nodes when the net was producing correct responses failed to 

reveal any consistent higher-order features in trials with different 

initial connection strengths . Thus we can say that so far neural-network 

research has tended to substantiate the belief that coping does not 
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require the abstraction of a theory of the skill domain .46 This is bad news 
for rationalism but gives networks a great advantage over GOFAI. 

Nevertheless, the commonsense-knowledge problem resurfaces in 
this work and threatens i ts progress just as it did work in GOFAI. All 
multilayer perceptron neural-network modelers agree that an intelli
gent network must be able to generalize; for example, for a given 
classification task, given sufficient examples of inputs assoc iated with 
one particular output, it should assoc iate further inputs of the same type 
with that same output . But what counts as the same type? The network ' s  
designer usually has in  mind a spec ific definition of "type" required for 
a reasonable generalization and counts it a success if the net generalizes 
to other instances of this type . But when the net produces an unexpected 
association, can one say that it has failed to generalize? One could 
equally well say that the net has all along been acting on a different 
definition of "type" and that that difference has just been revealed . 

For an amusing and dramatic case of creat ive but unintelligent 
generalization, consider one of connectionism' s first applications . In 
the early days of this work the army tried to train an artific ial neural 
network to recognize tanks in a forest . They took a number of pictures 
of a forest without tanks and then , on a later day , with tanks clearly 
sticking out from behind trees , and they trained a net to discriminate the 
two classes of pictures . The results were impressive , and the army was 
even more impressed when it turned out that the net could generalize its 
knowledge to pictures that had not been part of the training set. Just to 
make sure that the net was indeed recognizing partially hidden tanks, 
however, the researchers took more pictures in the same forest and 
showed them to the trained net . They were depressed to find that the net 
failed to discriminate between the new pictures of trees with tanks 
behind them and the new pictures of just plain trees . After some 
agonizing , the mystery was finally solved when someone noticed that 
the original pictures of the forest without tanks were taken on a cloudy 
day and those with tanks were taken on a sunny day. The net had 
apparently learned to recognize and generalize the difference between 
a forest with and without shadows ! This example illustrates the general 
point that a network must share our commonsense understanding of the 
world if it is to share our sense of appropriate generalization . 
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One might sti l l  hope that networks different from our brain wil l  make 
excit ing new general izations and add to our intelligence . After all , 
detecting shadows is  just as legitimate as detecting tanks . In general , 
though , a dev ice  that could not learn our general izations and project our 
practices to new situations would just be labeled stupid . For example , 
thanks to our bodies , we normally  see symmetric objects as similar . If 
a system consistently classified mirror images of otherwise identical 
obj ects as different but classified objects that cast the same shadows or 
had any red on them as similar , we would count it not as adding to our 
inte ll ig ence but as being unteachable or , in short , stupid as far as joining 
our community or g iving us  new insights was concerned . For an 
exerci se  in interesting but unintell igible categorization , consider Jorge 
Luis B orges ' s story of " a ' certain Chinese encyclopedia ' in which it is 
written that ' animals are divided into : (a) belonging to the Emperor , (b) 
embalmed , (c) tame , (d) sucking pigs , (e) sirens , (f) fabulous , (g) stray 
dog s ,  (h) included in the present classification , (i) frenzied , U) innumer
able , (k) drawn with very fine camelhair brush , (1) et cetera , (m) having 
broken the water pitcher , (n) that from a long way off look like fl ies . '  "47 

Neural-network modelers were initially pleased that their nets were 
a blank slate (tabula rasa) until trained , so that the designer did not need 
to identify and provide anything resembling a pretraining intel l igence . 
Recentl y , however ,  they have been forced by the problem of producing 
appropriate , human-l ike generalizations to the recognition that , unless 
the class of possible generalizations is restricted in an appropriate a 
priori manner , nothing resembling human generalizations can be con
fidently expected .48 Consequently , after identifying in advance the 
class of allowable human-like generalizations appropriate to the prob
lem (the hypothesis space) , these modelers then attempt to design the 
architecture of their networks so that they transform inputs into outputs 
only in ways that are in the hypothesis space . Generalization would then 
be possible only on the designer ' s  terms . While a few examples will be 
insufficient to identify uniquely the appropriate member of the hypoth
esis space , after enough examples only one hypothesis will  account for 
all the examples . The network wil l  then have learned the appropriate 
generalization principle . That is , all further input will produce what , 
from the designer ' s  point of v iew , is the right output . 
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The problem here is that the designer has determined, by means of the 
architecture of the network, that certain possible generalizations will 
never be found. All this is well and good for toy problems in which there 
is no question of what constitutes a reasonable generalization , but in 
real-world situations a large part of human intelligence consists in 
generalizing in ways that are appropriate to a context . If the designer 
restricts the network to a predefined class of appropriate responses , the 
network will be exhibiting the intelligence built into it by the designer 
for that context but will not have the common sense that would enable 
it to adapt to other contexts as a truly human intelligence would . 

Perhaps a network must share size , architecture. and initial-connec
tion configuration with the human brain if it is to share our sense of 
appropriate generalization . Indeed, neural-network researchers with 
their occasional ad hoc success but no principled way to generalize 
seem to be at the stage of GOFAI researchers when I \\'rote about them 
in the 1960s . It looks likely that the neglected and then revived 
connectionist approach is merely getting its deserved chance to fail . 

To generalize in the way that human beings do . a network · s architec
ture would have to be designed in such a \vay that the net would respond 
to situations in terms of what are for human be ings relevant features . 
These features would have to be based on what past experience has 
shown to be important and also on recent experiences that determine the 
perspective from which the situation is v ie\ved . Only then could the 
network enter situations with perspective-based human-like expecta
tions that would allow recognit ion of unexpected inputs (such as tanks 
in forests) as well as s ignificant expected inputs that are not currently 
present in the situation . No current networks show any of these abili
ties , and no one at present knows or even speculates about how our 
brain's architecture produces them . 

There is yet another fundamental problem with the route to artificial 
intelligence through the supervised training of neural networks . In 
GOFAI it has long been clear that whatever intelligence the system 
exhibits has been explicitly identified and programmed by the system 
designer . The system has no independent learning ability that allows it 
to recognize situations in which the rules it has been taught are 
inappropriate and to construct new rules . Neural networks do appear to 



Introduction to the MIT Press Edition I xxxix 

have learning ability ; but in situations of supervised learning, it is really 
the person who decides which cases are good examples who is furnish
ing the intelligence . What the network learns is merely how to capture 
this intelligence in terms of connection strengths. Networks, like 
GOFAI systems, therefore lack the ability to recognize situations in 
which what they have learned is inappropriate; instead, it is up to the 
human user to recognize failures and either modify the outputs of 
situations the net has already been trained on or provide new cases that 
will lead to appropriate modifications in behavior. The most difficult 
situation arises when the environment in which the network is being 
used undergoes a structural change . Consider, for example, the situa
tion that occurred when OPEC instigated the energy crisis in 1973 . In 
such a situation, it may well happen that even the human trainer does not 
know the responses that are now correct and that should be used in 
retraining the net. Viewed from this perspective, neural networks are 
almost as dependent upon human intelligence as are GOFAI systems, 
and their vaunted learning ab ility is almost illusory . What we really 
need is a system that learns on its own how to cope with the environment 
and modifies its own responses as the environment changes . 

To satisfy this need, recent research has turned to an approach 
sometimes called "reinforcement learning ."49 This approach has two 
advantages over supervised learning . First, supervised learning re
quires that the device be told the correct action for each situation. 
Reinforcement learning assumes only that the world provides a rein
forcement signal measuring the immediate cost or benefit of an action. 
It then seeks to minimize or maximize the total reinforcement it 
receives while solving any problem . In this way, it gradually learns 
from experience the optimal actions to take in various situations so as 
to achieve long-term objectives .  To learn skillful coping, then, the 
device needs no omniscient teacher, just feedback from the world . 
Second, in supervised learning, any change in the skill environment 
requires new supervision by an expert who knows what to do in the new 
environment. In reinforcement learning, new conditions automatically 
lead to changes in reinforcement that cause the device to adapt appro
priately. 
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An example will clarify what reinforcement learning in its most 
elemental form is  all about. Suppose a device i s  to learn from repeated 
experience the shortest path from point A to point B in a city . The device 
knows where it is ( its current state) and the poss ible directions it can go 
in ( its space of allowable current actions). After it chooses an action (a 
direction), it observes the distance to the next intersection ( its  next 
decis ion point) . This cost is its immediate reinforcement . It also ob
serves the location of the next intersection ( its new s ituation) . The 
standard AI approach would be to have the device create an internal 
map of the city based on its experiences and then use that map and some 
computational algorithm to determine the shortest path. The new 
approach, like Heideggerian AI, di spenses \V ith models and long-range 
planning. Instead the device repeatedly takes various paths from A to 
B,  learning in which direction it should go at each intersection to create 
the shortest path from a given starting intersection to B.  It does thi s not 
by trying alternative paths and remembering the best but by gradually 
learning only one piece of information bes ides its best decis ion at each 
intersection , namely the shortest di stance from that intersection to B .  
Thi s i s  the "value" of the intersection. After each decis ion and obser
vation of the distance to the next intersection , the reinforcement 
algorithm evaluates that deci s ion in terms of its current estimates of the 
value of the intersection it is at and the one to which it i s  going next . If 
it looks to be a good decis ion, it renders that deci s ion more likely to be 
chosen in the future when the path problem is repeated and it finds itself 
at the same intersection . It also updates its estimate of the value of the 
current intersection. 50 

We have so far described a problem in which a given action in a given 
s ituation always leads to the same next s ituation and the same immedi
ate reinforcement, but the approach is equally appropriate to probabi
listic environments in which the device seeks actions that minimize or 
maximize expected long-term reinforcement . Values learned for s itua
tions are then minimal or maximal expected values. To cite one ex
ample, reinforcement-learning ideas (together with other mechanisms 
that are less like what brains seem to do but that speed up the learning) 
have been tried on the stochastic game of backgammon.5 1  A program 
that played hundreds of thousands of games against itself, without 
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expert- specified principles of the game or expert- supplied positional 
values or correct moves , learned expected values of pos itions well 
enough to play at the level of a good human tournament player . It was 
as proficient as any computer program using more conventional AI or 
supervised learning methods.52  

All of this fits well with the phenomena. Most of our skills involve 
action in evolving s ituations and are learned from trial-and-error expe
rience with environmental feedback but without teachers (or , some
times, from experience-based fine-tuning of what we initially learned 
through instruction) . Moreover , while experts generally cannot access  
any information explaining their ability , they can usually as sess the 
value or desirability of a situation easily and rapidly and recommend an 
appropriate action. 

Assuming that reinforcement-learning ideas correctly capture some 
of the essence of the human intelligence involved in learning skillful 
coping , the question naturally ari ses , Can one build a device that does 
as well as expert human beings using the phenomenologically plausible 
minimal e s sence of reinforcement learning , at least in particular skill 
domains ? At least two improvements on present practice , neither of 
which appears achievable based on current knowledge , are needed . 
First, should reinforcement learning be applied to a problem in which 
the number of s ituations that might be encountered far exceeds the 
number that are actually encountered during training , some method of 
as signing fairly accurate actions and values to the novel s ituations i s  
needed . S econd, if  reinforcement learning i s  to produce something 
resembling human intelligence , the reinforcement-learning device must 
exhibit global sensitivity by encountering s ituations under a perspec
tive and by actively seeking relevant input . 

Cons ider first the problem of behavior in unique s ituations . Thi s  
problem has been dealt with by two procedures .  The first i s  an automatic 
generalization procedure that produces actions or values in previously 
infrequently encountered s ituations on the bas i s  of actions or values 
learned for other s ituations . 53 The second i s  to base one' s actions on 
only a relevant subset of the totality of features of a situation and to 
attach a value to the s ituation based only on those relevant features ;  in 
thi s  way, we lump together experiences with all s ituations sharing the 
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same relevant features regardless of the nonrelevant ones. Actions are 
chosen or values learned based on experiences with situations sharing 
these relevant features . Both of these approaches are unsatisfactory. 
Concerning an automatic generalization procedure, at the point where 
generalization is required, the situation is identical with the one faced 
by supervised learning . No one has any idea how to get a network or any 
other mechanism to generalize in the way that would be required for 
human-like intelligence . 

The second problem mentioned above - learning what features of a 
situation should be treated as a relevant subset and used in determining 
actions and values-is equally difficult. One can find out which features 
of the current state of affairs are relevant only by determining what sort 
of situation this state of affairs is. But that requires retrieving relevant 
past situations . This problem might be cal led the circularity of rel
evance . To appreciate its implications, imagine that the owner of a 
baseball team gives the team manager a computer loaded with facts 
about each player ' s  performance under various conditions. One day , 
after consulting the computer late in the last inning , the manager 
decides to replace the current batter , A ,  with a pinch hitter , B. The pinch 
hitter hits a home run , and the team wins the game. The owner , hov.1ever, 
is upset and accuses the manager of misusing the computer , since it 
c learly shows that B has a lower batting average than A. But, says the 
manager, the computer also showed that B has a higher batting average 
in day games, and this was a day game. Yes , responds the owner , but it 
also showed that he has a lower average against left-handed pitchers, 
and there was a leftie on the mound today. And so on. The point is that 
a manager' s  expertise, and expertise in general , consists in being able 
to respond to the relevant facts. A computer can help by supplying more 
facts than the manager could possibly remember, but only experience 
enables the manager to see the current state of affairs as a specific 
situation and so see what is relevant . That expert know-how cannot be 
put into the computer by adding more facts, since the issue is which is 
the current correct perspective from which to determine which facts are 
relevant . 

Current procedures attempt to learn about relevance by keeping track 
of certain statistics during trial -and-error learning. A procedure pro-
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posed by Chapman and Kaelbling�4 s tarts by as suming that no features 

are relevant to action or value as ses sment , that is , that the same action 

should be taken no matter what the situation and that the same value 

should be attached to all situations . Then , for each possibly relevant 

feature of a situation , the procedure keeps track of statistics on how 

things work when that feature takes on each of its possible values (often 

jus t  "present" or "not present") . If , on the basis of current statistics , the 

value of the feature seems to affect actions or values significantly , it is 

declared relevant. The situation receives an ever finer description as the 

set of features discovered to be relevant grows. 

Something vaguely of this sort is probably what the brain does. There 

are , however , serious problems with the particular procedure described 

above and variations on it . First ,  a feature may not be relevant to 

behavior on its own but may be relevant when combined with one or 

more other features . To remedy this , we would need to gather s tatistics 

on the relevance of combinations of features , leading to an exponential 

explosion of possibly important statis tics. 

Second , this approach assumes that the relevance of a feature is a 

property of the domain;  what is measured is the feature ' s  relevance in 

all situations encountered. But a feature may be relevant in certain 

situations and not in others . We would therefore need to gather rel

evance data separately for each situation, again leading to exponential 

growth in the quantity of statis tics gathered. Statistics gathering , there

fore , does not seem a practical way for current computer procedures to 

deal with the relevance-determination aspect of intelligent behavior . 

As we shall see , given the size and structure of the brain , it may well be 

no accident that no one currently has any idea how to deal with thi s 

problem without gathering an impractical amount of statis tical data . 

A related third problem is that there is no limit to the number of 

features that might conceivably be relevant in some situations. We 

cannot simply start with all features that might pos sibly be relevant , 

gather s tatistics on each , and then leave out those that experience 

indicates can safely be ignored. But if we start with a finite set of 

pos sibly relevant features , there is no known way of adding new 

features should the current set prove inadequate to account for the 

learned facts about reinforcement and situation transition. 
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So how does the brain do i t? No one knows. But certain facts seem 

relevant. First , i t  appears that experience statist ically determines indi

v idual neural synaptic connections, so that the brain, with its hundreds 

of thousands of bil l ions of adjustable synapses, can indeed accumulate 

statistical information on a scale far beyond current or foreseeable 

computers . Second, the reinforcement- learning procedures now being 

studied generally produce simple stimulus-response behavior in the 

sense that the input, a situation description, maps directly forward into 

the output , an action or situation value. The brain clearly has internal 

states that we experience as moods, antic ipations , and familiarities that 

are correlated with the current activity of its hidden neurons when the 

input arrives . These are determined by its recent inputs as wel l  as by the 

synaptic connection strengths developed on the basis of long-past 

experiences , and these as well as the input determine the output . One 

can in principle inc lude such internal states in reinforcement- learning 

procedures by adding the current internal state of the dev ice to the 

situation description, and a few researchers have moved in this direc

tion. In effect, such an extended procedure in which the internal state 

is viewed as the perspective brought to the problem based on recent 

events would allow the incorporat ion of perspective into neural models . 

But since no one knows how to incorporate internal states appropri

ately, a breakthrough wil l  be necessary before human behav ior can be 

imitated successful ly . 

Most important, there is evidence that the internal brain state inter

acts with an input and then feeds its output to motor-control neurons as 

well as back into the input pathways, affec ting receptors through motor 

control so that they actively seek information and simultaneously 

influencing perceived relevance through the feedback into input path

ways . This would be the brain basis of the phenomenon of global 

sensitivity that enables a skil led person to see directly what is relevant 

in his or her ski ll domain. This feedback based on the interaction of 

sensory input and internal brain state would be a powerful mechanism 

for dealing with information pickup and relevance problems, but cur

rently no detai ls of this mechanism are understood or even hypoth

esized in a way that could guide AI research .  It thus seems reasonable 

to hold that mechanisms exist in the brain that can in principle be 
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understood and duplicated in hardware so as to produce artificial 

intelligence in restricted domains and that reinforcement learning is a 

small step in the right direction , while simultaneously holding that our 

current ignorance concerning the brain and practical limitations on 

computer memory size make it highly unlikely that there will be 

substantial progress toward this kind of brain-inspired AI in the fore

seeable future . 

One problem would remain even if the above practical problems were 

solved. In all applications of reinforcement learning the programmer 

must use his or her knowledge of the problem to formulate a rule that 

specifies the immediate reinforcement received at each step. For path 

problems and games the objective nature of the problem dictates the 

rule. If , however , the problem involves human coping , there is no 

simple objective answer as to what constitutes immediate reinforce

ment. Even if we assume the simplistic view that human beings behave 

so as to maximize their total sense of satisfaction , a reinforcement

learning approach to producing such behavior would require a rule for 

determining the immediate satisfaction derived from each possible 

action in each possible situation. But human beings do not have or need 

any such rule. Our needs , desires , and emotions provide us directly with 

a sense of the appropriateness of our behavior. If these needs , desires , 

and emotions in turn depend on the abilities and vulnerabilities of a 

biological body socialized into a culture , even reinforcement-learning 

devices still have a very long way to go. 

All work in AI , then , seems to face a deep dilemma. If one tries to 

build a GOFAI system , one finds that one has to represent in a belief 

system all that a human being understands simply by being a skilled 

human being. In my preface to the second edition of this book , the 

extreme unlikelihood of successfully programming the computer to 

show common sense by making explicit enough of what human beings 

understand simply by being embodied and skilled led me to skepticism 

concerning the GOFAI research program. Happily, recent research in 

machine learning does not require that one represent everything that 

human beings understand simply by being human. But then , as we have 

just seen, one encounters the other horn of the dilemma. One needs a 

learning device that shares enough human concerns and human struc-
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ture to learn to generalize the way human beings do. And as improbable 

as it was that one could build a device that could capture our humanity 

in a physical symbol system, it seems at least as unlikely that one could 

build a device sufficiently like us to act and learn in our world. 
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Introduction to the Revised Edition 

What Computers Can 't Do stirred up a controversy among all those 
interested in the possibility of formal models of man by arguing that, 
despite a decade of impressive print-outs and dire predictions of superin
telligent robots, workers in artificial intelligence (AI) were, in 1967, 
facing serious difficulties which they tended to cover up with special
purpose solutions and rhetorical claims of generality. During the subse
quent decade this critique has been more or less acknowledged. In the 
five-year period from 1967 to 1972 the ad hoc character of AI work was 
admitted and, indeed, elevated to a methodological principle. The study 
of artificially circumscribed gamelike domains was proclaimed a study 
of micro-worlds and was defended as a necessary first step toward 
broader and more flexible programs. Then, during the next five years 
( 1972- 1977) the micro-world "successes" were seen to be ungeneraliza
ble, and in the best AI  laboratories workers began to face the problem 
of representing the everyday general understanding which they had spent 
the first fifteen years of research trying to circumvent .  Recently, even the 
wishful rhetoric characteristic of the field has been recognized and ridi
culed by AI workers themselves. 

My early outrage at the misleading names given to programs such as 
Newell, Shaw, and Simon's General Problem Solver (GPS) is now shared 
by M. I .T. 's Drew McDermott, who writes: 

I 1 
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(I]n Al, our programs to a great degree are problems rather t han solutions. If  

a researcher t ries to write an "understanding" program, i t  isn't because he has 
thought of a better way of implementing this well-understood task,  but because 
he hopes he can come closer to writing the first implementation. If he calls the 
main loop of his program "UNDERSTANDING", he is (unt il proven innocent) 

merely begging the question. He may mislead a lot of people, most prominently 
himself, and enrage a lot of others. 1 • § 

McDermott also singled out overrated GPS: 

Many instructive examples of wishful mnemonics by Al researchers come to 

mind once you see the point .  Remember GPS? By now, "GPS" is a colorless term 
denoting a particularly stupid program to solve puzzles. But it originally meant 
"General Problem Solver", which caused everybody a lot of needless excitement 
and distraction. I t  should have been called LFG NS-"Local Feature-Guided 
Network Searcher" . 1 

Even my earliest assessment that work in Al resembled alchemy more 
than science3 has been accepted by Terry Winograd. formerly at M . I .T  . .  
now a t  Stanford: 

In some ways, [AI] is akin to medieval alchemy .  We are at the stage of pouring 
together different combinat ions of substances and seeing what happens, not yet 
having developed satisfactory theories. This analogy was proposed by Dreyfus 

( 1 965) as a condemnation of artificial intelligence, but its apt ness need not imply 
his negative evaluation . . .  it was the practical experience and curiosity of the 
alchemists which provided the wealth of data from which a scient ific theory of 
chemistry could be developed.• 

Winograd is right ; as long as researchers in AI admit and learn from 
their failures their attempt to supply computers with human knowledge 
may in  the end provide data for a totally different way of using computers 
to make intelligent artifacts. But unt il recen tly , admit t ing their failures 
so that others can learn from their mistakes-an essential part of any 
scient ific field-has been virtually unknown in Al c ircles. McDermott 
rei terates my point that , as he puts it, · ·  . . . AI as a field is starving for 
a few carefully documented failures. ' '  And he warns: "Remember, 

§Notes hegin  on p. 307 . [Ci tat ions are i nd icat ed hy a superior figure .  Subst an t ive notes 
a re ind ica ted hy a superior figure and an asteri sk . ]  
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though, if we can't criticize ourselves, someone else will save us the 
trouble. "5 I take this as my cue to return for a critical look at the research 
of the past ten years. 6* 

What strikes me, and has struck other writers reviewing the history 
of the field, 7 is how my views and those of workers interested in the 
theoretical issues in AI have gradually converged. In recent years the 
attempt to produce special-purpose programs tai lored to narrowly re
stricted domains, with the concomitant principle that this should be 
achieved in whatever way is most efficient regardless of whether such 
methods are used by human beings, has been abandoned by AI theorists 
and frankly and quite successfully taken over by self-styled AI engineers, 
with no interest in making generally intel ligent machines. Among those 
stil l  interested in the theoretical issue of using computers to produce the 
full range of human intelligent behavior there is now general agreement 
that, as I argue in this book, intelligence requires understanding, and 
understanding requires giving a computer the background of common 
sense that adult human beings have by virtue of having bodies, interact
ing skillfully with the material world, and being trained into a culture. 

Given the epistemological assumptions dictated by the information
processing model (see Chapter 4) this precondition of intelligent behav
ior necessarily appears to AI workers as the need to find a formal 
representation in which all the knowledge and bel iefs of an average adult 
human being can be made explicit and organized for flexible use. Almost 
everyone now (with one exception we will deal with later) agrees that 
representing and organizing commonsense knowledge is incredibly diffi
cult, and that facing up to this problem constitutes the moment of truth 
for AI. Either a way of representing and organizing everyday human 
know-how must be found, or AI will be swamped by the welter of facts 
and beliefs that must be made explicit in order to try to inform a disem
bodied, utterly alien computer about everyday human life. With this 
recognition, which characterizes the most recent five-year phase of AI 
research, unfounded optimism has given way to somewhat self-critical 
caution. 

AI research has thus passed from stagnation to crisis during the 
decade since I concluded my research for this book. If I were to rewrite 
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the book today I would divide this decade into two phases and include 
them as Chapters 3 and 4 of Part I, so as to cover the full twenty years 
the field has been in existence. And I would modify the Conclusion to 
take into account the recent maturation of the field. But since the overall 
argument of the book is confirmed rather than contradicted by the latest 
developments, I would rather leave the original book intact--only re
working the material where a sentence or a paragraph has proved to be 
murky or misleading-while including what are, in effect, Chapters 3 
and 4 and the new conclusion in this Introduction. The reader who wants 
to get a chronological sense of how research in artificial intelligence 
developed should skip ahead to Chapters 1 (Phase 1) and 2 (Phase 2) ,  
and then return to this critical survey of the past ten years. Moreover, 
since the arguments at the end of this Introduction presuppose and 
extend ideas which are more fully developed in the last half of the book, 
the conclusioo of the Introduction to the Revised Edition might be best 
read after finishing Part III. 

Phase I l l  ( 1 967- 1 9 7 2) 

M a n i pu lati ng M icro-Worlds 

When What Computers Can 't Do appeared in January 1972,  making 
a case that after an exciting start which raised high hopes, work in 
artificial intel ligence had been stagnating, reviewers within the field of Al 
were quic_k to point out that the research criticized was already dated and 
that my charge of stagnation did not take into account the "break
throughs" which had occurred during the five years preceding the publi
cation of my critique. Bruce Buchanan's reaction in Computing Reviews 
is typical :  

One would hope that a cri t icism of  a growing discipl ine would ment ion work in  
the most recent one-third of  the years of  act iv i ty . . . .  To  t his reviewer, and other 
persons doing AI research ,  programs developed in  the last five years seem to 
outperform programs wri t ten in the tool-bui lding period of 1 957- 1 967 .  

For example, i t  is dishonest to enti t le the book a . .  cri t ique" of AI when it 
dwel ls on the fai lure of early language t ranslation programs (based primari ly  on 
syntact ical analysis) without analyzing the recent work on understanding natural 
language (based on syntax, semant ics, and context). � 
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If the point of these objections had been that my book did not take 
account of excellent programs such as M.I.T. 's MATHLAB ( 1970) for 
manipulating symbolic algebraic expressions, and Stanford's DEN
D RAL ( 1970) for inferring chemical structure from mass spectometry 
data, I would plead guilty. I would point out, however, that these pro
grams, whi le solving hard technical problems and producing programs 
that compete with human experts, achieve success precisely because they 
are restricted to a narrow domain of facts, and thus exemplify what 
Edward Feigenbaum, the head of the DENDRAL project, has called 
"knowledge engineering." 9 They, thus, do not constitute, nor are they 
meant to constitute, progress toward producing general or generalizable 
techniques for achieving adaptable intelligent behavior. 

Buchanan would presumably agree since the programs he mentions as 
giving the lie to my accusations of stagnation are not these engineering 
triumphs, but theoretically oriented projects such as Winograd's natural 
language understanding program, and the perception programs devel
oped at M.I.T. and Stanford. 10  These, plus Patrick Winston's concept 
learning program, are the programs most often cited by those who claim 
that my book ignores a breakthrough which occurred around 1970. If 
these programs do constitute progress they roundly refute my charge of 
stagnation ,  so we must now take a detailed look at each of the programs, 
as well as a brief look at robot research , which was generating a great 
deal of exci_tement j ust as this book went to press. 

Since by all accounts it is Winograd's natural language understanding 
program (SHRDLU-197 1 )  which demonstrates what Papert and 
Minsky cal l  "a major advance," 1 1  we will turn to it first. SHRDLU 
simulates a robot arm which can move a set of variously shaped blocks 
and allows a person to engage in a dialogue with the computer, asking 
questions, making statements, issuing commands, about this simple 
world of movable blocks. The program is an integrated system which 
makes use of syntax, semantics, and facts about blocks. It is thus, as 
Winograd cautiously claims, "a computer program which 'understands' 
language in a limited domain, by including a model of the subject being 
talked about and a context of discourse. . . . " 1 2 • Furthermore, this 
program explores the new idea of representing this knowledge in the 
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form of procedures. The resulting dialogue is strikingly natural . Here is 
a sample. (The sentences in capital letters are computer print-out . The 
parentheses contain Winograd's comments .) 

1 .  pick up a big red block. 

OK. 

(The system answers "OK" when it carries out a command. In order to 
pick up the red block, it had to clear i t  off by finding a space for the green 
one and moving the green one away . )  

2. grasp the pyramid. 

I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.  

(There are three pyramids in the scene, so the program does nothing.) 

3 .  find a block which is taller than the one you are holding and put i t  into 
the box. 

(The system has to figure out what is meant by .. one" and "if' ,  as well 
as using deduction to decide which block it is holding. )  

BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS  TALLER THAN THE 
ONE I AM HOLDING. 

(Printed out to keep us informed . )  

OK. 

(The hand has to set down the red block to pick up the taller blue one. )  

4. what does the box contain? 

THE BLUE PYRAMID AND THE BLUE BLOCK .  

5. what is the pyramid supported by? 

(Earlier the syst�m responded to "the pyramid" by saying "I don't under
stand which pyramid you mean" .  Now,  it assumes that we mean the one 
just mentioned.) 

THE BOX. 

9. can the table pick up blocks? 

NO. 

(The semantic rules make this a nonsensical question which therefore 
must be false.) 
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1 0. can a pyramid be supported by a block? 

Y ES. 

I 7 

(The deductive system finds an actual example, so it knows this is possi
ble .)  

1 1 . can a pyramid support a pyramid? 

I DON'T KNOW. 

(The question makes sense, but there is no example in the scene, so there 
is no easy way to tel l  without being able to examine the robot's pro
grams.) 

12. stack up two pyramids. 

I CAN'T. 

(The robot tries and fails.) 

1 3. the blue pyramid is mine. 

I UNDERSTAND. 

(This data is added to the data base. )  

1 4. I own blocks which are not red, but I don't own anything which supports 
a pyramid. 

I UNDERSTAND. 

(Two new theorems are created for proving things about "owning".) 

1 5 . do I own the box? 

N0. 1 3  

If  being a major advance means being more general than its predeces
sors, then SHRDLU, since it no longer depends for its analysis of lan
guage on external constraints of the sort essential to Bobrow's STU
DENT, is a major achievement. Winograd himself points out the 
superiority of his program over earlier language understanding pro
grams:  

. . . A program may succeed by carefully choosing the  problem it wi l l  attack, 
so that some simple special-purpose solution will work. ELIZA (Weizenbaum, 
1 964) and STUDENT (Bobrow, 1 967) are examples of programs which give 
impressive performances owing to a severe and careful restriction of the kind of 
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understanding they try to achieve. If a model is to be of broader significance, it 
must be designed to cover a large range of the things we mean when we talk of 
understanding. The principles should derive from an attempt to deal with the 
basic cognitive structures. 1 4  

If, however, "a major advance" means that a step has been made in 
dealing with the basic cognitive structures needed to cover everyday 
understanding-that thanks to SHRD LU there is now reason to be 
optimistic about the possibility of Al-then no progress at all can be 
claimed. To justify this negative judgment we must first find out how the 
optimists of the early seventies were able to convince themselves that, 
with SHRDLU, Al was at last on the right track. 

If one holds, as some AI workers such as Winograd do, that there are 
various kinds of understanding so that whether an entity has understand
ing or not is just a question of degree, it may seem that each new program 
has a bit more understanding than the last, and that progress consists in 
inching out on the understanding continuum. I f, on the other hand, one 
holds that . . understanding" is a concept that applies only to entities 
exactly like human beings, that would stack the deck and make Al 
impossible. But it is not up to either side in the debate to stipulate what 
"understanding" means. Before talking of degrees of "understanding, · ·  
one must note that the term "understand . . is part of an interrelated set 
of terms for talking about behavior such as .. ask, "  "answer," "know," 
etc . And some of these terms-such as "answer." for example--simply 
do have an all-or-nothing character. If one is tempted to say that the 
DENDRAL program, for example, literally understands mass spectros
copy, then one must be prepared to say that when it is fed a problem and 
types out the answer it has literally been asked and answered a question, 
and this, in turn, involves, among other things, that it knows that it has 
answered. But whatever behavior is required for us to say of an entity 
that it "knows" something, it should be clear that the computer does not 
now come near to meeting these conditions, so it has not answered even 
a little. If one is sensitive to the central meaning of these interconnected 
intentional terms it follows that the claim that programs like SHRDLU 
have a little bit of understanding is at best metaphorical and at most 
outright misleading. 

Workers in AI were certainly not trying to cover up the fact that it 
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was SHRDLU's restricted domain which made apparent understanding 
possible. They even had a name for Winograd's method of restricting the 
domain of discourse. He was dealing with a micro-world. And in a 1970 
internal memo at M.I.T. , Minsky and Papert frankly note: 

Each model--or "micro-world" as we shall call i t-is very schematic; it talks 
about a fairyland in which things are so simplified that almost every statement 
about them would be l iterally false if asserted about the real world. 1 5 

But they immediately add: 

Nevertheless, we feel that they [the micro-worlds] are so important that we 
are assigning a large portion of our effort toward developing a collection of 
these micro-worlds and finding how to use the suggestive and predictive 
powers of the models without being overcome by their incompatibility with 
li teral truth. 1 6 

Given the admittedly artificial and arbitrary character of micro-worlds , 
why do Minsky and Papert think they provide a promis ing line of 
research? 

To find an answer we must follow Minsky and Papert's perceptive 
remarks on narrative and their less than perceptive conclusions: 

. . .  In a familiar fable, the wily Fox tricks the vain Crow into dropping the meat 
by asking it to sing. The usual test of understanding is the abil ity of the chi ld 
to answer questions like: 

"Did the Fox think the Crow had a lovely voice?" 

The topic is sometimes classified as "natural language manipulation" or as 
"deductive logic", etc. These descriptions are badly chosen. For the real 
problem is not to understand English; it is to understand at all . To see this 
more clearly, observe that nothing is gained by presenting the story in sim
plified syntax :  CROW ON TREE. CROW HAS M EAT. FOX SAYS "YOU HAVE A 

LOVEL y VOICE. PLEASE SING."  FOX GOBBLES M EAT. The difficulty in getting 
a machine to give the right answer does not at all depend on "disambiguat
ing" the words (at least, not in the usual primitive sense of selecting one 
"meaning" out of a discrete set of "meanings") .  And nei ther does the diffi
culty lie in the need for unusually powerful logical apparatus. The main 
problem is that no one has constructed the elements of a body of knowledge 
about such matters that is adequate for understanding the story. Let us see 
what is involved. 
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To begin with, there is never a unique solution to such problems, so we do not 
ask what the Understander must know. But he will surely gain by having the 
concept of FLATTERY. To provide this knowledge, we imagine a "micro-theory" 
of flattery-an extendible collect ion of facts or procedures that describe condi
tions under which one might expect to find flattery ,  what forms i t  takes, what 
its consequences are, and so on. How complex this theory is depends on what 
is presupposed. Thus i t  would be very difficult to describe flattery to our Under
stander if he (or i t) does not already know that statements can be made for 
purposes other than to convey literally correct , factual information . It would be 
almost impossibly difficult if he does not even have some concept like PU R POSE 

or INTENTION. 1
7 

The surprising move here is the conclusion that there could be a cir
cumscribed "micro-theory" of flattery-somehow intelligible apart 
from the rest of human life-while at the same time the account 
shows an understanding of flattery opening out into the rest of our 
everyday world, with its understanding of purposes and intentions. 

What characterizes the period of the early seventies, and makes 
SHRDLU seem an advance toward general intelligence, is the very 
concept of a micro-world-a domain which can be analyzed in isolation. 
This concept implies that although each area of discourse seems to open 
out into the rest of human activities its endless ramifications are only 
apparent and will soon converge on a self-contained set of facts and 
relations. For example, in discussing the micro-world of bargaining, 
Papert and Minsky consider what a child needs to know to understand 
the following fragment of conversation : 

Janet : "That isn't a very good ball you have. Give it to me and I 'll give you my 
lollipop. 1 8  

And remark : 

. . .  we conjecture that, eventually, the required micro-theories can be made 
reasonably compact and easily stated ( or, by the same token, learned) once we 
have found an adequate set of st ructural primitives for them. When one begins 
to catalogue what one needs for just a li t tle of Janet 's story, it seems at fi rst to 
be endless: 

Time 
Space 

Things 
People 

Words 
Thoughts 
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Talking: Explaining. Asking. Ordering. Persuading. Pretending 
Social relations: Giving. Buying. Bargaining. Begging. Asking. Presents. Steal-

ing . . .  
Playing: Real and Unreal, Pretending 
Owning: Part of, Belong to, Master of, Captor of 
Eating: How does one compare the values of foods with the values of toys? 
Liking: good, bad, useful, pretty, conformity 
Living: Girl. A wake. Eats. Plays. 
Intention: Want. Plan. Plot. Goal .  Cause. Result . Prevent. 
Emotions: Moods. Dispositions. Conventional expressions. 
States: asleep. angry. at home. 
Properties: grown-up. red-haired. called .. Janet". 
Story: Narrator. Plot. Principal actors. 
People: Children. Bystanders. 
Places: Houses. Outside. 
Angry: State 

caused by : Insult 
deprivation 
assault 
disobedience 
frustration 
spontaneous 

Results not cooperative 
lower threshold 
aggression 

Etc. 1 9  

loud voice 
irrational 
revenge 

They conclude: 

But (the list] is not endless. I t  is only large, and one needs a large set of 
concepts to organize it . After a while one will find it getting harder to add new 
concepts, and the new ones will begin to seem less indispensable. 20 

This totally unjustified belief that the seemingly endless reference to 
other human practices will converge so that simple micro-worlds can be 
studied in relative isolation reflects a naive transfer to Al of methods that 
have succeeded in the natural sciences. Winograd characteristically de
scribes his work in terms borrowed from physical science: 
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We are concerned with developing a formalism, or "representat ion, " with which 
to describe . . .  knowledge. We seek the "atoms" and "part ic les" of which it is 
built ,  and the "forces" that act on it. 2 1  

I t  is true that physical theories about the universe can be  built up by 
studying relatively simple and isolated systems and then making the 
model gradually more complex and integrating it with other domains of 
phenomena. This is possible because all the phenomena are presumably 
the result of the lawlike relations of a set of basic elements, what Papert 
and Minsky call "structural primit ives . . .  This belief in local success and 
gradual generalization was clearly also Winograd's hope at the t ime he 
developed SHRDLU. 

The justification for our part icular use of concepts in  this system is that i t  is 
thereby enabled to engage i n  dialogs that simulate in  many ways the behavior 
of a human language user. For a wider field of discourse, the conceptual st ructure 
would have to be expanded in i ts detai ls. and perhaps in some aspects of i ts  
overall organizat ion . 2 2  

Thus, for example, it might seem that one could . .  expand" SHRDLU's 
concept of owning, since in the above sample conversat ion SHRDLU 
seems to have a very simple . .  micro-theory" of owning blocks. But as 
Simon points out in an excellent analysis of SHRDLU's l imitations, the 
program does not understand owning at all because it cannot deal with 
meanings. It has merely been given a set of primit ives and their possible 
relationships. As Simon puts i t :  

The SH RDLU system deals w i th problems in a single blocks world. w i th a fi xed 
representation. When it is instructed to "pick up a big red block" ,  it needs only 
to associate the term "pick up" with a procedure for carrying out that process; 
identify, by applying appropriate tests associated with "big", "red", and "block" .  
the argument for the procedure and use i ts problem-solving capabi l i t ies to carry 
out the procedure. In saying " i t  needs only", i t  is not my inten t ion to demean 
the capabil i t ies of SHRDLU. It is precisely because the program possesses stored 
programs expressing the in tensions of the terms used in inquiries and instruct ions 
that i ts interpretat ion of those inquiries and instruct ions is relatively st raightfor
ward . 2 1  

In  understanding, on  the other hand . . .  the problem-understanding sub
system will have a more complicated task than just mapping the input 
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language onto the intentions stored in a lexicon. It will also have to create 
a representation for the information it receives, and create meanings for 
the terms that are consistent with the representation. " 24 So, for example, 
in the conversation concerning owning: 

. . .  although SHRDLU's answer to the question is quite correct, the system 
cannot be said to understand the meaning of "own" in any but a sophistic sense. 
SHRDLU's test of whether something is owned is simply whether i t  is tagged 
"owned" .  There is no intensional test of ownership, hence SHRDLU knows what 
i t  owns, but doesn't understand what it is to own something. SHRDLU would 
understand what it meant to own a box if it could, say, test its ownership by 
recalling how it had gained possession of the box,  or by checking its possession 
of a receipt in payment for it; could respond differently to requests to move a 
box it owned from requests to move one it didn't own; and, in general, could 
perform those tests and actions that are generally associated with the determina
tion and exercise of ownership in our law and culture. 2 5 

Moreover, even if it satisfied all these conditions it still wouldn't under
stand, unless it also understood that it (SHRDLU) couldn't own any
thing, since it isn't a part of the community in which owning makes 
sense. Given our cultural practices which constitute owning, a computer 
cannot own something any more than a table can. 

This discussion of owning suggests that ,  just as it is misleading to call 
a program UNDERSTAND when the problem is to find out what 
understanding is, it is likewise misleading to call a set of facts and 
procedures concerning blocks a micro-world, when what is really at 
stake is the understanding of what a world is. A set of interrelated facts 
may constitute a universe, a domain, a group, etc. , but it does not 
constitute a world, for a world is an organized body of objects, purposes, 
skills, and practices in terms of which human activities have meaning or 
make sense. I t  follows that although there is a children's world in which, 
among other things, there are blocks, there is no such thing as a blocks 
world. Or, to put this as a critique of Winograd, one cannot equate, as 
he does, a program which deals with "a tiny bit of the world," with a 
program which deals with a "mini-world. "26 

In our everyday life we are, indeed, involved in various "sub-worlds" 
such as the world of the theater, of business, or of mathematics, but each 
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of these is a "mode" of our shared everyday world. 2 1 •  That is, sub-worlds 
are not related like isolable physical systems to larger systems they 
compose; rather they are local elaborations of a whole which they presup
pose. If micro-worlds were sub-worlds one would not have to extend and 
combine them to reach the everyday world, because the everyday world 
would have to be included already. Since, however, micro-worlds are not 
worlds, there is no way they can be combined and extended to the world 
of everyday l ife. As a result of failing to ask what a world is , five  more 
years of stagnation in Al was mistaken for progress . 

Papert and Minsky's 1973 grant proposal is perhaps the last time the 
artificially isolated character of the micro-world is defended as a scien
tific virtue-at least at M.I.T. : 

Art ificial Intelligence, as a new technology, is in  an i ntermediate stage of de
velopment .  In the first stages of a new field, th ings have to be simplified so 
t hat one can isolate and study the elementary phenomena. In most successful 
applications, we use a strategy we call "working within a M icro-World" .  2 1  

SHRDLU is again singled out as the most successful version of this 
research method. "A good example of a suitably designed Micro-world 
is shown in the well-known project of Winograd, which made many 
practical and theoretical contributions to Understanding Natural Lan
guage. " 29 But while gestures are still made in the direction of generaliza
tion it is obvious that SHRDLU is running into difficulty. 

Since the Winograd demonstrat ion and thesis, several workers have been adding 
new elements, regulat ions, and features to that system. That work has not gone 
very far, however, because the details of implementation of t he original system 
were quite complex. 1 0  

Such failures to generalize no doubt lie behind the sober evaluation in 
a proposal two years later : 

. . . Artificial Intelligence has done well in t ightly constrained domains-Wino
grad, for example, astonished everyone with the expert ise of his blocks-world 
natural language system. Extending this kind of ability to larger worlds has not 
proved straightforward, however. . . .  The t ime has come to t reat the problems 
involved as central issues. 1 1 
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But typical ly, it  is only from the vantage point of the next phase of 
research, with its new hopes, that the early seventies' i llusion that one 
can generalize work done in narrowly constrained domains is finally 
diagnosed and laid to rest. Winograd himself acknowledges that: 

The A l  programs of the late s ixties and early seventies are much too literal. 
They deal with meani ng as i f  i t  were a structure to be built up of the bricks and 
mortar provided by the words, rather than a design to be created based on the 
sketches and h ints actually present i n  the i nput. This gives them a "brittle" 
character, able to deal well with tightly specified areas of meaning i n  an artifi
cially formal conversation. They are correspondingly weak in  dealing with natu
ral utterances, full of bits and fragments, cont inual (unnoticed) metaphor, and 
reference to much less easily formalizable areas of knowledge. 32 

Another supposed breakthrough mentioned by Buchanan is Adolfo 
Guzman's program, SEE (1968), which analyzes two-dimensional pro
jections of complicated scenes involving partial ly occluded three-dimen
sional polyhedra. (See Figure 1). Already as developed by Guzman this 
program could outdo human beings in unscrambling some classes of 
complicated scenes, and as generalized by David Waltz it is even more 
impressive. It not only demonstrates the power gained by restricting the 
domain analyzed, but it also shows the kind of generalization that can 

be obtained in micro-world work, as wel l  as indirectly showing the kind 
of generalization that is precluded by the very nature of special-purpose 
heuristics. 

Guzman's program analyzes scenes involving cubes and other such 
rectil inear solids by merging regions into bodies using evidence from the 
vertices. Each vertex suggests that two or more of the regions around it 
belong together depending on whether the vertex is shaped like an L, an 
arrow, a T, a K, an X, a fork, a peak, or an upside-down peak. With these 
eight primitives and commonsense rules for their use, Guzman's pro
gram did quite well. But it had certain weaknesses. According to Win
ston, "The program could not handle shadows, and it did poorly if there 
were holes in objects or missing lines in the drawing." 3 3 Waltz then 
generalized Guzman's work and showed that by introducing three more 
such primitives, a computer can be programmed to decide if a particular 
line in a drawing is a shadow, a crack, an obscuring edge, or an internal 
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seam in a way analogous to the solut ion of sets  of algebraic equations. 
As Winston later sums up the change: 

Previously i t  was believed that only a program with a complicated control 

structure and lots of explicit reasoning power could hope to analyze scenes like 

that in figure [ 1 ] . Now we know that understanding the constraints the real world 

imposes on how boundaries, concave and convex interiors, shadows, and cracks 

can come together at junctions is enough to make things much simpler. A table 

which contains a list of the few thousand physically possible ways that line types 

can come together accompanied by a simple matching program are all t hat is 

required. Scene analysis is translated into a problem resembling a jigsaw puzzle 

or a set of l inear equations. No deep problem solving effort is required; i t  is just 

a matter of executing a very simple constraint dependent ,  iterative process t hat 

successively throws away incompatible line arrangement combinations. J• 

This is just the kind of mathematical generalizat ion within a domain 
one might expect in micro-worlds where the rule-governed relation of the 
primitives (in this case the set of vertices) are under some external 
constraint (in this case the laws of geometry and optics) . What one would 
not expect is that the special-purpose heuristics which depend on comers 
for segregating rectil inear objects could in any way be generalized so as 
to make possible the recognit ion of other sorts of objects. And, indeed, 
none of Guzman's or Waltz's techniques, since they rely on the intersec
tion of straight lines, have any use in analyzing a scene involving curved 
objects. What one gains in narrowing a domain ,  one loses in breadth of 
significance. Winston's evaluation covers up this lesson :  

. . .  I t  i s  wrong to  think of Waltz's work as only a statement of the epistemology 

of line drawings of polyhedra. Instead I think it is an elegant case study of a 

paradigm we can expect to see again and again, and as such,  it is a strong 

metaphoric tool for guiding our thinking, not only in vision but also in the study 

of other systems involving intelligence. " 

But in a later grant proposal he acknowledges that : 

To understand the real world, we must have a different set of primitives from 

the relatively simple line trackers suitable and sufficient for the blocks world. 36 

Waltz's work is a paradigm of the kind of generalization one can s trive 
for within a micro-world all right ,  but for that  very reason it provides 
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Figure 1 
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no way of thinking about general intelligent systems. In  the l ight of these 
later evaluations my assumption that work in the early seventies did not 
refute my accusation of stagnation seems vindicated . 

The nongeneralizable character of the programs so far discussed 
makes them engineering feats, not steps toward generally intel ligent 
systems, and they are, therefore not at all promising as contributions to 
psychology. Yet Winston includes Wa1tz·s work in his claim that · · 
. . .  making machines see is an important way to understand how we 
animals see . . . .  " 3 7  and Winograd makes simi lar claims for the psycholog
ical relevance of his work : 

The gain from developing A l  is not primari ly  i n  the  usefu lness of the programs 
we create, but  in the set of concepts we develop. and the ways i n  wh ich we can 
apply t hem to understanding h uman in te l l igence. ' ·  

These comments suggest that in the early seventies an interest ing 
change was taking place at M . I .T. In previous papers Minsky and his 
co-workers sharply dist inguished themselves from workers in Cognitive 
Simulation , such as Simon, who presented their programs as psychologi
cal t heories, insisting that the M . I .T. programs were .. an attempt to build 
intelligent machines wi thout any prejudice toward making the system 
. . .  humanoid ." ' 'l Now in their book, A rtificial Intelligence. 4 0  a summary 
of work done at M . I .T. during the period 1 967- 1 Q72 ,  Minsky and Papert 
present the M . I .T. research as a cont ribut ion to psychology. They fi rst 
introduce the not ion of a symbolic descript ion : 

What do we mean by "descript ion "? We do not mean to  suggest that  our 
descript ions must be made of st r ings of ordi nary- language words ( a l t hough t hey 
might be). The s im plest k i nd of descript ion is  a st ru c t u re in  which some feat u res 
of a sit uat ion are represen ted by s ingle ( "prim i t i ve" ) sym bols .  and relat ions 
between those features are represented hy other symbols--or by other feat u res 
of t he way the  descript ion is put toget her. 4 1 

They then defend the role of symbolic descriptions in a psychological ac
count of intell igent behavior by a constant polemic against behaviorism 
and gestalt theory which have opposed the use of formal models of the mind. 

One can detect, underlying this change, the effect of the proliferation 
of micro-worlds, with thei r reliance on symbolic descriptions, and the 
disturbing failure to produce even the hint of a system with the flexibility 
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of a six-month-old child. Instead of concluding from this frustrating 
situation that the special-purpose techniques which work in context-free, 
gamelike, micro-worlds may in no way resemble general-purpose human 
and animal intelligence, the AI workers seem to have taken the less 
embarrassing if less plausible tack of suggesting that even if they could 
not succeed in building intelligen t  systems, the ad hoc symbolic descrip
tions successful in micro-world analysis could be justified as a valuable 
con tribution to psychology. 

Such a line, however, since it involves a stronger claim than the old 
slogan that as long as the machine was intelligent it did not matter at 
all whether it performed in a humanoid way, runs the obvious risk of 
refutation by empirical evidence. An information-processing model must 
be a formal symbolic structure, however, so Minsky and Papert , making 
a virtue of necessity, revive the implausible intel lectualist position ac
cording to which concrete perception is assimilated to the rule-governed 
symbolic descriptions used in abstract thought .  

The Gestaltists look fo r  simple and fundamental principles about how percept ion 

is organized, and then attempt to show how symbolic reasoning can be seen as 

fol lowing the same principles, whi le we const ruct a complex theory of how 

knowledge is appl ied to solve intel lectual problems and then attempt to show 

how the symbolic description that is what one "sees" is const ructed accord ing 

to similar processes. 4 2  

Some recent work in psychology, however, points in the exact ly oppo
site direction. Rather than showing that perception can be analyzed in 
terms of formal features, Erich Goldmeier's extention of early Gestalt 
work on the perception of similarity of simple perceptual figures-arising 
in part in response to " ' the frustrating efforts to teach pattern recognition 
to [ computers ]"4 3-has revealed sophisticated distinctions between 
figure and ground, matter and form, essential and accidental aspects, 
norms and distortions, etc . ,  which he shows cannot be accounted for in 
terms of any known formal features of the phenomenal figures. They can, 
however, according to Goldmeier, perhaps be explained on the neurolog
ical level, where the importance of Pragnanz-i.e. , singularly salient 
shapes and orientations-suggests underlying physical phenomena such 
as . .  regions of resonance"44 in the brain . 
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Recent work in neurophysiology has suggested new mechanisms 
which might confirm the Gestaltist's intuition that other sorts of process 
than the manipulation of formal representations of the sort required by 
digital computers underlie perception. While stil l nothing definite is 
known about how the brain "processes information, . .  computer models 
look even less likely now than in 1970, while models based on the 
properties of optical holograms look perhaps more promising. As John 
Haugeland summarizes the evidence: 

First, [optical holograms] are prepared from the l ight bouncing off an ordinary 
object, and can subsequently be used to reconstruct a ful l  three-d imensional 
colored image of that object. Second, the whole image can be reconstructed from 
any large enough port ion of the hologram ( i.e . .  there's no saying which port ion 
of the hologram "encodes" which portion of the image). Third. a number of 
objects can be separately recorded on the same hologram. and there 's no saying 
which portion records which object. Fourth. if a hologram of an arbitrary scene 
is suitably i l luminated with the l ight from a reference object . bright spots wi l l  
appear indicating (virtually instantaneously) the presence and location of any 
occurrences of the reference object in the scene (and dimmer spots indicate 
"similar" objects). So some neurophysiological holographic encoding might ac
count for a number of perplexing features of visual recall and recognition. 
including their speed, some of their invariances. and the fact that they are only 
slight ly impaired by large lesions in relevant areas of the brain . . . .  

Another interesting property of optical holograms is that if a hologram [com
bining light from two separate] objects is i l luminated with the l ight from one of 
them, an image of the other (absent) object appears . Thus. such a hologram can 
be regarded as a kind of "associator" of (not ideas. hut) \' isual patterns. • '  

Haugeland adds: 

. . . Fairly detailed hypothetical models have been proposed for how holograms 
might be realized in neuronal structures: and there is some empirical e\1idence 
that some neurons behave in ways that would fit the models . 4t, 

Of course, it is st i l l  possible that the Gestalt ists went too far in trying 
to assimilate thought to the same sort of concrete, holistic, processes they 
found necessary to account for percept ion. Thus, even though the expo
nents of symbolic descriptions have no account of perceptual processes, 
they might be right that the mechanism of everyday thinking and learn
ing consists in constructing a formal descript ion of the world and trans-
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forming this representation in a rule-governed way .  Such a formal model 
of everyday learning and categorization is proposed by Winston in his 
1970 thesis, "Leaming Structural Descriptions from Examples. "47 Given 
a set of positive and negative instances, Winston's self-proclaimed "clas
sic" program can, for example, use a descriptive repertoire to construct 
a formal description of the class of arches. Since, as we mentioned earlier, 
Winston's program (along with those of Winograd and Guzman) is often 
mentioned as a success of the late sixties, we must examine it in detail. 

Is this program a plausible general theory of learning? Winston's 
commitment to a computer model dictates the conclusion that it must 
be: 

Although this may seem like a very special kind of learning, I think the implica
tions are far ranging, because I believe that learning by examples, learning by 
being told, learning by imitation, learning by reinforcement and other forms are 
much like one another. In the literature of learning there is frequently an un
stated assumption that these various forms are fundamentally different. But I 
think the classical boundaries between the various kinds of learning will disap
pear once superficially different kinds of learning are understood in terms of 
processes that construct and manipulate descriptions. 4 8  

Yet Winston's program works only if the "student" is saved the trouble 
of what Charles Sanders Peirce called abduction, by being "told" a set 
of context-free features and relations-in this case a list of possible 
spacial relationships of blocks such as "left-of," "standing," "above," 
and "supported by"-from which to build up a description of an arch. 
Minsky and Papert presuppose this preselection when they say that "to 
eliminate objects which seem atypical . . .  the program lists all relation
ships exhibited by more than half of the candidates in the set. "49 Lurking 
behind this claim is the supposition that there are only a finite number 
of relevant features; but without preselected features all objects share an 
indefinitely large number of relationships. The work of discriminating, 
selecting, and weighting a limited number of relevant features is the 
result of repeated experience and is the first stage of learning. But since 
in Winston's work the programmer selects and preweights the primitives, 
his program gives us no idea how a computer could make this selection 
and assign these weights. (In this respect Winston's program shows no 
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progress beyond Newell ,  Shaw, and Simon's 1 95 8  proposal ;  see p. 83 of 
this book. )  Thus the Winston program, like every micro-world program, 
works only because i t  has excluded from its task domain the very abi l i ty 
it is supposed to explain .  

If not a theory of  learning, i s  Winston's program at least a plausible 
theory of categorization? Consider again the arch example. Once i t  has 
been given what Winston disarmingly calls a ' 'good descri ption · · �0 and 
careful ly chosen examples, the program does conclude t hat an arch is a 
structure in which a prismatic body is supported by two upright blocks 
that do not touch each other. But , since arches funct ion in various ways 
in our everyday act ivity, there is no reason to suppose that these are the 
necessary and sufficient conditions for being an arch, or that there are 
any such defining features. Some prominent characterist ics shared by 
most everyday arches are " 'helping to support something whi le leaving 
an important open space under i t , · ·  or "being the sort of thing one can 
walk under and through at the same time. · ·  How does Winston propose 
to capture such contextual characterist ics in terms of the context-free 
features required by his formal representat ion? 

Winston admits that having two supports and a flat top does not begin 
to capture even the geometrical st ructure of arches .  So he proposes 
"generalizing the machine's descript ive abi l i ty to acts and propert ies 
required by those acts" � •  by adding a functional predicate, "something 
to walk through . . . � �  But i t  is not at all clear how a functional predicate 
which refers to implicit knowledge of the bodily ski l l  of walking through 
is to be formalized . Indeed, Winston himself provides a reductio ad 

absurdum of this facile appeal to formal functional predicates : 

To a human, an arch may be something to walk through, as wel l as an appropri 
ate al ignment of bricks. And certainly ,  a flat rock serves as a table to a hungry 
person, although far removed from the image the word table usually cal ls to 
mind. But the machine does not yet know anything of walking or eating, so t he 
programs discussed here handle on ly some of the physical aspects of these human 
notions. There is no inherent  obstacle forbidding the machine to enjoy funct ional 
understanding. I t  is a matter of general izing the machine's descript ive abilit y  to 
acts and properties required by those acts. Then chains of pointers can l ink 
TABLE to fOOD as wel l as to the physical image of a table,  and t he machine w ill 
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be perfectly happy to draw up its chair to a flat rock with the human given that 
there is something on that table which it wishes to eat .  53 

Progress on recognition of arches, tables, etc . ,  must, it seems, either wait 
unti l  we have captured in an abstract symbolic description much of what 
human beings implicitly know about walking and eating simply by hav
ing a body, or else until computers no longer have to be told what it is 
to walk and eat, because they have human bodies and appetites them
selves! 

Despite these seemingly insurmountable obstacles Winston boasts that 
"there wil l  be no contentment with [ concept learning] machines that 
only do as well as humans." 54 But it is not surprising that Winston's work 
is nine years old and there has been little progress in machine learning, 
induction, or concept formation. In their account Minsky and Papert 
admit that "we are sti l l  far from knowing how to design a powerful yet 
subtle and sensitive inductive learning program. " 5 5  What is surprising is 
that they add : "but the schemata developed in Winston's work should 
take us a substantial part of the way." 5 6  The lack of progress since 
Winston's work was published, plus the· use of predigested weighted 
prim itives from which to produce its rigid, restricted, and largely i rrele
vant descriptions, makes it hard to understand in what way the program 
is a substantial step. 

Moreover, if Winston claims to "shed some light on [the question :] 
How do we recognize examples of various concepts?" 5 7 his theory of 
concepts as definitions must, l ike any psychological theory, be subject 
to empirical test. It so happens that contrary to Winston's claims, re
cent evidence col lected and analyzed by Eleanor Rosch on just this 
subject shows that human beings are not aware of classifying objects 
as instances of abstract rules but rather group objects as more or less 
d istant from an imagined paradigm. This does not exclude the possi
bil ity of unconscious processing, but it does highlight the fact that 
there is no empirical evidence at all for Winston's formal model . As 
Rosch puts i t :  

Many experiments have shown that categories appear to be coded in  the mind 
neither by means of lists of each individual member of the category, nor by means 
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of a list of formal criteria necessary and sufficient for category membership, but, 
rather, in terms of a prototype of a typical category member. The most cogni
t ively economical code for a category is, in fact, a concrete image of an average 
category member. 5 8  

One paradigm, it seems, is worth a thousand rules. As we shal l  soon see, 
one of the characteristics of the next phase of work in Al is to t ry to take 
account of the impli<.:ations of Rosch ·s research. 

Meanwhile, what can we conclude concerning Al's contribution to the 
science of psychology? No one can deny Minsky and Papert 's claim that 
"Computer Science has brought a flood of . . .  ideas, wel l  defined and 
experimentally implemented, for thinking about thinking . . . . . .  �q But al l  
of these ideas can be boiled down to ways of constructing and manipulat
ing symbolic descriptions, and, as we have seen, the notion that human 
cognition can be explained in terms of formal representations does not 
seem at al l obvious in the face of actual research on perception, and 
everyday concept formation. Even Minsky and Papert show a commend
able new modesty. They as much as admit that Al is st i l l  at the stage 
of astrology (not unlike alchemy), and that the much heralded break
through stil l lies in the future: 

Just as astronomy succeeded astrology. following Kep ler's discovery of planetary 
regulari t ies. the discoveries of these many principles in empirical explorat ions of 
intellectual processes in machines should lead to a science. eventually . "0 

Happily, .. should" has replaced . .  wil l" in their predictions. Indeed. this 
period's contribution to psychology suggests an even more modest hope : 
As more psychologists like Goldmeier are frust rated by the limitations 
of formal computer models, and others turn to investigating the function 
of images as opposed to symbolic representations, the st rikingly limited 
success of AI may come to be seen as an important disconfirmation of 
the information processing approach. 

To complete our survey of the state of AI research as it entered its 
second decade we need to consider briefly the state of robot research, 
both because work in this area received a lot of misleading publicity 
during this period and because, as we have just seen in discussing Win-
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ston's claims, workers in  AI  often take refuge in the idea that computers 
wil l  finally achieve human understanding when they have humanoid 
bodies. 

Our account wil l have to be brief because there is not much to report. 
After the usual optimistic start, the M. I .T. robot arm was stopped cold 
by just the problem of representing its own body space which I suspected 
would be its undoing (see p. 25 1 ). In the 1 968- 1 969 AI Progress Report 
this problem is clearly an embarrassment :  

. . .  [H]ow should one represent a machine's body image? For the problem of 
a single, not-too-complicated arm, one can doubtless get by with cleverly coded, 
sparse, three-dimensional arrays, but one would l ike something more symbolic. 
And one wonders what happens in the nervous system; we have not seen any
thing that might be considered to be a serious theory. Consider that a normal 
human can place an object on a table, turn about and make a gross change in 
his position and posture, and then reach out and grasp within one or two inches 
of the object, all with his eyes closed! It seems unlikely that his cerebellum could 
perform the appropriate vector calculations to do this . . . .  6 1 

However, rather than see this as evidence that their attempt to 
represent the robot's arm as one more object in physical space was 
misguided,  the authors of the report get into deeper trouble defend
ing their faith . 

. . . We would presume that this complex motor activity is made up, somehow, 
of a large library of stereotypical programs, with some heuristic interpolation 
scheme that · fits the required action to some collection of reasonably similar 
stored actions. But we have found nowhere any serious proposal about neurologi
cal mechanisms for this, and one can hope that some plausible ideas will come 
out of robotics research itself. 62 

Neurophysiology offers, admittedly speculative, accounts of such 
similarity, but these are holographic not information processing models. 
As for the Al approach, it merely raises the further problem of recogniz
ing similarity, which is d iscussed in connection with chess-playing pro
grams in the next section. In the light of these problems, when the report 
adds: "Unfortunately, at present this area is somewhat dormant,"6 3  we 
can only take "dormant" as a polite synonym for stagnant or even 

comatose. 
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In spite of its better press (see p. 300) the SRI robot ,  Shakey, was in 
no better shape. As Bertram Raphael frankly sums up the �ituation in 
response to exaggerated coverage by the media: 

. . .  Many experiments were performed with Shakey between 1 968 and 1 972 

. . .  [but] we made much less progress than various press reports might suggest 

toward the creation of an independent sentient robot capable of meaningful 
performance in a normal human environment. Responsible scient ists consider 
this intriguing idea premature, probably by at least several decades. t,4 

In effect, Shakey is another case of a micro-world success which 
turned into a real-world failure. 

At his peak, Shakey could only function in a steri le . .  play-pen" environment of 

walls, doorways, careful ly painted baseboards (so he could .. see" where the walls 
met the floor), and a few simply-shaped wooden blocks; he had only about a 
dozen pre-programmed "instinctive" abi l i t ies. such as TC R N ,  PUS H ,  GO

TH ROUG H - DOORWAY,  and CLI M B- R A M P, which could be combined in various 
ways by the planning programs . . . .  The scient ists who worked on Shakey 
developed a deep appreciation of how difficult it is to produce a robot even with 
relat ively trivial abi l it ies, let  alone the true science-fiction-l ike independent com
petence. b� 

According to Raphael, Shakey and the SRI robot project have been 
"temporarily put aside, ,  and there will be no interesting robot work to 
report until Al workers solve the basic problem of knowledge representa
tion: 

Surprisingly, the issues of how to acquire, represent .  and make use of a broad 
store of knowledge has been the most neglected part of past robot research .  The 

developers of the laboratory robot systems were so busy patching together exist

ing capabili ties (in vision, language, and problem solving) , and fil l ing in essential 
new areas (representing the physical world, providing for error recovery), that 

they did not attend to the fundamental issue of knowledge structures.M 

So now we have the overall picture. In all those areas where en
thusiasts saw signs of success at just the time this book appeared
language understanding, scene analysis, concept learning, and robot 
building-the work turned out to be based on brilliant but nongeneraliza

ble exploitation of specific features of the task domain. With this realiza
tion AI finally had to face the problem of representing everyday knowl-
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edge-a difficult, decisive, and philosophically fascinating task with 
which it is still struggling today . 

P hase IV ( 1 972-1 977) Fac i ng the Problem of 

Knowledge Representation 

As the restricted interest of work in restricted domains became appar
ent, the distinction between specific applications and research on basic 
principles became sharper. Feigenbaum comes to refer to his work on 
DENDRAL and his more recent program for inferring the rules of mass 
spectometry, META-DENDRAL, as "knowledge engineering" 67  while 
Winograd and his associates call their work "cognitive science. ' ' 6 8 * At 
M . I .T. , a grant proposal from this period distinguishes between .. no
holds-barred, special purpose, domain-dependent work" and .. no-tricks 
basic study. " 69 And it seems to be generally accepted that every program 
we discussed in Phase I I I ,  and, indeed, the whole micro-world concept , 
was in this straightforward sense, a trick. 

We shall now see that in Phase IV the special-purpose work makes 
steady progress, while the basic study faces a crisis. Everyday human 
know-how is increasingly acknowledged to be presupposed by intell igent 
behavior, yet i t  turns out to be incredibly difficult, perhaps in principle 
impossible, to program. 

The areas in which knowledge engineering has been successful are just 
those in which the first edition of What Computers Can 't Do predicted 
that progress could be expected . (See Column I I I ,  of my breakdown of 
the field, p. 292. ) As long as the domain in question can be treated as 
a game, i . e . ,  as long as what is relevant is fixed, and the possibly relevant 
factors can be defined in terms of context-free primitives, then computers 
can do well in the domain .  And they will do progressively better relative 
to people as the amount of domain-specific knowledge required is in
creased . In such special-purpose programs the form of know ledge repre
sentation can be l imited to situation -+ action rules in which the situa
tion is defined in terms of a few parameters and indicates the conditions 
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under which a specific heuristic rule is relevant. Again, because relevance 
is defined beforehand, reasoning can be by inference chains with no need 
for reasoning by analogy. 

All these features can be found in one of the most impressive practical 
programs to date: Shortliffe's MYCIN program ( 1976) for diagnosing 
blood infections and meningitis infections and recommending drug treat
ment. The rules in this case are of the form: 

R ULE 85 

IF: 

l. The site of the culture is blood, and 
2. The gram stain of the ocganism is gramneg, and 
3. The morphology of the organism is rod , and 
4. The patient  is a compromised host 

THEN: 

There is suggestive evidence (.6) that the ident i ty of the organism is pseudomo
nas-aeruginosa. 70 

The program has been tested by a panel of judges: 

. . .  I n  90% of the cases submit ted to the judges, a majority of the judges said 
that the program's decisions were the-same-as or as-good-as the decisions they 
would have made. 1 1

• 

This approach, although successful as an engineering feat ,  involves 
several assumptions which may conceal potential limitations. Feigen
baum, i"n his analysis of MYCIN ,  assumes that acquiring expert skil l is 
acquiring rules for recognizing situations and rules for evaluating evi
dence 

. . . In most "crafts or branches of learning" what we call "expertise" is the 
essence of the art . And for the domains of knowledge that we touch with our 
art ,  it is the "rules of expertise" or the rules of "good judgment" of the expert 
pract i t ioners of the domain that we seek to t ransfer to our programs. 7 1  

He conscientiously notes that the experts themselves are not aware of 
using rules :  
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. . .  Experience has also taught us that much of th is  knowledge is private to the 
expert, not because he is unwilling to share publicly how he performs, but 
because he is unable. He knows more than he is aware of knowing. (Why else 
is the Ph.D. or the Internship a guild-like apprenticeship to a presumed "master 
of the craft"? What the masters really know is not written in the textbooks of 
the masters.) 7 3  

But Feigenbaum with his assumption that expert performance must 
result exclusively from following rules, is nonetheless convinced that by 
suitable questioning he can get the expert, as Plato would say, to "recol
lect" the complete set of unconscious heuristics : 

. . . But we have learned also that this private knowledge can be uncovered by 
the careful, painstaking analysis of a second party, or sometimes by the expert 
himself, operating in the context of a large number of highly specific performance 
problems. 74 

If internship and the use of examples play an essential role in expert 
judgment, i.e. , if there is a l imit to what can be understood by rules, 
Feigenbaum would never see it-especially in domains such as medicine 
where there is a very large and rapidly increasing body of factual infor
mation concerning drugs and their side effects and interactions, so that 
the computer can make up in data-processing capacity for what it lacks 
in judgment. Yet, the fact remains that in each field where "knowledge 
engineering" has made its valuable contribution and rivaled the experts, 
there are stil l  masters who do better than the machine. To determine 
whether this is an accident, or whether skill may involve more than rule 
following, it is helpful to look at developments in chess, where the 
domain is restricted, factual knowledge is at a minimum, and where we 
have some psychological evidence of what master players actual ly do. 

Chess is an ideal micro-world in which relevance is restricted to the 
narrow domain of the kind of chess piece (pawn, knight, etc.) ,  its color, 
and the position of the piece on the board. But while the game's circum
scribed character makes a world champion chess program in principle 
possible, there is a great deal of evidence that human beings play chess 
quite differently from computers; and I wa� not surprised to find that up 
to 197 1  computers played fairly low-level chess (see pp. 82-85). In July 
1976, however, the Northwestern University chess program, called 
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CHESS 4.5, won the class B section of the Paul Masson American Chess 
Championship with an impressive 5 wins and no losses. It then went on 
in February 1977 to win the 84th Minnesota Open Tournament against 
experts and high-class A players. 7 5 Such unexpected impressive results 
require a reexamination of the difference between human and computer 
chess playing. 

A chess program has the sort of situation -+ action rules discussed 
above. A situation is characterized in terms of context-free features: the 
position and color of each piece on the board. All possible legal moves 
and the positions which result are then defined in terms of these features. 
To evaluate and compare positions , ru les are provided for calculat ing 
scores on attributes such as "material balance" (where a numerical value 
is assigned to each piece on the board and the total score is computed 
for each player), or "center control" (where the number of pieces bearing 
on each centrally located square is counted). Finally, there must be a 
formula for evaluating alternative positions on the basis of these scores. 
Using this approach and looking at a tree of around 3 million potential 
positions CHESS 4.5 can beat some players at the expert level , but a 
chess master generally looks at the results of less than 100 possible moves 
(see p. 102) and yet plays a far better game. How can this be? 

In Chapter 1, I note that human beings avoid the counting out of large 
numbers of alternatives characteristic of a computer program by .. zero
ing in" on the appropriate area in which to look for a move and I suggest 
that this ability is the result of having a sense of the developing game. 
While no doubt correct, this now seems to me an inadequate account, 
for it does not take into consideration the fact that to develop this ability 
to zero in, chess masters must play thousands of actual and book games. 
What does this apprenticeship add to their ski l l? 

By playing over book games chess masters presumably develop the 
abil ity to recognize present positions as similar to positions which oc
curred in classic games. These previous positions have already been 
analyzed in terms of their significant aspects. Aspects of a chess position 
include such overall characteristics as "control of the situation" (the 
extent to which a player's opponent's moves can be forced by making 
threatening moves), "crampedness of the position" (the amount of free
dom of maneuver inherent in both the player's position and the oppo-
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nent's position), or "overextendedness" (the fact that while the position 
might be superficially quite strong, one is not in sufficient control of the 
situation to follow through and, with correct play by the opponent, a 
massive retreat will be required). The already analyzed remembered 
positions focus the player's attention on critical aspects of the current 
position, and the master can thus zero in on these critical areas before 
beginning to count out specific moves. 

The distinction between features and aspects is central here. Aspects 
play a role in an account of human play similar to that of features in 
the computer model, but there is a crucial difference. In the computer 
model the situation is DEFINED IN TERMS OF the features, whereas in 
human play situational u nderstanding is PRIOR TO aspect specification. 
For example, the numerical value of a feature such as material balance 
can be calculated independently of any understanding of the game, 
whereas an aspect like overextendedness cannot be calculated simply in 
terms of the position of the pieces, since the same board position can 
have different aspects depending on its place in the long-range strategy 
of a game. In a game in which white's long-range strategy is an attack 
on the opponent's king, the advanced position of white's pieces does 
not constitute overextension, whereas otherwise it would. No present 
or envisaged chess program attempts to include such long-range strat
egy, yet to recognize aspects requires some such overall interpretation 
of the game. 

For the s·ame reason some sort of feature-based matching of the pre
sent position against a stored library of previous positions won't help 
account for a master player's ability to use past experience to zero in. It 
is astronomically unlikely that two positions will ever turn out to be 
identical, so that what has to be compared are similar positions. But 
similarity cannot be defined as having a large number of pieces on 
identical squares. Two positions which are identical except for one pawn 
moved to an adjacent square can be totally different, while two positions 
can be similar although no pieces are on the same square in each. Thus 
similarity depends on the player's sense of the issues at stake, not merely 
on the position of the pieces. Seeing two positions as similar is exactly 
what requires a deep understanding of the game. And structuring the 
situation in terms of aspects of remembered similar situations in turn 
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enables the human player to avoid the massive counting out required 
when the positions are characteri zed only in terms of context-free fea
tures. 

Aspects  also enable masters to formulate heuristic maxims which play 
a role in this account analogous to heuristic rules in  the computer model . 
Polanyi cal ls attention to  the difference between strict rules and maxims: 

Maxims are rules, the correct application of which is part of the art which they 
govern. The true maxims of golfing or of poetry increase our insight into golfing 
or poetry and may even give valuable guidance to golfers and poets; but these 
maxims would instantly condemn themselves to absurdity if they tried to replace 
the golfer's skill or the poet's art. Maxims cannot be understood. still less applied 
by anyone not already possessing a good practical knowledge of the art. ·� 

At present computers using exhaustive search, and masters using 
selective search guided by aspect analysis and maxims, can each look 
ahead about six or seven ply. 7 7 * Given the exponential growth of alterna
tive moves it will not be possible without bet ter tree-searching heuristics 
to significantly increase the computer's power to look ahead . Thus with 
present programs what is real ly at stake is how far computers which 
must use tactics based on context -free features can make up by sheer 
brute force for the use of long-range st rategy . the recognition of 
similarity to other preanalyzed games, and the zeroing in on crucial 
aspects characteristic of advanced human play. 

In general being able to see simi larity to prototypical cases and to 
recognize shared aspects in terms of this similari ty ,  as well as the possi
bi l ity of profiting from maxims formulated in terms of these aspects, a l l  
seem to play an essential role in the acquisi t ion and ut i l ization of ex
pert ise. But since these abil it ies are not based on context-free features 
but depend on the overa l l  situation they cannot be captured in the 
situation - action ru le formalism . Thus we can expect in every area 
where expertise is based on experience to continue to find some expert s  
who outperform even the most sophisticated programs. 

Although chess programs and knowledge engineering in general have 
made remarkable progress during the past two years, discourse under
standing, despite the introduction of interesting new ideas, is s t i l l  in the 
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same state of stagnation as i t  was in 1 972. While this has led some 
researchers to ever more extravagant promises and claims, it has led 
others to sober thoughts on the difficulty of programming human under
standing. In order to form a reasonable opinion about what has yet to 
be done to make computers intelligent, we must tum from the com
puter's successes in restricted domains to the stag/flation afflicting the 
field of discourse understanding. 

The difference between programs like MYCIN and CHESS 4. 5 ,  and 
programs for understanding discourse, is precisely the difference between 
domain-specific knowledge and general intelligence; between anything
goes engineering and no-tricks basic study; or, as we can now see, the 
difference between areas in which relevance has been decided beforehand 
(Area I I I  in my chart, p. 292), and areas in which determining what is 
relevant is precisely the problem (Area IV). 

In the past five years, the problem of how to structure and retrieve data 
in situations when anything might be relevant has come to be known as 
the knowledge representation problem. As Patrick Winston, head of the 
M . I .T. AI Laboratory, puts it in a section of a 1 975 research proposal 
entitled "The Need for Basic Studies" : 

. . .  We believe that proper representation is the key to advanced vision, common 
sense reasoning, and expert problem solving, just as it is to many other aspects 
of Artificial Intel l igence. 7 8 

Of course, the representation of knowledge was always a central prob
lem for work in AI,  but earlier periods were characterized by an attempt 
to repress it by seeing how much could be done with as little knowledge 
as possible. Now, the difficulties are being faced. As Roger Schank of 
Yale recently remarked : 

. . .  Researchers are starting to understand that tour-de-forces in programming 
are interesting but non-extendable . . .  the AI people recognize that how people 
use and represent knowledge is the key issue in the field . . . .  79 

Papert and Goldstein explain the problem : 

I t  is worthwhile to observe here that the goals of a knowledge-based approach 
to Al are closely akin to those which motivated Piaget to cal l  . . . himself an 
"epistemologist" rather than a psychologist . The common theme is the view that 
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the process of intelligence is determined by the knowledge held by the subject. 
The deep and primary questions are to understand the operations and data 
structures involved. 80 

Another memo illustrates how ignoring the background knowledge can 
come back to haunt one of Al 's greatest tricks in the form of nongeneral
izability :  

. . . Many problems arise in  experiments on machine intelligence because things 
obvious to any person are not represented in any programs. One can pull with  
a string, but one cannot push with one. One cannot push with a thin wire, either. 
A taut inextensible cord will break under a very small lateral force. Pushing 
something affects first i ts speed; only indirectly its posi tion! Simple facts like these 
caused serious problems when Chamiak attempted to extend Bobrow's "Stu
dent" program to more realist ic applicat ions. and they have not been faced up 
to until now. 8 1 

The most interesting current research is directed toward the underlying 
problem of developing new, flexible, complex data types which will allow 
the representation of background knowledge in large, more structured 
units. 

In 1972, drawing on Husserl's phenomenological analysis, I pointed 
out that it was a major weakness of Al that no programs made use of 
expectations (see pp. 241, 242, and 250) . Instead of modeling intelligence 
as a passive receiving of contex t -free facts into a structure of already 
stored data, Husserl thinks of intelligence as a context -determined, goal
directed activity-as a search for anticipated facts. For him the noema, 
or mental representation of any type of object , provides a context or 
. .  inner horizon" of expectations or · ·predelineations" for structuring the 
incoming data : a ' "rule governing possible other consciousness of [the 
object] as identical-possible, as exemplifying essentially predelineated 
types. " � 2

• As I explain in Chapter 7: 

. . .  We perceive a house, for example, as more than a fa<;ade-as having some 
sort of back-some inner horizon. We respond to this whole object first and then, 
as we get to know the object better, fill in the details as to inside and back. 
[p .  24 I ]  

The noema is thus a symbolic description of all the features which can 
be expected with certainty in exploring a certain type of object-features 
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which remain "inviolably the same: as long as the objectivity remains 
intended as this one and of this kind" 8 3  

• • •  plus "predelineations" of 
those properties which are possible but not necessary features of this type 
of object. 

A year after my objection, Minsky proposed a new data structure 
remarkably similar to Husserl's for representing everyday knowledge: 

A frame is a data-structure for represen ting a stereotyped situation, like being 
in a certain kind of living room, or going to a child's birthday party . . . .  

We can think of a frame as a network of nodes and relations. The "top levels" 
of a frame are fixed, and represent things that are always true about the supposed 
situation. The lower levels have many terminals-"slots" that must be filled by 
specific instances or data. Each terminal can specify conditions its assignments 
must meet . . . . 

Much of the phenomenological power of the theory hinges on the inclusion 
of expectations and other kind� of presumptions. A frame's terminals are nor
mally already filled with "default" assignments. 84 

In Minsky's model of a frame, the "top level" is a developed version 
of what in Husserl's terminology "remains inviolably the same" in the 
representation, and Husserl's predelineations have been made precise as 
"default assignments"-additional features that can normally be ex
pected. The result is a step forward in AI techniques from a passive 
model of information processing to one which tries to take account of 
the context of the interactions between a knower and his world. Husserl 
thought of his method of transcendental-phenomenological constitution, 
i.e . ,  "explicating" the noema for all types of objects, as the beginning of 
progress toward philosophy as a rigorous science, and Patrick Winston 
has hailed Minsky's proposal as "the ancestor of a wave of progress in 
AI. " 8 5  But Husserl's project ran into serious trouble and there are signs 
that Minsky's may too. 

During twenty years of trying to spell out the components of tr.e 
noema of everyday objects, Husserl found that he had to include more 
and more of what he cal led the "outer horizon,"  a subject's total knowl
edge of the world : 

. . .  To be sure, even the tasks that present themselves when we take single types 
of objects as restricted clues prove to be extremely complicated and always lead 
to extensive disciplines when we penetrate more deeply. That is the case, for 
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example, with a transcendental theory of the consti tution of a spatial object (to 
say nothing of a Nature) as such, of psycho-physical being and humanity as such, 
cultures as such. 86 

He sadly  concluded at the age of seventy-five that he was .. a perpetual 
beginner" and that phenomenology was an . .  infinite task"-and even 
that may be too optimistic. H is successor, Heidegger, pointed out that 
since the outer horizon or background of cultural practices was the 
condition of the possibility of determining relevant facts and features and 
thus prerequisite for structuri ng the inner horizon, as long as the cultural 
context had not been clarified the proposed analysis of the inner horizon 
of the noema could not even claim progress. 

There are hints in an u!1published early draft of the frame paper that 
Minsky has embarked on the same misguided . .  infinite task" that eventu
ally overwhelmed Husserl : 

Just construct ing a knowledge base is a major intellect ual research problem . 
. . . We still know far too lit tle about the contents and structure of common-sense 
knowledge. A "minimal" common-sense system must .. k now" something  about 
cause-effect , t ime, purpose, locali ty ,  process, and t ypes of lnowledge . . . .  We 
need a serious epistemological research effort in this area . ► •  

Minsky's nai'vete and faith are astonishing. Phi losophers from Plato 
to Husserl , who uncovered all these problems and more, have carried on 
serious epistemological research in this area for two thousand years 
without notable success. Moreover, the list Minsky includes in th is pas
sage deals only with natural objects, and thei r posit ions and interact ions. 
As Husserl saw, and as I argue in Chapter 8 ,  intell igent behavior also 
presupposes a background of cultural practices and institut ions. Obser
vations in the frame paper such as : 

Trading normally occurs in a social context of law. t rust , and convent ion . Unless 
we also represent these other facts, most t rade t ransact ions will be almost mean
ingless�" 

show that Minsky has understood this too. But Minsky seems obl ivious 
to the hand-waving opt imism of his proposal that programmers rush in 
where philosophers such as Heidegger_ foar to tread, and simply make 
explicit the totality of human pract ices which pervade our lives as water 
encompasses the life of a fish. 

To make this essent ial point clear it helps to take an example used by 
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Minsky and look at  what i s  involved in  understanding a piece of everyday 
equipment as simple as a chair. No piece of equipment makes sense by 
itself. The physical object which is a chair can be defined in isolation as 
a collection of atoms, or of wood or metal components, but such a 
description will not enable us to pick out chairs. What makes an object 
a chair is its function, and what makes possible its role as equipment for 
sitting is its place in a total practical context. This presupposes certain 
facts about human beings (fatigue, the ways the body bends), and a 
network of other culturally determined equipment (tables, floors, lamps), 
and skills (eating, writing, going to conferences, giving lectures, etc.). 
Chairs would not be equipment for sitting if our knees bent backwards 
like those of flamingos, or if we had no tables as in traditional Japan or 
the Australian bush. 

Anyone in our culture understands such things as how to sit on 
kitchen chairs, swivel chairs, folding chairs; and in arm chairs, rocking 
chairs, deck chairs, barber's chairs, sedan chairs, dentist's chairs, basket 
chairs, reclining chairs, wheel chairs, sling chairs, and beanbag chairs
as well as how to get out of them again. This ability presupposes a 
repertoire of bodily skills which may well be indefinitely large, since there 
seems to be an indefinitely large variety of chairs and of successful 
(graceful, comfortable, secure, poised, etc.) ways to sit in them. More
over, understanding chairs also includes social skills such as being able 
to sit appropriately (sedately, demurely, naturally, casually, sloppily, 
provocatively, etc.) at dinners, interviews, desk jobs, lectures, auditions, 
concerts (intimate enough for there to be chairs rather than seats), and 
in waiting rooms, living rooms, bedrooms, courts, libraries, and bars ( of 
the sort sporting chairs, not stools). 

In the light of this amazing capacity, Minsky's remarks on chairs in 
his frame paper seem more like a review of the difficulties than even a 
hint of how AI could begin to deal with our commonsense understanding 
in this area. 

There are many forms of chairs, for example, and one should choose carefully 
the chair-description frames that are to be the major capitols of chair-land. These 
are used for rapid matching and assigning priorities to the various differences. 
The lower priority features of the cluster center then serve . . .  as properties of 
the chair types. . . . 89 
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There is no argument why we should expect to find elementary context
free features characterizing a chair type, nor any suggestion as to what 
these features might be. They certainly cannot be legs, back, seat ,  etc . ,  
since these are not  context-free characteristics defined apart from chairs 
which then "cluster" in a chair representat ion, but rather legs, back, etc. 
come in all shapes and variety and can only be recognized as aspects of 
already recognized chairs. Minsky continues :  

Difference pointers could be . .  functional" as well as geometric. Thus, after 

rejecting a first try at .. chair" one might try the functional idea of · ·something 
one can sit on" to explain an unconventional form_ .. ,) 

But, as we already saw in our discussion of Winston's concept-learning 
program, a function so defined is not abst ractable from human embodied 
know-how and cultural pract ices . A functional description such as 
"something one can sit on" treated merely as an additional context -free 
descriptor cannot even distinguish conventional chairs from saddles. 
thrones, and toilets. Minsky concludes : 

Of course, that analysis would fail to capture toy chairs. or chai rs of such 
ornamental delicacy that their actual use would be unthinkable . These would be 
better handled by the method of excuses. in which one would bypass the usual 

geometrical or functional explanation in favor of responding to contexts involv
ing art or play. q i  

This i s  what i s  required a l l  right, but by  what elementary features are 
these contexts to be recognized? There is no reason at all to suppose that 
one can avoid the difficulty of formally representing our knowledge of 
chairs by abstractly representing even more holistic, concrete, culturally 
determined, and loosely organized human pract ices such as art and play. 

Minsky in his frame art ic le claims that : . .  the frame idea . . .  is in the 
tradition of . . .  the 'paradigms' of Kuhn. "'�2 so it is appropriate to ask 
whether a theory of formal representat ion such as Minsky's, even if it 
can't  account for everyday objects like chairs, can do justice to Thomas 
Kuhn's analysis of the role of paradigms in the practice of science. Such 
a comparison might seem more promising than test ing the abil i ty of 
frames to account for our everyday understanding, since science is a 
theoretical enterprise which deals with context-free data whose lawlike 
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relations can in principle be grasped by any sufficiently powerful "pure
intellect," whether human, Martian, digital, or divine. 

Paradigms, like frames, serve to set up expectations. As Kuhn notes : 
"In the absence of a paradigm or some candidate for paradigm, all the 
facts that could possibly pertain to the development of a given science 
are likely to seem equally relevant. "9 3  Minsky interprets as follows: 

According to Kuhn's model of scientific evolution ·normal' science proceeds by 
using established descriptive schemes. Major changes result from new 'para
digms', new ways of describing things. Whenever our customary viewpoints do 
not work well ,  whenever we fail to find effective frame systems in memory, we 
must construct new ones that bring out the right features. 94 

But what Minsky leaves out is precisely Kuhn's claim that a paradigm 
or exemplar is not an abstract explicit descriptive scheme utilizing formal 
features, but rather a shared concrete case, which dispenses with features 
altogether: 

The practice of normal science depends on the abil i ty, acquired from exemplars, 
to group objects and situations into similarity sets which are primitive in the 
sense that the grouping is done without an answer to the question, .. Simi lar with 
respect to what?" 9� 

Thus, although it is the job of scientists to find abstractable, exact, 
symbolic descriptions, and the subject matter of science consists of such 
formal accounts, the thinking of scientists themselves does not seem to 
be amenable· to this sort of analysis. Kuhn explicitly repudiates any 
formal reconstruction which claims that the scientists must be using 
symbolic descriptions: 

I have in  mind a manner of knowing which is misconstrued if reconstructed in 
terms of rules that are first abstracted from exemplars and thereafter function 
in their stead. 96 

Indeed, Kuhn sees his book as raising just those questions which Minsky 
refuses to face : 

Why is the concrete scientific achievement, as a locus of professional commit
ment, prior to the various concepts, laws, theories, and points of view that may 
be abstracted from i t? I n  what sense is the shared paradigm a fundamental unit 
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for the student of scientific development, a unit that cannot be fully reduced to 
logically atomic components which might function in its stead?97 

Although research based on frames cannot deal with this question and 
so cannot account for commonsense or scientific knowledge, the frame 
idea did bring the problem of how to represent our everyday knowledge 
into the open in AI .  Moreover, it provided a model so vague and sugges
t ive that it could be developed in several different directions. Two alter
natives immediately presented themselves :  either to use frames as part 
of a special-purpose micro-world analysis dealing with commonsense 
knowledge as if everyday activity t ook place in preanalyzed specific 
domains, or else to try to use frame structures in . .  a no-tricks basic 
study" of the open-ended character of everyday know-how. Of the two 
most influential current schools in Al, Roger Schank and his students 
at Yale have tried the first approach, Winograd, Bobrow. and their 
research group at Stanford and Xerox, the second. 

Schank's version of frames are called "scripts. · ·  Scripts encode the 
essential steps involved in stereotypical social act ivit ies. Schank uses 
them to enable a computer to .. understand" simple stories. Like the 
micro-world bui lders of Phase I I I ,  Schank believes he can start with 
isolated stereotypical situations described in terms of primitive actions 
and gradually work up from there to all of human life. 

To carry out this project , Schank invented an event description lan
guage consisting of eleven primitive acts such as : A TRANS-the trans
fer of an abstract relat ionship such as possession, ownership, or control; 
PTRANS-the t ransfer of physical location of an object ; INGEST-the 
taking of an object by an animal into the inner workings of that animal, 
etc ./8 and from these primitives he builds gamelike scenarios which 
enable his program to fil l  in gaps and pronoun reference in  stories .  

Such primitive act s, of course, make sense only when the context is  
already interpreted in a specific piece of discourse. Their artificial i ty can 
easily be seen if one compares one of Schank's context-free primitive acts 
to real-l ife actions. Take PTRANS, the transfer of physical location of 
an object .  At first it seems an interpretation-free fact if ever there was 
one. After all , either an object moves or it doesn't .  But in  real l ife th ings 
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are not so simple; even what counts as physical motion depends on our 
purposes. I f  someone is standing stil l  in a moving elevator on a moving 
ocean l iner, is his going from A to B deck a PTRANS? What about when 
he is just sitting on B deck? Are we all PTRANSing around the sun? 
Clearly the answer depends on the situation in which the question is 
asked. 

Such primitives can, however, be used to describe fixed situations or 
scripts once the relevant purposes have already been agreed upon. 
Schank's definition of a script emphasizes its predetermined, bounded, 
gamelike character: 

We define a script as a predetermined causal chain of conceptualizations that 
describe the normal sequence of things in a familiar situation. Thus there is a 
restaurant script, a birthday-party script, a football game script, a classroom 
script, and so on . Each script has in it a minimum number of players and objects 
that assume certain roles within the script . . .  [E]ach primitive action given 
stands for the most important element in a standard set of actions. 99 

His i l lustration of the restaurant script spells out in terms of primitive 
actions the rules of the restaurant game: 

Script : restaurant 
Roles: customer; waitress; chef; cashier 
Reason : to get food so as to go down in hunger and up in pleasure 

Scene 1 entering 

PTRANS-go into restaurant 
MBUILD-find table 
PTRANS-go to table 
MOVE-sit  down 

Scene 2 ordering 

A TRANS-receive menu 
ATTEND-look at i t  
MBUILD-decide on order 
MTRANS-tell order to waitress 

Scene 3 eating 

A TRANS-receive food 
INGEST-eat food 
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Scene 4 exiting 

MTRANS-ask for check 
ATRANS-give tip to waitress 
PTRANS-go to cashier 
A TRANS-give money to cashier 
PTRANS-go out of restaurant 1 00  

I 42 

No doubt many of our social activities are stereotyped and there is 
nothing in principle misguided in  trying to work out primitives and rules 
for a restaurant game, the way the rules of Monopoly are meant to 
capture a simplified version of the typical moves in the real estate busi
ness. But Schank claims that he can use this approach to understand 
stories about actual  restaurant-going-that in effect he can treat the 
sub-world of restaurant going as if it were an isolated micro-world. To 
do this, however, he must artificially limit the possibi l ities; for. as one 
might suspect, no matter how stereotyped, going to the restaurant is not 
a self-contained game but a highly variable set of behaviors which open 
out into the rest of human activity . What . . nom1ally . .  happens when one 
goes to a restaurant can be preselected and formalized by the program
mer as default assignments, but the background has been left out so that 
a program using such a script cannot be said to understand going to a 
restaurant at all. This can easily be seen by imagining a situation that 
deviates from the norm. What if when one tries to order he finds that 
the item in question is not avai lable, or before paying he finds that the 
bil l is added up wrongly? Of course. Schank would answer that he could 
bui ld these normal ways restaurant-going breaks down into his script. 
But there are always abnormal ways everyday activities can break down : 
the juke box might be too noisy , there might be too many flies on the 
counter, or as in the film A nn ie Hall, in a New York delicatessen one's 
girl friend might order a pastrami sandwich on white bread with mayon
naise. When we understand going to a restaurant we understand how to 
cope with even these abnormal possibilities because going to a restaurant 
is part of our everyday activities of going into buildings, getting things 
we want, interacting with people, etc. 

To deal with this sort of objection Schank has added some general 
rules for coping with unexpected disruptions. The general idea is that in 
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a story "it is usual for non-standard occurrences to be explicitly men
tioned" 10 1 so the program can spot the abnormal events and understand 
the subsequent events as ways of coping with them. But here we can see 
that dealing with stories allows Schank to bypass the basic problem, since 
it is the author's understanding of the situation which enables him to 
decide which events are disruptive enough to mention. 

This ad hoc way of dealing with the abnormal can always be revealed 
by asking further questions, for the program has not understood a restau
rant story the way people in our culture do, until it can answer such 
simple questions as: When the waitress came to the table did she wear 
clothes? Did she walk forward or backward? Did the customer eat his 
food with his mouth or his ear? If the program answers, "I don't know," 
we feel that all of its right answers were tricks or lucky guesses and that 
it has not understood anything of our everyday restaurant behavior. 102 • 
The point here, and throughout, is not that there are subtle things human 
beings can do and recognize which are beyond the low-level understand
ing of present programs, but that in any area there are simple taken-for
granted responses central to human understanding, lacking which a 
computer program cannot be said to have any understanding at all. 

Schank's claim, then, that "the paths of a script are the possibilities 
that are extant in a situation" 1 03 is insidiously misleading. Either it means 
that the script accounts for the possibilities in the restaurant game 
defined by Schank, in which case it is true but uninteresting; or he is 
claiming that he can account for the possibilities in an everyday restau
rant situation which is impressive but, by Schank's own admission, false. 

Real short stories pose a further problem for Schank's approach. In 
a script what the primitive actions and facts are is determined before
hand, but in a short story what counts as the relevant facts depends on 
the story itself For example, a story which describes a bus trip contains 
in i ts script that the passenger thanks the driver (a Schank example). But 
the fact that the passenger thanked the driver would not be important 
in a story in which the passenger simply took the bus as a part of a longer 
journey, while it might be crucially important if the story concerned a 
misanthrope who had never thanked anyone before, or a very law
abiding young man who had courageously broken the prohibition against 
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speaking to drivers in order to speak to the attractive woman driving the 
bus. Overlooking this point, Schank c laimed at a recent meeting that his 
program which can extract death statistics from newspaper accident 
reports had answered my challenge that a computer would count as 
intel ligent only if it could summarize a short story . 1 04  But Schank's  
newspaper program cannot provide a clue concerning judgments of what 
to include in a story summary because it works only where relevance and 
significance have been predetermined, and thereby avoids dealing with 
the world built up in a story in terms of which judgments of relevance 
and importance are made. 

Another way to see that script analysis of story understanding leaves 
out something essential is to consider the question: I n  reading a story 
how do we cal l  up the appropriate script? In discussing this question 
Schank points out : 

. . .  While the restaurant script can be a subpart of a larger script (such as $TRIP) 
[In Schank's notation the dollar sign indicates a script . ]  i t  must he marked as not 
being capable of being subsumed by $DELIVERY. 1 0

' 

But this "solution" raises the problem of negative i nformation which 
dogs a proposal l ike Schank's .  It seems implausible to suppose that one 
could mark the restaurant script as not subsumed under such other 
scripts as making a phone call ,  answering a cal l for help, retrieving a lost 
object, looking for a job, getting signatures for a petition, repairing 
equipment, coming to work, doing an inspection, leaving a bomb, arrang
ing a banquet, collecting for the Mafia, looking for change for the meter, 
buying cigarettes, hiding from the police, etc . ,  etc . ,  which might l ead one 
to enter a restaurant without intending to eat. It would be more manage
able to write a program which, whenever someone in a story enters a 
restaurant, follows the restaurant script unti l the understander's expecta
tions fail to be fulfilled. Presumably because he thinks of his programs 
as having psychological reality, Schank neglects this alternative, and on 
this point he is right. Normal ly in reading a story we do not suppose that 
a person who enters a restaurant for a purpose that does not involve 
eating is preparing to eat; so we do not have to be jolted out of this 
hypothesis by the fact that the waitress does not bring him a menu. But 
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Schank's proposal leaves completely unanswered the problem of how we 
do choose the right script. 

Schank's latest book does have some interesting ideas about how to go 
beyond scripts, since he readily admits that much of our everyday activi
ties is not scripted. He introduces "plans" as our way of dealing with 
stories about situations which don't have fixed scripts. And he points out 
that plans are made up of subplans or planboxes, which are useful in 
many situations. For example, 

one kind of instrumental goal is a general building block in many planning 
processes. In a plan for satisfying hunger, one of the crucial steps is to go to where 
food is .  Going to an intended location is a very general process, useful in all sorts 
of specific plans. 1 06 

Thus a planbox is used whenever no script is available. I f  a planbox is used often 
enough, i t  will generate a script that eliminates the need for the planbox as long 
as the surrounding context stays the same. 1 01 

But here the persistent problem of recognizing similarity again arises. 
How can we tell whether the surrounding context is the same? It won't 
be identical , and Schank gives us no theory of how to recognize contexts 
as similar. 

Finally, Schank has to deal with the short-term goals which motivate 
everyday plans, the long range goals which generate the short term ones, 
and the life themes, in terms of which people organize their goal-oriented 
activities 

. . . The expectations that we generate from themes are an important part of 
understanding stori es because they generate the goals that generate the plans that 
we expect to be carried out. 1 08 

Here Schank has to face the important way desires, emotions, and a 
person's interpretation of what it means to be a human being open up 
endless possibilities for human life. If the themes which organize our 
lives turn out to be unprogrammable Schank is in trouble and so is all 
of Al. But Schank again imperturbably uses his engineering approach 
and starts making lists of life themes. This leads to what would seem to 
be an in-principle problem: 
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Because life themes are continuous goal generators, it is not really possible to  
delimit a set of possible life themes. There are as many life themes as there are 
possible long term goals. 1 09 

But Schank passes over this difficulty, as he does all others, by stipulating 
a few more ad hoc primitives . 

. . . As understanders we attempt to type people we hear about in terms of one 
of our standard life themes. As we hear of differences from the normal t ype we 
create a private life theme for the individual we are hearing about .  The infinit y  
of possible life themes comes from this possibility  of the unique combinat ion of 
goals for any individual. What makes life themes manage.able is that the number 
of life theme types is small (six) and the number of standard life themes within 
those typings is a t ractable size (say 10 to 50 for each type) . 1 1 0 

If these primitives don't account for our understanding of the variety of 
possible human l ives, Schank is ready. as always, to add a few more. 

Nothing could ever call into question Schank's  basic assumption that 
all human practice and know-how is represented in the mind as a system 
of beliefs constructed from context-free primitive actions and facts, but 
there are signs of trouble. Schank does admit that an individual's · ·bel ief 
system" cannot be fully elicited from him: although he never doubts that 
it exists and that it could in princ iple be represented in his formalism. 
He is therefore led to the desperate idea of a program which could learn 
about everything from restaurants to l ife themes the way people do. In 
a recent paper he concludes : 

We hope to be able to build a program that can learn, as a child does, how to 
do what we have described in this paper instead of being spoon-fed the t remen
dous information necessary . In order to do this it might be necessary to await 
an effect ive automatic hand-eye system and an image processor. 1 1 1  

For Schank's ad hoc approach there is no way of ever facing an interest
ing failure, but the fact that robot makers such as Raphael report that 
progress in their area must await an adequate scheme for knowledge 
representation, and that those like Schank who hope to provide such 
representation systems finally fall back on robots as a means for acquir
ing them, suggests that the field is in a loop--the computer world's 
conception of a crisis. 
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In any case, Schank's  appeal to learning is at best another evasion. 
Developmental psychology has shown that children's learning does not 
consist merely in acquiring more and more information about specific 
routine situations by adding new primitives and combining old ones as 
Schank's view would lead one to expect . Rather learning of specific 
details takes place on a background of shared practices which seem to 
be picked up in everyday interactions not as facts and beliefs but as bodily 
skills for coping with the world. Any learning presupposes this back
ground of implicit know-how which gives significance to details. Since 
Schank admits that he cannot see how this background can be made 
explicit so as to be given to a computer, and s ince the background is 
presupposed for the k ind of script learning Schank has in mind, it seems 
that his project of using preanalyzed primitives to capture commonsense 
understanding is doomed. 

A more plausible, even if  in the last analysis perhaps no more promis
ing, approach would be to use the new theoretical power of frames or 
stereotypes to dispense with the need to preanalyze everyday situations 
in terms of a set of primitive features whose relevance is independent of 
context. This approach starts with the recognition that in everyday 
communication " 'Meaning' is multi -dimensional, formalizable only in 
terms of the entire complex of goals and knowledge [ of the world] being 
applied by both the producer and understander."  1 1 2 This knowledge, of 
course, i s  assumed to be "A body of specific beliefs (expressed as symbol 
structures . . . ) making up the person's 'model of the world'. " 1 1 3  Given 
these assumptions Terry Winograd and his co-workers are developing a 
new knowledge representation language (KRL), which they hope will 
enable programmers to capture these beliefs in symbolic descriptions of 
multidimensional prototypical objects whose relevant aspects are a func
tion of their context. 

Prototypes would be structured so that any sort of description 
from. proper names to procedures for recognizing an example could 
be used to fill in any one of the nodes or slots that are attached to a 
prototype. This allows representations to be defined in terms of each 
other, and results in what the author calls "a wholistic as opposed to 
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reductionistic view of representation." 1 1
4 For example, since any de

scription could be part of any other, chairs could be described as 
having aspects such as seats and backs, and seats and backs in tum 
could be described in terms of their function in  chairs .  Furthermore, 
each prototypical object or situation could be described from many 
different perspectives. Thus nothing need be defined in terms of its 
necessary and sufficient features in the way Winston and t raditional 
philosophers have proposed, but rather, following Rosch's research 
on prototypes, objects would be classified as more or less resembling 
certain prototypical descriptions. 

Winograd i l lustrates this idea using the t raditional philosophers' fa
vorite example: 

The word "bachelor" has been used in  many discussions of semantics, s ince (save 
for obscure meanings involving aquatic mammals and medieval chivalry) i t  
seems to have a formally t ractable meaning which can be paraphrased "an adult  
human male who has never been married" . . . .  I n  the realist ic use of the word, 
there are many problems which are not as simply stated and formalized. Con
sider the following exchange: 

Host : I'm having a big party next weekend. Do you know any n ice bachelors 
I could invite? 
Friend : Yes, I know this fel low X . . . .  

The problem is to decide, given the facts below, for which values of X the 
response would be a reasonable answer in  l ight of the normal meaning of the 
word "bachelor" . A simple test is to ask for which ones the host might fairly 
complain "You lied. You said X was a bachelor. " :  

A :  Arthur has been l iving happily with Al ice for  the last five years. They have 
a two year old daughter and have never official ly marri ed. 

B :  Bruce was going to be drafted ,  so he arranged with his friend Barbara to 
have a justice of the peace marry them so he would be exempt . They have never 
l ived together. He dates a number of women, and plans to have the marriage 
annul led as soon as he finds someone he wants to marry. 

C: Charlie is 1 7  years old. He l ives at home with his parents and is in h igh 
school . 

D: David is 1 7  years old. He left home at 1 3 , started a smal l business, and is  
now a successful young entrepreneur leading a playboy's l ife style i n  h is  pent
house apartment .  
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E: Eli and Edgar are homosexual lovers who have been living together for 
many years. 

F: Faisal is allowed by the law of his native Abu Dhabi to have three wives. 
He currently has two and is interested in meeting another potential fiancee. 

G: Father Gregory is the bishop of the Catholic cathedral at Groton upon 
Thames. 

(This] cast of characters could be extended indefinitely, and in each case there 
are problems in deciding whether the word "bachelor" could appropriately be 
applied. In  normal use, a word does not convey a clearly definable combination 
of primitive propositions, but evokes an exemplar which possesses a number of 
properties. This exemplar is not a specific individual in the experience of the 
language user, but is more abstract, representing a conflation of typical proper
ties. A prototypical bachelor can be described as: 

I .  a person 
2 .  a male 
3. an adult 
4. not currently officially married 
5. not in a marriage-l ike J iving situation 
6. potentially marriageable 
7 .  leading a bachelor-like life style 
8 .  not having been married previously 
9. having an intention, at least temporarily, not to marry 

1 0  . . . .  

Each of the men described above fits some but not all of these characteriza
tions. Except for narrow legalistic contexts, there is no significant sense in which 
a subset of the characteristics can be singled out as the "central meaning" of the 
word. In fact, among native English speakers there is little agreement about 
whether someone who has been previously married can properly be called a 
"bachelor" and fairly good agreement that it should not apply to someone who 
is not potentially marriageable (e.g . has taken a vow of celibacy). 

Not only is this list [of properties] open-ended, but the individual terms are 
themselves not definable in terms of primitive notions. In reducing the meaning 
of 'bachelor' to a formula involving 'adult' or 'potentially marriageable', one is 
led into de�cribing these in terms of exemplars as wel l .  'Adult '  cannot be defined 
in terms of years of age for any but technical legal purposes and in fact even in 
this restricted sense, it is defined differently for different aspects of the law. 
Phrases such as 'marriage-like living situation' and 'bachelor-like life style' reflect 
directly in their syntactic form the intention to convey stereotyped exemplars 
rather than formal definitions. 1 1 5 



Introd uction to the Rev ised Ed ition I 50 

Obviously if KRL succeeds in enabling A I researchers to use such 
prototypes to write flexible programs, such a language wil l  be a major 
breakthrough and wil l  avoid the ad hoc character of the ··solut ions . . 
typical of micro-world programs. Indeed, the future of Al depends on 
some such work as that begun with the development of KRL But there 
are problems with this approach .  Winograd's analysis has the important 
consequence that in  comparing two prototypes, what counts  as a match 
and thus what counts as the relevant aspects which j ustify t he match wil l 
be a result of the program's understanding of the current con text . 

The resul t  of a matching process is not a s imple t rue/false answer .  I t  can be 

stated i n  i ts  most general form as: "Given the  set of al t emat i \' es which I am 

current ly  considering . . .  and looking in  order at t h(,.._e ... cored st ruc tu res wh JCh 

are most accessible i n  t he current  contexr. here is  t he heq match .  here i s  t he 

degree to which i t  seems to hold.  and here are t he srec ific  deta i l ed places where 

match was not found . . . .  " 

The select ion of t he order i n  wh ich sub-st ruct ures (if the desc ri pt icin w i l l  he 

compared is a funct ion of t hei r current  accessibi l i t y .  wh ich  derends hoth  cin t he 

form in which t hey are stored and t he currcn r conft •xr. ; 1
� 

This r ..1ises four increasingly grave difficult ies. First . for there to he · ·a 
class of cogni t ive ·matching·  processes which operate on the descrip t ions 
(symbol st ruct ures) avai lable for two ent i t ies. l<.)oking for correspon
dences and differences .. 1 1  

• t here must he a fin i te  set of protot ypes to he 
matched .  To take Winograd 's example : 

A single object or C\'en t can he descrihed w i t h  re ... pec t to  "e'"eral prot1.,t y pe'-. w i t h 

furt her speci ficat ions from the rerspect i \'e of each .  The fa1.:t that )a.,_t week R usty 

Jl<'w to San Francisco wnuld he expres ... ed hy desc rihmg the eH·nt a" a t ypical  

ins tance of Tra vel with the mode spec i fied as . ·t irp!une. dest i na th,n San Fran

cisco. e tc .  I t  m igh t  a lso he  described as  a J "isit wi th  t he aL· tor heing  R usty. t he 

friends a part icula r group of people. t he i n t erac t ion warm.  ct c . 1 1
' 

But etc. covers what might .  wit hout pred igest ion for a specific purpose, 
be a hopeless proliferat ion.  The same flight might also be a t est fligh t .  
a check of  crew performance, a stopover, a mistake. a golden opport u
nity,  not to ment ion a vis i t  to  brother, sister, thesis adviser, guru ,  etc . ,  
etc . ,  etc. Before the program can funct ion a t  a l l  the total set of  possible 
alternatives must be pre-selected by the programmer. 
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Second, the matching makes sense only after the current candidates 
for comparison have been found. In  chess, for example, positions can be 
compared only after the chess master cal ls to mind past positions the 
current board positions might plausibly resemble. And, as we saw in the 
chess case, the discovery of the relevant candidates which makes the 
matching of aspects possible requires experience and intuitive associa
tion . 

We saw also, in both the chess and the robot cases, that the discovery 
of this prior similarity seems to point to some entirely different sort of 
processing than symbolic description-perhaps the sort of processing 
provided by some brain equivalent of holograms in which similarity is 
basic. The only way a K RL-based program (which must use symbolic 
descriptions) could proceed would be to guess some frame on the basis 
of what was already "understood" by the program, and then see if that 
frame's features could be matched to some current description . If  not, 
the program would have to backtrack and try another prototype until 
it found one into whose slots or default terminals the incoming data 
could be fitted. This seems an altogether implausible and inefficient 
model of how we perform, and only rarely occurs in our conscious life 
(see p. 248 of this book for a Husserlian discussion of this problem) . Of 
course, cognitive scientists could answer the above objection by main
taining, in spite of the implausibility, that we try out the various proto
types very quickly and are simply not aware of the frantic shuffling of 
hypotheses going on in our unconscious. But, in fact, most would agree 
with Winograd that at present the frame selection problem is unsolved. 

The problem of choosing the frames to try is another very open area. There is 
a selection problem, since we cannot take all of our possible frames for different 
kinds of events and match them against what is going on. 1 1 9 

There is, moreover, a third and more basic question which may pose 
an in-principle problem for any formal holistic account in which the 
significance of any fact, indeed what counts as a fact, always depends on 
context. Winograd stresses the critical importance of context : 

The results of human reasoning are context dependent. the structure of memory 
includes not only the long-term storage organization (what do I know?) but also 
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a current context (what is in focus at the moment?). We believe that this is an 
important feature of human thought ,  not an inconvenient limi tation. i :o 

He further notes that "the problem is to find a formal way of talking 
about . . .  current attention focus and goals . . . .  " 1 2 1  Yet he gives no formal 
account of how a computer program written in KRL could determine 
the current context. 

Winograd's work does contain suggestive claims such as his remark 
that "the procedural approach formalizes notions such as 'current con
text' . . .  and 'attention focus' in terms of the processes by which cognit ive 
state changes as a person comprehends or produces utterances. " 1

= = There 
are also occasional parenthetical references to .. current goals, focus of 
attention, set of words recently heard, etc . "  i : -1  But reference to recent 
words has proven useless as a way of determining what the current 
context is, and reference to current goals and focus of at tent ion is vague 
and perhaps even quest ion-begging. If a human being's current goal is. 
say, to find a chair to sit on , his current focus might be on recognizing 
whether he is in a l iving room or a warehouse. He will also have short 
range goals like finding the wal ls, longer-range goals l ike finding the light 
switch, middle-range goals like wanting to write or rest : and what counts 
as sat isfying these goals will in turn depend on his ult imate goals and 
interpretation of himself as, say. a writer, or merely as easi ly exhausted 
and deserving comfort. So Winograd's appeal to "current goals and 
focus" covers too much to be useful in determining what specific situa
tion the program is in. 

To be consistent ,  Winograd would have to treat each type of situat ion 
the computer could be in as an object with its prototypical description; 
then in recognizing a specific si tuat ion. the situat ion or context ih which 
that situation was encountered would determine which foci ,  goals, etc .  
were relevant .  But where would such a regress stop? Human beings, of 
course, don' t  have this problem. They are, as Heidegger puts i t ,  already 
in a situation, which they constantly revise. If we look at it genetically, 
this is no mystery. We can see that human beings are gradually t rained 
into thei r cultural situation on the basis of their embodied precultural 
situation, in a way no programmer using KRL is trying to capture. But 
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for this very reason a program in KRL is not always-already-in-a-situa
tion. Even if it represents all human knowledge in its stereotypes, includ
ing all possible types of human situations, it represents them from the 
outside like a Martian or a god. It isn't situated in any one of them, and 
it may be impossible to program it to behave as if it were. 

This leads to my fourth and final question: Is the know-how which 
enables human beings constantly to sense what specific situation they 
are in, the sort of know-how which can be represented as a kind of 
knowledge in any knowledge representation language no matter how 
ingenious and complex? It seems that our sense of our situation is 
determined by our changing moods, by our current concerns and 
projects, by our long-range self-interpretation and probably also by 
our sensory-motor skills for coping with objects and people-skills 
we develop by practice without ever having to represent to ourselves 
our body as an object, our culture as a set of beliefs, and our propen-

sities as situation -. action rules. All these uniquely human capacities 
provide a "richness"  or a "thickness"  to our way of being-in-the-world 
and thus seem to p lay an es sential role in s ituatedness , which in turn 
underlies al l intel l igent behavior. 

There is no reason to suppose that moods, mattering, and embodied 
skills can be captured in any formal web of belief, and except for Kenneth 
Colby, whose view is not accepted by the rest of the AI community, no 
current work assumes that they can. Rather, all AI workers and cogni
tive psychologists are committed, more or less lucidly, to the view that 
such noncognitive aspects of the mind can simply be ignored. This belief 
that a significant part of what counts as intelligent behavior can be 
captured in purely cognitive structures defines cognitive science and is 
a version of what, in Chapter 4, I call the psychological assumption. 
Winograd makes it explicit :  

Al  is  the general study of those aspects of cogni tion which are common to all 
physical symbol systems, i ncluding humans and computers. 1 24 * 

But this definition merely delimits the field; it in no way shows there is 
anything to study, let alone guarantees the project's success. 

Seen in this light, Winograd's grounds for optimism contradict his 
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own basic assumptions. On the one hand, he sees that a lot of what goes 
on in human minds cannot be programmed, so he only hopes to program 
a significant part : 

[C]ognit ive science . . . does not rest on an assumption that the analysis of mind 
as a physical symbol system provides a complete understanding of human 

thought . . . .  For the paradigm to be of value, it is only necessary that there be 
some significant aspects of t hought and language which can be profitably under

stood through analogy with other symbol systems we know how to construct .  i : �  

On the other hand, he sees that human intelligence is  · ·wholist ic . . and 
that meaning depends on ' "the entire complex of goals and knowledge . · ·  
What our discussion suggests is that all aspects of human thought , 
including nonformal aspects like moods, sensory-motor skills. and long
range self-interpretations, are so interrelated that one cannot subst i tute 
an abstractible web of explicit beliefs for the whole cloth of our concrete 
everyday practices. 

What lends plausibility to the cognit ivist posit ion is the conviction that 
such a web of beliefs must finally fold back on it self and be complete, 
since we can know only a finite number of facts and procedures describ
able in a finite number of sentences. But since facts are descriminated and 
language is used only in a context , the argument that the web of belief 
must in principle be completely formalizable does not show that such a 
belief system can account for intelligent behavior. This would be t rue 
only if the context could also be captured in the web of facts and proce
dures. But if the context is determined by moods, concerns, and skills, 
then the fact that our beliefs can in principle be completely represented 
does not show that representations are sufficient to account for cogni t ion. 
Indeed, if nonrepresentable capacit ies play an essent ial role in  situated
ness, and the si tuat ion is presupposed by all intelligent behavior, then the 
"aspects of cognit ion which are common to all physical symbol systems" 
will not be able to account for any cogni tive performance at all. 

In the end the very idea of a holist ic information proc�ssing model i n  
which the relevance of the facts depends o n  the context may involve a 
contradiction . To recognize any context one must have already selected 
from the indefinite number of possibly descriminable features the possi-
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bly relevant ones, but such a selection can be made only after the context 
has already been recognized as similar to an already analyzed one. The 
holist thus faces a vicious circle :  relevance presupposes similarity and 
similarity presupposes relevance. The only way to avoid this loop is to 
be always-already-in-a-situation without representing it so that the prob
lem of the priority of context and features does not arise, or else to return 
to the reductionist project of preanalyzing all situations in terms of a 
fixed set of possibly relevant primitives-a project which has its own 
practical problems, as our analysis of Schank's work has shown, and, as 
we shall see in the conclusion, may have its own internal contradiction 
as well .  

Whether this is, indeed, an in-principle obstacle to Winograd's ap
proach only further research will tel l .  Winograd himself is admirably 
cautious in his claims: 

If t he procedural approach is successful, it will eventually be possible to 
describe the mechanisms at such a level of detail that there will be a verifiable 
fit with many aspects of detailed human performance . . .  but we are nowhere 
near having explanations which cover language processing as a whole, including 
meaning. 1 26 

If  problems do arise because of the necessity in any formalism of isolating 
beliefs from the rest of human activity, Winograd will no doubt have the 
courage to analyze and profit from the discovery . In the meantime 
everyone interested in the philosophical project of cognitive science will 
be watching to see if Winograd and company can produce a moodless, 
disembodied, concernless, already adult surrogate for our slowly ac
quired situated understanding. 

Concl usion 

Given the fundamental supposition of the information processing ap
proach that all that is relevant to intelligent behavior can be formalized 
in a structured description, all problems must appear to be merely prob
lems of complexity .  Bobrow and Winograd put this final faith very 
clearly at the end of their description of KRL: 
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The system is complex, and will continue to get more so in the near future . 
. . . [W]e do not expect that it will ever be reduced to a very small set of 
mechanisms. Human thought ,  we believe, is the product of the interaction of a 
fairly large set of interdependent processes. Any representat ion language which 
is to be used in modeling thought or achieving "intelligent" performance will 
have to have an extensive and varied repertoire of mechanisms. 1 2

' 

Underlying this mechanistic assumpt ion is an even deeper assumption 
which has gradually become clear during the past ten years of research .  
During th is  period AI researchers have consistently run up against the 
problem of representing everyday context, just as I predicted they would 
in  the first edition of this book. Work during the first  five years ( 1 96 7-
1 972) demonstrated the fut i lity of t rying to evade the importance of 
everyday context by creating art ificial gamelike contexts preanalyzed in 
terms of a list of fixed-relevance features. More recent work has thus been 
forced to deal directly with the background of commonsense know-how 
which guides our changing sense of what counts as the relevant facts .  
Faced with this necessity researchers have implici t ly t ried to t reat the 
broadest context or background as an object with its own set of prese
lected descriptive features. This assumption, that the background can be 
treated as just another object to be represented in the same sort of 
structured description in which everyday objects are represented, is es
sential to our whole phi losophical t radit ion . Fol lowing Heidegger, who 
is the first to have ident ified and cri t icized this assumption, I wil l  call i t 
the metaphysical assumpt ion . 

The obvious question to ask in conclusion is :  Is  there any evidence 
besides the persistent difficult ies and history of unfulfilled promises in  Al  
for believing that the metaphysical assumption i s  unjustified? It may be 
that no argument can be given against i t ,  since facts put forth to show 
that the background of practices is unrepresentable are in that very act 
shown to be the sort of facts which can be represented . Sti l l ,  s ince the 
value of this whole dialogue is to help each side to become as clear as 
possible concerning its presuppositions and their possible j ustification, I 
wil l attempt to lay out the argument which underlies my ant iformalist, 
and, therefore, antimechanist convictions. 

My thesis, which owes a lot to Wittgenstein ,  1 28 • i s  that whenever 
human behavior is analyzed in  terms of rules, these rules must always 
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contain a ceteris paribus condition, i.e. , they apply "everything else being 
equal,"  and what "everything else" and "equal" means in any specific 
situation can never be fully spelled out without a regress. Moreover, this 
ceteris paribus condition is not merely an annoyance which shows that 
the analysis is not yet complete and might be what Husserl called an 
"infinite task." Rather the ceteris paribus condition points to a back
ground of practices which are the condition of the possibility of all 
rulelike activity. In explaining our actions we must always sooner or later 
fall back on our everyday practices and simply say "this is what we do" 
or "that's what it is to be a human being. " Thus in the last analysis all 
intelligibility and all intelligent behavior must be traced back to our sense 
of what we are, which is, according to this argument, necessarily, on pain 
of regress, something we can never explicitly know. 

This argument can be best worked out in terms of an example. Back 
in 1972 when Minsky was working on the frame concept, one of his 
students, Eugene Charniak, was developing a scriptlike approach for 
dealing with children's stories. Papert and Goldstein provide a revealing 
analysis of this approach: 

. . .  [C]onsider the following story fragment from Charniak, 

Today was Jack's birthday. Penny and Janet went to the store. They were 
going to get presents. Janet decided to get a kite. "Don't do that," said Penny. 
"Jack has a kite. He will make you take it back."  

The goal is  to construct a theory that explains how the reader understands that 
"it " refers to the new kite, not the one Jack already owns. Purely syntactic 
criteria (such as assigning the referent of "it " to the last mentioned noun) a�e 
clearly inadequate, as the result  would be to mistakenly understand the last 
sentence of the story as meaning that Jack will make Janet take back the kite 
he already owns . . . .  [I]t is clear that one cannot know that "it " refers to the 
new kite without knowledge about the trading habits of our society. One could 
imagine a different world in which newly bought objects are never returned to 
the store, but old ones are. The question we raise here is how this knowledge 
might be represented, stored and made avai lable to the process of understanding 
Charniak's story . 1 2 9 

Their answer to this question is, of course, dictated by the metaphysi
cal assumption. They try to make the background of practices involved 
explicit as a set of beliefs :  
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Charniak's formal realizat ion of a frame was in  the form of base-knowledge 
about a large variety of situations that arise in the con text of these stories. The 
mechanism of his program was for the content of sentences to evoke this base 
knowledge with the following effect : demons ( "frame-keepers" i n  our ter
minology) were created to monitor the possible occurrence in later sentences of 
likely (but not inevitable) consequences of the given si tuat ion. Thus, for our story 
fragment the birthday knowledge creates expectat ions about the need for partici 
pants of the party to buy presents and the possible consequence of having to 
return these gifts. Hence, these demons expect the possibili ty  of J ack already 
possessing the present and the result ing need for Janet to return it. where it is 
known to be the present . 1 30 

But once games and micro-worlds are left behind, a yawning abyss 
threatens to swallow up those who try to carry out such a program. 
Papert and Goldstein march bravely in: 

. . .  But the story does not i nclude expl ici t ly  all important facts .  L0<.1k back 
at the story . Some readers will be surprised to note that the text i tself does 
not state (a) that the presents bought by Penny and Janet were for Jack. (b) 
that the [ki te] bought by Janet was intended as a present .  and (c) that hav
ing an object impl ies that one do�s not want another. All  of the abt·we facts 
are inserted into the database by other demons made aL"ti\ated by the birth
day frame. 1 1 1 

Our example turns on the question: How does one store the • •facts" 
mentioned in (c) above about returning presents? To begin with there are 
perhaps indefinitely many reasons for taking a present back .  It may be 
the wrong size, run on the wrong voltage. be carcinogenic ,  make too 
much noise, be considered too childish, too feminine, too masculine, too 
American, etc. , etc. And each of these facts requires further facts to be 
understood. But we will concentrate on the reason mentioned in (c) : that 
normally, i .e. , everything else being equal. if one has an object, one does 
not want another just like it. Of course, this cannot simply be entered 
as a true proposition. It does not hold for dollar bills, cookies, or marbles. 
(It is not clear it even holds for kites . )  Pa pert and Goldstein would 
answer that, of course, once we talk of the norm we must be prepared 
to deal with exceptions : 

[T]he typical situation in comprehension is to be faced with a set of clues that 
evoke a rich and detai led knowledge st ructure, the frame, that supplies the 
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unstated details. Naturally, these defaults may be inappropriate for some situa
tions and, in those cases, the text must supply the exceptions. 1

1 2 

But here the desperate hand waving begins , for the text need not 
explicitly mention the exceptions at al l . If the gift were marbles or cookies , 
the text surely would not mention that these were exceptions to the 
general rule that one of a kind is enough. So the data base would have 
to contain an account of all possible exceptions to augment the text-if 
it even makes sense to think of this as a definite list . Worse, even if one 
l isted al l  the exceptional cases where one would be glad to possess more 
than one specimen of a certain type of object, there are situations which 
allow an exception to this exception : already having one cookie is more 
than enough if the cookie in question is three feet in diameter; one 
thousand marbles is more than a normal child can handle, etc. Must we 
then list the situations which lead one to expect exceptions to the excep
tions?  But these exceptions too can be overridden in the case of, say , a 
cookie monster or a marble  freak , and so it goes . . . .  The computer 
programmer writing a story understander must try to list all possibly 
relevant information, and once that information contains appeals to the 
normal or typical there is no way to avoid an infinite regress of qualifica
tions for applying that knowledge to a specific situation. 

The only "answer" the M . I .T. group offers is the metaphysical as
sumption that the background of everyday life is a set of rigidly defined 
situations in which the relevant facts are as clear as in a game: 

The fundamental frame assumption is the thesis that . . .  [m]ost situations in 
which people find themselves have sufficient in common with previously encoun
tered situations for the salient  features to be pre-analyzed and stored in a situa

tion-specific form. 1 B 

But this "solution" is untenable for two reasons: 1 34 * 
1 .  Even if the current situation is, indeed, similar to a preanalyzed one, 

we sti l l  have the problem of deciding which situation it is similar to. We 
have already seen that even in games such as chess no two posi tions are 
likely to be identical so a deep understanding of what is going on is 
required to decide what counts as a similar position in any two games . 
This should be even more obvious in cases where the problem is to decide 
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which preanalyzed situation a given real-world situation most resembles, 
for example whether a situation where there are well-dressed babies and 
new toys being presented has more in common with a birthday party or 
a beauty contest. 

2. Even if all our l ives were l ived in identical stereotypical situations, 
we have just seen that any real-world frame must be described in terms 
of the normal, and that appeal to the normal necessarily leads to a regress 
when we try to characterize the conditions which determine the applica
bi lity of the norm to a specific case. Only our general sense of what is 
typical can decide here, and that background understanding by defini
tion cannot be "situation-specific. "  

This i s  the other horn of the dilemma facing the informat ion-process
ing model .  We have seen in discussing KRL that the holist ic approach 
leads to a circle as to which comes first , similarity or relevant aspects, 
now it turns out that the reductionist alternat ive leads to a regress. 

Sti l l ,  to this dilemma the Al researchers might plausibly respond: 
"Whatever the background of shared interests, feelings, and pract ices 
necessary for understanding specific sit uat ions, that knowledge m ust 
somehow be represented in the human beings who have that understand
ing. And how else could such knowledge be represented but in some 
explicit data structure?" Indeed, the kind of computer programming 
accepted by all workers in AI would require such a data structure, and 
so would philosophers who hold that all knowledge must be explicit ly 
represented in our minds, but there are two alternatives ,vhich would 
avoid the contradict ions inherent in the information-processing model 
by avoiding the idea that everything we know must be in the form of 
some explicit symbolic representat ion. 

One response, shared by existent ial phenomenologists such as Mer
leau-Ponty and ordinary language philosophers such as Wittgenstein,  is 
to say that such .. knowledge" of human interests and pract ices need not 
be represented at all .  Just as it seems plausible that I can learn to swim 
by pract icing until I develop the necessary patterns of responses, without 
representing my body and muscular movements in some data structure, 
so too what I .. know" about the cultural practices which enables me to 
recognize and act in specific situations has been gradually acquired 
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through training in which no one ever did or could, again on pain of 
regress, make explicit what was being learned. 

Another possible account would allow a place for representations, at 
least in special cases where I have to stop and reflect, but such a position 
would stress that these are usually nonformal representations, more like 
images, by means of which I explore what I am, not what I know. On 
this view I don't normally represent to myself that I have desires, or that 
standing up requires balance, or, to take an example from Schank's 
attempt to make explicit our interpersonal knowledge, that: 

[I]f two people are positively emotionally related, then a negative change in one 
person's state wil l  cause the other person to develop the goal of causing a positive 
change in the other's state. 1 3 5 

Sti l l ,  when it is helpful ,  I can picture myself in a specific situation and 
ask myself what would I do or how would I feel-if l were in Jack's place 
how would I react to being given a second kite-without having to make 
explicit all that a computer would have to be told to come to a similar 
conclusion. We thus appeal to concrete representations (images or 
memories) based on our own experience without having to make explicit 
the strict rules and their spelled out ceteris paribus conditions required 
by abstract symbolic representations. 

Indeed, it is hard to see how the subtle variety of ways things can 
matter to us could be exhaustively spelled out. We can anticipate and 
understand Jack's reaction because we remember what it feels like to be 
amused, amazed, incredulous, disappointed, disgruntled, saddened, an
noyed, disgusted, upset, angry, furious, outraged, etc . ,  and we recognize 
the impulses to action associated with these various degrees and kinds 
of concerns. A computer model would have to be given a description of 
each shade of feeling as wel l  as each feeling's normal occasion and likely 
result. 

The idea that feelings, memories, and images must be the conscious 
tip of an unconscious framelike data structure runs up against both 
prima facie evidence and the problem of explicating the ceteris paribus 
conditions. Moreover, the formalist assumption is not supported by one 
shred of scientific evidence from neurophysiology or psychology, or from 
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the past successes of AI, whose repeated failures required appeal to the 
metaphysical assumption in  the first place. 

Al's current difficulties, moreover, become intell igible in the light of 
this alternative view. The proposed formal representation of the back
ground of practices in  symbolic descriptions, whether in terms of situa
tion-free primitives or more sophist icated data structures whose building 
blocks can be descriptions of situations, would, indeed, look more and 
more complex and intractable if minds were not physical symbol sys
tems. If belief structures are the result of abstract ion from the concrete 
practical context rather than the true building blocks of our world, i t  is 
no wonder the formalist finds himself stuck with the view that they are 
endlessly explicatable. On my view .. the organization of world knowl
edge provides the largest stumbling block" Po to Al precisely because the 
programmer is forced to treat the world as an object, and our know-how 
as knowledge. 

But this metaphysical assumpt ion definit ive of cognit ive science is 
never questioned by its practit ioners. John McCarthy notes that .. it is 
quite difficult to formalize the facts of common knowledge, . . in but he 
never doubts that common knowledge can be accounted for in terms of 
facts. 

The epistemological part of AI studies what kinds of faces about t he world are 
available to an observer with given opportunit ies to observe, how these facts can 
be represented in the memory of a computer, and what rules permit  legi t imate 
conclusions to be drawn from these facts. 1 1 s 

When AI workers finally face and analyze their failures it might well be 
this metaphysical assumption that they wil l find they have to reject . 

Looking back over the past ten years of AI research we might say that 
the basic point which has emerged is that since intelligence m ust be 
situated it cannot be separated from the rest of h uman life. The persistent 
denial of this seemingly obvious point cannot, however, be laid at the 
door of Al .  It starts with Plato's separation of the intellect or rational 
soul from the body with its skil ls, emotions, and appeti tes. Aristotle 
continued this unlikely dichotomy when he separated the theoretical 
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from the practical , and defined man as a rational animal-as if one could 
separate man's rationality from his animal needs and desires. If one 
thinks of the importance of the sensory-motor skills in the development 
of our ability to recognize and cope with objects, or of the role of needs 
and desires in structuring all social situations, or finally of the whole 
cultural background of human self-interpretation involved in our simply 
knowing how to pick out and use chairs, the idea that we can simply 
ignore this know-how while formalizing our intellectual understanding 
as a complex system of facts and rules is highly implausible. 

However incredible, this dubious dichotomy now pervades our think
ing about everything including computers. In the Star Trek TV series, 
the episode entitled "The Return of the Archons" tells of a wise states
man named Landru who programmed a computer to run a society. 
Unfortunately, he could give the computer only his abstract intelligence, 
not his concrete wisdom, so it turned the society into a rational plannified 
hell .  No one stops to wonder how, without Landru's embodied skills, 
feelings, and concerns, the computer could understand everyday situa
tions and so run a society at all .  

In Computer Power and Human Reason, 1 3 9  Joseph Weizenbaum, a 
well-known contributor to work in Al (see pp. 2 18 ff.) makes this same 
mistake. Indeed, the radical separation of intel ligence and wisdom is the 
basic assumption which seems to support but actually undermines the 
thesis of his otherwise eloquent book. Weizenbaum warns that we de
mean ourselves if we come to think of human beings on the AI  model 
as devices for solving technical problems. But to make the argument that 
we are not such devices he embraces the very dichotomy which gives 
plausibility to AI .  Weizenbaum argues, for example, that since a com
puter cannot understand loneliness it cannot fully understand the sen
tence " 'Will you come to dinner with me this evening' . . . to mean a 
shy young man's desperate longing for love" 1 40* (a point which workers 
in Al would readily admit), while at the same time Weizenbaum grants 
the dubious AI  assumption that "it may be possible, following Schank's 
procedures, to construct a conceptual structure that corresponds to the 
meaning of the sentence. " 1 4 1  Stressing these extremes of emphathetic 
wisdom and formalized meaning leads Weizenbaum to overlook the 
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essential point that all meaningful discourse must take place in a shared 
context of concerns. 

Ironically, Weizenbaum was the first major contributor to Al to recog-
nize the essential relation of meaning and pragmatic context. As he put 
it in 1968 :  "[I]n real conversation global context assigns meaning to what 
is being said . . . .  " 142  But once he overlooks this essential connection there 
is no way he can resist the conclusions of his Al colleagues. Thus, in spite 
of his well-documented claim that each culture has what Justice Oliver 
W. Holmes called its "tacit assumptions" and "unwritten practic�" 1

•
3 

and his commitment to the strong thesis argued for in this book that 
these practices "cannot be explicated in any form but life itself, " 1 « •  

Weizenbaum, l ike Minsky, concludes: "I see no way to put a bound on 
the degree of intelligence such an organism [i .e . , a computer] could, at 
least in principle attain ."  1 4 5  

This surprising admission can be explained only if Weizenbaum holds 
the AI view that the unexplicatable assumptions and unwritten practices 
of a culture play no essential role in the intelligent behavior of its mem
bers. Indeed, at times Weizenbaum seems to embrace the most implausi
ble implications of this implausible view, viz. , that these tacit assump
tions and practices play no role in everyday linguistic communication, 
for he concedes that: 

It is technically feasible to build a computer system that will interview patients 
applying for help at a psychiatric out-patient clinic and will produce their psychi

atric profiles complete with charts, graphs, and natural-language commentary . 1 "' 

Consistent with this view that intelligence and natural language com
munication-as distinct from intuition and wisdom-are in-principle 
completely formalizable, Weizenbaum further allows that : 

. .  the view of man as a species of the more general genus .. information

processing system" does concentrate our attention on one aspect of man . . . . 1 4 7 • 

He calls to aid in justifying this claim the latest "scientific" version of 
the Platonic dichotomy-the split brain. This is a natural association, 
since pop literature on the split brain seems to support the science-fiction 
illusion of the separation of intuition and pure intelligence. As Weizen
baum explains it: 
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The LH [Left Hemisphere] thinks, so to speak, in an orderly, sequential, and, 
we might cal l  i t ,  logical  fashion. The RH [Right Hemisphere] , on the other hand, 
appears to think in terms of holistic images. Language processing appears to be 
almost exclusively centered in the LH . . . .  1 4 8  

Here again linguistic capacity is isolated and equated with context-free 
logicality, forgetting, what Weizenbaum was the first AI worker to see, 
that when language is used in communication (and the Left Hemisphere 
alone is perfectly able to use language to communicate), . .  a global [holis
tic] context assigns meaning to what is being said . . . . " 1 4 9 

After these damaging admissions Weizenbaum is left with only the 
moralistic position that "however intelligent machines may be made to 
be, there are some acts of thought that ought to be attempted only by 
humans. " 1 50* This stricture presumably follows from the notion that 
although the background of cultural practices plays no essential role in 
intelligent behavior, including everyday conversation, it does play a role 
in the wisdom required in making sound legal decisions and psychiatric 
evaluations-although even here Weizenbaum is wary of making any 
in-principle claim. And he has good reason for caution, since once every
day activity has been admitted to be a technical problem amenable to the 
powers of pure formal intelligence it is impossible to draw a line limiting 
what computers may ultimately be able to do. All Weizenbaum has left 
is the high-minded platitude that "since we do not now have any ways 
of making computers wise, we ought not now to give computers tasks 
which demand wisdom." 1 5 1 * 

From the perspective we have been laying out here the real problem 
is that Weizenbaum accepts the metaphysical assumption that whatever 
is required for everyday intelligence can be objectified and represented 
in a belief system. Whether this assumption takes the form of the deep 
philosophical claim that goes back to Leibniz and is still made by Husserl 
that the perceptions and practices required for situated intelligence can 
all be represented in a symbolic description, or the shallow technological 
view, shared by Weizenbaum and the "artificial intelligentsia" he op
poses, that everyday understanding and natural language communica
tion does not essentially involve our embodied, socialized skills, this 
assumption distorts our perception of our humanity . 

Great artists have always sensed the truth, stubbornly denied by both 
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philosophers and technologists, that the basis of human intelligence 
cannot be isolated and explicitly understood. I n  }Joby Dick Melville 
writes of the tattooed savage, Queequeg, that he had "written out on h is 
body a complete theory of the heavens and the earth, and a mystical 
treatise on the art of attaining truth; so that Queequeg in his own proper 
person was a riddle to unfold; a wondrous work in one volume; but 
whose mysteries not even himself could read . . . .  " 1 5

� Yeats puts it even 
more succinctly: "I have found what I wanted-to put it in a phrase, I 
say, 'Man can embody the truth, but he cannot know it' . · · 

Hubert L. Dreyfus 
1 979 



Introduction 

Since the Greeks invented logic and geometry, the idea that all reasoning 
might be reduced to some kind of calculation-so that all arguments 
could be settled once and for all-has fascinated most of the Western 
tradition's rigorous thinkers. Socrates was the first to give voice to this 
vision. The story of artificial intelligence might well begin around 450 
B.C.  when (according to Plato) Socrates demands of Euthyphro, a fellow 
Athenian who, in the name of piety, is about to turn in his own father 
for murder: "I want to know what is characteristic of piety which makes 
all actions pious . . .  that I may have it to turn to, and to use as a standard 
whereby to· judge your actions and those of other men. " 1 § Socrates is 
asking Euthyphro for what modern computer theorists would call an 
"effective procedure, "  "a set of rules which tells us, from moment to 
moment, precisely how to behave. " 2 

Plato generalized this demand for moral certainty into an epistemolog
ical demand. According to Plato, all knowledge must be stateable in 
explicit definitions which anyone could apply. If one could not state his 
know-how in terms of such explicit instructions-if his knowing how 

§Notes begin on p. 307 . [Ci tat ions are ind ica ted by a superior figure. Substan t i ve notes 
a re ind icated by a superior figure and an astersi k . ]  
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could not be converted into knowing tha t-i t was not knowledge but 
mere belief. According to Plato, cooks, for example, who proceed by 
taste and intuition, and poets who work from inspiration, ha\'e no knowl
edge: what they do does not involve understanding and cannot be under
stood. More generally, what cannot be stated explicitly in precise 
instructions-all areas of human thought which require skill. intuition. 
or a sense of t radition-are relegated to some kind of arbit rary fum
bling. 

But Plato was not yet fully a cyberneticist (although according to  
Norbert Wiener he was the first to use the term). for Plato was looking 
for seman tic rather than syn tactic c riteria. His rules presupposed that 
the person understood the meanings of the constituti\'e terms .  In the 
Republic Plato says that Understanding ( the rulelike le\'el of his di\'ided 
line representing all knowledge) depends on Reason. which in\'Ol\ 'es a 
dialectical analysis and ultimately an intuition of the meaning of the 
fundamental concepts used in understanding . Thus Plato  admits  his 
instructions cannot be completely formalized. Similarly . a modern com
puter expert , Marvin Minsky, notes.  after tentati\'ely presenting a Pla
tonic notion of effective procedure : .. This at tempt at definition is subject 
to the criticism that the in terpreta tion of the rules is left t l) depend on 
some person or agent. "  1 

Aristotle, who differed with Plato in this as in most quest ions concern
ing the application of theory to practice. noted with satisfaction that 
intuition was necessary to apply the Platonic rules : 

Yet it is not easy to find a formula hy which we may determine how far and u p  
t o  what point a m a n  may g o  w rong before he i ncurs hlame. But t h is d ifficu l ty  
of defi ni t ion is i nheren t i n  every object of percept ion;  �uch  quest ions of degrL--e 
are bound up wi th the c i rcumstances of the i nd iv idual case. where nur  nn ly  
criterion is the percept ion . �  

For the Platonic project to reach fulfillment one breakthrough is 
required : all appeal to intuition and judgment must be eliminated. As 
Galileo discovered that one could find a pure formalism for describing 
physical motion by ignoring secondary qualities and teleological consid
erations, so, one might suppose, a Galileo of human behavior might 
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succeed in reducing all semantic considerations (appeal to meanings) to 
the techniques of syntactic (formal) manipulation. 

The belief that such a total formalization of knowledge must be possi
ble soon came to dominate Western thought. It  already expressed a basic 
moral and intellectual demand, and the success of physical science 
seemed to imply to sixteenth-century philosophers, as it still seems to 
suggest to thinkers such as Minsky, that the demand could be satisfied. 
Hobbes was the first to make explicit the syntactic conception of thought 
as calculation : "When a man reasons, he does nothing else but conceive 
a sum total from addition of parcels," he wrote, "for REASON . . .  is 
nothing but reckoning . . . .  " 5 

I t  only remained to work out the univocal parcels or "bits" with which 
this purely syntactic calculator could operate; Leibniz, the inventor of 
the binary system, dedicated himself to working out the necessary unam
biguous formal language. 

Leibniz thought he had found a universal and exact system of nota
tion, an algebra, a symbolic language, a "universal characteristic" by 
means of which "we can assign to every object its determined character
istic number. "6 In this way all concepts could be analyzed into a small 
number of original and undefined ideas; all knowledge could be ex
pressed and brought together in one deductive system. On the basis of 
these numbers and the rules for their combination all problems could be 
solved and all controversies ended: "if someone would doubt my re
sults," Leibniz said, "I would say to him: 'Let us calculate, Sir,' and thus 
by taking pen and ink, we should settle the question . " 7 

Like a modern computer theorist announcing a program about to be 
written, Leibniz claims: 

Since, however, the wonderful interrelatedness of all things makes it ext remely 
difficul t  to formulate explici t ly  the characteristic numbers of individual things, 
I have invented an elegant artifice by virtue of which certain relations may be 
represented and fi xed numerical ly and which may thus then be further deter
m ined in numerical calculat ion. 8 

Nor was Leibniz reticent about the importance of his almost completed 
program. 
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Once the characteristic numbers are established for most concepts, mankind wi l l  
then possess a new instrument which wi l l  enhance the capabi l i t i es of  the mind 
to far greater extent than optical inst ruments strengthen the eyes, and wi l l  
supersede the microscope and telescope to the same extent  that reason i s  superior 
to eyesight .  9 

With this powerful new tool, the skills which Plato could not formal
i ze, and so treated as confused thrashing around, could be recuperated 
as theory. In one of his "grant proposals"-his explanat ions of how he 
could reduce all thought to the manipulat ion of numbers if he had money 
enough and time-Leibniz remarks :  

the  most important observations and  turns of  ski l l  i n  a l l  sorts of t rades and 
professions are as yet unwritten. This fact is proved by experience ,,·hen pass ing 
from theory to practice we desire to accomplish someth ing .  Of cou rse. Wt.' ca n 
also write up this practice. since it is a t  bottom just another rheory more complex 
and particular . . . .  1 0  

Leibn iz  had only promises, but in the work of George Boole , a math
ematician and logician working in the early nineteenth century , his 
program came one step nearer to reali t y .  Like Hobbes. Boole supposed 
that reasoning was calculat ing, and he set out to  . . in\'est i gate the funda
mental laws of those operat ions of the mind by which reasonin g  is 
performed, to give expression to them in the symbolic language of a 
Calculus . . . .  " 1 1  

Boolean algebra i s  a binary algebra for represent ing elementary logical 
functions. If . . a "  and . .  b . . represent variables, · • . "  represen ts . .  and," 
· •  + " represents . .  or, " and . . . . .  and . .  ff . represent . .  t rue" and . .  false" 
respectively , then the rules governing logical manipulat ion can be w ri t 
ten in algebraic form as  follows : 

a + a = a a + O = a a +  

a · a = a a - 0 = 0  a ·  a 

Western man was now ready to begin the calculat ion. 
Almost immediately , in  the designs of Charles Babbage ( 1 83 5 ) ,  prac

tice began to catch up to theory . Babbage designed what he called an 
.. Analytic Engine" which, though never built, was to funct ion exactly 
like a modern digital computer, using punched cards, combining logical 
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and arithmetic operations, and making logical decisions along the way 
based upon the results of its previous computations. 

An important feature of Babbage' s  machine was that it was digital. 
There are two fundamental types of computing machines : analogue and 
digital . Analogue com!)uters do not compute in the strict sense of the 
word. They operate by measuring the magnitude of physical quantities. 
Using physical quantities, such as voltage, duration, angle of rotation of 
a disk , and so forth , proportional to the quantity to be manipulated, they 
combine these quantities in a physical way and measure the result. A 
slide rule is a typical analogue computer. A digital computer-as the 
word digit, Latin for "finger," implies-represents all quantities by dis
crete states, for example, relays which are open or closed, a dial which 
can assume any one of ten positions , and so on, and then literally coun ts 

in order to get its result. 
Thus, whereas analogue computers operate with continuous quanti

ties, all digital computers are discrete state machines . As A .  M .  Turing, 
famous for defining the essence of a digital computer, puts it: 

[Discrete state mach ines] move by sudden jumps or c l i cks from one qui te defin i te  

state to another .  These states are sufficien t ly d ifferen t for the possibi l i t y of 

confusion between them to be ignored . St ri c t ly  speak ing there are no such 

mach ines .  Everyth ing  rea l l y  moves cont inuously .  But there are many k inds of 

machines which can profi tably be though t of as being d iscrete state mach ines . For 

i nstance in  consideri ng the swi tches for a l igh t ing system it is a conven ient fict ion 

that  each swi tch must be defin i te ly on or defini te ly off. There must be in termedi 

a te  pos i t ions; but for most  purposes we can forget about them . 1 2  

Babbage's ideas were too advanced for the technology of his time, for 
there was no quick efficient way to represent and manipulate the digits . 
He had to use awkward mechanical means, such as the position of 
cogwheels, to represent the discrete states . Electric switches, however, 
provided the necessary technological breakthrough . When , in 1 944, H. 
H. Aiken actually built the first practical digital computer, it was elec
tromechanical ,using about 3000 telephone relays .  These were still slow, 
however, and it was only with the next generation of computers using 
vacuum tubes that the modern electronic computer was ready . 

Ready for anything. For, since a digital computer operates with ab-
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stract symbols which can stand for anything, and logical operations 
which can relate anything to anything, any digital computer (unlike an 
analogue computer) is a universal machine. Firs t ,  as Turing puts it , it can 
simulate any other digital computer. 

This  special property of digital computers. that they can mimic any discrete state 
machine, i s  described by saying that they are un iversa l machines . The ex ist ence 
of machines with this property has the important  consequence that .  considera
tions of speed apart , i t  is unnecessary to design various new machi nes to  do 
various comput ing processes. They can all be done w i th  one digi ta l  computer. 
sui tably programmed for each case. It w i l l  be seen t hat as a con�equence of th is 
a l l  digital computers are in a sense equ ivalent . : '  

Second, and philosophically more significant . any process which can be 
formalized so that it can be represented as series of inst ruct ions for the 
manipulation of discrete elements. can. at least in principle. be repro
duced by such a machine. Thus even an analogue computer. provided 
that the relation of its input to its output can be described by a precise 
mathematical function, can be simulated on a digit al machine . ' 4 * 

But such machines might have remained overgrown adding machines. 
had not Plat.o's vision, refined by two thousand years nf met aphysics .  
found in them its fulfillment. At last here was a machine which operated 
according to syntactic rules, on hits of data .  Moreover, the rules were 
built into the circuits of the machine . Once the machine was pro
grammed there was no need for interpretation: no appeal to human 
intuition and judgment . This was just what Hobbes and Leibniz had 
ordered, and Martin Heidegger appropriately saw in cybernetics the 
culmination of the philosophical t radition. ' ' * 

Thus while practical men like Eckert and Mauchly , at the University 
of Pennsylvania, were designing the first elect ronic digital machine, theo
rists, such as Turing, trying to understand the essence and capacity of 
such machines, became interested in an area which had thus far been the 
province of philosophers : the nature of reason itself. 

In 1 950, Turing wrote an influential article, . .  Computing Machinery 
and Intelligence," in which he points out that . .  the present interest in 
·thinking machines' has been aroused by a particular kind of machine, 
usually called an 'electronic computer' or a 'digital computer. '  " I t> He 
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then takes up the question "Can [such] machines think?" 
To decide this question Turing proposes a test which he cal ls the 

imitation game: 

The new form of the problem can be described in terms of a game which we cal l  
the . .  imitation game." I t  is played with three people, a man (A) ,  a woman (B) ,  
and an interrogator (C) who may be of either sex .  The interrogator stays in a 

room apart from the other two. The object of the game for the interrogator is 
to determine which of the other two is the man and which is the woman. He 

knows them by labels X and Y, and at the end of the game he says ei ther "X 
is A and Y is  B" or ' 'X is B and Y is A."  The intP,rrogator is al lowed to put 
questions to A and B thus : 

C: Wil l X please tel l  me the length of his or her hair? Now suppose X is 
actual ly A, then A must answer. I t  is A 's object in the game to try to cause C 

to make the wrong identification. His answer might therefore be 
"My hair is shingled, and the longest strands are about nine inches long." 
In order that tones of voice may not help the interrogator the answers should 

be writ ten, or better stil l ,  typewritten. The ideal arrangement is to have a tele
printer communicating between the two rooms. A l ternatively, the question and 
answers can be repeated by an intermediary. The object of the game for the third 
player (B) is to help the interrogator. The best strategy for her is probably to give 
truthful answers. She can add such things as "I am the woman, don't listen to 
him!" to her answers, but it wil l avail nothing as the man can make similar 
remarks. 

We now ask the question, "What wil l happen when a machine takes the part 
of A in this game?" Wil l the interrogator decide wrongly as often when the game 
is played like this as he does when the game is played between a man and a 
woman? These questions replace our original ,  "Can machines think?" 1 7  

This test has become known as the Turing Test. Philosophers may 
doubt whether merely behavioral similarity could ever give adequate 
ground for the attribution of intel ligence, 1 8  but as a goal for those actual ly 
trying to construct thinking machines, and as a criterion for critics to use 
in evaluating their work, Turing's test was just what was needed. 

Of course, no digital computer immediately volunteered or was 
drafted for Turing's game. In spite of its speed, accuracy , and universal 
ity, the digital computer was sti l l  nothing more than a general -symbol 
manipulating device. The chips, however, were now down on the old 
Leibnizian bet. The time was ripe to produce the appropriate symbolism 
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and the detailed instructions by means of which the rules of reason could 
be incorporated in a computer program. Turing had grasped the possibil
ity and provided the criterion for success, but his article ended with only 
the sketchiest suggestions about what to do next :  

We may hope that machines wi l l  eventually compete with men i n  al l  purely 

intel lectual fields. But which are the best ones to start with? Even this is a difficult 

decision . Many people th ink that a very abstract act i vity.  l ike the playing of 

chess, would be best. I t  can also be maintained that i t  is best to provide the 

machine with the best sense organs that money can buy, and then teach it  to 

understand and speak Engl ish. This process could follow the normal teaching of 

a chi ld.  Things would be poin ted out and named ,  etc .  Again I do not know what 

the right answer is, but I think both approaches should be tried. 1 q 

A technique was still needed for finding the rules which thinkers from 
Plato to Turing assumed must exist-a technique for converting any 
practical activity such as playing chess or learning a language into the 
set of instructions Leibniz cal led a theory. Immediately, as if following 
Turing's hints, work got under way on chess and language. The same 
year Turing wrote his article, Claude E. Shannon. the inventor of infor
mation theory, wrote an article on chess-playing machines in which he 
discussed the options facing someone trying to program a digital com
puter to play chess. 

Invest igat ing one part icular l ine of play for 40 moves would be as bad as i nvesti 

gat ing al l  l i nes for just two moves. A suitable compromise would be to examine 

only the important possible variat ions-that is, forc ing moves, captures and 

main threats-and carry out the invest igat ion of the possible moves far enough 

to make the consequences of each fairly clear .  It is possible to set up some rough 

cri teria for select ing important variat ions, not as efficient ly  as a chess master, but 

sufficien t ly wel l to reduce the number of variations appreciably and thereby 

permit  a deeper invest igation of the moves actual ly considered. 20 

Shannon did not write a chess program, but he believed that "an elec
tronic computer programmed in this manner would play a fairly strong 
game at speeds comparable to human speeds. " 2 1  

In 1955 Allen Newell wrote a sober survey of the problems posed by 
the game of chess and suggestions as to how they might be met. Newell 
notes that "These [suggested] mechanisms are so complicated that it is 
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impossible to predict whether they will work . " 22  The next year, however, 
brought startling success. A group at Los Alamos produced a program 
which played poor but legal chess on a reduced board. In a review of this 
work, Allen Newell, J . C. Shaw, and H. A.  Simon concluded: "With very 
little in the way of complexity, we have at least entered the arena of 
human play-we can beat a beginner. " 2 3 And by 1 957, Alex Bern�tein 
had a program for the IBM 704 which played two "passable amateur 
games. " 24 

Meanwhile, Anthony Gettinger was working on the other Turing line. 
Having already in 1 952 programmed a machine which simulated simple 
conditioning, increasing or decreasing a set response on the basis of 
positive or negative reinforcement, Gettinger turned to the problem of 
language translation and programmed a Russian-English mechanical 
dictionary . Further research in these directions, it seemed, might lead to 
a computer which could be taught to associate words and objects. 

But neither of these approaches offered anything like a general theory 
of intelligent behavior. What was needed were rules for converting any 
sort of intelligent activity into a set of instructions. At this point Herbert 
Simon and Allen Newell, analyzing the way a student proceeded to solve 
logic problems, noted that their subjects tended to use rules or shortcuts 
which were not universally correct, but which often helped, even if they 
sometimes failed. Such a rule of thumb might be, for example: always 
try to substitute a shorter expression for a longer one. Simon and Newell 
decided to fry to simulate this practical intelligence. The term "heuristic 
program" was used to distinguish the resulting programs from programs 
which are guaranteed to work, so-called algorithmic programs which 
follow an exhaustive method to arrive at a solution, but which rapidly 
become unwieldy when dealing with practical problems. 

This notion of a rule of practice provided a breakthrough for those 
looking for a way to program computers to exhibit general problem
solving behavior. Something of the excitement of this new idea vibrates 
in the first paragraph of Newell, Shaw, and Simon's classic article "Em
pirical Explorations with the Logic Theory Machine: A Case Study in 
Heuristics. " 
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This is a case study in  problem-solving, represent ing part of a program of 
research on complex information-processing systems. We have specified a system 
for finding proofs of theorems i n  elementary symbolic logic. and by programming 
a computer to these specificat ions, have obtai ned empirical data on the problem
solv ing process in elementary logic. The program is cal led the Logic Theory 
Machine (LT); i t  was devised to l earn how i t  is possible to sol \'e d ifficul t  problems 
such as proving mathematical theorems, d iscovering scient ific  laws from data. 
playing chess, or understanding the mean ing of Engl ish prose . 

The research reported here is aimed at understanding the complex processes 
(heurist ics) that are effect ive i n  problem-solv ing. Hence. we are not in terested in  
methods that guarantee solut ions,  but  which require \'ast amounts of computa
t ion . Rather, we wish to understand how a mathemat ician . for exam ple. i s  able 
to prove a t heorem even though he does not know when he starts how. or i f, he 
is going  to succeed . 2 5  

But Newell and Simon soon realized that even this approach was not 
general enough. The following year ( 1 957)  they sought to abst ract the 
heuristics used in the logic machine, and apply them to a range of similar 
problems. This gave rise to a program called the General Problem Solver 
or GPS. The motivation and orien tation of the work on the General 
Problem Solver are explained in Newell, Shaw, and Simon 's first major 
report on the enterprise. 

This paper . . .  is part of an i nvest igation in to the extremely complex processes 
that are involved in inte l l igen t ,  adaptive, and creat ive behavior . . . .  

Many kinds of informat ion can aid in  solv ing problems: in format ion may 
suggest the order in  which possible solut ions should be examined ;  i t  may rule 
out a whole class of solut ions previously thought possible;  i t  may provide a cheap 
test to dist inguish l ikely from un l ikely possibi l i t ies ;  and so on. Al l  these k inds 
of information are heuristics-th ings that aid discovery . Heurist ics seldom pro
vide infal l ible guidance . . . .  Often they "work ,"  but t he results are variable and 
success is seldom guaranteed . 2 6  

To convey a sense of the general heuristics their program employed, 
Newell and Simon in t roduced an example of everyday intelligent  be
havior: 

I want to take my son to nursery school . What 's  the d ifference between what I 
have and what I want? One of d istance. What changes d istance? My autom obi le. 
My automobi le won' t  work . What 's  needed to make i t  work? A new bat tery . 
What has new batteries? An auto repair  shop. I want the repa ir  shop to put  i n  
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a new battery ;  but the shop doesn 't  know I need one. What is the difficul ty? One 
of communication. What allows communicat ion? A telephone . . . .  And so on . 

This k ind of analysis-classifying things in terms of the funct ions they serve, 
and osci l lat ing among ends, funct ions required , and means that perform them 
-forms the basic system of heurist ic of GPS. More precisely, this means-end 
system of heuristic assumes the following: 

1 .  I f  an object  is given that is not the desired one, differences wil l be detectable 
between the avai lable object and the desired object .  

2 .  Operators affect some features of their operands and leave others un
changed. Hence operators can be characterized by the changes they produce and 
can be used to try to el iminate differences between the objects to which they are 
appl ied and desired objects. 

3. Some differences wi l l  prove more difficult to affect than others. It is profita
ble, therefore, to try to el iminate "difficul t" d ifferences, even at the cost of 
in troducing new differences of lesser difficulty .  This process can be repeated as 
long as progress is being made toward eliminating the more difficult differences. 2 7  

With digital computers solving such problems as how to get three 
cannibals and three missionaries across a river without the cannibals 
eating the missionaries, it seemed that final ly philosophical ambition had 
found the necessary technology: that the universal ,  high-speed computer 
had been given the rules for converting reasoning into reckoning. Simon 
and Newel l  sensed the importance of the moment and jubilantly an
nounced that the era of intel ligent machines was at hand. 

We have begun to learn how to use computers to solve problems, where we do 
not have �ystematic and efficient computational algori thms. And we now know, 
at least in  a l imited area, not on ly how to program computers to perform such 
problem-solving act iv i t ies successful ly ;  we know also how to program computers 
to learn to do these things. 

In short , we now have the elements of a theory of heurist ic (as contrasted with 
algori thmic) problem solving; and we can use this theory both to understand 
human heurist ic processes and to simulate such processes with digital computers. 
Intui t ion ,  insight, anel learning are no longer exclusive possessions of humans: 
any large high-speed computer can be programmed to exhibi t them also. 2 H  

This field of research, dedicated to using digital computers to simulate 
intel ligent behavior, soon came to be known as "artificial intel ligence. "  
One should not be  misled by  the name. No doubt an artificial nervous 
system sufficiently like the human one, with other features such as sense 
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organs and a body, would be intelligent. But the term "artificial" does 
not mean that workers in artificial intelligence are trying to build an 
artificial man. Given the present state of physics, chemistry, and neuro
physiology, such an undertaking is not feasible. Simon and the pioneers 
of artificial i ntelligence propose to produce something more limited: a 
heuristic program which will enable a digital information-processing 
machine to exhibit intelligence. 

Likewise, the term "intelligence" can be misleading. No one expects 
the resulting robot to reproduce everything that counts as intelligent 
behavior in human beings. It need not, for example, be able to pick a 
good wife, or get across a busy street. It must only compete in the more 
objective and disembodied areas of human behavior, so as to be able to 
win at Turing's game. 

This limited objective of workers in artificial intelligence is just what 
gives such work its overwhelming significance. These last metaphysicians 
are staking everything on man's ability to formalize his behavior� to 
bypass brain and body, and arrive, all the more surely . at the essence of 
rationality . 

Computers have already brought about a technological revolution 
comparable to the Industrial Revolution . If Simon is right about the 
imminence of artificial intelligence, they are on the verge of creating an 
even greater conceptual revolution-a change in our understanding of 
man . Everyone senses the importance of this revolution . but we are so 
near the events that it is difficult to discern their significance. This much. 
however, is clear. Aristotle defined man as a rational an imal, and since 
then reason has been held to be of the essence of man . If we are on the 
threshold of creating artificial intelligence we are about to see the tri 
umph of a very special conception of reason .  Indeed, if reason can be 
programmed into a computer, this will confirm an understanding of man 
as an object, which Western thinkers have been groping toward for two 
thousand years but which they only now have the tools to express 
and implement. The incarnation of this intuition will drastically change 
our understanding of ourselves. If, on the other hand, artificial intelli
gence should turn out to be impossible, then we will have to distinguish 
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human from artificial reason, and this too will radically change our view 
of ourselves. Thus the moment has come either to face the truth of the 
tradition 's deepest intuition or to abandon the mechanical account of 
man's nature which has been gradually developing over the past two 
thousand years. 

Although it is perhaps too early for a full answer, we must make an 
attempt to determine the scope and limits of the sort of reason which has 
come fully into force since the perfection of the "analytical engine. "  We 
must try to understand to what extent artificial intelligence is possible, 
and if there are limits to the possibility of computer simulation of intelli
gent behavior, we must determine those limits and their significance. 
What we learn about the limits of intelligence in computers wil1 tell us 
something about the character and extent of human intelligence. What 
is required is nothing less than a critique of artificial reason. 

II 

The need for a critique of artificial reason is a special case of a general 
need for critical caution in the behavioral sciences. Chomsky remarks 
that in these sciences "there has been a natural but unfortunate tendency 
to �extrapolate, '  from the thimbleful of knowledge that has been attained 
in careful experimental work and rigorous data-processing, to issues of 
much wider significance and of great social concern. " He concludes 
that 

the experts have the responsibi l i ty of making clear the actual l imi ts  of their 

understand ing and of the  resu l ts they have so far ach ieved .  A carefu l  analysis 

of these l im i ts w i l l  demonst rate that in v i rt ua l ly  every domain of the social and 

behaviora l  sciences the resu l ts achieved to date wil l not support such "ext rapola

t ion .  " 2 9  

Artificial intelligence, at first glance, seems to be a happy exception to 
this pessimistic principle. Every day we read that digital computers play 
chess, translate languages, recognize patterns, and wil1 soon be able to 
take over our jobs. In fact this now seems like child's play . Literally! In 
a North American Newspaper Alliance release, dated December 1 968, 
entitled "A Computer for Kids" we are told that 
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Cosmos, the West German publishing house . . .  has come up with a new idea 
in gifts . . . . It's a genuine ( if small) computer, and it costs around $20. Battery 
operated, it looks like a portable typewriter. But it can be programmed l ike any 
big computer to translate foreign languages, diagnose i l lnesses, even provide a 
weather forecast. 

And in a Life magazine article (Nov. 20, 1 970) entitled · ·Meet 
Shakey, The First Electronic Person," the wide-eyed reader is told of a 
computer "made up of five major systems of circuitry that correspond 
quite closely to basic human faculties-sensation, reason, language, 
memory [and] ego. " According to the article. this computer .. sees."  
"understands," . .  learns," and, in general. has "demonstrated that ma
chines can think . " Several distinguished computer scientists are quoted 
as predicting that in from three to fifteen years . .  we will have a machine 
with the general intelligence of an average human being . . .  and in a few 
months [thereafter] it will be at genius level . . . .  " 

The complete robot may be a few years off, of course. but anyone 
interested in the prospective situation at the turn of the century can see 
in the tilm 2001 :  A Space Odyssey a robot named HAL who is cool, 
conversat10nal, and very nearly omniscient and omnipotent. And this 
film is not simply science-fiction fantasy . A Space Odyssey was made with 
scrupulous documentation. The director, Stanley Kubrick , consultee.! the 
foremost computer specialists so as not to be misled as to what was at 
least remotely possible. Turing himself had in 1 950 affirmed his belief 
that . .  at the end of the century the use of words and general educated 
opinion will have altered so much that one will be able to speak of 
machines thinking without expecting to be contradicted. " '0 And the 
technical consultant for the film, Professor Marvin Minsky, working on 
an early prototype of HAL in his laboratory at M . I.T. ,  assured Kubrick 
that Turing was, if anything, too pessimistic. 

That Minsky was not misunderstood by Kubrick is clear from Min
sky's editorial for Science Journal, which reads like the scenario for 
2001:  

At first machines had simple c laws. Soon they wi l l  have fantastical ly graceful 
articulations .  Computers' eyes once could sense only a hole in a card. Now they 
recogn ize shapes on simple backgrounds. Soon they wi l l  rival man 's analysis of 
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his env i ronmen t .  Computer programs once merely added columns of figures. 
Now they play games wel l ,  understand simple conversations, weigh many factors 
in decis ions . What next? 

Today, machines solve problems main ly  according to the principles we bui ld 
i n to them . Before long,  we may learn how to set them to work upon the very 
special problem of improving their own capaci ty to solve problems. Once a 
certain th re�hold is passed, th is  could lead to a spiral of acceleration and i t  may 
be hard to perfect a rel iable ·governor' to rest ra in i t .  3 1  

I t  seems that there may be no limit t o  the range and brilliance of the 
properly programmed computer. It is no wonder that among philoso
phers of science one finds an assumption that machines can do every
thing people can do, followed by an attempt to interpret what this bodes 
for the philosophy of mind; while among moralists and theologians one 
finds a last-ditch retrenchment to such highly sophisticated behavior as 
moral choice, love, and creative discovery , claimed to be beyond the 
scope of any machine. Thinkers in both camps have failed to ask the 
preliminary question whether machines can in fact exhibit even elemen
tary skills like playing games, solving simple problems, reading simple 
sentences and recognizing patterns, presumably because they are under 
the impression, fostered by the press and artificial-intelligence research
ers such as Minsky, that the simple tasks and even some of the most 
difficult ones have already been or are about to be accomplished. To 
begin with, then, these claims must be examined. 

It is fit ting to begin with a prediction made by Herbert Simon in 1 957 
as his General Problem Solver seemed to be opening up the era of 
artificial intelligence: 

I t  is not my aim to surprise or shock you . . . .  But the simplest way I can 
sum marize is to say that there are now in  the world machines that th ink ,  that 
learn and that create. Moreover, thei r abi l i ty  to do these th ings is going to 
increase rapid ly  unt i l-in a vi sible future-the range of problems they can han
dle wi l l  be coextensive wi th the range to which the human mind has been ap
pl ied . 

Simon then predicts, among other things, 

1 .  That wi th in  ten years a d igi tal computer wi ll be the world 's chess cham pion , 
un less the rules bar i t  from com pet i t ion. 



I ntrod u ct ion I 82 

2. That within ten years a digital computer wi l l  d iscover and prove an impor

tant new mathematical theorem. 

3. That within ten years most theories in psychology wi l l  take the form of 

computer programs, or of qualitative statements about the characteri stics of 

computer programs. 3 2  

Unfortunately, the tenth anniversary of this historic talk went unno
ticed, and workers in artificial intelligence did not, at any of their many 
national and international meetings, take time out from their progress 
reports to confront these predictions with the actual achievements. Now 
fourteen years have passed, and we are being warned that it may soon 
be difficult to control our robots. It is certainly high time to measure this 
original prophecy against reality . 

Already in the five years following Simon ·s predictions, publications 
suggested that the fi rst of Simon's forecasts had been half-realized. and 
that considerable progress had been made in fulfi l l ing his second predic
tion. This latter, the theorem-discovery prediction , was "fulfil led" by W. 
R. Ashby (one of the leading authorities in the field) when , in a review 
of Feigenbaum and Feldman's anthology Computers and Though t, he 
hailed the mathematical power of the properly programmed computer:  
"Gelernter's theorem-proving program has discovered a new proof of the 
pons asinorum that demands no construction . "  This proof, Dr. Ashby 
goes on to say, is one which .. the greatest mathematicians of 2000 years 
have failed to notice . . .  which would have evoked the highest praise had 
it occurred. " "  

The theorem sounds important, and the naive reader cannot help 
sharing Ashby's enthusiasm. A little research, however, reveals that the 
pons asinorum.  or ass's bridge, is the elementary theorem proved in 
Euclidian geometry-namely that the opposite angles of an isosceles 
triangle are equal . Moreover, the first announcement of the "new" proof 
.. discovered" by the machine is attributed to Pappus (A. o. 300). J 4  There 
is a striking disparity between Ashby's excitement and the antiquity and 
simplicity of this proof. We are still a long way from "the important 
mathematical theorem" to be found by 1 967. 

The chess-playing story is more involved and might serve as a model 
for a study of the production of intellectual smog in this area. In 1 958,  
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the year after Simon's prediction, Newell, Shaw, and Simon presented 
an elaborate chess-playing program. As described in their classic paper, 
. .  Chess-Playing Programs and the Problem of Complexity," their pro
gram was . .  not yet fully debugged," so that one .. cannot say very much 
about the behavior of the program. " 1 5  Still, it is clearly ' "good in [the] 
. . .  opening." 1 0 This is the last detailed published report on the program. 
In the same year, however, Newell, Shaw, and Simon announced: " 'We 
have written a program that plays chess, " 3 7  and Simon, on the basis of 
this success, revised his earlier prediction: 

In another place, we have pred icted that wi th in  ten years a computer wi l l  

d i scover and prove an important mat hematical theorem . On the basis of our 

experience wi th  the heurist ics of logic and chess, we are wi l l ing to add the further 

pred ict ion that only moderate extrapolat ion is requi red from the capaci t ies of 

programs a lready in  existence to achieve the addit ional problem-solv ing power 

needed for such simu lation . 1 � 

Public gullibility and Simon's enthusiasm was such that Newell, Shaw, 
and Simon's claims concerning their still bugged program were sufficient 
to launch the chess machine into the realm of scientific mythology. In 
1 959, Norbert Wiener, escalating the claim that the program was " 'good 
in the opening,"  informed the NYU Institute of Philosophy that ' "chess
playing machines as of now will counter the moves of a master game with 
the moves recognized as right in the text books, up to some point in the 
middle game. " 3 9  In the same symposium, Michael Scriven moved from 
the ambiguous claim that ' ·machines now play chess" to the positive 
assertion that ' "machines are already capable of a good game. "40 

In fact, in its few recorded games, the Newell, Shaw, Simon program 
played poor but legal chess, and in its last official bout (October 1 960) 
was beaten in 3 5  moves by a ten-year-old novice. Fact, however, had 
ceased to be relevant. 

While their program was losing its five or six poor games-and the 
myth they had created was holding its own against masters in the middle 
game-Newell, Shaw, and Simon kept silent. When they speak again, 
three years later, they do not report their difficulties and disappointment. 
Rather, as if to take up where the myth left off, Simon published an 
article in Behavioral Science announcing a program which played 
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"highly creative" chess end games involving .. combinations as difficult 
as any that have been recorded in chess history. "" 1 That the program 
restricts these end games to dependence on continuing checks, so that 
the number of relevant moves is greatly reduced, is mentioned but not 
emphasized. On the contrary, it is misleadingly implied that similar 
simple heuristics would account for master play even in the middle 
game. 4 2 * Thus, the article gives the impression that the chess prediction 
is almost realized. With such progress, the chess championship may be 
claimed at any moment . Indeed, a Russian cybemeticist . upon hearing 
of Simon's ten-year estimate, called it .. conservative. · · • ·1 And Fred 
Gruenberger at RAND suggested that a world champion is not enough 
-that we should aim for .. a program which plays bet ter than any man 
could. "44 This regenerating confusion makes one think of the mythical 
French beast which is supposed to secrete the fog necessary for its own 
respiration. 

Reality comes limping along behind these impressive pronounce
ments. Embarrassed by my expose of the disparity between their enthusi
asm and their results, A I workers finally produced a reasonably 
competent program. R. Greenblat t ' s  program called MacHack did in 
fact beat the author,4 � * a rank amateur, and has been entered in several 
tournaments in which it won a few games. This limited success revived 
hopes and claims. Seymour Papert , the second in command at the M .  I.T. 
robot project , leaped in to defend Simon ·s prediction, asserting that .. as 
a statement of what researchers in the field consider to be a possible goal 
for the near futute, this is a reasonable statement. "'0 And on page 1 of 
the October 1 968 issue of Science Journal, Donald Michie, the leader of 
England's artificial intelligentsia, writes that .. today machines can play 
chess at championship level. "4 7  However, chess master de Groot , discuss
ing the earlier chess programs, once said: .. programs are still very poor 
chess players and I do not have much hope for substantial improvement 
in the future." And another chess master, Eliot Hearst ,  discussing the 
M. I.T. program in Psychology Today, adds: "De Groot's comment was 
made in 1 964 and MacHack's recent tournament showing would not 
require him to revise his opinion. " 4 8  Nor would most recent events. 
Greenblatt's program has been gradually improved, but it seems to have 
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reached a point of saturation. During the past two years, it lost all games 
in the tournaments in which it had been entered, and received no further 
publicity . We shall soon see that given the limitations of digital comput
ers this is just what one would expect. 

It is to Greenblatt's credit that even in the heyday of MacHack he 
made no prediction ; as for Simon and the world championship, the ten 
years are well up, and the computer is at best a class C amateur. 4 9 * 

This rapid rundown of the state of the art vis-a-vis two of Simon's 
predictions has, I hope, cleared the air. It is essential to be aware at the 
outset that despite predictions, press releases, films, and warnings, artifi
cial intelligence is a promise and not an accomplished fact. Only then can 
we begin our examination of the actual state and future hopes of artificial 
intelligence at a sufficiently rudimentary level. 

The field of artificial intelligence has many divisions and subdivisions, 
but the most important work can be classified into four areas: game 
playing, language translating, problem solving, and pattern recognition. 
We -have already discussed the state of game-playing research. We shall 
now look at the work in the remaining three fields in detail. In Part I 
my general thesis will be that the field of artificial intelligence exhibits 
a recurring pattern : early, dramatic success followed by sudden unex
pected difficulties. This pattern occurs in all four areas, in two phases 
each lasting roughly five years. The work from 1 957 to 1 962 (Chapter 
1 ) , is concerned primarily with Cognitive Simulation (CS)-the use of 
heuristic programs to simulate human behavior by attempting to re
produce the steps by which human beings actually proceed. The second 
period (Chapter 2) is predominantly devoted to semantic information 
processing. This is artificial intelligence in a narrower sense than I have 
been using the term thus far. AI (for this rest ricted sense I shall use the 
initials) is the attempt to simulate human intelligent behavior using 
programming techniques which need bear lit tle or no resemblance to 
human mental processes. The difficulties confronting this approach have 
just begun to emerge. The task of the rest of Part I is to discover the 
underlying common source of all these seemingly unconnected setbacks. 

These empirical difficulties, these failures to achieve predicted prog-
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ress, never, however, discourage the researchers, whose optimism seems 
to grow with each fai lure . We therefore have to ask what assumptions 
undel ie  this persistent optimism in the face of repeated disappoint
ments . Part II attempts to bring to l ight four  deeply rooted assumptions 
or prejudices which mask the gravity of the current impasse , and to lay 
bare the conceptual confusion to which these prejudices give rise . 

But these prejudices are so deeply rooted in our thinking that the only 
alternative to them seems to be an obscurantist rejection of the possibili ty 
of a science of human behavior. Part III  attempts to answer this objec
tion, insofar as i t  can be answered, by presenting an alternat ive to these 
traditional assumptions, drawing on the ideas of twent ieth-century 
thinkers whose work is an implicit cri t ique of art ificial reason. although 
it has not before been read in this light . 

We shall then, in the Conclusion, be in a posi t ion to characteri ze 
artificial reason and indicate i ts scope and limi ts. This in turn will enable 
us to distinguish among various forms of intelligent behavior and to 
judge to what extent each of these types of intelligent behavior is  pro
grammable in practice and in principle. 

If the order of argument presented above and the tone of my opening 
remarks seem strangely polemical for an effort in philosophical analysis. 
I can only point out that ,  as we have already seen, art ificial intelligence 
is a field in which the rhetorical presentat ion of results often substi tutes 
for success , so that research papers resemble more a debater ' s  brief than 
a scientific report . Such persuasive marshal ing of facts can onl y  be an
swered in kind. Thus the accusatory tone of Part I. In Part II, however, 
I have tried to remain as object ive as possible in test ing fundamental 
assumptions, although I know from experience that challenging these 
assumptions will produce react ions similar to those of an insecure be
liever when his faith is challenged. 

For example, the year following the publicat ion of my fir"t investiga
t ion of work in artificial intelligence, the RAND Corporat ion held a 
meeting of experts in computer science to discuss, among other topics, 
my report. Only an .. expurgated" transcript of this meeting has been 
released to the public, but even there the tone of paranoia which per
vaded the discussion is present on almost every page. My report is called 
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"sinister," "dishonest ,"  "hi lariously funny," and an "incredible m isrep
resentat ion of history . "  When, at one point , Dr. J .  C. R .  Lick l ider, then 
of I BM, tried to come to the defense of my conclusion that work should 
be done on man-machine cooperat ion, Seymour Papert of M. I .T.  re
sponded: 

I protest vehement ly  against cred i t ing Dreyfus with any good. To state that you 

can associate yoursel f wi th one of his concl usions is unpri ncipled .  Dreyfus' 

concept of coupl ing men with machines is based on thorough misunderstanding 

of the problems and has noth ing in  common with any good statement that might 

go by the same words. �0 

The causes of this panic-reaction should themselves be investigated, 
but that is a job for psychology, or the sociology of knowledge. However, 
in ant icipat ion of the impending outrage I want to make absol utely clear 
from the outset that what I am cri t ici zing is the impl ic i t  and explicit 
phi losophical assumptions of Simon and Minsky and their co-workers, 
not their technical work. True, their phi losophical prejudices and nai·vete 
distort their own evaluat ion of their resul ts, but this in no way detracts 
from the importance and value of their research on specific techniques 
such as l ist structures, and on more general problems such as data-base 
organizat ion and access, compat ibi l i ty  theorems, and so forth . The fun
damental ideas that they have contributed in these areas have not only 
made possible the l im i ted achievements in art ificial intel l igence but have 
contributed to other more flourishing areas of computer science. 

In some restricted ways even Al can have, and presumably wi l l  have 
pract ical value despi te what I shall try to show are i ts fundamental 
l im i ta t ions. (I restric t  myself to Al because it is not clear that nai·ve 
Cogni t ive Simulat ion, as i t  is  now pract iced, can have any val ue at al l ,  
except perhaps as a strik ing demonstration of the fact that in behavir.g 
intel l igent ly people do not process information l ike a heuristical ly pro
grammed digi tal computer. ) An art ifact could replace men in some tasks 
-for example, those involved in exploring planets-wi thout performing 
the way human beings would and wi thout exhibi t ing human flexibi l i ty .  
Research in this area is not wasted or fool ish, al though a balanced view 
of what can and cannot be expected of such an art ifact would certainly 
be aided by a l i t t le phi losophical perspect ive. 
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Phase I ( 1 957- 1 962) Cognitive Simulation 

I. Analysis of Work in Language Translation, 

Problem Solving, and Pattern Recognition 

LANGUAGE TRANSLATION 

The attempts at language translation by computers had the earliest 
success, the most extensive and expensive research, and the most un
equivocal failure. It was soon clear that a mechanical dictionary could 
easily be constructed in which linguistic items, whether they were parts 
of words, whole words, or groups of words, could be processed indepen
dently and converted one after another into corresponding items in 
another language. Anthony Oettinger, the first to produce a mechanical 
dictionary (1 954), recalls the climate of these early days: . .  The notion of 
. . . fully automatic high quality mechanical translation ,  planted by 
overzealous propagandists for automatic translation on both sides of the 
Iron Curtain and nurtured by the wishful thinking of potential users, 
blossomed like a vigorous weed. " 1 § This initial enthusiasm and the 
subsequent disillusionment provide a sort of paradigm for the field. It is 
aptly described by Bar-Hillel in his report "The Present Status of Auto
matic Translation of Languages. "  

§Notes begin on p .  307. [Ci tat ions are indicated by a superior figure. Substant ive notes 
are indicated by a superior figure and an asterisk . ]  

I 91 
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During the first year of the research in machine t ranslation, a considerable 
amount of progress was made . . . .  I t  created among many of the workers actively 
engaged in this field the strong feeling that a working system was just around 
the corner. Though i t  is understandable that such an i l lusion should have been 
formed at the t ime, i t  was an i l lusion . I t  was created . . .  by the fact that a large 
number of problems were rather readily solved . . . .  It was not sufficiently rea l ized 
that the gap between such output . . .  and high quality translation proper was 
sti l l  enormous, and that the problems solved unti l  then were indeed many but 
just the simplest ones whereas the "few" remaining problems were the harder 
ones-very hard indeed. 2 

During the ten years following the development of a mechanical dic
tionary, five government agencies spent about $20 mil lion on mechanical 
t ranslation research. 3 In spite of journalistic c laims at various moments 
that machine translation was at last operational, this research produced 
primarily a much deeper knowledge of the unsuspected complexity of 
syntax and semantics. As Oettinger remarks, ·The major problem of 
selecting an appropriate target correspondent for a source word on the 
basis of context remains unsolved , as does the related one of establishing 
a unique syntactic structure for a sentence that human readers find 
unambiguous."• Oettinger concludes: . .  The out look is grim for those who 
stil l cherish hopes for fully automatic high-quality mechanical t ransla
tion. " 5 • 

That was in 1963 .  Three years later, a government report , Language 

and Machines, distributed by the National Academy of Sciences Na
tional Research Council ,  pronounced the last word on the t ranslation 
boom. After carefully comparing human translations and machine 
products the committee concluded :  

We have already noted that , while we  have machine-aided translation of general 
scien tific text, we do not have useful machine translat ion . Furthermore, there is 
no immediate or predictable prospect of useful machine translation." 

Ten years have elapsed since the early optimism concerning machine 
translation. At that time, flight to the moon was stil l science fiction, and 
the mechanical secretary was just around the comer. Now we have 
landed on the moon, and yet machine translation of typed scientific tex ts 
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-let alone spoken language and more general material-is sti l l  over the 
horizon, and the horizon seems to be receding at an accelerating rate. 
Since much of the hope for robots l ike those of 2001, or for more modest 
servants, depends on the sort of understanding of natural language which 
is also necessary for machine translation , the conclusion of the National 
Academy of Sciences strikes at all predictions-such as Minsky's-that 
within a generation the problem of creating artificial intelligence wi l l  be 
substantially solved . 

PROBLEM SOL YING 

Much of the early work in the general area of artificial intelligence, 
especially work on game playing and problem solving, was inspi red and 
dominated by the work of Newell ,  Shaw, and Simon at the RAND 
Corporation and at Carnegie Insti tute of Technology . 7 Their approach 
is called Cogni tive Simulation (CS) because the technique generally em
ployed is to col lect protocols from human subjects, which are then 
analyzed to discover the heuristics these subjects employ . 8* A program 
is then written which incorporates similar rules of thumb. 

Again we find an early success : in 1957 Newel l , Shaw, and Simon's 
Logic Theorist, using heuristical ly guided trial-and-error search, proved 
38 out of 52 theorems from Principia Mathematica. Two years later, 
another Newel l ,  Shaw, and Simon program, the General Problem Solver 
(GPS), using more sophisticated means-ends analysis, solved the "canni
bal and missionary" problem and other problems of simi lar com
plexity .  9 * 

In 1 96 1 ,  after comparing a machine trace (see Figure 2, p. 95) with a 
protocol and finding that they matched to some extent, Newell and 
Simon concluded rather cautiously :  

The fragmen tary evidence we have obtained to date encourages us to th ink  that 
the General Problem Solver provides a rather good first approximation to an 
information processing theory of certain kinds of th ink ing and problem-solv ing 
behavior. The processes of . .  th ink ing" can no longer be regarded as completely 
m ysterious. ' 0 
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Soon, however, Simon gave way to more enthusiastic claims: 

Subsequent work has tended to confirm (our] in itial hunch, and to demonstrate 
that heuristics, or rules of thumb, fonn the integral core of human problem
solving processes. As we begin to understand the nature of the heuristics that 
people use in  thinking the mystery begins to dissolve from such (heretofore) 
vaguely understood processes as "intuition" and .. judgment. " 1 1  

But ,  as we have seen in the case of language translating, difficulties have 
an annoying way of reasserting themselves. This t ime, the .. mystery" of 
judgment reappears in terms of the organizational aspect of the problem
solving programs. Already in 1961 at the height of Simon's enthusiasm, 
Minsky saw the difficulties which would attend the application of trial
and-error techniques to real ly complex problems: 

The simplest problems, e .g . , playing tic-tac-toe or proving the very simplest 
theorems of logic, can be solved by simple recursive application of all the avai l
able transformations to al l the situations that occur, deal ing with sub-problems 
in the order of thei r generation . This becomes impractical in more complex 
problems as the search space grows larger and each trial becomes more expensive 
in time and effort. One can no longer afford a pol icy of simply leaving one 
unsuccessful attempt to go on to another. For, each attempt on a difficult prob
lem will involve so much effort that one must be quite sure that, whatever the 
outcome, the effort will not be wasted enti rely. One must become selective to the 
point that no trial is made without a compelling reason . . . .  1 2  

This, Minsky claims, shows the need for a planning program, but as he 
goes on to point out : 

Planning methods . . .  threaten to col lapse when the fi xed sets of categories 
adequate for simple problems have to be replaced by the expressions of descrip
tive language. 1 1 

In .. Some Problems of Basic Organization in Problem-Solving Pro
grams" (December 1962), Newell  discusses some of the problems which 
arise in organizing the Chess Program, the Logic Theorist, and especially 
the GPS with a candor rare in the field, and admits that · ·most of [ these 
problems] are unsolved to some extent, either completely, or because the 
solut ions that have been adopted are stil l unsatisfactory in one way or 
another. " 1 4 No further progress has been reported toward the successful 
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LO - <- Q • P >  
L l ( R ::> ~P H  - R ::> Q )  

C O A L  1 T R A N S F O R M L l  I N T O L O  
C O A L  2 D E L E T E  R F R O M  L l  

C O A L 3 A P P L Y  R B  T O  L l  
P R O D U C E S  L 2  R => ~ P 

C O A L  4 T R A N S F O R M  L 2  I N T O  L O  
G O A L  5 A D O  Q T O  L 2  

R E J E C T  

G O A L 2 
G O A L  6 A P P L Y R S  T O  L l  

P R O D U C E S  L 3  ~ R ::> Q  

G O A L  7 T R A N S F O R M L 3  I N T O  L O  
G O A L 8 A D O  P T O  L 3  

R E J E C T  

C O A L  2 
G O A L  9 A P P L Y R 7  T O  L l  

G O A L  1 0  C H A N G E  C O N N E C T I V E  T O  V I N L E F T  l l  
G O A L  1 1  A P P L Y R b  T O  L E F T L l  

P R O D U C E S  L 4  ( ~ R V  ~ P ) • ( ~ R ::> Q )  

C O A L 1 2  A P P L Y R 7  T O  L 4  
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G O A L  1 3  C H A N G E  C O N N E C T I V E  T O V I N R I G H T  L 4  
G O A L  1 4  A P P L Y R b  T O  R I G H T L 4  

P R O D U C E S  L S  ( ~ R V ~ P ) • C R V Q ) 

C O A L  1 5  A P P L Y R 7  T O  L S  
G O A L 1 6  C H A N G E  S I G N  O F  L E F T  R I G H T  L S  

G O A L 1 7  A P P L Y R b  T O  R I G H T  L S  
P R O D U C E S  L o  ( ~ R V ~ P H ~ R => Q )  

C O A L 1 -S  A P P L Y R 7  T O  L 6  
G O A L  1 9  C H A N G E  C O N N E C T I V E  T O  V 

I N  R' I G H T  L 6  
R E J E C T  

C O A L  1 6  
N O T H I N G  M O R E 

C O A L 1 3 
N O T H I N G M O R E  

C O A L 1 0  
N O T H I N G M O R E  

F igure 2 
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hierarchical organization of heuristic programs. (Significantly ,  t he great
est achievement in the field of mechanical theorem-proving, Wang's 
theorem-proving program, which proved in less than five minutes all 52 
theorems chosen by Newell, Shaw, and Simon, does not use heuristics. ) 

Public admission that GPS was a dead end, however, did not come 
until much later. In 1 967, the tenth anniversary of Simon's predictions, 
Newell (and Ernst) soberly, quietly, and somewhat ambiguously an
nounced that GPS was being abandoned. The preface to their paper 
reveals that peculiar mixture of impasse and optimism which we have 
begun to recognize as characteristic of the field: 

We have used the term "final" in several places above. This does not indicate 
any feeling that this document marks a terminus to our research on general 
problem solvers; quite the contrary is t rue. However, we do feel that th is  particu
lar aggregate of IPL-V code should be laid to rest . 1

� 

That GPS has collapsed under the weight of its own organization 
becomes clearer later in the monograph . The section entitled . .  History 
of GPS" concludes: 

One serious limitation of the expected performance of GPS is the s ize of the 
program and the size of its rather elaborate data structure. The program i t self 
occupies a significant portion of the computer memory and the generation of new 
data structures during problem solv ing quickly exhausts the remaining memory .  
Thus GPS is only designed to  solve modest problems whose representat ion is not 
too elaborate. A lthough larger computers' memories would al leviate the extrava
gances of GPS's use of memory , conceptual difficult ies would remain. 1

b 

This curve from success to optimism to failure can be followed in 
miniature in the case of Gelernter's Geometry Theorem Machine ( 1 959). 
Its early success with theorems like the pons asinorum gave rise to the 
first prediction to be totally discredited. In an article published in 1 960, 
Gelernter explains the heuristics of his program and then concludes: 
· ·Three years ago, the dominant opinion was that the geometry machine 
would not exist today. And today, hardly an expert will contest the 
assertion that machines will be proving interesting theorems in number 
theory three years hence," that is, in 1 963. 1 ' There has been no further 
word from Gelernter and no further progress in purely mechanical math-
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ematics. No more striking example exists of an "astonishing" early 
success and an even more astonishing failure to follow it up. 

PATTERN RECOGNITION 

This field is discussed last because the resolution of the difficulties 
which have arrested development in game playing, language translation, 
and problem solving presupposes success in the field of pattern recogni
tion (which in turn suffers from each of the difficulties encountered in 
the other fields) . As Selfridge and Neisser point out in their classic article 
"Pattern Recognition by Machine, "  

a man i s  cont inual ly exposed t o  a welter o f  data from his senses, and abstracts 
from it the pat terns relevant to his activity at the moment . His abi l ity to solve 
problems, prove theorems and generally run his l ife depends on this type of 
perception. We suspect that unti l  programs to perceive patterns can be devel
oped, achievements in mechanical problem-solving will remain isolated technical 
t riumphs. 1 8  

There has as usual been some excellent early work. For example, the 
Lincoln Laboratory group under Bernard Gold produced a program for 
transliterating hand-sent Morse code. More recently, programs have 
been written for recognizing a limited set of handwritten words and 
printed characters in various type fonts. These all operate by searching 
for predetermined topological features of the characters to be recognized, 
and checking these features against preset or learned "definitions" of 
each letter in terms of these traits. The trick is to find relevant features, 
that is, those that remain generally invariant throughout variations of 
size and orientation, and other distortions. This approach has been sur
prisingly successful where recognition depends on a small number of 
specific traits. 

But none of these programs constitutes a breakthrough in pattern 
recognition. Each is a small engineering triumph, an ad hoc solution of 
a specific problem, without general applicability. As Murray Eden, who 
has done some of the best work in pattern recognition, summed up the 
situation in 1 968: 
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Where there have been successes in performing pat tern-recognit ion tasks by 
mechanical means, the successes have rested on rules that were prescribed ad 
hoc, in the l i teral sense of that phrase; that is to say ,  the successful methods 
classify reliably that part icular set of patterns for which the methods were 
designed, but are l ikely to lack any significant value for classifying any other set 
of patterns. 1 9  

Even in these special cases, as Selfridge and Neisser remark, " 'The only 
way the machine can get an adequate set of features is from a human 
programmer. ' ' 20 They thus conclude their survey of the field with a 
challenge rather than a prediction: 

The most important learning process of all is st i l l  untouched :  No current pro
gram can generate test features of i ts own . The effecti\.·eness of all of them is 
forever rest ricted by the ingenuity or arbi trariness of their programmers .  We can 
barely guess how this rest rict ion might be overcome. Unt i l  it is, ·artificial in tel l i 
gence' wil l  remain tain ted with artifice . : 1 

Even these remarks may be too opt imist ic, however, in their supposi
t ion that the present problem is feature-generation . The relat ive success 
of the Uhr-Vossler program, which generates and evaluates i ts own 
operators, shows that this problem is part ially soluble. : �  But as long as 
recogni t ion depends on a limited set of features, whether ad hoc or 
general, preprogrammed or generated. mechanical recogni t ion has gone 
about as far as it can go. The number of traits that can be looked up in 
a reasonable amount of t ime is limi ted, and present programs have 
already reached this technological limi t .  In a paper presented at the 
Hawaii Internat ional Conference on the Methodologies of Pat tern Rec
ogni t ion ( 1 968) ,  Laveen Kanai and B. Chandrasekaran summed up the 
impasse as follows: 

Obviously ,  the engineering approach has bui lt in  l imi tations. There i s  a certain 
level of complexity above which the engineer's bag of t ricks fails to produce 
resul ts .  As an example while even mult ifont prin ted character recognit ion has 
been successfully handled, a satisfactory solut ion of cursive script recognit ion 
defies all at tempts. Similarly there seems to be a fairly big jump between isolated 
speech recognit ion and continuous speech recogni t ion . Those who have been 
hoping to model human recogn it ion processes have also reached an impasse. I t  
is probable that those problems which the engi neers have found difficult to  
handle are precisely those which have to await more detailed understanding of 
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human recogni tion systems. In any case, these feelings of crisis are int imately 
related to t hose in other aspects of art ificial intel l igence: game playing and 
mechanical t ranslation. 2 3 

Again we find the same pattern of optimism fol lowed by disi l lusion
ment .  Often the disi l lusioned do not even understand why thei r hopes 
have been dashed, and thei r quest ioning goes unheard amidst the prom
ises and announcements of small technological advances. Such a dis
senter is V incent Giul iano, formerly of Arthur D. Little Corporation . If 
Giul iano had a more detai led and insightful account of what went wrong, 
he would be the Oettinger or Bar-Hi l lel of the pattern recognition field. 

Like many of my col leagues, I was in  hot pursuit of ways to develop something 
we somet imes refer to as art ificial intel l igence . . . .  in the mid-fift ies, many 
ambitious research projects were launched with the goal of clearly demonstrat ing 
the learning capabi l i ties of computers so that they could translate idiomatically, 
carry on free and natural conversations with humans, recognize speech and print 
i t  out ,  and diagnose diseases. Al l  of these act iv i t ies involve the discovery and 
learn ing of complex pat terns. 

Only a few years ago we really believed that ul t imately computers could be 
given the entire task of sol ving such problems, if  only we could find the master 
key to making them do so. 

A las! I feel t hat many of the hoped-for objectives may well be porcelain eggs; 
they wi l l  never hatch,  no matter how long heat is applied to them, because they 
require pattern discovery purely on the part of machines working alone. The 
tasks of discovery demand human quali t ies. 24 

Conclusion 

By 1 962, i f  we are to j udge by published resul ts, an overall pattern had 
begun to take shape, al though in some cases it was not recognized until 
later: an early, dramatic success based on the easy performance of simple 
tasks, or low-qual i ty work on complex tasks, and then diminishing re
turns, disenchantment, and, in some cases, pessimism. This pattern is not 
the result of overenthusiastic pressure from eager or skeptical outsiders 
who demand too much too fast . The failure to produce is measured solely 
against the expectations of those working in the field. 

When the situation is grim,  however, enthusiasts can always fall back 
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on their own optimism. This tendency to substitute long-range for opera
tional programs slips out in Feigenbaum and Feldman's claim that "the 
forecast for progress in research in human cognitive processes is most 
encouraging. " 2 5  The forecast always has been, but one wonders: how 
encouraging are the prospects? Feigenbaum and Feldman claim that 
tangible progress is indeed being made, and they define progress very 
carefully as "displacement toward the ultimate goal. "z6 According to this 
definition, the first man to climb a tree could claim tangible progress 
toward reaching the moon. 

Rather than climbing blindly, it is better to look where one is going. 
It is time to study in detail the specific problems confronting work in 
artificial intelligence and the underlying difficulties that they reveal . 

I I . The U nderly ing S ign ifica nce of Fa i l u re to 

Achieve Pred icted Resu lts 

Negative results, provided one recognizes them as such, can be interest
ing. Diminishing achievement, instead of the predicted accelerating suc
cess, perhaps indicates some unexpected phenomenon. Perhaps we are 
pushing out on a continuum like that of velocity , where further accelera
tion costs more and more energy as we approach the speed of light , or 
perhaps we are instead facing a discontinuity , which requires not greater 
effort but entirely different techniques, as in the case of the tree-climbing 
man who tries to reach the moon. 

It seems natural to take stock of the field at this point, yet surprisingly 
no one has done so. If someone had, he might have found that each of 
the four areas considered presupposes a specific form of human .. infor
mation processing" that enables human subjects in that area to avoid the 
difficulties an artificial · ·subject' '  must confront. This section will isolate 
these four human forms of .. information processing" and contrast them 
with their machine surrogates. 

FRINGE CONSCIOUSN ESS VS. H EU R ISTICALLY G U I DED SEARCH 

It is common knowledge that certain games can be worked through 
on present-day computers with present-day techniques-games like nim 



Phase I ( 1 9 5 7- 1 9 6 2) Cognitive S i m u lation I 101 

and tic-tac-toe can be programmed so that the machine will win or draw 
every time. Other games, however, cannot be solved in this way on 
present-day computers, and yet have been successfully programmed. In 
checkers, for example, it turns out that there are reliable ways to deter
mine the probable value of a move on the basis of certain parameters such 
as control of center position, advancement, and so forth. This, plus the 
fact that there are relatively few moves since pieces block each other and 
captures are forced, makes it possible to explore all plausible moves to 
a depth of as many as twenty moves, which proves sufficient for excellent 
play. 

Chess, however, although decidable in principle by counting out all 
possible moves and responses, presents the problem inevitably connected 
with choice mazes : exponential growth. Alternative paths multiply so 
rapidly that we cannot even run through all the branching possibilities 
far enough to form a reliable judgment as to whether a given branch is 
sufficiently promising to merit further exploration. Newell notes that it 
would take much too long to find an interesting move if the machine had 
to examine the possible moves of each of the pieces on the board one after 
another. He is also aware that if this is not done, the machine may 
sometimes miss an important and original combination. "We do not 
want the machine to spend all its time examining the future actions of 
committed men; yet if it were never to do this, it could overlook real 
opportunities. " 21  

Newell's first solution was "the random element" :  "The machine 
should rarely [that is, occasionally] search for combinations which sac
rifice a Queen. " 28  But this solution is unsatisfactory, as Newell himself, 
presumably, now realizes. The machine should not look just every once 
in a while for a Queen sacrifice but, rather, look in those situations in 
which such a sacrifice would be relevant. This is what the right heuristics 
are supposed to assure, by limiting the number of branches explored 
while retaining the more promising alternatives. 

But no master-level heuristics have as yet been found. All current 
heuristics either exclude some moves masters would find or leave open 
the risk of exponential growth. Simon is nonetheless convinced, for 
reasons to be discussed in Part II, that chess masters use such heuristics, 
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and so he is confident that if  we listen to thei r protocols, follow their eye 
movements, perhaps question them under b right lights, we can eventu
ally discover these heuristics and build them into our program-thereby 
pruning the exponential tree. But let us examine more closely the evi
dence that chess playing is governed by the use of heurist ics. 

Consider the following protocol quoted by Simon, not ing especially 
how it begins rather than how it ends. The subject says, 

Again I notice that one of his pieces is not defended . the Rook . and there must 
be ways of taking advantage of this. Suppose now. if I push t he pawn up at Bishop 
four, if the Bishop retreats I have a Queen check and I can pick up the Rook . 
If, etc. , etc. 29  

At the end we have an example of what I shall call . . count ing out "
thinking through the various possibili t ies by brute-force enumeration. 
We have all engaged in this process, which, guided by suitable heurist ics, 
is supposed to account for the performance of chess masters. But how 
did our subject notice that the opponent 's Rook was undefended? Did 
he examine each of his opponent 's  pieces and thei r possible defenders 
sequentially (or simultaneously) unt il he stumbled on the vulnerable 
Rook? That would use up too many considerat ions, for as Nev.,ell, Shaw. 
and Simon remark, . .  The best evidence suggest s  that a human player 
considers considerably less than 100 posi t ions in the analysis of a 
move," 10 and our player must st ill consider many posi t ions in evaluat ing 
the si tuat ion once the undefended Rook has been discovered . We need 
not appeal to int rospect ion to discover what a player in fact does before 
he begins to count out ; the protocol i t self indicates i t : the subject  . .  zeroed 
in" on the promising situation CI  not ice that one of his pieces is not 
defended") .  Only after the player has zeroed in on an area does he begin 
to count out , to test , what he can do from there. 

An analysis of the MacHack program wri t t en by Richard Greenblat t 
will illustrate this difference between the way a human being si zes up a 
posi t ion and the machine's brute-force count ing out . Even MacHack 
could not look at every alternative .  The program contains a plausible 
move generator which limits the moves considered to the more prom
ising ones. Yet in a tough spot during a tournament, the G reenblatt 
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program once calculated for fifteen minutes and considered 26,000 
alternatives, while a human player can consider only I 00, or possibly 
200, moves. MacHack came up with an excellent move, which is not to 
say a master could not have done even better; but what is significant 
here is not the quality of the move, but the difference between 26,000 
and 200 possibi l i ties. This order of difference suggests that when play
ing chess, human beings are doing something different than just con
sidering alternatives, and the interesting question is: what are they 
doing that enables them, while considering I 00 or 200 alternatives, to 
find more bri l liant moves than the computer can find working through 
26,000? 

The human player whose protocol we are examining is not aware of 
having explicitly considered or explicitly excluded from consideration 
any of the hundreds of possibi l i ties that would have had to have been 
enumerated in order to arrive at a particular relevant area of the board 
by count ing out. Nonetheless, the specific portion of the board which 
finally attracts the subject's attention depends on the overall position . To 
understand how this is possible, we must consider what Wil liam James 
has called "the fringes of consciousness" : the ticking of a clock which 
we notice only if i t  stops provides a simple example of this sort of 
marginal awareness. Our vague awareness of the faces in a crowd when 
we search for a friend is another, more complex and more nearly appro-

priate, case . .  
Whi le suggesting a n  alternati ve t o  the explicit awareness o f  counting 

out, neither example is entirely appropriate, however. In nei ther of these 
cases .does the subject make posi t ive use of the information resting on the 
fringe. The chess case is best understood in terms of Michael Polanyi's 
general description of the power of the fringes of consciousness to con
centrate information concerning our peripheral experience . 

This power resides in the area which tends to function as a background because 
it extends indeterminatel y  around the central object of our attent ion . Seen thus 
from the corner of our eyes, or remembered at the back of our mind, th is area 
compel l ing ly  affects the way we see the object on which we are focusing. We may 
indeed go so far as to say that we are aware of this subsidiari ly noticed area 
main ly  in the appearance of the object to which we are attending. 1 1 * 
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Once one is familiar with a house, for example, to him the front looks 

thicker than a fac;ade, because he is marginally  aware of the house 
behind. Similarly, in chess, cues from all over the board, while remaining 
on the fringes of consciousness, draw attention to certain sectors by 
making them appear promising, dangerous, or simply worth looking 
into. 

As Newell and Simon themselves note: 

There are concepts in human chess playing that are much more global than those 
above; for example, a . .  devel9ped position ,"  . .  control of the center." . . a won 
position," "a weak king side," .. a closed position. " ) �  

Moreover, they admit that: 

Sometimes de Groot's subject used very global phrases such as " . . .  and it 's  a 
won position for White," where it is not possible to see what structu re or feature 
of the position leads to the evaluation. 3 1 

This is Newell and Simon's way of saying that they see no way of 
analyzing this evaluation of the overal l posi t ion in terms of heuristical ly 
guided counting out. And judiciously, but wi thout seeming to real ize 
what this does to the plausibi l i ty of Simon's predictions, Newel l and 
Simon go on to note : 

To date the work on chess programs has not shed much new l ight on these 
higher-level concepts. 3° 

The atti tude of Newell and Simon is typical ly ambiguous here. Do 
they think that bet ter stat ic evaluators-that is, bet ter heurist ics for 
generating plausible moves--could simulate zeroing in? Their cont inued 
belief in the possibil i ty of a mechanical chess master suggests they do. 
However, their analysis of master play, based on the work of de Groot, 
should be grounds for pessimism. (As we have seen, de Groot himself 
says he does not have much hope for substantial improvement of heuris
tic chess programs.) 

Newell  and Simon note that 

De Groot finally succeeded in separating strong from weak players by using 

perceptual tests involving the reproduction of chess positions after brief exposure 
to them (3-7 seconds). The grandmaster was able to reproduce the positions 
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perfectly, and performance degraded appreciably with decrease in chess abi l i ty . 
De Groot was led to propose that perceptual abi l i t ies and organization were an 
important factor in  very good play. 3 5  

In the article we have already discussed, chess master Hearst casts 
some further light on this perceptual process and why it defies program
ming: 

Apparently the master perceives the setup in  large uni ts, such as pawn structure 
of cooperat ing pieces . . . .  When he does make an error, i t  is often one of putt ing 
a piece on a very desirable square for that type of posi t ion. 3 6  

Hearst sums up his view as follows: 

Because of the large number of prior associations which an experienced player 
has acquired, he does not visual ize a chess posit ion as a conglomeration of 
scattered squares and wooden pieces, but as an organized pattern (like the 
"Gestalt ," or integrated configuration, emphasized by the Gestalt psycholo
gists) .  37 

Applying these ideas to our original protocol, we can conclude that 
our subject's familiarity with the overall chess pat tern and with the past 
moves of this particular game enabled him to recognize the lines of force, 
the loci of strength and weakness, as well as specific positions. He sees 
that his opponent looks vulnerable in a certain area Gust as one familiar 
with houses in general and with a certain house sees it as having a certain 
sort of back), and zeroing in on this area he discovers the unprotected 
Rook. This move is seen as one step in a developing pattern. 

There is no chess program which even tries to use the past experience 
of a particular game in this way. Rather, each move is taken up anew 
as if it were an isolated chess problem found in a book. This technique 
is forced upon programmers, since a program which carried along infor
mation on the past position of each piece would rapidly sink under the 
accumulating data. What is needed is a program which selectively carries 
over from the past just those features which were significant in the light 
of its present strategy and the strategy attributed to its opponent .  3 8* But 
present programs embody no long-range strategy at all. 

In general what is needed is an account of the way that the background 
of past experience and the history of the current game can determine 
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what shows up as a figure and attracts a player's attention. But this 
gestaltist notion of figure and ground has no place in explicit step-by-step 
computation. 

Since this global form of 0information processing" in which informa
tion, rather than being explicit ly considered remains on the fringes of 
consciousness and is implicitly taken into account, is constantly at work 
in organizing our experience, there is no reason to suppose that in order 
to discover an undefended Rook our subject must have counted out 
rapidly and unconsciously unti l  he arrived at the area in which he began 
consciously counting out. Moreover, there are good reasons to reject this 
assumption, since i t  raises more problems than i t  solves. 

I f  the subject has been unconsciously counting out thousands of al ter
natives with bri l l iant  heuristics to get to the point where he focuses on 
that Rook, why doesn't he carry on with that unconscious process al l  the 
way to the end, until the best move just pops into his consciousness? 
Why, if the unconscious counting is rapid and accurate, does he resort 
to a cumbersome method of slowly, awkwardly,  and consciously count
ing things out at the part icular point where he spots the Rook? Or if, on 
the other hand, the unconscious counting is inadequate. what is the 
advantage of switching to a conscious version of the same process? 

This sort of teleological considerat ion-while not a proof that uncon
scious processing is nonheuristic--does put the burden of proof on those 
who claim that it is or must be. And those who make this claim have 
brought forward no arguments to support i t .  There is no evidence, 
behavioral or introspect ive, that counting out is the only kind of .. infor
mat ion processing" involved in playing chess, that .. the essential nature 
of the task [is] search in a space of exponent ial ly growing possibi l i t ies .  " 39 

On the contrary, all protocols testify that chess involves two kinds of 
behavior: ( 1 )  zeroing in, by means of the overal l  organi zation of the 
perceptual field, on an area formerly on the fringes of consciousness, and 
which other areas sti l l  on the fringes of consciousness make interesting; 
and (2) counting out explicit al ternatives. 

This distinction clarifies the early success and the later failure of work 
in cognit ive simulation. In  al l  game-playing programs, early success is 
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attained by working on those games or parts of games in which heuristi
cally guided counting out is feasible; failure occurs at the point where 
complexity is such that global awareness would be necessary to avoid an 
overwhelming exponential growth of possibilities to be counted. 

A M BIGUITY TOLERA NCE VS. CONTEXT-FREE PR ECISION 

Work on game playing revealed the necessity of processing "informa
tion" which is not explicitly considered or excluded, that is, information 
on the fringes of consciousness. Work in language translation has been 
halted by the need for a second nonprogrammable form of "information 
processing" : the ability to deal with situations which are ambiguous 
without having to transform them by substituting a precise description. 

We have seen that Bar-Hillel and Gettinger, two of the most respected 
and best-informed workers in the field of automatic language translation, 
agree in their pessimistic conclusions concerning the possibility of fur
ther progress in the field. Each has realized that in order to translate a 
natural language, more is needed than a mechanical dictionary-no 
matter how complete-and the laws of grammar-no matter how so
phisticated. The order of the words in a sentence does not provide 
enough information to enable a machine to determine which of several 
possible parsings is the appropriate one, nor do the surrounding words 
-the written context-always indicate which of several possible mean
ings is the one the author had in mind. 

As Gettinger says in discussing systems for producing all parsings of 
a sentence acceptable to a given grammar: 

The operation of such analyzers to date has revealed a far higher degree of 
legi t imate syntactic ambiguity in English and in Russian than has been an
ticipated. This, and a related fuzziness of the boundary between the grammatical 
and the non-grammatical ,  raises serious questions about the possibi l i ty of effec
tive ful ly automatic manipulations of English or Russian for any purpose of 
translation or information retrieval .  40 

Instead of claiming, on the basis of his early partial success with a 
mechanical dictionary, and later (with Kuno and others) with syntac-
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tic analyzers, that in spite of a few exceptions and difficulties, the mystery 
surrounding our understanding of language is beginning to dissolve, 
Oettinger draws attention to the "very mysterious semantic processes 
that enable most reasonable people to interpret most reasonable sen
tences unequivocally most of the time. "' 1 

Here is another example of the importance of fringe consciousness. 
Obviously, the user of a natural language is not aware of many of the 
cues to which he responds in determining the intended syntax and mean
ing. On the other hand, nothing indicates that he considers each of these 
cues unconsciously .  In fact, two considerations suggest that these cues 
are not the sort that could be taken up and considered by a sequential 
or even a parallel program.'2 * 

First, there is Bar-Hil lel 's argument, which we shall later study in 
detail (Chapter 6), that there is an infinity of possibly relevant cues . 
Second, this suggests that perhaps it is not primarily a question of cues 
at all .  In any particular context most of the abstractly conceivable am
biguities do not arise. The sentence is heard in the appropriate way 
because the context organizes the perception; and since sentences are not 
perceived except in context they are always perceived with the narrow 
range of meanings the context confers .  The common stream of sounds 
which is the same in each context and must be disambiguated is a 
problem for computers, not human beings. 

Insofar as cues are relevant we must remember that natural language 
is used by people involved in situations in which they are pursuing 
certain goals. These extralinguistic goals, which need not themselves be 
precisely stated or statable, provide some of the cues which reduce the 
ambiguity of expressions as much as is necessary for the task at hand. 
A phrase l ike .. stay near me" can mean anything from "press up against 
me" to . .  stand one mile away, , .  depending upon whether it is addressed 
to a child in a crowd or a fel low astronaut exploring the moon. Its 
meaning is never unambiguous in all possible situations-as if this ideal 
of exactitude even makes sense-but the meaning can always be made 
sufficiently unambiguous in any particular situation so as to get the 
intended result. Wittgenstein makes this pragmatic point: 
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We are unable clearly to circumscribe the concepts we use; not because we don't 
know their real definition, but because there is no real "definition" to them. To 
suppose that there must be would be like supposing that whenever children play 
with a ball they play a game according to strict rules. 43 * 

Our abi lity to use a global context to reduce ambiguity sufficiently 
without having to formali ze (that is, el iminate ambiguity altogether) 
reveals a second fundamental form of human " information processing," 
which presupposes the first. Fringe consciousness takes account of cues 
in the context, and probably some possible parsings and meanings, all of 
which would have to be made explicit i n  the output of a machine. Our 
sense of the situation, however, allows us to exclude most possibil it ies 
without their ever coming up for consideration . We shall call the abi lity 
to narrow down the spectrum of possible meanings by ignoring what, out 
of context, would be ambiguities, "ambiguity tolerance."  

Since a human being uses and understands sentences in famil iar 
situations, the only way to make a computer that can understand ac
tual utterances and translate a natural language may well be, as Tur
ing suspected, to program it to learn about the world. Bar-Hi llel re
marks : "I do not believe that machines whose programs do not 
enable them to learn, in a sophisticated sense of this word, wil l  ever 
be able to consistently produce high:.quality translations. "44 When oc
casionally art ificial intelligence enthusiasts admit the difficulties con
fronting present techniques, the appeal to learning is a favori te pana
cea. Seymour Papert of M . I .T. ,  for example, has recently claimed 
that one cannot expect machines to perform like adults unless they 
are fi rst taught, and that what is needed is a machine with the child's 
abi lity to learn. This move, however, as we shal l see, only evades the 
problem. 

In  the area of language learning, the only interesting and successful 
program is Feigenbaum 's EP AM (Elementary Perceiver and Memo
rizer). EPAM simulates the learning of the association of nonsense syl la
bles, which Feigenbaum calls a simplified case of verbal learn ing. 4 5  The 
in teresting thing about nonsense syl lable learning, however, is that it is 
not a case of language learning at al l .  Learning to associate nonsense 
syllables is, in fact, acquiring something l ike a Pavlovian conditioned 
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reflex. The experimenter could exhibit "DAX" then "JIR, "  or he could 
flash red and then green lights; as long as two such events were associat ed 
frequently enough, one would learn to anticipate the second member of 
the pair. In such an experiment ,  the subject is assumed to be completely 
passive. In a sense, he isn't real ly learning anything, but is having some
thing done to him. Whether the subject is an idiot, a child, or an adult 
should ideally make no difference in the case of nonsense syl lable learn
ing. Ebbinghaus, at the end of the nineteenth century. proposed this form 
of conditioning precisely to eliminate any use of meaningful grouping or 
appeal to a context of previously learned associations. 

It is no surprise that subject protocol and machine trace most nearly 
match in this area. But it is a dubious triumph: the only successful case 
of cognitive simulation simulates a process which does not involve com
prehension, and so is not genuinely cognitive. 

What is involved in learning a language is much more complicated and 
more mysterious than the sort of conditioned reflex involved in learning 
to associate nonsense syl lables. To teach someone the meaning of a new 
word, we can sometimes point at the object which the word names. 
Augustine, in his Confessions. and Turing,  in his artic le on machine 
intel ligence, assume that this is the way we teach language to children. 
But Wit tgenstein points out that if we simply point at a table, for exam
ple, and say .. brown,"  a child will not know if brown is the color. the 
size, or the shape of the table, the kind of object ,  or the proper name of 
the object .  If the child already uses language, we can say that we are 
pointing out the color; but if he doesn't  already use language, how do 
we ever get off the ground? Wit tgenstein suggests that the child must be 
engaged in a "form of life" in which he shares at least some of the goals 
and interests of the teacher, so that the activity at hand helps to delimit 
the possible reference of the words used. 

What, then, can be taught to a machine? This is precisely what is in 
question in one of the few serious objections to work in artificial intel li
gence made by one of the workers himself. A. L. Samuel ,  who wrote the 
celebrated checkers program, has argued that machines cannot be intel li
gent because they can only do what they are instructed to do. Minsky 
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dismisses this objection with the remark that we can be surprised by the 
performance of our machines.46 But Samuel certainly is aware of this, 
having been beaten by his own checkers program. He must mean some
thing else, presumably that the machine had to be given the program by 
which it could win, in a different sense than children are taught to play 
checkers. But i f  this is his defense, Samuel is already answered by Mi
chael Scriven. Scriven argues that new strategies are " 'put into' the 
computer by the designer . . .  in exactly the same metaphorical sense that 
we put into our children everything they come up with in their  later 
life. " 47 Still, Samuel should not let himself be bullied by the philosophers 
any more than by his colleagues. Data are indeed put into a machine but 
in an entirely different way than children are taught. We have just seen 
that when language is taught it is not, and, as we shall see in Chapter 
6, cannot be, precisely defined. Our attempts to teach meaning must be 
disambiguated and assimilated in terms of a shared context. Learning as 
opposed to memorization and repetition requires this sort of judgment. 
Wittgenstein takes up this question as follows : 

Can someone be a man's teacher in this? Certain ly .  From time to time he gives 
h im the right tip . . . .  This is what learn ing and teaching are l ike here . . . .  What 
one acquires here is not a technique; one learns correct judgements. There are 
also rules, but they do not form a system, and only experienced people can apply 
them right .  Unlike calculation rules.48* 

It is this ability to grasp the point in a particular context which is true 
learning; since children can and must make this leap, they can and do 
surprise us and come up with something genuinely new. 

The foregoing considerations concerning the essential role of context 
awareness and ambiguity tolerance in the use of a natural language 
should suggest why, after the success of the mechanical dictionary, 
progress has come to a halt in the translating field. Moreover, since, as 
we have seen, the ability to learn a language presupposes the same 
complex combination of the human forms of "information processing" 
needed to understand a language, it is hard to see how an appeal to 
learning can be used to bypass the problems this area must confront. 
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ESSENTIA L/INESSENTIA L  DISCRIMINATION VS. TRIAL-AND-ERROR 

SEARCH 

Work in problem solving also encounters two functions of thought: 
one, elementary and piecemeal, accounts for the early success in the field; 
another, more complex and requiring insight, has proved intractable to 
stepwise programs such as Simon's General Problem Solver. For simple 
problems it is possible to proceed by simply trying all possible combina
tions until one stumbles on the answer. This trial-and-error search is 
another example of a brute-force technique like counting out in chess. 
But, just as in game playing, the possibilities soon get out of hand. In 
problem solving one needs some systematic way to cut down the search 
maze so that one can spend one's time exploring promising alternatives. 
This is where people rely on insight and where programmers run into 
trouble. 

If  a problem is set up in a simple, completely determinate way, with 
an end and a beginning and simple, specifically defined operations for 
getting from 01 .�  to the other (in other words, if we have what Simon calls 
a "simple formal problem"), then Simon's General Problem Solver can, 
by trying many possibilities, bring the end and the beginning closer and 
closer together until the problem is solved. This would be a successful 
example of means-ends analysis . But even this simple case presents many 
difficulties. Comparing the machine print-out of the steps of a G PS 
solution with the transcript of the verbal report of a human being solving 
the same problem reveals steps in the machine trace (explicit searching) 
which do not appear in the subject's protocol. And Simon asks us to 
accept the methodologically dubious explanation of the missing steps in 
the human protocol that "many things concerning the task surely oc
curred without the subject's commenting on them (or being aware of 
them)"'9 and the even more arbitrary assumption that these further 
operations were of the same elementary sort as those verbalized. In fact, 
certain details of Newell and Simon's article, "GPS: A Program That 
Simulates Human Thought," suggest that these further operations are 
not like the programmed operations at all. 
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In  one of Simon's experiments, subjects were given problems in formal 
logic and a l ist of rules for t ransforming symbolic expressions and asked 
to verbal ize thei r  attempt to solve the problems. The details of the rules 
are not important; what is important is that at a point in the protocol 
the subject notes that he appl ies the rule (A • B � A) and the rule 
(A · B-+ B), to the conjunction ( - R v - P) • (R v Q). Newell  and 
Simon comment :  

The subject handled both forms of rule 8 together, a t  least a s  far  as  h i s  comment 
is concerned. GPS, on the other hand, took a separate cycle of considerat ion for 
each form. Possibly the subject fol lowed the program covertly and simply re
ported the two results together. so 

Possibly, however, the subject grasped the conjunction as symmetric 
with respect to the transformation operated by the rule, and so in  fact 
appl ied both forms of the rule at once. Even Newell and Simon admit 
that they would have preferred that GPS apply both forms of the rule 
in  the same cycle. Only then would their program provide a psychologi
cal theory of the steps the subject was going through. They wisely refrain , 
however, from trying to write a program which could discriminate be
tween occasions when i t  was appropriate to apply both forms of the rule 
at once and those occasions when i t  was not. Such a program, far from 
el iminating the above divergence, would require further processing not 
reported by the subject, thereby increasing the discrepancy between the 
program and the protocol . Unable thus to el iminate the divergence and 
unwi l l ing to t ry to understand i ts significance, Newel l and Simon dismiss 
the discrepancy as "an example of parallel processing. " 5 1  * 

Another divergence noted by Newell and Simon, however, does not 
permit  such an evasion . At a certain point ,  the protocol reads : • ·  . . .  I 
should have used rule 6 on the left-hand side of the equation . So use 6, 
but only on the left-hand side. " Simon notes: 

Here we ha.ve a strong departure from the GPS trace. Both the subject and GPS 
found rule 6 as the appropriate one to change signs . At this point GPS simply 
applied the rule to the current expression; whereas the subject went back and 
corrected the previous appl ication. Nothing exists in the program that corre-
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sponds to this. The most direct explanation is that the appl ication of rule 6 in 

the inverse direction is perceived by the subject as undoing the previous applica-

tion of rule 6. 52 

This is indeed the most direct explanation, but Newell and Simon do 
not seem to realize that this departure from the trace, which cannot be 
explained away by parallel processing, is as detrimental to their theory 
as were the discrepancies in the movements of the planets to the 
Ptolemaic system. Some form of thinking other than searching is taking 
place! 

Newell and Simon note the problem: " I t  clearly implies a mechanism 
(maybe a whole set of them) that is not in G PS, " � 1 but,  like the ancient 
astronomers, they try to save their theory by adding a few epicycles. 
They continue to suppose, without any evidence, that this mechanism is 
just a more elaborate search technique which can be accommodated by 
providing GPS with . .  a lit t le continuous hindsight about its past ac
tions."54 They do not realize that their assumption that intel l i gent behav
ior is always the resul t  of fol lowing heurist ic ru les commits them to the 
implausiblP view that their subject 's  decision to backtrack must be the 
result of a very selective checking procedure. Otherwise. all past steps 
would have to be rechecked at each stage, which would hopelessly en
cumber the program. 

A more scientific approach would be to explore further the implica
tions of the five discrepancies noted in the art ic le, in order to determine 
whether or not a different form of • •information processing" might be 
involved. For example, Gestalt pyschologist Max Wertheimer points out 
in his c lassic work , Productive Th in king. that the trial -and-error account 
of problem solving excl udes the most important aspect of problem
solving behavior. namely a grasp of the essential structure of the prob
lem, which he cal ls "insight . " � �  In this operation, one breaks away from 
the surface structure and sees the basic problem-what Wertheimer cal ls 
the "deeper structure"-which enables one to organize the steps neces
sary for a solution. This gestaltist conception may seem antithetical to 
the operational concepts demanded by artificial intelligence, but Minsky 
recognizes the same need in different terms : 
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The abi li ty to solve a difficult problem hinges on the abi l i ty to spl i t  or t ransform 
it i n to problems of a lower order of difficulty. To do this, without total reliance 
on l uck, requires some understanding of the situation. One must be able to 
deduce, or guess, enough of the consequences of the problem statement to be able 
to set up simpler models of the problem situation. The models must have enough 
s tructure to make it l ikely that there wi l l  be a way to extend their solut ions to 

the original problem. s6 

Since insight is necessary in solving complex problems and since what 
Minsky demands has never been programmed, we should not be sur
prised to find that in the work of Newell and Simon this insightful 
restructuring of the problem is surreptitiously introduced by the pro
grammers themselves. In The Processes of Creative Thinking, Newell, 
Shaw, and Simon introduce "the heuristics of planning" to account for 
characteristics of the subject's protocol lacking in a simple means-ends 
analysis. 

We have devised a program . . . to describe the way some of our subjects handle 
0. K. Moore' s  logic problems, and perhaps the easiest way to show what is 
involved in planning i s  to describe that program. On a purely pragmatic basis, 
the twelve operators that are admitted in this system of logic can be put in two 
classes, which we shall cal l "essential" and "inessential" operators, respectively. 
Essential operators are those which, when applied to an expression , make .. large" 
changes in i ts appearance--change "P v P" to "P," for example. I nessent ial 
operators are those which make "smal l" changes--e.g. ,  change "P v Q" to 
"Q v P. " As we have said,  the dist inction is purely pragmatic. Of the twelve 
operators in th is  calculus ,  we have classified eight as essential and four as inessen
tial. . . .  

Next ,  we can take an expression and abstract from i t  those features that relate 
on ly to essential changes. For example, we can abstract from "P v Q" the 
expression (PQ), where the order of the symbols in the latter expression is 
regarded as i rrelevant .  Clearly, i f  inessen tial op_erations are applied to the ab
stracted expressions, the expressions wil l  remain unchanged, while essential 
operations can be expected to change them . . . . 

We can now set up a correspondence between our original expressions and 
operators, on the one hand, and the abstracted expressions and essential opera
tors, on the other. Corresponding to the original problem of transforming a in to 
b, we can construct a new problem of t ransforming a '  in to b', where a '  and b' 
are the expressions obtained by abstract ing a and b respectively. Suppose that 
we solve the new problem, obtaining a sequence of expressions, a '  c' d' . . .  b' .  
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We can now t ransform back to the origina l  problem space and set up the new 

problems of t ransforming a i n to c, c into d, and so on . Thus, the solu t ion of the 

problem in the plann ing space provides a plan for the solut ion of the origi nal 

problem.n  

No comment is necessary. One merely has to  note that the actual pro
gram description begins in the second paragraph. The classification of 
the operators into essential and inessential, the function Wertheimer 
calls "finding the deeper structure" or "insight , . . is introduced by the 
program mers before the actual programming begins. 

This sleight of hand is overlooked by Miller, Galanter, and Pribram 
in Plans and the Structure of Beha vior. a book which presents a psycho
logical theory influenced by Newell, Shaw, and Simon's work . Miller et 
al. begin by quoting Polya, who is fully aware of the necessary role 
insight plays in problem solving : 

In his popular text ,  How to Solve Ir. Polya dis t inguishes . . .  phases in t he heurist ic 

process : 

-Fi rst ,  we must understand t he problem .  We have to  see c lear ly what  t he data 

are, what condi t ions are imposed. and what t he unknown th ing  is  t hat  we a re 

searching for. 

-Second, we must devise a plan t hat  w i l l  guide the sol ut ion and connect  t he 

data to t he unknown . ' �  

Miller e t  al . then minimize the importance of phase I .  or rather simply 
decide not to worry about it . 

Obviously ,  t he second of these is most cri t ica l .  The fi rst i s  what we have described 

in Chapter 1 2  as the cons truct ion of a c lear Image of t he si t uat ion i n  order to 

establ ish a test for the solut ion of t he problem ; i t  i s  i nd ispensable. of course, but 

in  t he discussion of well -defined problems we assume t hat  i t  has a l ready been 

accomplished . '� 

St ill the whole psychological theory of problem solving will not be 
worth much if there is no way to bring step one into the computer model. 
Therefore, it is no surprise that ten pages later, after adopting Simon's 
means-ends analysis, we find Mtller et al. referring with relief to Simon's  
. .  planning method,"t,0 presumably the very paragraphs we have just dis
cussed: 
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A second very general system of  heuristics used by Newel l ,  Shaw, and Simon 
consists in omitt ing certain details of the problem. This usually simplifies the task 
and the simpl ified problem may be solved by some famil iar plan. The plan used 
to solve the simple problem is then used as the strategy for solving the original , 
complicated problem. In solving a problem in  the propositional calculus, for 
example, the machine can decide to ignore differences among the logical connec
tives and the order of the symbols . . . .  6 1  

But, as we have seen, it is not the machine that decides, but Newel l ,  
Shaw, and Simon, themselves. To speak of heuristics here is completely 
misleading, since no one has succeeded in formulating the rules which 
guide this preliminary choice or even in showing that at this stage, where 
insight is required, people fol low rules. Thus we are left with no com
puter theory of the fundamental first step in all problem solving : the 
making of the essential/inessential distinction. Only those with faith 
such as that of Mil ler et a l .  could have missed the fact that Simon's 
"planning method," with its predigesting of the material ,  poses the prob
lem for computer simulation rather than provides the solution. 

This human ability to distinguish the essential from the inessential in 
a specific task accounts for the divergence of the protocol of the problem
sol ving subjects from the GPS trace. We have already suggested that the 
subject applies both forms of rule 8 together because he realizes at this 
initial stage that both sides of the conjunction are functionally equiva
lent . Likewise, because he has grasped the essential function of rule 6, 
the subject can see that a second application of the rule simply neutral
izes the previous one. As Wertheimer notes: 

The process [of structuring a problem] does not involve merely the given parts 
and their transformations. It works in conjunction with material that is structur
al ly relevant but is selected from past experience . . . .  62 

Since game playing is a form of problem sol ving we should expect to 
find the same process in chess playing, and indeed we do. To quote 
Hearst : 

De Groot concluded from his study that differences in playing strength depend 
much less on calculating power than on "ski l l  in problem conception . "  Grand
masters seem to be superior to masters in isolating the most sign ificant features 
of a posi tion , rather than in  the total number of moves that they consider. 
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Somewhat surprisingly, de Groot found that grandmasters do not examine more 

possibilities on a single move than lower-ranked experts or masters (an average 

of t wo to four first moves per position) nor do they look further ahead (usually 

a maximum of six to seven moves ahead for each). The grandmaster is somehow 

able to "see" the core of the problem immediately, whereas the expert or lesser 

player finds it with difficulty, or misses i t  completely, even though he analyzes 

as many alternatives and looks as many moves ahead as the grandmaster.� •  

In 1 96 1 , as we  have seen, Minsky was already aware of  these problems. 
But his only hope was that one would discover a planning program 
which would use more of the same sort of heurist ic searching on a higher 
level: 

When we call for the use of .. reasoning, " we intend no suggestion of g iv ing up 

the game by invoking an intelligen t  subroutine. The program that administers 

the search will be just another heuristic program. Almost certainly i t  will be 

composed largely of the same sorts of objects and processes that will comprise 

the subject -domain programs. �4 

But such a planning program i tself would requi re a dist inct ion hetween 
essent ial and inessent ial operators. Unless at some stage the programmer 
himself int roduces this dist inct ion, he will be forced into an infini te 
regress of planning programs, each one of which will requi re a higher
order program to st ructure its ill-st ructured data. At this point , the 
transit ion from the easy to the difficult form of . .  informat ion proces
sing," Minsky makes the typical move to learn ing.  

The problem of making useful deduct ions from a large body of statements (e . g. 

about the relevance of different methods to di fferent kinds of problems) raises a 

new search problem. One must rest rict the logical explorat ion to data  li kely to 

be relevant  to the current problem. This selection function could hardly be 

completely built in at the start .  I t  must develop along wi th other data  ac
cumulated by experience . � '  

But thus far no one has even t ried to suggest how a machine could 
perform this selection operat ion, or how it could be programmed to learn 
to perform i t ,  since it is one of the condit ions for learning from past 
experience. 

Feigenbaum, in a recent appraisal of work done since Computers and 
Thought, notes the glaring lack of learning programs: 
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The AI field still has little grasp of the machine learning problem for problem 
solvers. For many years, almost the only citation worth making was to Samuel's 
famed checker playing program and its learning system . (Great interest arose 
once in a scheme proposed by Newell, Shaw, and Simon for learning in GPS, 
but the scheme was never realized.) Surprisingly. today we face the same situa
tion. 66 

This lack of progress is surprising only to those, like Feigenbaum, who 
do not recognize the ability to distinguish the essential from the inessen
tial as a human form of "information processing," necessary for learning 
and problem solving, yet not amenable to the mechanical search tech
niques which may operate once this distinction has been made. It is 
precisely this function of intelligence which resists further progress in the 
problem-solving field. 

It is an i l lusion, moreover, to think that the planning problem can be 
solved in isolation; that essential/inessential operations are given like 
blocks and one need only sort them out. It is easy to be hypnotized by 
oversimplified and ad hoc cases-like the logic problem-into thinking 
that some operations are essential or inessential in themselves. It then 
looks as if we can find them because they are already there, so that we 
simply have to discover a heuristic rule to sort them out. But normally 
(and often even in logic) essential operations are not around to be found 
because they do not exist independent ly of the pragmatic context .  

In the light of their frank inevitable recourse to the insightful predi
gesting of their material , there seems to be no foundation for Newel l ,  
Shaw, and Simon's claim that the behavior vaguely labeled cleverness or 
keen insight in human problem solving is really just the result of the 
judicious application of certain heuristics for narrowing the search for 
solutions. Their work with GPS, on the contrary, demonstrates that all 
searching, unless directed by a preliminary structuring of the problem, 
is merely muddling through . 

Ironically, research in Cognitive Simulation is a perfect example of 
so-called intelligent behavior which proceeds like the unaided G PS. Here 
one finds the kind of tinkering and ad hoc patchwork characteristic of 
a fascination with the surface structure-a sort of tree-cl imbing with 
one's eyes on the moon. Perhaps it is just because the field provides no 
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example of insight that some people in Cognitive Simulation have mis
taken the operation of G PS for intel ligent behavior. 

PERSPICUOUS GROUPING VS. CHARACTER LISTS 

A computer must recognize al l  patterns in terms of a l ist of specific 
traits. This raises problems of exponential growth which human beings 
are able to avoid by proceeding in a different way . Simulating recognition 
of even simple patterns may thus require recourse to each of the funda
mental forms of human "information processing" discussed this far. And 
even if in these simple cases artificial intell igence workers have been able 
to make some headway with mechanical techniques, patterns as complex 
as artistic styles and the human face reveal a loose sort of resemblance 
which seems to require a special combination of insight, fringe conscious
ness, and ambiguity tolerance beyond the reach of digital machines .  It 
is no wonder, then , that work in pattern recognition has had a late start 
and an early stagnation . 

In Chapter 1 we noted that a weakness of current pattern recognition 
programs (with the possible except ion of the Ohr-Vossler program, the 
power of whose operators-since it on ly recognizes five letters-has not 
yet been sufficiently tested) is that they are not able to determine thei r 
own selection operators .  Now, however, we shal l see that this way of 
presenting the problem is based on assumptions that hide deeper and 
more difficult issues. 

Insigh t. A first indicat ion that human pattern recognition differs radi
cal ly from mechanical recognit ion is seen in human (and animal) toler
ance for changes in orientation and size, degrees of incompleteness and 
distort ion , and amount of background noise. 

An early artificial intel l igence approach was to try to normalize the 
pattern and then to test it against a set of templates to see which i t  
matched . Human recognition ,  on the other hand, seems t o  simply d isre
gard changes in size and orientation , as well as breaks in the figure, and 
so on . Although certain perceptual constants do achieve some normali
zation (apparent size and brightness do not vary as much as correspond
ing changes in the signal reaching the retina), i t  seems clear that we do 
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not need to fully normalize and smooth out the pattern, since we can 
perceive the pattern as skewed, incomplete, large or small, and so on, at 
the same time we recognize iL 

More recent programs, rather than normalizing the pattern, seek pow
erful operators which pick out discriminating traits but remain insensi 
tive to distortion and noise. But human beings, when recognizing 
patterns, do not seem to employ these artificial expedients either. In 
those special cases where human beings can articulate their cues, these 
turn out not to be powerful operators which include sloppy patterns and 
exclude noise, but rather a set of ideal traits which are only approximated 
in the specific instances of patterns recognized. Distorted patterns are 
recognized not as falling under some looser and more ingenious set of 
traits, but as exhibiting the same simple traits as· the undistorted figures, 
along with certain accidental additions or omissions. Similarly, noise is 
not tested and excluded; it is ignored as inessential. 67 * Here again, we 
note the human ability to distinguish the essential from the inessential. 

Fringe Consciousness. To determine which of a set of already analyzed 
patterns a presented pattern most nearly resembles, workers have pro
posed analyzing the presented pattern for a set of traits by means of a 
decision tree; or by combining the probabilities that each of a set of traits 
is present, as in Selfridge's Pandaemonium program. Either method 
uncritically assumes that a human being, like a mechanical pattern 
recognizer, must classify a pattern in terms of a specific list of traits. It 
seems self-evident to Selfridge and Neisser that "a man who abstracts a 
pattern from a complex of stimuli has essentially classified the possible 
inputs. " 68 Earl Hunt makes the same assumption in his review of pattern 
recognition work : "Pattern recognition, like concept learning, involves 
the learning of a classification rule. " 69 

Yet, if the pattern is at all complicated and sufficiently similar to many 
other patterns so that many traits are needed for discrimination, the 
problem of exponential growth threatens. Supposing that a trait-by-trait 
analysis is the way any pattern recognizer, human or artificial, must 
proceed thus leads to the assumption that there must be certain crucial 
traits-if one could only find them, or program the machine to find them 
for itself-which would make the processing manageable. 
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One is led to look for a sort of perceptual heuristic, the "powerful 
operators" which no one as yet has been able to find. And just as the 
chess masters are not able to provide the programmer with the heuristic 
shortcuts they are supposed to be using, Selfridge and Neisser note in the 
case of pattern recognition that "very often the basis of classification is 
unknown, even to [the analyzer] . "  Nevertheless, Selfridge and Neisser 
assume, like Newell and Simon, that unconsciously a maze is being 
explored-in this case, that a list of traits is being searched. They are thus 
led to conclude that "it [the basis of classification] is too complex to be 
specified explicitly. " '0 

But the difficulties involved in searching such a list suggest again that , 
for human beings at least ,  not all possibly relevant traits are taken up in 
a series or in parallel and used to make some sort of decision . but that 
many traits crucial to discrimination are never taken up explicitly at all 
but do their work while remaining on the fringe of consciousness. 

Whereas in chess we begin with a global sense of the situation and have 
recourse to counting out only in the last analysis. in perception we need 
never appeal to any explicit traits .  We normally recognize an object as 
similar to other objects without being aware of it as an example of a t ype 
or as a member of a class defined in terms of specific traits .  As Aron 
Gurwitsch puts it in his analysis of the difference between perceptual and 
conceptual consciousness : 

Perceived objects appear to us with generic determ inations . . . .  But-and this 
is the decisive point-to perceive an object of a certa in kind is  not at  all the same 

thing as grasping tha t object as represen tative or as a particular  case of a type. 1 1 

Of course, we can sometimes make the defining traits explicit : 

The first step in the const i tut ing of conceptual consciousness consists i n  effecting 
a dissociation with in the object perceived i n  i ts typical i ty. The generic t rai ts 
which unti l then were immanent and inherent in  the perceived thing are detached 
and disengaged from i t .  Rendered expl ic i t ,  these traits can be seized i n  them
selves . . . .  Consequent upon this dissociation, the generic becomes the genera l. 

From this aspect it opposes itself to the th ing perceived from which i t  has just 
been disengaged, and which now is t ransformed into an example, a part icular 
instance . . . .  

(Thus, cues] can be grasped and become themes [specific traits we are aware 
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of] . . .  , whereas previously they only con tributed to the consti tution of another 
theme [the pattern] within which they played only a mute role. 72 

This shift from perceptual to conceptual consciousness (from the per
ceptive to the mathematical frame of mind, to use Pascal's expression), 
is not necessari ly  an improvement. Certain victims of aphasia, studied 
by Gelb and Goldstein, have lost their capacity for perceptual recogni
tion. All  recognition for the patient becomes a question of classification. 
The patient has to resort to checkl ists and search procedures, l ike a 
digital_ computer. Some such aphasics can only recognize a figure such 
as a triangle by l isting its traits, that is, by counting its sides and then 
thinking: "A triangle has three sides. Therefore, this is a triangle. " 7 3  Such 
conceptual recognition is time consuming and unwieldy; the victims of 
such brain injuries are utterly incapable of getting along in the everyday 
world. 

Evidently, in pattern recognition, passing from implicit perceptual 
grouping to explicit conceptual classification--even at some final stage, 
as in chess-is usual ly disadvantageous. The fact that we need not con
ceptualize or thematize the traits common to several instances of the 
same pattern in order to recognize that pattern distinguishes human 
recognition from machine recognition, which only occurs on the explicit 
conceptual level of class membership. 

Context-Dependent Ambiguity Reduction. In the cases thus far consid
ered, the traits defining a member of a class, whi le generally too numer
ous to be useful in practical recognition, could at least in principle always 
be made expl icit. In some cases, however, such expl icitation is not even 
possible. To appreciate this point we must first get over the idea, shared 
by traditional phi losophers and workers in artificial intel ligence al ike, 
that pattern recognition can always be understood as a sort of classifica
tion. In this overhasty generalization three distinct kinds of pattern 
recognition are lumped together, none of which has the characteristics 
phi losophers and digital computers demand. 

First there is the recognition of what Gurwitsch cal ls the generic. An 
example of such recognition would be the recognition of a certain object 
as a pencil. As Gurwitsch has pointed out, this form of recognition, while 
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not explicit, lends i tself to explicitation in terms of a set of features. It 
might thus seem adapted to being programmed. But what Gurwitsch 
overlooks in his account is that in this form of recognition our purposes 
serve to select which features are significant, and, among these, certain 
features which are crucial. For example, it is signifi cant for our purposes 
that a pen have a point. However, when a writing instrument with a ball 
at the end was introduced, the end was nonetheless called a point (not 
a tip), and the instrument a ball-point pen (not a pencil), presumably 
because it was crucial to the users that the mark this instrument made 
could not be erased. 

We might conclude that making an indelible mark is a defining crite
rion for being a pen, whereas having a point is only what Wittgenstein 
calls a symptom-· ·  . . . a phenomenon of which the experience has taught 
us that it coincided, in some way or other, with the phenomenon which 
is our defining criterion." We might even try to introduce this distinction 
between symptom and criterion into our program. But Wittgenstein ·s 
essential point in distinguishing between symptom and criterion is that 
the distinction is not fixed once and for all but changes with our changing 
purposes and knowledge: 

In pract ice, i f  you were asked which phenomenon is t he defi ning cri terion and 
which is a symptom, you would in  most cases be unable to  answer th is quest ion 
except by making an arbi t rary decision ad hoc. I t  may be pract ica l  to define a 
word by taking one phenomenon as t he defin ing criterion , but we shal l easi l y  be 
persuaded to define t he word by means of what , according to our fi rst use, was 
a symptom . Doctors wi l l  use names of diseases wi thout ever deciding wh ich 
phenomena are to  be  taken as cri teria and which as  symptoms; and th i s  need not  
be  a deplorable lack of clari t y .  7 4  

Indeed, it is one way our concepts gain the openness crucial to human 
pattern recognition, a flexibility lacking in a computer using a fixed set 
of essential features. 

A second sort of pattern recognition is the recognition of resemblance. 
In this sort of recognition, as in · ·�arrowing down" 1

' • the meaning of 
words or sentences, the context plays a determining role. The context 
may simply lead us to notice those resemblances which we can subse
quently recognize in isolation-as in the case of ambiguous figures such 
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as Wittgenstein's duck-rabbit , which resembles a duck when surrounded 
by pictures of ducks and a rabbit when surrounded by rabbits-or it may 
lead us to focus on certain aspects of the pattern , as in Pudovkin's famous 
experiment :  

One day Pudovkin  took a close-up of Mosjoukin with a completely impassive 
expression and projected i t  after showing: first, a bowl of soup, then, a young 
woman lying dead in  her coffin,  and last , a chi ld playing with a teddy-bear. The 
fi rst thing noticed was that Mosjoukin seemed to be looking at the bowl, the 
young woman, and the chi ld, and next one noted that he was looking pensively 
at the dish, that he wore an expression of sorrow when looking at the woman, 
and that he had a glowing smile for the child. The audience was amazed at his 
variety of expression , al though the same shot had actual ly been used all three 
t imes and was, if anything, remarkably inexpressive. 76 

Here, in a striking way, the meaning of the context determines what 
expression is seen on the face in a situation in which no traits of the face 
as projected on the screen could account for these differences. Sti l l one 
might say that the expressive face, the one that the viewers thought they 
saw, had certain trai ts, l ike sad eyes, or a happy smi le, which led the 
viewer to recognize the expression . But the expression of a person's eyes, 
for example, may depend on the whole face in such a way as to be 
unrecognizable if viewed through a sl i t .  Moreover, a certain expression 
of the eyes may bring out a certain curve of the nose which would not 
be noticed if the nose were in another face; the nose in turn may give a 
certain twist to the smile which may affect the appearance of the eyes. 
As Wittgenstein remarks: "A human mouth smi les only in a human 
face. " 7 7  In  such cases, the traits necessary for recognizing a resemblance 
(dancing eyes, mocking smi le, etc . )  cannot, even when thematized, be 
isolated and defined in a neutral, context-free way. Moreover, as in the 
case of l inguistic disambiguation, the context-in this example the whole 
face-not only determines the features essential for recognition, but is 
reciprocal ly determined by them . The expression is not deduced from the 
trai ts; it is  simply the organization of the eyes, the mouth, and so forth, 
just as a melody is made up of the very notes to which i t  gives their 
particular values. In  this sort of resemblance, the notion of recognizing 
the pattern in  terms of isolated traits makes no sense. 
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In another case of resemblance, objects recognized as belonging to
gether need not have any traits in common at all-not even context
dependent ones. Wittgenstein, in his study of natural language, was led 
to investigate this type of nonclassifactory recognition: 

We see a complicated network of simi lari t ies overlapping and criss-crossing :  
Sometimes overa l l  simi lari ties, sometimes simi larities of detai l .  

I can think of  no better expression to characterize these simi lari t ies than 
"family resemblances" ;  for the various resemblances between members of a 
fami ly :  bui ld, features, color of eyes, gai t ,  temperament . etc. etc . .  overlap and 
criss-cross in  the same way . . . .  We extend our concept . . .  as in  spinn ing a thread 
we twist fiber on fiber. 78 

Family resemblance differs from class membership in several impor
tant ways: classes can be defined in terms of traits even if they have no 
members, whereas family resemblances are recognized only in terms of 
real or imaginary examples. 7Q• Moreover. whereas class membership is 
al l or nothing, 80* family resemblance allows a spectrum ranging from the 
typical to the atypical .  An atypical member of a fami ly, for example, may 
be recognized by being placed in a series of faces leading from a typical 
member to the atypical one. Simi larly, certain concepts l ike graceful .  
garish, and crude can not be defined in terms of necessary and sufficient 
conditions, but only by exhibit ing a typical case. Since this sort of recog
ni t ion of a member of a .. fami ly" is accomplished not by a list of trai ts, 
but by seeing the case in quest ion in terms of its proximity to a paradigm 
(i .e . , typical) case, such recogni t ion gives us another kind of openness 
and flexibi l ity. 

Finally Wittgenstein goes even further and suggests that in some kinds 
of recogni t ion there may be no common traits. even overlapping ones. 
Wittgenstein continues the above remarks rather obscurely: 

. . .  If someone wishes to say :  . .  There is something common to all these const ruc
tions-namely the disjunction of al l  their common properties"-1 should reply : 
Now you are on ly playing with words. One might as wel l say : .. Something runs 
through the whole th read-namely the cont inuous overlapping of these fibres . " 8 1  

Wittgenstein here may be suggesting a third kind of recognition which 
he does not clearly distinguish from resemblance, but which we might 
cal l  the recogni tion of simi larity. 
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Wittgenstein, on this interpretation ,  should not be taken to mean that 
recognition involves so many overlapping traits, but that one cannot use 
such an unwieldy disjunction . A more consistent way of understanding 
his analysis would be to conclude that each of the traits he mentions in 
discussing family resemblance-the build, color of eyes, gait, etc.-is not 
identical in any two members of the family, but in turn consists of a 
network of crisscrossing similarities. To follow the analogy, each fiber is 
made of fibers all the way down .  Thus, no two members of a family need 
have any identical features for them all to share a family resemblance. 
Similarity is the ultimate notion in Wittgenstein 's analysis and it cannot 
be reduced-as machine-thinking would require-to a list or disjunction 
of identical, determinate features. 82 

Those capable of recognizing a member of a "family" need not be able 
to list a ny exactly similar traits common to even two members, nor is 
there any reason to suppose such traits exist. Indeed, formalizing family 
resemblance in terms of exactly similar traits would eliminate a kind of 
openness to new cases which is the most striking feature of this form of 
recognition . No matter what disjunctive list of traits is constructed, one 
can always invent a new "family" member whose traits are similar to 
those of the given members without being exactly similar to any of the 
traits of any of them, and which in some situation would be recognized 
as belonging with the others. 

This sophisticated but nonetheless very common form of recognition 
employs a special combination of the three forms of "information pro
cessing" discussed thus far: fringe consciousness, insight, and context 
dependence. To begin with, the process is implicit. It uses information 
which, in a manner of speaking, remains on the fringes of consciousness. 
To see the role of insight we must first distinguish the generic from the 
typical, although Gurwitsch uses these two terms interchangeably . As 
Gurwitsch defines it, recognition of the generic depends on implicit cues 
which can always be made explicit. Recognition of the typical, as we have 
been using the term, depends on similarities which cannot be thematized. 
Recognition of the typical, then , unlike recognition of the generic, re
quires insightful ordering around a paradigm. A paradigm case serves its 
function insofar as it is the clearest manifestation of what (essentially) 
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makes all members, members of a given group. Finally, recognition in 
terms of proximity to the paradigm is a form of context dependence. 

Wittgenstein remarks that "a perspicuous representation produces just 
that understanding which consists in seeing connections. " S J  Following 
Wittgenstein, we have called this combination of fringe consciousness, 
insight, and context determination "perspicuous grouping. " This form 
of human " information process ing" is as  important as the three funda
mental forms of information processing on which it depends . 

Summary. Human beings are able to recognize patterns under the 
following increasingly difficult conditions: 

1 .  The pat tern may be skewed, incomplete, deformed,  and embedded in  
noise; 

2. The t raits requi red for recognit ion may be · ·so fine and so numerous" that ,  
even if  they could be formalized ,  a search through a branch ing l ist of such 
t raits would soon become unmanageable as new pat terns for disc rimina
t ion were added ; 

3. The t raits may depend upon external and in ternal context and are thus not 
amenable to context-free specificat ion ; 

4. There may be no common t raits but a .. complicated network of overlap
ping simi larit ies," capable of assimi lat ing ever new variat ions. 

Any system which can equal human performance must , therefore , be 
able to 

1 .  Distinguish the essent ial from the inessen t ial features of a part icular in-
stance of a pattern ;  

2 .  Use cues which remain on  the fringes of  consciousness; 
3. Take account of the context ; 
4. Perceive the individual as typical, i .e. , s i tuate the individual wi th respect 

to a paradigm case. 

Since the recognition of patterns of even moderate complexity may 
require these four forms of human "information processing," work in 
pattern recognition has not progressed beyond the laborious recognition 
of simple alphanumeric patterns such as typewriter fonts and zip code 
figures. Moreover, it is generally acknowledged that further progress in 
game playing, language translation, and problem solving awaits a break
through in pattern recognition research. 
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Conclusion 

The basic problem facing workers attempting to use computers in the 
simulation of human intelligent behavior should now be clear: all alter
natives must be made explicit. In game playing, the exponential growth 
of the tree of these alternative paths requires a restriction on the paths 
which can be followed out; in complicated games such as chess, pro
grams cannot now select the most promising paths. In problem solving, 
the issue is not only how to direct a selective search among the explicit 
alternatives, but how to structure the problem so as to begin the search 
process. In language translation, even the elements to be manipulated are 
not clear due to the intrinsic ambiguities of a natural language; in pattern 
recognition, all three difficulties are inextricably intertwined, as well as 
the fact that similarity and typicality seem to be irreducible characteris
tics of perception. These difficulties have brought to a standstill the first 
five years of work on Cognitive Simulation. 

None of Simon's predictions has been fulfilled. The failure to fulfill the 
first two, about how well machines could do in chess and mathematics, 
gave the lie to Simon's third prediction concerning a psychological the
ory of human behavior. In spite of the eagerness and gullibility of psy
chologists, within the past ten years most theories in psychology have not 
taken the form of computer programs. 

Instead of these triumphs, an overall pattern has emerged: success 
with simple mechanical forms of information processing, great expecta
tions, and then failure when confronted with more complicated forms of 
behavior. Simon's predictions fall into place as just another example of 
the phenomenon which Bar-Hillel has called the "fallacy of the success
ful first step. " 84 * Simon himself, however, has drawn no such sobering 
conclusions. In his latest prediction, made in 1965, Simon now affirms 
that "machines will be capable, within twenty years, of doing any work 
that a man can do. " 8 5  

We shall devote Part II to the reasons for this imperturbable optimism, 
but first we must consider the work in AI which has taken up where work 
in Cognitive Simulation gave out. 
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Phase II  ( 1 962- 1 967) Semantic Information 

Processing 

To place Phase I in perspective and to form an idea of what was 
expected and accomplished in Phase II, it is helpful to begin by quot
ing Minsky 's brief account of the history of work on machine intelli
gence: 

In  the early t 950's , as general-purpose computers became available to the scien
t ific community ,  Cybernet ics div ided . . .  into three chief avenues: The first was 
the cont inuation of the search for sim ple basic principles. This became trans
formed into the goal of discovering what we might cal l  min imal ,  Self-Organ izing 
Systems. A paradigm of th is  approach is to  find large col lect ions of general ly 
s imi lar com ponents that, when arranged in a very weakly specified st ructure and 
placed in an appropriate en v ironmen t ,  would even tual ly  come to  behave i n  an 
"adaptive" fashion . Eventual ly ,  i t  was hoped . inte l l igent behavior would emerge 
from the evolution of such a system . 1 

Since those still pursuing this course, sometimes called cybernetics, 
have produced no interesting results-although their spokesman, Frank 
Rosenblat t ,  has produced some of the most fantastic promises and 
claims 2 *-they will not be dealt with here. 

The second important avenue was an attempt to build working models of hu
man behavior, . . .  requir ing the machine's behavior to match that of human sub
jects  . . . .  ' 

I /30 
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The book,  Computers and Thought, edi ted by E. Feigenbaum and J .  Feldman 
who did their graduate work in the Carnegie group, gives a good view of the state 
of affairs as it stood by about the end of 1 96 1 .4 

This is the research in Cognitive Simulation, led by Newel l and Simon, 
which we have criticized in Chapter 1 .  Minsky is similarly critical of this 
work in a paper del ivered at the time Phase I was nearing its end: 

Methods that worked quite wel l on easy problems did not extend smooth ly to 
the difficult ones. Cont inued progress wil l  require implementation of new ideas, 
for there are some very tough problems in our immediate path . �  

This is Minsky's way of  recognizing the stagnation we have noted. At  
the same time Minsky and his group at  M. I.T. undertook to  provide new 
ideas and their implementation: 

The th i rd approach ,  the one we cal l Artificial Intelligence, was an attempt to 
build in tell igent machines without any prejudice toward making the system 
simple, biological, or humanoid . Workers taking this route regarded the self
organizing systems as unpromising or, perhaps, premature. Even if simplicity of 
i n i t ial organization was to be an ul timate goal, one might fi rst need experience 
with working intel l igent systems (based if necessary on ad hoc mechan isms) if 
one were eventually to be able to design more economical schemes. 6 

We shal l  now turn to this third and most recent approach, the results 
of which are reported in Minsky's book Semantic Information Process

ing, to see just what has actual ly been accomplished. Minsky once sug
gested that in evaluating the programs presented in his book one might 
ask five questions: 

I .  Why were these particular problems selected? 
2. How do these programs work? 
3 . What are thei r l imitations? 
4. What do the programs actually achieve? 
5. How can they be extended to larger domains of competence? 

If, fol lowing this method, we analyze the programs which Minsky pre
sents as the best work since 1 962, we shal l find that unlike work done 
before 1 961 , which tended to give the impression of intel ligence by 
simulating simple, mechanical aspects of intel ligent behavior, the curren t 

approach is characterized by ad hoc solu tions of cleverly chosen problems, 
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which give the illusion of complex in tellectual activity. In fact, however, 
problems which arrested work in 1 961 still remain unsolved. We shall 
also find again that only an unquestioned underlying faith enables work
ers such as Minsky to find this situation encouraging. 

Let us look at the programs in detail. 

I. Analysis of Semantic Information Processing 

Programs 

A N A LYSIS OF A PROG R A M  W H IC H  . .  U N DERSTA N DS E�G LI SH . .  -

BOBROW'S STU D ENT 

Of the five semantic information processing programs collected in 
Minsky's book, Daniel Bobrow's STU DENT-a program for sol\' ing 
algebra word problems-is put forward as the most successful . It is. 
Minsky tells us, .. a demonstration par excellence of the power of using 
meaning to solve linguistic problems . . .  , Indeed. Minsky de\'otes a great 
deal of his Scien tific A merican article to Bobrow's program and goes so 
far as to say that .. it understands English . . .  � 

Since this program is presented as the best so far. we shall begin 
by analyzing it in detail, according to Minsky 's  suggested five ques
tions. 

First : Why was this particular problem selected? 
Bobrow himself tells us : 

In const ruct ing a quest ion -answeri ng system many problems are grea t ly  s im
pl ified i f  t he problem con text  is  rest rict ed . Q  

Moreover, 

There are a number of reasons for choosing t he contex t  of algebra story problems 
in  which to  develop techniques which would al low a computer problem solv ing  
system to accept a natural  language i npu t .  Fi rst , we know a good t y pe of data 
st ruct ure in  which to store information needed to answer quest ions in  t h is  
context , namely,  algebraic equat ions. 1 11 

It is important to note that the problem was chosen because the 
restricted context made it easier. The full significance of this restriction, 
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however, will only be evident after we have answered the next two 
questions. 

How does the program work? 
The program simply breaks up the sentences of the story problem into 

units on the basis of cues such as the words "times," "of," "equals," etc. ; 
equates these sentence chunks with x's and y's; and tries to set up 
simultaneous equations. If these equations cannot be solved, it appeals 
to further rules for breaking up the sentences into other units and tries 
again. The whole scheme works only because there is the constraint, not 
present in understanding ordinary discourse, that the pieces of the sen
tence, when represented by variables, will set up soluble equations. As 
Minsky puts it: " . . .  some possibly syntactic ambiguities in the input are 
decided on the overall basis of algebraic consistency . . . .  " 1 1  

Choosing algebra problems also has another advantage: 

In natural language, the ambiguit ies arise not only from the variety of structural 
groupings the words could be given, but also from the variety of meanings that 
can be assigned to each individual word. In STUDENT the strong semantic 

constraint (that the sentences express algebraic relations between the designated 
enti ties) keeps the situation more or less under control. 1 2  

What are the limitations of the program ? 
The advantage of using algebraic constraints is also a serious limita

tion on the · generality of the program, however, for such a "strong 
constraint" eliminates just that aspect of natural language, namely its 
ambiguity, which makes machine processing of natural language diffi
cult, if not impossible. Such a program is so far from semantic under
standing that, as Bobrow admits, " . . .  the phrase 'the number of times 
I went to the movies' which should be interpreted as a variable string will 
be interpreted incorrectly as the product of the two variables 'number 
of ' and 'I went to the movies, '  because 'times' is always considered to 
be an operator. "  1 3 

What, then, has been achieved? 
Bobrow is rather cautious. Although his thesis is somewhat mislead

ingly entitled "Natural Language Input for a Computer Problem Solving 
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Program," Bobrow makes clear from the out set  that the program .. ac
cepts  as input a comfortable but restricted subset of English. " 1 4 He 
adds : 

In the following discussion, I shal l  use phrases such as " the computer under
stands English . "  In  al l  such cases, t he "Engl ish" i s  j ust t he restric ted subset of 
English al lowable as i nput  for the com puter program under d iscussion . 1

' 

This i s  s traightforward enough, and seems an admirable at tempt to claim 
no more than is  just ified by the rest ricted choice of material. In the 
course of the work, Bobrow even makes clear that 'The STU DENT 
program considers words as symbols, and makes do wi th as li t t le knowl
edge about the meaning of words as is compatible wi th the goal of finding 
a solut ion of the part icular problem. " 1

" 

In other words this program embodies a minimum of semant ic under
standing. Bobrow is proud that he can get so much for so li t tle :  "The 
semant ic  model in the STUDENT system is based on one relat ionship 
(equali ty) and five basic ari thmet ic funct ions. " 1

' 

Bobrow is equally careful in not ing he has given a special meaning to 
. .  understands." 

For pu rposes of th is report I have adopted the  fol lowing  operat ional  defi n i t ion 
of "understanding ."  A com puter u nderstands a suhset of Engl ish i f  i t  accepts 
i nput sen tences which are members of th i s  suhset , and answers q uest ions based 
on in format ion con ta ined i n  the i nput . The STU D ENT system understands 
Engl ish in  th is  sense . 1 � •  

Bobrow concludes caut iously : " I  think we are far  from wntmg a pro
gram which can understand all, or even a very large segment ,  of English. 
However, within i ts  narrow field of competence, STUDENT has demon
st rated that ·understanding' machines can be built . " 1

.:i 

Yet Minsky says in his Scien tific A merican art icle that "STUDENT 
. . . understands English. " What has happened? 

Bobrow's quotat ion marks around "understanding" are the key . If we 
remember that .. understands" merely means "answers quest ions in a 
rest ricted subset of English subject to algebraic const raints ,"  then we will 
also remember tha t  although the words in quotation marks have nothing 
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to do with what human understanding normal ly means, they are 
nonetheless accurate. However, one can't  help being misled into feeling 
that if Bobrow uses "understands" rather than "processes,"  it must be 
because his program has something to do with human understanding. 
Minsky exploits this ambiguity in his rhetorical article simply by drop
ping the quotation marks. 

Minsky makes even more surprising and misleading claims concerning 
the "enormous ' learning potential ' " of Bobrow's program: 

Consider the qual i tative effect, upon the subsequent performance of Bobrow's 
STUDENT, of tel l ing it that "distance equals speed times time!" That one 
experience alone enables it to handle a large new portion of "high-school alge
bra" ;  the physical posit ion-veloci ty-t ime problems. I t  is important not to fall into 
the habit . . . of concentrating only on the kind of "learning" that appears as 
slow-improvement-attendant-;upon-sicken ingly-often-repeated experience! 

Bobrow's program does not have any cautious statistical devices that have 
to be told something over and over again ,  so i ts learning is too bri l l iant to be 
cal led so. 20 

Again it is easy to show that what has been acquired by the machine 
can in no way be cal led "understanding." The machine has indeed been 
given another equation, but it does not understand it as a formula. That 
is, the program can now plug one distance, one rate, and one time into 
the equation d = rt; but that it does not understand anything is clear 
from the fact that it cannot use this equation twice in one problem, 
for it has no way of determining which quantities should be used in 
which equation. As Bobrow admits : "the same phrase must always be 
used to represent the same variable in a problem . " 2 1  No learning has 
occurred. 

Once he has removed the quotation marks from "understand" and 
interpreted the quotation marks around "learning" to mean superhuman 
learning, Minsky is free to engage in the usual riot of speculation .  

In order for a program to improve i tsel f substantial ly i t  would have to have at 
least a rudimentary understanding of i ts own problem-solving process and some 
abi l i ty  to recogn ize an improvement when it found one. There is no inherent 
reason why this should be impossible for a machine. Given a model of its own 
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workings, it could use its problem-solving power to work on the problem of 
self-improvement . . . .  

Once we have devised programs with a genuine capaci ty for self-improvement 
a rapid evolutionary process wi l l  begin .  As the machine improves both i tself and 
its model of itself, we shal l  begin to see all the phenomena associated wi th  the 
terms "consciousness," "intui tion" and "intel l igence" i t self. I t  is  hard to say how 
close we are to this threshold, but once it is crossed the world wi l l  not be the 
same. 22 

It is not as hard to say how close we are to this threshold as Minsky 
would like us to believe. Since the success of Bobrow·s program has 
allegedly given us the rudiments of understanding and learning that 
Minsky is relying on, we need only ask :  to what extent can Bobrow·s 
techniques be generalized and extended� 

Which leads us to question five: How can the program in question be 
extended to larger domains of competence? 

Here even Bobrow throws his caution to the winds and-in spite of 
his earlier remark that the semantic model is based on one relationship 
(equality); that is, only set s  up and solves equations where it can use the 
algebraic constraint--claims that his . .  semantic theory of discourse can 
be used as a basis for a much more general language processing sys
tem. " 2 1 And Bobrow concludes the abstract of his thesis with the now 
familiar first-step fallacy: . .  The STUDENT system is a first step toward 
natural language communication with computers . Further work on the 
semantic theory proposed should result in much more sophisticated 
systems . " 24 

Five years have passed since Bobrow made this claim, and no more 
sophisticated semantic theory has been forthcoming . Why Bobrow and 
Minsky think, in the face of the peculiar restrictions necessary to the 
function of the program, that such a generalization must be possible is 
hard to understand. Nothing, I think , can justify or even explain their 
optimism concerning th is admit tedly limited and ad hoc approach. Their 
general optimism that some such computable approach must work , how
ever, can be seen to follow from a fundamental metaphysical assumption 
concerning the nature of language and of human intelligent behavior, 
namely that whatever orderly behavior people engage in can in principle 
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be formalized and processed by digital computers. (See Chapter 5.) This 
leads Minsky and Bobrow to shrug off all current difficulties as techno
logical limitations, imposed, for example, by the restricted size of the 
storage capacity of present machine memories. 2 5 * 

Were it not for such an assumption, Bobrow's limited success, her
alded by Minsky as the most promising work thus far, would be recog
nized as a trick which says nothing either for or against the possibility 
of machine understanding, and the fact that this is the best that an 
intelligent person like Bobrow could do would lead to discouragement 
as to the possibility of ever reaching the threshold of self-improving 
machines. 

EVANS' ANALOGY PROGRAM 

The same pattern occurs throughout Minsky's collection: an ad hoc 
solution of a restricted problem, first reported with caution, and then 
interpreted as being the first step to more general methods. Yet all the 
work presented in Minsky's book was completed by 1964, and although 
seven more years have elapsed, none of the promised generalizations has 
been produced. 

Evans' analogy-finding program, for example, is a masterful complex 
program for solving the sort of analogy problems used in intelligence 
testing. (See .Figure 3.) It performs its particular restricted task as well 
as an average tenth grader, which, granted the state of the art, is an 
impressive performance. Evans, moreover, realizes that this success as 
such has little value unless the techniques he employs can be generalized. 
But, unlike Bobrow, he does not content himself with the assertion that 
such a generalization is possible. Rather, he attempts at the end of his 
paper to sketch the form such a generalization would take, and the 
contribution it would make to problem-solving programs such as G PS 
and work in pattern recognition. 

In the final  pages of this  chapter we describe a "pattern recognit ion" process of 

which the main outl ines are based on the conception of ANALOGY described. 

It is more ambitious chiefly in that a more powerful and more general-purpose 

descriptive framework for the "objects' '  is introduced . 26  
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A is to 8 as C is to ? 

[!] � A B @ □ 

Figu re 3 

GPS t reats sub-objects of a given object through i t s  goal-subgoal organization .  
That i s, GPS avoids looking a t  complex st ructures on a given level by decompos
ing them into smaller s tructures t ied to subgoals .  So GPS never sees a s ingle 
complex structure as such; when a subst ructure is handled at some deeper 
subgoal level i t  i s  "out of context" in that the necessary information as to how 
the ach ievement of th is  subgoal cont ributes to the achievement of larger goals 
i s  lacking. Newell discusses a form of this " lack of context" problem and several 
rather unsatisfactory attempts at solving i t .  The mechanism we have sketched 
provides a pattern-recogn i t ion device capable of taking a look at the problem 
which is "global" yet has access to the full st ructure. Such "global" guidance 
could be expected to save GPS a large amoun t of the t ime now spent in set t ing 
up and pursuing subgoals that do not  cont ribute to achieving goals at  or near 
the top level .  Th is alone would be a worthwhile con t ribut ion . 2 7  

Evans also has proposals for learning :  

Certain ly the study of  these problems in the  relat ively wel l-understood domain 
of ph rase-st ructure languages is  a natural next s tep toward the development of 
genuine " 'generalizat ion learn ing" by machines and a prerequis i te to considera
tion of learn ing in st i l l  more complex descript ive language environments .  One 
in terest ing possibi l i ty ,  since the t ransformat ion rules themselves can be described 
in phrase-st ructure terms, would be to apply the en t i re "phrase-st ructure + 
G PS" apparatus to improving i ts  own set of transformat ion rules. 2R 

Evans realizes that .. this may, of course, turn out to be very difficult. "2
q 

Presumably it has so turned out, because no more has been published 
concerning this scheme since this work was completed in t 963, and, as 
we have seen, since then Newell has abandoned GPS and M urray Eden 
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has reported that in 1 968 pattern recognit ion was as ad hoc as ever. 
Which, of course, raises the usual question : Why do Minsky and Evans 
so confident ly expect that the ad hoc techniques used to solve this specific 
and rather complex analogy problem can be general ized? A hint as to 
the assumptions underlying this confidence can be found in Minsky's 
surprising comparison of Evans' program to human analogy solving. In 
spite of his disclaimers that AI is not interested in cognitive simula
tion , Minsky gives the following "mentalistic" description of Evans' pro
gram. 

To explain the spi rit of  this work, i t  is  best to describe the program in  mentalistic 
form . Given a set of figures, i t  constructs a set of hypotheses or theories as 
follows: 

1 .  Based on the descriptions D(A) and D(B) of Figures A and B [see Figure 
3] there are many ways in wh ich D(A) can be transformed into D(B); 
choose one of these. 

2 .  There are also many ways in which the parts of A can be put into corre
spondence with the parts of C: each such correspondence suggests a rela
tion l ike that proposed in  ( 1 ), but which now relates Fig. C and some other 
figures. 

3 .  It is un l ikely that any of the relations found in  (2) wi l l  apply perfectly to 
any of the answer-figures. (If just one does, then that wi l l  be the program's 
answer. )  For each answer figure, "weaken,"  i .e. , generalize each relation 
just enough so that i t  wi l l  apply to the figure. 

4. Final ly ,_ the program measures how much it had to weaken each relation . 
I t  chooses the one that required the least change, and gives the correspond
ing answer figure as i ts answer. 

By choosing that hypothesis which involved the least "weaken ing" of the 
original A� B transformation hypothesis, the program selects that explanation 
that contains the most information common to both A � B and C � D 
relations. The detai ls of the selection rules in steps ( 1  ), (2), (3), and ( 4), amount, 
in  effect to Evans ' theory of human behavior in such situations. I feel sure 

that something of this general  character is in volved in any kind of analogical rea
son ing. 30  

This "something" is put more clearly in Minsky's Scientific American 
article. There he says: " I  feel sure that ru les or procedures of the same 
general character are involved in any kind of analogical reasoning. " 3 1  

This i s  the same assumption which, as we  have seen, underl ies Newell 
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and Simon's work in CS. In fact, Evans uses a quotation from Newell 
to describe the problem-solving procedure involved:  

"These programs are a l l  rather simi lar i n  nature. For each the task is  d ifficult 
enough to allow us to assert that t he programs problem-solve, rather than simply 
carry out t he steps of a procedure for a solution i nvented by t he programmer. 
They all operate on formal ized tasks, which, although difficult ,  are not unst ruc
tured. Al l  t he programs use t he same conceptual approach :  they in terpret the 
problem as combinatori al ,  involving the discovery of t he right sequence of opera
t ions out of a set of possible sequences. Al l  of the programs generate some sort 
of t ree of possibi l i t ies to gradually explore the possible sequences. The set of all 
sequences is much too large to generate and examine in toto. so that \'arious 
devices, cal led heuristics, are employed to narrow the range of possibi l i t ies to a 
set that can be handled with in  the available l imi ts of processing effort . "  

Evans then concludes: 

The geometric-analogy program also fi ts th is descript ion . Stated very briefly .  
given a problem of th is type, the program uses various heu ristics co  select a 
"correct "  ru le ( in a reasonable t ime) from a very extensive class of possible 
rules. 1 2  

It is true that if human beings did solve analogy problems in this way , 
there would be every reason to expect to he able to improve and general 
ize Evans' program, since human beings certain ly  surpass the machines· 
present level of performance. But , as in the case of G PS. there is no 
evidence that human beings proceed in this way . and descriptive. psycho
logical evidence suggests that they do not. 

Rudolph Arnheim , professor of psychology at Harvard Universit y .  in 
discussing Evans' work, has described the different way in which human 
beings approach the same sort of problem . His description is worth 
quoting in full: 

What happens when a person is confronted wi th a figure such as Figure [3]? The 
reaction will vary somewhat from indiv idual to individual as long as no particu
lar context calls for concentrat ion on specific st ructural features . By and large. 
however, the observer is l i kely to not ice a vert ical arrangement ,  made up of two 
units, of which the upper is larger and more complex than the low�r: he may also 
notice a difference in shape. In ot her words, he will perceive qual i tat ive charac
terist ics of placement ,  relat ive si ze, shape: whereas he is un l i kely to not ice much 
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of the metric properties from which the computer's reading of the pattern must 
set out, namely, absolute size and the various lengths and distances by which this 
individual figure is constructed. I f  one asks observers to copy such a figure, thei r 
drawings wi l l  show concentration on the topological characteristics and neglect 
of specific measurements. 

Confronted now with a pairing of A and B, the human observer may have a 
rather rich and dazzl ing experience. He may see, at fi rst, fleeting, elusive resem
blances among basical ly different patterns. The over-all figure, made up of the 
pai ring of the two, may look unstable, ungraspable, irrational There are two 
vertical arrangements, combining in a sort of symmetry ;  but these two columns 
are crossed and interfered with by diagonal relations between the two "fil led" 
large circles and the two smal ler, unfil led shapes. The various structural features 
do not add up to a un ified, stable, understandable whole. Suddenly, however, 
the observer may be struck by the simple rectangular arrangement of the four 
smaller figures : two equal circles on top, two equal squares at the bottom . As 
soon as this group becomes the dominant theme or structural skeleton of the 
whole, the remainder-the two large ci rcles-joins the basic pattern as a sec
ondary, diagonal embel l ishment. A structural hierarchy has been establ ished. 
Now the double figure is stable, surveyable, understandable, and therefore ready 
for comparison with other figures. A first act of problem solving has taken 
place. 

If the observer turns to Figure C, his view of this new pattern is determined 
from the outset by his preceding concern with A and B. Perceived from the 
viewpoint  of A, C reveals a simi lar vertical structure, distinguished from A 
main ly by a secondary contrast of shapes. The family resemblance is great, the 
relation comes easi ly. But if  C is now paired with D 1 , the resemblance looks 
excessive, the· symmetry too complete. On the contrary, a comparison with D2 
offers too l i tt le resemblance. 0 3 is recognized immediately as the correct partner, 
the missing  fourth element of the analogy, if the relation between A and B had 
been properly grasped before. 

This episode of perceptual problem solving has all the aspects of genuine 
th inking :  the chal lenge, the productive confusion , the promising leads, the partial 
solutions, the disturbing contradictions, the flash appearance of a stable solution 
whose adequacy is self-evident, the structural changes brought  about by the 
pressure of changing total situations, the resemblance discovered among different 
patterns. I t  is, in  a smal l way, an exhi larating experience, worthy of a creature 
endowed with reason; and when the solution has been found, there is a sense of 
dis-tension ,  of pleasure, of rest. 

None of this is true for t he computer, not because it is without consciousness, 
but because it proceeds in a fundamentally different fashion .  We are shocked to 
learn that in order to make the machine solve the :malogy problem the experi-
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menter "had to develop what is certainly one of the most complex programs 
ever written. " For us the problem is not hard; it is accessible to the brain of a 
young student. The reason for the difference is that the task cal ls  for the han
dling of topological relations, which require the neglect of purely metric ones. 

The brain is geared to precisely such topographical features because they inform 
us of the typical character of things, rather than of their particular measure
ments. 3 3  

As in the case of chess, it turns out that global perceptual grouping 
is a prior condition for the rule-governed counting out-the only kind 
of procedure available to the machine. As Arnheim puts it, .. Topology 
was discovered by, and relies on, the perceptual powers of the brain, not 
the arithmetical ones. " 3 4 

Ohviously Minsky and Evans think that analogies are solved by hu
man beings by applying transformation rules. because the prospects for 
AI are only encouraging if this is how humans proceed. But it is clearly 
circular to base one's optimism on an hypothesis which, in turn, is only 
justified by the fact that if the hypothesis were true, one's optimism 
would be justified. 

QU I L U A N'S  SEM A NTIC M E MORY PROG R A M  

The final program we shall consider from Phase II, Ross Quillian's 
Semantic Memory Program , is the most interesting, because most gen
eral; and the most modest, in that its author (working under Simon 
rather than Minsky) has made no sweeping promises or claims. " * This 
program confirms a general evaluation heuristic already apparent in 
Samuel's  modesty and success and-Simon's and Gelernter's claims and 
setbacks, namely that the value of a program is often inversely propor
tional to its programmer's  promises and publicity. 

Quillian, like Bobrow, is interested in simulating the understanding of 
natural language; but, unlike Bobrow and Minsky, he sees that this 
problem cannot be dealt with by ad hoc solutions. 

In the first place, we do not believe that performance theories or computer 
models can ignore or put off semantics, as most language processing programs 
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so far have done, and yet hope to achieve success. Whether a program is intended 
to parse sentences, to translate languages, or to answer natural language ques
t ions, i f  i t  does not take account of semantic facts both early and often, I do not 
th ink it has a chance of approaching the level of human competence. 3 6  

After reviewing all work in the field, including that of Bobrow, Quil
lian remarks: 

Programs such as Bobrow's have been able to set up the equations corresponding 
to certain algebra word problems by an almost entirely "syntactic" procedure . 
. . . However, if one attempts to extend the range of language that such a program 
can handle, it becomes necessary to incorporate increasing numbers of semantic 
facts. n 

Quillian concludes that 

the problems of what is to be contained in an overall ,  human-like permanent 
memory, what format this is to be in, and how this memory is to be organized 
have not been dealt with in great generality in prior simulation programs . 
. . . Further advances in simulating problem-solving and game playing, as wel l  
as language performance, wi l l  surely  require programs that develop and in teract 
with large memories. 38 

Quillian then proceeds to propose a complex heuris6c program for 
storing and accessing the meaning of words and "anything that can be 
stated in language, sensed in perception, or otherwise known and remem
bered"39 in one "enormous interlinked net. " 40 Quillian proposes this 
program as '"'a reasonable view of how semantic information is organized 
within a person's memory. "4 1  He gives no argument to show that it is 
reasonable except that if a computer were to store semantic information, 
this would be a reasonable model for it. People, indeed, are not aware 
of going through any of the complex storage and retrieval process Quil
lian outlines, but this does not disturb Quillian, who, like his teacher, 
Simon, in similar trouble can always claim that these processes are 
nonetheless unconsciously taking place: 

While the encoding process is of course not identical to the covert processing that 
constitutes the understanding of the same text during normal reading, it is 
. . .  in  some ways a slowed-down, overt version of i t. 42 
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That such unconscious processing is going on, and moreover, that 
such processing follows heuristic rules is by no means obvious. We have 
seen in the cases of chess playing and analogy solving that gestalt group
ing plays a crucial role, and it may well do so here. Yet Quil lian seems 
to have inherited Newell and Simon's unquestioned assumption that 
human beings operate by heuristic programs. 

The heuristic methods by which one particular comprehension of text is selected 
is the central problem for anyone who would explain .. understanding, .. just as 
the heuristic methods by which one particular chess move is selected from 
al l  those possible is the central problem for anyone who would explain chess 
playing.4 3  

In terms of this assumption Quil lian must assume that the task of the 
program involves working from parts to wholes. 

In selecting a task to perform with a model memory, one th inks first of the abi l i ty  
to understand unfamil iar sentences. I t  seems reasonable to suppose that  people 
must necessarily  understand new sentences by retrieving stored information 
about the meaning of isolated words and phrases, and then combining and 
perhaps alte-ing these retrieved word meanings to bui ld up the meanings of 
sentences. Accordingly, one should be able to take a model of stored semantic 
knowledge, and formulate rules of combination that would describe how sen
tence meanings get bui lt up from stored word meanings .  u 

Quil lian also has great hopes for his system : 

It further seems l ikely that if one could manage to get even a few word meanings 
adequately encoded and stored in  a computer memory, and a workable set of 
combination rules formal ized as a computer program, he could then bootstrap 
his store of encoded word meanings by having the computer i tsel f  .. understand . .  
sentences that he had written to constitute the definit ions of other single words. 
That is, whenever a new, as yet uncoded, word could be defined by a sentence 
using only words whose meanings had al ready been encoded, then the represen
tation of this sentence's meaning, which the machine could bui ld by using 
its previous knowledge together wi th  i t s  combination rules, would be the ap
propriate representation to add to its memory as the meaning of the new 
word.• �  

But with a frankness, rare in the literature, Quillian also reports his 
disappointments: 
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Unfortunately ,  two years of work on th is problem led to the conclusion that the 
task is m uch too difficul t  to execute at our present stage of knowledge. The 
processing that goes on in a person's head when he "understands" a sentence and 
incorporates i ts meaning into h is memory is very large indeed, practical ly all of 
it being done without his conscious knowledge.46 

The magnitude of the problem confront ing Quil l ian becomes clear 
when we note that 

the defini tion of eight hundred and fifty words comprise far more information 
than can be modeled in t he core of today's computers . . . .  47 

These difficulties suggest that the model itself-the idea that our un
derstanding of a natural language involves bui lding up a structured 
whole out of an enormous number of explici t parts-may wel l  be mis
taken .  Qui l l ian 's work raises rather than resolves the question of storing 
the gigantic number of facts resul ti ng from an analysis which has no 
p lace for perceptual gestalts. If this data structure grows too rapidly with 
the addition of new definit ions, then Qui l l ian's work , far from being 
encouraging, would be a reductio ad absurdum of the whole computer
oriented approach. Before taking a stand on whether Qui l l ian's work is 
grounds for optimism, one would expect an answer to the basic question : 
Does Qui l l ian's data base grow l inearly  or exponential ly with additional 
entries? 

On this crucial point it is surprising to find much hope but l i ttle 
information . Qui l l ian's program contains definitions of on ly from 50 to 
60 words, and, in describing Qui l l ian's work, in his book written in 1 968, 
three years after the work was completed, Minsky has to admit that "we 
simply do not know enough about how powerful Qui l l ian 's methods 
would be when provided with a more substantial knowledge bank .  "4 8  

Again, no further progress has been reported. 

I I .  S ig n if ica nce of Cu rrent D ifficu lt ies 

What would be reasonable to expect? Minsky estimates that Qui l l ian 's 
program now contains a few hundred facts. He estimates that ' 'a m i l l ion 
facts would be necessary for great intel l igence. "4 9  He also admits that 
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each of "the programs described [in this book] will work best when given 
exactly the necessary facts, and will bog down inexorably as the informa
tion files grow. " 50 

Is there, thus, any reason to be confident that these programs are 
approaching the "superior heuristics for managing their knowledge 
structure" which Minsky believed human beings must have: or. as 
Minsky claims in another of his books, that 

within a generation . . . few compartments of i ntel l ect wil l  remain outside the 

machine's realm-the problem of creating "artificial intel l igence" wi l l  be sub

stant ial ly solved. 5 '  

Certainly there is nothing in Seman tic Information Processing t o  justify 
this confidence. As we have seen, Minsky criticizes the early programs 
for their lack of generality . . . Each program worked only on its rest ricted 
specialty, and there was no way to combine two different problem
solvers. ' ' 5 2  But Minsky's solutions are as ad hoc as ever. Yet he adds 
jauntily : 

The progra ms described in t h is \'Ol ume may st i l l  ha\'e t h i s  charact er. hut t hey 

are no longer ignoring t he problem . In fact . t heir ch ief concern is finding methods 
of solving it. " 

But there is no sign that any of the papers presented by Minsky have 
solved anything. They have not discovered any genera l feat ure of the 
human ability to behave intelligently . All Minsky present s are clever 
special solutions, like Bobrow's  and Evans· .  or radically simplified mod
els such as Quillian's, which work because the real problem .  the problem 
of how to st ructure and store the mass of data required has been put 
aside. Minsky, of course. has already responded to this apparent short 
coming with a new version of the first step fallacy : 

The fact that t he present batch of programs sti l l  appear to have narrow ranges 

of applicat ion does not indicate lack of progress toward general ity. These pro
grams arc steps toward ways to handle knowledge. ' 4 

In Phase II the game seems to be to see how far one can get with the 
appearance of complexity before the real problem of complexity has to 
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be faced, and then when one fails to generalize, claim to have made a first 
step. 

Such an approach is inevitable as long as workers in the field of AI 
are interested in producing striking results but have not solved the 
practical problem of how to store and access the large body of data 
necessary, if perhaps not sufficient, for full-scale, flexible, semantic infor
mation processing. Minsky notes with satisfaction ,  looking over the 
results, "one cannot help being astonished at how far they did get with 
their feeble semantic endowment. " 5 5  Bar-Hillel in a recent talk to SI
G ART (Special Interest Group in Artificial Intelligence of the Associa
tion for Computing Machinery) calls attention to the misleading 
character of this sort of claim. 

There are very many  people-in all fields but particularly in the field of A I
who, whenever they themselves make a first step towards lett ing the computer 
do certain th ings it has never done before, then bel ieve that the remaining steps 
are noth ing more than an exerc ise in technical abi l ity. Essential ly, th is is l ike 
say ing that as soon as anyth ing can be done at all by a computer, it can also be 
done well. On the contrary, the step from not being able to do someth ing at 
a l l  to bei ng able to do it a l i t t le bi t is very much smaller than the next step
being able to do it wel l .  I n  A I ,  th is fallacious th ink ing seems to be al l  perva
s i ve. 5 6  

But Bar-Hillel is too generous in suggesting that the fallacy is sim
ply overestimation of the ease of progress. To claim to have taken even 
an easy first step one must have reason to believe that by further such 
steps one could eventually reach one's goal. We have seen that Min
sky's book provides no such reasons. In fact these steps may well be 
strides in the opposite direction. The restricted character of the results 
reported by Minsky, plus the fact that during the last five years none 
of the promised generalizations has been produced, suggests that 
human beings do not deal with a mass of isolated facts as does a digital 
computer, and thus do not have to store and retrieve these facts by 
heuristic rules. Judging from their behavior, human beings avoid rather 
than resolve the difficulties confronting workers in Cognitive Simu
lation and Artificial Intelligence by avoiding the discrete informa-
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tion-processing techniques from which these difficulties arise. Thus it 
is by no means obvious that Minsky's progress toward handl ing 
"knowledge" (slight as it is) is progress toward art ificial inte l l igence 
at all .  



Conclusion 

We have seen how Phase I, heralded as a first step, ends with the 
abandonment of GPS and the general failure to provide the theorem 
proving, chess playing, and language translation programs anticipated. 
Minsky himself recognizes this failure, and while trying to minimize it, 
diagnoses it accurately : 

A few projects have not progressed nearly as much as was hoped, notably 

projects in language t ranslat ion and mathematical theorem-proving. Both cases, 

I th ink ,  represent  premature attempts to handle complex formal isms wi thout 

also represent ing  their meaning .  1 

Phase I I-a new first step-begins around 1 961 with Minsky's gradu
ate students at M. I.T. undertaking theses aimed at overcoming this 
difficulty . It ends in 1 968 with the publication of Minsky's book Semantic 
Information Processing, which reports these attempts, all completed by 
1 964. After analyzing the admittedly ad hoc character of those programs 
which Minsky considers most successful ,  and noting the lack of fol low
up during the last five years, we can only conclude that Phase II has also 
ended in failure. 

Most reports on the state of the art try to cover up this failure. In a 
report undertaken for the IEEE in 1 966, covering work in AI since 1 960, 
R.  J. Solomonoff devotes his first three pages to speaking of GPS and 
other past achievements, already completed by 1 960, and the next three 
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pages to talking of the glorious future of work on induction by S. Amarel: 
"Although Amarel hasn't programmed any of his theories, his ideas and 
his analysis of them are important . " 2 There is little mention of the 
semantic information processing programs touted by Minsky. All hope 
is placed in induction and learning. Unfortunately, . .  in all the learning 
systems mentioned, the kinds of self improvement accessible to the ma
chines have been quite limited . . . .  We still need to know the kind of 
heuristics we need to find heuristics, as well as what languages can 
readily describe them. " 3 

Since no one has made any contribu t ion to  finding these heurist ics, 
Solomonoff's final hope is placed in art i ficial evolut ion: 

The promise of art ificial evolu tion is tha t  many th ings are known or suspect ed 

about  the mechanisms of natural evol ut ion. and that those mechanisms can be 

used d irec t ly  or indirect l y  to solve problems in thei r  art ificia l  coun terparts .  For 

art i ficial i n te l l igence research ,  sim ulat ion of evol u t ion is  incomparably more 

promising than simulat ion of neural nets. since we know pract ical ly  noth i ng 

about natural neural nets t hat  would be at al l  usefu l  in solv ing di fficul t  problems: 

This work in art ificial evolut ion, however, has hardly begun . . . Research 
in simulat ion of evolut ion has been very limi ted in both quant i ty and 
quality. " '  

When an art icle supposed to sum up work done since 1 960 begins with 
earlier accomplishments and ends in speculat ions, wi thout presenting a 
single example of actual progress, stagnat ion can be read between the 
lines . 

Occasionally one catches hints of disappointment in the lines them
selves . For example, Fred Tonge, whose solid, unpretent ious paper on 
a heuristic line-balancing proced ure was reprinted in Compu ters and 
Though t, after rev iewing progress in AI, concluded in 1 968: 

Whi le many in terest ing programs (and some in terest ing  devices) have been pro

duced , progress in  art ificial i n te l l igence has not been exci t i ng or spec tacu lar . 

• . .  This is due at  least in part to lack of a clear separat ion between accompl ish

men t and conject ure in many past and curren t wri t ings .  In th is field,  as i n  many 

others, t here is a large difference between say ing t hat  some accompl ishment 

.. ough t to" be possible and doing i t .  

Iden t ifiable, significan t ,  landmarks of  accomplishmen t  are scarce . I,  
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Tonge then gives his list of " landmarks." They are Newell, Shaw, and 
Simon's Logic Theory Machine, Samuel's Checker Program, and the 
Uhr-Vossler pattern recognition program-all completed long before 
1 96 1 ,  and all dead ends if we are to judge from subsequent work . 

That mine is no unduly prejudiced reaction to Tonge's summary of the 
work done thus far can be seen by comparing P. E. Greenwood's review 
of Tonge's article for Computing Reviews: "From this brief summary of 
the state of the art of artificial intell igence, one would conclude that l ittle 
significant progress has been made since about 1 960 and the prospects 
for the near future are not bright. " 7 

Why, in the light of these difficulties, do those pursuing Cognitive 
Simulation assume that the information processes of a computer reveal 
the hidden information processes of a human being, and why do those 
working in Artificial Intel l igence assume that there must be a digi tal way 
of performing human tasks? To my knowledge, no one in the field seems 
to have asked himself these questions. In fact, artificial intel ligence is the 
least self-cri tical field on the scientific scene. There must be a reason why 
these intell igent men almost unanimously mimimize or fail to recognize 
their difficulties, and continue dogmatically to assert their faith in prog
ress. Some force in their assumptions, clearly not their success, must 
al low them to ignore the need for justification . We must now try to 
discover why, in the face of increasing difficulties, workers in artificial 
intel l igence show such untroubled confidence. 
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Introduction 

In spite of grave difficulties, workers in Cognitive Simulation and 
Artificial Intelligence are not discouraged. In fact, they are unqualifiedly 
optimistic. Underlying their optimism is the conviction that human 
intelligent behavior is the result of information processing by a dig
ital computer, and, since nature has produced intelligent behavior 
with this form of processing, proper programming should be able to elicit 
such behavior from digital machines, either by imitating nature or by 
out-programming her. 

This assumption, that human and mechanical information processing 
ultimately .involve the same elementary processes, is sometimes made 
nai'vely explicit. Newell and Simon introduce one of their papers with the 
following remark : 

I t  can be seen that this approach makes no assumption that the "hardware" of 
computers and brains are s imi lar, beyond the assumptions that both are general
purpose symbol-manipulating devices, and that the computer can be pro
grammed to execute elementary information processes functionally quite l ike 
those executed by the brain .  1 

But this is no innocent and empty assumption. What is a general
purpose symbol-manipulating device? What are these "elementary infor
mation processes" allegedly shared by man and machine? All artificial 
intelligence work is done on digital computers because they are the only 
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general-purpose information-processing devices which we know how to 
design or even conceive of at present .  Al l informat ion with which these 
computers operate must be represented in terms of discrete elements. In 
the case of present computers the information is represented by binary 
digits, that is, in terms of a series of yeses and noes, of switches being 
open or closed. The machine must operate on finite st rings of these 
determinate elements as a series of objects related to each other on ly  by 
rules. Thus the assumption that man funct ions l ike a general -purpose 
symbol-manipulating device amounts to 

1 .  A biological assumption that on some level of operation-usual ly 
supposed to be that of the neurons-the brain processes informat ion in 
discrete operations by way of some biological equivalent of on /off 
switches. 

2. A psychological assumpt ion that the mind can be viewed as a 
device operating on bits of information according to formal rules .  Thus. 
in psychology, the computer serves as a model of the mind as conceived 
of by empiricists such as Hume (with the bits as atomic impressions) and 
ideal ists such as Kant (with the program providing the rules) .  Both 
empiricists and idealists have prepared the ground for this model of 
thinking as data processing-a thi rd-person process in which the in
volvement of the "processor" plays no essen tial role. 

3. An epistemological assumpt ion that all knowledge can be formal
ized, that is, that whatever can be understood can be expressed in terms 
of logical relat ions, more exact ly in terms of Boolean functions, the 
logical calculus which governs the way the bits are related according to 
rules. 

4. Finally, since al l informat ion fed into digital computers must be in 
bits, the computer model of the mind presupposes that al l relevant 
informat ion about the world, everything essential to the product ion of 
intell igen t behavior, must in principle be analyzable as a set of situat ion
free determinate elements. This is the on tological assumpt ion that what 
there is ,  is a set of facts each logical ly independent of al l the others. 

In the following chapters we shal l turn to an analysis of the plausibi l i ty 
of each of these assumpt ions. In each case we shal l see that the assump-
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tion is taken by workers in CS or AI  as an axiom, guaranteeing results, 
whereas it is, in fact, only one possible hypothesis among others, to be 
tested by the success of such work . Furthermore, none of the four 
assumptions is justified on the basis of the empirical and a priori argu
ments brought forward in its favor. Finally ,  the last three assumptions, 
which are philosophical rather than empirical, can be criticized on phil
osophical grounds. They each lead to conceptual difficulties when fol
lowed through consistently as an account of intelligent behavior. 

After we have examined each of these assumptions we shall be in a 
better position to understand the persistent optimism of workers in 
artificial intelligence and also to assess the true significance of results 
obtained thus far. 
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The Biological Assumption 

In the period between the invention of the telephone relay and its 
apotheosis in the digital computer, the brain,  always understood in terms 
of the latest technological inventions, was understood as a large tele
phone switchboard or, more recently, as an electronic computer. This 
model of the brai� was correlated with work in neurophysiology which 
found that neurons fired a somewhat all-or-nothing burst of electricity. 
This burst, or spike, was taken to be the unit of information in the brain 
corresponding to the bit of information in a computer. This model is sti l l  
uncritically accepted by practical ly everyone not directly involved with 
work in neurophysiology, and underlies the nai"ve assumption that man 
is a walking example of a successful digital computer program. 

But to begin with, even if the brain did function like a digital computer 
at some level it would not necessari ly provide encouragement for those 
working in CS or Al .  For the brain might be wired like a very large array 
of randomly connected neurons, such as the perceptrons proposed by the 
group Minsky dismisses as the early cyberneticists. 1 • Such a neural net 
can be simulated using a program, but such a program is in no sense a 
heuristic program. Thus the mere fact that the brain might be a digital 
computer is in no way ground for optimism as to the success of artificial 
intell igence as defined by Simon or Minsky. 

Moreover, it is an empirical question whether the elementary informa-
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tion processing in the brain can best be  understood in terms of a digital 
model. The brain might "process information" in an entirely different 
way than a digital computer does. Information might, for example, be 
processed globally the way a resistor analogue solves the problem of the 
minimal path through a network. Indeed, current evidence suggests that 
the neuron-switch model of the brain is no longer empirically tenable. 
Already in 1956 John von Neumann, one of the inventors of the modem 
digital computer, had his doubts: 

Now, speaking specifical ly of the h uman nervous system . th is  is an enormous 

mechanism-at least 1 0° t imes larger than any artifact w i th  which we are fami l i ar 

-and i ts activ i t ies are correspondingly vari ed and complex .  I t s  dut ies inc lude 

the i nterpretat ion of externa l  sensory st imu l i .  of reports of physical and chemical 

condit ions, the control of motor act i vi t i es and of in ternal chemical levels. the 

memory funct ion wi th i ts  very compl icated procedures for the t ransformat ion of 

and the search for informat ion , and of course. the con t inuous relaying  of coded 

orders and of more or less quant i tat ive messages . I t  is possible to handle a l l  t hese 

processes by digi ta l  methods ( i . e . ,  by using numbers and expressi ng them in t he 

binary system--or, wi th some addit ional coding t ricks. i n  t he dec imal  or some 

other system) ,  and to process the d ig i ta l i zed .  and usua l ly  numeric i 1ed .  i nforma

t ion by algebraical ( i . e . ,  basical ly  ari t hmetical) methods .  This is probably  t he way 

a human designer would at present approach such a problem . The a va ilable 

evidence. though scanty and inadequate. rather rends to indicate that rhc h uman 

nervous system uses differen t principles and procedu res. Thus message pu lse t ra ins 

seem to convey mean ing by certa in analogic t ra i t s  (wi th in  the pulse not at ion

i .e. , this seems to be a mi xed . part d ig i ta l .  part analog system) .  l ike t he t ime 

densi ty of pulses in one l ine, correlat ions of  t he pu lse t ime series between d ifferent 

l ines in a bundle .  etc . �  

Von Neumann goes on t o  spe l l  out  what  he t akes t o  be  t he . .  m i xed 

charac t er of l i v ing  organ isms ."  

The neuron t ransmits an  impulse . . . .  The  nerve impulse seems i n  t he  main to  

be an a l l -or-none affair, comparable to a binary d igi t .  Thus  a d igi t a l element is  

evident ly  presen t ,  but i t  is equal ly evident t hat th i s  is  not the en t i re story . 

. . . It is wel l known that there are various composite funct ional sequences in  the 

organism which have to go through a variet y of steps from the orig inal st imu lus 

to the u l t imate effect-some of the steps bei ng neura l .  t hat is ,  digit a l ,  and other� 

humora l ,  that is, analog. 
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But even this description grants too much to the digital model .  It does 
not fol low from the fact that the nerve impulse is an al l-or-none affair 
that any digital processing at al l is taking place. The distinction between 
digital and analogue computation is a logical distinction, not a distinc
tion based on the hardware or the sort of electrical impulses in the 
system . The essential difference between digital and analogue informa
tion processing is that in digital processing a single element represents 
a symbol in a descriptive language, that is, carries a specific bit of 
information; while in a device functioning as an analogue computer, 
continuous physical variables represent the information being processed. 
The brain,  operating with vol leys of pulses, would be a digital computer 
only if each pulse were correlated with some symbol in an information
processing sequence; if, however, the rate at which pulses are transmitted 
turns out to be the minimum unit in an account of the relevant activity 
of the nervous system-as von Neumann seems to hold-then the brain 
would be operating as an analogue device. 4 * 

Once this conceptual confusion has been cleared up, von Neumann 
can be understood as suggesting that the brain functions exclusively l ike 
an analogue computer, and subsequent work has tended to confirm this 
hypothesis. Even for those unfami liar with the technical details of the 
fol lowing report , the concl usion is clear: 

I n  the  h igher i nvertebrates we encounter for t he fi rst  t ime phenomena such as 
the graded synapt ic  poten t ia l ,  which before any post-synaptic impulse has arisen 
can algebraica l ly  add the several i ncoming presynaptic barrages in  a complex 
way. These incoming barrages are of a differen t value depending upon the 
path way and a standing bias.  I ndeed, so m uch can be done by means of th is  
graded and non l inear local phenomenon prior to the in i t iat ion of any post
synaptic i mpulse that  we can no more th ink  of the t ypical synapse in  in tegrat ive 
systems as being a digital  device exclusively as was commonly assumed a few 
years ago, but rat her as bei ng a com plex analog device . . . .  5 

The latest suggestion from Jerome Lettvin of M. I .T. is that the diame
ter of the axon may play a crucial role in processing information by 
acting as a filter. 6 An individual neuron fires at a certain frequency. The 
diameter of its various axon branches would act as low pass fi lters at 
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different cutoff frequencies. Output from a given cell would then produce 
different frequencies at different terminals. The filter characteristics of 
the axon would vary with its diameter which in turn might be a function 
of the recency of signals passing down that axon, or even, perhaps, of 
the activation of immediately environing axons. If such time factors and 
field interactions play a crucial role, there is no reason to hope that the 
information processing on the neurophysiological level can be described 
in a digital formalism or, indeed, in any formalism at all. 

In 1 966, Walter Rosenblith of M. I.T. ,  one of the pioneers in the use 
of computers in neuropsychology,  summed up the situation: 

We no longer hold the earlier widespread belief t hat the  so-cal l ed a l l -or-none law 
from nerve impulses makes i t  legi t imate to th ink  of relays as adequate models 
for neurons In  addit ion,  we have become increasingly impressed wi t h  the in 
teractions tha t  take place among neurons:  i n  some i nstances a sequence of nerve 
impu lses may reflect the act iv i t ies of l i teral ly  thousands of neurons in a finely 
graded manner. I n  a system whose n umerous elements in teract so �t rongly with 
each other ,  the function ing of the system is not n ecessari l y  best understood by 
proceeding on a neuron-by-neuron basis as i f  each had an independen t personal 
i ty  . . . .  Detailed comparisons of the organi zat ion of com puter systems and brains  
wou ld prove equal l y  frust rat ing and  inconclus ive . ' 

Thus the view that the brain as a general-purpose symbol-manipulat
ing device operates like a digital computer is an empirical hypothesis 
which has had its day. No arguments as to the possibility of artificial 
intelligence can be drawn from current empirical evidence concerning 
the brain. In fact, the difference between the "strongly interactive" 
nature of brain organization and the noninteractive character of machine 
organization suggests that insofar as arguments from biology are rele
vant, the evidence is against the possibility of using digital computers to 
produce intelligence. 
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The Psychological Assumption 

Whether the brain operates like a digital computer is a strictly empiri
cal question to be settled by neurophysiology. The computer model 
simply fails to square with the facts. No such simple answer can be given 
to the related but quite different question: whether the mind functions 
like a digital computer, that is, whether one is justified in using a com
puter model in psychology. The issue here is much harder to define. The 
brain is clearly a physical object which uses physical processes to trans
form energy from the physical world. But if psychology is to differ from 
biology, the psychologist must be able to describe some level of function
ing other than the physical -chemical reactions in the brain. 

The theory we shal l criticize claims that there is such a level-the 
information-processing level-and that on this level the mind uses com
puter processes such as comparing, classifying, searching lists, and so 
forth, to produce intelligent behavior. This mental level, unlike the physi
cal level ,  has to be introduced as a possible level of discourse. The issues 
involved in this discussion wil l ,  therefore, be philosophical rather than 
empirical .  We shal l  see that the assumption of an information-processing 
level is by no means so self-evident as the cognitive simulators seem to 
think; that there are good reasons to doubt that there is any information 
processing going on, and therefore reason to doubt the validity of the 
claim that the mind functions l ike a digital computer. 
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In 1 957 Simon predicted that within ten years psychological theories 
would take the form of computer programs, and he set out to fulfill this 
prediction by writing a series of programs which were meant to simulate 
human cognition by simulating the conscious and unconscious steps a 
person goes through to arrive at a specific cognitive performance. And 
we have seen that despite the general inadequacy of such programs, 
admitted even by enthusiasts such as Minsky, all those involved in the 
general area of artificial intelligence (Minsky included) share the as
sumption that human beings, when behaving intelligently, are following 
heuristic rules similar to those which would be necessary to enable a 
digital computer to produce the same behavior. 

Moreover, despite meager results, Simon ·s prediction has nonetheless 
been partially fulfilled. There has been a general swing from behaviorism 
to mentalism in psychology. Many influential psychologists and philoso
phers of psychology have jumped on Simon·s bandwagon and begun to 
pose their problems in terms of computer analogies. Ulric Neisser as
sumes that " "the task of a psychologist t rying to understand human 
cognition is analogous to that of a man trying to discover how a com
puter has been programmed. " 1 And George Miller of Harvard now 
speaks of . .  recent developments in our understanding of man viewed as 
a system for processing information. • • :  

Usually no argument i s  given for  this new dogma that man i s  an 
information-processing system functioning like a heuristically pro
grammed digital computer. It seems rather to be an unquestioned axiom 
underlying otherwise careful and critical analysis . There is no doubt 
some temptation to suppose that since the brain is a physical thing and 
can be metaphorically described as .. processing information, . . there must 
be an information-processing level. a sort of flow chart of its operations, 
in which its information-processing activity can be described. But we 
have seen in Chapter 3 that just because the brain is physical and pro
cesses information is no reason for biologists to suppose that it functions 
like a digital computer. The same holds for the psychological level. 
Although psychologists describe that function called the mind as " 'pro
cessing information , . , this does not mean that it actually processes in for-
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mation in the modern technical sense, nor that it functions like a digital 
computer, that is, that it has a program. 

"Information processing" is ambiguous. If this term simply means 
that the mind takes account of meaningful data and transforms them into 
other meaningful data, this is certainly incontrovertible. But the cyber
netic theory of information, introduced in 1948 by Claude Shannon, has 
nothing to do with meaning in this ordinary sense. It is a nonsemantic, 
mathematical theory of the capacity of communication channels to 
transmit data. A bit (binary digit) of information tel ls the receiver which 
of two equally probable alternatives has been chosen. 

In his classic paper "The Mathematical Theory of Communication" 
Shannon was perfectly clear that his theory, worked out for telephone 
engineering, careful ly excludes as irrelevant the meaning of what is being 
transmitted. 

The fundamental problem of communication is that of reproducing at one point 
either exactly  or approximately a message selected at another point. Frequently 
the messages have meaning; that is they refer to or are correlated according to 
some system with certain physical or conceptual entities. These semantic aspects 
of commun ication are i rrelevant to the engineering problem. 3 

Warren Weaver in explaining the significance of Shannon's paper is 
even more emphatic : 

The word information, i n  this theory, is used in a special sense that must not be 
confused with its ordinary usage. In part icular, information must not be confused 
with meaning. 

In  fact, two messages, one of which is heavi ly loaded with meaning and the 
other of which is pure nonsense, can be exactly  equivalent ,  from the present 
viewpoint ,  as regards information . I t  is this, undoubtedly ,  that Shannon means 
when he says that "the semantic aspects of communication are i rrelevant to the 
engineering aspects. "4 

When il legitimately transformed into a theory of meaning, in spite of 
Shannon's warning, information theory and its vocabulary have already 
built in the computer-influenced assumption that experience can be 
analyzed into isolable, atomic, alternative choices. As a theory of mean
ing this assumption is by no means obvious. Gestalt psychologists, for 
example, claim (as we have seen in Part I and shall argue in detail in Part 
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III) that thinking and perception involve global processes which cannot 
be understood in terms of a sequence or even a parallel set of discrete 
operations. 5 * Just as the brain seems to be, at least in part, an analogue 
computer, so the mind may well arrive at its thoughts and perceptions 
by responding to .. fields," . .  force, " · ·configurations, " and so on, as. in 
fact, we seem to do insofar as our thinking is open to phenomenological 
description. 6 

It is precisely the role of the programmer to make the transition from 
statements which are meaningful (contain information in the ordinary 
sense) to the strings of meaningless discrete bits (information in the 
technical sense) with which a computer operates .  The ambition of artifi
cial intelligence is to program the computer to do this translating job 
itself. But it is by no means obvious that the human translator can be 
dispensed with. 

Much of the literature of Cognitive Simulation gains its plausibility by 
shifting between the ordinary use of the term .. information" and the 
special technical sense the term has recently acquired. Philosophical 
clarity demands that we do not foreclose the basic question \vhether 
human intelligence presupposes rulelike operations on discrete elements 
before we begin our analysis . Thus we must be careful to speak and think 
of .. information processing" in quotation marks when referring to hu
man beings. 

Moreover, even if the mind did process information in Shannon's sense 
of the term, and thus function like a digital computer. there is no reason 
to suppose that it need do so according to a program. If the bram were 
a network of randomly connected neurons, there might be no flow chart . 
no series of rule-governed steps on the information-processing level, 
which would describe its activity. 

Both these confusions-the step from ordinary meaning to the techni
cal sense of information and from computer to heuristically programmed 
digital computer-are involved in the fallacy of moving from the fact 
that the brain in some sense transforms its inputs to the conclusion that 
the brain or mind performs some sequence of discrete operations. This 
fallacy is exhibited in the baldest form in a recent paper by Jerry Fodor. 
It is instructive to follow his argument . 
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Fodor begins with general ly accepted facts about the central nervous 
system: 

I f  the story about the causal determination of depth estimates by texture gradi

ents is t rue and if the central nervous system is the kind of organ most sensitive 

people now think it is, then some of the things the central nervous system does, 

some of the physical transactions that take place in the central nervous system 

when we make estimates of depth, must satisfy such descriptions as ·monitoring 

texture gradients' ,  ·processing information about texture gradients ' ,  •computing 

derivatives of texture gradients', etc. 7 

He thus arrives at the view that "every operation of the nervous system 
is identical with some sequence of elementary operations. " M  

Disregarding the question-begging use of . .  processing information'' in 
this account, we can still object that computing the first derivative of a 
texture gradient is the sort of operation very likely to be performed by 
some sort of analogue device. There is, therefore, no reason at al l to 
conclude from the fact that the nervous system responds to differences 
in texture gradients that "every operation of the nervous system is identi
cal with some sequence of elementary operations . . . .  , ,  There is, indeed, 
not the slightest justification for the claim that "for each type of behavior 
in the repertoire of that organism, a putative answer to the question, 
How does one produce behavior of that type? takes the form of a set 
of specific instructions for producing the behavior by performing a set 
of machine _operations. " 9 

The argument gains its plausibility from the fact that if a psychologist 
were to take the first derivative of a texture gradient, he would compute 
it using a formalism (differential calculus) which can be manipulated in 
a series of discrete operations on a digital computer. But to say that the 
brain is necessarily going through a series of operations when it takes the 
texture gradient is as absurd as to say that the planets are necessarily 
solving differential equations when they stay in their orbits around the 
sun, or that a slide rule (an analogue computer) goes through the same 
steps when computing a square root as does a digital computer when 
using the binary system to compute the same number. 

Consider an ion solution which might be capable of taking a texture 
gradient or of simulating some other perceptual process by reaching 
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equilibrium. Does the solution, in reaching equilibrium, go through the 
series of discrete steps a digital computer would follow in solving the 
equations which describe this process? In that case, the solution is solv
ing in moments a problem which it would take a machine centuries to 
solve-if the machine could solve it at all. Is the solution an ultrarapid 
computer, or has it got some supposedly clever heuristic like the chess 
master, which simplifies the problem? Obviously . neither. The fact that 
we can describe the process of reaching equilibrium in terms of equations 
and then break up these equations into discrete elements in order to solve 
them on a computer does not show that equilibrium is actually reached 
in discrete steps. Likewise, we need not conclude from the fact that  a ll 
con tinuous physicochemical processes in volved in human . . information 
processing" can in principle be formalized and calculated out discretely. 
that  any discrete processes are actually taking place. 

Moreover, even if one could write such a computer program for simu
lating the physicochemical processes in the brain. it would be no help to 
psychology. 

If simulation is taken in its weakest possible sense. a device is simu
lated by any program which realizes the same input/output function 
(within the range of interest) . Whether achievable for the brain or not, 
this clearly lacks what is necessary for a psychological theory , namely 
an account of how the mind actually . .  works . "  For psychological expla
nation, a represen tation. somehow stronger than a mere sim u lation. i s  
required. As Fodor notes : 

We can say that a machine is strongly equivalent to an organism in  some respect 

when it i s  weakly equivalent in t hat same respect and t he processes upon which 

the behavior of the machi ne is  con t i ngen t are of t he same :ype as t he processes 

upon which the behavior of t he organism are con t ingen t .  I () 

That is, equivalence in the psychological respect demands machine pro
cesses, of the psychological type. 1 1  

• Psychological operations must be the 
sort which human beings at least sometimes consciously perfm m when 
processing information-for example, searching, sorting, and storing
and not physicochemical processes in the organism. Thus a chess player's 
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report as he zeroed in on his Rook, "And now my brain reaches the 
following chemical equilibrium, described by the following array of diff
erential equations," would describe physiological processes no doubt 
correlated with "information processing, , , but not that "information 
processing" itself. 

Fodor is not clear whether his argument is supposed to be a priori or 
empirical, that is, whether or not he thinks it follows logically or merely 
contingently from the claim that the brain is taking account of the 
texture gradient that it is performing a sequence of elementary opera
tions. The fact that he chooses this example, which is one of the least 
plausible cases in which one would want to argue that the brain or the 
mind is performing any elementary operations at all, suggests that he 
thinks there is some kind of necessary connection between taking a 
texture gradient, computing, and performing a sequence of operations. 
When this argument is shown to be a series of confusions, however, the 
advocates of the psychological assumption can always shift ground and 
claim that theirs is not an a priori argument but an empirical conclusion 
based on their experiments. 

Fodor took this tack in defending his paper at the meeting of the 
American Philosophical Association at which it was delivered, while 
Miller et al. justify their work strictly on the basis of what they take to 
be the success of CS. 

A Plan is, for an organism, essential ly the same as a program for a computer. 
. . .  Newel l ,  Shaw, and Simon have explicit ly and systematical ly used the hier
arch ical structure of l ists in their development of "information-processing lan
guages" that are used to program high-speed digital computers to simulate 
human thought processes. 

Their success in this direction-which the present authors find most impressive 
and encouraging-argues strongly for the hypothesis tha t  a hierarchical structure 
is the basic form of organization of h uman problem-solving. 1 2  

We have seen in Part I that Newell, Shaw, and Simon's results are 
far from impressive. What then is this encouraging empirical evidence? 
We must now look at the way Newell, Shaw, and Simon's work is 
evaluated. 
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The empirical justification of the psychological assumption poses a ques
tion of scientific methodology-the problem of the evaluation of evi
dence. Gross similarities of behavior between computers and people do 
not justify the psychological asumption, nor does the present inability to 
demonstrate these similarities in detail alone justify its rejection. A test 
of the psychological assumption requires a detailed comparison of the 
steps involved in human and machine information processing. As we 
have seen (Chapter 1, Sec . 1 1) ,  Newel l ,  Shaw, and Simon conscientiously 
note the similarities and differences between human protocols and ma
chine traces recorded during the solution of the same problem. We must 
now turn to their evaluation of the evidence thus obtained. 

Newell and Simon conclude that their work 

provide[s] a general framework for understanding problem-solv ing behavior 
. . .  and final ly reveals wi t h  great c lari t y  t hat free behavior of a reasonably  
in tel l igent h uman can be  understood as  t he product of  a complex but  fin i t e  and 
determinate set of  laws. 1 1 

This is a strangely unscientific conclusion to draw, for Newel l and Simon 
acknowledge that their specific theories-like any scientific theories
must stand or fal l on the basis of their generality, that is. the range of 

phenomena which can be explained by the programs. 1 4 Yet their program 
is nongeneral in at least three ways. The available evidence has neces
sarify been restricted to those most favorable cases where the subject can 
to some extent articulate his information-processing protocols (game 
playing and the solution of simple problems) to the exclusion of pattern 
recognition and the acquisition and use of natural language. Moreover, 
even in these restricted areas the machine trace can only match the 
performance of one individual ,  and only after ad hoc adjustments. And 
finally, even the match is only partial . Newel l and Simon note that their 
program .. provides a complete explanation of the subject's task behavior 
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with five exceptions of varying degrees of seriousness ." 1 5  

In t h e  l ight o f  these restrictions i t  is  puzzling how Newel l and Simon 
can claim a "general framework,"  and in the light of the exceptions i t  
i s  hard to  see how they can claim to  have any kind of  scientific under
standing at al l .  There seems to be some confusion here concerning the 
universali ty  of scient ific laws or theories. In general ,  scientific laws do 
not admi t  of exceptions, yet here the exceptions are honestly noted-as 
if the frank recogni tion of these exceptions mi tigates their importance; 
as if Gali leo might,  for example, have presented the law of falling bodies 
as holding for all but five objects which were found to fall at a different 
rate. Not that a scient ific conjecture must necessari ly be discarded in the 
face of a few exceptions; there are scientifically sanctioned ways of deal
ing wi th such difficulties. One can, to begin with, hold on to the generali
zat ion as a working hypothesis and wait to announce a scientific law until 
the exceptions are cleared up. A working hypothesis need not explain all 
the data. When, however, the scien tist claims to present a theory, let 
alone a "general framework for understanding, ' '  he must deal with these 
exceptions either by subsuming them under the theory (as in the appeal 
to friction to explain deviations from the laws of motion), or by suggest
ing where to look for an explanation, or at least by showing how, accord
ing to the theory, one would expect such difficult ies. Newell and Simon 
take none of these li nes. 

They might argue that there is no cause for concern , that there are 
exceptions to even the best theories. In his study of scientific revolutions, 
Thomas Kuhn notes the persistence of anomal ies in all normal science. 

There are a lways some discrepancies . . . . Even the most stubborn ones usual ly 

respond at l ast  to normal practice. Very often scien tists are wil ling to wait,  

particularly if there are many problems available in other parts of the field. We 

have al ready noted, for example, that for sixty years after Newton 's original 

computation,  the predicted motion of the moon's perigee remained only half  of 

that observed. 1 6 

But this cannot be a source of comfort for Newell and Simon. Such 
tolerance of anomalies assumes that there already is an ongoing science, 
an "accepted paradigm" which "must seem better than its competi-
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tors. " 1 7  This supposes that the theory works perfectly in at least some 
clearly defined area. But Newell and Simon's cognitive theory is  not only 
not general. It does not work even in a carefully selected special case . It 
is just where we would have to find a perfect match in order to establish 
a paradigm that we find the exceptions. Thus Newell and Simon's work, 
even though it offers some surprising approximations, does not establish 
a functioning science which would justify a claim to have found general 
laws even in the face of anomalies. 

In discussing the Newtonian anomaly above, Kuhn goes on to point 
out that "Europe's best mathematical physicists continued to wrestle 
unsuccessfully with the well-known discrepancy . . . .  " 1

� The absence of 
this sort of concern further distinguishes Newell and Simon ·s work from 
normal scientific practice. After noting their exceptions, no one in CS
least of all Newell and Simon-seems interested in trying to account for 
them. Rather all go on to formulate. in some new area, further ad h oc 
rough generalizations. 

There is one other acceptable way of dealing with exceptions . If one 
knew, on independent grounds, that mental processes m ust be the prod
uct of a rule-governed sequence of discrete operations, then exceptions 
could be dealt with as accidental difficulties in the experimental tech
nique, or challenging cases still to be subsumed under the law . Only then 
would those involved in the field have a right to call each program which 
simulated intelligent behavior-no matter how approximately-an 
achievement and to consider all setbacks nothing but challenges for 
sharper heuristic hunting and further programming ingenuity . The prob
lem , then, is how to justify independently the assumption that all human 
"information processing" proceeds by discrete steps. Otherwise the ex
ceptions, along with the narrow range of application of t he programs and 
the lack of progress during the last ten years, would tend to disconfirm 
rather than confirm this hypothesis. The "justification" seems to have 
two stages. 

In the early literature, instead of attempting to justify this important 
and questionable digital-assumption, Newell and Simon present it as a 
postulate, a working hypothesis which directs their investigation. "We 
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postulate that the subject's behavior is governed by a program organized 
from a set of elementary information processes. " 1 9  This postulate, which 
alone might seem rather arbitrary, is in turn sanctioned by the basic 
methodological principle of parsimony. According to Newell, Shaw, and 
Simon, this principle enjoins us to assume tentatively the most simple 
hypothesis, in this case that all information processing resembles that 
sort of processing which can be programmed on a digital computer. We 
ctm suppose, for example, that in chess, when our subject is zeroing in, 
he is unconsciously counting out. In general, whenever the machine trace 
shows steps which the subject did not report, the principle of parsimony 
justifies picking a simple working hypothesis as a guide to experimenta
tion and assuming that the subject unconsciously went through these 
steps. But of course further investigation must support the working 
hypothesis; otherwise, it must eventually be discarded. 

The divergence of the protocols from the machine trace, as well as the 
difficulties raised by planning, indicate that things are not so simple as 
our craving for parsimony leads us to hope. In the light of these difficul
ties, it would be natural to revise the working hypothesis, just as scien
tists had to give up Newtonian Mechanics when it failed to account for 
certain observations; but at this point, research in Cognitive Simulation 
deviates from acceptable scientific procedures. In summarizing their 
work in CS, Newell and Simon conclude: 

There is a growing body of evidence that the elementary information processes 
used by the human brain in  thinking are high ly simi lar to a subset of the 
elementary information processes that are incorporated in the instruction codes 
of the present-day computers.20 

What is this growing body of evidence? Have the gaps in the proto
cols been filled and the exceptions explained? Not at all. The growing 
body of evidence seems to be the very programs whose lack of univer
sality would cast doubt on the whole project but for the independent 
assumption of the information-processing hypothesis. Given the excep
tions, the psychological assumption would have to already have been 
taken as independently justified, for the specific programs to be presented 
as established theories; yet now the assumption is recognized as an 
hypothesis whose sole confirmation rests on the success of the specific 
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programs. An hypothesis based on a methodological principle is often 
confirmed later by the facts. What is unusual and inadmissible is that, in 
this case, the hypothesis produces the evidence by which i t  is later 
confirmed. 

No independent ,  empirical evidence exists for the psychological as
sumption. In fact ,  the same empirical evidence presen ted for the assump
tion that the mind functions l ike a digit al computer tends, when 
considered without making this assumption, to show t hat the assumption 
is empirical ly untenable. 

This particular form of methodological confusion is restricted to those 
working in Cognit ive Simulation, but even workers in Art ificial Inte l l i 
gence share th is belief in the soundness of heuristic programs. th is ten
dency to think of al l  difficult ies as accidental ,  and th is refusal to consider 
any setbacks as disconfirming evidence. Concluding from the small area 
in which search procedures are part ial ly successful .  workers of bot h  
schools find i t  perfectly clear that the unknown and t roublesome areas 
are of exactly the same sort . Thus, all workers proceed as if the credit 
of the psychological assumption were assured, even if a l l  do not-like 
those in Cognitive Simulat ion-at tempt to underwrite the credit  with a 
loan for which i t  served as collateral . For workers in the field. the 
µsychological assumption seems not to be an empirical hypothesis that 
can be supported or disconfirmed, but some sort of philosophical axiom 
whose truth is assured a priori. 

I I . A Priori Arguments for the Psychological 

Assumption 

A clue to the a priori character of th is axiom can be gained from another 
look at the way Mil ler et al . introduce their computer model . The same 
page which concludes that Simon's success argues st rongly for their 
posit ion opens with a statement of thei r aims: 

Any complete description of beha vior should be adequate to serve as a set of 
instructions, that is, i t  should have the characterist ics of a plan that could guide 
the act ion described. 2 1  
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Miller et al . assume that our very notion of explanation or complete 
description requires that behavior be described in terms of a set of 
instructions, that is, a sequence of determinate responses to determinate 
situations. No wonder psychologists such as Newell ,  Neisser, and Mil ler 
find work in Cognitive Simulation encouraging. In their view, if psychol 
ogy is to be possible at  al l ,  an explanation must be expressible as a 
computer program. This is not an empirical observation but fol lows from 
their definition of explanation. Divergences from the protocol and fail
ures can be ignored. No matter how ambiguous the empirical results in 
Cognitive Simulation, they must be a first step toward a more adequate 
theory. 

This definition of explanation clearly needs further investigation: Does 
it make sense? Even if it does, can one prejudge the results in psychology 
by insisting theories must be computer programs because otherwise psy
chology isn't possible? Perhaps, psychology as understood by the cogni
tive simulationists is a dead end. 

To begin with it is by no means clear what the pronouncement that 
a complete description must take the form of a set of instructions means. 
Consider the behavior involved in selecting, on command, a red square 
from a mul ticolored array of geometrical figures. A complete description 
of that behavior according to Miller et al.. would be a set of inst ructions, 
a plan to fol low in carrying out this task . What instructions could one 
give a person about to undertake this action? Perhaps some very general 
rules such as listen to the instructions, look toward the objects, consider 
the shapes, make your selection. But what about the detailed inst ructions 
for identifying a square rather than a circle? One might say : "Count the 
sides; if there are four, it is a square. " And what about the inst ructions 
for identifying a side? "Take random points and see if they fall on a line 
which is the shortest distance between the end points, " and so on. And 
how does one find these points? After al l ,  there are no points in the field 
of experience when I am confronting a display of geometrical figures. 
Perhaps here the instructions run out and one just says: "But you uncon
sciously see points and unconsciously count . "  But do you? And why do 
the instructions stop here and not earlier or later? And if all this does 
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not seem strange enough, what instructions do you give someone for 
distinguishing red from blue? At this point it is  no longer clear why or 
how a complete description in  psychology should take the form of a set 
of instructions. 

Stil l  such a claim is the heir to a venerable tradition . Kant explicitly 
analyzed all experience, even perception, in terms of rules, and the no
tion that knowledge involves a set of explicit instructions is even older. 
In fact, we have seen that the conviction that a complete description 
involving an analysis into instructions must be possible, because only 
such an analysis enables us to understand what is going on, goes back 
to the beginning of philosophy, that is, to the time when our concepts 
of understanding and reason were first formulated .  Plato, who formu
lated this analysis of understanding in the Euthyphro, goes on to ask in 
the Meno whether the rules required to make behavior intell igible to the 
phi losopher are necessari ly fol lowed by the person who exhibits the 
behavior. That is, are the rules only necessary if the phi losopher is to 
understand what is going on, or are these rules necessarily followed by 
the person insofar as he is able to behave intelligent ly? Since Plato 
generally th�mght of most skil ls as just pragmatic puttering, he no doubt 
held that rules were not involved in understanding (or producing) ski l led 
behavior. But in the case of theorem proving or of moral act ion, Plato 
thought that although people acted without necessari ly being aware of 
any rules, their action did have a rational structure which could be 
explicated by the phi losopher. and he asks whether the mathematician 
and the moral agent are implicitly following this program when behaving 
intell igently. 

This is a decisive issue for the history of our concepts of understanding 
and explanat ion. Plato leaves no doubt about his view :  any action which 
is in fact sensible, i . e . ,  nonarbitrary , has a rational st ructure which can 
be expressed in terms of some theory and any person taking such action 
will be fol lowing, at least implicitly, this very theory taken as a set of 
rules. For Plato, these instructions are already in the mind, prepro
grammed in a previous l ife, and can be made explicit by asking the 
subjects the appropriate quest ions. 22  Thus, for Plato, a theory of human 
behavior which allows us to understand what a certain segment of that 
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behavior accomplishes is  also an explanation of how that behavior is 
produced. Given this notion of understanding and this identification of 
understanding and explanation , one is bound to arrive at the cognit ive 
s imulationists with their assumption that i t  is self-evident that a complete 
description of behavior is a precise set of instructions for a digital com
puter, and that these rules can actually be used to program computers 
to produce the behavior in  quest ion . 

We have already traced the history of this assumption that thinking 
is calculating. 2 3 We have seen that i ts attraction harks back to the Pla
tonic realization that moral life would be more bearable and knowledge 
more definit ive if it were true. I ts plausibility, however, rests only on a 
confusion between the mechanistic assumptions underlying the success 
of modern physical science and a correlative formalistic assumption 
underlying what would be a science of human behavior if such existed. 

On one level , this a priori assumption makes sense. Man is an object. 
The success of modern physical science has assured us that a complete 
description of the behavior of a physical object can be expressed in precise 
laws, which in turn can serve as instructions to a computer which can 
then, at least in principle, simulate this behavior. This leads to the idea 
of a neurophysiological description of human behavior in terms of inputs 
of energy, physical-chemical transactions in the brain, and outputs in 
terms of motions of the physical body, a l l ,  in principle, simulatable on 
a digi tal machine. 

This level of description makes sense, at least at first approximation, 
and since the time of Descartes has been part of the idea of a total 
physical description of all the objects in the universe. The brain is clearly 
an energy-transforming organ . It detects incoming signals; for example, 
it detects changes in light intensi ty correlated with changes in texture 
gradient .  Unfortunately for psychologists, however, this physical de
scription, excluding as it does all psychological terms, is in no way a 
psychological explanation . On this level one would not be justified in 
speaking of human agents, the mind, intentions, perceptions, memories, 
or even of colors or sounds, as psychologists want to do. Energy is being 
received and transformed and that is the whole story. 

There is, of course, another level-let us call it phenomenological-
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on which i t  does make sense to talk  of human agents, acting, perceiv ing 
objects, and so forth. On this level what one sees are tables, chairs, and 
other people, what one hears are sounds and sometimes words and 
sentences, and what one performs are meaningful actions in  a context 
already charged with meaning. But this level of description is no more 
satisfactory to a psychologist than the physiological level , since here 
there is no awareness of fol lowing instructions or rules; there is no place 
for a psychological explanation of the sort the cognitive simulationist 
demands. Faced with this conceptual squeeze, psychologists have always 
tried to find a thi rd level on which they can do their work , a level which 
is psychological and yet offers an explanation of behavior. 

If psychology is to be a science of human behavior, it must study man 
as an object. But not as a physical object, moving in response to inputs 
of physical energy, since that is the task of physics and neurophysiology . 
The alternative is to try to study human behavior as the response of some 
other sort of object to some other sort of input. Just what this other sort 
of object and input are is never made clear, but whatever they are. if there 
is to be an explana tion, man must be treated as some device responding 
to discrete elements, according to laws. These laws can be modeled on 
causal laws describing how fixed propensities i n  the organism interact 
with inputs from the envi ronment to produce complex forms of behavior. 
The device, then, is a reflex machine, and the laws are the laws of 
associat ion. This gives us the empi ricist psychology of David Hume with 
its modern descendant, S-R psychology . Or the object can be treated as 
an information-processing device and the laws can be understood on the 
Kantian model ,  as reasons, which are ru les in the mind applied by the 
mind to the input. In psychology this school was called idealist, intel lec
tualist, or mental ist, and is now called "cognitive psychology ."  

Unti l the advent of the computer the empiricist school had the edge 
because the intellectual ist view never succeeded in treating man as a 
calculable object. There was always a subject, a "transcendental ego, . .  
applying the rules, which simply postponed a scientific theory of behav
ior by installing a l ittle man (homunculus) in the mind to guide its 
actions. Computers, however, offer the i rresistible attraction of operating 
according to rules without appeal to a transcendental ego or homun-
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culus. Moreover, computer programs provide a model for the analysis 
of behavior such as speaking a natural language which seems to be too 
complex to be accounted for in terms of S-R psychology. In short, there 
is now a device which can serve as a model for the mentalist view, and 
it is inevitable that regardless of the validity of the arguments or the 
persuasiveness of the empirical evidence, psychologists dissatisfied with 
behaviorism will clutch at this high-powered straw. 

A computer is a physical object, but to describe its operation, one does 
not describe the vibrations of the electrons in its transistors, but rather 
the levels of organization of its on/off flip/flops. If psychological con
cepts can be given an interpretation in terms of the higher levels of 
organization of these rule-governed flip/flops, then psychology will have 
found a language in which to explain human behavior. 

The rewards are so tempting that the basic question, whether this third 
level between physics and phenomenology is a coherent level of discourse 
or not, is not even posed. But there are signs of trouble. The language 
of books such as those by Miller et al. , Neisser, and Fodor is literally 
incoherent. On almost every page one finds sentences such as the fol
lowing: 

When an organism executes a Plan he proceeds step by step, completing one part 
and then moving to the next. 2 4* 

Here all three levels exist in unstable and ungrammatical suspension. 
"When an ·organism [biological] executes [machine analogy borrowed 
from human agent] a Plan he [the human agent] . . .  " Or, one can have 
it the other way around and instead of the organism being personified, 
one can find the mind mechanized. Fodor speaks of "mental process
ing, " 2 5 or "mental operations," 26 as if it were clear what such a form of 
words could possibly mean. 

This new form of gibberish would merely be bizarre if it did not reveal 
more serious underlying conceptual confusions. These are implicit in the 
work of Miller et al. but become clear in the works of Neisser and Fodor, 
who, of all the writers in this area, make the greatest effort to articulate 
their philosophical presuppositions. The confusion can best be brought 
to light by bearing firmly in mind the neurophysiological and phe-
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nomenological levels of description and then trying to locate the psycho
logical level somewhere between these two. 

In trying to make a place for the information-processing level Neisser 
tel ls us: 

There is certainly a real world of trees and people and cars and even books . 
. . . However, we have no immediate access to the world nor to any of i ts 
properties. 2 7  

This is certainly true insofar as man is regarded as a physical object. 2 5 * 
As Neisser puts it ,  " . . .  the sensory input is not the page i tself; it is a 
pattern of l ight rays . . . . " 29 So far so good, but then. Neisser goes on to 
bring the physical and the phenomenological levels together : .. Suitably 
focussed by the lens . . .  the rays fall on the sensit ive retina, where they 
can init iate the neural processes that even tually lead to seeing and reading 
and remembering. "30 Here, however. things are by no means obvious. 
There are two senses of . .  lead to. · ·  Light waves fal l ing on the ret ina 
eventually lead to physical and chemical processes in the brain. but in 
this sequent ial sense, the l ight rays and neural processes can never even
tual ly  lead to seeing. 3 1 • Seeing is not a chemical process; thus it is not 
a final step in a series of such processes. If. on the other hand. " lead to" 
means "necessary and sufficient condi tion for . . .  then. either seeing is the 
whole chain or something total ly different from the chain or any l ink of 
i t .  In ei ther case it is no longer clear why Neisser says we have no 
immediate access to the perceptual world. 

Once the neural and phenomenological levels have thus been i l legi t i 
mately amalgamated into one series, which stands between the person 
and the world, a new vocabulary is required. This no-man's- land 1s 
described in terms of "sensory input" and its "transformations. · ·  

A� used here, the term "cogni t ion" refers to al l  the processes by which the 
sensory input i s  transformed. reduced, elaborated ,  stored. recovered, and used . 
. . . Such terms as sensation, perception, imagery, retention, recal l, problem
solving, and th inking, among many others, refer to hypothet ical stages or aspects 
of cogni tion. 1 2 

Once a "sensory input" which differs from the world we normal ly see 
has been introduced, i t  seems necessary that our perception be "devel-
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oped from," or a "transformation of' this "st imulus input ." 3 3 * But what 
this transformation means depends on the totally ambiguous notion of 
"st imulus input ." If  the input is energy, then i t  is only necessary that it 
be transformed into other energy-the processes in the brain are surely 
physical from beginning to end .  Matter-energy can be transformed, re
duced, elaborated, stored, recovered, and used, but it will never be any
thing but matter-energy. If, however, the stimulus is some sort of 
pri mit ive perception, as Neisser later seems to suggest-"a second stimu
lus wi l l  have some effect on how the first brief one is perceived" 34-then 
we have to know more about what this new percept is. Philosophers have 
ceased to believe in sense data, and if Neisser has some notion of a 
primit ive percept, it cannot be introduced without a great deal of argu
ment and evidence. Phenomenologically we directly perceive physical 
objects. We are aware of neither sense data nor light rays. If Neisser 
wants to shift his notion of input from physical to perceptual, it is up to 
him to explain what sort of perception he has in mind, and what evidence 
he has that such a percept, which is neither a pattern of light rays nor 
a perspectival view of a physical object , exists. 

"Information" is the concept which is supposed to rescue us from this 
confusion .  Neisser says "Information is what is transformed, and the 
structured pattern of i ts transformation is what we want to und�r
stand. " 3

� But as long as the notion of "st imulus input" is ambiguous, i t  
remains unclear what information is and how it is  supposed to be related 
to the "stimulus input," be it energy or direct perception. 

Finally, in a dazzling display of conceptual confusion, these two inter
dependent and ambiguous notions, "st imulus input" and "information," 
are combined in the "central assertion" of the book : 

The central assertion is that seeing, hearing, and remembering are al l  acts vf 
construction, which may make more or less use of st imulus information [ sic] 
depending on ci rcumstances . The construct ive processes are assumed to have two 
stages of which the first is fast, crude, whol istic, and parallel ,  while the second 
is deliberate, attent ive, detai led, and sequential. ] (, 

The ambiguity of "st imulus information" and the subsequent incoher
ence of the conceptual framework underlying this approach and i ts 



What Computers Can 't Do I 182 

consequences can best be seen by following a specific example.  Let us 
take Neisser's analysis of the perception of a page. 

If we see moving objects as unified th ings, it must be because percept ion resul ts  

from an integrative process over t ime. The same process is surely responsible for 

the construct ion of visual objects from the successive · ·snapshots" taken by the  

moving eye.3 7 

The question to be asked here is: What are these snapshots? Are they 
"patterns of energy" or are they momentary pictures of a page? If they 
are patterns of energy they are in no sense perceived, and are integrated 
not by the subject (the perceiver) but by the brain as a physical object. 
On the other hand, on the phenomenological level. we do not have to 
integrate distinct snapshots of the page at all. The page i s  steadily seen, 
and the notion that it is seen as a series of "snapshots" or "inputs" is  
an abstraction from this continuously presented page. Of cou rse. this 
steadily seen page is  correlated with some "processing," but not the 
processing of rudimentary perceptual objects . or "snapshots"-which 
could only give rise to the question of how these elementary perceptual 
objects were themselves "constructed"-but the processing of some fluc
tuating pattern of energy bombarding the eye. l � •  

This conceptual confusion, which results from try ing to define a level 
of discourse between the physiological and the phenomenological. is even 
more pronounced in Fodor's work . because he tries even harder to be 
clear on just these points. In discussing the perception of visual and 
acoustic patterns Fodor notes that "the concept you have of a face, or 
a tune, or a shape . . .  includes a representation of the formal structure 
of each of these domains and the act of recognition involves the applica
tion of such information to the integration of current sensory inputs. " 'q 

One wonders again what "sensory input" means here. If the "sensory 
input" is already a face, or a tune, or a shape, then the job is already done. 
On the other hand, if the "sensory input" is the physical energy reaching 
the sense organ, then it is impossible to understand what Fodor means 
by the "application" of a "concept" or of " information" to the integra
tion of such inputs, since what would integrate such physical energy 
would surely be further energy transformations. 



The Psycholog ica l  Ass u m ption I 183 

Of course, if we begged the question and assumed that the brain is a 
digital computer, then sense could be made of the notion that a concept 
is a formal structure for organizing data. In that case the "sensory input" 
would be neither a percept nor a pattern of energy, but a series of bits, 
and the concept would be a set of instructions for relating these bits to 
other bits already received, and classifying the result. This would amount 
to an hypothesis that human behavior can be understood on the model 
of a digital computer. It would require a theory of just what these bits 
are and would then have to be evaluated on the basis of empirical 
evidence. 

But for Fodor, as for Miller et al. ,  the notion of "sensory input" and 
of a concept as a rule for organizing this input seems to need no justifica
tion but rather to be contained in the very notion of a psychological 
explanation. 

Insofar as it seeks to account for behavior, a psychological theory may be thought 
of as a function that maps an infin i te set of possible inputs to an organism onto 
an infin i te set of possible outputs. 40 

As a conceptual analysis of the relation of perception and behavior, 
which is supposed to be accepted independently of empirical assump
tions about the brain, such an account is incomprehensible. 

As with Neisser, this incoherence can best be seen in a specific case. 
Fodor takes up the problem of how · ·we have learned to hear as similar" 
-as one melody-"what may be physically quite different sequences of 
tones. "4 1  Here the question-begging nature of the analysis is clear: Are 
these sequences of tones physical or phenomenal? Are they patterns of 
sound waves or percepts? The talk of their physical difference suggests 
the former. And indeed on the level of physical energy it is no doubt true 
that inputs of energy of various frequencies are correlated with the same 
perceptual experience. The energy transformations involved will pre
sumably someday be discovered by neurophysiologists. But such physical 

sequences of tones cannot be "heard"-we do not hear frequencies; we 
hear sounds-and thus a fortiori these frequencies cannot be "heard as 
similar. "  If, on the other hand, we try to understand the input as se
quences of phenomenal tones, which it would make sense to Hhear as 
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similar," then we are on the level of perception, and unfortunately for 
Fodor the problem of how we hear these sequences of tones as similar 
vanishes; for in order to pose the problem in the first place we have 
already assumed that the phenomenal tone sequences are heard as simi
lar. On the phenomenal level we hear them as similar because they sound 
similar. 

To put it another way, Fodor speaks of .. which note in particular (i . e . ,  
which absolute values of key, duration, intensity, stress. pitch. ampli
tude, etc.) we expect after hearing the first few notes of a performance 
of Lil liburlero . . . .  "42 But we do not .. expect "  any .. absolute values .. at 
all. We expect notes in a melody. The absolute values pose a problem for 
the neurophysiologist with his oscilloscope, or for someone hearing the 
notes in isolation, not for the perceiver. 

If we did perceive and expect these "absolute va lues . . .  we would indeed 
need the "elaborate conceptualism" defended by Fodor, in order to 
recognize the same melody in various sequences : 

It is unclear how to account for the ability to recogn ize  identi t y  of t ype despite 

gross variations among tokens unless we assume that the concepts employed in 

recognition are of formidable abstractness . But then it 1s  unclear how the applica 
tion of such concepts . . .  is to be expla ined . un less one assumes psychological 

mechanisms whose operations must be complicated i n  the ex t reme _ . '  

Here the confusion shows up in the use of . .  token . .  and . .  type . . .  What 
are these tokens? The perceived phenomenal sound sequence ( the mel
ody) cannot be an abstraction (a type) of which the physical energy in
puts are instantiations ( tokens) . The percept and the physical energy 
are equally concrete and are total ly different sorts of phenomena. No 
amount of complication can bridge the gap between shifting energy 
inputs and the perception of an enduring sound . One is not an instantia
tion of the other. But neither can the tokens be taken to be the phenome
nal sequence of isolated absolute tones (as a sense data theorist would 
have it). In listening to a melody absolute tones are not perceived, so 
under this interpretation there would be no tokens at al l .  

Even if one assumes that Fodor has in mind the physical model ,  which 
could be computerized , this kind of pat tern recognition could conceiva-
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bly be accomplished by a neural net or by an analogue device, if it could 
be accomplished at all. There is no reason to suppose that it is accom
plished by a heuristic program (a set of abstract concepts), let alone that 
such a program is a conceptual necessity. 

Yet Fodor never questions the assumption that there is an informa
tion-processing level on which energy transformation can be discussed 
in terms of a sequence of specific operations. His only question is : How 
can we tell that we and the machine have the same program, that is, 
perform the same operations? Thus, for example, after asking how one 
could know whether one had a successful machine simulation, Fodor 
replies: " . . .  we need only accept the convention that we individuate 
forms of behavior by reference not solely to the observable gestures 
output by an organism but also to the sequence of mental  operations that 

underlie those gestures. "44 

Or even more baldly : 

strong equivalence requires that the operations that underl ie the production of 

machine behavior be of the same type as the operations that underlie the produc
tion of organic behavior. 4 � 

It should now be clear that Fodor's argument depends on two sorts 
of assumptions: First, like Miller et al. and Neisser, he introduces the 
ambiguous notion of "input" to allow a level of description on which it 
seems to make sense to analyze perception as if man were a computer 
receiving some sort of data called "stimulus information. " This amounts 
to the assumption that besides energy processing, "data processing is 
involved in perception. "4 6 

Fodor then makes two further assumptions of a second sort, of which 
he seems to be unaware: ( I )  that this data processing takes place as if on 
a digital computer, that is, consists of discrete operations, and (2) that 
this digital computer operates serially according to something like a 
heuristic program, so that one can speak of a sequence of such opera
tions. Fodor's defense of his "elaborate conceptualism," of his notion 
that perception requires complicated mental operations, seems to turn on 
thus dogmatically introducing information processing and then simply 
overlooking all alternative forms of computers and even alternative 



What Computers Can 't Do I 186 

forms of digital data processing. This blindness to alternatives can be 
seen in the conclusion of Fodor's discussion of such phenomena as the 
recognition of melodies : 

Characteristically such phenomena have to do with "constancies"-that is, cases 

in which normal perception involves radical and uniform departure from the 

informational content of the physical input .  I t  has been recognized since Helm

holtz that such cases provide the best argument for unconscious mental  opera
tions for there appears to be no alternative to in voking such operations if we are 
to explain the disparity between inpu t and percept. • �  

Fodor's whole discussion of the logic of computer simulation is vi
tiated by his unquestioned reliance on these questionable assumptions. 
The ease with which his nonarguments pass for conceptual analysis 
reveals the grip of the Platonic tradit ion, and the need to believe in the 
information-processing level if psychology is to be a science. 

Of course, the use of the computer as a model is legi timate as long as 
i t  is recognized as an hypothesis. But in the writing of Mi l ler et al . ,  
Neisser, and Fodor, as we have seen , this hypothesis is treated as an a 
priori truth, as if it were the result of a conceptual analysis of behavior. 

Occasionally one glimpses an empirical basis for this assumption : 
Fodor's argument for the legi timacy of a computer program as a psycho
logical theory ultimately rests on the hypothetical supposit ion .. that we 
have a machine that sat isfies whatever experimental tests we can devise 
for correspondences between its repertoire and that of some organism . "0 

However, this covert ly empirical character of the argument is implici t ly 
denied since the whole discussion is couched in terms of "sequences of 
men !al operat ions," as if i t  were already certain that such a machine 
could exist . 

On ly if such a machine existed, and only if i t  did indeed operate in 
sequences of steps, would one be just ified in using the notions connected 
with heurist ical ly programmed digital computers to suggest and inter
pret experiments in psychology . But to decide whether such an intel l igent 
machine can exist, and therefore whether such a conceptual framework 
is legi timate, one must first try to program such a machine, or evaluate 
the programs already tried . To use computer language as a self-evident 
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and unquestionable way of formulating the conceptional framework in 
terms of which experiments are undertaken and understood without 
valid a priori arguments or an empirical existence-proof of the possibility 
of such a machine, can only lead to confusion. 

Conclusion 

So we again find ourselves moving in a vicious circle. We saw at the end 
of Section I of this chapter that the empirical results, riddled with 
unexplained exceptions, and unable to simulate higher-order processes 
such as zeroing in and essential/inessential discrimination, are only 
promising if viewed in terms of an a priori assumption that the mind 
must work like a heuristically programmed digital computer. But now 
we have seen that the only legitimate argument for the assumption that 
the mind functions like a computer turns on the actual or possible 
existence of such an intelligent machine. 

The answer to the question whether man can make such a machine 
must rest on the evidence of work being done. And on the basis of actual 
achievements and current stagnation, the most plausible answer seems 
to be, No. It is impossible to process an indifferent "input" without 
distinguishing between relevant and irrelevant, significant and insignifi
cant data. We have seen how Newell, Shaw, and Simon have been able 
to avoid this problem only by predigesting the data, and how Miller et 
al. have been able to avoid it only by mistakenly supposing that Newell, 
Shaw, and Simon had a program which performed this original selection. 
But if there is no promising empirical evidence, the whole self-supporting 
argument tumbles down like a house of cards. 

The only alternative way to cope with selectivity would be analogue 
processing, corresponding to the selectivity of our sense organs. But then 
all processing would no longer be digital, and one would have reasnn to 
wonder whether this analogue processing was only peripheral. All of 
which would cast doubt on the "sequence of operations" and reopen the 
whole discussion. These difficulties suggest that, although man is surely 
a physical object processing physical inputs according to the laws of 
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physics and chemistry, man's behavior may not be explainable in terms 
of an information-processing mechanism processing inputs which repre
sent features of the world. Nothing from physics or experience sug
gests that man's actions can be so explained, since on the physical level 
we are confronted with continuously changing patterns of energy ,  and 
on the phenomenological level with objects in an already organized field 
of experience. 

An analysis of this field of experience would provide an alternat ive 
area of study for psychology. But before we turn to this alternat i ve the
ory in Part .III, we must follow up two other assumptions. which. even 
if work in CS cannot be defended, seem to lend plausibili ty  to work 
in Al . 
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The Epistemological Assumption 

It should now be evident that it is extremely difficult to define what 
the mental level of functioning is, and that whatever the mind is, it is by 
no means obvious that it functions like a digital computer. This makes 
practically unintel ligible the claims of those working in Cognitive Simu
lation that the mind can be understood as processing information accord
ing to heuristic rules. The computer model turns out not to be helpful 
in explaining what people actual ly do when they think and perceive, and, 
conversely, the fact that people do think and perceive can provide no 
grounds for optimism for those trying to reproduce human performance 
with digital computers. 

But this sti l l  l eaves open another ground for optimism: although 
human performance might not be explainable by supposing that people 
are actually following heuristic rules in a sequence of unconscious opera
tions, intel l igent behavior may sti l l  beformalizable in terms of such rules 
and thus reproduced by machine. 1 * This is the epistemological assump
tion . 

Consider the planets. They are not solving differential equations as 
they swing around the sun. They are not following any rules at al l ;  but 
their behavior is nonetheless lawful, and to understand their behavior we 
find a formalism-in this case differential equations-which expresses 
their behavior as motion according to a rule. Or, to take another example: 

I 189 
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A man riding a bicycle may b e  keeping his balance just b y  shifting his 
weight to compensate for his tendency to fall. The intelligible content of 
what he is doing, however, might be expressed according to the rule: 
wind along a series of curves, the curvature of which is inversely propor
tional to the square of the velocity. 2 • The bicycle rider is certainly not 
following this rule consciously, and there is no reason to suppose he is 
following it unconsciously. Yet this formalization enables us to express 
or understand his competence, that is, what he can accomplish. It is, 
however, in no way an explanation of his performance. It tells us what 
it is to ride a bicycle successfully, but nothing of what is going on in his 
brain or in his mind when he performs the task. 

There is thus a subtle but important difference between the psychologi
cal and the epistemological assumptions. Both assume the Platonic no
tion of understanding as formalization ,  but those who make the 
psychological assumption (those in CS) suppose that the rules used in the 
formalization of behavior are the very same ru les which produce the 
behavior, while those who make the epistemological assumption (those 
in Al) only affirm that all nonarbitrary behavior can be formalized 
according to some rules, and that these rules, whatever they are, can then 
be used by a computer to reproduce the behavior. 

The epistemological assumption is weaker and thus less vulnerable 
than the psychological assumption . But it is vulnerable nonetheless. 
Those who fall back on the epistemological assumption have realized 
that their formalism, as a theory of competence, need not be a theory of 
human performance, but they have not freed themselves sufficiently 
from Plato to see that a theory of competence may not be adequate as 
a theory of machine performance either. Thus, the epistemological as
sumption involves two claims : (a) that all nonarbitrary behavior can be 
formalized, and (b) that the formalism can be used to reproduce the 
behavior in question .  In this chapter we shall criticize claim (a) by 
showing that it is an unjustified generalization from physical science, and 
claim (b) by trying to show that a theory of competence cannot be a 
theory of performance : that unlike the technological application of the 
laws of physics to produce physical phenomena, a timeless, contextless 
theory of competence cannot be used to reproduce the moment-to-
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moment involved behavior required for human performance; that indeed 
there cannot be a theory of human performance. If this argument is 
convincing, the epistemological assumption, in the form in which it 
seems to support Al , turns out to be untenable, and, correctly under
stood, argues against the possibility of Al ,  rather than guaranteeing its 
success. 

Claim (a), that all nonarbitrary behavior can be formalized, is not an 
axiom. It rather expresses a certain conception of understanding which 
is deeply rooted in our culture but may nonetheless turn out to be 
mistaken. We must now turn to the empirical arguments which can be 
given in support of such a hypothesis. It should also be clear by now that 
no empirical arguments from the success of AI are acceptable, since it 
is precisely the interpretation, and, above al l ,  the possibility of significant 
extension of the meager results such as Bobrow's which is in question. 

Since two areas of successful formalization-physics and linguistics
seem to support the epistemological assumption, we shal l have to study 
both these areas. In physics we indeed find a formalism which describes 
behavior (for example, the planets circling the sun), but we shall see that 
this sort of formalism can be of no help to those working in AI .  In 
linguistics we shall find, on the other hand, a formalism which is relevant 
to work in AI,  and which argues for the assumption that all nonarbitrary 
behavior can be formalized, but we wil l find that this formalism which 
expresses the competence of the speaker-that is, what he is able to 
accomplish--cannot enable one to use a computer to reproduce his 
performance-that is, his accomplishment. 

I .  A M ista ken Arg u ment from t h e  Success of 

Physics 

Minsky's optimism-that is, his conviction that all nonarbitrary behav
ior can be formalized and the resulting formalism used by a digital 
computer to reproduce that behavior-is a pure case of the epistemologi
cal assumption. It is this belief which allows Minsky to assert with 
confidence that "there is no reason to suppose that machines have any 
limitations not shared by man." 3 We must now examine the arguments 
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supporting this claim, but fi rst we must be clear what the formalist means 
by machine. 

A digital computer is a machine which operates according to the sort 
of criteria Plato once assumed could be used to understand any orderly 
behavior. This machine, as defined by Minsky ,  who bases his defini t ion 
on that of Turing, is a "rule-obeying mechanism. " As Turing puts i t :  
"The . . .  computer i s  supposed to be following fixed rules . . . .  I t  i s  the 
duty of the control to see that these instruct ions are obeyed correctly and 
in the right order. The control is so constructed that this necessarily 
happens. "4 So the machine in question is a rest ricted but very fundamen
tal sort of mechanism. It operates on determinate, unambiguous bits of 
data, according to strict rules which apply unequivocally to these data. 
The claim is made that this sort of machine-a Turing machine-which 
expresses the essence of a digital computer can, in principle. do anything 
that human beings can do-that it has, in principle, only those limita
t ions shared by man. 

Minsky considers the ant iformalist counterclaim that . .  perhaps there 
are processes . . .  which simply cannot be described in any formal 
language, but which can nevertheless be carried out , e.g. , by minds. " \  
Rather than answer this objection directly, he refers t o  Turing's . .  bril
liant" article which, he asserts, contains arguments that .. amount 
. . .  to a satisfactory refutat ion of many such objections. "t- Turing does, 
indeed, take up this sort of objection. He states it as follows: . . I t  is not 
possible to produce a set of rules purport ing to describe what a man 
should do in every conceivable set of circumstances . . . , This is presuma
bly Turing's generali zation of Wit tgenstein's argument that it is impossi
ble to supply normat ive rules which prescribe in advance the correct use 
of a word in all situations. Turing's · · refutation" is to make a dist inction 
between .. rules of conduct" and .. laws of behavior" and then to assert 
that .. we cannot so easily convince ourselves of the absence of complete 
laws of behavior as of complete rules of conduct .  " s  

Now as an answer to  the Wit tgensteinian claim, this is well taken. 
Turing is in effect arguing that although we cannot formulate the norma
tive rules for the correct application of a particular predicate, this does 
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not show that we cannot formulate the rules which describe how, in/act, 
a particular individual applies such a predicate. In other words, while 
Turing is ready to admit that it may in principle be impossible to provide 
a set of rules describing what a person should do in every circumstance, 
he holds there is no reason to doubt that one could in principle discover 
a set of rules describing what he would do. But why does this supposition 
seem so self-evident that the burden of proof is on those who cal l  it into 
question? Why should we have to "convince ourselves of the absence of 
complete laws of behavior" rather than of their presence? Here we are 
face to face again with the epistemological assumption. I t  is important 
to try to root out what lends this assumption its implied a priori plausi
bil ity. 

To begin with, " laws of behavior" is ambiguous. In one sense human 
behavior is certainly lawful,  if lawful simply means orderly . But the 
assumption that the laws in question are the sort that could be embodied 
in a computer program or some equivalent formalism is a different and 
much stronger claim, in need of further justification. 

The idea that any description of behavior can be formalized in a way 
appropriate to computer programming leads workers in the field of 
artificial intel ligence to overlook this question. It is assumed that, in 
principle at least, human behavior can be represented by a set of indepen
dent propositions describing the inputs to the organism, correlated with 
a set of propositions describing its outputs. The clearest statement of this 
assumption can be found in James Culbertson's move from the assertion 
that one could build a robot using only flip/flops to the claim that in 
theory at least i t  could therefore reproduce al l  human behavior. 

Using suitable receptors and effectors we can connect them together via central 
cel ls . If we could get enough central cells and if they were small enough and 1/ 
each cell had enough end bulbs and 1/ we could put enough bulbs at each synapse 
and 1/ we had time enough to assemble them, then we could construct robots to 
satisfy any given input-output specification , i .e . ,  we could construct robots that 
would behave in any way we desired under any environmental circumstances. 
There would be no difficulty in constructing a robot with behavioral properties 
just l ike John Jones or Henry Smith or in constructing a robot with any desi red 
behavioral improvements over Jones and Smith . 9 
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Or put more baldly : 

Since [these complete robots] can, in principle, satisfy any given input-output 

specifications, they can do any prescribed things under any prescribed circum
stances-ingeniously solve problems, compose symphonies, create works of art 
and l iterature and engineering, and pursue any goals. 1 0  

But as we have seen in Chapter 4, it is not clear in the case of human 
beings what these inputs and outputs are supposed to be. 1 1  

• Culbertson ·s 
assumption that the brain can be understood as correlating isolated bits 
of data rests on the assumption that the neurons act as on/off switches. 
Since, as we have seen in Chapter 3, this is probably not the case, there 
is no reason to suppose, and several reasons to doubt, that human inputs 
and outputs can be isolated and their correlation formalized. Culbert
son's assumption is an assumption and nothing more, and so in no way 
justifies his conclusions. 

The committed formalist, however, has one more move. He can ex
ploit the ambiguity of the notion of "laws of behavior ," and take behavior 
to mean not meaningful human actions, but simply the physical move
ments of :he human organism. Then, since human bodies are part of the 
physical world and, as we have seen, objects in the physical world have 
been shown to obey laws which can be expressed in a formalism manipu
lable on a digital computer, the formalist can still claim that there must 
be laws of human behavior of the sort requi red by his formalism. To be 
more specific, if the nervous system obeys the laws of physics and chemis
try , which we have every reason to suppose it does, then even if it is not 
a digital computer, and even if there is no input-output function di rectly 
describing the behavior of the human being, we still ought to be able to 
reproduce the behavior of the nervous system with some physical device 
which might, for example, take the form of a new sort of "analogue 
computer" using ion solutions whose electrical properties change with 
various local saturations. Then, as we pointed out in Chapter 4, knowing 
the composition of the solutions in this device would enable us at least 
in principle to write the physicochemical equations describing such wet 
components and to solve these equations on a dry digital computer. 
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Thus, given enough memory and time, any computer--even such a 
special sort of analogue computer-could be simulated on a digital ma
chine. In general , by accepting the fundamental assumptions that the 
nervous system is part of the physical world and that all physical pro
cesses can be described in a mathematical formalism which can in turn 
be m anipulated by a digital computer, one can arrive at the strong claim 
that the behavior which results from human "information processing," 
whether directly formalizable or not, can always be indirectly repro
duced on a digital mach ine. 

This claim may well account for the formalist's smugness, but what 
in fact is justified by the fundamental truth that every form of "informa
tion processing" (even those which in practice can only be carried out 
on an "analogue computer") must in principle be simulable on a digital 
computer? We have seen it does not prove the mentalist claim that, even 
when a human being is unaware of using discrete operations in process
ing information, he must nonetheless be unconsciously following a set of 
instructions. Does it justify the epistemological assumption that all 
nonarbitrary behavior can be formalized? 

One must del imit what can count as information processing in a 
computer. A digital computer solving the equations describing an ana
logue information-processing device and thus simulating its function is 
not thereby simulating its "information processing." It is not processing 
the information which is processed by the simulated analogue, but en
tirely different information concerning the physical or chemical proper
ties of the analogue. Thus the strong claim that every form of information 
can be processed by a digital computer is misleading. One can only show 
that for any given type of information a digi tal computer can in principle 
be programmed to simulate a device which can process that information . 

Thus understood as motion-as the input and output of physical 
signals-human behavior is presumably completely lawful in the sense 
the formalists require. But this in no way supports the formalist assump
tion as it appears in Minsky and Turing. For when Minsky and Turing 
claim that man is a Turing machine, they cannot mean that a man is a 
physical system. Otherwise it would be appropriate to say that planes or 
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boats are Turing machines. Their behavior, too, can be described by 
mathematically formulable laws-relating their intake and output of 
energy-and can at least in principle be reproduced to any degree of 
accuracy on a digital computer. No, when Minsky or Turing claims that 
man can be understood as a Turing machine, they must mean that a 
digital computer can reproduce human behavior, not by solving physical 
equations but by processing data representing facts about the world using 
logical operations that can be reduced to matching, classifying, and 
Boolean operations. As Minsky puts it : 

Mental processes resemble . . .  the k inds of processes found in computer pro
grams:  arbi t rary symbol assoc iations, t reel i ke storage schemes, condi t ional t rans
fers, and the l i ke. 1 2  

Workers in AI are claiming that there is such a mental level of symbolic 
descriptions which can be described in a digital formalism . All Al re
search is dedicated to using logical operations to manipulate data repre
senting the world, not to solving physical equations describing physical 
objects. Considerations from physics show only that inputs of energy, 
and the neurological activity involved in transforming them, can in 
principle be described and manipulated in digital form . 

No one has tried, or hopes to try , to use the laws of physics to calculate 
in detail the motion of human bodies. Indeed, this may well be physically 
impossible, for H. J .  Bremermann has shown that: 

No data processing system whet her art ificial or l iv ing can process more than 
(2  X 1 04 7

) bi ts per second per gram of i ts  mass. 1 1 

Bremermann goes on to draw the following conclusions : 

There are 7r X 1 0 1 seconds i n  a year. The age of the earth is about l OQ years, 
i ts mass less than 6 X 1 0� 1 grams. Hence even a computer of the si ze of t he eart h 
could not process more than t OQ ' bi ts during a t ime equal to t he age of the eart h .  
[Not t o  ment ion t h e  fact , one might  add, that the bigger t h e  computer t h e  more 
the speed of l ight would be a factor in slowing down i ts  operat ion . ]  . . .  Theorem 
proving and problem solv ing . . .  lead to exponent ial ly growing problem t rees. 
I f  our conjecture is t rue then i t  seems that the difficult ies that  are current l y  
encountered in  the  field of pattern recogni t ion and  theorem proving w i l l  not  be 
resolved by sheer speed of data processing by some future super-computers. 1 • 
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If these calculations are correct ,  there is a special kind of impossibi lity 
i nvolved in  any attempt to simulate the brain as a physical system . The 
enormous calculations necessary may be precluded by the very laws of 
physics and information theory such calculations presuppose. 

Yet workers in the field of AI  from Turing to Minsky seem to take 
refuge in this confusion between physical laws and information-process
ing rules to convince themselves that there is reason to suppose that 
human behavior can be formalized ; that the burden of proof is on those 
who claim that "there are processes . . .  which simply cannot be described 
in a formal language but which can nevertheless be carried out, e .g . , by 
minds. " 1 5  Once we have set straight the equivocation between physical 
laws and information-processing rules, what argument remains that hu
man behavior, at what AI workers have cal led "the information process
ing level , "  can be described in terms of strict rules? 

I I . A M istaken Argument from the Success of 

Modern Linguistics 

If no argument based on the success of physics is relevant to the success 
of A I , because A I  is concerned with formalizing human behavior not 
physical motion, the only hope is to turn to areas of the behavioral 
sciences themselves. Gali leo was able to found modern physics by ab
stract ing from many of the properties and relations of Aristotel ian phys
ics and finding that the mathematical relations which remained were 
sufficient to describe the motion of objects. What would be needed to 
j ustify the formalists' optimism would be a Gali leo of the mind who, by 
making the right abstractions, could find a formalism which would be 
sufficient to describe human behavior. 

John McCarthy expresses this longing for a rapprochement between 
physics and the behavioral sciences : 

Although formalized theories have been devised to express the most important 
fields of mathematics and some progress ha� been made in formalizing certain 
empi rical sciences, there is at present no formal theory in  which one can express 
the k ind of means-ends analysis used in ordinary l ife . . . . Our approach to the 
artificial-intel l igence problem requi res a formal theory. 1 6  
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Recently such a breakthrough has occurred. Chomsky and the trans
formational linguists have found that by abstracting from human perfor
mance-the use of particular sentences on part icular occasions-they 
can formalize what remains, that is, the human abili ty  to recognize gram
matically well-formed sentences and to reject ill-formed ones. That is, 
they can provide a formal theory of much of linguist ic competence. 1 

· •  

This success i s  a major source of encouragement for those in  A l  who are 
committed to the view that human behavior can be formalized without 
reduction to the physical level, for such success tends to confirm at least 
the first half of the epistemological hypothesis. A segment of orderly 
behavior which at first seems nonrulelike turns out to be describable in 
terms of complex rules, rules of the sort ,vhich can be processed directly 
by a digital computer (directly-that is, wi thout passing by \\'ay of a 
physical description of the motions of the vocal cords of a speaker or the 
physiochemical processes tak ing place in his brain) . 

But such a formalizat ion only provides just ificat ion for half the epis
temological hypothesis. Linguist ic competence is not what A I workers 
wish to formalize. If machines are to communicate in natural language. 
their programs must not only incorporate the rules of grammar: they 
must also contain rules of linguist ic performance. In other words. what 
was omit ted in order to be able to formalize syntact ic theory-the fact 
that people are able to use their language-is just what must also be 
formalized. 

The question whether the epistemological hypothesis is justified thus 
comes down to the test case: is there reason to suppose that there can 
be a formal theory of what linguists call pragmat ics? There are two 
reasons to believe that such a generalizat ion of syntact ic theory is impos
sible: ( 1 )  An argument of principle (to which we shall turn in the next 
chapter) : for there to be a formal theory of pragmatics, one would have 
to have a theory of all human knowledge; but this may well be impossi
ble. (2) A descriptive object ion ( to which we shall now turn) : not all 
linguistic behavior is rulelike. We recognize some linguistic expressions 
as odd - as breaking the rules - and yet we are able to understand 
them. 

There are cases in which a native speaker recognizes that a certain 
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l inguistic usage is odd and yet is able to understand it-for example, the 
phrase "The idea is in the pen" is clear in a situation in which we are 
discussing promising authors; but a machine at this point, with rules for 
what size physical objects can be in pig pens, playpens, and fountain 
pens, would not be able to go on. Since an idea is not a physical object, 
the machine could only deny that i t  could be in the pen or at best make 
an arbitrary stab at interpretation . The l istener's understanding, on the 
other hand, is far from arbitrary. Knowing what he does about the 
shadow which often falls between human projects and thei r execution, 
as wel l as what one uses to write books, he gets the point ,  and the speaker 
wi l l  often agree on the basis of the l istener's response that the l istener 
has understood. Does it follow, then, that in understanding or using the 
odd utterance, the human speakers were acting according to a rule-in 
this case a rule for how to modify the meaning of "in"? I t  certain ly does 
not seem so to the speakers who have just recognized the ut terance as 
"odd. "  

This case takes us t o  the heart o f  a fundamental difficulty facing the 
simulators. Programmed behavior is either arbi trary or strictly rulel ike. 
Therefore, in confronting a new usage a machine must either treat it as 
a clear case fall ing under the rules, or take a blind stab. A native speaker 
feels he has a third alternative. He can recognize the usage as odd, not 
fall ing under the rules, and yet he can make sense of it-give it a meaning 
in the context of human l ife in an apparently nonrulel ike and yet nonar
bitrary way . 

Outright misuse of language demonstrates an even more extreme form 
of this abi l i ty .  People often understand each other even when one of the 
speakers makes a grammatical or semantic mistake. The utterance may 
not only be outside the rules but actually proscribed by them, and yet 
such violations often go unnot iced, so easi ly are they understood . 

Human beings confronted with these odd cases and outright errors 
adapt as they go along and then may reflect on the revisions they have 
made. A machine has either to fail first and then, when given the correct 
answer, revise its rules to take account of this new usage, or it would have 
to have a l l  the rules--even the rules for how to break the rules and st i l l  
be understood-bui l t  into i t  beforehand. To adopt the fi rst approach, 
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failing first and revising later, would be to admit  that in principle, not 
just in practice, machines must always trai l behind men-that they could 
not be humanly intel l igent. To assume, on the other hand, that the rules 
covering all cases must be explicit ly built in or learned-since this is the 
only way a digital computer could simulate the human abi l i ty to cope 
with odd uses-runs counter to logic and experience. 

Logically, i t  is hard to see how one could formulate the rules for how 
one could intel ligibly break the rules; for, no matter what metarules are 
formulated, it seems intuit ively obvious that the nat ive speaker could 
break them too and count on the context to get his meaning across to 
another speaker. Thus no matter what order of metarules one chooses. 
it seems there will be a higher order of tacit understanding about how 
to break those rules and st i l l  be understood . 

Phenomenologically, or empirical ly ,  the postulat ion of a set of uncon
scious metarules of which we are not aware leads to other difficult ies. 
Just as in chess the acceptance of the digi tal model led to the assumpt ion 
that the chess player must be using unconscious heuristics. even when 
the player reported that he was zeroing in on pat terns of st rength and 
weakness, the assumption of the pre-existence of rules for disambigua
tion introduces a process of which we have no experiential evidence, and 
fails to take seriously our sense of the oddness of certain uses . 

And here, as in the case of chess, this flouting of phenomenological 
evidence leads to a teleological puzzle: Why. if every understandable use 
of language is covered by rule, should some of these uses appear odd to 
us? So odd, indeed, t hat we cannot supply any rule to explain our 
inter-pretation. Why, if we have such a hierarchy of rules and l ightning
fast capacity for using them on the unconscious level , should we be left 
consciously perplexed in certain cases and find them peculiar even after 
we have understood them? 

These considerations suggest that, al though a general theory of syntax 
and semantic competence can be scient ific-because i t  is a t imeless for
malism which makes no claim to formalize the understanding of lan
guage in specific situations, serious problems ari se when one demands a 
comparable formalism for l inguistic use. 

These difficult ies do not disturb those l inguists who, l ike scientists, 
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carefully limit themselves to linguistic competence, that is, the general 
principles which apply to all cases, and exclude as extralinguistic our 
ability to deal with utterances in pragmatic contexts. As Kierkegaard 
points out in his Concluding Unscientific Postscript, the laws of science 
are universal and timeless, treating all experience as if it could as well 
be in the past. 1 8  AI workers, however, want their machines to interact 
with people in present real-life situations in which objects have special 
local significance. But computers are not involved in a situation. Every 
bit of data always has the same value. True, computers are not what 
Kant would call utranscendentally stupid" ;  they can apply a rule to a 
specific case if the specific case is already unambiguously described in 
terms of general features mentioned in the rule. They can thus simulate 
one kind of theoretical understanding. But machines lack practical intel
ligence. They are "existentially" stupid in that they cannot cope with 
specific situations. Thus they cannot accept ambiguity and the breaking 
of rules until the rules for dealing with the deviations have been so 
completely specified that the ambiguity has disappeared. To overcome 
this disability, AI  workers would have to develop an a-temporal, nonlo
cal, theory of ongoing, situated, human activity. 

The originality, the importance, and the curse of work in machine 
communication in a natural language is that the machine must use its 
formalism to cope with real-life situations as they occur. It must deal with 
phenomena which belong to the situational world of human beings as if 
these phenomena belonged to the objective formal universe of science. 
The believer in machine understanding and use of natural language who 
is encouraged by the success of linguistics is not laboring under a mis
conception about the way consciousness functions, but rather under a 
misconception about the relation between theoretical and practical 
understanding. He supposes that one can understand the practical world 
of an involved active individual in the same terms one can understand 
the objective universe of science. In short, he claims, as Leibniz first 
claimed, that one can have a theory of practice. 

But such an applied theory could not be the same as the technological 
application of a physical theory, which it seems to parallel. When one 
uses the laws of physics to guide missiles, for example, the present 
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performance of the missile is an instantiation of timeless, universal laws 
which make no reference to the situation except in terms of such laws. 
But in linguistics, as we have seen, speakers using the language take for 
granted common situational assumptions and goals. Thus the general 
laws of competence cannot be directly applied to simulate behavior. To 
get from the linguistic formalism to specific performance. one has to take 
into account the speaker's understanding of his situation. I f  there could 
be an autonomous theory of performance, it would have to be an entirely 
new kind of theory, a theory for a local context which described this 
context entirely in universal yet nonphysical terms. Neither physics nor 
linguistics offers any precedent for such a theory. nor any comforting 
assurance that such a theory can be found. 

Conclusion 

But to refute the epistemological assumption that there must be a theory 
of practical activity-in the case of language. to deny that the rules 
governing the use of actual utterances can in principle be completely 
formalized-it is not sufficient to point out that thus far no adequate 
language translation system has been developed. or that our language is 
used in flexible and apparently nonrulelike ways. The formalizer can 
offer the Platonic retort that our failure to formalize our ability to use 
language shows only that we have not fully understood this behavior; 
we have not yet found the rules for completely formalizing pragmatics. 1 9* 

This defense might at first seem to be similar to the heuristic program
mer's assurance that he will someday find the heuristics which will 
enable a machine to play chess, even if he has not yet found them. But 
there is an important difference. The heuristic programmer's confidence 
is based on an unfounded psychological assumption concerning the way 
the mind processes information, whereas the formalist's claim is based 
on a correct understanding of the nature of scientific explanation. To the 
extent that we have not specified our behavior in terms of unique and 
precisely defined reactions to precisely defined objects in universally 
defined situations, we have not understood that behavior in the only 
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sense of "understanding" appropriate to science. 
To answer this a priori claim of the theoretical understanding one 

cannot counter with a phenomenological description. One must show 
that the theoretical claim is untenable on its own terms: that the skill 
which enables a native speaker to speak cannot be completely formal
ized; that the epistemological assumption is not only implausible but 
leads to contradictions. 

Wittgenstein was perhaps the first philosopher since Pascal to note: 
" In general we don't use language according to strict rules-it hasn't 
been taught us by means of strict rules either. " 20 But Wittgenstein did 
not base his argument against the claim that language was a calculus 
solely on a phenomenological description of the nonrulelike use of lan
guage. His strongest argument is a dialectical one, based on a regress of 
rules. He assumes, like the intel lectualist philosophers he is criticizing, 
that al l nonarbitrary behavior must be rulelike, and then reduces this 
assumption to absurdity by asking for the rules which we use in applying 
the rules, and so forth. 

Here it is no longer a question of always being able to break the rules 
and stil l be understood. After al l ,  we only feel we can go on breaking 
the rules indefinitely. We might be mistaken. I t  is a question of whether 
a complete understanding of behavior in terms of rules is intelligible. 
Wittgenstein is arguing, as Aristotle argued against Plato, that there 
must always be a place for interpretation. And this is not, as Turing 
seemed to think , merely a question of whether there are rules governing 
what we should do, which can legitimately be ignored. It is a question 
of whether there can be rules even describing what speakers in fact do. 
To have a complete theory of what speakers are able to do, one must not 
only have grammatical and semantic rules but further rules which would 
enable a person or a machine to recognize the context in which the rules 
must be applied. Thus there must be rules for recognizing the situation, 
the intentions of the speakers, and so forth. But if the theory then 
requires further rules in order to explain how these rules are applied, as 
the pure intel lectualist viewpoint would suggest, we are in an infinite 
regress. Since we do manage to use language, this regress cannot be a 
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problem for human beings. If Al is to be possible, it must also not be 
a problem for machines. 

Both Wittgenstein and the computer theorists m ust agree that there 
is some level at which rules are simply applied and one no longer 
needs rules to guide their application. Wittgenstein and the Al theorists 
differ fundamentally, however, on how to describe this stopping point . 
For Wit tgenstein there is no absolute stopping point ; we just fill in as 
many rules as are necessary for the practical demands of the situation. 
At some level, depending on what we are trying to do, the interpretation 
of the rule is simply evident and the regress stops. : 1 * 

For the computer people the regress also stops with an interpretation 
which is self-evident , but this interpretation has nothing to do wit h the 
demands of the situation. It cannot , for the computer is not in a situation. 
It generates no local context .  The ccmputer theorist 's solution is to build 
the machine to respond to ultimate bits of context -free, completely deter
minate data which require no further interpretation in order to be under
stood. Once the data are in the machine. all processing must be rulelike, 
but in reading in the data there is a direct response to determinate 
features of the machine's environment as. for example, holes in cards or 
the mosaic of a TV camera, so on this ultimate level the machine does 
not need rules for applying its rules . Just as the feeding behavior of the 
baby herring gull is triggered by a red spot and the frog's eye automati
cally signals the presence of a moving black spot , so human behavior, if 
it is to be completely understood and computerized, must be understood 
as if triggered by specific features of the environment . 

As a theory of human psychology (CS) this is surely not a plausible 
hypothesis. Our sense of oddness of deviant linguistic uses, as well as our 
feeling that there is nothing in the environment to which we have an 
inevitable and invariable response, argue against this view. Moreover, as 
a theory of our "practical competence" (no matter how we actually 
produce our behavior), this hypothesis is no more att ractive. The general 
adaptability of our language, which enables us to modify meanings and 
invent analogies, as well as the general flexibility of human and even 
higher animal behavior, are incomprehensible on this view. Still, these 
objections are all based on appearances. They are plausible, but not 
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necessarily convincing to those committed to the epistemological as
sumption .  

A full refutation of the epistemological assumption would require an 
argument that the world cannot be analyzed in terms of context-free 
data. Then, since the assumption that there are basic unambiguous ele
ments is the only way to save the epistemological assumption from the 
regress of rules, the formalist, caught between the impossibility of always 
having rules for the application of rules and the impossibility of finding 
ultimate unambiguous data, would have to abandon the epistemological 
assumption altogether. 

This assumption that the world can be exhaustively analyzed in terms 
of context-free data or atomic facts is the deepest assumption underlying 
work in AI and the whole philosophical tradition .  We shall call it the 
ontological assumption ,  and now turn to analyzing its attraction and its 
difficulties. 
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The Ontological Assumption 

Up to now we have been seeking in vain the arguments and evidence 
that the mind processes information in a sequence of discrete steps like 
a heuristically programmed digital computer, or that human behavior 
can be formalized in these terms. We have seen that there are four types 
of human "information processing .. (fringe consciousness, ambiguity tol
erance, essential/inessential discrimination , and perspicuous grouping), 
which have resisted formalization in terms of heuristic rules . And we 
have seen that the biological, psychological, and epistemological assump
tions which allow workers to view these difficulties as temporary are 
totally unjustified and may well be untenable. Now we turn to an even 
more fundamental difficulty facing those who hope to use digital comput
ers to produce artificial intelligence: the data with which the computer 
must operate if it is to perceive, speak, and in general behave intelli
gently , must be discrete, explicit , and determinate; otherwise, it will not 
be the sort of information which can be given to the computer so as to 
be processed by rule. Yet there is no reason to suppose that such data 
about the human world are available to the computer and several reasons 
to suggest that no such data exist .  

The ontological assumption that everything essential to intelligent 
behavior must in principle be understandable in terms of a set of determi
nate independent elements allows AI researchers to overlook this prob-

I 206 
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lem . We shall soon see that this assumption l ies at the basis of all thinking 
in AI ,  and that i t  can seem so self-evident that it is never made explicit 
or questioned. As in the case of the epistemological assumption , we shal l  
see that this conviction concerning the indubitabi l i ty of what in fact is 
only an hypothesis reflects two thousand years of philosophical tradition 
reinforced by a misinterpretation of the success of the physical sciences. 
Once this hypothesis is made explicit and cal led into question , it turns 
out that no arguments have been brought forward in its defense and that, 
when used as the basis for a theory of practice such as AI, the ontological 
assumption leads to profound conceptual difficul ties. 

In his introduction to Semantic Information Processing, Minsky warns 
against 

the dreadful ly  misleading set of concepts that people get when they are told (wi th 
the best in tentions) that computers are nothing but assemblies of flip-flops; that 
thei r programs are real ly nothing but sequences of operations upon binary num
bers, and so on. 1 

He tries to combat this discouraging way of looking at digital computers: 

While th is is one usefu l viewpoint ,  i t  is equal ly correct to say that the computer 
is nothing but an assembly of symbol-association and process-control l ing ele
ments and that programs are nothing but networks of in terlocking goal -formulat
ing and means-ends evaluation processes. This latter att itude is actual l y  much 
heal th ier because i t  reduces one's egot istical tendency to assume total compre
hension of a l l .  the possible future impl ications. 2 

But Minsky sees only half the difficulty arising from his restriction that 
the computer must operate on determinate, independent elements. It is 
true that programmers formulate higher-order rules for the operation 
of a computer so that the fact that there are fl ip/flops never appears in 
the flow chart, that is, on the information-processing level . 3 * (On this 
level, as we have seen in the preceding two chapters, trouble arises 
because there must always be explicit rules, not because these rules 
must ult imately be a sequence of operations on binary numbers .) The 
information-processing model, however, restricts the kind of informa
tion the machine can be given . We have seen that Newell quite frankly 
described G PS-a program whose information-processing level is cor-
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rectly described in terms of interlocking goals and means-ends-as "a 
program for accepting a task envi ronment defined in terms of discrete 
objects. "4 It is these discrete objects which are organized into the data 
structure which makes up the computer's representation of the world. 
Every program for a digital computer must receive its data in this dis
crete form. 

This raises a special problem, or, more exactly, it creates a problem 
by determining the way all questions concerning giving information to 
computers must be raised. Stated in a neutral way the problem is this: 
as we have seen, in order to understand an utterance, structure a prob
lem, or recognize a pattern, a computer must select and interpret its data 
in terms of a context. But how are we to impart this context itself to the 
computer? The sharpest statement of this problem-still in neutral terms 
-occurs in Eden's evaluation of work in handwriting recognition: 

. . .  when [a human being] reads a let ter wri t ten in a difficul t  script . . .  he can 

reconst ruct i t  wi th the help of his knowledge of the grammar of the language, 

the meaning of the text he has been able to read,  the character of the subject 

mat ter, and, perhaps, the state of mind of the writer .  There is now. alas. no hin t  
of how to  embody such k nowledge of the  world and its ways in  the  computer. ' 

Here Eden wisely takes no stand on what we know when we have 
"knowledge of the world and its ways . . .  The information-processing 
model, however, along with the ontological assumption, dictates an an
swer to this question which is no longer neutral, but rather embodies the 
computer's requirements. When one asks what this knowledge of the 
world is, the answer comes back that it must be a great mass of discrete 
facts. 

Thus at the end of his introduction to Semantic Information Process
ing, when Minsky finally asks .. what is the magnitude of the mass of 
knowledge requi red for a humanoid intelligence?' ' b  he has already pre
judged the question and unhesitatingly answers in terms of numbers of 
facts : 

If we discount special ized knowledge and ask i nstead about  the  common-every

day structures-that which a person needs to have ordinary common sense-we 

wi l l  find fi rst a col lect ion of indispensable categories, each rather complex :  geo-
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metrical and mechanical properties of things and of space; uses and properties 
of a few thousand objects; hundreds of "facts" about hundreds of people, thou
sands of facts about tens of people, tens of facts about thousands of people; 
hundreds of facts about hundreds of organizations. As one tries to classify all his 
k nowledge, the categories grow rapidly at fi rst , but after a whi le one encounters 
more and more difficulty .  My impression, for what i t's worth,  is that one can find 
fewer than ten areas each with more than ten thousand "l inks. " One can't  find 
a hundred things that he knows a thousand things about . Or a thousand things 
each wi th a ful l  h undred new l inks. I therefore feel that a machine wi l l  quite 
cri tical ly need to acqui re the order of a hundred thousand elements of knowledge 
in order to behave with reasonable sensibil ity in ordinary si tuations. A mil l ion, 
i f  properly organized, should be enough for a very great intel l igence. If my 
argument does not convince you, multiply the figures by ten . 7 

Granting for the moment that all human knowledge can be analyzed 
as a list of objects and of facts about each, Minsky's analysis raises the 
problem of how such a large mass of facts is to be stored and accessed. 
How could one structure these data-a hundred thousand discrete ele
ments-so that one could find the information required in a reasonable 
amount of time? When one assumes that our knowledge of the world is 
knowledge of millions of discrete facts, the problem of artificial intelli
gence becomes the problem of storing and accessing a large data base. 
Minsky sees that this presents grave difficulties: 

. . .  As everyone knows, it is hard to find a knowledge-classifying system that 
works wel l for many different kinds of problems: it requi res immense effort to 
build a plausible thesaurus that works even wi thin one field. Furthermore, any 
particu lar retrieval structure is l iable to entail commitments making it difficult 
to incorporate concepts that appear after the original structure is assembled.  One 
is tempted to say :  "It  would be folly to base our intell igent machine upon some 
part icular elaborate, thesaurus-l ike classification of knowledge, some ad hoc 
syntopicon. Surely  that is no road to 'general intel l igence. '  " 8 

And, indeed, little progress has been made toward solving the large 
data base problem. But, in spite of his own excellent objections, Minsky 
characteristically concludes : 

But we had better be cautious about this caution itself, for it exposes us to a far 
more deadly temptation : to seek a fountain of pure intel ligence. I see no reason 
to believe that intel l igence can exist apart from a highly organ ized body of 
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knowledge, models, and processes. The habit of our culture has always been to 

suppose that intel l igence resides in some separated crystal l ine element , cal l  i t  

consciousness, apprehension. insight, gestalt. or what you wil l  but this is merely 

to confound naming the problem with solving it . The problem-solving abi l i t ies 

of a highly intell igent person lies partly in his superior heurist ics for managing 

his knowledge-structure and partly in the structure itself; these are probably 
somewhat inseparable. In any case, there is no reason to suppose that you can 

be intel l igent except through the use of an adequate, part icular, knowledge or 

model structure. 9 

But this is no argument for optimism. True, people manage to be 
intelligent, but without the ontological assumption this would be no 
consolation to workers in AI . It is by no means obvious that in order to 
be intelligent human beings have somehow solved or needed to solve the 
large data base problem. The problem may itself be an artifact created 
by the fact that AI workers must operate with discrete elements. Human 
knowledge does not seem to be analyzable as an explicit description as 
Minsky would like to believe. A mistake, a collision, an embarrassing 
situation, etc . ,  do not seem on the face of it to be objects or facts about 
objects. Even a chair is not understandable in terms of any set of facts 
or .. elements of knowledge . . .  To recognize an object as a chair, for 
example, means to understand its relation to other objects and to human 
beings. This involves a whole context of human activity of which the 
shape of our body, the institution of furniture, the inevitability of fatigue, 
constitute only a small part . And these factors in turn are no more 
isolable than is the chair. They all may get their meaning in the context 
of human activity of which they form a part (see Chapter 8) .  

In general, we have an implicit under�tanding of the human situation 
which provides the context in which we encounter specific facts and 
make them explicit .  There is no reason, only an ontological commitment , 
which makes us suppose that all the facts we can make explicit about our 
situation are already unconsciously explicit in a . .  model structure," or 
that we could ever make our situation completely explicit even if we 
tried. 1 0 • 

Why does this assumption seem self-evident to Minsky? Why is he so 
unaware of the alternative that he takes the view that intelligence in-
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volves a "particular, knowledge or model structure," a great systematic 
array of facts, as an axiom rather than as an hypothesis? Ironical ly, 
Minsky supposes that in announcing this axiom he is combating the 
tradition. "The habit of our culture has always been to suppose that 
intell igence resides in some separated crystall ine element, cal l  it con
sciousness, apprehension, insight, gestalt. . . .  " In fact ,  by supposing that 
the alternatives are either a wel l -structured body of facts, or some disem
bodied way of dealing with the facts, Minsky is so traditional that he 
can't even see the fundamental assumption that he shares with the whole 
of the phi losophical tradition. In assuming that what is given are facts 
at al l ,  Minsky is simply echoing a view which has been developing since 
Plato and has now become so ingrained as to seem self-evident . 

As we have seen, the goal of the philosophical tradi tion embedded in 
our culture is to eliminate uncertainty : moral ,  intellectual , and practical . 
Indeed, the demand that knowledge be expressed in terms of ru les or 
definitions which can be applied without the risk of interpretation is 
already present in Plato, as is the bel ief in simple elements to which the 
rules apply . 1 1  * With Leibniz, the connection between the traditional idea 
of knowledge and the Minsky-like view that the world must be analyz
able into discrete elements becomes explicit. According to Leibniz, in 
understanding we analyze concepts into more simple elements. In order 
to avoid a regress of simpler and simpler elements, then, there must be 
ultimate simples in terms of which al l  complex concepts can be under
stood. Moreover, if  concepts are to apply to the world, there must be 
simples to which these elements correspond. Leibniz envisaged "a kind 
of alphabet of human thoughts" 1 2  whose "characters must show, when 
they are used in demonstrations, some kind of connection, grouping and 
order which are also found in the objects. " 1 3  The empiricist tradi tion, too, 
is dominated by the idea of discrete elements of knowledge. For Hume, 
all experience is made up of impressions : isolable, determinate, atoms of 
experience. Intel lectual ist and empiricist schools converge in Russel l 's 
logical atomism, and the idea reaches its fullest expression in Wittgen
stein's Tractatus, where the world is defined in terms of a set of atomic 
facts which can be expressed in logically independent propositions. This 
is the purest formulation of the ontological assumption, and the neces-
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sary precondition of all work in Al as long as researchers continue to 
suppose that the world must be represented as a structured set of descrip
tions which are themselves built up from primitives. Thus both philo
sophy and technology, in  their appeal to primitives continue to posit 
what Plato sought :  a world in which the possibil i ty of clarity, certainty, 
and control is guaranteed; a world of data structures, decision theory, 
and automation . 

No sooner had this certain ty  finally been made ful ly  explici t ,  how
ever, than phi losophers began to cal l it into question . Continen tal 
phenomenologists recognized it as the outcome of the philosophical 
tradi tion and tried to show i ts l imitations. Merleau-Ponty calls the as
sumption that all that exists can be treated as determinate objects, the 
prejuge du monde, .. presumption of commonsense ."  1 ' Heidegger cal ls i t  
rechnende Denken, 1 5  

. .  calculating thought ,"  and views i t  as the goal of 
philosophy, inevi tably culminat ing in technology. Thus, for Heidegger, 
technology, with its insistence on the .. thoroughgoing calculabi l i ty  of 
objects, " 1 11* is the inevitable culmination of metaphysics, the exclusive 
concern with beings (objects) and the concomitant exclusion of Being 
(very rough ly our sense of the human situation which determines what 
is to count as an object) .  In England, Wittgenstein less prophet ical ly and 
more analyt ical ly recognized the impossibi l i ty of carrying through the 
ontological analysis proposed in his Tractatus and became his own sever
est cri t ic . 1 1 * 

In Part I I I ,  we shal l  have occasion to follow at length the Merleau
Pon tyian , Wit tgensteinian, and Heideggerian cri t ique of the tradit ional 
ontological assumption, and the al ternat ive view they propose. We have 
already seen enough , however, to suggest that we do not experience the 
world as a set of facts in our everyday act iv i t ies, nor is i t  self-evident that 
it is possible to carry through such an analysis. 

But if the ontological assumption does not square with our experience, 
why does it have such power? Even if what gave impetus to the phi lo
sophical t radi t ion was the demand that th ings be clear and simple so that 
we can understand and control them, if things are not so simple why 
persist in this optimism? What lends plausibi l ity to this dream? As we 
have already seen in  another connection, the myth is fostered by the 
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success of modern physics. Here, at least to a first approximation , the 
ontological assumption works. It was only after Gali leo was able to treat 
motion in terms of isolable objects moving under the influence of com
putable, determinate forces that Hobbes was encouraged to announce 
that a l l  thinking was the addition of parcels. It has proved profitable to 
think of the physical universe as a set of independent interacting ele
ments. The ontological assumption that the human world too can be 
treated in terms of a set of elements gains plausibi l ity when one fails to 
distinguish between world and universe, or what comes to the same 
thing, between the human situation and the state of a physical system . 

In Minsky's work this confusion remains implicit ; in the work of his 
former col league, John McCarthy, now directing AI research at Stan
ford, it becomes the very cornerstone of the argument. In his paper 
"Programs with Common Sense," included in the Minsky volume, 
McCarthy proposes an "advice taker"-a program for "solving prob
lems by manipulating sentences in formal languages," the behavior of 
which "wil l  be improvable merely by making statements to i t ,  tel l ing i t  
about i ts symbolic environment and what is wanted from it .  " 1 8  McCarthy 
sees clearly that "the first requirement for the advice taker is a formal 
system in which facts about situation, goals, and actions can be ex
pressed . " 1 9  This leads immediately to the basic problem: how can one 
describe the situation in a formal system? McCarthy, however, does not 
see this as a serious problem because he assumes without question that 
a situation is a physical state: 

One of the basic entit ies in our theory is the situation. Intuit ively, a situation is 
the complete state of affairs at some instant in time. The laws of motion of a 
system determ ine all future situations from a given situation. Thus, a situation 
corresponds to the notion of a point in phase space. 20 

But the same type of si tuation can reoccur, involving different objects, 
different people, and a fortiori different physical states. Moreover, the 
same physical organization of matter can be seen as many different 
situations, depending on the goals and intentions of the various human 
beings involved. Thus, although at any given moment  the universe is in 
only  one physical state, there may be as many situations as there are 
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people. When McCarthy says "there is only one situation corresponding 
to a given value oftime," 2 1  he has clearly confused situation with physical 
state of the universe. More specifical ly, he has confused token states and 
types of states. A situation token can be identical with a physical state 
token {specified by a point in phase space) .  But a type of situation cannot 
be identical to a type of physical state . 

A concrete example  wil l  help to pinpoint this confusion. A sit uation 
which McCarthy discusses at length is . .  being at home. "  · ·  ·At (I .  home) 
(s)'means I am at home in situation s . " 2 2  McCarthy seems to assume that 
this is the same thing as being in my house, that is, that it is a physical 
state. But I can be at home and be in the backyard. that is . not physica l ly  
in my house at al l .  I can also be physical ly in my house and not be at 
home; for example, if I own the house but have not yet moved my 
furniture in. Being at home is a human situation, not in any simple 
correspondence with the physical state of a human body in a house .  Not 
to mention the fact that it is a necessary if not sufficient condition for 
being at home in the sense in question that I own or rent the house. and 
owning or renting a house is a complicated instit utional set of rela tions 
not reducible to any set of physical st ates .  Even a physical description 
of a certain pattern of ink deposit ed on certain pieces of paper in a 
specific temporal sequence would not constit ute a necessary and suffi
cient condition for a t ransfer of ownership . Writ ing one 's  name is  not 
always signing, and watching is not a lways ,vit nessing. 

It is easy to see why McCarthy would like to  t reat the sit uation as if 
it were a physical state. The evol ution of a physical state can ,  indeed, be 
formalized in differential equations and reproduced on a digital com
puter. Situations, however, pose formidable prohlems for those who 
would like to translate them into a formal system. Such a formalization 
may wel l be impossible in principle, as can best be seen by returning to 
the problem of machine translation . 

We have seen in Part I that automatic language t ranslation has failed 
because natural language turns out to be much more ambiguous than was 
supposed. In narrowing down this semantic and syntactic ambiguity the 
native speaker may appeal to specific information about the world. Bar
Hil lel makes this point in an argument which according to him .. amounts 
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to an almost full-fledged demonstration of the unattainability of fully 
automatic high quality translation, not only in the near future but al
together. " 2 3  The argument is sufficiently important at this point to merit 
quoting at some length. 

I sha l l  show that there exist extremely simple sentences in Engl ish-and the same 
holds, I am sure, for any other natural l anguage-which , within certain l inguist ic 
contexts, would be uniquely (up to plain synonymy) and unambiguously t rans
l ated into any other language by anyone with a sufficient knowledge of the two 
languages involved, though I know of no program that would enable a machine 
to come up with this unique rendering unless by a completely arbitrary and ad 

hoc procedure whose futi l i ty would show i tsel f  in the next example. 

A sen tence of this kind is the following: 

The box was in the pen. 

The l inguistic context from which this sentence is taken is, say,  the fol lowing: 

Litt le John was looking for h is toy box. Final ly  he found i t. The box was in the 
pen .  John was very happy. 

Assume, for simplici ty 's sake, that pen in English has only the fol lowing two 
meanings: ( 1 )  a certain wri t ing utensi l ,  (2) an enclosure where smal l  chi ldren can 
play. I now claim that no exist ing or imaginable program wi l l  enable an elec
tronic computer to determine that the word pen in the given sentence within the 
given context has the second of the above meanings, whereas every reader with 
a sufficient knowledge of Engl ish wi l l  do this "automatical l y . "  

What makes an  intel l igent human reader grasp this meaning so unhesitat
ingly is, in  addition to all the other features that have been discussed by MT 
workers . . .  , h is knowledge that the relative sizes of pens, in the sense of writ ing 
implements, toy boxes, and pens, in the sense of playpens, are such that when 
someone writes under ordinary circumstances and in something l ike the given 
context, • •The box was in the pen ," he almost certain ly  refers to a playpen and 
most certain ly  not to a writ ing pen. 2 4* 

And, as Bar-Hillel goes on to argue, the suggestion, such as Minsky's, 
that a computer used in translating be supplied with a universal ency
clopedia is "utterly chimerical . "  ·The number of facts  we human beings 
know is, in a certain very pregnant sense, infinite. " 2 5  

Bar-Hillel's point is well taken; his example, however, based on a 
particular physical fact, is unfortunate; it tempts Al workers such as 
Minsky to propose a solution in terms of a model of the facts of physics: 
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" . . .  it would be a good idea to build into the semantic model enough 
common-sense geometrical physics to make it unlikely that the box is in 
the fountain-pen . . . .  " 2 6* 

There is a second kind of disambiguation, however, which gets us to 
the very heart of the difficulty. In disambiguating, one may appeal to a 
sense of the situation as in the following example from Katz and Fodor: 

An ambiguous sentence such as "He follows Marx" occurring in a setting in 
which i t  is clear that the speaker is remarking about intel lectual h istory cannot 
bear the reading "he dogs the footsteps of Groucho. " 2 '  

Katz and Fodor discuss this sort of difficulty in their article "The 
Structure of a Semantic Theory" : 

Since a complete theory of setting select ion must represent as part of the sett ing 

of an utterance any and every feature of the world which speakers need in order 
to determine the preferred reading of that utterance, and since . . .  practical ly 
any i tem of information about the world is essential to some disambiguations, 
two conclusions follow. First, such a theory cannot in principle dist inguish 
between the speaker's knowledge of his language and his knowledge of the world . 
. . . Second, since there is no serious possibi l ity of systemat izing al l the knowledge 

about the world that speakers share . . .  [such a theory] is not a serious model 
for l inguist ics. 2 8  

Katz and Fodor continue: 

None of these considerations is intended to rule out the possibi l i ty that ,  by 

placing relatively st rong l imitat ions on the information about the world that a 
theory can represent in the characteri zat ion of a sett ing, a limited theory of 

selection by sociophysical setting can be const ructed. What these considerations 
do show is that a complete theory of this kind is not a possibi l i ty. 2

q 

Thus Bar-Hillel claims we must appeal to specific facts, such as the 
si ze of pens and boxes; Katz and Fodor assume we must appeal to the 
sociophysical setting. The appeal to context , would, moreover, seem to 
be more fundamental than the appeal to facts, for the context determines 
the significance of the facts. Thus in spite of our general knowledge about 
the relative size of pens and boxes, we might interpret "The box is in the 
pen, . .  when whispered in a James Bond movie, as meaning just the 
opposite of what it means at home or on the farm. And, conversely, when 
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no specifically odd context is specified, we assume a "normal" context 
and assign to the facts about relative size a "normal" significance. Min
sky's physical model hides but does not obviate the need for this implicit 
appeal to the situation. 

The important difference between disambiguation by facts and disam
biguation by appeal to the situation is not noted by Minsky, Bar-Hillel, 
or Fodor and Katz, presumably because they each assume that the 
setting is itself identified by features which are facts, and functions like 
a fact in disambiguation. We shall see, however, that disregarding the 
difference between fact and situation leads to an equivocation in both 
Bar-Hillel and Fodor-Katz as to whether mechanical translation is im
practical or impossible. 

In Bar-Hillel's "demonstration" that since disambiguation depends on 
the use of facts, and the number of facts is "in a certain very pregnant 
sense infinite," fully automatic high-quality mechanical translation is 
unattainable; it is unclear what is being claimed. If "unattainable" means 
that in terms of present computers, and programs in operation or en
visaged, no such massive storage and retrieval of information can be 
carried out, then the point is well made, and is sufficient to cast serious 
doubt on claims that mechanical translation has been achieved or can be 
achieved in the foreseeable future. But if "unattainable" means theoreti
cally impossible-which the appeal to infinity seems to imply-then 
Bar-Hillel is claiming too much. A machine would not have to store an 
infinite number of facts, for, as Minsky sees, from a large number of facts 
and rules for concatenating them, such as the laws of physics, it could 
produce further ones indefinitely. True, no present program would en
able a machine to sort through such an endless amount of data. At 
present there exist no machine and no program capable of storing even 
a very large body of data so as to gain access to the relevant information 
in manageable time. Still, there is work being done on what are called 
"associative memories" and ingenious tricks used in programming, such 
as hash coding, which may in the distant future provide the means of 
storing and accessing vast bodies of information. Then if all that was 
needed was facts, the necessary information might be stored in such a 
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way that in any given case only a finite number of relevant facts need be 
considered. 

As long as Katz and Fodor, like Bar-Hillel, accept the ontological 
assumption and speak of the setting in terms of . .  items of information, · ·  
their argument is as equivocal as his. They have no right to pass from 
the claim that there is "no serious possibility" of systematizing the 
knowledge necessary for disambiguation, which seems to be a statement 
about our technological capabilities, to the claim that a complete theory 
of selection by sociophysical setting is "not a possibility . · ·  If a program 
for handling all knowledge is ever developed, and in their world there 
is no theoretical reason why it should not be, it will be such a theory . 

Only if one rejects the ontological assumption that the world can be 
analyzed as a set of facts-items of information--can one legitimately 
move beyond practical impossibility . We have already seen examples 
which suggest that the situation might be of a radically different order 
and fulfill a totally different function than any concatenation of facts. In 
the "Marx" example, the situation (academic) determines how to disam
biguate "Marx" (Karl) and furthermore tells us which facts are relevant 
to disambiguate "follows . . . as ideological or chronological . ( When was 
the follower born, what are his political views. etc.?) In the box-pen 
example the size of the box and pen are clearly relevant since we are 
speaking of physical objects being .. in . . other physical objects; but here 
the situation, be it agricultural, domestic. or conspiratorial , determines 
the sign ificance of the facts involved. Thus it is our sense of the situation 
which enables us to select from the potential infinity of facts the immedi
ately relevant ones, and once these relevant facts are found, enables us 
to estimate their significance. This suggests that unless there are some 
facts whose relevance and significance are invariant in all situations
and no one has come up with such facts-we will have to give the 
computer a way of recognizing situations; otherwise, it will not be able 
to disambiguate and thus it will be, in principle, unable to understand 
utterances in a natural language. 

Among workers in AI, only Joseph Weizenbaum seems to be aware 
of these problems. In his work on a program which would allow people 
to converse with a computer in a natural language, Weizenbaum has had 
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to face the importance of the situation, and realizes that it cannot be 
treated simply as a set of facts. His remarks on the importance of global 
context are worth quoting at length: 

No understanding is possible in the absence of an established global context. To 
be sure, strangers do meet ,  converse, and immediately understand one another. 
But they operate in a shared culture-provided partial ly by the very language 
they speak-and, under any but the most trivial circumstances, engage in a kind 
of hunting behavior which has as its object the creation of a contextual frame

work. 30 

In real conversation global context assigns meaning to what is being said in 

only the most general way. The conversation proceeds by establishing subcon
texts, sub-subcontexts within these, and so on. 3 1 

Weizenbaum sees difficulties in all this but no problems of principle. 

I cal l  attention to the contextual matter . . .  to underline the thesis that , while 

a computer program that "understands" natural language in the most general 
sense is for the present beyond our means, the granting of even a quite broad 
contextual framework al lows us to construct practical language recognition 
procedures. 3 2  

Thus, Weizenbaum proposes to program a nest of contexts in terms 
of a "contextual tree" : "beginning with the topmost or initial node, a new 
node representing a subcontext is generated, and from this one a new 
node still, and so on to many levels. " 3 3  He clearly supposes these contexts 
can themselves ultimately be treated as sets of facts: "the analogue of a 
conversation tree is what the social psychologist Abelson cal ls a belief 
structure, "34 that is, an organized collection of facts concerning a per
son's knowledge, emotional attitudes, goals, and so forth. 

Evidently, an understanding of the crucial role of the situation does 
not by itself constitute a sufficient argument for abandoning AI. The 
traditional ontologist, reincarnated in Weizenbaum and every AI re
searcher, can grant that facts used in conversation are selected and 
interpreted in terms of the global context and simply conclude that we 
need only first pick out and program the features which identify this 
broader situation. But Weizenbaum's observations contain the elements 
of an objection in principle to the development of humanly intelligent 
machines. To see this we must first show that Weizenbaum�s way of 
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analyzing the problem-separating the meaning of the context from the 
meaning of the words used in the context-is not accidental but is 
dictated by the nature of a digital machine. In our everyday experience 
we do not find ourselves making such a separat ion. We seem to under
stand the situation in terms of the meaning of the words as much as we 
understand the meaning in terms of the situation. For a computer, 
however, this reciprocal determination must be broken down into a series 
of separate operations. Since Weizenbaum sees that we cannot determine 
the sense of the words unti l  we know the meaning of the context .  he 
correctly concludes, from a programmer's point of view, that we must 
first specify the context  and then use this fixed context to determine the 
meaning of the elements in it. 

Moreover, Weizenbaum's analysis suggests that the computeri zed un
derstanding of a natural language requires that the contexts be organized 
as a nested hierarchy. To understand why Weizenbaum finds it necessary 
to use a hierarchy of contexts and work down from the top node, we must 
return to the general problem of situation recognition. I f  computers must 
uti l ize the situation or context in order to disambiguate, and in general 
to understand utterances in a natural language. the programmer must be 
able to program into the machine, which is not involved in a si tuat ion, 
a way of recognizing a context and using it. But the same two problems 
which arose in disambiguation and necessitated appeal to the situat ion 
in the first place arise again on the level of context recognit ion and force 
us to envisage working down from the broadest context :  ( 1 )  If  in disam
biguation the number of possibly relevant facts is in some sense infini te 
so that selection criteria must be appl ied before interpretat ion can begin, 
the number of facts that might be relevant to recognizing a context is 
infinite too. How is the computer to consider al l the features such as how 
many people are present, the temperature, the pressure, the day of the 
week, and so forth, any one of which might be a defining feature of some 
context? (2) Even if the program provides rules for determining relevant 
facts, these facts would be ambiguous, that is, capable of defining several 
different contexts, unti l  they were interpreted. 

Evidently, a broader context will have to be used to determine which 
of the infinity of features is relevant, and how each is to be understood. 
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But if, in turn, the program must enable the machine to identify the 
broader context in terms of its relevant features-and this is the only way 
a computer which operates in terms of discrete elements could proceed 
-the programmer must either claim that some features are intrinsically 
relevant and have a fixed meaning regardless of context-a possibility 
already excluded in the original appeal to context--or the programmer 
will be faced with an infinite regress of contexts. There seems to be only 
one way out: rather than work up the tree to ever broader contexts the 
computer must work down from an ultimate context-what Weizen
baum calls our shared culture. 

Fortunately, there does seem to be something like an ultimate context, 
but, as we shall see, this proves to be as unprogrammable as the regress 
it was introduced to avoid. We have seen that in order to identify which 
facts are relevant for recognizing an academic or a conspiratorial situa
tion, and to interpret these facts, one must appeal to a broader context. 
Thus it is only in the broader context of social intercourse that we see 
we must normally take into account what people are wearing and what 
they are doing, but not how many insects there are in the room or the 
cloud formations at noon or a minute later. Also only this broader 
context enables us to determine whether these facts will have their nor
mal significance. 

Moreover, even the facts necessary to recognize social intercourse can 
only be singled out because social intercourse is a subcase of human 
activity, which also includes working alone or studying a primitive tribe. 
And finally, human activity itself is only a subclass of some even broader 
situation-call it the human life-world-which would have to include 
even those situations where no human beings were directly involved. But 
what facts would be relevant to recognizing this broadest situation? Or 
does it make sense to speak of "recognizing" the life-world at all? It 
seems we simply take for granted this ultimate situation in being people. 
As Wittgenstein puts it: 

What has to be accepted, the given, is-so one could say-forms of life. 3
� 

Well then, why not make explicit the significant features of the human 
form of life from within it? Indeed, this deus ex machina solution has 
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been the implicit goal of philosophers for two thousand years, and it 
should be no surprise that nothing short of a formalization of the human 
form of life could give us artificial intelligence (which is not to say that 
this is what gives us normal intelligence). But how are we to proceed? 
Everything we experience in some way, immediate or remote, reflects our 
human concerns. Without some particular interest, without some partic
ular inquiry to help us select and interpret, we are back confronting the 
infinity of meaningless facts we were trying to avoid. 

It seems that given the artificial intelligence worker's conception of 
reason as calculation on facts, and his admission that which facts are 
relevant and significant is not just given but is context determined, his 
attempt to produce intelligent behavior leads to an antinomy.  On the one 
hand, we have the thesis: there must always be a broader context; other
wise, we have no way to distinguish relevant from i rrelevant facts. On 
the other hand, we have the antithesis: there must be an ultimate context, 
which requires no interpretation; otherwise, there will be an infinite 
regress· of contexts, and we can never begin our formali zation. 

Human beings seem to embody a third possibility which would offer 
a way out of this dilemma. Instead of a hierarchy of contexts, the present 
situation is recognized as a continuation or modification of the previous 
one. Thus we carry over from the -lmmediate past a set of anticipations 
based on what was relevant and important a moment ago. This carryover 
gives us certain predispositions as to what is worth noticing. 

Programming this alternative, however, far from solving the problem 
of context recognition merely transforms a hierarchical regress into a 
temporal one. How does the situation which human beings carry along 
get started? To the programmer this becomes the question: how can we 
originally select from the infinity of facts those relevant to the human 
form oflife so as to determine a context we can sequentially update? Here 
the answer seems to be: human beings are simply wi red genetically as 
babies to respond to certain features of the environment such as nipples 
and smiles which are crucially important for survival. Programming 
these initial reflexes and letting the computer learn might be a way out 
of the context recognition problem; but it is important to note two 
reservations: no present work in artificial intelligence is devoted to this 
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approach. 3 6* I n  fact ,  artificial intel ligence as it is now defined by Feigen
baum, Simon, Minsky, Weizenbaum, and others seems to be the attempt 
to produce ful ly formed adult  intel ligence, the way Athena sprang ful l  
grown from the head of Zeus. Moreover, i t  is  by no means clear that the 
above proposal  avoids the original dilemma. I t  leaves unexplained how 
the child develops from fi xed responses elicited by fixed features of the 
environment ,  to the determination of meaning in terms of context which 
even A I  workers agree characterizes the adult .  

Once the child can determine meanings in terms of the situation, the 
past situation can indeed be updated to arrive at the present one, but the 
origina l  t ransition from fixed response to flexible response in terms of the 
meaning of the situation remains as obscure as before. Either the transi
tion must be understood as an ongoing modification of the previous 
situation, and we have assumed what was to be explained, or the so
cal led global context must be recognized in terms of fixed context-free 
features, and we have ignored the problem rather than solved it . Either 
the child or machine is able to select relevant facts, assign a normal 
significance to al l  relevant facts, and also to override this normal signifi
cance in an open-ended way-and then no set of fixed features, not even 
the infant's, can be taken as having a fixed significance in terms of which 
to begin this process; or fixed features are a l l  that is needed, but then we 
have to reject as i l l usory the very flexibility we were trying to explain. 
There seems to be no way to get into a situation and no way to recognize 
one from the outside. 

We nonetheless observe that generality and flexibility are developed 
gradual ly  through learning, but now the whole problem is hidden in this 
learning process. The child seems at each moment to be either developing 
more complex fixed responses, or to have always already in terpreted 
specific facts in terms of the overal l  context and to be gaining a more 
structured sense of the situation. If we reject the analysis in terms of fixed 
responses as inadequate because inapplicable to the adult, we are back 
facing a temporal version of the original an tinomy . Either there must be 
a first context which a machine would not be able to recognize for want 
of a previous context in terms of which to single out its relevant features, 
or there wil l be a temporal regress of contexts extending infinitely into 
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the past and the machine will not be able to begin the recognition 
process. 

As Kant noted, the resolution of an antinomy requires giving up the 
assumption that the two alternatives considered are the only possible 
ones. They are, indeed, the only alternatives open to someone t rying to 
const ruct artificial reason. 3 7 * There must be another alternative, how
ever, since language is used and understood. There must be some way 
of avoiding the self-contradictory regress of contexts, or the incompre
hensible notion of recognizing an ultimate context, as the only way of 
giving significance to independent, neutral facts. The only way out seems 
to be to deny the separation of fact and situation, which we saw Weizen
baum was led to assume because of the serial procedure forced on him 
by the digital computer. If, as all agree, we are unable to eliminate the 
situation in favor of facts whose relevance and significance are fixed 
regardless of context, then the only alternative way of denying the sepa
ration of fact and situation is to give up the independence of the facts 
and understand them as a product of the situation. This would amount 
to arguing that only in terms of situationally determined relevance are 
there any facts at all. It also amounts to avoiding the problem of how 
to recognize the situation from outside by arguing that for an intelligence 
to have any facts to interpret , it must already be in a situation. 

Part III will show how this lat ter alternative is possible and how it is 
related to the rest of human life. Only then will it become clear why the 
fixed-feature alternative is empirically untenable, and also why the hu
man form of life cannot be programmed . 



Conclusion 

In surveying the four assumptions underlying the optimistic interpreta
tion of results in AI we have observed a recurrent pattern : In each case 
the assumption was taken to be self-evident-an axiom seldom ar
ticulated and never cal led into question. In fact, the assumption turned 
out to be only one al ternative hypothesis, and a questionable one at that. 
The biological assumption that the brain must function l ike a digital 
computer no longer fits the evidence. The others lead to conceptual 
difficulties .  

The psychological assumption that the mind must obey a heuristic 
program cannot be defended on empirical grounds, and a priori argu
ments in its defense fail to introduce a coherent level of discourse be
tween the physical and the phenomenological . This does not show that 
the task set for Cognitive Simulation is hopeless. However, this lack of 
defense of the psychological axiom does el iminate the only argument 
which suggested any particular reason for hope. If  i t  could have been 
argued that information processing must proceed by heuristic rules, 
Cogn itive Simulation would have had the promising task of finding these 
rules. Without the defense provided by this axiom ,  however, al l difficul
ties besetting Cognitive Simulation research during the past ten years 
take on new significance; there is no  reason to deny the growing body 
of evidence that human and mechanical information processing proceed 
in entirely different ways. 

I 225 
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Researchers in Al (taking over from CS as Minsky has taken over 
from Simon) have written programs which allow t he digital machine to 
approximate, by means of logical operations, the result which human 
beings seem to ach ieve by avoiding rather than resolving the difficult ies 
inherent in formalization. But formalization of restricted contexts  is an 
ad hoc "solution" which leaves untouched the problem of how to formal
ize the totality of human knowledge presupposed in intelligent behavior. 
This fundamental difficulty is h idden by t he epistemological and ontolog
ical assumptions that all human behavior must be analyzable in terms 
of rules relating atomic facts. 

But the concept ual difficult ies int roduced by these assumptions are 
even more serious than those int roduced by t he psychological one. The 
inevitable appeal to these assumpt ions as a final basis for a theory of 
practice leads to a regress of more and more specific rules for apply ing 
rules or of more and more general contexts for recogni zing contexts .  In 
the face of these contradict ions, it seems reasonable to claim that . on the 
information processing level, as opposed to t he level of t he laws of 
physics, we cannot analyze human behavior in terms of rule-governed 
manipulation of a set of elements. And since we have seen no argument 
brough t forward by the AI theorists for t he assumpt ion that human 
behavior m ust he reproducible by a digi tal computer operat ing wi th  
st rict rules on determinate bi ts .  we would seem to have good ph ilosoph
ical grounds for reject ing th is assumpt ion. 

If we do abandon all four assumpt ions, then t he empirical data avail
able to date would take on different signi ficance. It no longer seems 
obvious that one can int roduce search heurist ics which enable the  speed 
and accuracy of computers to bludgeon through in those areas where 
human beings use more elegant techniques. Lacking any a priori basis 
for confidence, we can only turn to t he empi rical results obtained thus 
far. That brute force can succeed to some extent i s  demonst rated by t he 
early work in the field. The present difficult ies in game playing, language 
t ranslat ion, problem solving, and pat tern recogni t ion, however, indicate 
a limi t to our ability to subst i tute one k ind of . .  information processing" 
for another. Only experimentat ion can determine the extent to which 
newer and faster machines, bet ter programming languages, and cleverer 
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heuristics can continue to push back the frontier. Nonetheless, the dra
matic slowdown in the fields we have considered and the general failure 
to fulfill earlier predictions suggest the boundary may be near. Without 
the four assumptions to fall back on, current stagnation should be 
grounds for pessimism. 

This, of course, has profound implications for our philosophical tradi
tion. If the persistent difficulties which have plagued all areas of artificial 
intelligence are reinterpreted as failures, these failures must be interpre
ted as empirical evidence against the psychological, epistemological, and 
ontological assumptions. In Heideggerian terms this is to say that if 
Western Metaphysics reaches its culmination in Cybernetics, the recent 
difficulties in artificial intelligence, rather than reflecting technological 
limitations, may reveal the limitations of technology.  





P A R T  I l l  

A L T E R N A T I V E S T O  T H E  

T R A D I T I O N A L A S S U M P T I O N S  





Introduction 

The psychological , epistemological, and ontological assumptions have 
this in common : they assume that man must be a device which calculates 
according to rules on data which take the form of atomic facts. Such a 
view is the t idal wave produced by the confluence of two powerful 
streams: first, the Platonic reduction of all reasoning to explicit rules and 
the world to atomic facts to which alone such rules could be applied 
without the risks of interpretation; second, the invention of the digital 
computer, a general-purpose information-processing device, which cal
culates according to explicit rules and takes in data in terms of atomic 
elements logically independent of one another. In some other culture, the 
digital computer would most l ikely have seemed an unpromising model 
for the creation of artificial reason, but in our tradition the computer 
seems to be the very paradigm of logical intel ligence, merely awaiting the 
proper program to accede to man 's essential attribute of rational ity. 

The impetus gained by the mutual reinforcement of two thousand 
years of tradi tion and i ts product, the most powerful device ever invented 
by man, is simply too great to be arrested, deflected, or even fully 
understood. The most that can be hoped is that we become aware that 
the direction this impetus has taken , while unavoidable, is not the only 
possible direction; that the assumptions underlying the conviction that 
artificial reason is possible are assumptions, not axioms-in short, that 
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there may be an alternative way of understanding human reason which 
explains both why the computer paradigm is irresistible and why it must 
fail. 

Such an alternative view has many hurdles to overcome. The greatest 
of these is that it cannot be presented as an alternative scientific explana
tion. We have seen that what counts as "a complete description" or an 
explanation is determined by the very tradition to which we are seeking 
an alternative. We will not have understood an ability, such as the human 
mastery of a natural language, until we have found a theory, a formal 
system of rules, for describing this competence. We will not have under
stood behavior, such as the use of language, until we can specify that 
behavior in terms of unique and precisely definable reactions to precisely 
defined objects in universally defined situations. Thus, Wes tern thought 
has already committed itself to what would count as an explanation of 
human behavior. I t  must be a theory of practice, which treats man as a 
device, an object responding to the influence of other objects, according 
to universal laws or rules. 

But it is just this sort of theory, which. after two thousand years of 
refinement , has become sufficiently problematic to be rejected by philoso
phers both in the Anglo-American tradition and on the Continent .  I t  is 
just this theory which has run up against a stone wall in research in 
artificial intelligence. I t  is not some specific explanation. then, that has 
failed, but the whole conceptual framework which assumes that an expla
nation of human behavior can and must take the Platonic form, success
ful in physical explanation; that situations can be t reated like physical 
states; that the human world can be treated like the physical universe. 
If this whole approach has failed, then in proposing an alternative ac
count we shall have to propose a different sort of explanation, a different 
sort of answer to the question "How does man produce intelligent behav
ior?" or even a different sort of question, for the notion of "producing" 
behavior instead of simply exhibiting it is already colored by the tradi
tion. For a product must be produced in some way; and if it isn't 
produced in some definite way, the only alternative seems to be that it 
is produced magically. 

There is a kind of answer to this question which is not committed 
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beforehand to finding the precise rulelike relations between precisely 
defined objects. It takes the form of a phenomenological description of 
the behavior involved. I t, too, can give us understanding if it is able to 
find the general characteristics of such behavior: what, if any one thing, 
is involved in seeing a table or a house, or, more generally, in perception, 
problem solving, using a language, and so forth . Such an account can 
even be called an explanation if it goes further and tries to find the 
fundamental features of human activity which serve as the necessary and 
sufficient conditions for al l forms of human behavior. 

Such an explanation owes a debt to Aristotle's method, although not 
to his arguments or descriptions. Whereas Plato sought rulel ike criteria, 
Aristotle tried to describe the general structure of perception and judg
ment. But, as his notion that action is based on a practical syl logism 
shows, Aristotle still thought of man as a calculable and calculating sort 
of object-a reckoning animal-so that his actual descriptions are one 
step in the tradition which finally separated the rationality from the 
animality and tried to simulate the reckoning all by itself. 

I t  is only recently, now that the full implications of the attempt to treat 
man merely as an object or device have become apparent, that phi loso
phers have begun to work out a new view . The pioneers were Heidegger 
and Wittgenstein. Since then many others, notably Maurice Merleau
Ponty and Michael Polanyi have, each on his own, applied, consolidated, 
and refined similar insights; and young thinkers such as Charles Taylor 
and Samuel Todes are continuing their research .  In trying to lay out the 
alternative view that emerges when we confront the three basic assump
tions of the tradition with a phenomenological description of the struc
ture of human behavior, I shall be drawing on the work of al l these men . 

I am ful ly aware that this "account" is vaguer and less experimental 
than that of either the behaviorists or intellectualists which it is meant to 
supplant. 1 • But one must not become so fascinated with the formalizable 
aspects of a subject that one forgets the significant questions which 
originally gave rise to the research, nor should one be so eager for 
experimental results that one continues to use old techniques just because 
they work, when they have ceased to lead to new insights. Chomsky is 
one of the few in the behavioral sciences who see this danger. 
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Without wishing to exalt the cul t  of gentleman ly amateurism, one must neverthe
less recognize that the classical i ssues have a l ivel iness and significance t hat may 
be lacking in an area of investigation that is determ ined by the appl icabi l i ty  of 
certain tools and methods, rather than by problems that are of in t rinsic in terest 
in themselves. 

The moral is not to abandon useful tools; rather, it is, fi rs t .  that one should 
maintain enough perspective to be able to detect the arri val of that inevi table day 
when the research that can be conducted with these tools is no longer import an t ;  
and, second, that one should value ideas and insights t hat are to  the poin t ,  t hough 
perhaps premature and vague and not productive of research at a part icular stage 
of technique and understanding. 2 

Taking this suggestion to heart, we shal l explore three areas neces
sari ly neglected in CS and Al but which seem to underlie all intel l igent 
behavior: the role of the body in organizing and unifying our experience 
of objects, the role of the si tuation in providing a background against 
which behavior can be orderly  without being rulelike, and final ly  the role 
of human purposes and needs in organizing the situat ion so that objects 
are recognized as relevant and accessible. 
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The Role of the Body 1n Intelligent Behavior 

Adherents of the psychological and epistemological assumptions that 
human behavior must be formalizable in terms of a heuristic program 
for a digital computer are forced to develop a theory of intelligent behav
ior which makes no appeal to the fact that a man has a body, since at 
this stage at least the computer clearly hasn't one. In thinking that the 
body can be dispensed with , these thinkers again follow the tradition, 
which from Plato to Descartes has thought of the body as getting in the 
way of intelligence and reason, rather than being in any way indispens
able for it. If the body turns out to be indispensable for intelligent 
behavior, then we shall have to ask whether the body can be simulated 
on a heuristically programmed digital computer. If not, then the project 
of artificial intelligence is doomed from the start. These are the questions 
to which we must now turn. 

Descartes, the first to conceive the possibility of robots, was also the 
first to suggest the essential inadequacy of a finite state machine. He 
remarks in the Discourses: 

Although such machines could do many things as wel l as, or perhaps even better 
than men, they would infall ibly fail in certain others . . . . For while reason is a 
universal instrument which can be used in all sorts of si tuations, the organs of 
a machine have to be arranged in a part icular way for each particular action . 
From this it fol lows that it is morally [i.e. , practical ly] impossible that there 
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should be enough different devices in a machine to make it behave in al l  the 
occurrences of l ife as our reason makes us behave. 1 

Thus, although not aware of the difference between a situation and a 
physical state, Descartes already saw that the mind can cope with an 
indefinite number of situations, whereas a machine has only a l imited set 
of states and so will eventually reveal i tself by its failure to respond 
appropriately. This intrinsic limitation of mechanism. Descartes claims, 
shows the necessity of presupposing an immateria l soul. 

This is an interesting argument, and some version of it may indeed be 
valid, but it gets i ts plausibility from the assumption that a robot can be 
in only a relatively small number of states. When in a modern computer 
the number of possible states is of the order of 1 0 1 0 1 0

, it is not clear just 
how much Descartes· objection proves. Such a machine could at least in 
principle respond to what would appear to be an indefinite number of 
situations. It would thus, on Descartes· view , be indistinguishable from 
a human being, destroying his argument that intelligent behavior is 
possible only if the mechanism behaving is somehow attached to a non
material soul. But one can raise a new objection. in some ways the exact 
opposite of Descartes·. A brain in a bottle or a digital computer might 
still not be able to respond to new sorts of situations because our ability 
to be in a situation might depend, not just on the flexibility of our nervous 
system, but rather on our ability to engage in practical activ ity. After 
some attempts to program such a machine, it might become apparent 
that what distinguishes persons from machines. no matter how cleverly 
constructed, is not a detached, universal, immaterial soul but an in
volved, situated, material body . 

Indeed, it is just the bodily side of intelligent behavior which has 
caused the most trouble for artificial intelligence. Simon, who has been 
only slightly daunted by the failures of the last ten years, now feels that 
· ·machines will be capable, within twenty years, of doing any work that 
a man can do," 2 but he admits:  .. Automation of a flexible central nervous 
system will be feasible long before automation of a comparatively flexible 
sensory, manipulative, or locomotive system. " 3 But what if the work of 
the central nervous system depends on the locomotive system, or to put 
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i t  phenomenologically, what if the "higher," determinate, logical, and 
detached forms of intell igence are necessarily derived from and guided 
by global and involved "lower" forms? Then Simon's optimism, based 
on the three assumptions underlying artificial intell igence and traditional 
phi losophy, would be unjustified .  

The intractabil i ty of the " lower" functions has already produced a 
certain i rony. Computer technology has been most successful in simulat
ing the so-called higher rational functions-those which were once sup
posed to be uniquely human . Computers can deal bri l liantly with ideal 
languages and abstract logical relations. I t  turns out that it is the sort 
of intel l igence which we share with animals, such as pattern recognition 
(along with the use of language, which may indeed be uniquely human) 
that has resisted machine simulation . 

Let us reconsider the holism we have already noted in two related 
areas where Al  has not fulfilled early expectations: chess playing and 
pattern recognition. Thus far I have tried to account for these failures 
by arguing that the task in  question cannot be formalized, and by isola
t ing the nonformal form of "information processing" necessarily in
volved . Now I shall try to show that the nonformalizable form of "infor
mation processing" in quesion is possible only for embodied beings. 

To make this clear we shall fi rst have to consider human pattern 
recognit ion in more detai l .  With the aid of concepts borrowed from 
phenomenology, I shall try to show how pattern recognition requi res a 
certain sort of indeterminate, global anticipation. This set or anticipation 
is characteristic of our body as a "machine" of nerves and muscles whose 
function can be studied by the anatomist, and also of our body as ex
perienced by us, as our power to move and manipulate objects in the 
world . I shall argue that a body in both these senses cannot be repro
duced by a heuristical ly programmed digi tal computer-even one on 
wheels which can operate manipulators, and that, therefore, by vi rtue of 
being embodied, we can perform tasks beyond the capacit ies of any 
heuristically programmed robot. 

We have seen that the restricted applicabi l i ty of pattern recognit ion 
programs suggests that human pattern recogni tion proceeds in some 



What Computers Can 't Do I 238 

other way than searching through l ists of traits. Indeed, phenomenolo
gists and Gestalt psychologists have pointed out that our recogn ition of 
ordinary spatial or temporal objects does not seem to operate by check
ing off a l ist of isolable, neutral , specific characteristics at a l l .  For exam
ple, in recognizing a melody, the notes get their values by being perceived 
as part of the melody, rather than the melody's being recognized in  terms 
of independently identified notes. Likewise, in the perception of objects 
there are no neutral traits. The same hazy layer which I would see as dust 
if I thought I was confronting a wax apple might appear as moisture if 
I thought I was seeing one that was fresh . The significance of the detai ls 
and indeed their very look is determined by my perception of the whole. 

The recognition of spoken language offers the most striking demon
stration of this global character of our experience. From time to time 
brash predictions such as Rosenblatt 's have been made about mechanical 
secretaries into which (or at whom) one could speak, and whose pro
grams would analyze the sounds into words and type out the results . In  
fact, no one knows how to begin to make such a versati le device, and 
further progress is unlikely, for current work has shown that the same 
physical constel lation of sound waves is heard as quite different pho
nemes, depending on the expected meaning. 

Gettinger has given considerable attention to the problem . His analysis 
of speech recognit ion work is worth reproducing in detail . both because 
this pattern recognit ion problem is important in itself and because this 
work exhibits the early success and subsequent fai lure to general ize 
which we have come to recogn ize as typical of art ificial intel l igence 
research .  

There was considerable in i t ial success in  building apparatus that would eke out 
a sequence of discrete phonemes out of the cont inuous speech waveform. While 
phonemic analysis has been dominant in  that area, numerous other approaches 
to this decoding problem have also been followed .  Al l  have shared th is in i t ial 
degree of success and yet al l, so far, have proved to be incapable of significant 
expansion beyond the recogni t ion of the speech of a very few dist inct individuals 
and the recogni tion of a very few dist inct sound patterns whether they be pho
nemes or words or whatever. Al l  is wel l as long as you are wi l l ing to have a fai rly  
restricted universe of speakers, or sounds, or of both .  

Within these l imitations you can play some very good tricks. There are now 
lots of machines, some experimental , some not so experimental , that wi l l  recog-
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nize somewhere between 20 and 100 distinct sound patterns, some of them quite 
elaborate. Usual ly the trick is something l ike identifying a number of features, 
treating these as if they were coordinates in some hyperspace, then passing planes 

that cordon off, if you wi l l ,  different blocks of this space. If your speech event 
fal ls somewhere within one of these blocks you say that it must have been that 
sound and you recognize i t .  

This  game was fairly successful in the range of twenty to a hundred or so 
distinct th ings, but after that, these blocks become so small and clustered so close 
together that you no longer can achieve any rel iable sort of separation. Every
thing goes to pot . 4 

This leads Oettinger to a very phenomenological observation : 

Perhaps . . .  in perception as well as in conscious scholarly analysis, the phoneme 
comes after the fact, namely . . .  i t  is constructed, if at al l ,  as a consequence of 
perception not as a step in the process of perception i tself. 5 

This would mean that the total meaning of a sentence (or a melody or 
a perceptual object) determines the value to be assigned to the individual 
elements. 

Oettinger goes on reluctantly to draw this conclusion : 

This drives me to the unpopular and possibly unfruitful notion that maybe there 
is some kind of Gestalt perception going on, that here you are l istening to me, 
and somehow the meaning of what I 'm saying comes through to you all of a 

piece. And it is only a posteriori , and if you real ly give a damn, that you stop 
and say ,  "Now, here was a sentence and the words in it were of such and such 
type, and maybe here was a noun and here was a vowel and that vowel was this 
phoneme and the sentence is declarative, etc. " 6 

Phenomenologists, not committed to breaking down the pattern so that 
it can be recognized by a digital computer, while less appalled, are no 
less fascinated by the gestalt character of perception .  Indeed, it has been 
systematically studied in their account of perceptual horizons. 1wo 
forms of awareness are involved. First there is the basic figure-ground 
phenomenon, necessary for there to be any perception at all : whatever 
is prominent in our experience and engages our attention appears on a 
background which remains more or less indeterminate. This back
ground, which need never have been made determinate, affects the ap
pearance of what is determinate by letting it appear as a unified, bounded 
figure. I n  Rubin's famous "Peter-Paul Goblet" (Figure 4), "the contour 
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which div ides figure from ground 'belongs· to  the figure on ly  and changes 

i ts shape radical ly  if a figure-ground reversal occurs . , . ,  Thus the  figure 

has specific determi nate characterist ics,  wh i le t he  background can be 

characterized on ly  as that-which- i s-not - the figure. 

F i g u re 4 

This indeterm inacy p lays a cru c ia l  ro le i n  human percept ion . Merleau

Pon t y  poi n t s  ou t  t hat  most of what we nperience must remain  i n  t he 

background so t ha t  somet h ing  can he percei ved i n  t he foreground .  

When Gest a l t  t heory i n forms us t hat  a figure t)n a back ground i s  t he s implest 
sense-dat u m  ava i l ahlc to  us .  we rep ly  t ha t  t h is  i s  not a con t i ngen t characte ri za
t ion of fac t ua l  percept ion ,  wh ich  leaves us free . i n  an idea l  anal ys is .  to  bring in 
t he not ion of i m press ion . I t  i s  t he very defin i t ion of t he phenomenon of percep
t ion . . . .  The percep tua l  'somet h i n g · i s  a lways in t h e  m iddle of somet h i ng  e lse; 
i t  a lways forms part of a ' tie ld . · �  

I t  i s  t h i s  ground ,  o r  ou t e r  hori zon a s  Edmund Husser l ,  the  founder of 

phenomenology,  ca l l ed i t ,  wh ich in our chess example remains  i nde ter

mina te  and yet prov ides t he con tex t  of t he specific count ing out, so that 

one a lways has a sense of t he relevance of t he specific move u nder 
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consideration to the rest of the game. Similarly, our sense of the overall 
context may organi ze and direct our perception of the details when we 
understand a sentence. For a computer, which must take up every bit of 
i nformation explicitly or not at all, there could be no outer horizon . Any 
i nformation to be taken into account would have to be as determinate 
as the figure. This leads to the unwieldy calculations which we have 
seen i n  chess programs and which Gettinger deplores in language pro
grams. 

This outer horizon, then, describes how background ' ° information" 
about a conversation or a particular game is ignored without being 
excluded. It does not, however, describe the way the background pro
vides i nformation which contributes to the player zeroing i n  on one area 
of the chess board rather than another, or how our anticipation of a 
sentence's mean ing determines our understanding of its elements as they 
fall i nto place. To understand this, we must consider a second kind of 
perceptual i ndeterminacy investigated by Husserl and Gestalt psycholo
gists : what Husserl calls the inner horizon. The something-more-than
the-figure is, in this case, not as indeterminate as the outer horizon . 
When we perceive an object we are aware that it has more aspects than 
we are at the moment considering. Moreover, once we have experienced 
these further aspects, they will be experienced as copresent, as covered 
up by what is directly presented. Thus, in ordinary situations, we say we 
perceive the whole object, even its hidden aspects, because the concealed 
aspects directly affect our perception. We perceive a house, for example, 
as more than a fa<;ade-as having some sort of back-some inner hori 
zon . We respond to this whole object first and then, as we get to know 
the object better, fill i n  the details as to inside and back. A machine with 
no equivalent of an inner horizon would have to process this information 
in the reverse order : from details to the whole. Given any aspect of an 
object, the machine would either pick it up on its receptors or it would 
not. All additional information about other aspects of the object would 
have to be explicitly stored in memory-in M insky's sort of model-or 
counted out again  when it was needed. This lack of horizons is the 
essential difference between an image in  a movie or on a TV screen and 
the same scene as experienced by a human being. 
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When, in  a fi lm, the camera is trained on an object and moves nearer to i t  to give 

a close-up view, we can remember that we are being shown the ash t ray or an 

actor's hand, we do not actual ly ident ify it. This is because the scene has no 

horizons. 9 

In chess and in recognizing sentences, we find the same phenomenon 
playing a crucial role. Our sense of the whole situation, outer horizon, 
and our past experience with the specific object or pattern in question, 
inner horizon, give us a sense of the whole and guide us in filling in the 
details. 1 0* 

This process can best be noticed when it is breaking down. If you reach 
for a glass of water and get milk by mistake. on taking a sip your first 
reaction is total disorientation. You don't taste water. but you don't taste 
milk either. You have a mouthful that approaches what Husserl would 
call pure sensuous matter or hyletic data, and naturally you want to spit 
it out. Or, if you find the right global meaning fast enough. you may 
recover in time to recognize the milk for what it is. Its other characteris
tics, whether it is fresh or sour. buttermilk or skimmed milk . will then 
fall into place. 

One might well wonder how one knows enough to try . .  milk . .  rather 
than, say , .. gasoline. " Doesn't one need some neutral features to begin 
this process of recognition? The perceiver's apparent clairvoyance seems 
so paradoxical that one is tempted to embrace the computer model in 
spite of its difficulties. But the process seems less mysterious when we 
bear in mind that each new meaning is given in an outer horizon which 
is already organized, in this case a meal. on the basis of which we already 
have certain expectations. It is also important that we sometimes do give 
the wrong meaning; in these cases the data coming in make no sense at 
all, and we have to try a new total hypothesis. 

A computer, which must operate on completely determinate data 
according to strictly defined rules, could at best be programmed to try 
out a series of hypotheses to see which best fit the fixed data. But this 
is far from the flexible interaction of underdetermined data and underde
termined expectations which seems to be characteristic of human pattern 
recognition. 

As one might expect, the computer people, again with the support of 
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the philosophical tradition , and the success of physics, have rarely faced 
this problem. Philosophers have thought of man as a contemplative mind 
passively receiving data about the world and then ordering the elements.  
Physics has made this conception plausible on the level of the brain as 
a physical object. The brain does passively receive energy from the 
physical world and process it in terms of its present state which is a 
function of past energy received. If one accepts the passive view of mind 
and fails to distinguish the physical-processing level from the "informa
tion-processing" level ,  it seems self-evident that the mind, like the com
puter, simply receives bits of determinate data. In his introduction to the 
Scien tific A merican issue on computers, McCarthy nai·vely confuses 
brain and mind, energy and information, so that the passivity of the 
computer appears to be a self-evident model for human . .  information 
processing. " 

The h uman brain also accepts inputs of information,  combines i t  wi th informa
t ion stored somehow wi th in ,  and returns  outputs of information to i ts envi ron
ment . 1 1  

Neisser is much more subtle. He too underestimates the problems 
posed by the role of anticipation, but his work in psychology has at least 
led him to see the need for "wholistic operations which form the units 
to which attention may then be directed, " 1 2  and he tries to fit this fact 
into his overal l commitment to a digital computer model .  The result is 
a confusion between what ' "global or wholistic" means in a gestalt analy
sis and what it would have to mean in a computer program, which is 
sufficiently revealing to be worth fol lowing in detail .  

A general characterization of the gestalt, or global , phenomenon is: 
the interpretation of a part depends on the whole in which it is embed
ded. But this is too genera l .  Such a definition al lows Minsky, for example, 
to miss the whole problem. In his Scien tific A merican article he speaks 
of Evans' analogy-sol ving program as being able to "recogn ize a 'global '  
aspect of the situation . " 1 1 This turns out to mean that, on the basis of 
calculations made on certain local features of a figure, the program 
segments two superimposed figures in one way rather than another. 
There is nothing here to surprise or interest those concerned with the 
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way the gestalt, or global, configuration functions in our experience. 
To see the difference between the holistic processes which interest 

Neisser and what Minsky calls global recognition, one needs a sharper 
characterization of the gestalt phenomenon. Neisser gives such a charac
terization in terms of a temporal gestalt, a rhythm (a favorite ex.ample 
of the Gestaltists) :  

The parts (individual beats) get their meaning (relat ive posi t ion) from the whole, 
even though that whole does not exist at any moment of t ime. I t  exists, as one 
might say, in the subject 's mind, as an intent . . . .  a Gestalt . . . .  1

' 

The crucial feature of this gestalt interpretation, that what coun ts as a 

part is defined in terms of the whole, is missing in Minsky's example, as 
it must be, since, as we have seen, for a digital computer, each complex 
whole must be constructed by the logical combination of independently 
defined elements. In Minsky's example, the elements already have a 
precise significance (or rather two possible precise significances) .  and it 
is simply a question of deciding which interpretation is appropriate in 
terms of a decision based on other determinate local features of the 
figure. 

Neisser's description of the "mind's intent," the anticipations which 
segment the individual beats. on the other hand. brings us to the center 
of the problem . The question is how the partially determinate anticipa
tions, involved in game playing. pattern recognition. and intelligent be
havior in general , can be simulated on a heuristically programmed digital 
computer so that the computer does not have to passively receive mean
ingless data but has anticipations of relevant information. Specifically for 
Neisser, the problem is how to reconcile his gestaltist analysis with a 
computer model of human performance. 

Neisser thinks he has a way. In discussing linguistic performance as 
an example of the gestalt effect. Neisser thinks of the rules of grammar 
as the wholes into which the words fit as parts. 

The rules are structural. That is , they do not dictate what part icular words are 
to be used, but rather how they are to be related to each other and to the sen tence 
as a whole. 1 s 
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But this wi l l  not work. In the case of the rhythm, the whole determined 
what counted as an element - there is no such thing as a syncopated 
beat, for example, existing all by itself-but for Neisser, in the case of 
language, the words already have a determinate set of possible meanings; 
the grammar simply provides a rule for selecting a meaning and combin
ing it with others. The elements in this case are completely determinate 
and can be defined independently of the rules. It is, therefore, misleading 
when Neisser concludes: , 

A sentence is more than the sum of i ts  parts. This is not an unfami l iar slogan .  
Long ago, the Gestalt psychologists used it to describe t he wholist ic aspects of  
v isua l  percept ion .  1 6  

This confusion is already latent in Neisser's description of the anticipa
tion involved in hearing a rhythm in the example quoted above. The 
description concludes: . .  [The anticipation] exists . . .  in the subject's mind 
as an intent, a gestalt, a plan,  a description of a response tha t can be 

executed without  further consideration. " 1 1  This slide from gestalt antici
pation to preset plan is an obfuscation necessitated by the computer 
model : A gestalt defines what counts as the elements it organizes; a 
plan or a rule simply organizes independently defined elements . More
over, just as the elements (the beats) cannot be defined independently of 
the gestalt, the gestalt (the rhythm) is nothing but the organization of 
the elements. A plan, on the other hand, can be stated as a rule or 
program, independently of the elements. Clearly his computer model of 
a formal program defined and stored separately from the independently 
defined bits of data which it organizes leads Neisser to betray his own 
gestaltist illustration. This difference is neglected in all CS models, yet 
it is the essence of the gestaltist insight, and accounts for the flex ib il i ty  
of human pattern recognition compared to that of machines. 

Thus far computer programs have been unable to approach this inter
dependence of parts and whole. Neisser himself never sees this probiem, 
but he unwittingly casts some new light on the important di fferences 
between mechanist and gestaltist models of psychological processes 
when he contrasts the digital model of neural processes postulated by the 
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transformational linguists with the analogue model of the brain espoused 
by the early Gestalt psychologists. 

[The Gestal t ists] were "nativists ," bel ieving that t he perceptual processes were 
determined by necessary and innate principles rather than by learning.  The 
proper figural organization . . . .  was due to processes in the brain ,  wh ich fol lowed 
unvarying (and wholist ic) laws of physics and chemistry . . . .  The perceived world 
always took the "best ," the "st ructural ly simplest" form,  because of the equi l ib
rium principle that t ranscends any possible effects of learning or pract ice. 1

� 

Such an analogue model of brain function, in which informat ion ts 
integrated by equilibrium forces rather than on/off swi tches, was neces
sary if the Gestalt psychologists were to account for the role of global 
ant icipations in structuring experience. They had been led to break \\·ith 
the rationalist tradition running from Descartes to Kant , which con
ceived of the mind as bringing independently defined innate principles 
(Descartes) or rules (Kant) to bear on otherwise unstructured experi 
ence. This rationalist conception (with the addition of minimal bits of 
determinate experience) lends itself perfectly to a computer model. but 
the Gestaltists saw that their principles of organization-like the equilib
rium patterns formed by charged particles on curved surfaces--could 
not be separated from the elements they organized. Thus, even if the 
digital model of the brain had existed at the t ime. the Gestalt ists would 
have rejected it. 1 '1 •  

Neisser does not see this. He supposes that the digital model of  built -in 
rules, which the linguists have been led to propose, is an improvement 
on the analogue model proposed by the Gestaltists . Neisser·s praise of 
the linguists' "improvement ,"  ignoring as it does the difficulties in art ifi
cial intelligence, the latest developments in neurophysiology , and the 
reason the Gestalt ists proposed an analogue model in the first place can 
only be a non sequitur :  

The Gestal t  psychologists were never able to provide any sat isfactory description 
or analysis of the struct ures involved in percept ion . The few attempls  to specify 
"fields of force" in vision , or "ionic equi l ibria" in the brain ,  were ad hoc and 
ended in fai lure . I n  l i nguist ics, by contrast . the study of "syntact ic st ruct ures" 
has a long history . 20 
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How the long history of syntactic structures is supposed to show that 
the linguists have a better model of neural processes than the Gestaltists 
is totally unclear. It seems to mean that at least the rules the linguists 
are looking for would be, i f  they were found, the sort of rules one could 
process with a digital computer which we already understand, whereas 
the gestaltist equilibrium principles could only be simulated on a brain
like analogue computer, which no one at present knows how to design . 

This is no doubt true, but it  reminds one of the story of the drunk who 
lost a key in the dark but looked for it  under a street lamp because the 
l ight was better. It would indeed be n ice to have a programmable model 
in  linguistics, and in psychology in general, but the fact remains that 
modern linguists have no more detailed account of what goes on in the 
brain than did the Gestaltists, and, moreover, as a theory of competence, 
not performance, modern linguistics is not even trying to provide an
swers to the problem of how we produce intelligent behavior. Worse, in 
this case, the street lamp is not even lit. We have seen that when digital 
computers have been used to try to simulate linguistic performance, they 
have had remarkably little success. 

The upshot of Neisser's comparison of gestalt and li nguistic models of 
the brain ,  in opposition to his intent, is to call attention to a difference 
in brain model which exactly parallels the difference in the conception 
of the holistic processes, which he also overlooks. The sort of gestalt 
process illustrated in Neisser's example of the rhythm which gives mean
ing to and is made up of its beats suggests that however the brain 
integrates stimuli, it does not do it li ke a digital computer applying 
independently defined heuristic rules to independently defined bits of 
data. 

Among computer experts only Donald MacKay has seen this point. 
He concludes: 

It may wel l  be that on ly  a special-purpose 'analogue' mechanism could meet al l 
detai led needs . . . .  We on the  c ircu i t  side had bet ter be very cautious before we 
insist  t hat  t he k ind  of informat ion processing that  a brain does can be replicated 
in a rea l izable c i rcui t .  Some k ind of 'wet'  engi neering may turn out to be inevi
table.  2 1  
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If, in the light of the phenomenological and neurophysiological evi
dence, we accept the view that the nervous system is some sort of 
analogue computer operating with equilibrium fields, we must still be on 
guard against transferring to psychology this model of the nervous sys
tem, conceived as a brain in a bottle receiving energy from the world and 
sending out responses. The human perceiver must be understood in 
different terms than his nervous system. To have an alternative account 
of intelligent behavior we must describe the general and fundamental 
features of human activity . In the absence of a workable digital computer 
model, and leaving to the neurophysiologist the question of how the 
brain integrates incoming physical stimuli, we must again ask ,  How do 
human beings use an underdetermined, wholistic expectation to organize 
their experience? 

Husserl has no further account beyond the assertion that we do: that 
"transcendental consciousness" has the · •i,,.•underbar "  capacity for giving 
meanings and thus making possible the perception, recognition, and 
exploration of enduring objects. Like the Gestaltists, he thinks of these 
meanings as partially indeterminate wholes, not as explicit programs or 
rules. But even Husserl is not free from the traditional intellectualist 
view , and thus he too is vulnerable to the criticism directed at Neisser. 
Husserl, like Descartes and Kant , thinks of form as separable from 
content, of the global anticipation as separable from its sensuous feeling. 
Thus, his noema, or perceptual anticipation, is like a rule or program in 
one crucial way : it exists in the mind or t ranscendental consciousness 
independently of its application to the experience it structures. 

Merleau-Ponty t ries to correct Husserl's account on this point and at 
the same time develop a general description which supports the Gestalt 
ists . He argues that it is the body which confers the meanings discovered 
by Husserl. After all, it is our body which captures a rhythm. We have 
a body-set to respond to the sound pattern. This body-set is not a rule 
in the mind which can be formulated or entertained apart from the actual 
activity of anticipating the beats. 

Generally , in acquiring a skill-in learning to drive, dance, or pro
nounce a foreign language, for example-at first we must slowly , awk
wardly , and consciously follow the rules. But then there comes a moment 
when we finally can perform automatically . At this point we do not seem 
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to be simply dropping these same rigid rules into unconsciousness; rather 
we seem to have picked up the muscular gestalt which gives our behavior 
a new flexibility and smoothness. The same holds for acquiring the skill 
of perception. To take one of Merleau-Ponty's examples: to learn to feel 
silk ,  one must learn to move or be prepared to move one's hand in a 
certain way and to have certain expectations. Before we acquire the 
appropriate skill, we experience only confused sensations. 

It is easiest to become aware of the body's role in taste, hearing, and 
touch, but seeing, too, is a skill that has to be learned . Focusing, getting 
the right perspective, picking out certain details, all involve coordinated 
actions and anticipations. As Piaget remarks, "Perceptual constancy 
seems to be the product of genuine actions, which consist of actual or 
potential movements of the glance or of the organs concerned . . . .  " 2 2  

These bodily skills enable us not only to recognize objects in each 
single sense modality, but by virtue of the felt equivalence of our explora
tory skills we can see and touch the same object. A computer to do the 
same thing would have to be programmed to make a specific list of the 
characteristics of a visually analyzed object and compare that list to an 
explicit list of traits recorded by moving tactical receptors over that same 
object. This means that there would have to be an internal model of each 
object in each sense modality, and that the recognition of an object seen 
and felt must pass through the analysis of that object in terms of common 
features. 

My body enables me to by-pass this formal analysis. A skill, unlike a 
fixed response or set of responses can be brought to bear in an indefinite 
number of ways. When the percipient acquires a skill, he 

does not weld together indiv idual movemen ts and individual stimul i  but acqui res 

the power to respond with a certain type of solution to si tuations of a certain 

general form . The situations may differ widely from place to place, and the 

response movements may be entrusted sometimes to one operative organ, some

t imes to another, both situations and responses in the various cases having in 

common not so much a partial identity of elements as a shared significance. 2 3  

Thus I can recognize the resistance of a rough surface with my hands, 
with my feet, or even with my gaze. My body is thus what Merleau-Ponty 
calls a "synergistic system,"24 "a ready-made system of equivalents and 
transpositions from one sense to another. " 25  
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Any object presented to ·one sense cal ls  upon i tsel f  the concordant operation of 

all the others. I see a surface colour because I have a visual field, and because 

the arrangement of the field leads my gaze to that surface-I perceive a thing 

because I have a field of existence and because each phenomenon, on its appear

ance, attracts towards that field the whole of my body as a system of perceptual 

powers. 2 6 

A human perceiver, like a machine, needs feedback to find out if he 
has successfully recognized an object .  But here too there is an important 
difference in the feedback involved. A machine can, at best ,  make a 
specific set of hypotheses and then find out if they have been confirmed 
or refuted by the data. The body can constantly modify its expectations 
in terms of a more flexible criterion: as embodied, we need not check for 
specific characteristics or a specific range of characteristics,  but simply 
for whether, on the basis of our expectations, we are coping with the 
object .  Coping need not be defined by any specific set of traits but rather 
by an ongoing mastery which Merleau-Ponty calls maximum grasp. 
What counts as maximum grasp varies with the goal of the agent and 
the resources of the situation. Thus it cannot be expressed in situation
free, purpose-free terms. 

To conclude :  Pat tern recognition is relatively easy for digital comput 
ers if there are a few specific trait s which define the pat tern, but complex 
pattern recogni tion has proved intractable using these methods. Tran
scendental phenomenologists such as Husserl have pointed out that 
human beings recognize complex pat terns by projecting a somewhat 
indeterminate whole which is progressively filled in by anticipated ex
periences.  Existential phenomenologists such as Merleau-Ponty have 
rela ted this ability to our active, organically interconnected body,  set to 
respond to its environment in terms of a continual sense of its own 
functioning and goals. 

Since it turns out that pattern recognition is a bodily skill basic tc all 
intelligent behavior, the question of whether art ificial intelligence is pos
sible boils down to the question of whether there can be an artificial 
embodied agent. The question is philosophically interesting only if we 
restrict ourselves to asking if one can make such a robot by using a digital 
computer. ( I  assume there is no reason why, in principle, one could not 
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co_nstruct an artificial embodied agent if one used components sufficiently 
like those which make up a human being. ) 

A project to build such a digitally controlled robot is currently under 
way at M. I.T. , and it is philosophically interesting to consider its pro
gram and its underlying assumptions. The project director, Minsky 
again, is modestly trying to make only a mechanical shoulder, arm, and 
hand, coordinated with a TV eye, but he proposes to make it use tools 
to cdnstruct things .  The first simple task was to program a simplified 
robot arm to pick up blocks .  This has indeed been accomplished and 
represents the early success one has learned to expect in the field. The 
problem which remains is, as usual, that of generalizing the present 
successful techniques. To bring a simple arm over to pick up a block 
requires locating the block in objective space, locating the arm in the 
same space, and then bringing the two together .  This is already quite a 
feat. A mathematical description of the way an arm moves in objective 
space runs into surprising discontinuities . There are points which are 
contiguous in objective space which are far apart in reaching space. For 
example, to scratch our back we do not simply extend the position we 
use for scratching our ear .  Living in our bodies we have built up a motor 
space, in which we sense these objectively contiguous points as far apart. 
We automatically reach for them in very different ways, and do not feel 
we have gone through the mathematics necessary to work out the opti
mal path for each specific case. For the programmer, however, who has 
to program the computer to calculate the movements of the mechanical 
arm in objective space, these discontinuities have so far proved an insur
mountable obstacle. The more flexible the arm-the more degrees of 
freedom it has-the more difficult and time consuming such calculations 
become. Rumor has it that an elaborate arm with six degrees of freedom, 
built by Minsky by 1 965, has still not even been programmed to move, 
let alone pick up blocks or use tools. If one adds to this the fact that, in 
the case of any skill which takes place in real time (such as playing 
Ping-Pong), all calculations must be completed in real time (before the 
ball arrives), the outlook is not very promising. As Feigenbaum notes in 
his report on the current state of robot work : 
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Both the MIT and Stanford Universi ty groups have worked on programs for 
control l ing a variety of arm-hand manipulators, from the very simple to the very 
complex, from the anthropomorph ic variety to the very non-anthropomorph ic .  
None of the more esoteric manipulators seems to have worked out very wel l .  
t hough there is  no publ ished documentat ion of successes, fai lures, and rea
sons. 2 1 

In the light of these difficulties, what encourages researchers to devote 
their research facilities to such a project? Simply the convict ion that since 
we are, as Minsky ingenuously puts it , .. meat machines" and are able to 
play Ping-Pong, there is no reason in principle or in pract ice why a metal 
machine cannot do likewise. But before jumping to such a conclusion, 
the robot makers ought first to examine their underlying assumption that 
no essential difference exists between meat machines and metal ma
chines, between being embodied and con trolling movable manipulators. 
How do human beings play Ping-Pong, or to make the mat ter simpler, 
how do human beings use tools? 

Heidegger, Merleau-Ponty,  and Michael Polanyi have each devoted a 
great deal of thought to this quest ion.  Each discusses the important way 
that our experience of a tool we are using differs from our experience of 
an object .  A blind man who runs his hand along the cane he uses to grope 
his way will be aware of i t s  objective posi t ion and its characteristics such 
as weight, hardness, smoothness, and so forth. When he is using it , 
however, he is not aware of its posit ion in physical space. its features, 
nor of the varying pressure in the palm of his hand. Rather. the stick has 
become, like his body, a transparen t  access to the objects he touches with 
it. As Polanyi puts it : 

While we rely on a tool or a prohe, these are not handled as external objects 
. . . they remain on our s ide . . .  forming part of ourselves, the operat ing  persons.  
We pour ourselves out into them and assimi late them as parts of our existence. 
We accept them existen t ia l ly by dwel l ing i n  them . 1 � 

In this way we are able to bring the probe into contact wi th an object 
in physical space without needing to be aware of the physical location 
of the p:-obe. Merleau-Ponty notes that : 

The whole operation takes place in  the domain of the phenomenal ;  i t  does not  
run through the object ive world, and on ly the spectator, who lends h i s  object ive 
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representation of the living body to the active subject, can believe that .. . the 

hand moves in objective space. 2 9 

But Merleau-Ponty admits  that this abi l i ty  seems "magical" from the 
point of view of science, so we should not be surprised to find that rather 
than have no explanat ion of what people are able to do, the computer 
scient ist embraces the assumpt ion that people are unconsciously running 
wi th incredib le speed through the enormous calculation which would be 
involved in programming a computer to perform a s imi lar task .  However 
i mplausible, this view gains persuasiveness from the absence of an al ter
nat ive account . 

To make embodiment an acceptable al ternative we wi l l  have to show 
how one could perform physical tasks wi thout in any way appeal ing to 
the principles of physics or geometry . Consider the act of random ly 
waving my hand in the air .  I am not trying to place my objective hand 
at an object ive point in space. To perform this waving I need not take 
into account geometry, since I am not attempt ing any specific achieve
ment . Now suppose that , in this random thrashing about , I happen to 
touch something, and that this sat isfies a need to cope wi th things . (More 
about need in Chapter 9. ) I can then repeat whatever l did-th i s  t ime 
in order to touch something-wi thout appeal ing to the laws necessary 
to describe my movement as a physical mot ion. I now have a way of 
bringing two objects together in objective space wi thout appealing to any 
principle except : "Do that again. " This is presumably the way ski l ls are 
bui l t  up. The important thing about ski l l s  is that , al though science 
requires that the sk i l led performance be described according to rules, 
these rules need in no way be in volved in producing the performance. 

Human beings are further capable of remembering, refining, and reor
ganizing these somewhat indeterminate motor schemata. Piaget has 
amassed an enormous amount of evidence tracing the development of 
these motor skills, which he calls operations, and has come to a Gestaltist 
conclusion: 

The specific nature of operations . . . depends on the fact that they never exist 

in a discontinuous state . . . . A single operation could not be an operation because 

the peculiarity of operations is that they form systems. Here we may wel l  protest 

vigorously against logical atomism . .. a grievous hindrance to the psychology 

of thought. w• 
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This same analysis helps dissipate the mistaken assumptions underly 
ing early optimism about language translation. If human beings had to 
apply semantic and syntactic rules and to store and access an infinity of 
facts in order to understand a language, they would have as much trouble 
as machines. The native speaker, however, is not aware of having gener
ated multiple semantic ambiguities which he then resolved by appeal to 
facts any more than he is aware of having picked out complex patterns 
by their traits or of having gone through the calculations necessary to 
describe the way he brings his hand to a certain point in objective space. 
Perhaps language, too, is a skill acquired by innately guided thrashing 
around and is used in an nonrulelike way . Many skills such as our 
repertoire of ways to sit in and get up from a wide variety of chairs allow 
an indefinite number of orderly variations without being generated by 
strict rules. 

Such a view is not behavioristic. Our ability to use language in a 
situation and in general the wholistic way the functional meaning organ
izes and structures the components of skilled acts cannot be accounted 
for in terms of the arbitrary association of neutral determinate elements 
any more than it can be analyzed in terms of their combination according 
to rules. 

If language is understood as a motor sk ill. we would then assimilate 
language and dwell in it the way we assimilate an instrument. As Polanyi 
puts it, 

To use language in  speech .  reading  and wri t i ng. i s  to ex tend 0ur hnd i l y  equ ip
ment  and become in tel l igent human bei ngs .  We may say that  when we learn to 
use language, or a probe, or a too l ,  and thus make ourselves aware of t hese t h i n gs 
as we are of our body ,  we intcriorise these th ings and make ourselves dwell in 
them. 1 1 •  

Again, hecause we are embodied, the rules necessary to give an objective 
analysis of our competence need in no way be involved in our perfor
mance. 

The AI researcher and the transcendental phenomenologist share the 
assumption that there is only one way to deal with information: it must 
be made an object for a disembodied processor. For the transcendental ,, 
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phenomenologist th is assumption makes the organization of our i n tel l i 

gen t behavior un in tel l ig ible .  For the AI  researcher i t  seems to just ify the  

assum ption that i n tel l igen t behavior can be produced by passively receiv

ing data and then runn ing  through the calculations necessary to describe 

the object i ve competence. But ,  as we have seen, being embodied creates 

a second possibi l i ty .  The body con t ributes three functions not present ,  

and not as yet conceived i n  digi tal  computer programs :  ( I )  the i nner 

hori zon , that is ,  the part ia l ly i ndeterminate, predel ineated an ticipation 

of part ia l ly  i ndeterm inate data ( th is  does not mean the anticipation of 

some completely determinate al ternatives, or the an ticipation of com

pletely unspecified al ternati ves, wh ich would be the only poss:ble digi tal 

im plementat ion) ;  (2) the g lobal character of this ant icipation which 

determines the mean ing of the detai ls it assim i lates and is determined by 

them ; (3) the transferabi l i ty of th is  anticipation from one sense modal i ty 

and one organ of action to another. Al l  these are i ncluded in  the general 

h uman abi l i ty to acquire bod i ly  ski l ls .  Thanks to th is  fundamental abi l i ty  

an embodied agen t can dwel l i n  the world i n  such a way as to avoid the 

i nfin i te task of formal iz ing everyth ing. 

This  embodied sort of " information process ing," i n  wh ich the mean ing 

of the  whole is prior to the elemen ts, would seem to be at work in  the 

sort of com plex pat tern recogn it ion such as speech recogni t ion with 

which we began our discussion.  Indeed, sensory motor skills underlie 

perception whose basic figure/ ground structure seems to underlie all 

"higher" rational functions; even logic and mathematics have an hori

zontal character. In all these cases individual features get their signifi

cance in terms of an underdetermined anticipation of the whole. 

If these g lobal forms of pattern recogn i t ion are not open to the d igi tal 

com puter, which,  lacking  a body, cannot respond as a whole, but must 

bui ld up i ts recogn ition start ing wi th determinate detai ls, then Oett i nger 

is j usti fied in concluding his speech recogni t ion paper on a pess imistic 

note: " If i ndeed we have an abi l i ty to use a g lobal con text without 

recourse to formal ization . . .  then our opt im ist ic discrete enumerative 

approach is doomed . . . .  " 32  
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The Situation : Orderly Behavior Without Recourse 

to Rules 

In discussing problem solving and language translat ion we ha\'e come 
up against the threat of a regress of rules for determining relevance and 
sign ificance. Likewise, in start ing a learning process, something must be 
known before any rules can be taught or applied. In each case we have 
found that if there are no facts with fixed significance, only an appeal t o  
the context can bring this regress to a halt . We must now turn directly 
to a descript ion of the situation or context in order to give a fuller 
account of the unique way human beings are .. in-the-world. ' '  and the 
special funct ion this world serves in mak ing orderly but nonrulelike 
behavior possible . 

To focus on this quest ion i t  helps to bear in mind the opposing posi
t ion. In discussing the epistemological assumpt ion (Chapter 5) we saw 
that our philosophical tradi t ion has come to assume that whatever is  
orderly can be formali zed in terms of rules . This v iew has reached i ts  
most striking and dogmat ic culminat ion in the convict ion of Al workers 
that every form of intelligent behavior can be formalized. Minsky has 
even developed this dogma into a ridiculous but revealing theory of 
human free will. He is convinced that all regularit ies are rule governed. 
He therefore theorizes that our behavior is ei ther completely arbi trary 
or it is regular and completely determined by rules . As he puts . i t : 

I 256 
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" . . .  whenever a regularity is observed [in our behavior] , its representa
t ion is transferred to the deterministic rule region . " 1 Otherwise our 
behavior is completely arbi trary and free. The possibi l ity that our behav
ior might be regular but not rule governed never even enters his mind. 

We sha l l  now try to show not only that human behavior can be regular 
without being governed by formal izable rules, but, further, that i t  has to 
be, because a total system of rules whose application to all possible 
eventual i ties is determined in advance makes no sense. 

In our earlier discussion of problem solving we restricted ourselves to 
formal problems in which the subject had to manipulate unambiguous 
symbols according to a given set of rules, and to other context-free 
problems such as analogy intel l igence tests. But if CS is to provide a 
psychological theory-and if  Al programs are to count as intell igent
they must extend mechanical information processing to all areas of 
human activity, even those areas in which people confront and solve 
open-structured problems in the course of thei r everyday l ives. 2 * 

Open-structured problems, unlike games and tests, raise three sorts of 
difficult ies :  one must determine which facts are possibly relevant; which 
are actual ly relevant ;  and, among these, which are essential and which 
inessential . To begin with, in a given situation not all facts fall within the 
realm of possible relevancy. They do not even enter the si tuation. Thus, 
in the context of a game of chess, the weight of the pieces is irrelevant .  
I t  can never. come in to question, l e t  alone be essential or  inessential for 
deciding on a specific move. In general ,  deciding whether certain facts 
are relevant or irrelevant, essential or inessential, is not like taking blocks 
out of a pile and leaving others beh ind. What counts as essential depends 
on what counts as inessential and vice versa, and the distinction cannot 
be decided in advance, independently of some particular problem, or 
some particular stage of some particular game. Now, since facts are not 
relevant or irrelevant in a fixed way, but on ly in terms of human pur
poses, a l l  facts are possibly relevant in some si tuation. Thus for example, 
if one is manufacturing chess sets, the weight is possibly relevant (al 
though in most decisions involved in making and marketing chess sets, 
it wi l l  not be actual ly relevant, let alone essential) .  This situational 
character of relevance works both ways : In any particu lar si tuation an 
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indefinite  number of facts are possibly relevant and an indefini tely large 
number are i rrelevant . Since a computer is not in a si tuat ion, however, 
it must t reat all facts as possibly relevant at all t imes. This leaves Al 
workers w i th a dilemma: they are faced either wi th storing and accessing 
an infinity of facts, or wi th having to exclude some possibly relevant facts 
from the computer's range of calculat ions. 

But even if one could rest rict the universe for each part icular problem 
to possibly relevant facts-and so far this can only be done by the 
programmer, not the program-the problem remains to determine what 
information is actually relevant . Even in a nonformal game like playing 
the horses-which is much more systematic than everyday open-struc
tured problems-an unlimi ted, indefini tely large number of facts remain 
as possibly relevant . In placing a bet we can usually rest ric t  ourselves to 
such facts as the horse's age, jockey , past performance, and compet i t ion. 
Perhaps, if res tricted to these facts from the racing form, the machine 
could do fai rly well, possibly bet ter than an average handicapper: but 
there are always other factors such as whether the horse is allergic to 
goldenrod or whether the jockey has just had a fight with the owner, 
which may in some cases be decisive. Human handicappers are no more 
omniscient than machines, but they are capable of recognizing the rele
vance of such facts if they come across them. The art ificial intelligence 
approach to this human abili ty would have to be to give the machine 
knowledge about veterinary medicine, how people behave when they 
fight thei r employers, and so forth. But then the problem arises of sorting 
through this vast storehouse of data. To which the answer is that all this 
informat ion would be properly coded and tagged in the machine memory 
so that the machine would just have to do a scan for .. horse-race bet t ing" 
and get out the relevant material . But not all relevant material would 
have been encoded with a reference to this particular use. As Charles 
Taylor has pointed out in an elaborat ion of this example: 

The jockey might  not be good to bet on today because h i s  mother d ied yester
day.  But when we store the i n format ion that people often do less t han t hei r best 
just after thei r near relat ions d ie, we can ' t  be expected to tag a conn ec t ion 
wi th  bet t ing  on horses. This  i n formation can be relevant  to an i nfin i te set of con
texts .  
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The m ach ine  migh t select on the  basis of the key concepts i t  was worry ing 
about ,  horses, jockeys, jockey Smith ,  e tc .  and pick out  a l l  facts  about these. But  
t h i s  too would g ive an absurdly wide scat ter .  V ia  jockey, man and horse, one 
would find onese lf  pul l ing  out all facts about cen taurs .  The on ly  way the machine 
could zero i n  on the  relevant facts  would be to take th i s  broad class, or some other 
selected on such a broad swoop basis ,  and test to  see whether each one had causal 
relevance to t he ou tcome of the race, taking it i n to account  if i t  had , and 
forget t ing  i t  if  it hadn' t .  1 * 

But if the machine were to examine explicitly each possibly relevant 
factor as a determinate bit of information in order to determine whether 
to consider or ignore it, it could never complete the calculations neces
sary to predict the outcome of a single race. If, on the other hand, the 
machine systematically excluded possibly relevant factors in order to 
complete its calculations, then it would sometimes be incapable of per
forming as well as an intelligent human to whom the same information 
was available. 

Even the appeal to a random element will not help here, since in order 
to take up a sample of excluded possibilities at random so that no 
possibility is  in principle excluded, the machine would have to be pro
vided with an explicit list of all such other possibly relevant facts or a 
specific set of routines for exploring all classes of possibly relevant facts, 
so that no facts would be in principle inaccessible. This is just what could 
be done in a completely defined system such as chess, where a finite 
number of concepts determines totally and unequivocally the set of all 
possible combinations in the domain; but in the real world the list of such 
possibly relevant facts, or even classes of possibly relevant facts, would 
be indefinitely large ( ' " infinite in a pregnant sense, ' '  to use Bar-Hillel's 
phrase). Al) the everyday problems-whether in language translation, 
problem solving, or pattern recognition-come back to these two basic 
problems : ( I )  how to restrict the class of possibly relevant facts while 
preserving generality , and (2) how to choose among possibly relevant 
facts those which are actually relevant. 

Even Minsky implicitly admits that no one knows how to cope wi th 
the amount of data which must be processed if one simply tnes to store 
all facts :  
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At  each moment in t he course of t h i nking about a problem, one is i nvolved wi t h  

a large col lect ion o f  statements ,  defin i t ions, associations, and so on , and a net

work of goals. One has to deal  not on ly wi t h  fact s  about  objects, rela t ions 

bet ween objects, and the  l i ke, but  also facts  about fact s, c lasses of fact s, relat ions 

between such c lasses, etc. The heuris t ic  programs t hat ,  as we shal l see, so neat ly 

demonst rate principles when appl ied to smal l  models wi l l  not  work efficien t ly 

when appl ied to large ones. Problems l i ke looping .  branch ing, measu ring prog

ress, and general ly  keeping t rack of what is happening wi l l  come to requ i re a 

disproport ional part of t he computat ion t ime . �  

Whatever it is that enables human beings to zero in on the relevant 
facts without definitively excluding others which might become relevant 
is so hard to describe that it has only recently become a clearly focused 
problem for philosophers. It has to do with the way man is at home in 
his world, has it comfortably wrapped around him ,  so to speak .  Human 
beings are somehow already situated in such a way that what they need 
in order to cope with things is distributed around them where they need 
it, not packed away like a trunk full of objects, or even carefully indexed 
in a fil ing cabinet. This system of relations which makes it possible to 
discover objects when they are needed is  our home or our world. To put 
this less metaphorically it is  helpfu l  to return to Charles Taylor's exten
sion of the horse-racing example. 

M uch of a human being's  know ledge of s i t uat ions and thei r possib i l i t i es is 

know-how. t hat is , i t  cannot he exhaust ively unpacked into a set of specific 

inst ruct ions or factual st atements .  bu t  is  a general capac i ty  to generate appropri 

ate ac t ions and t herefore, if necessary . t he " inst ruct iom," underl y ing t hem . u�u

a l ly  we t h ink  of t h is k ind of i ndefi n i tely  unpackahle form of knowledge as hound 

up wi t h  the know-how which underl ies our act ions .  But t he same k ind of knowl

edge underl ies what we suffer. our "passions . " Thus jus t  as I have a general grasp 

011  what it is to wal k around,  use my hands. d rive a car. conduct a case in court 

( i f  I 'm a lawyer), etc . So I have a general grasp on what it is to  he t h reatened ,  

to  hear good news, to he  j i l t ed hy my g i r l  friend. to  be  made a fool of in  publ ic .  

Now t he human handicapper has t h is  genera l grasp of certain common h uman 

act ions and passions. He has t he sense of t he race as a peri lous en terprise which 

needs a l l  the  wi l l  and effort of jockey (and horse) to  w in .  But inc lud�d i n  t h is  

sense i� t he capaci ty to imagine or recognize an indefin i t e  number of ways i n  

which t h is w i l l  and  effort could miscarry or be coun tered by  fortune.  These are 

not stored somewhere as separate facts in t he mind or brain ,  t hey a re not 
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"unpacked" ;  t hey are just generatable from the general grasp of the si t uation . Of 
course, the general grasp of different men may differ in scope and exact i tude. I f  

the handicapper h as ever ridden horses, then he has a much firmer grasp on  the 
act iv i ty ;  he can sense a lot more finely what may go wrong. But even the ci ty-bred 
gangster has some general grasp of what it is to fight and strain hard to win .  

But  the art i ficial  i nte l l igence proponent may sti l l  want  to protest that al l  th is  
just represents  an al ternat ive method of "storage. " Even i f  he admi ts that  th is  
method is  not avai lable to the machine, he might st i l l  ask how i t  solves the 
ret rieval problem. How does the handicapper recogn i ze just those odd factors 
which are relevant? The answer is that i f  we understand our grasp of the world 
as aris ing out of our deal ing  wi th it according to our differen t capacit ies, and our 
being  touched by i t  according to our different concerns, then we can see that the 
problem of how a given concern or purpose comes to select the relevant  features 
of our surroundings doesn 't arise. For being concerned in a certain way or having 
a certain purpose is not something separate from our a wareness of our situation; 

it just is being a ware of this situation in a certain light, being aware of a s i tuat ion 

wi th  a certa in  structure.  Thus being anxious for my own l i fe because I have fal len 
among thugs is to sense the menace in that bulge in his pocket, to feel my 
vulnerabi l i t y  to his fist which might  at any moment be swung at my face, and 
so on . �  

The human world, then, i s  prestructured in  terms of human purposes 
and concerns in such a way that what counts as an object or is significant 
about an object already is a function of, or embodies, that concern. This 
cannot be matched by a computer, which can deal only with universal ly 
defined , i.e. , context-free, objects. In trying to simulate this field of con
cern, the programmer can only assign to the already determinate facts 
further determinate facts caJ led values, which only compl icates the re
trieval problem for the machine. 

In Being and Time Heidegger gives a description of the human world 
in which man is at home, on the model of a consteJ lation of implements 
(Zeuge), each referring to each other, to the whole workshop and ulti 
mately to human purposes and goals. The directional signal on a car 
serves as an example of a "fact" which gets its whole meaning from i ts 
pragmatic context: 

The d irect ional signal is an i tem of equipment which is  ready- to-hand for the 
driver in  his concern with driv i ng, and not for him alone: those who are not 
t rave l l ing  wi th h im-and they in part icular-also make use of i t , either by giving 
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way on the proper side or by stopping.  This sign is ready-to-hand wi th in - the
world in the whole equipment -con text of vehic les and traffic regulat ions .  I t  i s  
equipment for indicating, and as eq uipment ,  i t  is const i tuted by reference or 
assignment . 0 

Wit tgenstei n too makes frequen t references to  human forms of l ife  and 

concerns and to certa in very general  . .  fact s  of na tural h i story" t aken for 

gran ted in our use of language and i n  st ruc tu ring  our everyday act i v i t i es 

-facts, i ncidenta l ly ,  of a very specia l  k ind  which wou ld presumably 

elude the programmer t ry ing  to  program a l l  of human knowledge. As  

Wi t tgenste in says, "The aspect s  of  t h i ngs t hat  are mos t  i m portan t  for us  

are h idden because of  t hei r s impl ici t y  and fami l iari t y .  ( One i s  unable to  

not ice someth ing-because i t  i s  a lways before one 's  eyes . )  . .  , Fac ts .  more

over, wh ich would be so pervas ive ly con nec ted wi th  all o ther fact s t hat  

even if  t hey cou ld be made exp l ici t .  t hey wou ld be d ifficu l t  i f  not im possi 

ble to c lassify .  The basic ins ight  dominates t h ese d iscussions t hat t he 

si t ua t ion i s  organi zed from the  st art i n  t erms of human needs and pro

pensi t ies which give the  fact s  mean i ng.  make t he fact s what  t hey are. so 

t ha t  t here i s  never a ques t ion of s tor i ng  and sort i ng  t h rough an enormous 

l ist of mean ingless. isola ted data .  

Sam uel Todes�*  has  descrihed i n  det a i l  t he  field -st ruct ure of  exper i 

ence wh ich is  pr ior to  t he facts  and imp l i c i t l y  det erm ines the i r  relevance 

and s igni ficance. He poin t s  out  t hat t he wor ld is  experienced as fie lds  

w i th in  fields .  H i t s  or aspect s  of ohjec ts  are not experienced as i so la ted 

fact s  hut as nested in  a series of con tex t s .  And " in"  has many d ifferen t 

senses, none of them t hat of mere physical  i ncl usion ,  which M i nsk y and 

McCart hy  take as primary .  Parts  nf ohjec ts  are experienced as in obj ec t s  

which they comprise. ohjec ts  are in  places which t hey fill. a pl ace is  

situated in a local envi ronmen t ,  which i t se lf  i s  in the  hori zon of poss ib le  

si tuat ions in a human world .  Dat a .  t hen . are far from brute :  aspec t s  of 

objects  arc not  g iven as  d i rect l y  i n  t he wor ld but as charact eri z ing  objects 

in  places in  a local env i ron ment i n  space and t ime i n  t he world .  

We can  and  do  zero i n  on  s ign i fican t con ten t  i n  t he  fie ld  of  experi ence 

because th i s  fie ld i s  not neut ra l  to  us but i s  s t ruct ured i n  t erms of our 

in teres ts  and our capac i ty  for get t i ng a t  what i s  i n  i t .  Any objec t  wh ich  

we  experience must appear i n  t h i s  fie ld  and  t herefore m ust  appear i n  
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terms of our dominant interest at that moment, and as attainable by some 
variant of the activity which generated the field. Since we create the field 
in terms of our interests, only  possibly relevant facts can appear. 

Relevance is thus already built in. In the horse race case, racing fits 
into a nested context of activities, games, sports, contests. To see an 
activity as a horse race is to organize it in terms of the intention to win. 
To return to Taylor's account: 

The handicapper is concerned to pick a winner. As a human being he has a sense 
of what is involved in the enterprise of winning, and his being concerned means 
that he is aware of a horse, jockey, etc. , in a way in which dangers are sal ient .  
Hence he notices when he reads in the obi tuary columns that Smith's mother 
died yesterday (Smith being the jockey, and one he knows to be very susceptible), 
and for once he bets agai nst the form.  The machine would pick out Smith's 
mother's death, as a fact about Smith ,  along with al l  the others, such as that 
Smith's second cousin has been elected dogcatcher in some other ci ty, etc. , but 
wi l l  then have to do a check on the probable consequences of these different facts 
before it decides to take them into account or not in placing the bet . 9 

Thus our present concerns and past know-how always already deter
mines what wil l be ignored, what wil l  remain on the outer horizon of 
experience as possibly relevant, and what wil l be immediately taken into 
account as essential .  

Wittgenstein constantly suggests that the analysis of a situation into 
facts and rules (which is where the traditional philosopher and the 
computer expert think they must begin) is itself only meaningful in some 
context and for some purpose. Thus again the elements al ready reflect 
the goals and purposes for which they were carved out. When we try to 
find the ultimate context-free, purpose-free elements, as we must if we 
are going to find the ultimate bits to feed a machine-bits that wil l  be 
relevant to al l possible tasks because chosen for none-we are in effect 
trying to free the facts in our experience of just that pragmatic organiza
tion which makes it possible to use them flexibly in coping with everyday 
problems. 

Not that a computer model is ever real ly  purpose-free; even a model 
in terms of information storage must somehow reflect the context, but 
such an analysis of context in terms of facts and rules is rigid and 
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restricting. To see this, let us grant that al l the properties of objects 
(whatever that might mean) could be made explicit in a decision tree so 
that each node recorded whether the object has a certain situation
independent predicate or its converse. This sort of classification structure 
has been programmed by Edward Feigenbaum in his EPAM model .  1 0 * 
Such a discrimination net might, in principle, represent an exhaustive, 
explicit, apparently situation-free characterization of an object, or even 
of a situation, insofar as it was considered as an obj ect . It thus seems to 
provide efficient information storage, while avoiding the field/object 
distinction. But something crucial is omitted in the description of such 
an information structure :  the organization of the structure itself. which 
plays a crucial rol e  in the informative storage. The information in the tree 

is differen tly stored and differen tly accessible depending on the order in 

which the discriminations are made. As Wil liam Wynn notes in a discus
sion of EPAM : 

EPA M 's Classificat ion process is . . .  t oo h istory-dependen t and unadaptahle .  for 

t he d iscrim inat ion net can be grown on ly  from the bot tom down and cannot  he 

reorgan ized from t he top .  Tests  i n ser ted i n  t he net wh ich la ter prove to  be of l i t t l e  

d iscrim i natory power over a gi ven st imu l us set cannot be removed, no r  can  new 

tests be inserted in  t he upper port ion of t he net . Th us, once i t  is formed ,  EPA M's  

discrim i nat ion ne t  i s  d ifficu l t  to  reorgan i 1e i n  t he i n t erest of greater ret rieval  

efficiency .  Any procedure t hat reorgan i zes the  t es ts  i n  t he s t ruc tu re serious ly 

impa i rs ret rieval of many i t ems held i n  the  memory . 1 1  

So the order of discriminations is crucial .  But in the physica l world 
all predicates have the same priority .  Only the programmer's sense of the 
situation determines the order in the decision tree. Through the pro
grammer's judgment the distinction between the field and the objects in 
the field is introduced into the computerized model .  The pragmatic 
context  used by the programmer can indeed itself be characterized in a 
decision tree, but only in some order of discriminations which reflects a 
broader context. At each level information concerning this broader con
tex t  is indeed embodied in the general structure of the tree, but at no 
particular node. At each level the situation is reflected in the pragmatic 
intuitions of the programmer governing the order of decisions; but this 
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fi xes the facts in one order based on a particular purpose, and inevitably 
introduces the lack of flexibility noted by Wynn. 

If, on the other hand, in the name of flexibility all pragmatic ordering 
could be eliminated so that an unstructured list of purified facts could 
be assimilated by machine-facts about the sizes and shapes of objects 
in the physical world and even about their possible uses, as isolable 
functions-then all these facts would have to be explicitly included or 
excluded in each calculation, and the computer would be overwhelmed 
by their infinity. 

This is not to deny that human beings sometimes take up isolated data 
and try to discover their significance 'By trying to fit them into a previ
ously accumulated store of information. Sherlock Holmes and all detec
tives do this as a profession; everyone does it when he is in a very 
unfamiliar situation. But even in these cases there must be some more 
general context in which we are at home. A Martian might have to 
proceed in a very unfamiliar context if he were on earth, but if he shared 
no human purposes his task of sorting out the relevant from the irrele
vant, essential from the inessential, would be as hopeless as that of the 
computer. 

We all know also what it is to store and use data according to rules 
in some restricted context. We do this, for example, when we play a game 
such as bridge, although even here a good bridge player stores data in 
terms of purpose and strategies and takes liberties with the heuristic 
rules. We also sometimes play out alternatives in our imagination to 
predict what wi1 1 happen in the real game before us. But it is just because 
we know what it is to have to orient ourselves in a world in which we 
are not at home; or to follow rulelike operations like the heuristics for 
bidding in bridge; and how to model in our imagination events which 
have not yet taken place, that we know that we are not aware of doing 
this most of the time. The claim that we are nonetheless carrying on such 
operations unconsciously is either an empirical claim, for which there is 
no evidence, or an a priori claim based on the very assumption we are 
here calling into question. 

When we are at home in the world, the meaningful objects embedded 
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in their context of references among which we live are not a model of 
the world stored in our mind or brain; they are the world itself This may 
seem plausible for the public world of general purposes, t raffic regula
tions, and so forth. But what about my experience, one may ask ;  my 
private set of facts, surely that is in my mind? This seems plausible only 
because one is stil l confusing this human world with some sort of physi
cal universe. My personal plans and my memories are inscribed in the 
things around me just as are the public goals of men in general . My 
memories are stored in the familiar look of a chair or the threatening air 
of a street corner where I was once hurt . My plans and fears are al ready 
built into my experience of som�

K 

objects as at t ractive and others as to 
be avoided. The "data" concerning social tasks and purposes which are 
built into the objects and spaces around me are overlaid with these 
personal "data" which are no less a part of my world. After a l l .  personal 
threats and at t ractions are no more subjective than general human pur
poses. 

Now we can see why, even if the nervous system must be understood 
as a physical object-a sort of analogue computer-whose energy ex
change with the world must in principle be expressible as an input/out
put function, it begs the question and leads to confusion to suppose that 
on the information-processing level the human perceiver can be under
stood as an analogue computer having a precise 1/0 function reproduci
ble on a digital machine. The whole 1/0 model makes no sense here. 
There is no reason to suppose that the human world can be analyzed into 
independent elements, and even if it could, one would not know whether 
to consider these elements the input or the output of the human mind . 

If this idea is hard to accept , it is because this phenomenological 
account stands in opposition to our Cartesian t radition which thinks of 
the physical world as impinging on our mind which then organizes it 
according to its previous experience and innate ideas or rules. But even 
Descartes is not confused in the way contemporary psychologists and 
artificial intel ligence researchers seem to be. He contends that the world 
which impinges on us is a world of pure physical motions, while the world 
"in the mind" is the world  of objects, instruments, and so forth. Only 
the relation between these two worlds is unclear. Artificial intelligence 
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theorists such as Minsky, however, have a cruder picture in which the 
world of implements does not even appear. As they see it, details of the 
everyday world-snapshots, as it were, of tables, chairs, etc.-are re
ceived by the mind. These fragments are then reassembled in terms of 
a model built of other facts the mind has stored up. The outer world, a 
mass of isolated facts, is interpreted in terms of the inner storehouse of 
other isolated, but well catalogued, facts-which somehow was built up 
fro·m earlier experiences of this fragmented world-and the result is a 
further elaboration of this inner model. Nowhere do we find the familiar 
world of implements organized in terms of purposes. 

Minsky has elaborated this computer-Cartesianism into an attempt at 
philosophy. He begins by giving a mechanized description of what is in 
fact the role of imagination : 

If a creature can answer a question about a hypothetical experiment without 
actually performing it, then it has demonstrated some knowledge about the 

world. For, his [sic] answer to the question must be an encoded description of 
the behavior (inside the creature) of some submachine or .. model" responding 
to an encoded description of the world situation described by the question. 1 2  

Minsky then, without explanation or  justification, generalizes this dubi
ous description of the proper function of imagination to all perception 
and knowledge: 

Questions about things in the world are answered by making statements about 
the behavior of corresponding structures in one's model of the world. 1 3  

He is thus led to introduce a formalized copy of the external world; as 
if besides the objects which solicit our action, we need an encyclopedia 
in which we can look up where we are and what we are doing: 

A man's model of the world has a distinctly bipartite structure : One part is 

concerned with matters of mechanical ,  geometrical , physical character, whi le the 

other is associated with things like goals, meanings, social matters, and the l ike. 1 4  

If all knowledge requires a model we, of course, need a model of 
ourselves : 

When a man is asked a general question about his own nature, he wi l l  try to give 

a general description of his model of himself. 1 5  
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And, of course, for this self-description to be complete we will need 
a description of our model of our model of ourselves, and so forth. 
Minsky thinks of this self-referential regress as the source of philosoph
ical confusions concerning mind, body, free will, and so on. He does not 
realize that his insistence on models has introduced the regress and that 
this difficulty is proof of the philosophical incoherence of his assumption 
that nothing is ever known directly but only in terms of models .  

In general the more one thinks about this picture the harder it i s  to 
understand. There seem to be two worlds, the outer data- and the inner 
data-structure, neither of which is ever experienced and neither of which 
is the physical universe or the world of implements we normally do 

experience. There seems to be no place for the physical universe or for 
our world of interrelated objects, but only for a library describing the 
universe and human world which, according to the theory . cannot 
exist . 

To dismiss this theory as incoherent is not to deny that physical energy 
bombards our physical organism and that the result is our experience of 
the world. It is simply to assert that the physical processing of the 
physical energy is not a psychological process. and does not take place 
in terms of sorting and storing human-sized facts about tables and chairs . 
Rather, the human world is the result of this energy processing and the 
human world does not need another mechanical repetition of the same 
process in order to be perceived and understood. 

This point is so simple and yet so hard to grasp for those brought up 
in the Cartesian tradition that it may be necessary to go over the ground 
once again, this time returning to a specific case of this confusion. As we 
have seen, Neisser begins his book Cognitive Psychology with an exposi
tion of what he calls .. the central problem of cognition. " 

There is certain ly  a real world of t rees and people and cars and even hooks . 
. . . However, we have no d i rect ,  immediate access to the  world .  nor to  any of 
i t s  propert ies. l h  

Here, as  we  have noted in Chapter 4, the damage i s  already done. There 
is indeed a world to which we have no immediate access . We do not 
directly perceive the world of atoms and electromagnetic waves (if it even 
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makes sense to speak of perceiving them)-but the world of cars and 
books is just the world we do directly experience. In Chapter 4 we saw 
that at this point, Neisser has recourse to an unjustified theory that we 
perceive "snapshots" or sense data. His further account only compounds 
the confusion: 

Physical ly ,  this page is an array of small mounds of ink ,  ly ing in cert3in positions 
on the more highly reflective su rface of the paper. 1 7  

But physically, what is there are atoms in motion, not paper and small 
mounds of ink . Paper and small mounds of ink are elements in the 
human world. Neisser, however, is trying to look at them in a special 
way, as if he were a savage, a Martian, or a computer, who didn't know 
what they were for. There is no reason to suppose that these strangely 
isolated objects are what men directly perceive (although one may per
haps approximate this experience in the very special detached attitude 
which comes over a cognitive psychologist sitting down to write a book). 
What we normally perceive is a printed page. 

Again Neisser's middle-world, which is neither the world of physics 
nor the human world, turns out to be an artifact. No man has ever seen 
such an eerie world; and no physicist has any place for it in his system. 
Once we postulate it, however, it follows inevitably that the human world 
will somehow have to be reconstructed out of these fragments. 

One-sided i11  thei r perspective, shift ing radical ly  several times each second, 
unique and novel at every moment, the proximal stimuli bear l it tle resemblance 
to ei ther the real object that gave rise to them or to the object of experience that 
the percei ver wil l  const ruct as a resul t . 1 8  

But this whole construction process is superfluous. I t  is described in 
terms which make sense only if we think of man as a computer receiving 
isolated facts from a world in which it has no purposes; programmed to 
use them, plus a lot of other meaningless data it has accumulated or been 
given, to make some sort of sense (whatever that might mean) out of 
what is going on around it. 

There is no reason to suppose that a normal human being has this 
problem, although some aphasics do. A normal person experiences the 
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objects of the world as already interrelated and full of meaning. There 
is no justification for the assumption that we first experience isolated 
facts, or snapshots of facts, or momentary views of snapshots of isolated 
facts, and then give them significance. The analytical superfluousness of 
such a process is what contemporary philosophers such as Heidegger and 
Wittgenstein are trying to point out . To put this in terms of Neisser·s 
discussion as nearly as sense will allow, we would have to say : . .  The 
human world is the brain's response to the physical world. " Thus there 
is no point i n  sayi ng it is "in the m ind," and no point in inventing a third 
world-between the physical and the human world-which is an arbi
trarily impoverished version of the world in which we live, out of which 
the human world has to be built up again . 

Oettinger, alone among computer experts. has seen that in the world 
of perception and language, where the linguist and artificial intelligence 
worker begins his analysis, a global meaning is always already present. 

What I want to suggest is not necessari ly  a no\'el suggest ion ;  but it does seem 
to have been lost from sigh t ,  perhaps deserved ly  so. because. as I haw poi nted 
out ,  it doesn't  te l l  one what to do next . What I suggest is that it a lmost seems 
as i f  the perception of meaning were primary and everyth ing else a consequence 
of understanding meaning.  1 Q 

But Oettinger does not seem to see that if one simply looks for some new 
sort of process, by which this global meaning is . .  produced," thereby 
reversing the current misunderstanding.  one is hound to find what seems 
a mystery or a dead end. 

When we t ry to turn th is around and say, "Wel l now. here is th i s  stream of sound 
com ing at you or i ts  equivalent on a printed page. and what is  i t  that happens 
to your l i sten ing to me or in  read ing a prin ted page that enables you to react t o  
the meaning o f  what I say?" w e  seem t o  h i t  a dead end a t  t h i s  poin t .  :c, 

What Oettinger too fails to understand is that there are both sound 
waves and there is meaningful discourse. The meaning is not produced 
from meaningless elements, be they marks or sounds. The stream of 
sounds is a problem for physics and neurophysiology, while on the level 
of meaningful discourse, the necessary energy processing has already 
taken place, and the result is a meaningful world for which no new 
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theory of production is required nor can be consistently conceived. 
To avoid inventing problems and mysteries we must leave the physical 

world to the physicists and neurophysiologists, and return to our descrip
tion of the human world which we immediately perceive. The problem 
facing contemporary phi losophers is to describe the context or situation 
in which human beings l ive, without importing prejudices from the 
history of phi losophy or the current fascination with computer models. 
This brings us back to the problem of regularity and rules. 

Our context-guided activity in terms of which we constantly modify 
the relevance and significance of particular objects and facts is quite 
regular, but the regularity need not and cannot be completely rule gov
erned. As in the case of ambiguity tolerance, our activity is simply as rule 
governed as is necessary for the task at hand-the task itself, of course, 
being no more precise than the rules. 

Wittgenstein, l i ke Heidegger, sees the regulation of traffic as paradig
matic: 

The regulat ion of t raffic i n  the streets permits and forbids certain act ions on the 
part of drivers and pedest rians; but i t  does not attempt to guide the total i t y  of 
their movements by prescript ion . And i t  would be senseless to talk of an • ideal' 
ordering  of t raffic which would do that ;  in the fi rst place we should have no idea 
what to imagine as th is idea l .  I f  someone wants to make t raffic regulations stricter 
on some poi n t  or other, that does not mean that he wants to approximate to such 
an ideal .  2 1  

This contextual regu larity , never completely rule governed, but always 
as orderly as necessary, is so pervasive that it is easi ly overlooked. Once, 
however, it has been focused on as the background of problem solving, 
language use, and other intel l igent behavior, it no longer seems necessary 
to suppose that al l ordered behavior is rule governed. The rule-model 
only seems inevitable if one abstracts himself from the human situation 
as phi losophers have been trying to do for two thousand years, and as 
computer experts must, given the context-free character of information 
processing in digital machines. 



9 

The Situation as a Function of Human Needs 

We are at home i n  the  world and can find our way about  i n  i t  because 

i t  is our world produced by us as t he contex t  of our pragmat ic  act i v i t y .  

So  far  we have been describ ing th i s  ,vorld or  si t ua t ion and  how i t  enables 

us to zero i n  on sign ificant  objects  i n  i t .  We have a lso sugges ted t hat t h is  

field of experience is st ruc tured in  terms of our  tasks .  These are l i nked 

to  goals ,  and these in  t u rn  correspond to the  soc ia l  and i ndiv idual  n eeds 

of those whose act iv i ty  has produced the world .  

What does th i s  td l  us about the  possibi l i t y  of  Al? I f  the  data wh ich  

are to be  stored and accessed are norma l ly  organ ized i n  t erms of specific 

goals ,  t hen i t  wou ld seem t hat the large data base problem confron t ing  

A I  could be  solved i f  one  j us t  const ructed a l is t  of  object i ves and t heir  

priori t ies-what computer workers dea l ing  wi th decision -mak ing  pro

grams ca l l  a u t i l i t y  funct ion-and programmed it i n to  t he computer 

along wi t h t he facts .  

We have seen . however, t hat expl ic i t  objec t i ves do not work , even for 

organ iz ing s imple  problem-sol v ing programs. The d ifficul t ies of s imple 

means-ends analysis suggest t hat in  order for the  computer to  solve even 

wel l -s t ructured problems, it is not sufficien t for the  mach ine  to have an 

objec t ive and to measure i t s  progress toward t h is  preset end .  P lann ing  

requ ires find ing the  essent ial operat ions ,  so  "pragmat ic considerat ions ," 

for example ,  the  relat i ve importance of logical opera t ions had to  be 

I 272 
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surreptitiously supplied by the programmers themselves before the logic 
program could begin. We must now try to describe in more detail how 
this pragmatic structuring differs from means-ends analysis, ultimately 
asking, of course, whether this human capacity for purposive organiza
tion is in principle programmable on digital machines. 

The difference between human goals and machine ends or objectives 
has been noted by one scientist who has himself been working on pattern 
recognition. Satosi Watanabe describes this difference as follows: 

For man, an evaluation is made according to a system of val ues which is non
specific and quasi-emotive, whi le an evaluat ion for a robot could on ly be made 
according to a table or a specific cri terion . . . .  This difference is subt le but 
profound. [One might say] that a man has values while a machine has objectives. 
Certa in ly  men too have objectives, but these are derived from a syst�m of values 
and are not the final arbiter of his actions, as they would be for a robot . 
. . .  As soon as the object ive is set the machine can pursue it just as the man can . 
Likewise human uti l i tarian behavior can be easi ly  simulated by a machine if the 
quantitative ut i l i ty and the probabi l i ty of each al ternat ive event is fixed and given 
to the machine. But a machine can never get at the source from which this uti l ity 
is derived. 1 

Watanabe claims that these values are essential to intelligent behavior. 
For one thing, as Watanabe points out, "there are infinitely many possi
ble hypotheses that are supported by experience . Limitation of these 
hypotheses to a smaller subset is often done by a vaguely conceived 
criterion, such as the principle of simplicity , or the principle of ele
gance. " 2 More specifically, Watanabe argues that it can be demonstrated 
that any two objects have the same number of predicates in common. If 
this does not seem to us to be the case, it is because we consider certain 
predicates more important than others. This decision as to what is impor
tant depends on our system of values. 3 

But why on our system of values and not on a list of objectives? How 
does what Watanabe calls a system of values differ from having a utility 
function? So far the only difference seems to be that values are vaguer. 
But throughout Watanabe's analysis there is no argument showing why 
these values are not just vague objectives which could be represented by 
a region on a quantitative scale. To understand this important difference, 
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which Watanabe has noted, but not explained, one must first abandon 
his way of posing the problem. To speak of values already gives away 
the game. For values are a product of the same philosophical t radition 
which has laid down the conceptual basis of artificial intelligen ce. Al
though talk of values is rather new in philosophy, it represents a final 
stage of objectification in which the pragmatic considerations which 
pervade experience and determine what counts as an object are conceived 
of as just further characteristics of independent objects, sush as their 
hardness or color. A value is one more property that can be added to or 
subtracted from an object. Once he has adopted this terminology and the 
philosophical position it embodies, Watanabe is unable to explain how 
values differ from somewhat vague properties. and thus cannot explain 
why he feels they cannot be programmed. To underst?nd the fundamen
tal difficulty Watanabe is trying to get at . we must be able to distinguish 
between objects, and the field or situation which makes our experience 
of objects possible. For what Watanabe misleadingly caHs values belongs 
to the structure of the field of experience, not the objects in it . 

We have seen that experience itself is organized in terms of our tasks. 
Like the pattern of a chess game, the world is a field in which there are 
areas of att raction and repulsion,  paths of accessibility ,  regions of activity 
and of repose. In our own perceptual world we are aH master players. 
Objects are already located and recognized in a general way in terms of 
the characteristics of the field they are in before we zero in on them and 
concern ourselves with their details. It is only because our interests are 
not objects in our experience that they can play this fundamental role 
of organizing our experience into meaningful patterns or regions. 

Heidegger has described the way human concerns order experiences 
into places and regions : 

Equipment has i t s  place or else it ' l i es around ' :  t h i s  m ust  be dist inguished i n  
principle from just occurring at random in  some spacial posi t ion . . . .  T h e  k ind 
of place which is const i tuted by d irect ion and remoteness (and c loseness i s  onl y  
a mode of the lat ter) is al ready orien ted towards a region a n d  oriented w i t h i n  
i t .  . . .  Thus anyth ing constant l y  ready-to-hand o f  which c ircumspect ive Bei ng-in
t he-World takes account beforehand has i ts  place. The 'where' of i ts readi n ess-to
hand is put to accoun t  as a mat ter for concern . . . .  4 
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Heidegger is also the first to have called attention to the way philoso
phy has from its inception been dedicated to trying to turn the concerns 
in terms of which we live into objects which we could contemplate and 
control. Socrates was dedicated. to trying to make his and other people's 
commitments explicit so that they could be compared, evaluated, and 
justified. But it is a fundamental and strange characteristic of our lives 
that insofar as we turn our most personal concerns into objects, which 
we can study and choose, they no longer have a grip on us. They no 
longer organize a field of significant possibilities in terms of which we act 
but become just one more possibility we can choose or reject. Philoso
phers thus finally arrived at the nihilism of Nietzsche and Sartre in which 
personal concerns are thought of as a table of values which are arbitrarily 
chosen and can be equally arbitrarily abandoned or transvaluated. Ac
cording to Nietzsche, "The great man is necessarily a skeptic. . . . 
Freedom from any kind of conviction is part of the strength of his 
will. " 5 * 

But what is missing in this picture besides a sense of being gripped by 
one's commitment? What difference does it make when one is trying to 
produce intelligent behavior that one's evaluations are based on a util
ity function instead of some ultimate concern? One difference, which 
Watanabe notes without being able to explain, is that a table of values 
must be specific, whereas human concerns only need to be made as 
specific as the situation demands. This flexibility is closely connected 
with the human ability to recognize the generic in terms of purposes, and 
to extend the use oflanguage in a regular but nonrulelike way . Moreover, 
man's ultimate concern is not just to achieve some goal which is the end 
of a series; rather, interest in the goal is present at each moment structur
ing the whole of experience and guiding our activity as we constantly 
select what is relevant in terms of its significance to the situation at hand. 6 

A machine table of objectives, on the other hand, has only an arbitrary 
relation to the alternatives before the machine, so that it must be explic
itly appealed to at predetermined intervals to evaluate the machine's 
progress and direct its next choice. 

Herbert Simon and Walter Reitman have seen that emotion and moti
vation play some role in intelligent behavior, but their way of simulating 
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this role is to wri te programs where . .  emotions" can in terrupt the work 
on one problem to introduce ext raneous factors or work on some other 
problem. 1 They do not seem to see that emot ions and concerns accom
pany and guide our cogni t ive behavior. This  i s  again a case of not being 
able to see what one would not know how to program. 

Heidegger t ries to account for the pervasive concern organi zing hu
man experience in terms of a basic human need to understand one·s 
being. But this analysis remains very abst ract .  It accounts  for significance 
in general but not for any specific goal or specific significance. Thus 
Heidegger in effect assimilates al l human act ivi t y  to creat i ve problem 
solving or art ist ic creation where we do not fully know what our goal 
was unt il we have achieved i t .  For Heidegger there can be no list of 
specificat ions which the solut ion must fulfill . S t i l l ,  our needs are determi 
nate enough to give things specific meaning for us .  and many of our goals 
are qui te explici t .  To understand this we requi re a more concrete 
phenomenological analysis of human needs. 

The philosophical and psychological t radi t ion (wi th the except ion of 
the pragmatists) , however, has t ried to ignore the role of these needs in 
intelligent behavior, and the computer model has reinforced this ten
dency . Thus N. S. Sutherland. Professor of Experimental Psychology at 
the Universi ty of Sussex,  in an art icle .. Machines and Men," wri tes :  

Survival  a n d  sel f  ma in tenance are ach iev�d h y  gene t i ca l l y  bui l d i ng  i n t o  t he 
human brain a series of d ri ves or goals .  Some of t he obv ious ones are h unger. 
t h i rst , t he sexua l  drive and avoidance of pain .  A l l  of t h ese d ri ves are paro12h ia l  
i n  the  sense t hat  one could i magi ne com plex i n f<.1 rrnat ion process ing  systems 
exhibi t i ng  in tel l igent behavior but  tota l ly  lack ing  t hem . '  

We have seen, however, that our concrete bodi l y  needs di rect ly or 
indi rectly give us our sense of the task at hand, in terms of which our 
experience is st ructured as significant or insignificant . These needs have 
a very special st ructure, which, whi le more specific than Heidegger's 
account ,  does resemble art ist ic creat ion. When we experience a need we 
do not at first know what it is we need. We must search to discover what 
allays our restlessness or discomfort. This is not found by comparing 
various objects and act iv i t ies with some object ive, determinate cri terion, 
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but through what Todes cal ls our sense of gratification. This  gratification 
i s  experienced as the discovery of what we needed all along, but i t  i s  a 
retroact ive understanding and covers up the fact that we were unable to 
make our need determinate wi thout first receiving that grat i fication. The 
original fulfil lment qf any need is ,  therefore, what Todes cal ls a creative 
discovery . 9 * 

Thus human beings do not begin with a genetic table of needs or values 
which they reveal to themselves as they go along. Nor, when they are 
authentic, do they arbi trari ly  adopt values which are imposed by their 
environment .  Rather, in discovering what they need they make more 
specific a general need which was there al l along but was not determinate. 

Thi s  is most obvious when dealing with less instinctual psychological 
needs. When a man falls in love he loves a particular woman, but i t  is 
not that part icuiar woman he needed before he fel l  in love. However, 
after he i s  in love, that is after he has found that this particular relat ion
ship i s  grat ifying, the need becomes specific as the need for that part icu
lar woman, and the man has made a creative discovery about himself. 
He has become the sort of person that needs that specific relat ionship and 
must view himself as having lacked and needed this relationship all 
along. In such a creative discovery the world reveals a new order of 
significance which is  nei ther simply discovered nor arbi trarily chosen. 

Soren K ierkegaard has a great deal to say about the way one's person
al i ty or self i s  redefined in such an experience, and how everything in a 
person's world gets a new level of meaning. Since such a change, by 
modifying a person's concerns, changes the whole field of in terest in  
terms of which everything gets i ts  significance, K ierkegaard speaks of 
these fundamental changes as changes in our sphere of existence. And 
because such a change cannot be predicted on the basis of our previous 
concerns, yet once i t  has taken place is so pervasive that we cannot 
imagi ne how it could have been otherwise, K ierkegaard speaks of a 
change of sphere of existence as a leap. 1 0  

This same sort of change of world can take place on a conceptual level .  
Then i t  i s  cal led a conceptual revolut ion . Thomas Kuhn in  his book The 
Structure of Scien tific Revolu tions has studied this sort of transforma-
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tion. As he puts it :  "Insofar as their only recourse to that world is 
through what they see and do, we may want to say that after a revolution 
scientists are responding to a different world. " 1 1  

The conceptual framework determines what counts as a fact. Thus 
during a revolution there are no facts to which scientists can appeal to 
decide which view is correct. . .  The data themselves [have] changed. This 
is the [sense] in which we may want to say that after a revolution 
scientists work in a different world. " 1 c The idea that knowledge consists 
of a large store of neutral data, taken for granted by M insky .  is inade
quate to account for these moments of profound change . According to 
Kuhn, "there can be no scientifically or empirically neutral system of 
language or concepts. " 1 '  

What occu rs during a sc ient ific revolut ion i s  not fu l l y  red ucib le t o  a rein terp reta
t ion of i ndiv id ual and stable data. In t he fi rst place the data are not unequ i voca l l y  
stable. A pendu lum is  no t  a fal l i ng  stone. nor  i s  oxygen deph logist icated a i r . , .  

This leads Kuhn to a rejection of  the whole philosophical tradition 
which has culminated in the notion of reason as based on the storage and 
processing of .. data ."  On the basis of his research Kuhn sees both the 
inadequacy of this tradition and why it nonetheless continues to seem 
self-ev ident. 

Are t heor ies s imply man-made i n terpretat i (, rh of gi \ en dat a·� The epistenwlogi 
cal v iewpoi nt that has most often guided Western ph i losophy  for t h ree cen t uries 
dictates an im mediate and unequi vocal .  Yes�  In  t he ahsence of a developed 
alternat ive, I fi nd it impossible to rel i nquish en t i re ly  t hat v iewpoi n t .  Yet it no 
longer funct ions effect ively .  and the at tempts to make i t  do so t h rough the  
in t rod uct ion of a neut ral language of  observat ions now seem to me hopeless. 1

' 

In suggesting an alternative view, or more exactly , in analyzing the 
way science actually proceeds so as to provide the elements of an alterna
tive view, Kuhn focuses on the importance of a paradigm , that is, a 
specific accepted exam ple of scientific practice, i n  guiding researcli . Here, 
as in the case of family resemblance studied earlier, objects are under
stood not in terms of general rules but rather in terms of thei r  relation 
to a specific concrete case whose traits or implications cannot be com
pletely formali zed. 
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[Scient ists can] agree in. _thei r identification of a paradigm without agreeing on, 
or even attempting to produce, a ful l  interpretation or rationalization of it .  Lack 
of a standard interpretation or of an agreed reduction to rules wi l l  not prevent 
a paradigm from guiding research . . . .  Indeed, the existence of a paradigm need 
not even imply that any full set of rules exist: 6 

It is just this open-ended richness of paradigms which makes them 
important : 

Paradigms may be prior to, more binding, and more complete than any set of 
rules for research that could be unequivocally abstracted from them. 1 1  

Without such paradigms scientists confront the world with the same 
bewilderment which we have suggested would necessarily confront an 
AI researcher trying to formalize the human form of life: 

In the absence of a paradigm . . .  all of the facts that could possibly pertain to 
the development of a given science are likely to seem equally relevant. 1 8 

Indeed, without a paradigm it is not even clear what would count as 
a fact ,  since facts are produced in terms of a particular paradigm for 
interpreting experience. Thus finding a new paradigm is like a Kierke
gaardian leap: 

Just because it is a transi tion between incommensurables, the transition between 
competing paradigms cannot be made a step at a time, forced by logic and neutral 
experience. Li ke the gestalt switch, i t  must occur all at once (though not neces
sari ly in an instant) or not at al l .  1 9  

Here i t  becomes clear that the idea of problem solving as simply 
storing and sorting through data with a specific end in view can never 
do justice to these fundamental conceptual changes, yet these changes 
determine the conceptual space in which problems can first be posed and 
in terms of which data get their pervasive character of relevance and 
significance, so that problems can be solved. The reigning conceptual 
framework implici t ly guides research just as the perceptual field guides 
our perception of objects. 

Final ly, even more fundamental than these conceptual revolutions 
studied by Kuhn are cul tural revolutions; for example, the beginning of 
Greek philosophy, as we have seen, set up a view of the nature of man 
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and rationality on which all subsequent conceptual revolutions have 
rung changes. Equally radically, with the beginning of Christianity a new 
kind of love became possible which was not possible in Greece; heroism 
became suspect as a sign of pride, and goodness came to consist in the 
sacrifices of saints. These cultural revolutions show us. as Pascal first 
pointed out, that there is no sharp boundary between nature and culture 
--even instinctual needs can be modified and overridden in terms of 
paradigms-thus there is no fixed nature of man. 

Man's nature is indeed so malleable that it may be on the point of 
changing again. If the computer paradigm becomes so strong that people 
begin to think of themselves as digital dev ices on the model of work in 
artificial intelligence, then, since for the reasons we have been rehearsing. 
machines cannot be like human beings. human beings may become 
progressively like machines. During the past two thousand years the 
importance of objectivity ;  the belief that actions are governed by fixed 
values; the notion that skills can be formali zed: and in general that one 
can have a theory of practical acti vity .  have gradually exerted thei r  
influence in  psychology and in social science. People have begun to think 
of themselves as objects able to fit into the in flexible calculations of 
disembodied machines: machines for which the human form-of-life must 
be analyzed into meaningless facts, rather than a field of concern orga
nized by sensory-motor skills. Our risk is not the advent of superintelli
gent computers, but of subintelligent human beings. 



Conclusion 

This alternative conception of man and his ability to behave intelligently 
is really an analysis of the way man's skillful bodily activity as he works 
to satisfy his needs generates the human world. And it is this world 
which sets up the conditions under which specific facts become accessible 
to man as both relevant and significant, because these facts are origi
nally organized in terms of these needs. This enables us to see the 
fundamental difference between human and machine intelligence. Artifi
cial intelligence must begin at the level of objectivity and rationality 
where the facts have already been produced. It abstracts these facts 1 * 
from the situation in which they are organized and attempts to use the 
results to simulate intelligent behavior. But these facts taken out of 
context are an unwieldy mass of neutral data with which artificial intelli
gence workers have thus far been unable to cope. All programs so far 
"bog down inexorably as the information files grow. " 2 

No other data-processing techniques exist at present besides the ac
cumulation of facts, and once the traditional philosophical assumptions 
underlying work in artificial intelligence have been called into question 
there is no reason to suppose that digital data storage and retrieval 
techniques will ever be powerful enough to cope with the amount of data 
generated when we try to make explicit our knowledge of the world. 
Since the data about the world may well be infinite and the formalization 
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of our form-of-life may well be impossible, it would be more reasonable 
to suppose that digital storage techniques can never be up IO the task. 

Moreover, if this phenomenological description of human intelligence 
is correct, there are in principle reasons why artificial intelligence can 
never be completely realized. Besides the technological problem posed 
by storing a great number of bits of neutral data, there are in the last 
analysis no fixed facts, be they a million or ten million, as Minsky would 
like to believe. Since human beings produce facts, the facts themselves 
are changed by conceptual revolutions. 

Finally, if the philosopher or artificial intelligence researcher proposes 
to meet this objection by formalizing the human needs which generate 
this changing context, he is faced with the source of this same difficulty . 
Indeterminate needs and goals and the experience of gratification which 
guides their determination cannot be simulated on a digital machine 
whose only mode of existence is a series of determinate states. Yet. it is 
just because these needs are never completely determined for the individ
ual and for mankind as a whole that they are capable of being made more 
determinate, and human nature can be retroactively changed by individ
ual and cultural revolutions. 
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The Limits of Art ificial Intel ligence 

We are now in a posi t ion to draw together the various st rands of our 
phi losophical argument concern ing the limi ts of artificial inte l l igence . 
The division of the field of artificial in tel ligence into two subfields, Cogni
tive Simulat ion (CS) and Art ificial Intel l igence, (AI) ,  has led to the 
t reatment of two separate but in terrelated quest ions: ( 1 )  Does a human 
being in "processing information" actual ly follow formal rules l ike a 
digi tal computer?, and (2) Can human behavior, no mat ter how gener
ated, be described in a formal ism which can be manipulated by a digi tal 
machine? 

In discussing each of these questions we found, first , that the des
cript ive or phenomenological evidence, considered apart from tradi
t ional phi losophical prej udices, suggests that nonprogrammable human 
capaci t ies are involved in all forms of in te l l igent behavior. Moreover, we 
saw that no cont rary empirical evidence stands up to methodological 
scrut iny. Thus, insofar as the question whether art ificial in tel l igence is 
possible is an empirical quest ion, the answer seems to be that further 
significant progress in Cognit ive Simulation or in Artificial Intel l igence 
is ext remely unl ikely. 

If in  the face of these difficulties workers in  art ificial in tell igence st i l l  
wish to  j ustify thei r optimism, the burden of proof is henceforth on them. 
They must show that despi te the empirical difficult ies art i ficial inte l l i -
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gence m ust be possible. But the a priori case for art ificial intel l igence is  
even weaker here than the empirical one. The very arguments which are 
supposed to show that formalization must  be possible turn out to be 
either incoherent or sel f-contradictory and show, on the contrary , that 
barring certain highly unli kely empirical assumpt ions which have been 
ruled out by common agreement , formal izat ion is impossible. The a 
priori arguments for formalizat ion thus turn into condi t ional in principle 
arguments  against the possibi l i ty of CS and AI. 

Let us review these arguments  in more detai l .  In discussing CS we 
found tha t  in playing games such as chess, in solving complex problems, 
in recognizing simi lari t ies and family resemblances, and in using lan
guage metaphorical ly and in ways we feel to be odd or ungrammat ical .  
human beings do not seem to themselves or to observers to be fol lowing 
s trict rules .  On the contrary , they seem to be using global perceptual 
organizat ion, making pragmatic distinct ions between essent ial and ines
sential operations, appealing to paradigm cases, and using a shared sense 
of the si tuat ion to get thei r meanings across . 

Of course, a l l  this orderly but apparent ly nonrulel i ke act i v i t y  might 
nonetheless be the resul t of unconsciously fol lowed rules .  But when one 
t ries to understand this as a phi losophical proposal that all behavior 
must be understood as fol hw.· ing from a set of inst ruct ions, one finds a 
regress of rules for applying rules .  This regress cannot be terminated by 
an appeal to ordinary facts  for, according to the original claim, the fact s 
must themselves always be recogni zed and interpreted by rule . 

One way to avoid this regress would be to claim that the ult imate data 
are inputs of physical energy and that such input s can always be digi tal 
ized and processed according to rule. This seems to be Fodor's view . The 
claim that these inputs are processed in a sequence of operations l i ke a 
digi tal program is not unintel l igible, but would, as Fodor admi ts ,  de
mand an incredibly complex formalism which no one has been able to 
discover or invent. In the absence of any empi rical or a priori argument 
that such a formalism for processing physical inputs does or must ex is t ,  
and given the empirical evidence that the brain funct ions l i ke an ana
logue computer, there is no reason to suppose and every reason to doubt 
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that the processing of physical inputs in the human brain takes the form 
of a digital computer program. 

The only other way to avoid the regress of rules is to modify the thesis 
and claim that on the lowest level rules are automatically applied without 
instructions. But this leads to trouble in two ways: (1 ) Once the a priori 

thesis that all behavior must follow instructions is thus weakened, we 
might as well claim that sk illed behavior need not be based on uncon
sciously followed instructions at any level, so the argument that in spite 
of the phenomenological evidence subjects must be following rules must 
be abandoned. 

(2) If one nonetheless insists that there must be an ultimate level of 
uninterpreted givens, and that the givens are neither physical inputs nor 
ordinary objects, one is left with the view that these givens must be 
impoverished bits of information about the human world. This gives us 
the notion of "stimulus information, " the sense data or snapshots intro
duced by Neisser. But this a priori notion of stimulus information turns 
out to be incomprehensible. All that is given empirically are continuous 
physical inputs to the organism, on the one hand, and the world of 
ordinary objects given to the perceiving subject, on the other. No cogni
tive psychologist has succeeded in defining another sort of input between 
these two which would provide the ultimate bits of information to which 
the rules are to be applied. All accounts offered thus far turn out to be 
an incoherent mixture of physical description in terms of energy, and 
phenomenalist description in terms of crudely defined sense data. 

Thus the psychological claim that, appearances notwithstanding, in
telligent behavior is produced by following fixed formal rules like a 
digital computer is stuck with a regress of rules for applying rules. It can 
not extricate itself from this regress by appeal to a notion of physical 
input which it cannot use or stimulus input which it cannot define. 

Although there is no empirical evidence either from psychology or 
from the success of current work, AI  workers, like workers in CS, are 
confident that a formalization of intelJ igent behavior must be possible. 
Their argument is never explicitly stated, but it seems to be based on an 
ontological assumption that the world can be analyzed into independent 
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logical elements and an epistemological assumption that our understand
ing of the world can then be reconstructed by combining these elements 
according to heuristic  rules. The first claim is safe enough. Since he is 
not committed to describing human beings, the Al worker, unlike the 
cognitive psychologist, has no trouble identifying the ultimate bits to 
which the rules must be applied-they are digitalized sound waves and 
the elements in the mosaic of a TV tube. These can be recognized without 
appeal to further rules. But the second claim, that these elements can be 
reassembled, when put forward as an a priori necessi ty ,  runs into a 
regress of higher and higher order rules, the converse of the regress of 
rules for applying rules faced by those in Cognitive Simulation. 

Since each of the logical elements is assumed to be independent of all 
the others, it has no significance until related to the other elements. But 
once these elements have been taken out of context and stripped of all 
significance it is not so easy to give it back. The significance to be given 
to each logical element depends on other logical elements, so that in 
order to be recognized as forming patterns and ult imately forming ob
jects and meaningful utterances each input must be related to other 
inputs by rules . But the elements  are subject to several interpretations 
according to differen t  rules and which rule to apply depends on the 
con text . For a computer, however, the context  i t self can only be recog
nized accordi ng to a rule . 

Here aga in ,  too, this computer-dictated analysis conflicts with our 
experience .  A phenomenological descript ion of our experience of being
in -a-si tuat ion suggests that we are always already in a context or situa
t ion which we carry over from the immediate past and update in terms 
of even ts  that in the light of this past s i tuation are seen to be significant. 
We never encounter meani ngless bits in terms of which we have to 
ident ify contexts ,  but only facts which are already interpreted and which 
reciprocally defi ne the si tuation we are i n .  Human experience i s  only 
in t elligible when organized in terms of a si tuat ion in which relevance and 
sign ificance are already given. This need for prior organization reappears 
in  A I as the need for a hierarchy of contexts in which a higher or broader 
context  is used to determine the relevance and significance of elements 
in a narrower or lower context. 
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Thus, for  example, to pick out two dots in a picture as eyes one must 
have already recognized the context as a face. To recognize this context 
as a face one must have distinguished its relevant features such as 
shape and hair from the shadows and highlights, and these, in turn, 
can be picked out as relevant only in a broader context, for example, a 
domestic situation in which the program can expect to find faces. This 
context too wi l l  have to be recognized by its relevant features, as social 
rather than, say, meteorological, so that the program selects as signifi
cant the people rather than the clouds. But if each context can be 
recognized only in terms of features selected as relevant and interpre
ted in terms of a broader context, the AI worker is faced with a regress 
of contexts. 

As in the case of Cogniti ve Simulation, there might have been an 
empi rical way out of the regress. Just as for CS the ultimate uninter
preted bits might have been digitali zed physical inputs, here the ultimate 
context or set of contexts might have been recognizable in terms of 
certain patterns or objects which had a fi xed significance and could be 
used to switch the program to the appropriate subcontext of objects or 
discourse. But again as in CS the evidence i s  against this empi rical 
possibility .  There do not seem to be any words or objects which are 
always relevant and always have the same significance the way the red 
spot of a female stickleback always means mating time to the male. 

There remains only one possible .. solution. "  The computer program
mer can make up a hierarchy of contexts and general rules for how to 
organize them for the computer. He does this by appealing to his general 
sense of what is generally relevant and significant for a human being . In 
some situations, however, any fact may become important. To formalize 
this so that the computer could exhibit human flexibility, the program
mer would have to be able to make explicit all that he normally takes 
for granted in being a human being .  Howevt>r, once he tries to treat his 
own situation as i f  he were a computer looking at it from the outside, 
the computer programmer is himself faced with an infinity of meaning
less facts whose relevance and significance could only be determined in 
a broader context. 

Thus it turns out that a logical atomist ontology does not entail a 
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logical atomist epistemology. Even if the world is scanned into the 
computer in terms of logically independent bits, this does not mean that 
one can argue a priori that i t  can be reassembled. In fact the at tempt to 
argue a priori that because the world can be resolved into bits it can be 
m terpreted by formal rules ends up showing just the opposite .  

These considerations are supported by a general theory of human 
experience as being-already-in-a-situation in which the facts are always 
already interpreted. This theory also suggests that the ult imate situation 
in which human beings find themselves depends on their purposes, which 
are in turn a function of their body and their needs. and that these needs 
are not fixed once and for all but are interpreted and made determinate 
by acculturation and thus by changes in human self-interpretation. Thus 
in the last analysis we can understand why there are no facts with built -in 
significance and no fi xed human forms of life which one could ever hope 
to program. 

This is not to say tha t children do not begin with certain fixed re
sponses-in fact ,  if they did not .  learning could never get started-but 
rather that these responses are outgrown or overridden in the process of 
maturation. Thus no fi xed responses remain in an adult human being 
which are not under the control of the significance of the situation. 

Could we then program computers to behave like children and boot 
strap their way to intelligence? This question takes us beyond present 
psychological understanding and present computer techniques . In this 
book I have only heen concerned to argue that the current attempt to 
p rogram computers with fully formed Athene-like intelligence runs into 
empirical difficult ies and fundamental conceptual inconsistencies. 
Whether a child computer could begin with situation-free responses and 
gradually learn depends on the role indeterminate needs and ability to 
respond to the global context play in learning. What work has been done 
on learning hy Piaget ,  for example, suggests that the same forms of 
.. information processing" are required for learning which are required 
for mature intelligent behavior, and that intelligence develops by · ·con
ceptual revolutions . . .  This should not surprise us . Computers can only 
deal with facts, but man-the source of facts-is not a fact or set of facts ,  
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but a being who creates himself and the world of facts in the process of 
l iving in the world .  This human world with its recognizable objects is 
organized by human beings using thei r embodied capacities to satisfy 
thei r  embodied needs. There is no reason to suppose that a world orga
nized in terms of these fundamental human capacities should be accessi
ble by any other means. 

The Future of Artific ia l  I ntel l igence 

But these difficult ies give us no idea of the future of artificial intel l igence. 
Even if the at tempt to program isolated intel l igent activit ies always 
ult imately requires the programming of the whole mature human form 
of l ife, and even if an Athene-l ike digital computer is impossible in 
principle-that is, even if mature human intel l igence is organized in 
terms of a field which is reciprocal ly determined by the objects in i t  and 
capable of radical revision-the question sti l l  remains to what extent 
workers in artificial intel l igence can use their piecemeal techniques to 
approximate intel l igen t human behavior. In order to complete our analy
sis of the scope and l imits of artificial reason we must now draw out the 
practical implications of the foregoing arguments. 

Before drawing our practical conclusions, however, it wi l l  be helpful 
to distinguish four areas of intel l igen t act ivi ty .  We can then determine 
to  what extent intel l igent behavior in each area presupposes the four 
human forms of "information processing" we distinguished in Part I .  
This wi l l  enable u s  to account for  what success has been attained and 
predict what further progress can be expected . 

One can distinguish four types of intel l igen t acti vity (see Table 1 ). We 
have seen that the first two types are amenable to digital computer 
simulation, whi le the thi rd is only partial ly programmable and the fourth 
is total ly in tractable. 

Area I is where the S-R psychologists are most at home. I t  includes 
all forms of elementary associationistic behavior where mean ing and 
context are i rrelevant to the act ivity concerned . Rote learning of non
sense syl lables is the most perfect example of such behavior so far pro
grammed, a l though any form of condi t ioned reflex would serve as wel l .  
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Table 1 

CLASSIFICATION OF INTELLIG ENT ACTIVITIES 

I. Associationistic I I I .  Simple-Formal 

Characteristics of A ctivity 

Irrelevance of mean
ing and situation . 

Innate or 
learned by 
repetition. 

Meanings completely 
explicit and situat ion 
independent .  

Learned by rule. 

1 1 1 1 .  Complex-Formal I IV. Nonformal 

-- - - -- -- - - - --- -- - -------

In  principle. same as 
I I ;  in pr act ice . in
ternally si tuation
dependent.  indepen- ; 

, dent of external 
situation. 

Learned by rule and 
practice. 

Dependent on 
meaning and 
situation which 
are not explicit . 

Learned by per
spicuous examples. 

Field of A ctivity (and A ppropriate Procedure ) 

Memory games, e.g. , 
"Geography" ( asso
ciat ion ) .  

Maze problems 
( trial and error ) .  

Word-by-word 
translat ion 
( mechanical 
dict ionary ) .  

Response to rigid 
patterns ( innate 
releasers and classi
cal condit ioning ) .  

Kinds of Program 

Computable or quasi
computable games. 
e.g., nim or t ic-tac
toe ( seek algorithm 
or count out ) .  

Combinatorial prob
lems ( nonheuristic 
means ends analysis) .  

Proof of theorems 
using mechan ical 
proof procedures 
( seek algorithm ) .  

Recognition of sim
ple rigi J patterns, 
e .g . ,  reading typed 
page ( search for 
traits whose con
junction defines class 
membership ) .  

(; ncomputable 
games, e . g . ,  chess or 
go ( global intuit ion 
and detai led count-
ing out ) .  

Complex combina
torial problems 
l planning and ma,e 
calculat ion ) .  

Proof of theorems 
where no mechanical 
proof procedure 
exists ( intuit ion and 
calculation ) .  

Recogn it ion of com
plex patterns in 
noise ( search for 
regularities ) .  

I ll-defined games. 
e .g . .  riddles ( percep
t ive guess ) .  

Open-�t ructured 
problems ( insight ) .  

Translat ing a 
natural l anguage 
( understanding in 
context of use ) .  

Recognit ion of 
varied and distorted 
patterns ( recogni
t ion of generic or 
use of paradigm 
case ) .  

--------------- ------ - ------ -- -- ---------
Decision tree, 
l ist search, 
template. 

Algorithm.  Search-pruning 
heuristics. 

None. 
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Also some games, such as the game sometimes cal led Geography (which 
simply consists of finding a country whose name begins with the last 
letter of the previously named country), belong in this area. In language 
translating, this is the level of the mechanical dictionary; in problem 
solving, that of pure trial -and-error search routines; in pat tern recogni
t ion, matching pat tern against fi xed templates. 

Area II is the domain of Pascal's esprit de geometrie-the terrain most 
favorable for art ificial intel l igence. I t  encompasses the conceptual rather 
than the perceptual world. Problems are completely formalized and 
completely calculable. For this reason, it might best be cal led the area 
of the simple-formal .  Here artificial intel ligence is possible in principle 
and in fact .  

In Area I I ,  natural language i s  replaced by a formal language, of which 
the best example is logic .  Games have precise rules and can be calculated 
out completely, as in the case of nim or t ic-tac-toe. Pat tern recogni t ion 
on this level takes place according to determinate types, which are 
defined by a l ist of trai ts characterizing the individuals which belong to 
the class in question. Problem solving takes the form of reducing the 
distance between means and ends by repeated appl icat ion of formal rules. 
The formal systems in this area are simple enough to be manipulated by 
algori thms which require no search procedure at all (for example, 
Wang's logic program). Heuristics are not only unnecessary here, they 
are a posi t ive handicap, as the superiori ty of Wang's algorithmic logic 
program over Newel l ,  Shaw, and Simon's heurist ic logic program dem
onstrates. In this area, artificial intell igence has had i ts only unqualified 
successes. 

Area I I I ,  complex-formal systems, is the most difficul t to define and 
has generated most of the misunderstandings and difficult ies in the field. 
I t  contains behavior which is in principle formalizable but in fact intract 
able. As the number of elements increases, the number of transforma
tions required grows exponent ially with the number of elements 
involved. As used here, .. complex-formal ' '  includes those systems which 
in practice cannot be dealt with by exhaustive enumerat ion algori thms 
(chess, go, etc . ), and thus require heurist ic programs. 1 * 

Area IV  might be called the area of non formal behavior. This includes 
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al l th_ose everyday activities in our human world which are regular but 
-not rule governed. The most st riking example of this control l ed impreci
sion is our disambiguation of natu ral languages. This area also inc ludes 
games in which the rules are not definite, such as guessing riddles. 
Pattern recognition in this domain is based on recognition of the generic. 
or of the typical , by means of a paradigm case. Problems on this level 
are open-structured, requ iring a determination of what is relevant and 
insight into which operations are essential , before the problem can be 
attacked. 2 * Techniques on this level are usual ly  taught by general i zing 
from examples and are fol lowed int uitively without appeal to ru les .  We 
might adopt Pascal 's terminology and cal l  A rea IV the home of the esprit 

de finesse. Since in this area a sense of the global s i t uat ion is necessary 
to avoid storing an infinity of facts, it is impossible in principle to use 
discrete  t echniques to reproduce d i rect l y  adul t  behavior. Even to order 
the four as in Table 1 is misleadingly encouraging. since it suggests that 
A rea IV differs from Area III simply hy int roducing a further len�I of 
complexity, whereas Area IV is of an ent i re ly different order than A rea 
III. Far from being more complex .  it is rea l l y  more prim i t i ve. being 
evol utionarily, ontogenet ica l l y ,  and phenomenologica l ly  prior to  A reas 
II and III, just as natural language is prior to mathemat ics .  

The l i terature of art i fic ia l  intdl i gence genera l l y  fails to d ist inguish 
these four areas . For exam pk Newel l .  Shaw. and S imon announce that 
their logic theori st ' '\\·as devised to learn how it  i s  possible to sol ve 
difficul t  prohlems such as prov ing mathemat ical theorem� [II or III] , 
discovering scient ific laws from dat a [ I II and IV] .  playing chess [ I II] . or 
underst and ing the  meaning of Engl i sh prose [ IV] . " :  The assumpt ion, 
made expl ic i t l y hy Paul  Armer of t he RAND Corporat ion, that a l l  
intel l igent behavior is  of the same genera l t ype, has encouraged workers 
to general i ze from success in the two promising areas to unfounded 
expec ta t ion of success in the other two .  

This confusion has two dangerous consequences . Fi rst there i s  the 
tendency ,  typified by Si mon, to think that heurist ics discovered in one 
field of inte l l igent act ivi ty ,  such as theorem proving. must te l l  us some
thing about the "informat ion processing" in another area, such as the 
understand ing of a natural language. Thus,  certain simple forms of infor-
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mation processing applicable to Areas I and I I  are imposed on Area IV, 
while the unique form of "information processing" in this area, namely 
that "data" are not being "processed" at all, is overlooked. The result 
is that the same problem of exponential growth that causes trouble when 
the techniques of Areas I and II are extended to Area I I I  shows up in 
attempts to reproduce the behavior characteristic of Area IV. 4 * 

Second, there is the converse danger. The success of artificial intell i
gence in Area II depends upon avoiding anything but discrete, determi
nate, situation-free operations. The fact that, l ike the simple systems in 
Area I I ,  the complex systems in  Area I I I  are formalizable leads the 
simulator to suppose the activities in  Area I I I  can be reproduced on a 
digital computer. When the difference in degree between simple and 
complex systems turns out in practice, however, to be a difference in kind 
-exponential growth becoming a serious problem-the programmer, 
unaware of the differences between the two areas, tries to introduce 
procedures borrowed from the observation of how human beings per
form the activit ies in Area IV-for example, position evaluation in chess, 
means-ends analysis in problem solving, semantic considerations in theo
rem proving-into Area I I I .  These procedures, however, when used by 
human beings depend upon one or more of the specifica11y human forms 
of "information processing"-for human beings at least, the use of chess 
heuristics presupposes fringe consciousness of a field of strength and 
weakness; the introduction of means-ends analysis eventua1 1y requi res 
planning and thus a dist inction between essen tial and inessen tial opera
tions; semantic considerations requi re a sense of the context. 

The p.rogrammer confiden tly notes that Area III is in principle formal
izable just l ike Area I I .  He is not aware that in  transplanting the tech
niques of Area IV into Area I I I  he is in troducing into the continuity 
between Areas I I  and III the discontinuity which exists between Areas 
I I I  and IV and thus introducing all the difficulties confronting the for
malization of nonformal behavior. Thus the problems which in princi ple 
should only arise in trying to program the "il l-structured," that is, 
open-ended act ivi t ies of dai ly life, arise in practice for complex-formal 
systems. Since what counts as relevant data in Area I I I  is completely 
explicit , heuristics can work to some extent (as in Samuel's Checker 
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Program), but since Area IV is just that area of intelligen t  behavior in 
which the attempt to program digital computers to exhibit fully formed 
adult intelligence must fail, the unavoidable recourse in Area III  to 
heuristics which presuppose the abilities of Area IV is bound, sooner or 
later, to run into difficulties. Just how far heuristic programming can go 
in Area I I I  before it runs up against the need for fringe consciousness. 
ambiguity tolerance, essentia1/inessential discrimination, and so forth, is 
an empirical question .  However, we have seen ample evidence of t rouble 
in the failure to produce a chess champicm , to prove any interesting 
theorems, to translate languages, and in the abandonment of G PS .  

Still there are some techniques for approximating some of  the Area IV 
short-cuts necessary for progress in Area III, without presupposing the 
foregoing human forms of . .  information processing" which cannot be 
reproduced in any Athena-like program. 

To surmount presen t  stagnation in Area III the following improved 
techniques seem to be required : 

1 .  Since current computers. even primitive hand-eye coordinating ro
bots, do not have bodies in the sense described in Chapter 7 ,  and since 
no one understands or has any idea how to program the global organiza
tion and indeterminacy which is characteristic of perception and embod
ied skills, the best that can be hoped for at this time is some sort of crude. 
wholistic, first-level processing , which approximates the human abilit y 
to zero in on a segment of a field of experience before beginning explicit 
rule-governed manipulation or counting out . This cannot mean adding 
still further explicit ways of picking out what area is worth exploring 
further. In chess programs, for example, it is beginning to be clear that 
adding more and more specific hit s of chess knowledge to plausible move 
generators, finally bogs down in too many ad hoc subroutines. ( Samuel 
thinks this is why there has been no further progress reported for the 
Greenblat t chess program. �)  What is needed is something which corre
sponds to the master's way of seeing the board as having promising and 
threatening areas. 

Just what such wholistic processing could be is hard to determine, 
given the discrete nature of all computer calculations. There seem to be 
two different claims in the air. When Minsky and Papert talk of fi nding 
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"global features," they seem to mean finding certain isolable, and deter
minate, features of a pattern (for example, certain angles of intersection 
of two l ines) which al low the program to make rel iable guesses about the 
whole. This just introduces further heuristics and is not whol istic in any 
interest ing sense. Neisser, however, in discussing the problem of seg
ment ing shapes for pattern recogni t ion before analyzing them in detai l 
makes a more ambitious proposal . 

Since the processes of focal attention cannot operate on the whole visual field 
s im ultaneously,  they can come into play on ly  after pre l iminary operations have 
al ready segregated the figural units in volved . These pre l iminary operations are 
of great i nterest in thei r own right. They correspond in part to what the Gestalt 
psychologi sts cal led "autochthonous forces," and they produce what Hebb cal led 
"prim it ive un ity . "  I wi l l  cal l them the preattentive processes to emphasize that 
they produce the objects wh ich later mechan isms are to flesh out and i nterpret. 

The requ irements of th is task mean that the preattentive processes must be 
gen uinely "global " and "whol istic. " Each figure or object must be separated from 
the others in its enti rety, as a potential framework for the subsequent and more 
detai led analyses of attention . 6 

But Neisser is disappoi nting when it comes to explaining how this 
crude, first approximation is to be accomplished by a digi tal computer. 
He seems to have in mind simply cleaning-up heurist ics wh ich , as 
Neisser implici t ly admits, on ly  work where the patterns are already fairly 
clearly demarcated. "Very simple operations can separate uni ts, provided 
they ha ve continuous contours or empty spaces between them. Computer 
programs which fol low l ines or detect gaps, for example, are as easi ly 
wri tten as those which fil l  holes and wipe out local irregulari ties. " 7 But 
such techniques fai l ,  for example, in the case of cursive script. 

Of course, i t  is hard to propose anything else. What is being asked for 
is a way of deal ing with the field of experience before i t  has been broken 
up in to determinate objects, but such preobjective experience is, by defi
ni t ion ,  out of bounds for a digi tal computer. Computers must apply 
specific rules to determinate data; if the problem is one of first carving 
out the determinate data, the programmer is left with the problem of 
applying determinate rules to a blur. 

The best that can be hoped in trying to ci rcumvent the techniques of 
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Area IV, therefore, may well be the sort of clever heuristics Minsky and 
Papert propose to enable a first-pass program to pick out certain specific 
features which will be useful in directing the program in filling in more 
details. But such ad hoc techniques risk becoming unmanageable and in 
any case can never provide the generality and flexibility of a partially 
determinate global response. 

2. A second difficulty shows up in connection with representing the 
problem in a problem-solving system. It reflects the need for essential/ 
inessential discrimination. Feigenbaum, in discussing problems facing 
artificial intelligence research in the second decade, calls this problem 
"the most important though not the most immediately tractable. " �  He 
explains the problem as follows: 

In heuristic problem solving programs, the search for solut ions wi th in a problem 
space is conducted and cont rol led by heurist ic rules. The representat ion t hat 
defines the problem space is the problem solver's "way of looking at" the problem 
and also specifies the form of solut ions. Choosing a represen tat ion that is right 
for a problem can improve spectacularly the efficiency of the solut ion-finding 
process. The choice of problem representat ion is the job of the human program
mer and is a creat ive act .  9 

This is the activity we called finding the deep structure or insight. 
Since current computers, even current primitive robots, do not have 
needs in the . sense we have discussed in Chapter 9, and since no one has 
any idea how to program needs into a machine, there is no present hope 
of dispensing with this .. creative act." The best that can be expected at 
this time is the development of programs with specific objectives which 
take an active part in organizing data rather than passively receiving 
them. Programmers have noticed that, in the analysis of complex scenes, 
it is useful to have the program formulate an hypothesis about what it 
would expect to find on the basis of data it already has, and look for that. 
This should not be confused with the way the human being organizes 
what  coun ts as data in terms of his field of purposes. All that can be 
expected is fixed rules to apply to fixed data; that is, there will be a 
programmed set of alternatives, and the program can, on the basis of 
present data, select one of these alternatives as the most probable and 
look for further data on the basis of this prediction. 
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Thus, specific long-range objectives or a set of alternative long-range 
objectives might be bui lt into game-playing and problem-solving pro
grams, so that in certain situations certain strategies would be tried by 
the computer (and predicted for the opponent) .  This technique, of 
course, would not remove the restriction that al l  these alternatives must 
be explici tly stored beforehand and explicitly consulted at certain points 
in the program, whereas human purposes impl icitly organize and direct 
hutnan activity moment by moment. Thus even with these break
throughs the computer could not exhibit the flexibil ity of a human being 
solving an open-structured problem (Area IV), but these techniques 
could help with complex-formal problems such as strategy in games and 
long-range planning in organizing means-ends analysis. 

3. Since computers are not in a situation, and since no one under
stands how to begin to program primitive robots, even those which move 
around, to have a world, computer workers are faced with a final prob
lem:  how to program a representation of the computer's environment. 
We have seen that the present attempt to store al l  the facts about the en
vironment in an internal model of the world runs up against the prob
lem of how to store and access this very large, perhaps infinite amount 
of data. This is sometimes cal led the large data base problem. Minsky's 
book, as we have seen, presents several ad hoc ways of trying to get 
around this problem, but so far none has proved to be generali zable. 

In spite of Minsky's claims to have made a first step in solving the 
problem, C. A. Rosen in discussing current robot projects after the work 
reported in Minsky's book acknowledges new techniques are sti l l  re
quired: 

We can foresee an u l t imate capabi l i ty of stori ng an encyclopedic quantity of facts 
about specific environments of in terest ,  but new methods of organization are 
badly needed which perm it  both rapid search and logical deductions to be made 
efficien t ly .  1 0  

In Feigenbaum's report, there is at last a recognition of the seriousness 
of thi s  problem and even a suggestion of a different way to proceed. In 
discussing the mobi le robot project at the Stanford Research Institute, 
Feigenbaum notes: 
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It is felt by the SRI group that the most unsatisfactory part of their simulation 
effort was the simulation of the environment. Yet, they say that 90% of the effort 
of the simulation team went into this part of the simulation. It turned out to be 

very difficult to reproduce in an internal representation for a computer the 
necessary richness of environment that would give rise to interesting behavior 
by the highly adaptive robot. 1 1 

We have seen that this problem is avoided by human beings because their 
model of the world is the world itself. It is interesting to find work at 
SRI moving in this direction. 

It is easier and cheaper to bui ld a hardware robot to extract what information 
it needs from the real world than to organize and store a useful model . Crudely 

put, the SRI group's argument is  that the most economic and efficient store of 
information about the real world is the real world itself. i :  

This attempt t o  get around the large data base problem b y  recalculat 
ing much of the data when needed is an interesting idea. although how 
far it can go is not yet clear. It presupposes some solution to the wholistic 
problem discussed in 1 above, so that it can segment areas to be recog
nized. It also would require some way to distinguish essential from 
inessential facts. Most fundamentally , it is of course limited by having 
to treat the real world, whether stored in the robot memory or read off 
a TV screen, as a set of facts; whereas human beings organize the world 
in terms of their interests so that facts  need be made explicit only insofar 
as they are relevant . 

What can we expect while waiting for the development and application 
of these improved techniques? Progress can evidently be expected in 
Area II. As Wang points out , .. we are in possession of slaves which are 
. . .  persistent plodders." 1 1 We can make good use of them in the area 
of simple-formal systems. Moreover, the protocols collected by Newell, 
Shaw, and Simon suggest that human beings sometimes operate like 
digital computers, within the context of more global processes. Since 
digital machines have symbol-manipulating powers superior to those of 
humans, they should, so far as possible, take over the digital aspects of 
human " 'information processing." 
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To use computers in Areas III and IV we must couple their capacity 
for fast and accurate calculation with the short-cut processing made 
possible by fringe-consciousness, insight, and ambiguity tolerance. Leib
ni z already claimed that a computer .. could enhance the capabilities of 
the mind to a far greater extent than optical instrll!nents strengthen the 
eyes." But microscopes and telescopes are useless without the selecting 
and interpreting eye itself. Thus a chess player who could call on a 
machine to count out alternatives once he had zeroed in on an interesting 
area would be a formidable opponent. Likewise, in problem solving, once 
the problem is structured and an attack planned, a machine could take 
over to work out the details (as in the case of machine-shop allocation 
or investment banking) . A mechanical dictionary which could display 
meanings on a scope ranked as to their probable relevance would be 
useful in translation. In pattern recognition, machines are able to recog
nize certain complex patterns that the natural prominences in our experi 
ence lead us to ignore. Bar-Hillel, Oettinger, and John Pierce have each 
proposed that work be done on systems wh ich promote a symbiosis 
between computers and human beings. As Walter Rosenblith put it at 
a recent symposium, "Man and computer is capable of accomplishing 
th ings that neither of them can do alone."  1 4  

Indeed, the first successful use of comp_uters to augment rather than 
replace human intelligence has recently been reported. A theorem-prov
ing program_ called SAM (Semi-Automated Mathematics) has solved an 
open problem in lattice theory. According to its developers: 

Semi-automated mathematics is an approach to theorem-proving which seeks to 
combine automatic logic routines with ordinary proof procedures in such a 
manner that the resulti ng procedure is both efficient and subject to human 
i ntervention in the form of control and guidance. Because it makes the math
ematician an essential factor i n  the quest to establ ish theorems, this approach is 
a departure from the usual theorem-proving attempts in  which the computer 
unaided seeks to establ ish proofs. ' �  

One would expect the mathematician, with h is sense of relevance, to 
assist the computer in zeroing in on an area worth counting out. And 
th is is exactly what happens. 
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The user may intervene i n  the process of proof i n  a number of ways. H is selection 

of the in itial formulas i s  of course an impo rtant factor in  determi n i ng the course 

AUTO-LOGIC will take. Overly large or ill-chosen sets of i n itial formulas tend 

to divert AUTO-LOGIC to the proving of trivial and uninteresti ng results so that 

it never gets to the interesting formulas. Provided with a good set of i n itial 

formulas, however, AUTO-LOGIC will produce useful and interesting  results. 

As the user sees that AUTO-LOGIC is runn ing out of useful ways i n  which to 
use the original formulas, he can halt the process and in sert additional axioms 

or other material. He can also guide the process by deleting formulas which seem 

unimportant or distracting. Thi s real-time in terplay between man and machi ne 

has been found to be an exciting and rewarding mode of operation. 1 � 

Instead of trying to make use of the special capaci t ies of computers, 
however, workers in artificial intelligence-blinded by their early suc
cess and hypnotized by the assumption that thinking is a cont inuum
will set tle for nothing short of unaided intelligence. Feigenbaum and 
Feldman's anthology opens with the baldest statement of this dubious 
principle: 

In terms of the con t inuum of in telligence suggest ed by A rmer. the computer 

programs we have been able to const ruct are st i ll at  the low end. What is 

important  is that we cont inue to st ri ke out in the direct ion of the milestone that 

represents  the capabili t ies of human in telligence. Is there any reason to  suppose 

that we shall never get there? None whate, er. Not a single piece of e, · idence. no 

logical argument .  no proof or theorem h as ever been advanced which demon 

st rates an insurmountable hurdle along the con t inuum . 1 
• 

Armer pruden tly suggests  a houndary,  but he is st ill opt imist ic : 

I t  is i rrelevant whether or not there may exist some upper bound above which 

machines cannot go in this con t inuum .  Even if such a boundary ex ists.  there is 

no evidence that i t  is located close to the posit ion occupied by today 's machines. 1
� 

Cu rrent difficulties, once they are interpreted independently of opt i 
mist ic a priori assumpt ions, however, suggest that the areas of intelligent 
behavior are discon tin uous and that the boundary is near. The stagnation 
of each of the specific effort s  in art ificial intelligence suggests  that there 
can be no piecemeal breakthrough to fully formed adult intelligent 
behavior for any isolated kind of human performance. Game playing, 
language t ranslat ion, problem solving, and pat tern recogni t ion, each 
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depends on specific forms of human "information processing," which are 
in turn based on the human way of being in the world. And this way of 
being-in-a-situation turns out to be unprogrammable in principle using 
presently conceivable techniques. 

Alchemists were so successful m distil l ing quicksilver from what 
seemed to be dirt that, after several hundred years of fruitless efforts to 
convert lead into gold, they stil l refused to believe that on the chemical 
level one cannot transmute metals. They did, however, produce-as 
by-products-ovens, retorts, crucibles, and so forth, just as computer 
workers, while failing to produce artificial intel ligence, have developed 
assembly programs, debugging programs, program-editing programs, 
and so on, and the M . I.T. robot project has built a very elegant mechani
cal arm. 

To avoid the fate of the alchemists, it  is time we asked where we stand. 
Now,  before we invest more time and money on the information-process
ing level ,  we should ask whether the protocols of human subjects and the 
programs so far produced suggest that computer language is appropriate 
for analyzing human behavior: Is an exhaustive analysis of human reason 
into rule-governed operations on discrete, determinate, context-free ele
ments possible? Is an approximation to this goal of artificial reason even 
probable? The answer to both these questions appears to be, No. 

Does this mean that al l the work and money put into artificial intel li
gence have been wasted? Not at al l ,  if instead of trying to minimize our 
difficulties, we try to understand what they show. The success and subse
quent stagnation of Cognitive Simulation and of Al ,  plus the omnipres
ent problems of pattern recognition and natural language understanding 
and their surprising difficulty,  should lead us to focus research on the 
four human forms of "information processing' '  which they reveal and the 
situational character of embodied human reason which underlies them 
al l .  These human abilities are not necessary in those areas of intel ligent 
activity in which artificial intel ligence has had its early success, but they 
are essential in just those areas of intel ligent behavior in which artificial 
intel ligence has experienced consistent failure. We can then view recent 
work in artificial intel ligence as a crucial experiment disconfirming the 
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traditional assumption that human reason can be analyzed into rule
governed operations on situation-free discrete elements-the most im
portant disconfirmation of this metaphysical demand that has ever been 
produced. This technique of turning our philosophical assumptions into 
technology until they reveal their limits suggests fascinating new areas 
for basic research. 

C. E. Shannon, the inventor of information theory, sees, to some 
extent, how different potentially intelligent machines would ha\'e to be. 
In his discussion of .. What Computers Should be Doing, · ·  he observes: 

Efficien t machines for such problems as pat tern recogni t ion . language t ransla
t ion,  and so on, may require a d ifferen t type of computer than any we have today .  
I t  i s  my feel ing that th is  wi l l  be a computer whose natural  operation is in  terms 
of patterns, concepts, and vague sim i lari t i es. rather than sequent ia l  operat ions 
on ten-digit numbers. 1 � 

We have seen that , as far as we can tell from the only being that can deal 
with such .. vagueness, . .  a "machine" which could use a natural language 
and recognize complex patterns would have to have a body so that it 
could be at home in the world. 

But if robots for processing non formal information must be. as Shan
non suggests ,  entirely different from present digital computers. what can 
now be done? Nothing directly toward programming present machines 
to behave with human intelligence. We must think in the short run of 
cooperation between men and digital computers. and only in the long run 
of nondigital automata which, if they were in a situation. would exhibit 
the forms of "information processing" essential in dealing with our 
nonformal world. Artificial Intelligence workers who feel that some 
concrete results are bet ter than none. and that we should not abandon 
work on artificial intelligence until the day we are m a position to 
construct such artificial men. cannot be refuted. The long reign of al
chemy has shown that any research which has had an early success can 
always be justified and continued by those who prefer adventure to 
patience. 20• If researchers insist on a priori proof of the impossibility of 
success, one can at best use formal methods such as Godel's to prove the 
limitations of formal systems, but such proofs are irrelevant to AI. 2 1 • 
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Researchers could in any case respond that at least the goal can be 
approached. If, however, one accepts empirical evidence as to whether 
the effort has been misdirected, he has only to look at the predictions and 
the results. Even if there had been no predictions, only hopes, as in 
language translation, the results are sufficiently disappointing to be self
incriminating. 

If the alchemist had stopped poring over his retorts and pentagrams 
and had spent his time looking for the deeper structure of the problem, 
as primitive man took his eyes off the moon, came out of the trees, and 
discovered fire and the wheel, things would have been set moving in a 
more promising direction. After all, three hundred years after the al
chemists we did get gold from lead (and we have landed on the moon), 
but only after we abandoned work on the alchemic level, and worked to 
understand the chemical level and the even deeper nuclear level instead. 
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5 .  In th i s  context, Newel l ,  Shaw, and Simon's claim to have synthesized the 
contri?utions of behaviorists and Gestaltists by, on the one hand, accepting 
behavioral measures, and, on the other, recogn izing that . .  a human being is 
a t remendously complex, organized system" ( . .  GPS: A Program that Simu
lates Human Thought ," pp. 280, 293) shows ei ther a wi l l  to obscure the 
issues or a total  misunderstanding of the contribution of each of these 
schools. 

6 .  See Part I I I . 
7 .  Jerry A .  Fodor, "The Appeal to Tacit Knowledge i n  Psychological Explana

t ion , "  The Journal of Philosophy, Vol .  No. 20 (October 24, 1 968), p.  632.  
8 .  Ibid. , p. 629. 
9 .  Ibid. , p. 637 .  

l 0. Jerry Fodor, Psychological Explanation (New York : Random House, 1 968), 
p. 1 3 8 .  

1 1 . The  other reading  of  the  simulabi l i ty c laim, the  reading which is relevant to 
the mental ist's purposes but, unfortunately, lacks the immediate credibi l i ty 
of the fi rst, is that any analog processor can also be represented. The flaw 
in  th is  al ternat ive, however, i s  difficult to grasp unt i l  a few examples have 
clarified the dist inction between simulation and representat icm .  The division 
function of a s l ide rule i s  s imulated by any algori thm which yields appropri 
ate quotien ts; but it is represented on ly i f  the quotients are obtained in a 
sliderulelike manner i n  which the steps correspond to comparing lengths .  
On a computer th is would amount to assigning (col inear) spatial coordinates 
to the mantissas of two log tables, and effecting a . .  translation" by subtract
i ng. To t reat a more general case, one can simulate any multiply coupled 
harmonic system (such as most commercial analogue computers) by solving 
thei r characteristic differential equat ions. On the other hand, a representa
tion , rough ly  a s imulat ion of the i nner operation as wel l  as the end result ,  
would requ ire a s imulation of each electronic component (resistors, capaci
tors, wi res, etc . ) , their effects on one another, and thence their variations 
i terated through t ime. 

Each of these analogues happens to be both simulable and representable, 
but this is not always the case. Some analogues are not composed of iden tifia
ble parts, e .g . , a soap fi lm  "computing" the min imum surface which is 
bounded by an i rregularly shaped wire, and hence are not representable in 
anyth ing l i ke the above fash ion . 

Now i t  might be claimed that since a soap bubble (or any other material 
object) is made of atoms i t  can st i l l  always be represented in pri nciple by 
work ing out an immense (!) amount of quantum mechan ics. But it is at best 
very dubious that such a mountain of equat ions would or could amount to 
an explanation of how someth ing works, or i n  the case of the brain, have any 
relevance at all to psychology. If this needs to be any more obvious than it 
is, th ink of an ordinary adding machine that works with wheels and cogs; 
our conviction that it works mechan ical ly and can be represented in every 
i n terest ing sense is not in the least based on the fact that i t  is made of atoms. 
In fact, i t  could be made of some total ly  mysterious, indivisible substance 
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and everyone would remain confident that insofar as i t  worked with the 
wheels, cogs, and all ,  i t  would sti l l  be a mechanism, and any representation 
in terms of the wheels and cogs would count as an explanation. Essentially 
the same point could be made about electronic analogue computers, slide 
rules, and so on. 

Thus, the plausibi l i ty of the a priori position that an analogue can always 
be digitally represented is i l legi t imate, only borrowed, so to speak, from the 
plausibi l i ty of the much weaker and i rrelevant claim of mere simulabi l i ty. 

1 2. Mi l ler, Galanter, and Pribram, op. cit . .  p. 1 6. (My i ta l ics . )  
1 3. Newel l  and Simon, "GPS: A Program that Simulates Human Thought ," 

p. 293. 
1 4. Newell and Simon, Compu ter Sim ulation of Human Thinking. p. 9. 
1 5 . Ibid. , p. 292. 
1 6. Thomas Kuhn, The Structure of Scientific Revolu tions (Chicago: University 

of Chicago Press, 1 962 ), p. 8 1 .  
17. Ibid. , p. 17. 
1 8 . !bid. , p. 8 1 . 
1 9. Newell and Simon, Computer Sim ulation of Human Thinking. p. 9 .  
20. Herbert Simon and Alan Newell , "Information Processing in  Computer and 

Man," A merican Scien tist. Vol . 52 (September 1 964), p. 282. 
2 1 .  Mi l ler, Galanter, and Pribram, op. cit . .  p. 1 6 . (My italics . )  
22 .  See Plato, Meno. 
23. Introduction, Section I .  
24. Mi l ler et al . ,  op. cit . .  p .  17 .  Or  compare Minsky in  h i s  art icle "Art ificial 

Intell igence," Scientific A merican. Vol. 2 1 5 , No. 3 (September 1 966 ) : 
"Evans began his work . . .  by proposing a theory of the steps or processes 
a human brain might use in dealing with such a situation" (p. 250) .  Again, 
Minsky and Papert d irect their book Perceptrons (M. I .T. Press, 1 96()) to 
"psychologists and biologists who would l ike to know how the brain com
putes thoughts" {p. 1 ). Qui l l ian in his thesis ,  Seman tic Memory. says, 
" . . .  to understand such meaning is ei ther to find or to create in the brain 
of the understander some configuration of symbols . . . .  " (p. 70). 

25 .  Jerry Fodor, Psychological Explanation , p. 30. 
26. Ibid . .  p. 22 .  
27. Neisser, op. cit . .  p.  3. 
28. Of course, phenomenological ly ,  it is objects, not l ight waves we have di rect 

access to. 
29. Neisser, op. cit . . p. 3. 
30. Ibid. (My i tal ics . )  
3 1 .  Unless one adopts the ident ity theory of sensations and brain states which 

Neisser does not seem to hold, since it would require a further justification 
which Neisser nowhere gives. 

32. Neisser, op. cit. , p. 4. (My ital ics.) 
33. Ibid .. p. 5. "Our knowledge of the world must be somehow developed from 

the st imulus input. . . .  " 
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34. Ibid. , p. 22 .  
35 .  Neisser, op. cit. , p. 8 .  
36 . Ibid. , p. 1 0. 
37 .  Ibid. , p. 1 40. 
38 .  Rather than revive the Humean notion of sense data and then find oneself 

-forced to introduce Kantian rules to account for their combination into the 
perception of objects, i t  would be more i l luminating, and presumably a better 
guide to research, to determine what psychologists such as Neisser actually 
do, regardless of thei r  mistaken conceptual ization . Such work involves try
ing to find those cues in the perceptual field which are significant in various 
areas of perception ; for example, those cues which are essential in our 
perception of depth .  One can find out which cues are necessary by systemati
cal ly excluding various factors such as binocular vision, displacement ,  tex
ture gradient ,  etc. One can even determine the order of dependence of these 
cues and the number of cues that can be taken account of in a given time. 
The resul ts, i t  is hoped, wi l l  resemble the sequential steps diagrammed in the 
flow chart of a computer program. If so, one can formalize the laws which 
relate input to output at each stage. 

Such work requires no talk of "unconscious rules" organizing fragmen
tary elements into perceptions. I t  should never lead us to say that "we have 
no immediate access to the world nor to any of its propert ies ."  What would 
be psychological ly real in such a theory would not be fragments and rules, 
but just those cues in our normal perception of objects which play a role in 
the theory. 

Although we are most often not explici t ly aware of them, these cues are 
not unconscious. We can become expl icit ly aware of them by focusing our 
attention on them, whereas we cannot become aware of neural events or even 
the "snapshots" of objects Neisser tells us we actual ly perceive. Sometimes 
the cues may be so sl ight that we would never discover them by simply 
looking. For example, one cannot see the slight displacement of each dot of 
a Julesz pattern which produces the i l lusion of depth. But if told what to look 
for we could presumably find the displacement with a sui table measuring 
device. Thus these cues can be said to be psychological ly real in the straight
forward sense that we can become aware of them . 

The "flow chart" too has psychological real i ty in those restricted cases in 
which it expresses the order of dependence of the cues. I t  is surely in some 
rough way correlated with the physical processes going on in the brain ,  but 
even in  these cases this does not justify talking of unconscious processing as 
if the brain were a digital computer operating according to a program. 

In terestingly enough, when psychologists actually undertake this sort of 
research, they find that no individual cues are necessary and sufficient but 
that different col lect ions  of cues are sufficient under specific restricted condi
tions. A lso the order of dependence of the cues varies from si tuation to 
s i tuation. The results, then, resemble a flow chart in only a very l imited way 
in very sharply restricted cases. To ful ly formal ize their theory in terms of 
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thei r computer model the experimenters would ei ther have to specify the 
i nput i n  terms of abstract situation-independent variables, or find metarules 
for recognizing specific si tuations and correlating  these si tuations with spe-
cific orders of dependence. So far no such abstract variables and rules have 
been found. (See my art icle, .. Phenomenology and Mechanism,"  NO US. 

Vol. V, No. 1 ,  Feb. , 1 97 1 . )  
39. Fodor, Psychological Explanation, p. 26, ci ted in  note 23 above. 
40. Ibid. , p. 29. 
4 1 .  Ibid. , p. 26. 
42. Ibid. , p. 28. 
43. Ibid. 
44. Ibid . .  p. 1 40. (My i tal ics. ) 
45. Ibid. , p. 1 4.1 . 
46. Ibid. , p. 83. 
47. Ibid .. p. 85. (My i ta lics. ) 
48. Ibid. , p. 1 46. 

C H A PTER 5 .  T H E  EPISTEMOLOG I C A L  ASSU M PTION 

1 .  By . .  reproduct ion" I mean the product ion of essent ial features of the behav
ior in quest ion . I do not mean an exact copy, any more than a photographic 
reproduct ion of the Eiffel Tower is made of steel . Since computers are not 
expected to move and exh ibi t behavior in the normal sense, we are not 
concerned with using the formal theory of a kind of performance to exact ly 
copy that performance. The product ion of essent ial characterist ics of a 
certain performance wit hout imi tat ing the performance in detai l  would 
normal ly be cal led "simulat ion . "  Thus a computer can simulate an elec
t ion without cast ing any votes-but the term "simulat ion" is al ready pre
empted by the cogn it ive simulat ionists who wish to include in thei r model 
not just the crit ical behavior but the steps by which t hat behavior was 
produced . 

2 .  Th is bicycle example is taken from Michael Polanyi 's Personal Knowledge 
(London : Rout ledge & Kegan Paul) ,  p. 49. Polanyi 's  analysis of the example 
is worth quot ing at length :  

"From my interrogat ions of  physicists, engineers, and bicycle manufactur
ers , I have come to the conclusion that t he principle by which the cyclist 
keeps his balance is not general ly  known.  The rule observed by the cyclist 
is this .  When he starts fal l ing to the right he turns the handlebars to the right ,  
so  that the course of the bicycle is  deflected along a curve towards the right. 
This resu lts in a cen trifugal force push ing the cycl ist to the left and offsets 
the gravitat ional force dragging him down to the right .  This maneuver 
present ly  throws the cycl ist out of balance to the left, which he counteracts 
by turning the handlebars to the left ; and so he cont inues to keep h imself 
in balance by winding along a series of appropriate curvatures. A simple 
analysis shows that for a given angle of unbalance the curvature of each 
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winding i s  inversely proportional to the square of the speed at which the 
cyclist is  proceedi ng. 

"But does th is tell us exactly how to ride a bicycle? No. You obviously 
cannot adjust the curvature of your bicycle's path in proportion to the ratio 
of your unbalance over the square of your speed; and if you could you would 
fall off the machine, for there are a number of other factors to be taken 
account in practice which are left out of in the formulation of this rule." 

I n  spi te of this important i nsight-that the formalism cannot account for the 
performance-Polanyi blurs the significance of this example by referring to 
"hidden rules" (p. 5 3). This reference to hidden rules shows that Polanyi, 
like Plato, fails to d istinguish between performance and competence, be
tween explanation and understanding, between the rule one is following and 
the rule which can be used to describe what is  happening. It is  just such a 
confusion which gives rise to the optim ism of those i n  Cogni tive Simulation. 

Polanyi does have an objection of his own to CS. He holds that "in an 
important sense" we do know the rules, but claims that "one cannot deal 
with this as if it were unconscious knowledge, for the point  is that it is a 
(more or less unconscious) knowledge with a bearing on an end. I t  is this 
quality of the subsidiary awareness, its functionally performing quality, that 
the machine cannot duplicate, because the machine operates throughout on 
one single level of awareness. " (Personal communication.) This is an i nter
est ing intermediate position, but one still wonders why, granted this second 
kind of awareness, Polanyi feels i t  necessary to assume that we are following 
rules in any sense at all. 

3 .  Minsky, Computation: Fin ite and Infinite Machines (Englewood Cliffs, N.J . :  
Prentice-Hall, 1 967), p. vii .  

4 .  A. M .  Turi ng, "Computing Machinery and Intelligence," in  Minds and 
Machines, ed. Alan Ross Anderson (Englewood Cliffs, N.J . :  Prentice-Hall, 
1 964), p. 8. 

5. Minsky, · Computation: Fin ite and Infinite Machines, p. 1 07. 
6. Ibid. 
7. Tur ing, op. cit. , pp. 22-23. 
8 .  Ibid. 
9. James T. Culbertson, "Some Uneconomical Robots," A utomata Studies, 

C. E. Shannon and J .  McCarthy, eds. (Princeton, N.J . :  Princeton University 
Press, 1 956), p. 100. 

1 0. Ibid. , p. I 1 4. 
1 1 . Why no such isolable inputs and outputs can be found will only become clear 

when we have described the relat ion of the human subject to his world. See 
Chapter 9, especially p. 266 . 

1 2. Minsky, " Matter, Mind, and Models," in Semantic Information Processing, 
p. 429. 

1 3 . H. J. Bremermann, "Optimization Through Evolution and Recombination," 
i n  Self-Organ izing Systems (Washington, D .C. ,  1 962), p. I .  
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1 4. Ibid. , p. 2. 
1 S. Minsky, Computation, p. 1 07. 
1 6. John McCarthy, "Programs with Common Sense," in Semantic Information 

Processing, p. 4 1 0. 
17. Chomsky sometimes defines competence and performance so as to preserve 

this separation and to make the relation of a t heory of competence to a 
theory of performance an empirical question. For example: ' 'To avoid what 
has been a continuing misunderstanding, i t  is perhaps worthwhi le to reiter
ate that a generative grammar is not a model for a speaker or a hearer. I t  
attempts to characterize in the most neu tra l  possible terms the knowledge of 
the language that provides the basis for actual use of a language by a 
speaker-hearer. When we speak of a grammar as generating a sentence with 
a certain structural description ,  we mean simply that the grammar assigns 
this structural description to the sentence. " ( Aspects of the Theory of Syntax 
[Cambridge, Mass. : M. I .T. Press, 1 96S] ,  p. 9 . )  (My italics. ) 

This straightforward defini tion ,  however. leaves some doubt as to how 
Chomsky understands the competence/performance dist inct ion he has in
troduced. I f  competence is what one knows when one knows a language. it 
would be an empirical question whether the rules which describe compe
tence play any role at al l in producing the performance. Yet at t imes 
Chomsky seems to hold that competence necessari ly  plays a role in perfor
mance and builds this into the very defin it ion of performance and compe
tence and thei r relat ion : "By a 'generat ive grammar' I mean a description 
of the tacit competence of the speaker-hearer that underlies his actual perfor
mance in production and perception (understanding) of speech. A generative 
grammar, ideally, specifies a pai ring of phonet ic and semantic representa
tions over an infin ite range; it thus const itutes a hypothesis as to how the 
speaker-hearer in terprets ut terances. abstract ing away from many factors 
that in terweave with taci t competence to determine act ual performance. " 
( Cartesian Linguistics [New York : Harper & Row, 1 966] . p. 7S . )  (My ital
ics. ) 

Or see also " . . . We must abst ract for separate and independent study a 
cognit ive system, a system of knowledge and belief that develops i n  early 
childhood and that in teracts with many other factors to determine the k inds 
of behavior that we observe; to introduce a technical term, we must isolate 
and study the system of linguistic competence that underlies behavior but 
that is not rea lized in any di rect or simple way in behavior." ( Language and 
Mind [New York : Harcourt , Brace and World , 1 968] , p .  4.) (My ital ics. )  

When Chomsky speaks of  "taci t competence" which "underl ies . . .  actual 
performance" and which "determines . . .  behavior," we find the same 
tendency we found in Polanyi when he assumed that the rule he suggests for 
describing bicycle-riding competence is involved in bicycle-rid ing perfor
mance. On this reading, the role of the formalism expressing the competence 
is no longer neutral .  Whatever the correct formalism is, it is necessari ly 
involved in producing the performance. 
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Yet i f  the competence/performance dist inct ion is to have the effect of 
separat ing a formal theory from a psychological theory, the relation of a 
theory of competence to a theory of performance cannot be bui l t  in by 
defin i t ion; or to put i t  the other way around, if i t  belongs to the defini t ion 
of competence to underl ie performance, then competence cannot mean sim
ply a formal theory which "pai rs phonetic and semantic representations over 
an infini te range." I t  would have to mean an idealized psychological theory 
of how language is produced, and the competence/performance dist inct ion 
would only cal l  at tent ion to the fact that other factors such as fatigue and 
learning had been disregarded. 

At t imes Chomsky seems to hold th is view. "We do not interpret what 
is said in  our presence simply by appl ication of the l inguistic principles that 
determine the phonetic and semantic properties of an utterance. Extral in
guist ic bel iefs concerning the speaker and the si tuation play a fundamen tal 
role in  determin ing how speech is produced, ident ified, and understood. 
Linguistic performance is, furthermore, governed by principles of cogni t ive 
st ructure (for example, by memory restrictions) that are not, properly speak
ing, aspects of language . 

.. To study a language, then, we must at tempt to disassociate a variety of 
factors that in teract with underlying competence to determine actual perfor
mance; the technical term 'competence' refers to the abi l i ty of the ideali zed 
speaker-hearer to associate sounds and mean ings strict ly in acco;-dance with 
the ru les of h is  language. " ("The Formal Nature of Language," append ix to 
Biological Foundations of Language, Eric Lenneberg, [New York : Wiley , 
1 967] ,  p. 398 . )  (My i talics. ) 

What, t hen, is the relat ion between competence and performance? If one 
discovered in psycholinguistics that language is produced in a way which 
does not involve the rules postulated by Chomsky's l inguistic formalism at 
a l l ,  as t he latest research seems to suggest (See T. G. Bever, The Cognitive 
Basis for Linguistic Structures, chapter en t i t led 'The Non-Distinct ion Be
tween Linguist ic Competence and Performance in the Adul t" :  ·• . . .  behav
ioral processes manipulate linguist ically-defined in ternal and external 
structures but do not mirror or di rect ly simulate the grammatical processes 
that relate those structures within a grammar. Such a conclusion invalidates 
any model for speech recogni tion wh ich at tempts di rect ly  to incorporate 
grammat ical rules as an isolable component of the recognit ion processes . "  
Prepri nt p .  1 0 1  ) ,  would Chomsky gi ve up  his formal description? Chomsky 
seems to want to have it both ways: to make the role of h is formal ism for 
competence independent  of psychology so he would not have to give i t  up 
no matter what experiments showed and yet to make its role in performance 
a matter of defini t ion. On the one hand, he says: "When we say that a 
sen tence has a certain derivation with respect to a part icular generat ive 
grammar, we say nothing about how the speaker or hearer might proceed, in 
some pract ical or efficient way, to construct such a derivat ion . These ques
t ions belong to the theory of language use-the theory of performance." 
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(Aspects of the Theory of Syntax, p. 9. [My ital ics . ] )  Yet in  Language and 
Mind Chomsky says: · ·The problem of determining the character of such 
grammars and the principles that govern them is a typical problem of 
science, perhaps very difficult, but in principle admi tting of definite answers 
that are right or wrong as they do or do not correspond to the mental reality . .  

{p. 1 6). (My i talics.) 
Underlying th is  uncertainty as to the status of the formal grammatical 

s tructure characterizing the speaker·s in tuitions concerning grammatical i ty 
is the powerful conjunction of the Platonic assumption that the formalism 
which enables us to understand behavior is also involved in producing that 
behavior, and the Kantian assumption that all orderly behavior is governed 
by rules, both  reinforced by the idea of a computer program. Chomsky does 
not question the assumption that "the person who has acqui red knowledge 
of a language has internalized a system of rules . . . ·· ( Language and Mind. 
p. 23), nor that these rules funct ion as a · ·mechanism . . for · ·generat i ng" 
sentences. These convict ions taken together lead to Chomsky's Cartesian 
theory of innate ideas, which even he admits  is difficult to accept: · · 1 t  is not 
easy to accept the view that a chi ld is capable of const ructing an ex tremely 
complex mechanism for generat ing a set of sentences. some of which he has 
heard, or that an adul t  can instantaneously determine whether (and if so, 
how) a part icular item is generated by th is mechan ism. which has many of 
the propert ies of an abstract deduct ive theory . Yet this appears to  be a fair 
description of the performance of the speaker. l istener. and learner. . . ( "A 
Review of B .  F. Skinner's Verbal Behavior. " The Structure of Language 
[Englewood Cl iffs, N .J . :  Pren t ice-Hal l ,  1 %4], p .  5 77 . )  

This view. however implausible. seems acceptable thanks to the presence 
of the computer: · ·  . . .  there is  no difficulty in princ iple in pwgramming a 
computer with a schemat ism that sharply rest ricts the form of a generat ive 
grammar, with an evaluat ion procedure for grammars of the given form. 
wi th a techn ique for determin ing whether gi ven data is compat ible with a 
grammar of the given form . with a fi xed subst ructure of en t i t ies (such as 
dist i nct ive feat ures) .  rules. and princi ples. and so on-in short . w i th  a uni 
versal grammar of the sort that has been proposed in recent years ."  ( Lan
guage and Mind. p. 7 3 . )  

Chomsky goes o n  t o  con nect th is computer model wi th the c lassical 
tradi t ion : "For reasons that I have already ment ioned, I bel ieve that these 
proposals can he properly regarded as a furt her development  of classical 
ra t ional ist doctrine, as an elaborat ion of some of its main ideas regarding 
language and mind . . . ( Language and Mind. p. 7 3 . )  He concludes: "By 
pursui ng the k inds of research that now seem feasible and by focusi ng 
at ten t ion on certain problems that are now accessible to study, we may be 
able to spe l l  out in  some detail the elaborate and abst ract computat ions that 
determine, in part , the nature of percepts and the character of the knowledge 
that we can acquire-the high ly  specific ways of in terpret ing  phenomena 
that are, in  large measure, beyond our consciousness and cont rol and that 
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may be un ique to man . "  ( Language and Mind, pp. 84-8 5 . )  I n  th i s  neo
Cartesianism the t rad i t ional phi losophical assumption that man's un ique 
at t ribute may be to be a highly soph ist icated computer becomes fu l ly ex
p l ic i t ,  perhaps for t he fi rst t ime since Hobbes prematurely drew the same 
concl usion on the basis of Newtonean physics.  

1 8 . Soren K ierkegaard , Concluding Unscientific Postscript (Princeton,  N .J . : 
Pri nceton Un iversi ty  Press, 1 944), pp.  1 08 and 3 1 1 .  

1 9 . This  a t t i t ude i s  forcefu l ly  and nai·vely expressed in  Sayre's in t roduction to 
The Modeling of Mind, Kenneth M.  Sayre, and J .  Crosson ,  eds .  (South  Bend, 
I nd . : Notre Dame Universi ty  Press, 1 962) : 

"Any  mental  function which is such that  ( 1 )  i ts inpu t  and output can be 
spec ified w i th  precision , and (2) the t ransformation it performs can be ap
proxi mated by equations which express a determinate relationsh ip  between 
i n pu t  and output ,  can for these reasons alone be s imulated wi th  some degree 
of adequacy .  I f, on the  other hand, we do not have a clear understanding 
of ei t h er t he i n put ,  t he output ,  or the t ransformation , we wil l  be unable to 
ach ieve an adequate si mu lat ion of that  funct ion . Our inabi l i ty  in  such a case, 
however, i s  a discred i t  to the h uman mind, and not a symptom of any 
' t ranscendence' of mental  functions" (p.  14 ) .  

20 .  Ludwig Wi t tgenstein ,  The Blue and Brown Books (Oxford, Eng. : Basi l 
B lackwel l ,  1 960) , p. 2 5 .  

2 1 .  See, for exam ple, Wi t tgenstein ,  Philosophical Investigations (Oxford,  Eng. : 
Basi l B lackwel l ,  1 95 3) ,  pp.  39 ,  40, 4 1 ,  42 .  

"A rule  stands l ike a s ign-post .-Does the sign-post leave no doubt open 
about  the  way I have to go? Does it show which d i rect ion I am to take when 
I have passed it ;  whether along t he road on the footpath or cross-country? 
But  where is it said wh ich way I am to fol low i t ;  whether in the d irect ion 
of i t s  fi nger or (e.g . )  i n  the  opposite one?-And i f  there were, not a s ingle 
s ign-post", but  a chain of adjacen t ones or of chalk marks on the ground
is t here any one way of in terpret ing  them?-So I can say, the sign -post does 
after a l l  leave no room for doubt . Or rather :  it sometimes leaves room for 
doubt and sometimes not .  And now th i s  is no longer a phi losophical proposi 
t ion , but  an empi rical one" (pp. 39 ,  40) . 

C H A PTER 6. T H E  ONTOLOG ICAL ASS U M PTION 

1 .  M i nsky,  Semantic Information Processing, p. 1 1 . 
2 .  Ibid. 
3 .  A dig i ta l  computer is composed of fl ip/flops which perform logical opera-

t ions,  but  th i s  does not l im i t  the computer to instant iat ing i nformation
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N .J . :  Prentice-Hal l ,  1 964), p . 487 .  

28. Ibid. , p. 489 . 
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CONC L USION 

1 .  Facts l ike "A man has two hands," rather than l ike "Z flip/flop is on . "  The 
difference is the same as the difference between a fact about the con tent of 
a pictu re and a fact about one of the dots composing the picture. It is clearly 
t hese real-world facts which are at stake, since Minsky suggests we have to 
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Conclusion:  The Scope a nd Lim its of Artific ia l  R eason 
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are sufficien t ly  simple and stereotyped to be formalized . In tel l igence was 
surely i nvolved in formulating the ru les which investors now follow in 
making up a portfolio of stocks, but the formalization of these rules only 
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