UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

utomata
and

omputability

/
DEXTER C. KOZEN

UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Editors
David Gries
Fred B. Schneider

Springer Science+Business Media, LLC

UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Beidler, Data Structures and Algorithms

Bergin, Data Structure Programming

Brooks, Problem Solving with Fortran 90

Brooks, C Programming: The Essentials for Engineers and Scientists
Dandamudi, Introduction to Assembly Language Programming
Grillmeyer, Exploring Computer Science with Scheme

Jalote, An Integrated Approach to Software Engineering, Second Edition
Kizza, Ethical and Social Issues in the Information Age

Kozen, Automata and Computability

Merritt and Stix, Migrating from Pascal to C++

Pearce, Programming and Meta-Programming in Scheme

Zeigler, Objects and Systems

Dexter C. Kozen

Automata and
Computability

) .ér’_- .
%)) Springer

Dexter C. Kozen

Department of Computer Science
Cornell University

Ithaca, NY 14853-7501

USA

Series Editors

David Gries

Department of Computer Science
Boyd Studies Research Center
The University of Georgia
Athens, Georgia 30605

USA

SPIN: 10875033

Fred B. Schneider

Department of Computer Science
Cornell University

Upson Hall

Ithaca, NY 14853-7501

USA

2002 Reprint. "This reprint has been authorized by Springer-Verlag,
Heidelberg, Germany, for sale in India, Pakistan, Bangladesh, Nepal and
Sri Lanka only and not for export therefrom".

On the cover: Cover photo taken by John Still/Photonica.

With 1 figure.

Library of Congress Cataloging-in-Publication Data

Kozen, Dexter, 1951 -

Automata and computability/Dexter C. Kozen.
. cm. - (Undergraduate texts in computer science)
Includes bibliographical references and index

ISBN 978-3-642-85708-9

ISBN 978-3-642-85706-5 (eBook)
DOI 10.1007/978-3-642-85706-5

1. Machine theory. 2. Computable functions. 1. Title.

II Series.
QA267.K69 1997
511.3—dc21

96-37409

© 1977 Springer Science+Business Media New York

Originally published by Springer-Verlag New York, Inc in 1977.

All RIGHTS RESERVED. This work may not be translated or copied in whole or in

part without the written permission of the publisher
Springer Science+Business Media, LLC except for brief excerpts in connection

with reviews of scholarly analysis. Use in connection with any form of information
storage and retrieval, electronic adaptation, computer software, or by similar or

dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication,
even if the former are not especially identified, is not to be taken as a sign that such
names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly

be used freely by anyone.

Production managed by Francine McNeill; manufacturing supervised by Jacqui Ashri.

Photocomposed copy prepared using Springer's LaTeX style macro.
Printed and bound at Eastern Press (Bangalore) Pvt. Ltd., 100% EOU,
110B, Bommasandra Industrial Area, Hosur Road, Anekal Taluk,
Bangalore 562 158 (INDIA).

987654 (Corrected third printing, 1999)

To Juris

Preface

These are my lecture notes from CS381/481: Automata and Computability
Theory, a one-semester senior-level course I have taught at Cornell Uni-
versity for many years. I took this course myself in the fall of 1974 as a
first-year Ph.D. student at Cornell from Juris Hartmanis and have been in
love with the subject ever since.

The course is required for computer science majors at Cornell. It exists
in two forms: CS481, an honors version; and CS381, a somewhat gentler-
paced version. The syllabus is roughly the same, but CS481 goes deeper
into the subject, covers more material, and is taught at a more abstract
level. Students are encouraged to start off in one or the other, then switch
within the first few weeks if they find the other version more suitable to
their level of mathematical skill.

The purpose of the course is twofold: to introduce computer science students
to the rich heritage of models and abstractions that have arisen over the
vears; and to develep the capacity to form abstractions of their own and
reason in terms of them.

The course is quite mathematical in flavor, and a certain degree of pre-
vious mathematical experience is essential for survival. Students should
already be conversant with elementary discrete mathematics, including the
notions of set, function, relation, product, partial order, equivalence rela-
tion, graph, and tree. They should have a repertoire of basic proof tech-
niques at their disposal, including a thorough understanding of the principle
of mathematical induction.

viii

Preface

The material covered in this text is somewhat more than can be covered in a
one-semester course. It is also a mix of elementary and advanced topics. The
basic course consists of the lectures numbered 1 through 39. Additionally,
I have included several supplementary lectures numbered A through K on
various more advanced topics. These can be included or omitted at the
instructor’s discretion or assigned as extra reading. They appear in roughly
the order in which they should be covered.

At first these notes were meant to supplement and not supplant a textbook,
but over the years they gradually took on a life of their own. In addition
to the notes, I depended on various texts at one time or another: Cutland
[30], Harrison [55), Hopcroft and Ullman [60], Lewis and Papadimitriou [79],
Machtey and Young [81], and Manna [82). In particular, the Hopcroft and
Ullman text was the standard textbook for the course for many years, and
for me it has been an indispensable source of knowledge and insight. All of
these texts are excellent references, and I recommend them highly.

In addition to the lectures, I have included 12 homework sets and several
miscellaneous exercises. Some of the exercises come with hints and/or so-
lutions; these are indicated by the annotations “H” and “S,” respectively.
In addition, I have annotated exercises with zero to three stars to indicate
relative difficulty.

I have stuck with the format of my previous textbook [72], in which the
main text is divided into more or less self-contained lectures, each 4 to 8
pages. Although this format is rather unusual for a textbook, I have found
it quite successful. Many readers have commented that they like it because
it partitions the subject into bite-sized chunks that can be covered more or
less independently.

I owe a supreme debt of gratitude to my wife Frances for her constant
love, support, and superhuman patience, especially during the final throes
of this project. I am also indebted to the many teachers, colleagues, teach-
ing assistants, and students who over the years have shared the delights
of this subject with me and from whom I have learned so much. I would
especially like to thank Rick Aaron, Arash Baratloo, Jim Baumgartner,
Steve Bloorh, Manuel Blum, Amy Briggs, Ashok Chandra, Wilfred Chen,
Allan Cheng, Francis Chu, Bob Constable, Devdatt Dubhashi, Peter van
Emde Boas, Allen Emerson, Andrds Ferencz, Jeff Foster, Sophia Geor-
giakaki, David Gries, Joe Halpern, David Harel, Basil Hayek, Tom Hen-
zinger, John Hopcroft, Nick Howe, Doug lerardi, Tibor Janosi, Jim Jen-
nings, Shyam Kapur, Steve Kautz, Nils Klarlund, Peter Kopke, Vladimir
Kotlyar, Alan Kwan, Georges Lauri, Michael Leventon, Jake Levirne, David
Liben-Nowell, Yvonne Lo, Steve Mahaney, Nikolay Mateev, Frank Mc-
Sherry, Albert Meyer, Bob Milnikel, Francesmary Modugno, Anil Nerode,
Damian Niwiriski, David de la Nuez, Dan Oberlin, Jens Palsberg, Rohit

Preface X

Parikh, David Pearson, Paul Pedersen, Vaughan Pratt, Zulfikar Ramzan,
Jon Rosenberger, Jonathan Rynd, Erik Schmidt, Michael Schwartzbach,
Amitabh Shah, Frederick Smith, Kjartan Stefinsson, Colin Stirling, Larry
Stockmeyer, Aaron Stump, Jurek Tiuryn, Alex Tsow, Moshe Vardi, Igor
Walukiewicz, Rafael Weinstein, Jim Wen, Dan Wineman, Thomas Yan,
Paul Zimmons, and many others too numerous to mention. Of course, the
greatest of these is Juris Hartmanis, whose boundless enthusiasm for the
subject is the ultimate source of my own.

I would be most grateful for suggestions and criticism from readers.

Note added for the third printing. I am indebted to Chris Jeuell for pointing
out several typographical errors, which have been corrected in this printing,.

Ithaca, New York Dexter C. Kozen

Contents

Preface

Lectures

Introduction

1
2

Course Roadmap and Historical Perspective
Stringsand Sets 0 . -

Finite Automata and Regular Sets

Finite Automata and Regular Sets
More on Regular Sets,
Nondeterministic Finite Automata
The Subset Construction.
Pattern Matching,
Pattern Matching and Regular Expressions
Regular Expressions and Finite Automata
Kleene Algebra and Regular Expressions
Homomorphisms
Limitations of Finite Automata
Using the Pumping Lemma
DFA State Minimization

A Minimization'Algorithm ,

Myhill-Nerode Relations
The Myhill-Nerode Theorem

vii

il

Contents

B Collapsing Nondeterministic Automata. 100
C Automataon Terms 108
D The Myhill-Nerode Theorem for Term Automata 114
17 Two-Way Finite Automata 119
18 2DFAsand RegularSets 124
Pushdown Automata and Context-Free Languages
19 Context-Free Grammars and Languages 129
20 Balanced Parentheses 135
21 NormalForms. 140
22 The Pumping Lemmafor CFLs 148
23 Pushdown Automata 157
E Final State Versus Empty Stack. 164
24 PDAsandCFGs 167
25 Simulating NPDAs by CFGs e 172
F Deterministic Pushdown Automata 176
26 Parsing 181
27 The Cocke-Kasami-Younger Algorithm 191
G The Chomsky-Schiitzenberger Theorem 198
H Parikh’s Theorem. 201
Turing Machines and Effective Computability
28 Turing Machines and Effective Computability 206
29 More on Turing Machines 215
30 Equivalent Models221
31 Universal Machines and Diagonalization 228
32 Decidable and Undecidable Problems 235
33 Reduction L. 239
34 Rice’s Theorem 245
35 Undecidable Problems About CFLs. 249
36 Other Formalisms 256
37 The A-Calculus 262
I While Programs 269
J Beyond Undecidability 274
38 Godel’s Incompleteness Theorem 282
39 Proof of the Incompleteness Theorem 287
K Godel'sProof e e 292
Exercises _ 299

Homework Sets
Homework 1 @ . i i it it e, 301
Homework 2 302

Contents xiii

Homework 3 303
Homework4 304
Homework 5 306
Homework 6 307
Homework 7 308
Homework 8« e 309
Homework 9 310
Homework 10 311
Homework 11° e e e e e e 312
Homework 12 e e e 313
Miscellaneous Exercises
Finite Automata and RegularSets 315
Pushdown Automata and Context-Free Languages 333
Turing Machines and Effective Computability 340
Hints and Solutions
Hints for Selected Miscellaneous Exercises. 351
Solutions to Selected Miscellaneous Exercises 357
References 373
Notation and Abbreviations 381

Index 389

Lectures

Lecture 1

Course Roadmap and Historical Perspective

The goal of this course is to understand the foundations of computation.
We will ask some very basic questions, such as

¢ What does it mean for a function to be computable?
® Are there any noncomputable functions?

® How does computational power depend on programming constructs?

These questions may appear simple, but they are not. They have intrigued
scientists for decades, and the subject is still far from closed.

In the quest for answers to these questions, we will encounter some fun-
damental and pervasive concepts along the way: state, transition, nonde-
terminism, reduction, and undecidability, to name a few. Some of the most
important acltievements in theoretical computer science have been the crys-
tallization of these concepts. They have shown a remarkable persistence,
even as technology changes from day to day. They are crucial for every
good computer scientist to know, so that they can be recognized when they
are encountered, as they surely will be.

Various models of computation have been proposed over the years, all
of which capture some fundamental aspect of computation. We will con-
centrate on the following three classes of models, in order of increasing
power:

4

Lecture 1

(i) finite memory: finite automata, regular expressions;
(ii) finite memory with stack: pushdown automata,;
(iii) unrestricted:

¢ Turing machines (Alan Turing [12D]),
¢ Post systems (Emil Post [99, 100}),

® u-recursive functions (Kurt Gédel [51], Jacques Herbrand),

A-calculus (Alonzo Church [23], Stephen C. Kleene [66]),

combinatory logic (Moses Schonfinkel [111], Haskell B. Curry
[29]).

These systems were developed long before computers existed. Nowa-
days one could add PASCAL, FORTRAN, BASIC, LISP, SCHEME,
C++, JAVA, or any sufficiently powerful programming language to
this list.

In parallel with and independent of the development of these models of
computation, the linguist Noam Chomsky attempted to formalize the no-
tion of grammar and language. This effort resulted in the definition of the
Chomsky hierarchy, a hierarchy of language classes defined by grammars of
increasing complexity:

(i) right-linear grammars;
(ii) context-free grammars;

(iil) unrestricted grammars.

Although grammars and machine models appear quite different on a super-
ficial level, the process of parsing a sentence in a language bears a strong
resemblance to computation. Upon closer inspection, it turns out that each
of the grammar types (i), (ii), and (iii) are equivalent in computational
power to the machine models (i), (ii), and (iii) above, respectively. There
is even a fourth natural class called the contezt-sensitive grammars and
languages, which fits in between (ii) and (iii) and which corresponds to a
certain natural class of machine models called linear bounded automata.

It is quite surprising that a naturally defined hierarchy in one field should
correspond so closely to a naturally defined hierarchy in a completely dif-
ferent field. Could this be mere coincidence?

Course Roadmap and Historical Perspective 5

Abstraction

The machine models mentioned above were first identified in the same way
that theories in physics or any other scientific discipline arise. When study-
ing real-world phenomena, one becomes aware of recurring patterns and
themes that appear in various guises. These guises may differ substantially
on a superficial level but may bear enough resemblance to one another to
suggest that there are common underlying principles at work. When this
happens, it makes sense to try to construct an abstract model that cap-
tures these underlying principles in the simplest possible way, devoid of the
unimportant details of each particular manifestation. This is the process
of abstraction. Abstraction is the essence of scientific progress, because it
focuses attention on the important principles, unencumbered by irrelevant
details.

Perhaps the most striking example of this phenomenon we will see is the
formalization of the concept of effective computability. This quest started
around the beginning of the twentieth century with the development of the
formalist school of mathematics, championed by the philosopher Bertrand
Russell and the mathematician David Hilbert. They wanted to reduce all
of mathematics to the formal manipulation of syn.bols.

Of course, the formal manipulation of symbols is a form of computation,
although there were no computers around at the time. However, there cer-
tainly existed an awareness of computation and algorithms. Mathemati-
cians, logicians, and philosophers knew a constructive method when they
saw it. There followed several attempts to come to grips with the gen-
eral notion of effective computability. Several definitions emerged (Turing
machines, Post systems, etc.), each with its own peculiarities and differing
radically in appearance. However, it turned out that as different as all these
formalisms appeared to be, they could all simulate one another, thus they
were all computationally equivalent.

The formalist program was eventually shattered by Kurt Goédel’s incom-
pleteness theorem, which states that no matter how strong a deductive
system for number theory you take, it will always be possible to construct
simple statements that are true but unprovable. This theorem is widely
regarded as one of the crowning intellectual achievements of twentieth cen-
tury mathematics. It is essentially a statement about computability, and
we will be in a position to give a full account of it by the end of the course.

The process of abstraction is inherently mathematical. It involves build-
ing models that capture observed behavior in the simplest possible way.
Although we will consider plenty of concrete examples and applications of
these models, we will work primarily in terms of their mathematical prop-
erties. We will always be as explicit as possible about these properties.

6

Lecture 1

We will usually start with definitions, then subsequently reason purely in
terms of those definitions. For some, this will undoubtedly be a new way of
thinking, but it is a skill that is worth cultivating.

Keep in mind that a large intellectual effort often goes into coming up with
just the right definition or model that captures the essence of the principle
at hand with the least amount of extraneous baggage. After the fact, the
reader often sees only the finished product and is not exposed to all the
misguided false attempts and pitfalls that were encountered along the way.
Remember that it took many years of intellectual struggle to arrive at the

theory as it exists today. This is not to say that the book is closed—far
from it!

Lecture 2

Strings and Sets

Decision Problems Versus Functions

A decision problem is a function with a one-bit output: “yes” or “no.” To
specify a decision problem, one must specify

e the set A of possible inputs, and

® the subset B C A of “yes” instances.

For example, to decide if a given graph is connected, the set of possible
inputs is the set of all (encodings of) graphs, and the “yes” instances are
the connected graphs. To decide if a given number is a prime, the set of
possible inputs is the set of all (binary encodings of) integers, and the “yes”
instances are the primes.

In this course we will mostly consider decision problems as opposed to
functions with more general outputs. We do this for mathematical simplicity
and because the behavior we want to study is already present at this level.

Strings

Now to our first abstraction: we will always take the set of possible inputs to
a decision problem to be the set of finite-length strings over some fixed finite

8

Lecture 2

Definition 2.1

alphabet (formal definitions below). We do this for uniformity and simplic-
ity. Other types of data—graphs, the natural numbers N = {0,1,2,...},
trees, even programs—can be encoded naturally as strings. By making
this abstraction, we have to deal with only one data type and a few basic
operations.

An alphabet is any finite set. For example, we might use the alpha-
bet {0,1,2,...,9} if we are talking about decimal numbers; the set
of all ASCII characters if talking about text; {0,1} if talking about
bit strings. The only restriction is that the alphabet be finite. When
speaking about an arbitrary finite alphabet abstractly, we usually de-
note it by the Greek letter £. We call elements of ¥ letters or symbols
and denote them by a,b,c,... . We usually do not care at all about
the nature of the €lements of £, only that there are finitely many of
them.

A string over ¥ is any finite-length sequence of elements of £. Example:
if £ = {a,b}, then aabab is a string over T of length five. We use
z,Y,2,... to refer to strings.

The length of a string z is the number of symbols in z. The length of
z is denoted |z]. For example, |aabab| = 5.

There is a unique string of length 0 over ¥ called the null string or
empty string and denoted by € (Greek epsilon, not to be confused with
the symbol for set containment €). Thus |e| = 0.

We write a™ for a string of a’s of length n. For example, a® = aaaaa,
a! = a, and a® = €. Formally, a™ is defined inductively:

def
a° = €,

def
"t = gna.

a

The set of all strings over alphabet ¥ is denoted £*. For example,

{a,b}* = {¢,a,b,aa,ab, ba, bb, aaa, aab, . ..},
{a}* = {¢,a,aa,aaqa,aaqaq, ...}
= {a" |n > 0}.)

By convention, we take

o* 4 {¢},

where @ denotes the empty set. This may seem a bit strange, but there is
good mathematical justification for it, which will become apparent shortly.

Strings and Sets 9

Definition 2.2

If T is nonempty, then £* is an infinite set of finite-length strings. Be careful
not to confuse strings and sets. We won’t see any infinite strings until much
later in the course. Here are some differences between strings and sets:

¢ {a,b} = {b,a}, but ab # ba;
¢ {a,a,b} = {a,b}, but aab # ab.

Note also that @, {€}, and € are three different things. The first is a set
with no elements; the second is a set with one element, namely ¢; and the
last is a string, not a set.

Operations on Strings

The operation of concatenation takes two strings ¢ and y and makes a new
string zy by putting them together end to end. The string zy is called the
concatenation of z and y. Note that 2y and yz are different in general. Here
are some useful properties of concatenation.

® concatenation is associative: (zy)z = z(yz);
o the null string € is an identity for concatenation: ex = ze = «;
* |zy| = |t + [yl

A special case of the last equation is a™a™ = a™*" for all m,n > 0.

A monoid is any algebraic structure consisting of a set with an associative
binary operation and an identity for that operation. By our definitions
above, the set ©* with string concatenation as the binary operation and €
as the identity is a monoid. We will see some other examples later in the
course.

e We write z" for the string obtained by concatenating n copies of z.
For example, (aab)® = aabaabaabaabaab, (aab)! = aab, and (aab)? = e.
Formally, z™ is defined inductively:

def
2 E e,

def
"t = ng.

e If o € £ and z € T*, we write #a(z) for the number of a’s in z. For
example, #0(001101001000) = 8 and #1(00000) = 0.

® A prefiz of a string « is an initial substring of z; that is, a string y for
which there exists a string z such that z = yz. For example, abaab is
a prefix of abaababa. The null string is a prefix of every string, and

10

Lecture 2

every string is a prefix of itself. A prefix y of z is a proper prefix of z
ify# € and y #=. a

Operations on Sets

We usually denote sets of strings (subsets of £*) by 4,B,C,... . The
cardinality (number of elements) of set A is denoted |A|. The empty set @
is the unique set of cardinality 0.

Let’s define some useful operations on sets. Some of these you have probably
seen before, some probably not.

}iff = if and only if.

o Set union:

AUBdéf.{z|a:€'Aorz€B}.

In other words, z is in the union of A and B iff! either z is in 4 or-z
is in B. For example, {a,ab} U {ab, aab} = {a, ab, aab}.
Set intersection:

AﬂBdg{zl:ceAanda:eB}.

In other words, z is in the intersection of A and B iff z is in both 4
and B. For example, {a,ab} N {ab, aab} = {ab}.

Complement in T*:
~A¥ (ze3* |z ¢ A}
For example,
~ {strings in £* of even length} = {strings in * of odd length}.

Unlike U and N, the definition of ~ depends on £*. The set ~ A is
sometimes denoted * — A to emphasize this dependence.

Set concatenation:
ABdéf{zyh:e'AandyEB}.

In other words, z is in AB iff 2 can be written as a concatenation
of two strings z and y, where z € A and y € B. For example,
{a,ab}{b,ba} = {ah,aba,abb,abba}. When forming a set concatena-
tion, you include all strings that can be obtained in this way. Note that
AB and BA are different sets in general. For example, {b,ba}{a,ab} =
{ba; bad, baa, baab}.

Strings and Sets 11

® The powers A™ of a set A are defined inductively as follows:
AY Y (e},
An+l d-__e_f AA™.
In other words, A" is formed by concatenating n copies of A together.

Taking A% = {€} makes the property A™*" = A™A™ hold, even when
one of m or n is 0. For example,

{ab.aab}’ = {€},
{ab,aab}' = {ab,aab},
{ab, aab}?® = {abab, abaad. aabab, aabaabd},

{ab.aab}® = {ababab, ababaab, abaabab, aababat,
abaabaab. aababaab, aabaabab, aabaabaab}.

Also,
{a,b}" = {z € {a,b}* | |z| = n}
= {strings over {a,b} of length n}.

® The asterate A* of a set A is the union of all finite powers of A:
* def
A*E ..LZJO A"
= A"UATUA%U AU
Another way: to say this is
A* ={z125-- 2o |n>0and z; € 4,1 <i < n}.
Note that n can be 0; thus the null string € is in A* for any A.

We previously defined £* to be the set of all finite-length strings over
the alphabet ¥. This is exactly the asterate of the set I, so our notation
is consistent.

¢ We define A to be the union of all nonzero powers of A:
AT E a4 = 4
n>1

Here are some useful properties of these set operations:

® Set union, set intersection, and set concatenation are associative:
(AUB)UC =AU (BUCQC),
(AnB)NC=An(BNC),
(AB)C = A(BC).

12

Lecture 2

Set union and set intersection are commutative:

AUB = BUA,
ANB=BnNA.

As noted above, set concatenation is not.
The null set & is an identity for U:

AU =gUA=A.

The set {e} is an identity for set concatenation:

{}A= Afe} = A.

The null set & is an annihilator for set concatenation:

A =gA=2.

Set union and intersection distribute over each other:

AU(BNC)=(AuB)n(AUC),
AN(BUC)=(ANB)U(ANCQC).

Set concatenation distributes over union:

A(BUC)= ABU AC,
(AUuB)C = ACU BC.
In fact, concatenation distributes over the union of any family of sets.

If {B;|i € I} is any family of sets indexed by another set I, finite or
infinite, then

AllUB) = 4B,

i€l i€l
(UB)Aa=|B:A
1134 i€l

Here Uie ; Bi denotes the union of all the sets B; for i € I. An element
z is in this union iff it is in one of the B;.

Set concatenation does not distribute over intersection. For example,
take A = {a,ab}, B = {b}, C = {¢}, and see what you get when you
compute A(BNC) and ABN AC.

The De Morgan laws hold:

~(AUB)=~AN~B,
~(ANB)=~AU~B.

Strings and Sets 13

¢ The asterate operation * satisfies the following properties:

ATAY = 4%
A*N» — ‘4*
AY = {j oA = {cJUATA,

2* = {¢}.

Lecture 3

Finite Automata and Regular Sets

States and Transitions

Intuitively, a state of a system is an instantaneous description of that sys-
tem, a snapshot of reality frozen in time. A state gives all relevant infor-
mation necessary to determine how the system can evolve from that point
on. Transitions are changes of state; they can happen spontaneously or in
response to external inputs.

We assume that state transitions are instantaneous. This is a mathematical
abstraction. In reality, transitions usually take time. Clock cycles in digi-
tal computers enforce this abstraction and allow us to treat computers as
digital instead of analog devices.

There are innumerable examples of state transition systems in the real
world: electronic circuits, digital watches, elevators, Rubik’s cube (54!/9!6
states and 12 transitions, not counting peeling the little sticky squares off),
the game of Life (2* states on a screen with k cells, one transition).

A system that consists of only finitely many states and transitions among
them is called a finite-state transition system. We model these abstractly
by a mathematical model called a finite automaton.

Finite Automata and Regular Sets 15

Example 3.1

Finite Automata

"
i

Formally, a deterministic finite automaton (DFA) is a structure
M=(Q, %6 s, F),
where
® @ is a finite set; elements of @ are called states;
® 3 is a finite set, the input alphabet;

® §:Q x T — Q is the transition function (recall that @ x T is the set
of ordered pairs {(g,a) | ¢ € @ and a € £}). Intuitively, § is a function
that tells which state to move to in response to an input: if M is in
state ¢ and sees input a, it moves to state 6(g,a).

® s € Q is the start state;
® F is a subset of Q; elements of F are called accept or final states.

When you specify a finite automaton, you must give all five parts. Automata
may be specified in this set-theoretic form or as a transition diagram or table
as in the following example.

Here is an example of a simple four-state finite automaton. We’ll take the
set of states to be {0, 1,2,3}; the input alphabet to be {a, b}; the start state
to be 0; the set of accept states to be {3}; and the transition function to be

6(0,a) =1,

6(1,a) =2,

6(2,a) = 6(3,a) =3,

5(¢,0) =¢q, ¢q€1{0,1,2,3}.

All parts of the automaton are completely specified. We can also specify
the automaton by means of a table

a b

— 0 1 0

1 2 1

2 3 2

3F |13 3

or transition diagram
b b b a,b
a a a

The final states are indicated by an F in the table and by a circle in the
transition diagram. In both, the start state is indicated by —. The states in

16

Lecture 3

the transition diagram from left to right correspond to the states 0,1,2,3
in the table. One advantage of transition diagrams is that you don’t have
to name the states. a

Another convenient representation of finite automata is transition matrices;
see Miscellaneous Exercise 7.

Informally, here is how a finite automaton operates. An input can be any
string z € £*. Put a pebble down on the start state s. Scan the input string
z from left to right, one symbol at a time, moving the pebble according to
6: if the next symbol of z is b and the pebble is on state g, move the pebble
to 6(¢g,b). When we come to the end of the input string, the pebble is on
some state p. The string z is said to be accepted by the machine M if p € F
and rejected if p € F. There is no formal mechanism for scanning or moving
the pebble; these are just intuitive devices.

For example, the automaton of Example 3.1, beginning in its start state 0,
will be in state 3 after scanning the input string baabbaab, so that string
is accepted; however, it will be in state 2 after scanning the string babbbab,
so that string is rejected. For this automaton, a moment’s thought reveals
that when scanning any input string, the automaton will be in state 0 if it
has seen no a’s, state 1 if it has seen one a, state 2 if it has seen two a’s,
and state 3 if it has seen three or more a’s.

This is how we do formally what we just described informally above. We
first define a function

5:Qxs* - Q
from & by induction on the length of z:

8(g.¢) E g, (3.1)
8(g,20) = 8(3(4,2),a). (3:2)
The function § maps a state ¢ and a string z to a new state 8(g, z). Intu-
itively, & is the multistep version of §. The state g(q,) is the state M ends
up in when started in state ¢ and fed the input z, moving in response to
each symbol of z according to §. Equation (3.1) is the basis of the inductive
definition; it says that the machine doesn’t move anywhere under the null
input. Equation (3.2) is the induction step; it says that the state reachable
from ¢ under input string ra is the state reachable from p under input
symbol a, where p is the state reachable from ¢ under input string z.

Note that the second argument toj can be any string in £*, not just a
string of length one as with §; but § and 6 agree on strings of length one:

g(q.a) = E(q.ca) since a = ea

-~

= 6(8(q.€),a) Dby (3.2), takingz =¢

Finite Automata and Regular Sets 17

Example 3.2

= 6(q,a) by (3.1).

Formally, a string z is said to be accepted by the automaton M if

-~

6(s,z)e F
and rejected by the automaton M if

o~

6(s,z) ¢ F,

where s is the start state and F is the set of accept states. This captures
formally the intuitive notion of acceptance and rejection described above.
The set or language accepted by M is the set of all strings accepted by M
and is denoted L(M):

L(M) < {z € 2* | §(s,2) € F}.

A subset A C T* is said to be regular if A = L(M) for some finite au-
tomaton M. The set of strings accepted by the automaton of Example 3.1
is the set

{z € {a,b}* | = contains at least three a’s},
so this is a regular set.

Here is another example of a regular set and a finite automaton accepting
it. Consider the set

{zaaay | z,y € {a,b}*}
= {z € {e,b}* | z contains a substring of three consecutive a’s}.
For example, baabaaaadb is in the set and should be accepted, whereas
babbabab is not in the set and should be rejected (because the three a’s

are not consecutive). Here is an automaton for this set, specified in both
table and transition diagram form:

b

a
1
2
3
3

0
0
0
3

18 Lecture 3

The idea here is that you use the states to count the number of consecutive
a’s you have seen. If you haven't seen three a’s in a row and you see a b, you
must go back to the start. Once you have seen three a's in a row, though,
you stay in the accept state.

Lecture 4

More on Regular Sets

Here is another example of a regular set that is a little harder than the
example given last time. Consider the set

{z € {0,1}* | z represents a multiple of three in binary}

(leading zeros permitted, ¢ represents the number 0). For example, the
following binary strings represent multiples of three and should be accepted:

Binary

0

11
110
1001
1100
1111
10010

Strings not representing multiples of three should be rejected. Here is an

Decimal equivalent

0
3
6
9
12
15

18

automaton accepting the set (4.1):

- OF

1
2

20 Lecture 4

The states 0, 1, 2 are written in boldface to distinguish them from the
input symbols 0, 1.

'S D GED'S)

1 0

In the diagram, the states are 0, 1, 2 from left to right. We prove that this
automaton accepts exactly the set (4.1) by induction on the length of the
input string. First we associate a meaning to each state:

if the number represented by then the machine
the string scanned so far is! will be in state
0 mod 3 0
1 mod 3 1
2mod 3 2

Let #z denote the number represented by string z in binary. For example,

#e =0,
#0 =0,
#11 = 3,
#100 = 4,

and so on. Formally, we want to show that for any string z in {0, 1}*,

5(0,z) = 0 iff #z = 0 mod 3, (4.2)
3(0, z) =1 iff #2 =1 mod 3,
6(0,z) = 2 iff #2 = 2 mod 3,
or in short,
5(0,z) = #z mod 3. (4.3)

This will be our induction hypothesis. The final result we want, namely
(4.2), is a weaker consequence of (4.3), but we need the more general
statement (4.3) for the induction hypothesis.

We have by elementary number theory that

#(20) = 2(#c) +0,

'Here a mod n denotes the remainder when dividing a by n using ordinary integer division. We
also write a = b mod n (read: a is congruent to b modulo n) to mean that a and b have the same
remainder when divided by n; in other words, that n divides b — a. Note that a = b mod n should be
parsed (a = b) mod n, and that in general a = b mod n and a = b mod n mean different things. For
example, 7 = 2 mod 5 but not 7 = 2 mod 5.

More on Regular Sets 21

#(z1) = 2(#z) + 1,
or in short,
#(zc) = 2(#2z)+ ¢ (4.4)

for ¢ € {0,1}. From the machine above, we see that for any state ¢ €
{0,1,2} and input symbol c € {0, 1},

6(g,¢) = (29 + ¢) mod 3. (4.5)

This can be verified by checking all six cases corresponding to possible
choices of ¢ and ¢. (In fact, (4.5) would have been a great way to define the
transition function formally—then we wouldn’t have had to prove it!) Now
we use the inductive definition of & to show (4.3) by induction on |z|.

Basis
For z = ¢,
6(0,¢) =0 by definition of &
= #e since #e =0
= #e mod 3.

Induction step

Assuming that (4.3) is true for z € {0,1}*, we show that it is true for zc,
where c € {0,1}.

-~ o~

6(0,zc) = 6(6(0,z),c) definition of §
= §(#z mod 3,¢) induction hypothesis
= (2(#zmod 3) +c)mod3 by (4.5)
= (2(#=z)+c)mod 3 elementary number theory
= #zcmod 3 by (4.4).

Note that each step has its reason. We used the definition of §, which is
specific to this automaton; the definition of § from §, which is the same for
all automata; and elementary properties of numbers and strings.

Some Closure Properties of Regular Sets
For A, B C T*, recall the following definitions:

AUB={z|z€ Aorze€ B} union
ANB={z|z € Aand z € B} intersection
~A={zeX* |z ¢ A} complement

22 Lecture 4

AB = {zy|z € Aand y € B} concatenation
A* = {2122 2o |n>0and z; € 4,1 <i<n}
=A'uAtuA?uAiu... asterate.

Do not confuse set concatenation with string concatenation. Sometimes ~ A
is written ©* — A.

We show below that if A and B are regular, then so are AU B, AN B, and
~ A. We’ll show later that AB and A* are also regular.

The Product Construction

Assume that A and B are regular. Then there are automata
Ml = (Qla Ea 611 81, Fl)$
M2 = (Q?a\ Ea 627 82, F2)

with L(M;) = A and L(M;) = B. To show that AN B is regular, we will
build an automaton Mj; such that L(M;) = AN B.

Intuitively, M3 will have the states of M; and M> encoded somehow in its
states. On input z € £*, it will simulate M; and M, simultaneously on z,
accepting iff both My and M; would accept. Think about putting a pebble
down on the start state of My and another on the start state of My. As the
input symbols come in, move both pebbles according to the rules of each
machine. Accept if both pebbles occupy accept states in their respective
machines when the end of the input string is reached.

Formally, let
M;s = (Qs, I, 63, s3, F3),

where

Q:s=Q1xQz2={(p,q¢) | p€ Q1 and q € Q2},
F3 = F1 x F, ={(p,q) | p € F1 and ¢ € Fp},

83 = (81,82),
and let
03: Q3 x L - Q3

be the transition function defined by

63((p,9),a) = (61(p, a),62(g,2))-

The automaton Mj is called the product of M, and M,. A state (p,q) of
M3 encodes a configuration of pebbles on M; and M.

More on Regular Sets 23

Lemma 4.1

Theorem 4.2

Recall the inductive definition (3.1) and (3.2) of the extended transition
function 6 from Lecture 2. Applied to &3, this gives

&((n.0),9 = (»,9),

83((p, 9), za) = 63(83((p, 9), %), a).
For all z € T*,

8((p,9),z) = (8(p, z), 82(3,))-
Proof. By induction on |z|.
Basis
For z = ¢,

83((p.q),€) = (p,q) = (61(p,€),82(g, €))-

Induction step

Assuming the lemma holds for z € £*, we show that it holds for za, where
a € L.

Ba((7.9),20))
= 63(63((p,9),2),0) definition of &3

=83 ((gl(p,),82(¢,z)),a) induction hypothesis

= (6:1(61(p, z),0), 62(82(q, z),a)) définition of 63

= (61(p, za), b2(q, za)) definition of 8; and . O

Jug) = L(Ml) n L(Mg)
Proof. For all z € &%,

z € L(M;)

< 33(53,93) € Fy definition of acceptance
= &3((s1, $2),z) € F1 x F definition of s3 and F3

PEEN (gl(sl,x),gg(@,z)) e xF, Lemma 4.1

== gl(sl,a:) € F; and 32(52,$) € F» definition of set product
< z € L(M;) and z € L(M>) definition of acceptance
<z € L(M)NL(M,) definition of intersection. 00

To show that regular sets are closed under complement, take a determin-
istic automaton accepting A and interchange the set of accept and nonac-
cept states. The resulting automaton accepts exactly when the original
automaton would reject, so the set accepted is ~ A.

24

Lecture 4

Once we know regular sets are closed under N and ~, it follows that they
are closed under U by one of the De Morgan laws:

AUB =~(~AN~B).
If you use the constructions for N and ~ given above, this gives an automa-

ton for A U B that looks exactly like the product automaton for A N B,
except that the accept states are

Fy={(pq)|pe Frorqe P2} = (F1 x Q2) U(Q1 x F3)
instead of F; x F5.

Historical Notes

Finite-state transition systems were introduced by McCulloch and Pitts
in 1943 [84)]. Deterministic finite automata in the form presented here were
studied by Kleene [70]. Our notation is borrowed from Hopcroft and Ullman
[60].

Lecture 5

Nondeterministic Finite Automata

Nondeterminism

Nondeterminism is an important abstraction in computer science. It refers
to situations in which the next state of a computation is not uniquely
determined by the current state. Nondeterminism arises in real life when
there is incomplete information about the state or when there are external
forces at work that can affect the course of a computation. For example,
the behavior of a process in a distributed system might depend on messages
from other processes that arrive at unpredictable times with unpredictable
contents.

Nondeterminism is also important in the design of efficient algorithms.
There are many instances of important combinatorial problems. with ef-
ficient nondeterministic solutions but no known efficient deterministic so-
lution. The famous P = NP problem—whether all problems solvable in
nondeterministic polynomial time can be solved in deterministic polyno-
mial time—is a major open problem in computer science and arguably one
of the most important open problems in all of mathematics.

In nondeterministic situations, we may not know how a computation will
evolve, but we may have some idea of the range of possibiti*ics. This is
modeled formally by allowing automata to have multiple-valued transition
functions.

26

Lecture 5

In this lecture and the next, we will show how nondeterminism is incor-
porated naturally in the context of finite automata. One might think that
adding nondeterminism might increase expressive power, but in fact for
finite automata it does not: in terms of the sets accepted, nondeterminis-
tic finite automata are no more powerful than deterministic ones. In-other
words, for every nondeterministic finite automaton, there is a deterministic
one accepting the same set. However, nondeterministic machines may be
exponentially more succinct.

Ncndeterministic Finite Automata

A nondeterministic finite automaton (NFA) is one for which the next state
is not necessarily uniquely determined by the current state and input sym-
bol. In a deterministic automaton, there is exactly one start state and
exactly one transition out of each state for each symbol in . In a nonde-
terministic automaton, there may be one, more than one, or zero. The set
of possible next states that the automaton may move to from a particular
state ¢ in response to a particular input symbol e is part of the specifica-
tion of the automaton, but there is no mechanism for deciding which one
will actually be taken. Formally, we won’t be able to represent this with
a function 6§ : @ x ¥ — @ anymore; we will have to use something more
general. Also, a nondeterministic automaton may have many start states
and may start in any one of them.

Informally, a nondeterministic automaton is said to accept its input z if it
is possible to start in some start state and scan z, moving according to the
transition rules and making choices along the way whenever the next state
is not uniquely determined, such that when the end of z is reached, the
machine is in an accept state. Because the start state is not determined
and because of the choices along the way, there may be several possible
paths through the automaton in response to the input z; some may lead
to accept states while others may lead to reject states. The automaton is
said to accept z if at least one computation path on input z starting from
at least one start state leads to an accept state. The automaton is said to
reject z if no computation path on input z from any start state leads to
an accept state. Another way of saying this is that z is accepted iff there
exists a path with label z from some start state to some accept state. Again,
there is no mechanism for determining which state to start in or which of
the possible next moves to take in response to an input symbol.

It is helpful to think about this process in terms of guessing and verifying.
On a given input, imagine the automaton guessing a successful computation
or proof that the input is a “yes” instance of the decision problem, then
verifying that its guess was indeed correct.

Nondeterministic Finite Automata 27

For example, consider the set
A ={z € {0,1}* | the fifth symbol from the right is 1}.
Thus 11010010 € A but 11000010 ¢ A.

Here is a six-state nondeterministic automaton accepting A:
0,1

1 0,1 0,1 0,1 0,1

There is only one start state, namely the leftmost, and only one accept
state, namely the rightmost. The automaton is not deterministic, because
there are two transitions from the leftmost state labeled 1 (one back to
itself and one to the second state) and no transitions from the rightmost
state. This automaton accepts the set A, because for any string z whose
fifth symbol from the right is 1, there exists a sequence of legal transitions
leading from the start state to the accept state (it moves from the first state
to the second when it scans the fifth symbol from the right); and for any
string ¢ whose fifth symbol from the right is 0, there is no possible sequence
of legal transitions leading to the accept state, no matter what choices it
makes (recall that to accept, the machine must be in an accept state when
the end of the input string is reached).

Intuitively, we can think of the machine in the leftmost state as guessing,
every time it sees a 1, whether that 1 is the fifth letter from the right. It
might be and it might not be—the machine doesn’t know, and there is no
way for it to tell at that point. If it guesses that it is not, then it goes
around the loop again. If it guesses that it is, then it commits to that guess
by moving to the second state, an irrevocable decision. Now it must verify
that its guess was correct; this is the purpose of the tail of the automaton
leading to the accept state. If the 1 that it guessed was fifth from the right
really is fifth from the right, then the machine will be in its accept state
exactly when it comes to the end of the input string, therefore it will accept
the string. If not, then maybe the symbol fifth from the right is a 0, and
no guess would have worked; or maybe the symbol fifth from the right was
a 1, but the machine just guessed the wrong 1.

Note, however, that for any string z € A (that is, for any string with a
1 fifth from the right), there is a lucky guess that leads to acceptance;
whereas for any string = ¢ A (that is, for any string with a 0 fifth from the
right), no guess can possibly lead to acceptance, no matter how lucky the
automaton is.

In general, to show that a nondeterministic. machine accepts a set B, we
must argue that for any string z € B, there is a lucky sequence of guesses
that leads from a start state to an accept state when the end of z is reached;

28

Lecture 5

but for any string z ¢ B, no sequence of guesses leads to an accept state
when the end of z is reached, no matter how lucky the automaton is.

Keep in mind that this process of guessing and verifying is just an intuitive
aid. The formal definition of nondeterministic acceptance will be given in
Lecture 6.

There does exist a deterministic automaton accepting the set A, but any
such automaton must have at least 25 = 32 states, since a deterministic
machine essentially has to remember the last five symbols seen.

The Subset Construction

We will prove a rather remarkable fact: in terms of the sets accepted, nonde-
terministic finite automata are no more powerful than deterministic ones. In
other words, for every nondeterministic finite automaton, there is a deter-
ministic one accepting the same set. The deterministic automaton, however,
may require more states.

This theorem can be proved using the subset construction. Here is the intu-
itive idea; we will give a formal treatment in Lecture 6. Given a nondeter-
ministic machine N, think of putting pebbles on the states to keep track of
all the states IV could possibly be in after scanning a prefix of the input. We
start with pebbles on all the start states of the nondeterministic machine.
Say after scanning some prefix y of the input string, we have pebbles on
some set P of states, and say P is the set of all states N could possibly
be in after scanning y, depending on the nondeterministic choices that N
could have made so far. If input symbol b comes in, pick the pebbles up
off the states of P and put a pebble down on each state reachable from a
state in P under input symbol b. Let P’ be the new set of states covered
by pebbles. Then P’ is the set of states that N could possibly be in after
scanning yb.

Although for a state ¢ of N, there may be many possible next states after
scanning b, note that the set P’ is uniquely determined by b and the set
P. We will thus build a deterministic automaton M whose states are these
sets. That is, a state of M will be a set of states of N. The start state of
M will be the set of start states of N, indicating that we start with one
pebble on each of the start states of N. A final state of M will be any set
P containing a final state of N, since we want to accept z if it is possible
for N to have made choices while scanning z that lead to an accept state
of N.

It takes a stretch of the imagination to regard a set of states of N as a
single state of M. Let’s illustrate the construction with a shortened version
of the example above.

Nondeterministic Finite Automata 29,

Example 5.1

Consider the set

A = {z € {0,1}* | the second symbol from the right is 1}.

0,1
1 0,1
P q T
Label the states p,q,r from left to right, as illustrated. The states of M will

be subsets of the set of states of N. In this example there are eight such
subsets:

2, {p}, {¢}, {r}, {p.q}, {p.7}, {a,7}, {P,0,7}.

Here is the deterministic automaton M:

0 1
7] %) 7}
- {p} {r} {p.q}
{a} {r} {r}
{r}F 2 @

{r.a} | {»r} {p.a,7}

{p,7}F | {p} {pq}

{g,7}F | {r} {r}
{p,q,7}F | {p,7} {pq,7}

For example, if we have pebbles on p and ¢ (the fifth row of the table), and
if we see input symbol 0 (first column), then in the next step there will be
pebbles on p and r. This is because in the automaton N, p is reachable
from p under input 0 and r is reachable from ¢ under input 0, and these
are the only states reachable from p and ¢ under input 0. The accept states
of M (marked F in the table) are those sets containing an accept state of
N. The start state of M is {p}, the set of all start states of N.

Following 0 and 1 transitions from the start state {p} of M, one can see
that states {g,7}, {¢}, {r}, @ of M can never be reached. These states of
M are inaccessible, and we might as well throw them out. This leaves

0 1
- {p} {r} {pg}

{p.q} |{p,7} {p.0,7}
{p.r}F | {p} {p.q}

{p.q.7}F | {p,7} {p:q.7}

This four-state automaton is exactly the one you would have come up with
if you had built a deterministic automaton directly to remember the last
two bits seen and accept if the next-to-last bit is a 1:

30

Lecture 5

Example 5.2

1 oy .
0 [00] 1i[o [11] 1

Here the state labels [bc] indicate the last two bits seen (for our purposes
the null string is as good as having just seen two 0’s). Note that these
two automata are isomorphic (i.e., they are the same automaton up to the
renaming of states):

{r} ~ [00],

{r.q} = [01],

{p,7} =~ [10],
{p,q,7} = [11]). 0

Consider the set
{z € {a}* | |z| is divisible by 3 or 5}. (5.1)

Here is an eight-state nondeterministic automaton N with two start states
accepting this set (labels @ on transitions are omitted since there is only

one input symbol).
2N
AN/

2—3 6—>T7

The only nondeterminism is in the choice of start state. The machine guesses
at the outset whether to check for divisibility by 3 or 5. After that, the
computation is deterministic.

Let @ be the state$s of N. We will build a deterministic machine M whose
states are subsets of Q. There are 28 = 256 of these in all, but most will
be inaccessible (not reachable from the start state of M under any input).
Think about moving pebbles—for this particular automaton, if you start
with pebbles on the start states and move pebbles to mark all states the
machine could possibly be in; you always have exactly two pebbles on N.
This says that only subsets of Q with two elements will be accessible as
states of M.

The subset construction gives the following deterministic automaton M
with 15 accessible states:

Nondeterministic Finite Automata 31

(3,8} - {2,7} {3,5} {3,7} = {2,6}

In the next lecture we will give a formal definition of nondeterministic finite
automata and a general account of the subset construction.

Lecture 6

The Subset Construction

Formal Definition of Nondeterministic Finite Automata
A nondeterministic finite automaton (NFA) is a five-tuple
N=(@ %, A, S, F),

where everything is the same as in a deterministic automaton, except for
the following two differences.

® S is a set of states, that is, § C @, instead of a single state. The
elements of S are called start states.

® A is a function
A:QxT—29,
where 29 denotes the power set of Q or the set of all subsets of Q:
294 1414 ¢ Q).

Intuitively, A(p,a) gives the set of all states that N is allowed to move to
from p in one step under input symbol a. We often write

p—gq

The Subset Construction. 33

if ¢ € A(p,a). The set A(p,a) can be the empty set &. The function A is
called the transition function.

Now we define acceptance for NFAs. The function A extends in a natural
way by induction to a function

A:29 xx* 29
according to the rules

A4, e) ¥ 4, (6.1)

A4,20)E | Ag0). (6.2)

qEZ(A,:)

Intuitively, for A C Q and z € ¥, E(A,:z:) is the set.of all states reachable
under input string z from some state in A. Note that A takes a single state
as its first argument and a single symbol as its second argument, whereas
A takes a set of states as its first argument and a string of symbols as its
second argument.

Equation (6.1) says that the set of all states reachable from a state in A
under the null input is just A. In (6.2), the notation on the right-hand side

means the union of all the sets A(g, a) for q € Zi(A z); in other words,
r € A(A, za) if there exists ¢ € A(4,z) such that r € A(q, a).

Thus g € A(4,z) if N can move from some state p € A to state g under

input z. This is the nondeterministic analog of the construction of é for
deterministic automata we have already seen.

Note that fora € L,

AAe)= |J Ala)
PEA(Ae)

= U A(p, a)

pEA

The automaton N is said to accept ¢ € T* if
A(S,z)NF # @.

In other words, IV accepts z if there exists an accept state g (i.e., ¢ € F) such
that g is reachable from a start state under input string z (i.e., g € A(S, z)).

We define L(N) to be the set of all strings accepted by N:
L(N) = {z € £* | N accepts z}.

34

Lecture 6

Lemma 6.1

Lemma 6.2

Under this definition, every DFA
(@ %, 6,5 F)
is equivalent to an NFA

(Q’ E) A) {s}) F)’

where A(p,a) &t {6(p,a)}. Below we will show that the converse holds as
well: every NFA is equivalent to some DFA.

Here are some basic lemmas that we will find useful when dealing with
NFAs. The first corresponds to Exercise 3 of Homework 1 for deterministic
automata.

Foranyz,y € Z* and A C Q,
A(A,zy) = A(A(A,1),7).

Proof. The proof is by induction on |y|.

Basis
For y = ¢,
A(A,ze) = A4, z)
= A(A(A,z),¢) by (6.1).

Induction step
Foranyy € X* anda € T,
AAzya)= |J Alga) by (62)
g€A(A,2y)

= U A(g,a) induction hypothesis
9€A(A(4,2))

= A(A(A,1),y0) by (6.2). o

The function A commutes with set union: for any indezed family A; of
subsets of Q and z € T*,°

AU A z) = | A4, 2).

Proof. By induction on |z|.

The Subset Construction 35

Basis
By (6.1),

A JAie) = JAi=JA4s0).
Induction step

A JAuze)= |J A@a) by(6.2)
i PGK(U'- Aiyz)
= U A(p,a) induction hypothesis

PEU'. Z(A,',E)

= U U A(p,a) basic set theory
! ped(4ie)

= U B(A;,:ca) by (6.2). c

In particular, expressing a set as the union of its singleton subsets,

A(4,2)= | B({p},2). (6:3)

pEA

The Subset Construction: General Account
The subset construction works in general. Let
N = (Qn~, L, An, Sn, Fn)

be an arbitrary NFA. We will use the subset construction to produce an
equivalent DFA. Let M be the DFA

M= (Qum, Z, M, sm, Fu),

where
Qu = 29w,
6xm(A,0) E Axn(A,a),
ou = Sy,
Fu € {A C Qn|ANFy # o).

Note that §) is a function from states of M and input symbols to states
of M, as it should be, because states of M are sets of states of N.

36 Lecture 6
Lemma 6.3 Forany A C Qn and z € L%,
bu(A,z) = Ay(4,2).
Proof. Induction on |z|.
Basis
For £ = ¢, we want to show
Su(A,€) = Ayn(4,¢).
But both of these are A, by definition of 354 and A N-
Induction step
Assume that
bm(A,z) = An(4,2).
We want to show the same is true for za, a € Z.
EM(A, za) = 6M(3M(A, z),a) definition of 3M
=6m(An(A,2z),a) induction hypothesis
= EN(EN(A,ﬁ:),a) definition of &
= ZSN(A,:ca) Lemma 6.1.
Theorem 6.4 The automata M and N accept the same set.

Proof. For any z € B*,

z € L(M)

< by (sm,z) € Fy definition of acceptance for M

<~ ZN(SN,:E) N Fy # @ definition of spr and Fyy, Lemma 6.3
<= z € L(N) definition of acceptance for N. a

e- Transitions

Here is another extension of finite automata that turns out to be quite
useful but really adds no more power. .

An e-transition is a transition with label e, a letter that stands for the null
string e:

p—— q.

The automaton can take such a transition anytime without reading an input
symbol.

The Subset Construction 37

Example 6.5

Example 6.6

€
— 8 > > U
P
€ €
4 q

If the machine is in state s and the next input symbol is b, it can nonde-
terministically decide to do one of three things:

® read the b and move to state p;

¢ slide to ¢ without reading an input symbol, then read the b and move
to state ¢; or

¢ slide to ¢ without reading an input symbol, then slide to u without
reading an input symbol, then read the b and move to state r.

The set of strings accepted by this automaton is {b, bb, bbb}. O

Here is a nondeterministic automaton with e-transitions accepting the set
{z € {a}* | |z] is divisible by 3 or 5}:

The automaton chooses at the outset which of the two conditions to check
for (divisibility by 3 or 5) and slides to one of the two loops accordingly
without reading an input symbol. a

The main benefit of e-transitions is convenience. They do not really add
any power: a modified subset construction involving the notion of e-closure
can be used to show that every NFA with e-transitions can be simulated
by a DFA without e-transitions (Miscellaneous Exercise 10); thus all sets
accepted by nondeterministic automata with e-transitions are regular. We
will also give an alternative treatment in Lecture 10 using homomorphisms.

More Closure Properties

Recall that the concatenation of sets A and B is the set

AB ={zy|z € A and y € B}.

38

Lecture 6

Example 6.7

Example 6.8

For example,
{a,ab}{b,ba} = {ab, aba,abb,abba}.

If A and B are regular, then so is AB. To see this, let M be an automaton
for A and N an automaton for B. Make a new automaton P whose states
are the union of the state sets of M and N, and take all the transitions of
M and N as transitions of P. Make the start states of M the start states of
P and the final states of N the final states of P. Finally, put e-transitions
from all the final states of M to all the start states of N. Then L(P) = AB.

Let A = {aa}, B = {bb}. Here are automata for A and B:

ro—32 ot +@)
b b
> >o —®
Here is the automaton you get by the construction above for AB:
a a € b b
o >o > >o >0 +@®)

If A is regular, then so is its asterate:

A* = {eJUAUA’UAU. ..
={z1Z2--Zn |n>0and z; € 4,1 <i <n}.

To see this, take an automaton M for A. Build an automaton P for A* as
follows. Start with all the states and transitions of M. Add a new state s.
Add e-transitions from s to all the start states of M and from all the final
states of M to s. Make s the only start state of P and also the only final
state of P (thus the start and final states of M are not start and final states
of P). Then P accepts exactly the set A*.

Let A = {aa}. Consider the three-state automaton for A in Example 6.7.
Here is the automaton you get for A* by the construction above:

€

_‘e/(e . a a\
>e >e i a

In this construction, you must add the new start/final state s. You might
think that it suffices to put in e-transitions from the old final states back
to the old start states and make the old start states final states, but this
doesn’t always work. Here’s a counterexample:

a

0.,

The Subset Construction 39

The set accepted is {a"b | n > 0}. The asterate of this set is
{€} U {strings ending with b},

but if you put in an e-transition from the final state back to the start state
and made the start state a final state, then the set accepted would be

{a,b}*.

Historical Notes

Rabin and Scott [102] introduced nondeterministic finite automata and
showed using the subset construction that they were no more powerful
than deterministic finite automata.

Closure properties of regular sets were studied by Ginsburg and Rose [46,
48], Ginsburg [43], McNaughton and Yamada [85], and Rabin and Scott
[102], among others.

Lecture 7

Pattern Matching

What happens when one types rm * in UNIX? (If you don’t know, don’t
try it to find out!) What if the current directory contains the files

a.tex bc.tex a.dvi bec.dvi

and one types rm *.dvi? What would happen if there were a file named
.dvi?

What is going on here is pattern matching. The * in UNIX is a pattern that
matches any string of symbols, including the null string.

Pattern matching is an important application of finite automata. The UNIX
commands grep, fgrep, and egrep are basic pattern-matching utilities that
use finite automata in their implementation.

Let ¥ be a finite alphabet. A pattern is a string of symbols of a certain form
representing a (possibly infinite) set of strings in £*. The set of patterns
is defined formally by induction below. They are either atomic patterns or
compound patterns built up inductively from atomic patterns using certain
operators. We’ll denote patterns by Greek letters a, 3, 7,

As we define patterns, we will tell which strings ¢ € * match them. The
set of strings in ©* matching a given pattern a will be denoted L(a). Thus

L(e) = {z € * | z matches a}.

Pattern Matching 41

In the following, forget the UNIX definition of *. We will use the symbol *
for something else.

The atomi: patterns are

® g for each a € T, matched by the symbol a only; in symbols, L(a) =
{a};

€, matched only by €. the null string; in symbols, L(c) = {e};

@, matched by nothing; in symbols, L(¢) = &, the empty set;

#, matched by any symbol in ¥; in symbols, L(#) = Z;

@, matched by any string in ©*; in symbols, L(@) = £*.

Compound patterns are formed inductively using binary operators +, N,
and - (usually not written) and unary operators *, *, and ~. If a and 3 are
patterns, then so are « + 3, a N B, a*, at, ~a, and af. The last of these
is short for a - 8.

We also define inductively which strings match each pattern. We have al-
ready said which strings match the atomic patterns. This is the basis of
the inductive definition. Now suppose we have already defined the sets of
strings L(a) and L(8) matching a and f3, respectively. Then we’ll say that

® 1 matches a + § if £ matches either a or 83:
L(e+ B) = L(a) U L(B);

e 2 matches a N B if z matches both a and 3:
L(en B) = L(a) N L(B);

¢ 1z matches af if z can be broken down as ¢ = yz such that y matches
o and z matches g:

L(aB) = L(a) L(B)
= {yz|y € L(a) and z € L(B)};
® 1 matches ~a if z does not match a:
L(~a) = ~L(a)
=¥ - L(a);
o z matches a* if £ can be expressed as a concatenation of zero or more
strings, all of which match a:

L(@*)={z1z3---zn |2 > 0 and z; € L(a), 1 <i < n}
= L(a)’ U L(a)! U L(a)? U - --

42 Lecture 7

= L(a)*.

The null string ¢ always matches a*, since ¢ is a concatenation of zero
strings, all of which (vacuously) match a.

¢ z matches ot if z can be expressed as a concatenation of one or more
strings, all of which match a:

L(a*) = {z122++- 2o |n > 1 and z; € L(a), 1 <i < n}
= L{a)' UL(a)> U L(a)?U - --
= L(a)*.
Note that patterns are just certain strings of symbols over the alphabet
EU{‘: ¢’.#1 @a +, na ~y *’ +» ())}~

Note also that the meanings of #, @, and ~ depend on I. For example, if
¥ = {a,b,c} then L(#) = {a,b,c}, but if T = {a} then L(#) = {a}.

Example 7.1 o T* = L(@) = L(#*).

e Singleton sets: if z € ¥, then z itself is a pattern and is matched only
by the string z; i.e., {z} = L(z).

e Finite sets: if z1,...,Zm € T*, then
{21,722, s Zm} = L(Z1 + 22 + - + Zpm). w]

Note that we can write the last pattern z, + z2 + - - - + z,, without paren-
theses, since the two' patterns (a + 8) + 7 and a + (8 +) are matched by
the same set of strings; i.e.,

L((a+B) +7) = L(a+ (B +7)).

Mathematically speaking, the operator + is associative. The concatenation
operator - is associative, too. Hence we can also unambiguously write a8y
without parentheses.

Example 7.2 ¢ strings containing at least three occurrences of a:
@a@a@a@;
® strings containing an a followed later by a b; that is, strings of the form
zaybz for some z,y, z:
Q@aQ@b@;

e all single letters except a:
#N~a;

Pattern Matching 43

® strings with no occurrence of the letter a:

(#N0~a)";

¢ strings in which every occurrence of a is followed sometime later by
an occurrence of b; in other words, strings in which there are either
no occurrences of a, or there is an occurrence of b followed by no
occurrence of a; for example, aab matches but bba doesn’t:

(#0~a)* +@b{#Nr~a)*
If the alphabet is {a, b}, then this takes a much simpler form:
€ + @b. O

Before we go too much further, there is a subtlety that needs to be men-
tioned. Note the slight difference in appearance between € and € and be-
tween ¢ and @. The objects € and @ are symbols in the language of patterns,
whereas € and @ are metasymbols that we are using to name the null string
and the empty set, respectively. These are different sorts of things: € and
¢ are symbols, that is, strings of length one, whereas € is a string of length
zero and @ isn’t even a string.

We’ll maintain the distinction for a few lectures until we get used to the
idea, but at some point in the near future we’ll drop the boldface and use
€ and @ exclusively. We'll always be able to infer from context whether we
mean the symbols or the metasymbols. This is a little more convenient and
conforms to standard usage, but bear in mind that they are still different
things.

While we’re on the subject of abuse of notation, we should also mention that
very often you will see things like z € a*b* in texts and articles. Strictly
speaking, one should write z € L(a*b*), since a*b* is a pattern, not a set
of strings. But as long as you know what you really mean and can stand
the guilt, it is okay to write « € a*b*

Lecture 8

Pattern Matching and Regular Expressions

Here are some interesting and important questions:

® How hard is it to determine whether a given string £ matches a given
pattern a? This is an important practical question. There are very
efficient algorithms, as we will see.

¢ Is every set represented by some pattern? Answer: no. For example,
the set

{a™b" | n > 0}
is not represented by any pattern. We’'ll prove this later.

® Patterns a and 3 are equivalent if L(a) = L(8). How do you tell
whether a and 3 are equivalent? Sometimes it is obvious and some-
times not.

e Which operators are redundant? For example, we can get rid of € since
it is equivalent to ~ (#@) and also to ¢*. We can get rid of @ since it
is equivalent to #*. We can get rid of unary * since o™ is equivalent
to aa™. We can get rid of #, since if ¥ = {a1,...,a,} then # is
equivalent to the pattern

a1 +az+ - +an.

Pattern Matching and Regular Expressions 45

The operator N is also redundant, by one of the De Morgan laws:

a N g is equivalent to ~(~a + ~j).

Redundancy is an important question. From a user’s point of view, we
would like to have a lot of opérators since this lets us write more succinct
patterns; but from a programmer’s point of view, we would like to have as
few as possible .since there is less code to write. Also, from a theoretical
point of view, fewer operators mean fewer cases we have to treat in giving
formal semantics and proofs of correctness.

An amazing and difficult-to-prove fact is that the operator ~ is redundant.
Thus every pattern is equivalent to one using only atomic patterns a € X,
€, 8, and operators +, -, and *. Patterns using only these symbols are called
reqular ezpressions. Actually, as we have observed, even € is redundant, but
we include it in the definition of regular expressions because it occurs so
often.

Our goal for this lecture and the next will be to show that the family of
subsets of ©* represented by patterns is exactly the family of regular sets.
Thus as a way of describing subsets of £*, finite automata, patterns, and
regular expressions are equally expressive.

Some Notational Conveniences

Since the binary operators + and - are associative, that is,

L{e+ (B +7) = L{(e + B) + 1),
L(aBv)) = L((aB)7),
we can write
a+pB+v and afy

without ambiguity. To resolve ambiguity in other situations, we assign
precedence to operators. For example,

a+ By

could be interpreted as either

a+(By) or (a+p)r,

which are not equivalent. We-adopt the convention that the concatenation
operator - has higher precedence than +, so that we would prefer the former
interpretation. Similarly, we assign * higher precedence than + or -, so that

a+g*

46

Lecture 8

Theorem 8.1

is interpreted as
a+(8%)
and not as
(a+ B)*.

All else failing, use parentheses.

Equivalence of Patterns, Regular Expressions, and Finite Automata

Patterns, regular expressions (patterns built from atomic patterns a € I,
€, 8, and operators +, *, and - only), and finite automata are all equivalent
in expressive power: they all represent the regular sets.

Let A C T*. The following three statements are equivalent:

(i) A is reqular; that is, A= L(M) for.some finite automaton M,
(i) A = L(a) for some pattern o;
(iii) A = L(a) for some regular expression a.

Proof. The implication (iii) = (ii) is trivial, since every regular expression
is a pattern. We prove (ii) = (i) here and (i) = (iii) in Lecture 9.

The heart of the proof (ii) = (i) involves showing that certain basic sets
(corresponding to atomic patterns) are regular, and the regular sets are
closed under certain closure operations corresponding to the operators used
to build patterns. Note that

o the singleton set {a} is regular, a € &,
® the singleton set {¢} is regular, and
¢ the empty set @ is regular,

since each of these sets is the set accepted by some automaton. Here are
nondeterministic automata for these three sets, respectively:

—+0—a—+@ —0 —>e
Also, we have previously shown that the regular sets are closed under the

set operations U, N, ~, -, *, and *; that is, if A and B are regular sets, then
soare AUB, ANB,~A=Y* - A, AB, A*, and A™.

These facts can be used to prove inductively that (ii) = (i). Let a be a
given pattern. We wish to show that L(a) is a regular set. We proceed by

Pattern Matching and Regular Expressions 47

Example 8.2

induction on the structure of o. The pattern a is of one of the following
forms:

(i) a, wherea € Z; (vi) B+
(i) e (vii) BNnm
(iii) @ (viii) B
(iv) # (ix) ~B;
(v) @ (x) B%
(xi) B*

There are five base cases (i) through (v) corresponding to the atomic pat-
terns and six induction cases (vi) through (xi) corresponding to compound
patterns. Each of these cases uses a closure property of the regular sets
previously observed.

For (i), (ii), and (iii), we have L(a) == {a} for a € &, L(€) = {¢}, and
L(8) = @, and these are regular sets.

For (iv), (v), and (xi), we observed earlier that the operators #, @, and
* were redundant, so we may disregard these cases since they are already
covered by the other cases.

For {vi), recall that L(8+~) = L(8) U L(y) by definition of the + operator.
By the induction hypothesis, L(3) and L(vy) are regular. Since the regular
sets are closed under union, L(8 + v) = L(8) U L(v) is also regular.

The arguments for the remaining cases (vii) through (x) are similar to the
argument for (vi). Each of these cases uses a closure property of the regular
sets that we have observed previously in Lectures 4 and 6.]

Let’s convert the regular expression
(aaa)* + (acaaa)*
for the set
{z € {a}* | |z| is divisible by either 3 or 5}

to an equivalent- NFA. First we show how to construct an automaton for
(aaa)*. We take an automaton accepting only the string aaa, say

a a a @
Applying the construction of Lecture 6, we add a new start state and e-
transitions from the new start state to all the old start states and from all

the old accept states to the new start state. We let the new start state be
the only accept state of the new automaton. This gives

48 Lecture 8

€ a a a

The construction for (aaaaa)* is similar, giving

€

€ a a a a a

To get an NFA for (aaa)* + (aaaaa)*, we can simply take the disjoint union
of these two automata:

Lecture 9

Regular Expressions and Finite Automata

Simplification of Expressions

For small regular expressions, one can often see how to construct an equiva-
lent automaton directly without going through the mechanical procedure of
the previous lecture. It is therefore useful to try to simplify the expression
first.

For regular expressions a, 8, if L{a) = L(3), we write & = § and say that
and § are equivalent. The relation = on regular expressions is an equivalence
relation; that is, it is

¢ reflexive: a = « for all o
¢ symmetric: if @ = §, then 8§ = «; and
® transitive: if a = 3 and 8 = v, then a = 1.

If « = f3, one can substitute a for § (or vice versa) in any regular expression,
and the resulting expression will be equivalent to the original.
Here are a few laws that can be used to simplify regular expressions.
at+(B+7)=(a+pB)+7 (9.1)
a+pf=8+a (9.2)

50 Lecture 9

a+90 =
at+o =«
a(B7) = (aB)y
X = E=
a(f+7) = af+ay
(a+B)y = ay + By
o0 =P =90

e+aa*Ea
e+a*aEa
B+ay<r=>a*B<y
B+ra<y=fa* <y

In (9.12) and (9.13), < refers to the subset order:

def

a< g L(a) C L(B)
= L{a+8) = L(f)

= a+8=8.

(9.3)
(9.4)
(9.5)
(9.6)
(9.7)
{9.8)
(9.9)
(9.10)
(9.11)
(9.12)
(9.13)

Laws (9.12) and (9.13) are not equations but rules from which one can
derive equations from other equations. Laws (9.1) through (9.13) can be
justified by replacing each expression by its definition and reasoning set

theoretically.

Here are some useful equations that follow from (9.1) through (9.13) that

you can use to simplify expressions.

(af)*a = a(Ba)*
(a*B)*a* = (a + B)*
o*(Ba®)* = (a + B)*

(e+a)*=a*

aa* = o*a

An interesting fact that i§ beyond the scope of this course is that all true
equations between regular expressions can be proved purely algebraically
from the axioms and rules (9.1) through (9.13) plus the laws of equational

logic [73].

To illustrate, let’s convert some regular expressions to finite automata.

Regular Expressions and Finite Automata 51

Example 9.1

Example 9.2

(114 0)*(00 + 1)*

This expression is simple enough that the easiest thing to do is eyeball it.
The mechanical method described in Lecture 8 would give more states and
e-transitions than shown here. The two states connected by an e-transition
cannot be collapsed into one state, since then 10 would be accepted, which
does not match the regular expression. O

(1+ 01+ 001)*(e + 0 + 00)
Using the algebraic laws above, we can rewrite the expression:
(14 01+ 001)*(e + 0+ 00) = ((€ + 0+ 00)1)*(e + 0 + 00)
= ((e+0)(e + 0)1)*(e + 0)(e + 0).

It is now easier to see that the set represented is the set of all strings over
{0, 1} with no substring of more than two adjacent 0’s.

1

1 O

Just because all states of an NFA are accept states doesn’t mean that all
strings are accepted! Note that in Example 9.2, 000 is not accepted.

Converting Automata to Regular Expressions

To finish the proof of Theorem 8.1, it remains to show how to convert a
given finite automaton M to an equivalent regular expression.

Given an NFA
M=(Q X%, A, S F),

a subset X C @, and states u,v € Q, we show how to construct a regular
expression

X
Qyy

52

Lecture 9

representing the set of all strings z such that there is a path from u to v in
M labeled z (i.e., such that v € A({u},z)) and all states along that path,
with the possible exception of u and v, lie in X.

The expressions are constructed inductively on the size of X. For the basis
X = 2, let a;,...,a; be all the symbols in ¥ such that v € A(u,a;). For
u # v, take

g def [a1+---+ar ifk21,
uy — "] if k=0;

and for u = v, take

o2 4 a1+--+ar+e ifk>1
uv € ifk=0.

For nonempty X, we can choose any element ¢ € X and take

oX, def aX~{a} 4 afq-{q}(aig—{q})*aﬁ,—{q}. (9.19)

To justify the definition (9.19), note that any path from u to v with all
intermediate states in X either (i) never visits ¢, hence the expression

X—

auv {q}
on the right-hand side of (9.19); or (ii) visits ¢ for the first time, hence the
expression

afq—{q} ,
followed by a finite number (possibly zero) of loops from ¢ back to itself
without visiting ¢ in between and staying in X, hence the expression

(aj‘; —{q})*,
followed by a path from g to v after leaving ¢ for the last time, hence the
expression

ag,_{Q}'
The sum of all expressions of the form

al,

where s is a start state and f is a final state, represents the set of strings
accepted by M.

As a practical rule of thumb when doing homework exercises, when choos-
ing the ¢ € X to drop out in (9.19), it is best to try to choose one that
disconnects the automaton as much as possible.

Regular Expressions and Finite Automata 53"

Example 9.3 Let’s convert the automaton

q
1

0 0
P 0

T

to an equivalent regular expression. The set accepted by this automaton
will be represented by the inductively defined regular expression

aig.q,r}’
since p is the only start and the only accept state. Removing the state ¢
(we can choose any state we like here), we can take

afgt™) = afp) +af N alp) el
Looking at the automaton, the only paths going from p to p and staying in

the states {p,r} are paths going around the single loop labeled 0 from p to
p some finite number of times; thus we can take

2} ¥
af,g } = 0%,
By similar informal reasoning, we can take
7T} ¥
a,{,g b= 0*1,
afpr} = e+ 01+ 000*1
= e+ 0(e + 00*)1
€+ 00*1,
X I *
afpm} = 000*.

1l

Thus we can take

aipem} = 0% + 0*1(e + 00¥1)*000*.
This is matched by the set of all strings accepted by the automaton. We
can further simplify the expression using the algebraic laws (9.1) through
(9.18):

0* + 0™1(e + 00*1)*000*

= 0* + 0*1(00*1)*000* by (9.17)

= €+ 00* + 0%*10(0*10)*00* by (9.10) and (9.14)

= e + (e +0*10(0*10)*)00* by (9.8)

= ¢ + (0*10)*00* by (9.10)

= ¢ + (0*10)*0*0 by (9.18)

= e+ (0+10)%0 by (9.15). o

54 Lecture 9

Historical Notes

Kleene [70] proved that deterministic finite automata and regular expres-
sions are equivalent. A shorter proof was given by McNaughton and Yamada
[85].

The relationship betweed right- and left-linear grammars and regular sets
(Homework 5, Exercise 1) was observed by Chomsky and Miller [21].

Supplementary Lecture A

Kleene Algebra and Regular Expressions

In Lecture 9, we gave a combinatorial proof that every finite automaton has
an equivalent regular expression. Here is an algebraic proof that generalizes
that argument. It is worth looking at because it introduces the notion of
Kleene algebra:-and the use of matrices. We will show how to use matrices
and Kleene algebra to solve systems of linear equations involving sets of
strings.

Kleene algebra is named after Stephen C. Kleene, who invented the regula:
sets [70).

Kleene Algebra

We have already observed in Lecture 9 that the set operations U, -, and
* on subsets of *, along with the distinguished subsets @ and {e}, sat-
isfy certain important algebraic properties. These were listed in Lecture 9,
axioms (9.1) through (9.13). Let us call any algebraic structure satisfying
these properties a Kleene algebra. In general, a Kleene algebra K consists
of a nonempty set with two distinguished constants 0 and 1, two binary
operations + and - (usually omitted in expressions), and a unary operation
* satisfying the following axioms.

a+(b+c)=(a+b)+c associativity of + (A
a+b=b+a commutativity of + (A

Do

56 Supplementary Lecture A

Lemma A.1

at+a=a idempotence of + (A3)
a+0=a 0 is an identity for + (A.4)
a(be) = (ad)c associativity of - (A.5)
el =la=a 1 is an identity for - (A.6)

a0 =0a=0 0 is an annihilator for - (A7)
a(b+c) = ab+ac distributivity (A.8)
(a+d)c =ac+be distributivity (A.9)

1+aa* = a* (

1+a*a = a* (A.11)
b+ac<c=>a*b<c (
b+ca<c=>ba*<c (

In (A.12) and (A.13), < refers to the naturally defined order

a<bE&S a+b=0

*
In 27, < is just set inclusion C.

Axioms (A.1) through (A.9) discuss the properties of addition and multi-
plication in a Kleene algebra. These properties are the same as those of
ordinary addition and multiplication, with the addition of the idempotence
axiom (A.3). These axioms can be summed up briefly by saying that X is an
tdempotent semiring. The remaining axioms (A.10) through (A.13) discuss
the properties of the operator *. They say essentially that * behaves like
the asterate operator on sets of strings or the reflexive transitive closure
operator on binary relations.

It follows quite easily from the axioms that < is a partial order; that is,
it is reflexive (@ < a), transitive (¢ < b and b < c imply a < c), and
antisymmetric (¢ < b and b < a imply a = b). Moreover, a + b is the
least upper bound of a and b with respect to <. All the operators are

monotone with respect to <; in other words, if a < b, then ac < be, ca < ¢b,
a+c¢<b+c and a* < b*.

By (A.10) and distributivity, we have
b+ aa*b < a*b,

which says that a*b satisfies the inequality b + ac < ¢ when substituted
for c. The implication (A.12) says that a*b is the <-least element of K for
which this is true. It follows that

In any Kleene algebra, a*b is the <-least solution of the equation T = az+b.

Proof. Miscellaneous Exercise 21. a

Kleene Algebra and Regular Expressions 57

Instead of (A.12) and (A.13), we might take the equivalent axioms
ac<c=da*c<e, (A.14)
ca<c=>ca*<c (A.15)

(see Miscellaneous Exercise 22).

Here are some typical theorems of Kleene algebra. These can be derived by
purely equational reasoning from the axioms above (Miscellaneous Exercise
20).

a*a* =a*

a** - a*
(a*b)*a* = (a +b)* denesting rule (A.16)
a(ba)* = (ab)*a shifting rule (A.17)

a* = (aa)* + a(aa)*

Equations (A.16) and (A.17), the denesting rule and the shifting rule, re-
spectively, turn out to be particularly useful in simplifying regular expres-
sions.

The family 2=* of all subsets of £* with constants & and {€} and operations
U,-, and * forms a Kleene algebra, as does the family of all regular subsets
of £* with the same operations. As mentioned in Lecture 9, it can be shown
that an equation a = f is a theorem of Kleene algebra, that is, is derivable
from axioms (A.1) through (A.13), if and only if a and 3 are equivalent as
regular expressions [73].

Another example of a Kleene algebra is the family of all binary relations
on a set X with the empty relation for 0, the identity relation

E {(u,u) | v € X}

for 1, U for +, relational composition

RoS% {(v,w) | Fv e X (u,v) € R and (v,w) € §}
for -, and reflexive transitive closure for *:
R* déf U Rn’
n>0

where
def

R* =,
R RroR.

Still another example is the family of n x n Boolean matrices with the
zero matrix for 0, the identity matrix for 1, componentwise Boolean matrix

58 Supplementary Lecture A

addition and multiplication for + and ., respectively, and reflexive transitive
closure for *. This is really the same as the previous example, where the
set X has n elements.

Matrices

Given an arbitrary Kleene algebra K, the set of n x n matrices over K,
which we will denote by M(n, X), also forms a Kleene algebra. In M(2,X),
for example, the identity elements for + and - are

[0 0] and | 10
| 0 0 | 0o 1
respectively, and the operations +, -, and * are given by

[o b1+ e f[lat[at+te b+f
| ¢ d | g h| = | c+g d+h |’

[@ b'_[e f]d_e_f[ae+bg af + bk

g h ce+dg cf+dh]’ and

(A.18)

(o b] ar [(a+bd*c)* (a+bd*c)*bd*
| ¢ d]| T | (d+ca*b)*ca* (d+ca*d)* |’
respectively. In general, + and - in M(n,K) are ordinary matrix addition

and multiplication, respectively, the identity for + is the zero matrix, and
the identity for - is the identity matrix.

To define E* for a given n x n matrix E over K, we proceed by induction
on n. If n = 1, the structure M(n,K) is just X, so we are done. For n > 1,
break F up into four submatrices

A| B
== [1o]
such that A and D are square, say m x m and (n — m) x (n — m), re-
spectively. By the induction hypothesis, M(m,K) and M(n — m,K) are
Kleene algebras, so it makes sense to form the asterates of any m x m or

(n — m) x (n — m) matrix over K, and these matrices will satisfy all the
axioms for *. This allows us to define

(A+ BD*C)* I (A+ BD*C)*BD*
(D+CA*B)*CA*| (D+CA*B)*
~ Compare this definition to (A.18).

E* def

(A.19)

Kleene Algebra and Regular Expressions 59

Lemma A.2

Theorem A.3

The expressions on the right-hand sides of (A.18) and (A.19) may look like
they were pulled out of thin air. Where did we get them from? The answer
will come to you if you stare really hard at the following mandala:

‘cane

[

It can be shown that M(n,K) is a Kleene algebra under these definitions:
If K is a Kleene algebra, then so is M(n,K).

Proof. Miscellaneous Exercise 24. We must verify that M(n,K) satisfies
the axioms (A.1) through (A.13) of Kleene algebra assuming only that K
does. 0

If E is a matrix of indeterminates, and if the inductive construction of F*
given in (A.19) is carried out symbolically, then the entries of the resulting
matrix E* will be regular expressions in those indeterminates. This con-
struction generalizes the construction of Lecture 9, which corresponds to
the case m = 1.

Systems of Linear Equations

It is possible to solve systems of linear equations over a Kleene algebra XK.
Suppose we are given a set of n variables z1,...,z, ranging over K and a
system of n equations of the form

Ti = a1+ +ainZn+ b, 1<i<n,

where the a;; and b; are elements of K. Arranging the a;; in an n x n matrix
A, the b; in a vector b of length n, and the ; in a vector z of length n, we
obtain the matrix-vector equation

r=Az+b. (A.20)

It is now not hard to show

The vector A*b is a solution to (A.20); moreover, it is the <-least solution
in K™

Proof. Miscellaneous Exercise 25. a

Now we use this to give a regular expression equivalent to an arbitrarily
given deterministic finite automaton

M=(Q, %6 s F)

60

Supplementary Lecture A

Assume without loss of generality that @ = {1,2,...,n}. For each ¢ € Q,
let X, denote the set of strings in £* that would be accepted by M if ¢
were the start state; that is,

X, < {z e T* | 5(q,z) € F}.

The X, satisfy the following system of equations:

X, = EGEE aX&(Qy“) if q ¢ Fy
! EaEE a’Xé(q,a) +1 if q € F.

Moreover, the X, give the least solution with respect to C. As above, these
equations can be arranged in a single matrix-vector equation of the form

X =AX +b, (A.21)
where A is an n X n matrix containing sums of elements of X, b is a 0-1
vector of length n, and X is a vector consisting of X1,...,X,,. The vector
X is the least solution of (A.21). By Theorem A.3,

X = A*b.

Compute the matrix A* symbolically according to (A.19), so that its entries
are regular expressions, then multiply by b. A regular expression for L(M)
can then be read off from the sth entry of A*b, where s is the start state
of M.

Historical Notes

Salomaa [108] gave the first complete axiomatization of the algebra of regu-
lar sets. The algebraic theory was developed extensively in the monograph
of Conway-[27]. Many others have contributed to the theory, including
Redko [103], Backhouse [6], Bloom and Esik [10], Boffa [11, 12], Gécseg
and Pedk [41], Krob [74], Kuich and Salomaa [76], and Salomaa and Soit-
toia [109]. The definition of Kleene algebra and the complete axiomatization
given here is from Kozen [73].

Lecture 10

Homomorphisms

A homomorphism is a map h : £* — T* such that for all z,y € ¥,

h(zy) = h(z)h(y), (10.1)
h(e) =e. (10.2)
Actually, (10.2) is a consequence of (10.1):
|h(e)| = |h(ee)|
= |h(e)h(e)l
= [h(e)] + [R(e)};

subtracting |h(e)| from both sides, we have |h(e)| = 0, therefore h(e) = e.

It follows from these properties that any homomorphism defined on £* is
uniquely determined by its values on ¥. For example, if h(a) = ccc and
h(b) = dd, then

h(abaab) = h(a)h(b)h(a)h(a)h(b) = cccddcecceedd.

Moreover, any map h : £ — I'* extends uniquely by induction to a ho-
momorphism defined on all of £*. Therefore, in order to specify a homo-
morphism completely, we need only say what values it takes on elements of
z.

62

Lecture 10

Theorem 10.1

If A C =¥, define
h(A) = {h(z) |z € A} C T*,

and if B C T*, define

h~Y(B) ¥ {z | h(z) € B} C T*.

The set h(A) is called the image of A under h, and the set h~1(B) is called
the preimage of B under h.

We will show two useful closure properties of the regular sets: any homo-
morphic image or homomorphic preimage of a regular set is regular.

Let h: T* — T* be a homomorphism. If B C T'* is regular, then so is its
preimage h~1(B) under h.

Proof. Let M = (Q, T, §, s, F) be a DFA such that L(M) = B. Create a
new DFA M' = (Q, &, &', s, F) for h~1(B) as follows. The set of states,
start state, and final states of M' are the same as in M. The input alphabet
is ¥ instead of I'. The transition function §' is defined by

8'(g,0) < 5(q, h(a)).

Note that we have to use on the right-hand side, since h(a) need not be
a single letter.

Now it follows by induction on |z| that for all z € &*,
8(g,2) = 8(g, M(=))- (10.3)
For the basis ¢ = ¢, using (10.1),
5(g,€) = 4= 8(a,¢) = (¢, 1(®))
For the induction step, assume that &'(q, z) = 8(g, h(z)). Then
&'(q,za) = 8'(' (g, z),0a) definition of &'
= 8'(8(g, h(z)), a) induction hypothesis
= 5(8(q, h(z)), h(a)) definition of &
= &(q, h(z)h(a)) Homework 1, Exercise 3
= 8(q, h(za)) property (10.2) of homomorphisms.
Now we can use (10.3) to prove that L(M’) = h=1(L(M)). For any z € T*,
ze (M) = & (s,z) € F definition of acceptance
< 8(s,h(z)) € F by (10.3)
<= h(z) € L(M) definition of acceptance
<>z €h™}(L(M)) definition of h=1(L(M)). O

Homomorphisms 63

Theorem 10.2 Let h: £* — I'* be a homomorphism. If A C ©* is regular, then so is its
image h(A) under h.

Proof. For this proof, we will use regular expressions. Let a be a regular
expression over ¥ such that L(a) = A. Let o’ be the regular expression
obtained by replacing each letter a € ¥ appearing in o with the string
h(a) € T'*. For example, if h(a) = ccc and h(b) = dd, then
((a + b)*ab)’ = (ccc + dd)*ccedd.
Formally, o’ is defined by induction:
a' =h(a), a€l,
o' =9,
(B+7) =8 +7
(B7) =B,
ﬁ*l — ﬁl*
We claim that for any regular expression § over X,
L(B') = h(L(B)); (10.4)

in particular, L(a’) = h(A). This can be proved by induction on the struc-
ture of 5. To do this, we will need two facts about homomorphisms: for any
pair of subsets C, D C £* and any family of subsets C; C T*, i € I,

h(CD) = h(C)h(D), (10.5)
r(J) = |Jn(C). (10.6)
i€l i€l

To prove (10.5),
h(CD) =.{h(w) | w € CD}
= {h(yz) |y € C, z€ D}
={My)h(z)|y € C, z€ D}
= {uwv|u € h(C), v e h(D)}
= h(C)h(D).
To prove (10.6),

h(U Ci) = {h{w) |we U Ci}
= {h(w) | 3 w € C}}
= U{h(w) | we Ci}

= Uh(c,-).

64

Lecture 10

Now we prove (10.4) by induction. There are two base cases:

L(a') = L(h(a)) = {h(a)} = h({a}) = h(L(a))

L(¢') = L(¢) = & = h(@) = h(L(9)).
The case of € is covered by the other cases, since € = @*.

There are three induction cases, one for each of the operators +, -, and *.
For +,

L{(B+7))=L(B +7) definition of '
= L(B") U L(v') definition of +
= h(L(B))UR(L(y)) induction hypothesis
= h(L(B) U L(7)) property (10.6)
= h(L(B + 7)) definition of +.

The proof for - is similar, using property (10.5) instead of (10.6). Finally,
for *,

L)

= L(8") definition of /
= L(B')* definition of regular expression operator *
= h(L(B))* induction hypothesis
= J A(L(B))™ definition of set operator *

n>0
= U h(L(B)") property (10.5)

n>0
=h(|J L(8)") property (10.6)

n>0

= h(L(B)*) definition of set operator *
= h(L(8%)) definition of regular expression operator * a

Warning: It is not true that A is regular whenever h(A) is. This is not what
Theorem 10.1 says. We will show later that the set {a™b™ | n > 0} is not
regular, but the image of this set under the homomorphism h(a) = h(b) = a
is the regular set {a” | n is even}. The preimage h~*({a" | n is even}) is
not {a"b" | n > 0}, but {z € {a,b}* | |z] is even}, which is regular.

Homomorphisms 65

Automata with e-transitions

Here is an example of how to use homomorphisms to give a clean treatment
of e-transitions. Define an NFA with e-transitions to be a structure

M= (Q) Ea 6)1A3 S’ F)
such that € is a special symbol not in ¥ and
Me=(Q, SU{e}, A, S, F)

is an ordinary NFA over the alphabet £ U {e}. We define acceptance for
automata with e-transitions as follows: for any z € ¥, M accepis z if there
exists y € (X U {€})* such that

® Me accepts y under the ordinary definition of acceptance for NFAs,
and

¢ 7 is obtained from y by erasing all occurrences of the symbol €; that
is, ¢ = h(y), where

h:(SU{e})* — =

is the homomorphism defined by

h(a) = a, a€E,
hie) < e
In other words,
L(M) < h(L(Me)).

This definition and the definition involving e-closure described in Lecture
6 are equivalent (Miscellaneous Exercise 10). It is immediate from this
definition and Theorem 10.2 that the set accepted by any finite automato~.
with e-transitions is regular.

Hamming Distance

Here is another example of the use of homomorphisms. We can use them to
give slick solutions to Exercise 3 of Homework 2 and Miscellaneous Exercise
8, the problems involving Hamming distance. Let £ = {0,1} and consider
the alphabet

sxxo 1ol o] 1] LU
of [1] fo] [1]

The elements of £ x ¥ are ordered pairs, but we write the components one
on top of the other. Let top: T x & — ¥ and bottom: ¥ x ¥ — ¥ be the

66

Lecture 10

two projections

() -
bottom () =b.

These maps extend uniquely to homomorphisms (£ x £)* — T*, which we
also denote by top and bottom. For example,

top 0104110 = 0010,
0j11141

bottom< 0101110) = 0111.

0]1]11(1

Thus we can think of strings in (X x £)* as consisting of two tracks, and the
homomorphisms top and bottom give the contents of the top and bottom
track, respectively.

For fixed k, let Dj be the set of all strings in (X x £)* containing no more
than k occurrences of

o) 11l
o]

This is certainly a regular set. Note also that
Dy = {z € (x)* | H(top(z),bottoin(z)) < k},

where H is the Hamming distance function. Now take any regular set A C
£* and consider the set

top(bottom™'(A4) N D;). (10.7)

Believe it or not, this set is exactly Ni(A), the set of strings in T* of
Hamming distance at most k from some string in A. The set bottom™'(A4)
is the set of strings whose bottom track is in A; the set bottom™(4) N D,
is the set of strings whose bottom track is in A and whose top track is of

Hamming distance at most k from the bottom track; and the set (10.7) is
the set of top tracks of all such strings.

Moreover, the set (10.7) is a regular set, because the regular sets are closed
under intersection, homomorphic image, and homomorphic preimage.

Lecture 11

Limitations of Finite Automata

We have studied what finite automata can do; let’s see what they cannot
do. The canonical example of a nonregular set (one accepted by no finite
automaton) is

B = {a™b" | n > 0} = {¢, ab, aabb, aaabbb, aaaabbbd, ...},
the set of all strings of the form a*b* with equally many a’s and b’s.

Intuitively, in order to accept the set B, an automaton scanning a string
of the form a*b* would have to remember when passing the center point
between the a’s and b’s how many a’s it has seen, since it would have to
compare that with the number of b’s and accept iff the two numbers are
the same.

aaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbb

1
q

Moreover, it would have to do this for arbitrarily long strings of a’s and
b’s, much longer than the number of states. This is an unbounded amount
of information, and there is no way it can remember this with only finite
memory. All it “knows” at that point is represented in the state ¢ it is
in, which is only a finite amount of information. You might at first think
there may be some clever strategy, such as counting mod 3, 5, and 7, or
something similar. But any such attempt is doomed to failure: you cannot

68 Lecture 11

distinguish between infinitely many different cases with only finitely many
states.

This is just an informal argument. But we can easily give a formal proof by
contradiction that -B is not regular. Assuming that B were regular, there
would be a DFA M such that L(M) = B. Let k be the number of states of
this alleged M. Consider the action of M on input a™b", where n > k. It
starts in its start state s. Since the string a™b™ is in B, M must accept it,
thus M must be in some final state r after scanning a"b™.

$044aa000000400000000032aaaaaahbbbbbbbbbbbbbbbbbbbbbbbbbbbb
n n

T T

8 T

Since n 3> k, by the pigeonhole principle there must be some state p that
the automaton enters more than once while scanning the initial sequence of
a’s. Break up the string a™b™ into three pieces u, v, w, where v is the string
of a’s scanned between two occurrences of the state p, as illustrated in the
following picture:

ga,aaaaaagaaaaaaaaaaaaaaaaaaaab bbbbbbbbbb@bbbbbbbbbbbbbbbb)
% v w

1 7 T i
s P D T
Let j = |v| > 0. In this example, j = 7. Then
8(s,u) =p,
8(p,v) =p,

6(p,w)=r € F.

The string v could be deleted and the resulting string would be erroneously

accepted:
8(s, uw) = 8(8(s,u), w)
=5(p,w)
=r€PF

a00000aaaaaaaaaaacatabbbbbbbbbbbbbbbbbbbbbbbbbbbbb
u w

T T !

s P T

It’s erroneous because after deleting v, the number of a’s is strictly less than
the number of b’s: uw = a™ 7™ € L(M), but uw ¢ B. This contradicts our
assumption that L(M) = B.

Limitations of Finite Automata 69

We could also insert extra copies of v and the resulting string would be er-
roneously accepted. For example, uvw = a"+2/b™ is erroneously accepted:

8(s, wvvvw) = 8(8(8(8(8(s,4),v),v),v), w)
= 8(6(6(8(p,v),v),v),w)
= 3(3(3(1””)’”)’“’)
= 5(6(p,v),w)
=§(p, w)
=rePF
For another example of a nonregular set, consider
C={a®¥ |n>0}
= {z € {a}* | |z| is a power of 2}
= {a,a?,a%,a%,a"%,...}.
This set is also nonregular. Suppose (again for a contradiction) that L(M) =
C for some DFA M. Let k be the number of states of M. Let n >> k and
consider the action of M on input a2” € C. Since n >> k, by the pigeonhole

principle the automaton must repeat a state p while scanning the first n
symbols of a2”. Thus 2" = i + j +m for some i, j,m with 0 < j <n and

8\(3,0".) =D
8(p,a’) =p,
5(p,a™)=r € F.

4a00a0aaaa0aaaaaaaaaaaaaaaaacaaaaaaaaaaaataaaiaaaaanaaaaaad,

A" ~ A—\.’—/L > -4
1 J m

7 T T T

s P P T

As above, we could insert an extra a’ to get a>" 17, and this string would
be erroneously accepted:

8(s,a®"*9) = 8(s,a'a’ a’a™)
= E(E(E(E(S,a‘),aj), a’),a™)
= 8@(@(p,a"), a’),a™)
= 3(6(p,a’),a™)
= 3(1” am)
=rekl

This is erroneous because 2™ + j is not a power of 2:

2"+j<2%+n

70

Lecture 11

Theorem 11.1

Theorem 11.2

<2 42"
— 2ﬂ+1

and 2™ is the next power of 2 greater than 2.

The Pumping Lemma

We can encapsulate the arguments above in a general theorem called the
pumping lemma. This lemma is very useful in proving sets nonregular. The
idea is that whenever an automaton scans a long string (longer than the
number of states) and accepts, there must be a repeated state, and extra
copies of the segment of the input between the two occurrences of that state
can be inserted and the resulting string is still accepted.

(Pumping lemma) Let A be a regular set. Then the following property
holds of A:

(P) There exists k > 0 such that for any strings z,y,z with tyz € A and
ly| > k, there exist strings u,v,w such that y = wvw, v # ¢, and for
all i > 0, the string zuv*wz € A.

Informally, if A is regular, then for any string in A and any sufficiently long
substring y of that string, ¥ has a nonnull substring v of which you can
pump in as many copies as you like and the resulting string is still in A.

We have essentially already proved this theorem. Think of k¥ as the number
of states of a DFA accepting A. Since y is at least as long as the number
of states, there must be a repeated state while scanning y. The string v is
the substring between the two occurrences of that state. We can pump in
as many copies of v as we want (or delete v—this would be the case i = 0),
and the resulting string is still accepted.

Games with the Demon

The pumping lemma is often used to show that certain sets are nonregular.
For this purpose we usually use it in its contrapositive form:

(Pumping lemma, contrapositive form) Let A be a set of strings.
Suppose that the following property holds of A.

(=P) For all k > O there ezist strings z,y, 2z such that zyz € A, |y| > k, and
for all u,v,w with y = vvw and v # ¢, there ezists an i > 0 such that
zuvtwz ¢ A.

Then A is not regular.

Limitations of Finite Automata 71

To use the pumping lemma to prove that a given set A is nonregular, we
need to establish that (—P) holds of A. Because of the alternating “for
all/there exists” form of (=P), we can think of this as a game between you
and a demon. You want to show that A is nonregular, and the demon wants
to show that A is regular. The game proceeds as follows:

1. The demon picks k. (If A really is regular, the demon’s best strategy
here is to pick k to be the number of states of a DFA for A.)

2. You pick z,y, z such that zyz € A and |y| > .
3. The demon picks u, v, w such that y = wvw and v # e.

4. You pick ¢ > 0.

You win if zuviwz € A, and the demon wins if zuv'wz € A.

The property (-P) for A is equivalent to saying that you have a winning
strategy in this game. This means that by playing optimally, you can always
win no matter what the demon does in steps 1 and 3.

If you can show that you have a winning strategy, you have essentially
shown that the condition (=P) holds for A, therefore by Theorem 11.2, A
is not regular.

We have thus reduced the problem of showing that a given set is non-
regular to the puzzle of finding a winning strategy in the corresponding
demon game. Each nonregular set gives a different game. We'll give several
examples in Lecture 12.

Warning: Although there do exist stronger versions that give necessary
and sufficient conditions for regularity (Miscellaneous Exercise 44), the ver-
sion of the pumping lemma given here gives only a necessary condition;
there exist sets satisfying (P) that are nonregular (Miscellaneous Exercise
43). You cannot show that a set is regular by showing that it satisfies (P).
To show a given set is regular, you should construct a finite automaton or
regular expression for it.

Historical Notes

The pumping lemma for regular sets is due to Bar-Hillel, Perles, and Shamir
[8]. This version gives only a necessary condition for regularity. Necessary
and sufficient conditions are given by Stanat and Weiss [117}, Jaffe [62],
and Ehrenfeucht, Parikh, and Rozenberg [33].

Lecture 12

Using the Pumping Lemma

Example 12.1

Let’s use the pumping lemma in the form of the demon game to show that
the set

A={a"b" |n >m}

is not regular. The set A is the set of strings in a*b* with no more b’s
than a’s. The demon, who is betting that 4 is regular, picks some number
k. A good response for you is to pick z = a*, y = b*, and z = €. Then
zyz = a*b* € A and |y| = k; so far you have followed the rules. The demon
must now pick u, v, w such that y = uvw and v # €. Say the demon picks
u,v,w of length j,m,n, respectively, with k = j + m +n and m > 0. No
matter what the demon picks, you can take i = 2 and you win:
zuviwz = o H"H™ B
- akbj+2m+n

— akbk+m,

which is not in A, because the number of ¥’s is strictly larger than the
number of a’s.

This strategy always leads to victory for you in the demon game associated
with the set A. As we argued in Lecture 11, this is tantamount to showing
that A is nonregular. |

Using the Pumping Lemma 73

Example 12.2 For another example, take the set
C={a"|n>0}.

We would like to show that this set is not regular. This one is a little
harder. It is an example of a nonregular set over a single-letter alphabet.
Intuitively, it is not regular because the differences in the lengths of the
successive elements of the set grow too fast.

Suppose the demon chooses k. A good choice for you is ¢ = 2 = ¢ and

y = a*. Then zyz = a* € C and |y| = k! > k, so you have not cheated.
The demon must now choose »,v,w such that y = wvw and v # €. Say the
demon chooses u,v, w of length j,m,n, respectively, with k! = j+m+n
and m > 0. You now need to find ¢ such that zuv*wz ¢ C; in other words,
|zuviwz| # p! for any p. Note that for any i,

lzuviwz] = j +im +n = k! + (i — 1)m,

so you will win if you can choose ¢ such that k! + (i — 1)m # p! for any p.
Take ¢ = (k+1)! + 1. Then

El+(@i-1m=k'+ (k+1)'m = kN1 +m(k+ 1)),
and we want to show that this cannot be p! for any p. But if
p! = kl(1+m(k+1)),
then we could divide both sides by k! to get
p(p—1)(p~2)--- (k+2)(k+1) =1+m(k+1),

which is impossible, because the left-hand side is divisible by £+ 1 and the
right-hand side is not. O

A Trick

When trying to show that a set is nonregular, one can often simplify the
problem by using one of the closure properties of regular sets. This often
allows us to reduce a complicated set to a simpler set that is already known
to be nonregular, thereby avoiding the use of the pumping lemma.

To illustrate, consider the set
D = {z € {a,b}" | #a(z) = #b(z)}.

To show that this set is nonregular, suppose for a contradiction that it were
regular. Then the set

Dna*p*

74

Lecture 12

would also be regular, since the intersection of two regular sets is always
regular (the product construction, remember?). But

DN L(a*b*) = {a™b" | n > 0},
which we Lave already shown to be nonregular. This is a contradiction.

For another illustration of this trick, consider the set A of Example 12.1
above:

A= {a"b™" |n >m},

the set of strings z € L(a*b*) with no more b’s than a’s. By Exercise 2 of
Homework 2, if A were regular, then so would be the set

rev A= {"a" | n > m},
and by interchanging a and b, we would get that the set
A'={a™" | n >m}

is also regular. Formally, “interchanging a and b” means applying the ho-
momorphism a — b, b+ a. But then the intersection

AnA' = {a™" |n >0}

would be regular. But we have already shown using the pumping lemma
that this set is nonregular. This is a contradiction.

Ultimate Periodicity
Let U be a subset of N = {0,1,2,3,...}, the natural numbers.

The set U is said to be ultimately periodic if there exist numbers n > 0 and
p > 0 such that for all m > n, m € U if and only if m+p € U. The number
p is called a period of U.

In other words, except for a finite initial part (the numbers less than n),
numbers are in or out of the set U according to a repeating pattern. For
example, consider the set

{0,3,7,11,19, 20, 23, 26, 29, 32, 35, 38,41, 44, 47,50, .. .}.

Starting at 20, every third element is in the set, therefore this set is ulti-
mately periodic with n = 20 and p = 3. Note that neither n nor p is unique;
for example, for this set we could also have taken n = 21 and p = 6, or
n = 100 and p = 33.

Regular sets over a single-letter alphabet {a} and ultimately periodic sub-
sets of N are strongly related:

Using the Pumping Lemma 75

Theorem 12.3 Let A C {a}*. Then A is regular if and only if the set {m | a™ € A}, the
set of lengths of strings in A, is ultimately periodic.

Proof. If A is regular, then any DFA for it consists of a finite tail of some
length, say n > 0, followed by a loop of length p > 0 (plus possibly some
inaccessible states, which can be thrown out).

To see this, consider any DFA for A. Since the alphabet is {a} and the
machine is deterministic, there is exactly one edge out of each state, and it
has label a. Thus there is a unique path through the automaton starting at
the start state. Follow this path until the first time you see a state that you
have seen before. Since the collection of states is finite, eventually this must
happen. The first time this happens, we have discovered a loop. Let p be the
length of the loop, and let n be the length of the initial tail preceding the
first time we enter the loop. For all strings a™ with m > n, the automaton
is in the loop part after scanning a™. Then a™ is accepted iff a™*P is, since
the automaton moves around the loop once under the last p a’s of a™*?,
Thus it is in the same state after scanning both strings. Therefore, the set
of lengths of accepted strings is ultimately periodic.

Conversely, given any ultimately periodic set U, let p be the period and
let n be the starting point of the periodic behavior. Then one can build an
automaton with a tail of length n and loop of length p accepting exactly
the set of strings in {a}* whose lengths are in U. For example, for the
ultimately periodic set

{0,3,7,11,19, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47,50,... .}

mentioned above, the automaton would be

M

Corollary 12.4 Let A be any reqular set over any finite alphabet T, not necessarily consisting
of a single letter. Then the set

76

Lecture 12

lengths 4 = {|z| | z € A}

of lengths of strings in A is ultimately periodic.

Proof. Define the homomorphism h : £ — {a} by h(b) = a for all b € L.
Then h(z) = al®l. Since h preserves length, we have that lengths A =
lengths h(A). But h(A) is a regular subset of {a}*, since the regular
sets are closed under homomorphic image; therefore, by Theorem 12.3,
lengths h(A) is ultimately periodic. 0O

Historical Notes

A general treatment of ultimate periodicity and regularity-preserving func-
tions is given in Seiferas and McNaughton [113]; see Miscellaneous Exercise
34.

Lecture 13

DFA State Minimization

By now you have probably come across several situations in which you have
observed that some automaton could be simplified either by deleting states
inaccessible from the start state or by collapsing states that were equivalent

in some sense. For example, if you were to apply the subset construction to
the NFA

accepting the set of all strings containing the substring aba, you would
obtain a DFA with 2* = 16 states. However, all except six of these states
are inaccessible. Deleting them, you would obtain the DFA

From left to right, the states of this DFA correspond to the subsets {s},

{s,t}, {s,u}, {s,t,v}, {s,u,v}, {s,v}.

78

Lecture 13

Example 13.1

Now, note that the rightmost three states of this DFA might as well be
collapsed into a single state, since they are all accept states, and once the
machine enters one of them it cannot escape. Thus this DFA is equivalent
to

b a a,b

This is a simple example in which the equivalence of states is obvious, but
sometimes it is not so obvious. In this and the next lecture we will develop
a mechanical method to find all equivalent states of any given DFA and
collapse them. This will give a DFA for any given regular set A that has
as few states as possible. An amazing fact is that every regular set has
a minimal DFA that is. unique up to isomorphism, and there is a purely
mechanical method for constructing it from any given DFA for A.

Say we are given a DFA M = (Q, %, §, s, F) for A. The minimization
process consists of two stages:

1. Get rid of inaccessible states; that is, states ¢ for which there exists no

—~

string z € £* such that 6(s,z) = q.
2. Collapse “equivalent” states.

Removing inaccessible states surely does not change the set accepted. It
is quite straightforward to see how to do this mechanically using depth-
first search on the transition graph. Let us then assume that this has been
done. For stage 2, we need to say what we mean by “equivalent” and how
we do the collapsing. Let’s look at some examples before giving a formal
definition.

a,b

a,b a,b ab

These automata both accept the set {a,b}. The automaton with four states
goes to different states depending on the first input symbol, but there’s
reany no reason for the states to be separate. They are equivalent and can
be collapsed into one state, giving the automaton with three states. 0

DFA State Minimization 79

Example 13.2

Example 13.3

Example 13.4

a,b a,b a,b
a,b
6 7 8 9

This example is a little more complicated. The automata both accept the set
{a,b}U{strings of length 3 or greater}. In the first automaton, states 3 and
4 are equivalent, since they both go to state 5 under both input symbols,
s0 there’s no reason to keep them separate. Once we collapse them, we can
collapse 1 and 2 for the same reason, giving the second automaton. State 0
becomes state 6; states 1 and 2 collapse to become state 7; states 3 and 4
collapse to become state 8; and state 5 becomes state 9. O

a,b a,b
6 7 8

a,b

Here we have modified the first automaton by making states 3, 4 accept
states instead of 1, 2. Now states 3, 4, 5 are equivalent and can be collapsed.
These become state 8 of the second automaton. The set accepted is the set
of all strings of length at least two. a

1 v

These automata both accept the set {a™ | m = 1 mod 3} (edge labels are
omitted). In the left automaton, diametrically opposed states are equivalent
-and can be collapsed, giving the automaton on the right. a

80

Lecture 13

The Quotient Construction

How do we know in general when two states can be collapsed safely without
changing the set accepted? How do we do the collapsing formally? Is there
a fast algorithm for doing it? How can we determine whether any further
collapsing is possible?

Surely we never want to collapse an accept state p and a reject state g,
because if p = 5(3)€ Fand g = 6(5 y) € F, then £ must be accepted
and y must be rejected even after collapsing, so there is no way to declare
the collapsed state to be an accept or reject state without error. Also, if
we collapse p and ¢, then we had better also collapse §(p,a) and é(g,a) to
maintain determinism. These two observations together imply inductively
that we cannot collapse p and ¢ if 6(p,) € F and 6(q,) € F for some
string z.

It turns out that this criterion is necessary and sufficient for deciding
whether a pair of states can be collapsed. That is, if there exists a string z
such that §(p,z) € F and 6(q,) € F or vice versa, then p and ¢ cannot be
safely collapsed; and if no such z exists, then they can.

Here’s how we show this formally. We first define an equivalence relation =
on Q by

prq & voe T (8(p,z) € F < 8(q,z) € F).
This definition is just a formal restatement of the collapsing criterion. It is
not hard to argue that the relation =~ is indeed an equivalence relation: it
is
® reflexive: p = p for all p;
® symmelric: if p = ¢, then ¢ = p; and
® t(ransitive: f p~qgandqg=r,thenp=r.

As with all equivalence relations, &~ partitions the set on which it is defined
into disjoint equivalence classes:

def
[Pl = {¢| g ~p}

Every element p € Q is contained in exactly one equivalence class [p], and
p=q <= [p]=lq]

We now define a DFA M/= called the gquotient automaton, whose states
correspond to the equivalence classes of ~. This construction is called a
quotient construction and is quite common in algebra. We will see a more
general account of it in Supplementary Lectures C and D.

DFA State Minimization 81

Lemma 13.5

Lemma 13.6

Lemma 13.7

There is one state of M /= for each ~-equivalence class. In fact, formally,
the states of M/~ are the equivalence classes; this is the mathematical way
of “collapsing” equivalent states.

Define
M/~ € (Q, %, 8,4, F),

where
"< o] | p € Q)
5'([p,0) = [5(p,a)], (13.1)
y de

! [s)
F'¥ {jp] |p e F}.

There is a subtle but important point involving the definition of §’ in (13.1):
we need to show that it is well-defined. Note that the action of ' on the
equivalence class [p] is defined in terms of p. It is conceivable that a different
choice of representative of the class [p] (i.e., some g such that ¢ = p) might
lead to a different right-hand side in (13.1). Lemma 13.5 says exactly that
this does not happen.

s

If p = q, then §(p,a) = 6(g,a). Equivalently, if [p] = [g], then [6(p,a)] =
[6(g,0)]-
Proof. Suppose p~ q. Let a € £ and y € T*.

8(5(p,a),y) € F <= §(p,ay) € F
= 3(q,ay) eF since p = ¢
< 5(5(g,a),y) € F.

Since y was arbitrary, 6(p,a) = 6(¢,a) by definition of ~. Q

p€F < [p|e F'.

Proof. The direction = is immediate from the definition of F'. For the
direction <, we need to show that if p = ¢ and p € F, then g € F. In other
words, every =-equivalence class is either a subset of F or disjoint from F.
This follows immediately by taking z = € in the definition of p = g¢. a

For oll z € £*, 8'([p), z) = [6(p, z)).

Proof. By induction on |z|.

82

Lecture 13

Theorem 13.8

Basis
Forz = ¢,
& ([pl,€) = [p] definition of &'
= [5(p,€)] definition of 5.

Induction step

Assume & ([p},z) = [g(p,:z:)], andlet a € Z.

&'([p], za) = 6'('([p], z),a) definition of &
=6'([6(p,z)],a) induction hypothesis
= [6(8(p,z),a)] definition of &'
= [8(p, za)) definition of 8. a

L(M/~) = L(M).

Proof. For © € £*,

z € L(M/ =) <= 6(s',z) € F' definition of acceptance
< §'([s],z) € F' definition of s’
< [6(s,z)] € F' Lemma 13.7
= b(s,z) € F Lemma 13.6
>z € L{M) definition of acceptance. a

M/~ Cannot Be Collapsed Further

It is conceivable that after doing the quotient construction once, we might
be able to collapse even further by doing it again. It turns out that once is
enough. To see this, let’s do the quotient construction a second time. Define
def i~ -
[p] ~ lg} & Vz € £* ('([p],2) € F' <= &'((q],) € F').

This is exactly the same definition as ~ above, only applied to the quotient
automaton M/~. We use the notation ~ for the equivalence relation on Q'
to distinguish it from the relation ~ on Q. Now

[p} ~ lq]
= vz (8'([p],z) € F' <= 8'([q],z) € F') definition of ~
=Yz ([5(p,z)] € F' <> [6(g,z)] € F') Lemma 13.7

DFA State Minimization 83

~ ~

= Vz (6(p,z) € F < 6(¢,z) € F) Lemma 13.6
>pxq definition of =
= [p] = [q].

Thus any two equivalent states of M/~ are in fact equal, and the collapsing
relation ~ on @' is just the identity relation =.

Lecture 14

A Minimization Algorithm

Here is an algorithm for computing the collapsing relation =~ for a given
DFA M with no inaccessible states. Our algorithm will mark (unordered)
pairs of states {p,q}. A pair {p,q} will be marked as soon as a reason is
discovered why p and ¢ are not equivalent.

1. Write down a table of all pairs {p, ¢}, initially unmarked.
2. Mark {p,q} il p« F and ¢ ¢ F or vice versa.

3. Repeat the foliowing until no more changes occur: if there exists an
unmarked pair {p.q} such that {(p,a),6(q,a)} is marked for some
a € T, then mark {p,q}.

4. When done, p = ¢ iff {p, ¢} is not marked.
Here are some things to note about this algorithm:

o If {p,q} is marked in step 2, then p and ¢ are surely not equivalent:
take x = € in the definition of .

e We may have to look at the same pair {p,q} many times in step 3,
since any change in the table may suddenly allow {p,q} to be marked.
We stop only after we make an entire pass through the table with no
new marks.

A Minimization Algorithm 85

Example 14.1

e

n!

E(n-k)1

¢ The algorithm runs for only a finite number of steps, since there are
only (%) possible marks that can be made,! and we have to make at
least one new mark in each pass to keep going.

¢ Step 4 is really a statement of the theorem that the algorithm correctly
computes ~. This requires proof, which we defer until later.

Let’s minimize the automaton of Example 13.2 of Lecture 13.

a b

- 0 1 2
1F |3 4

2F 14 3

3 5 5

4 5 5

5F 15 5

Here is the table built in step 1. Initially all pairs are unmarked.

- - 2
- - - 3
- - - - 4

- - - - - 5

After step 2, all pairs consisting of one accept state and one nonaccept state
have been marked.

I N\No

3
- 4
v v 5

Now look at an unmarked pair, say {0, 3}. Underinput a, 0 and 3 go to 1 and
5, respectively (write: {0,3} — {1,5}). The pair {1,5} is not marked, so we
don’t mark {0, 3}, at least not yet. Under input b, {0,3} — {2,5}, which is
not marked, so we still don’t mark {0,3}. We then look at unmarked pairs
{0,4} and {1,2} and find out we cannot mark them yet for the same reasons.
But for {1,5}, under input a, {1,5} — {3,5}, and {3,5} is marked, so we
mark {1,5}. Similarly, under input a, {2,5} — {4,5} which is marked, so
we mark {2,5}. Under both inputs a and b, {3,4} — {5,5}, which is never
marked (it’s not even in the table), so we do not mark {3,4}. After the first

AR

-

BENENIE

the number of subsets of size k in a set of size n.

86

Lecture 14

Example 14.2

pass of step 3, the table looks like

IIENENE

3
- 4
v v 5

v

ANENE NI
AENENIE

Now we make another pass through the table. As before, {0,3} — {1,5}
under input a, but this time {1,5} is marked, so we mark {0,3}. Similarly,
{0,4} — {2,5} under input b, and {2,5} is marked, so we mark {0,4}. This
gives

3
- 4
v v b

N N N)
N N I
N NN

Now we check the remaining unmarked pairs and find out that {1,2} —
{3,4} and {3,4} — {5,5} under both a and b, and neither {3,4} nor {5,5}
is marked, so there are no new marks. We are left with unmarked pairs
{1,2} and {3,4}, indicating that 1 ~ 2 and 3 = 4. O

Now let’s do Example 13.4 of Lecture 13.

- 0
1F
2
3
4F
5

O UL W e

Here is the table after step 2.

0
v

v

RN B NI N
[N I N
| N w
<N

ot

Then:

¢ {0,2} — {1,3}, which is marked, so mark {0, 2}.

A Minimization Aigorithm 87

Theorem 14.3

e {0,3} — {1,4}, which is not marked, so do not mark {0, 3}.
e {0,5} — {0,1}, which is marked, sb mark {0,5}.
e {1,4} — {2,5}, which is not marked, so do nét mark {1,4}.
e {2,3} — {3,4}, which is marked, so mark {2,3}.
e {2,5} — {0,3}, which is not marked, so do not mark {2,5}.
e {3,5} — {0,4}, which is marked, so mark {3,5}.

After the first pass, the table looks like this:

0
v 1

Vo2

- v v 3
v - v v 4
v v - v v 5

Now do another pass. We discover that {0,3} — {1,4} — {2,5} — {0,3}
and none of these are marked, so we are done. Thus 0 = 3, 1 = 4, and
2~ 5. O

Correctness of the Collapsing Algorithm

The pair {p,q} is marked by the above algorithm if and only if there ezists
T € T* such that 6(p,z) € F and 6(q,z) € F or vice versa; i.e., if and only
fp#q.

Proof. This is easily proved by induction. We leave the proof as an exercise
(Miscellaneous Exercise 49). a

A nice way to look at the algorithm is as a finite automaton itself. Let

Q={{p’q} IP,(IG Q7 p#Q}

There are (3) elements of Q, where n is the size of Q. Define a nondeter-
ministic “transition function”

A:Q—2°
on Q as follows:

A({p.q},0) = {{r',d'} Ip=4(r',0), ¢ =6(¢',a)}.
Define a set of “start states” S C @ as follows:

S={{pq}|peF q¢ F}.

88 Lecture 14

(We don’t need to write “...or vice versa” because {p,q} is an unordered
pair.) Step 2 of the algorithm marks the elements of S, and step 3 marks
pairs in A({p,q},a) when {p,q} is marked for any a € X. In these terms,
Theorem 14.3 says that p % ¢ iff {p,q} is accessible in this automaton.

Lecture 15

Myhill-Nerode Relations

Two deterministic finite automata

M= (QMa 2) 6M1 SM, FM)’
N = (QN, %, 6n, SN, FN)

are said to be isomorphic (Greek for “same form”) if there is a one-to-one
and onto mapping f : Qp — Qn such that

* f(sm)=sn,
* f(6m(p,a)) = én(f(p),a) forall p € Qu, a € I, and
® p € Fy iff f(p) € Fx.

That is, they are essentially the same automaton up to renaming of states.
It is easily argued that isomorphic automata accept the same set.

In this lecture and the next we will show that if M and N are any two au-
tomata with no inaccessible states accepting the same set, then the quotient
automata M/~ and N/~ obtained by the collapsing algorithm of Lecture
14 are isomorphic. Thus the DFA obtained by the collapsing algorithm is
the minimal DFA for the set it accepts, and this automaton is unique up
to isomorphism.

We will do this by exploiting a profound and beautiful correspondence
between finite automata with input alphabet ¥ and certain equivalence

90

Lecture 15

relations on £*. We will show that the unique minimal DFA for a regular
set R can be defined in a natural way directly from R, and that any minimal
automaton for R is isomorphic to this automaton.

Myhill-Nerode Relations

Let R C I* be a regular set, and let M = (Q, %, 6, s, F) be a DFA for
R with no inaccessible states. The automaton M induces an equivalence
relation = on £* defined by

z=yyED 5(s,z) = 6(5,).

(Don’t confuse this relation with the collapsing relation ~ of Lecture 13—
that relation was defined on Q, whereas =) is defined on £*.)

One can easily show that the relation =, is an equivalence relation; that
is, that it is reflexive, symmetric, and transitive. In addition, = satisfies
a few other useful properties:

(i) It is & right congruence: for any z,y € L* and a € I,
T=EMY > Ta =N ya.

To see this, assume that £ =ps y. Then

8(s,za) = 6(8(s,z),a)
= 6(8(s,y),a) by assumption

=6(s,ya).

(ii) It refines R: for any z,y € T*,
t=yy=>{(cre€ R<>y€R).

This is because (s, z) = 6(s,y), and this is either an accept or a reject
state, so either both x and y are accepted or both are rejected. Another
way to say this is that every =js-class has either all its elements in R
or none of its elements in R; in other words, R is a union of =),-classes.

(iti) It is of finite index; that is, it has only finitely many equivalence classes.
This is because there is exactly one equivalence class

{z € T* | (s,2) = g}
corresponding to each state ¢ of M.

Let us call an equivalence relation = on £* a Myhill-Nerode relation for R
if it satisfies properties (i), (ii), and (iii); that is, if it is a right congruence
of finite index refining R.

Myhill-Nerode Relations 91

Lemma 15.1

The interesting thing about this definition is that it characterizes exactly
the relations on ©* that are =) for some automaton M. In other words, we
can reconstruct M from =), using only the fact that =y is Myhill-Nerode.
To see this, we will show how to construct an automaton M= for R from
any given Myhill-Nerode relation = for R. We will show later that the two
constructions

M- =y,
EHME

are inverses up to isomorphism of automata.

Let R C T*, and let = be an arbitrary Myhill-Nerode relation for R. Right
now we’re not assuming that R is regular, only that the relation = satisfies
(i), (ii), and (iii). The =-class of the string z is

[2) & {y | y = =}.

Although there are infinitely many strings, there are only finitely many
=-classes, by property (iii).
Now define the DFA M= = (Q, %, 4, s, F), where

Q= {la] |2 € £*},

s € (e,

F¥ {[z]|z € R},

8(lz),a) = [za].

It follows from property (i) of Myhill-Nerode relations that é is well defined.
In other words, we have defined the action of § on an equivalence class [z]
in terms of an element & chosen from that class, and it is conceivable that

we could have gotten something different had we chosen another y € [z]

such that [za] # [ya]. The property of right congruence says exactly that
this cannot happen.

Finally, observe that
z€R<[z]€F. (15.1)

The implication (=) is from the definition of F, and (<) follows from the
definition of F and property (ii) of Myhill-Nerode relations.

Now we are ready to prove that L(M=) = R.

-~

&([z],9) = [zy]-

Proof. Induction on |y|.

92 Lecture 15

Basis
5([z],€) = [2] = [ae].
Induction step

5(|z},ya) = 6(8([z},v),a) definition of &
= §([zy],a) induction hypothesis
= [zya] definition of é. a

Theorem 15.2 L(M=)=R.

Proof.
z € L(Mz) < 8(fe],z) € F definition of acceptance
< [z] € F Lemma 15.1
< zT€R property (15.1). O

M — =), and = — M= Are Inverses

We have described two natural constructions, one taking a given automa-
ton M for R with no inaccessible states to a corresponding Myhill-Nerode
relation =)s for R, and one taking a given Myhill-Nerode relation = for R
to a DFA M- for R. We now wish to show that these two operations are
inverses up to isomorphism.

Lemma 15.3 (i) If = is a Myhill-Nerode relation for R, and if we apply the construction
= +— M= and then apply the construction M — =)s to the result, the
resulting relation =np_ is identical to =.

(i) If M is a DFA for R with no inaccessible states, and if we apply the
construction M +— =y and then apply the construction = — Mz to
the result, the resulting DFA M=,, is isomorphic to M.

Proof. (i) Let M= = (Q, T, §, s, F) be the automaton constructed from =
as described above. Then for any z,y € T,

-~ ~

z=p_ Yy <> 6(s,2) =6(s,7) definition of =3,
< 6(le,z) = 5([e],y) definition of s
<= [z] = [y] Lemma 15.1
==y

Myhill-Nerode Relations 93

(ii) Let M = (@, %, 6, s, F) and let M=,, = (Q', L, &', &', F'). Recall from
the construction that
[2] = {y | v = 2} = {y | 8(s,9) = §(s,2)},
Q' ={[z] |z "},
s' = [e],
F'={[z] | z € R},
§'([z],a) = [za].
We will show that M=,, and M are isomorphic under the map
f:Q - 9,
1(&)) = 8(s,2).
By the definition of =y, [z] = [y] iff 5(s,z) = 8(s,y), 0 the map f is

well defined on =ps-classes and is one-to-one. Since M has no inaccessible
states, f-is onto.

To show that f is an isomorphism of automata, we need to show that f pre-
serves all automata-theoretic structure: the start state, transition function,
and final states. That is, we need to show

. f(s) =5,
* f(¢'([z],a)) = 6(f([z]),a),
¢ [z] € F! < f([z]) € F.

These are argued as follows:
f(s') = f(le]) definition of s’

-~

= 6(s,¢) definition of f

=s definition of 3;
f(8'([z],a)) = f([za]) definition of &'
= 8(s, za) definition of f

=6(8(s,z),a) definition of &
= 6(f(z]),a) definition of f;

[zl e F'<=z€R definition of F and property (ii)

~

&= §(s,z) € F since L(M)=R
<= f([z]) € F definition of f

94 Lecture 15

We have shown:

Theorem 15.4 Let X be a finite alphabet. Up to isomorphism of automata, there is a one-
to-one correspondence between deterministic finite automata over ¥ with no
inaccessible states accepting R and Myhill-Nerode relations for R on T*

Lecture 16

The Myhill-Nerode Theorem

Let R C T* be a regular set. Recall from Lecture 15 that a Myhill-Nerode
relation for R is an equivalence relation = on T* satisfying the following
three properties:

(i) = is a right congruence: for any z,y € L™ and a € L,
T =y = za = ya;
(ii) = refines R: for any z,y € T*,
z=y=> (¢ € R<= y € R);
(ili) = 1is of finite indez; that is, = has only finitely many equivalence classes.

We showed that there was a natural one-to-one correspondence (up to
isomorphism of automata) between

¢ deterministic finite avtomata for R with input alphabet ¥ and with
no inaccessible states, and

® Myhill-Nerode relations for R on £*

This is interesting, because it says we can deal with regular sets and finite
automata in terms of a few simple, purely algebraic properties.

96

Lecture 16

In this lecture we will show that there exists a coarsest Myhill-Nerode
relation =g, for any given regular set R; that is, one that every other Myhill-
Nerode relation for R refines. The notions of coarsest and refinement will
be defined below. The relation =g corresponds to the unique minimal DFA
for R.

Recall from Lecture 15 the two constructions

® M — =)y, which takes an arbitrary DFA M = (Q, &, §, s, F) with no
inaccessible states accepting R and produces a Myhill-Nerode relation
=pum for R:

T=MY &t g(s, z)= 3(3,3/);

® = — M, which takes an arbitrary Myhill-Nerode relation = on T*
for R and produces a DFA M= = (Q, I, §, s, F) accepting R:

[z] {y|y =2},
T {lz] | z € T*),
def [€]
8(lz], a) £ [za],
FE {[z]|z € R}.

We showed that these two constructions are inverses up to isomorphism.

Definition 16.1 A relation =; is said to refine another relation =, if =, C =5, considered

as sets of ordered pairs. In other words, =; refines =, if for all £ and y,
z =; y implies £ =, y. For equivalence relations =; and =4, this is the same
as saying that for every z, the =;-class of z is included in the =;-class of
z. 0

For example, the equivalence relation £ = y mod 6 on the integers refines
the equivalence relation £ = y mod 3. For another example, clause (ii) of the
definition of Myhill-Nerode relations says that a Myhill-Nerode relation =
for R refines the equivalence relation with equivalence classes R and =* —

The relation of refinement between equivalence relations is a partial order
it is reflexive (every relation refines itself), transitive (if =, refines =; and
=, refines =3, then =, refines =3), and antisymmetric (if =; refines =,
and =, refines =;, then =; and =, are the same relation).

If =; refines =,, then =, is the finer and =. is the coarser of the two
relations. There is always a finest and a coarsest equivalence relation on
any set U, namely the identity relation {(z,z) | z € U} and the universal
relation {(z,y) | z,y € U}, respectively.

The Myhill-Nerode Theorem 97

Lemma 16.2

Theorem 16.3

Now let R C =*, regular or not. We define an equivalence relation =g on
T* in terms of R as follows:
c=pry &L Ve ¥ (zz€ R yz€R). (16.1)

In other words, two strings are equivalent under =g, if, whenever you append
the same string to both of them, the resulting two strings are either both
in R or both not in R. It is not hard to show tiaat this is an equivalence.
relation for any R.

We show that for any set R, regular or not, the relation =g satisfies the first
two properties (i) and (ii) of Myhill-Nerode relations and is the coarsest
such relation on £*. In case R is regular, this relation is also of finite index,
therefore a Myhill-Nerode relation for R. In fact, it is the coarsest possible
Myhill-Nerode relation for R and corresponds to the unique minimal finite
automaton for R.

Let R C T*, regular or not. The relation =g defined by (16.1) is a right
congruence refining R and is the coarsest such relation on T*.

Proof. To show that =g is a right congruence, take z = qw in the definition
of =g:

z=py=Va€ L Vwe L*(zaw € R < yaw € R)
= Va € T (za =g ya).
To show that =g refines R, take z = ¢ in the definition of =x:
z=py= (€ R<y€R).

Moreover, =g is the coarsest such relation, because any other equivalence
relation = satisfying (i) and (ii) refines =g:

T=y
= V2 (22 = y2) by induction on |2], using property (i)
=>Vz(zz€ R<= yz € R) property (ii)
=>ZT=RY definition of =p. a

At this point all the hard work is done. We can now state and prove the

Muyhill-Nerode theorem:

(Myhill-Nerode theorem) Let R C ©*. The following statements are
equivalent:

(a) R is regular;
(b) there exists a Myhill-Nerode relation for R:

(¢] the relation =g is of finite irdeur.

98

Lecture 16

Proof. (a) = (b) Given a DFA M for R, the construction M — =um
produces a Myhill-Nerode relation for R.

(b) = (¢) By Lemma 16.2, any Myhill-Nerode relation for R is of finite
index and refines =pg; therefore =p is of finite index.

(c) = (a) If =g is of finite index, then it is a Myhill-Nerode relation for
R, and the construction = — Mz produces a DFA for R. a

Since =g is the unique coarsest Myhill-Nerode relation for a regular set R,
it corresponds to the DFA for R with the fewest states among all DFAs for
R.

The collapsing algorithm of Lecture 14 actually gives this automaton. Sup-
pose M = (Q, L, §, s, F) is a DFA for R that is already collapsed; that is,
there are no inaccessible states, and the collapsing relation

prq &S vre ¥ (5(p,z) € F < 58(q,z) € F)

is the identity relation on Q. Then the Myhill-Nerode relation =js corre-
sponding to M is exactly =g:
T=RY
<= VzeXL* (zz€ R<= yz € R) definition of =g
= Vz e T* (8(s, £z) € F <= §(s,yz) € F) definition of acceptance
= Vze ¥ (8(8(s,z),2) € F <= b(8(s,y),2) € F)

Homework 1, Exercise 3

o~ ~

< 6(s,z) = 6(s,y) definition of ~
= b(s,z) = 8(s,y) since M is collapsed
= T=mY definition of = .

An Application

The Myhill-Nerode theorem can be used to determine whether a set R
is regular or nonregular by determining the number of =g-classes. For
example, consider the set

A= {a"b" |n >0}.

If k # m, then a* #,4 a™, since a*b* € A but a™b* ¢ A. Therefore, there
are infinitely many = ,-classes, at least one for each a*, k > 0. By the
Myhill-Nerode theorem, A is not regular.

In fact, one can show that the = 4-classes are exactly

Gr={a*}, k>0,

The Myhill-Nerode Theorem 99

Hy={a"**"|1<n}, k>0,

E=3*-JGxUH=5%*-{a™"|0<n<m}.
k>0

For strings in G4, all and only strings in {a™b™"* | n > 0} can be appended
to obtain a string in A; for strings in Hy, only the string b* can be appended
to obtain a string in A; and no string can be appended to a string in E to
obtain a string in A.

We will see another application of the Myhill-Nerode theorem involving
two-way finite automata in Lectures 17 and 18.

Historical Notes

Minimization of DFAs was studied by Huffman [61], Moore [90], Nerode
[94], and Hopcroft [59], among others. The Myhill-Nerode theorem is due
independently to Myhill [91] and Nerode [94] in slightly different forms.

Supplementary Lecture B

Collapsing Nondeterministic Automata

With respect to minimization, the situation for nondeterministic automata
is not as satisfactory as that for deterministic automata. For example, mini-
mal NFAs are not necessarily unique up to isomorphism (Miscellaneous Ex-
ercise 60). However, part of the Myhill-Nerode theory developed in Lectures
13 through 16 does gereralize to NFAs. The generalization is based on the
notion of bisimulation, an important concept in the theory of concurrency
[87]. In this lecture we briefly investigate this connection.

The version of bisimulation we consider here is called strong bisimulation in
the concurrency literature. There are weaker forms that apply too. We show
that bisimulation relations between nondeterministic automata and collaps-
ing relations on deterministic automata are strongly related. The former
generalize the latter in two significant ways: they work for nondeterministic
automata, and they can relate two different automata.

Bisimulation
Let

M=(Qxr.Z. Ay, Sury Fur),
‘\" = (Ql\'- S~ AN-, SN1 FN)
be two NFAs. Recall that for NFAs, A(p,a) is a set of states.

— Collapsing Nondeterministic Automata 101

Definition B.1

Lemma B 2

Let =~ be a binary relation relating states of M with states of N; that is, =~
is a subset of Qp X @n. For B C @y, define

C~(B)¥ {peQu|3ge Bp=g},

the set of all states of M that are related via = to some state in B. Similarly,
for A C Qp, define

Co(A) = {geQn|TpecAp~q).

The relation = can be extended in a natural way to subsets of Qs and Qn:
for A g QM and B g QN,

A~ B &5 A C Co(B) and B C Cx(A) (B.1)
< VpeAJge Bp=qandVge Bdpec Ap~q.
Note that {p} ~ {q} iff p = ¢ and that B C B’ implies Cx(B) C Cx(B’).

The relation = is called a bisimulation if the following three conditions are
met:

(i) SM ~ SN;
(ii) if p ~ ¢, then for all @ € &, Ap(p,a) = An(g,a); and
(iii) if p~ ¢, thenp € Fy iff ¢ € Fy. a

Note the similarity of these conditions to the defining conditions of collaps-
ing relations on DFAs from Lecture 13.

We say that M and N are bisimilar if there exists a bisimulation between
them. The bisimilarity class of M is the family of all NFAs that are bisimilar
to M. We will show that bisimilar automata accept the same set and that
every bisimilarity class contains a unique minimal NFA that can be obtained
by a collapsing construction.

First let’s establish some basic consequences of Definition B.1.

(i) Bisimulation is symmetric: if ~ is a bisimulation between M and N,
then its reverse

{(g:p) | p =g}

is a bisimulation between N and M.

(ii) Bisimulation is transitive: if =1 is a bisimulation between M and N
and =, is a bistimulation between N and P, then their composition

102 Supplementary Lecture B
def
~jomy = {(p,7)|Igp=~1q and gy 7}
is a bisimulation between M and P.
(#4i) The union of any nonempty family of bisimulations between M and N
is a bisimulation between M and N.
Proof. All three properties follow quite easily from the definition of bisim-
ulation. We argue (iii) explicitly.
Let {=;| ¢ € I} be a nonempty indexed set of bisimulations between M and
N. Define
~ déf U .
i€l
Thus
prq&<>Felp~;q.
Since I is nonempty, Sy =~; Sy for some 7 € I, therefore Syy = Sy. If
p = g, then for some ¢ € I, p =; ¢. Therefore, A(p,a) =; A(g,a) and
A(p,a) = A(g,a). Finally, if p ~ ¢, then p ~; ¢ for some ¢ € I, whence
p € Fy iff ¢ € Fy. a
Lemma B.3 Let ~ be a bisimulation between M and N. If A~ B, then for all z € T*,

Am(A,z)~ Ay(B,z).
Proof. Suppose A = B. For z = ¢,
Am(A,e) = A~ B =Apy(B,e).

For z = a € %, since A C Cx(B), if p € A then there exists ¢ € B such
that p = ¢. By Definition B.1(ii),

Au(p,a) C Cx(An(g,0)) € Cx(An(B,a)).
Therefore,

Au(A,0) = | Am(p,e) € Cx(Bn(B,a)).
pEA

By a symmetric argument, Ay(B,a) C Cx(Au(A,a)). Therefore,
Am(A,a) = Ax(B,a). (B.2)
Proceeding by induction, suppose that ZSM(A, z) = EN(B,z). By (B.2) -
and Lemma 6.1,
Am(A,za) = Ay (Ap(A,z),0)

Collapsing Nondeterministic Automata 103

Theorem B.4

Lemma B.5

Definition B.6
Theorem B.7

Bisimilar automata accept the same set.

Proof. Suppose =~ is a bisimulation between M and N. By Definition B.1(i)
and Lemma B.3, for any z € £*, Ay (Su,z) ~ An(Sy,z). By Definition
B.1(iii), Ay (S, z) N Fy # @ iff Ax(Sn,z) N Fy # 2. By definition of
acceptance for nondeterministic automata, z € L(M) iff z € L(N). Since
z is arbitrary, L(M) = L(N). a

In fact, one can show that if M and N are bisimilar, then (B.1) is a bisimu-
lation between the deterministic automata obtained from M and N by the
subset construction (Miscellaneous Exercise 64).

As with the deterministic theory, minimization involves elimination of in-
accessible states and collapsing. Here's how we deal with accessibility. Let
= be a bisimulation between M and N. The support of = in M is the set
C~(Qn), the set of states of M that are related by ~ to some state of N.

A state of M is in the support of all bisimulations involving M if and only
if it is accessible.

Proof. Let = be an arbitrary bisimulation between M and another automa-
ton. By Definition B.1(i), every start state of M is in the support of =;
and by Definition B.1(ii), if p is in the support of =, then every element of

A(p,a) is in the support of ~ for every a € I. It follows inductively that

every accessible state of M is in the support of =.

Conversely, it is not difficult to check that the relation

{(p,p) | p is accessible} (B.3)

is a bisimulation between M and itself. If a state is in the support of all
bisimulations, then it must be in the support of (B.3), therefore accessi-
ble. a

Autobisimulation
An autobisimulation is a bisimulation between an automaton and itself. 0O

Any nondeterministic automaton M has a coarsest autobisimulation =pr.
The relation =) is an equivalence relation.

Proof. Let B be the set of all autobisimulations on M. The set B is
nonempty, since it contains the identity relation at least. Let =) be the
union of all the relations in B. By Lemma B.2(iii), =y is itself in B and
is refined by every element of B. The relation =, is reflexive, since the
identity relation is in B, and is symmetric and transitive by Lemma B.2(})
and (ii). O

104 Supplementary Lecture B

Lemma B.8

Lemma B.9

We can now remove inaccessible states and collapse by the maximal auto-
bisimulation to get a minimal NFA bisimilar to the original NFA. Let

M=(Q, %, A,S, F).

We have already observed that the accessible subautomaton of M is bisim-
ilar to M under the bisimulation (B.3), so wé can assume without ioss of
generality that M has no inaccessible states. Let = be =js, the maximal
autobisimulation on M. For p € Q, let [p] denote the =-equivalence class
of p, and let 2 be the relation relating p to its =-equivalence class:

def
[p] = {glp=4q},
def

2 ={k)Iree}
For any A C @, define

A = {lpl]p e 4}, (B.4)
For all A,B C Q,

(i) AC C=(B)<= A" C B,

(ii)) A= B <= A'=B’, and
(i) A2 A
These properties are straightforward consequences of the definitions and
are left as exercises (Miscellaneous Exercise 62).
Now define the quotient automaton

M[déf (QI, 2’ AI, S,, F’),
where @', S', and F’ refer to (B.4) and

def

A'(lpl,a) = A(p,a)'.
The function A’ is well defined, because

Pl=ld=>pr=q

= A(p,a) = A(g,a) Definition B.1(ii)
= A(p,a)’ = A(g,a)’ Lemma B.8(ii).

The relation 2 is a bisimulation between M and M'.

Proof. By Lemma B.8(iii), we have S 2 §’, and if p > [g], then p = g¢.
Therefore,

A(p, a) 2 A(l” a), = A'([p],a) = Al([‘l]’a‘)'

Collapsing Nondeterministic Automata 105

Lemma B.10

Theorem B.11

This takes care of start states and transitions. For the final states, if p € F,
then [p] € F’'. Conversely, if [p] € F’, there exists ¢ € [p] such that ¢ € F;
then p = ¢, thereforep € F.]

By Theorem B.4, M and M' accept the same set.

The only autobisimulation on M’ is the identity relation =.

Proof. Let ~ be an autobisimulation on M'. If ~ related two distinct states,
then the composition

2 o~o0X, (B.5)

where < is the reverse of 2, would relate two non-=js-equivalent states of
M, contradicting the maximality of =ps. Thus ~ is a subset of the identity
relation.

On the other hand, if there is a state [p] of M’ that is not related to
itself by ~, then the state p of M is not related to any state of M under
(B.5), contradicting Lemma B.5 and the assumption that all states of M
are accessible. 0

Let M be an NFA with no inaccessible states and let =p be the maxi-
mal autobisimulation on M. The quotient automaton M' is the minimal
automaton bisimilar to M and is unique up to isomorphism.

Proof. To show this, it will suffice to show that for any automaton N bisim-
ilar to M, if we remove inaccessible states and then collapse the resulting
NFA by its maximal autobisimulation, we obtain an automaton isomorphic
to M'.

Using (B.3), we can assume without loss of generality that N has no inac-
cessible states. Let =5 be the maximal autobisimulation on N, and let N’
be the quotient automaton.

By Lemmas B.2 and B.9, M’ and N’ are bisimilar. We will show that
any bisimulation between M' and N' gives a one-to-one correspondence
between the states of M’ and N'. This establishes the result, since a bisim-
ulation that is a one-to-one correspondence constitutes an isomorphism
{Miscellaneous Exercise 63).

Let = be a bisimulation between M’ and N'. Under =, every state of M’
is related to at least one state of N', and every state of N’ is related to
at most one state of M'; otherwise the composition of &~ with its reverse
would not be the identity on M’, contradicting Lemma B.10. Therefore, =
embeds M’ into N’ injectively (i.e., in a one-to-one fashion). By a symmetric
argument, the reverse of = embeds N’ into M’ injectively. Therefore, ~
gives a one-to-one correspondence hetween the states of M’ and N'. O

106

Supplementary Lecture B

An Algorithm

Here is an algorithm for computing the maximal bisimulation between any
given pair of NFAs M and N. There may exist no bisimulation between
M and N, in which case the algorithm halts. and reports failure. For the
case M = N, the algorithm computes the maximal autobisimulation. The
algorithm is a direct generalization of the algorithm of Lecture 14.

As in Lecture 14, the algorithm will mark pairs of states (p, q), where p €
Qum and g € Q. A pair (p,q) will be marked when a proof is discovered
that p and ¢ cannot be related by any bisimulation.

1. Write down a table of all pairs (p, ¢), initially unmarked.
2. Mark (p,q) if p € Fy and q ¢ Fy or vice versa.

3. Repeat the following until no more changes occur: if (p, q) is unmarked,
and if for some a € X, either

e there exists p' € Ay (p,a) such that for all ¢’ € An(g,a), (¢',¢')
is marked, or

® there exists ¢’ € An(q,a) such that for all p' € Ay (p,a), (¥',¢)
is marked,

then mark (p, q).

4. Define p = ¢ iff (p, ¢) is never marked. Check whether Sy = Sn. If so,
then = is the maximal bisimulation between M and N. If not, then
no bisimulation between M and N exists.

One can easily prove by induction on the stages of this algorithm that if
the pair (p,q) is ever marked, then p % ¢ for any bisimulation =~ between
M and N, because we only mark pairs that violate some condition in the
definition of bisimulation. Therefore, any bisimulation = is a refinement of
=. In particular, the maximal bisimulation between M and N, if it exists,
is a refinement of =. If Sy # Sy, then the same is true for any refinement
of =; in this case, no bisimulation exists.

On the other hand, suppose Sy = Sn. To show that the algorithm is
correct, we need only show that = is a bisimulation; then it must be the
maximal one. We have Sy = Sy by assumption. Also, = respects the
transition functions of M and N because of step 3 of the algorithm and
respects final states of M and N because of step 2 of the algorithm.

We have shown:

Collapsing Nondeterministic Automata 107

Theorem B.12

The algorithm above correctly computes the mazimal bisimulation between
two NFAs if a bisimulation exists. If no bisimulation ezists, the algorithm
halts and reports failure. If both automata are the same, the algorithm
computes the mazimal autobisimulation.

Supplementary Lecture C

Automata on Terms

The theory of finite automata has many interesting and useful generaliza-
tions that allow more general types of inputs, such as infinite strings and
finite and infinite trees In this lecture and the next we will study one such
generalization: finite automata on terms, also known as finite labeled trees.
This generalization is quite natural and has a decidedly algebraic flavor. In
particular, we will show that the entire Myhill-Nerode theory developed in
Lectures 13 through 16 is really a consequence of basic results in univer-
sal algebra, a branch of algebra that deals with general algebraic concepts
such as direct product, homomorphism, homomorphic image, and quotient
algebra.

Signatures and Terms

A signature is an alphabet ¥ consisting of various function and relation
symbols in which each symbol is assigned a natural number, called its arity.
An element of ¥ is called constant, unary, binary, lernary, or n-ary if its
arity is 0, 1, 2, 3, or n, respectively. We regard an n-ary function or relation
symbol as denoting some {as yet unspecified) function or relation of n inputs
on some (as yet unspecified) domain.

For example, the signature of monoids consists of two function symbols,
a binary multiplication symbol - and a constant 1 for the multiplicative

Automata on Terms 109

identity. The signature of groups consists of the symbols for monoids plus
a unary function symbol ~! for multiplicative inverse. The signature of
Kleene algebra consists of two binary function symbols + and -, one unary
function symbol *, and two constants 0 and 1.

Informally, a ground term over ¥ is an expression'built from the function
symbols of ¥ that respects the arities of all the symbols. The set of ground
terms over ¥ is denoted Tx. Formally,

(i) any constant function symbol ¢ € £ is in Tx; and

(ii) ift1,...,tn € Tx and f is an n-ary function symbol of £, then ft; --- ¢, €
Ts.. We can picture the term ft;---t, as a labeled tree

N

Actually, (i) is a special case of (ii): the precondition “if ¢;,...,t, € Tx” is
vacuously true when n = 0.

For example, if f is binary, g is unary, and a,b are constants, then the
following are examples of terms:

a fab fgbfaa
or pictorially,

VANPAN
VAN

b

a

The term ft;---t, is an expression representing the result of applying an
n-ary function denoted by f to n inputs denoted by ti,...,%,, although
we have not yet said what the function denoted by f is. So far, f is just
an uninterpreted symbol, and a term is just a syntactic expression with no
further meaning.

Even though we don’t use parentheses, the terms ty,...,t, are uniquely de-
termined by the term f¢--- ¢, and the fact that f is n-ary. In other words,
there is one and only one way to parse the string ft; --- ¢, as a ground term.
A formal proof of this fact is given as an exercise (Miscellaneous Exercise
94), but is better left until after the study of context-free langnages.

110

Supplementary Lecture C

Example C.1

Example C.2

Example C.3

Example C.4

Note that if there are no constants in X, then Tx is empty. If there are only
finitely many constants and no other function symbols, then Ty, is finite. In
all other cases, T is infinite.

T-algebras

A Z-glgebra is a structure A consisting of a set A, called the carrier of
A, along with a map that assigns a function f# or relation R* of the
appropriate arity to each function symbol f € ¥ or relation symbol R € X.
If f is an n-ary function symbol, then the function associated with f must
be an n-ary function fA : A™ — A. If R is an n-ary relation symbol, then
the relation R4 must be an n-ary relation R* C A™. Constant function
symbols ¢ are interpreted. as 0-ary functions (functions with no inputs),
which are just elements c* of A. A unary relation is just a subset of A.

This interpretation of symbols of £ extends in a natural way by induction
to all ground terms. Each ground term ¢ is naturally associated with an
element ¢4 € A, defined inductively as follows:

def
fti- A S FAGRR, ...

This includes the base case: the interpretation of a constant ¢ as an element
c* € A is part of the specification of A.

Let I be a finite alphabet. The monoid I'* is an algebra of signature -, 1.
The carrier of this. algebra is the set ['*, the binary function symbol - is
interpreted as string concatenation, and the constant 1 is interpreted as the
null string e. a

The family of regular sets over an alphabet T' is a Kleene algebra in which
+ is interpreted as set union, - as set concatenation, * as asterate, 0 as the
null set, and 1 as the set {e}. O

The family of binary relations on a set X is also a Kleene algebra in which
+ is interpreted as set union, - as relational composition, * as reflexive
transitive closure, 0 as the null relation, and 1 as the identity relation. [

Term Algebras

Let ¥ be an arbitrary signature. The set Tx of ground terms over T gives
a family of E-algebras under the following natural interpretation: for n-ary

s

def
Tty tn) S ftr- -t

Automata on Terms 111

Definition C.5

Definition C.6

This definition includes constants
cT® def c.

The particular algebra depends on the interpretation of the relation symbols
of ¥ as relations on Tx. In such algebras, each ground term ¢ denotes itself:
tTs = t. These algebras are called syntactic or term algebras. a

Automata on Terms
Now here’s something interesting.

Let ¥ be a signature consisting of finitely many function symbols and a
single unary relation symbol R. A (deterministic) term automaton over T
is a finite X-algebra. O

Let A be a term automaton over ¥ with carrier A. We’'ll call elements of
A states. The states satisfying the unary relation R4 will be called final
or accept states. Since a unary relation on A is just a subset of A, we can
write R*(q) or ¢ € R* interchangeably. Inputs to A are ground terms over
%; that is, elements of Ty.

A ground term ¢ is said to be accepted by A if t* € RA. The set of terms
accepted by A is denoted L(.A). A set of terms is called regular if it is L(.A)
for some A. o

To understand what is going on here, think of a ground term ¢ as a labeled
tree. The automaton .4, given ¢ as input, starts at the leaves of ¢t and works
upward, associating a state with each subterm inductively. If there is a con-
stant c € ¥ labeling a particular leaf of ¢, the state that is associated with
that leaf is c. If the immediate subterms ¢,,...,t, of the term ft;---t,
are labeled with states ¢;,...,qn, respectively, then the term ft,---t, is
labeled with the state fA(q1,...,qn). A term is accepted if the state la-
beling the root is in R“4; that is, if it is an accept state. There is no need
for a start state; this role is played by the elements c* associated with the
constants ¢ € X.

Now let’s describe the relationship of this new definition of automata to
our previous definition and explain how the old one is a special case of the
new one. Given an ordinary DFA over strings

M= (Q» Ela 6, 8, F)a
where Y’ is a finite alphabet, let
z ¥ v u{g,R},

where O,R ¢ X'. We make ¥ into a signature by declaring all elements
of ¥’ to be unary function symbols, O a constant, and R a unary relation

112

Supplementary Lecture C

Definition C.7

symbol. There is a one-to-one correspondence between ground terms over
3 and strings in 2™*: the string ajag - - an—1a, € o* corresponds to the
ground term @nan—1 - - a2a10 € Tx. In particular, the empty string e € X' *
corresponds to the ground term O € Tx.

Now we make a ¥-algebra out of M, which we will denote by M. The
carrier of M is Q. The symbols of ¥ are interpreted as follows:

oM d_ﬁ_fs

)
def
a™(q) = é(¢,0),
RMEF
In other words, the constant O is interpreted as the start state of M; the
symbol ¢ € ¥’ is interpreted as the unary function ¢ — &(g,a); and the

relation symbol R is interpreted as the set of final states F'. It is not difficult
to show by induction that

-~

6(s,a1a2 -+ An-1an) = AnGn_1--- aza; OM.
Therefore,
@102 Gn-18, € L(M) < g(s, @102+ An-18n) € F
<= Qnln_1 ---agalﬂM € RM
<= @nGp-1--- 02010 € L(M).
It should be pretty apparent by now that much of automata theory is just

algebra. What is the value of this alternative point of view? Let’s develop
the connection a little further to find out.

Homomorphisms

A central concept of universal algebra is the notion of homomorphism. In-
tuitively, a X-algebra homomorphism is a map between two X-algebras that
preserves all algebraic structure as specified by X. Formally,

Let A and B be two X-algebras with carriers A and B, respectively. A
Z-algebra homomorphism from A to Bis a map o : A — B such that

(1) for all n-ary function symbols f € ¥ and all a4,...,a, € A4,
a(fA(a,- .-, an)) = fB(o(a1),...,0(an));

(ii) for all n-ary relation symbols R € ¥ and all a;,...,a, € A4,
RA(ay,...,an) <= RB(0(ay),...,0(an)). a

Condition (i) of Definition C.7 says that for any function symbol f € T, we
can apply f# to ai,...,a, in A and then apply the homomorphism o to

Automata on Terms 113

Example C.8

Example C.9

Definition C.10

Lemma C.11

the result to get an element of B, or we can apply o to each of a4,...,an,
then apply f? to the resulting elements of B, and we get to the same place.
Condition (ii) says that the distinguished relation R holds before applying
the homomorphism if and only if it holds after.

The homomorphisms described in Lecture 10 are monoid homomorphisms.
Conditions (10.1) and (10.2) are exactly Definition C.7(i) for the signature
-, 1 of monoids. a

Let A be any Y-algebra. The function ¢ — t* mapping a ground term
t € T to its interpretation ¢# in A satisfies Definition C.7(i), because for
all n-ary f € ¥ and ty,...,t, € T},

FEE(t, . tn)? = flr ot A
= FAWR, ..),

Moreover, it is the only function Ty, — A that does so. O

For a term automaton M, whether or not the map ¢ — t™ satisfies Defini-
tion C.7(ii) depends on the interpretation of the unary relation symbol R
in the term algebra Tx. There is only one interpretation that works: L(M).
Thus we might have defined L(M) to be the unique interpretation of R in
Tx, making the map ¢ — t™ a homomorphism.

A homomorphism ¢ : A — B that is onto (for all b € B, there exists a € A
such that o(a) = b) is called an epimorphism. A homomorphism o : 4 — B
that is one-to-one (for all a,b € A, if o(a) = o(b), then a = b) is called
a monomorphism. A homomorphism that is both an epimorphism and a
monomorphism is called an isomorphism. If o : A — B is an epimorphism,
then the algebra B is called a homomorphic image of A. a

Let ¥ be a signature consisting of finitely many function symbols and a
single unary relation symbol R. Let A C Ty be an arbitrary set of ground
terms, and let Tx(A) denote the term algebra obtained by interpreting R
as the set A; that is, R7T=(4) = 4.

The set A is regular if and only if the algebra Tx(A) has a finite homomor-
phic image.

Proof. Once we have stated this, it’s easy to prove. A finite homomorphic
image A of Tx(A) is just a term automaton for A. The homomorphism
is the interpretation map ¢ — t4. The inductive definition of this map
corresponds to a run of the automaton. We leave the details as an exercise
(Miscellaneous Exercise 66). O

In the next lecture, Supplementary Lecture D, we will give an account of
the Myhill-Nerode theorem in this more general setting.

Supplementary Lecture D

The Myhill-Nerode Theorem for Term Automata

In the last lecture we generalized DFAs on strings to term automata over
a signature ¥ and demonstrated that automata-theoretic concepts such
as “final states” and “run” were really more general algebraic concepts in
disguise. In this lecture we continue to develop this correspondence, leading
finally to a fuller understanding of the Myhill-Nerode theorem.

Congruence

First we need to introduce the important algebraic concept of congru-
ence. Congruences and homomorphisms go hand-in-hand. Recall from Sup-
plementary Lecture C that a homomorphism between two X-algebras is
a map that preserves all algebraic structure (Definition C.7). Every ho-
momorphism ¢ : A — B induces a certain natural binary relation on
A:

def
U=, ES o(u) =o(v).
The relation =, is called the kernel® of o.
'If you have taken algebra, you may have seen the word kernel used differently: normal subgroups

of groups, ideals of rings, null spaces of linear transformations. These concepts are closely allied and
serve the same purpose. The definition of kernel as a binary relation is more broadly applicable.

The Myhill-Nerode Theorem for Term Automata 115

Definition D.1

Lemma D.2

The kernel of any homomorphism defined on A is an equivalence relation on
A (reflexive, symmetric, transitive). It also respects all algebraic structure
in the following sense:

(i) for all n-ary function symbols f € &, if u; =, v;, 1 < ¢ < n, then
fA(u1, ... ,un) =0 fA(vl,...,v,.);
(ii) for all n-ary relation symbols R € X, if u; =, v;, 1 < ¢ < n, then

R'A(‘Uq, ce ,u,,) == R’A(Ul, v ,‘Un).

These properties follow immediately from the properties of homomorphisms
and the definition of =,.

In general, a congruence on A is any equivalence relation on A satisfying
properties (i) and (ii):

Let A be a T-algebra with carrier A. A congruence on A is an equivalence
relation = on A such that

(i) for all n-ary function symbols f € T, if u; = v5, 1 < i < n, then

fAu,. .. un) = fA(vy,... ,Un);

(ii) for all n-ary relation symbols R € T, if u; = v;, 1 <7 < n, then

RA(u1,...,un) €= RA(v1,...,vn). O

Thus the kernel of every homomorphism 1s a congruence. Now, the inter-
esting thing about this definition is that it goes the other way as well: every
congruence is the kernel of some homomorphism. In other words, given an
arbitrary congruence =, we can construct a homomorphism ¢ such that
=, is =. In fact, we can make the homomorphism o an epimorphism. We
will prove this using a general algebraic construction called the quotient
construction.

We saw an example of the quotient construction in Lecture 13, where we
used it to collapse a DFA. We saw it again in Lecture 15, where we con-
structed an automaton for a set 4 from a given Myhill-Nerode relation for
A. By now you have probably figured out where we are going with this:
the collapsing relations ~ of Lecture 13, the Myhill-Nerode relations = of
Lecture 15, and the maximal Myhill-Nerode relation =g of Lecture 16 are
all congruences on X-algebras! We warned you not to confuse these differ-
ent kinds of relations, because some were defined on automata and others
on strings; but now we can roll them all into a single concept. This is the
power and heauty of abstraction.

(i) The kernel of any homomorphism is a congruence.

116

Supplementary Lecture D

(ii) Any congruence is the kernel of an epimorphism.

Proof. For (ii), build a quotient algebra whose elements are the congruence
classes [u]. There is a unique interpretation of the function and relation
symbols in the quotient making the map u ¥ [u] an epimorphism. We’ll
leave the details as an exercise (Miscellaneous Exercise 67). a

In fact, if the map ¢ — t* is onto (i.e., if each element of A is naméd by
a term), then the congruences on .4 and homomorphic images of A are in
one-to-one correspondence up to isomorphism. This is true of term algebras,
since the map t +— t7= is the identity. This is completely analogous to
Lemma 15.3, which for the case of automata over strings gives a one-to-one
correspondence up to isomorphism between the Myhill-Nerode relations for
A (i.e., the right congruences of finite index refining A) and the DFAs with
no inaccessible states accepting A. Here “no inaccessible states” just means
that the map ¢t — ¢4 is onto.

The Myhill-Nerode Theorem

Recall from Lecture 16 the statement of the Myhill-Nerode thecrem: for a
set A of strings over a finite alphabet X, the following three conditions are
equivalent:

(i) A is regular;
(ii) there exists a Myhill-Nerode relation for A;

(iii) the relation =4 is of finite index, where
s=ay EB Ve T (z2€ A= yz € A).

Recall that finite index means finitely many equivalence classes, and a rela-
tion is Myhill-Nerode for A if it is a right congruence of finite index refining
A.

This theorem generalizes in a natural way to automata over terms. Define
a contert to be a term in Typy(,}, where z is a new symbol of arity 0. For a
context u and ground term ¢ € Ty, denote by s7(u) the term in T obtained
by substituting ¢ for all occurrences of z in u. Formally,

HORN?
sT(ft1-+ta) & fsE(t) -+ 8E(tn).

As usual, the last line includes the case of constants:

st (c) “e

The Myhill-Nerode Theorem for Term Automata 117

Theorem D.3

Let ¥ be a signature consisting of finitely many function symbols and a
single unary relation symbol R. For a given A C Ty and ground terms
s,t € Ty, define

s=4t &5 for all contexts u, sZ(u) € A < si(u) € A.

It is not difficult to argue that =4 is a congruence on Tx(A) (Miscellaneous
Exercise 68).

(Myhill-Nerode theorem for term automata) Let A C Tx. Let
Tx(A) denote the term algebra over ¥ in which R is interpreted as the
unary relation A. The following statements are equivalent:

(i) A is regular;

(i) Ts(A) has a finite homomorphic image;

(ii) there exists a congruence of finite index on Tx(A);
(iii) the relation =4 is of finite indez.

Proof. We have already observed (Lemma C.11) that to say A is regular
(i-e., accepted by a term automaton) is just another way of saying that
Tx(A) has a finite homomorphic image. Thus (i) and (i’) are equivalent.

(i') = (ii) If Tg(A) has a finite homomorphic image under epimorphism
o, then the kernel of ¢ is of finite index, since its congruence classes are in
one-to-one correspondence with the elements of the homomorphic image.

(i) = (iii) Let = be any congruence on Tx(A). We show that = refines
=4; therefore, =4 is of finite index if = is. Suppose s = ¢. It follows by
a straightforward inductive argument using Definition D.1(i) that for any
context u, s¥(u) = s7(u); then by Definition D.1(ii), s*(u) € Aiff s7¥(u) € A.
Since the context u was arbitrary, s =4 t.

(iif) = (I') Since =4 is a congruence, it is the kernel of an epimorphism ob-
tained by the quotient construction. Since =4 is of finite index, the quotient
algebra is finite and therefore a finite homomorphic image of Tx(4). O

As in Lecture 16, the quotient of Tx(A) by =4 gives the minimal homo-
morphic image of Tx(A); and for any other homomorphic image B, there is
a unique homomorphism B — Ty (A4)/=4.

Historical Notes

Thatcher and Wright [119] generalized finite automata on strings to finite
automata on terms and developed the algebraic connection. The more gen-
eral version of the Myhill-Nerode theorem (Theorem D.3) is in some sense

118 Supplementary Lecture D

an inevitable consequence of Myhill and Nerode’s work [91, 94] since ac-
cording to Thatcher and Wright, “conventional finite automata theory goes
through for the generalization—and it goes through quite neatly” [119].
The first explicit mention of the equivalence of the term analogs of (i) and
(i) in the statement of the Myhill-Nerode theorem seems to be by Brainerd
[13, 14] and Eilenberg and Wright [34], although the latter claim that their
paper “contains nothing that is essentially new, except perhaps for a point
of view” [34]. A relation on terms analogous to =4 was defined and clause
(iii) added explicitly by Arbib and Give’on [5, Definition 2.13], although it
is also essentially implicit in work of Brainerd [13, 14].

Good general references are Gécseg and Steinby {42] and Englefriet [35].

Lecture 17

Two-Way Finite Automata

Two-way finite automata are similar to the machines we have been studying,
except that they can read the input string in either direction. We think of
them as having a read head, which can move left or right over the input
string. Like ordinary finite automata, they have a finite set Q of states and
can be either deterministic (2DFA) or nondeterministic (2NFA).

Although these automata appear much more powerful than one-way finite
automata, in reality they are equivalent in the sense that they only accept
regular sets. We will prove this result using the Myhill-Nerode theorem.

We think of the symbols of the input string as occupying cells of a finite
tape, one symbol per cell. The input string is enclosed in left and right
endmarkers - and -, which are not elements of the input alphabet ¥. The
read head may not move outside of the endmarkers.

I3 2 P) 2 O o e Y

Q

Informally, the machine starts in its start state s with its read head pointing
to the left endmarker. At any point in time, the machine is in some state ¢
with its read head scanning some tape cell containing an input symbol a; or

120

Lecture 17

Example 17.1

one of the endmarkers. Based on its current state and the symbol occupying
the tape cell it is currently scanning, it moves its read head either left or
right one cell and enters a new state. It accepts by entering a special accept
state t and rejects by entering a special reject state r. The machine’s action
on a particular state and symbol is determined by a transition function 6
that is part of the specification of the machine.

Here is an informal description of a 2DFA accepting the set
A = {z € {a,b}* | #a(z) is a multiple of 3 and #b(z) is even}.

The machine starts in its start state scanning the left endmarker. It scans
left to right over the input, counting the number of ¢’s mod 3 and ignoring
the b’s. When it reaches the right endmarker -, if the number of a’s it
has seen is not a multiple of 3, it enters its reject state, thereby rejecting
the input—the input string z is not in the set A, since the first condition
is not satisfied. Otherwise it scans right to left over the input, counting
the number of b’s mod 2 and ignoring the a’s. When it reaches the left
endmarker F again, if the number of b’s it has seen is odd, it enters its
reject state; otherwise, it enters its accept state. O

Unlike ordinary finite automata, a 2DFA needs only a single accept state
and a single reject state. We can think of it as halting immediately when
it enters one of these two states, although formally it keeps running but
remains in the accept or reject state. The machine need not read the entire
input before accepting or rejecting. Indeed, it need not ever accept or reject
at all, but may loop infinitely without ever entering its accept or reject state.

Formal Definition of 2DFA
Formally, a 2DFA is an octuple

M= (Qa E, I_a ~i’ 6a S, tv 'I’),

where

® Q is a finite set (the states),

¥ is a finite set (the input alphabet),

F is the left endmarker, F¢ L,

- is the right endmaqrker, ¢ X,

6:Qx (BU{r,-}) — (Q x {L,R}) is the transition function (L. R
stand for left and right, respectively),

s € Q) is the start state,

Two-Way Finite Automata 121

Example 17.2

® t € (@ is the accept state, and

® r € () is the reject state, r # ¢,

such that for all states q,

6(¢,F) = (u,R) forsomeu €@,

6(¢g,4) = (v,L) forsomeveQ, (17.1)
and for all symbols b € £ U {+},

6(¢,b) = (¢, R), é(r,b) = (r, R),

5(t,H) = (t, L), 60 = (r. L) (17.2)

Intuitively, the function § takes a state and a symbol as arguments and
returns a new state and a direction to move the head. If 6(p,b) = (g,4d),
then whenever the machine is in state p and scanning a tape cell containing
symbol b, it moves its head one cell in the direction d and enters state g. The
restrictions (17.1) prevent the machine from ever moving outside the input
area. The restrictions (17.2) say that once the machine enters its accept or
reject state, it stays in that state and moves its head all the way to the
right of the tape. The octuple is not a legal 2DFA if its transition function
6 does not satisfy these conditions.

Here is a formal description of the 2DFA described informally in Example
17.1 above.

Q = {quQI,Q2ap0ap1,t,T},
L = {a,b}.

The start, accept, and reject states are gp, t, and 7. respectively. The
transition function é is given by the following table:

F a b -
go (qu R) (‘h, R) (qO’ R) (va L)
q1 - (g2, R) (@, R) (n, L)
g2 - (2,R) (¢2,R) (rL)
y4i] (t) R) (vaL) (pl,L) -
y 4 (T’ R) (plyL) (pO,L) -
t | &R (tLR) (4R) (¢ 1)
r | (R (nR) (nR) (rL)

The entries marked — will never occur in any computation, so it doesn’t
matter what we put here. The machine is in states go, g1, or g, on the first
pass over the input from left to right; it is in state ¢; if the number of a’s
it has seen so far is ¢ mod 3. The machine is in state py or p; on the second
pass over the input from right to left, the index indicating the parity of the
number of b’s it has seen so far. a

122

Lecture 17

Configurations and Acceptance
Fix an input z € £*, say T = a1a2 -+ an. Let ag =+ and anyq = . Then
apa1a2 - Anlny1 = FzA.

A configuration of the machine on input z is a pair (g,%) such that ¢ € Q
and 0 < ¢ < n + 1. Informally, the pair (g,%) gives a current state and
current position of the read head. The start configuration is (s,0), meaning
that the machine is in its start state s and scanning the left endmarker.

A binary relation -—l—» , the next configuration relation, is defined on con-
figurations as follows:

8(p,a:) = (¢, L) = (p,i) — (¢,5 - 1),
8(p,a:) = (¢, R) = (p,i) — (q,i + 1).

The relation ——1—-» describes one step of the machine on input z. We define
the relations —— inductively, n > 0:

* (p,i) —= (p,i); and
¢ if (p, z) (¢,7) and (g,5) —» (u, k), then (p,: :1 (u, k).

The relation — is just the n-fold composition of %» The relations
—:—> are functions; that is, for any configuration (p,), there is exactly one
configuration (g,) such that (p,7) %» (¢,7)- Now define

(r3) = (¢,5) €5 3n 20 (p,6) = (g, 4)-

Note that the definitions of these relations depend on the input z. The
machine is said to accept the input z if

(5,0) = (t,i) for some i.

In other words, the machine enters its accept state at some point. The
machine is said to reject the input z if

(8,0) = (r,3) for some i.

In other words, the machine enters its reject state at some point. It-cannot
both accept and reject input z by our assumption that ¢ # r and by prop-
erties (17.2). The machine is said to halt on input z if it either accepts z or
rejects z. Note that this is a purely mathematical definition—the machine
doesn’t really grind to a halt! It is possible that the machine neither accepts
nor rejects z, in which case it is said to loop on z. The set L(M) is defined
to be the set of strings accepted by M.

Two-Way Finite Automata 123

Example 17.3 The 2DFA described in Example 17.2 goes through the following sequence
of configurations on input aababbb, leading to acceptance:

(qo,O), (QOal)’ (q1,2), (Q2,3), ((Iz,4), (QO15)3 (q0’6)7 (QO’7)’ ((IOvS)’
(p0)7)a (plyﬁ)) (p0,5)’ (p1’4)a (plag)v (P0,2)1 (P011)7 (pﬂao)a (t’ 1)

It goes through the following sequence of configurations on input eababa,
leading to rejection:

(qO,O)v (qul)a (41,2), (42,3), (QZa4)’ (‘10,5), (410,6), (41»7), (7‘,6).

It goes through the following sequence of configurations on input aababb,
leading to rejection:

(90,0), (g0,1), (91,2), (g2,3), (92,4), (20,5), (0,6), (20,7),
(pO’G)’ (p1,5), (p0a4)a (P0,3), (p1’2)’ (pl’l)’ (pl,O), (T’l)' a

Lecture 18

2DFAs and Regular Sets

In this lecture we show that 2DFAs are no more powerful than ordinary
DFAs. Here is the idea. Consider a long input string broken up in an ar-
bitrary place into two substrings zz. How much information about z can
the machine carry across the boundary from z into 2? Since the machine
is two-way, it can cross the boundary between z and z several times. Each
time it crosses the boundary moving from right to left, that is, from z into
z, it does so in some state ¢. When it crosses the boundary again moving
from left to right (if ever), it comes out of z in some state, say p. Now if
it ever goes into z in the future in state ¢ again, it will emerge again in
state p, because its future action is completely determined by its current
configuration (state and head position). Moreover, the state p depends only
on ¢ and z. We will write T,(g) = p to denote this relationship. We can
keep track of all such information by means of a finite table

T:: (QU{e}) = (QU{L}),

where @ is the set of states of the 2DFA M, and e and L are two other
objects not in @ whose purpose is described below.

On input zz, the machine M starts in its start state scanning the left
endmarker. As it computes, it moves its read head. The head may eventually
cross the boundary moving left to right from z into z. The first time it does
so (if ever), it is in some state, which we will call T (e) (this is the purpose of
o). The machine may never emerge from z; in this case we write T (o) = L

2DFAs and Regular Sets 125

(this is the purpose of L). The state T (e) gives some information about z,
but only a finite amount of information, since there are only finitely many
possibilities for T;(e). Note also that T, (e) depends only on z and not on
z: if the input were zw instead of zz, the first time the machine passed the
boundary from z into w, it would also be in state T (o), because its action
up to that point is determined only by z; it hasn’t seen anything to the
right of the boundary yet.

If T,(e) = L, M must be in an infinite loop inside z and will never accept or
reject, by our assumption about moving all the way to the right endmarker
whenever it accepts or rejects.

Suppose that the machine does emerge from z into 2. It may wander around
in z for a while, then later may move back into z from right to left in state
g. If this happens, then it will either

¢ eventually emerge from z again in some state p, in which case we define
T:(q) = p; or

® never emerge, in which case we define T(¢) = L.

Again, note that T;(g) depends only on z and g and not on z. If the machine
entered z from the right on input zw in state ¢, then it would emerge again
in state T»(q) (or never emerge, if T,(¢) = L), because M is deterministic,
and its behavior while inside z is completely determined by.z and the state
it entered z in.

If we write down T;(q) for every state ¢ along with T (e), this gives all
the information about z one could ever hope to carry across the boundary
from z to z. One can imagine an agent sitting to the right of the boundary
between z and z, trying to obtain information about z. All it is allowed
to do is observe the state T (e) the first time the machine emerges from z
(if ever) and later send probes into z in various states ¢ to see what state
T.(q) the machine comes out in (if at all). If y is another string such that
T, = T, then = and y will be indistinguishable from the agent’s point of
view.

Now note that there are only finitely many possible tables
T:(QU{e}) = (QU{L},

namely (k + 1)**1, where k is the size of Q. Thus there is only a finite
amount of information about z that can be passed across the boundary to
the right of z, and it is all encoded in the table T.

Note also that if T, = T} and M accepts zz, then M accepts yz. This is
because the sequence of states the machine is in as it passes the boundary
between z and z (or between y and 2) in either direction is completely

126

Lecture 18

determined by the table T, = T, and z. To accept zz, the machine must
at some point be scanning the right endmarker in its accept state ¢. Since
the sequence of states along the boundary is the same and the action when
the machine is scanning z is the same, this also must happen on input yz.

Now we can use the Myhill-Nerode theorem to show that L(M) is regular.
We have just argued that

T, =T, = Vz (M accepts zz <= M accepts yz)
<> Vz (zz € L(M) <= yz € L(M))
= T=LM) Y

where =p,5) is the relation first defined in Eq. (16.1) of Lecture 16. Thus
if two strings have the same table, then they are equivalent under =gs).
Since there are omnly finitely many tables, the relation =g(a has only
finitely many equivalence classes, at most one for each table; therefore,
=) is of finite index. By the Myhill-Nerode theorem, L(M) is a regular
set.

Constructing a DFA

The argument above may be a bit unsatisfying, since it does not explicitly
construct a DFA equivalent to a given 2DFA M. We can easily do so,
however. Intuitively, we can build a DFA whose states correspond to the
tables.

Formally, define

wa4d=°f>T =T,.

That is, call two strings in ©* equivalent if they have the same table. There
are only finitely many equivalence classes, at most one for each table; thus

- = is of finite index. We can also show the following:

(i) The table T, is uniquely determined by T and a; that is, if T, = T},
then Tpq = Tyq. This says that = is a right congruence.

(ii) Whether or not z is accepted by M is completely determined by T;
that is, if T, = T}, then either both z and y are accepted by M or
neither is. This says that = refines L(M).

These observations together say that = is a Myhill-Nerode relation for
L(M). Using the construction = — Mz described in Lecture 15, we can
obtain a DFA for L(M) explicitly.

To show (i), we show how to construct T3, from T, and a.

2DFAs and Regular Sets 127

® If po,p1s.--+PksG054G1,----qk € Q such that 6(p;.a) = (¢i,L) and
T:(q:) = pi+1,0 <4 < k-1, and 8(px, a) = (gk, R), then Tza(po) = g

o If po,P1,---,Pk-Go.Q1,---,qr—1 € @ such that 6(pi,a) = (¢:, L) and
T:(q:) = pit1,0< i < k—1,and px = p;, t <k, then Tpo(po) = L

® If po,p1,s.-- Pk Q0,41+, Gqr € @ such that 6(p;,a) = (¢;,L). 0 <
k, Te(qi) = pit1, 0<i < k-1, and Ty (gx) = L, then Toq(po) =

o If T,(e) = L, then Tyq(s) = L.
e If T,(e) = p, then Tpo(e) = Toa(p).

For (ii), suppose T, = T, and consider the sequence of states M is in as it
crosses the boundary in either direction between the input string and the
right endmarker . This sequence is the same on input & as it is on input
¥y, since it is completely determined by the table. Both strings z and y are
accepted iff this sequence contains the accept state t.

We have shown that the relation = is a Myhill-Nerode relation for L(M),
where M is an arbitrary 2DFA. The construction = — M= of Lecture 15
gives a DFA equivalent to M. Recall that in that construction, the states of
the DFA correspond in a one-to-one fashion with the =-classes; and here,
each =-class [z] corresponds to a table T, : (Q U {o}) — (Q U {L}).

If we wanted to, we could build a DFA M’ directly from the tables:

QYT (QU{e}) = (QU{LL}

s/ def

oy €

§'(Ty,a) ¥ Ty,

F < {T, |z e L(M)}.

The transition function 6’ is well defined because of property (i), and T, €
F'iff £ € L(M) by property (ii). As usual. one can prove by indurtion on
ly| that

8'(Tey) = Tey:
then
r€LM) &8s 1) F
< §'(T.,z) € F'
=T, e F
¢ L(."\I"f:,
Thus L(M') = L(M).

Another proof. due to Vardi [122], is given in Miscellanvous Exercive)

128 Lecture 18

Historical Notes

Two-way finite automata were first studied by Rabin and Scott [102] and
Shepherdson [114]. Vardi.[122] gave a shorter proof of equivalence to DFAs
(Miscellaneous Exercise 61).

Lecture 19

Context-Free Grammars and Languages

You may have seen something like the following used to give a formal defini-
tion of a language. This notation is sometimes called BNF for Backus-Naur
form.

<stmt> i:= <if-stmt> | <while-stmt> | <begin-stmt> | <assg-stmt>
<if-stmt> ::

<while-stmt> ::= while <bool-expr> do <stmt>

if <bool-expr> then <stmt> else <stmt>

<begin-stmt> ::= begin <stmt-list> end
<stmt-list> ::= <stmt> | <stmt> ; <stmt-list>
<assg-stmt> ::= <var> := <arith-expr>
<bool-expr> ::= <arith-expr><compare-op><arith-expr>
<compare-op> i= < | > | < | > |=|#
<arith-expr> ::= <var> | <const> | (<arith-expr><arith-op><arith-expr>)
<arith-op> =+ | — | % | /
<comst>::=0|1]|2]3|4|5]|6]|7|8]9
<var>i=a|blc|---|z|y|=

This is an example of a context-free grammar. It consists of a finite set
of rules defining the set of well-formed expressions in some lai.guage; in
this example, the syntactically correct programs of a simple PASCAL-like
programming language.

130

Lecture 19

For example, the first rule above says that a statement is either an if state-
ment, a while statement, a begin statement, or an assignment statement. If
statements, while statements, begin statements, and assignment statements
are described formally by other rules further down. The third rule says
that a while statement consists of the word while, followed by a Boolean
expression, followed by the word do, followed by a statement.

The objects <xxx> are called nonterminal symbols: Each nonterminal sym-
bol generates a set of strings over a finite alphabet £ in a systematic way
described formally below. For example, the nonterminal <arith-expr> above
generates the set of syntactically correct arithmetic expressions in this lan-
guage. The strings corresponding to the nonterminal <xxx> are generated
using rules with <xxx> on the left-hand side. The alternatives on the right-
hand side, separated by vertical bars |, describe different ways strings corre-
sponding to <xxx> can be generated. These alternatives may involve other
nonterminals <yyy>, which must be further eliminated by applying rules
with <yyy> on the left-hand side. The rules can be recursive; for example,
the rule above for <stmt-list> says that a statement list is either a statement
or a statement followed by a semicolon (;) followed by a statement list.

The string
while z <y do begin z:=(z+1);y:=(y—1) end (19.1)

is generated by the nonterminal <stmt> in the grammar above. To show
this, we can give a sequence of expressions called sentential forms starting
from <stmt> and ending with the string (19.1) such that each sentential
form is derived from the previous by an application of one of the rules.
Each application consists of replacing some nonterminal symbol <xxx> in
the sentential form with one of the alternatives on the right-hand side of
a rule for <xxx>. Here are the first few sentential forms in a derivation of

(19.1):
<stmt>
<while-stmt>
while <bool-expr> do <stmt>
while <arith-expr><compare-op><arith-expr> do <stmt>
while <var><compare-op><arith-expr> do <stmt>
while <var> < <arith-expr> do <stmt>
while <var> < <var> do <stmt>
while z < <var> do <stmt>
while z < y do <stmt>
while z < y do <begin-stmt>

Context-Free Grammars and Languages 131

Applying different rules will yield different results. For example, the string
begin if 2 = (z + 3) then y := z else y := ¢ end

can also be generated. The set of all strings not containing any nonterminals
generated by the grammar is called the language generated by the grammar.
In general, this set of strings may be infinite, even if the set of rules is finite.

There may also be several different derivations of the same string. A gram-
mar is said to be unambiguous if this cannot happen. The grammar given
above is unambiguous.

We will give a general definition of context-free grammars (CFGs) and
the languages they generate. The language (subset of L*) generated by
the context-free grammar G is denoted L(G). A subset of £* is called a
context-free language {(CFL) if it is L(G) for some CFG G.

CFLs are good for describing infinite sets of strings in a finite way. They are
particularly useful in computerscience for describing the syntax of program-
ming languages, well-formed arithmetic expressions, well-nested begin-end
blocks, strings of balanced parentheses, and so on.

All regular sets are CFLs (Homework 5. Exercise 1), but not necessarily
vice versa. The following are examples of CFLs that are not regular:

o {a"b" |n > 0};
¢ {palindromes over {a,b}} = {z € {a.b}* | r = rev z}; and

¢ {balanced strings of parentheses}.

Not all sets are CFLs; for example, the set {a"b"a™ | n > 0} is not. We
can prove this formally using a pumping lemma for C'FLs analogous to the
pumping lemma for regular sets. We will discuss the pumping lemma for
CFLs in Lecture 22.

Pushdown Automata (PDAS): A Preview

A pushdown auiomaton (PDA) is like a fiuite automaton, except that in
addition to its finite control. it has a stack or pushdown store, which it can
use to record a potentially unhounded amount of information.

132

Lecture 19

input tape

[o1[az]as]asas[as|ar]as] - [on]

left to right, read only

Q >
push/pop

finite
control

stack

Flw|Qlw |~

The input head is read-only and may only move right. The machine can
store information on the stack in a last-in-first-out (LIFO) fashion. It can
push symbols onto the top of the stack or pop them off the top of the stack.
It may not read down into the stack without popping the top symbols off,
in which case they are lost.

We will define these machines formally in Lecture 23 and prove that the
class of languages accepted by nondeterministic PDAs is exactly the class
of CFLs.

Formal Definition of CFGs and CFLs
Formally a contezt-free grammar (CFG) is a quadruple

G=(N, 3, P, S),

where

® N is a finite set (the nonterminal symbols),

® ¥ is a finite set (the terminal symbols) disjoint from N,

® P is a finite subset of N x (N U £)* (the productions), and
® S € N (the start symbol).

We use capital letters A, B, C,... for nonterminals and a,b,c, ... for.termi-
nal symbols. Strings in (N UX)* are denoted a, 8,7, Instead of writing
productions as (A,ca), we write A — a. We often use the vertical bar |
as in the example above to abbreviate a set of productions with the same
left-hand side. For example, instead of writing

A—->a1, A-—-*az, A-—‘az,

Context-Free Grammars and Languages 133

Example 19.1

we might write
A— a1 | a9 | ag.

If a,8 € (NUX)*, we say that 3 is derivable from a in one step and write
o --;—» B

if B can be obtained from a by replacing some occurrence of a nonterminal
Ain o with 7, where A — « is in P; that is, if there exist a;, a; € (NUZ)*
and production A — « such that

a=amaAos and [=a1vas.
Let —é—» be the reflexive transitive closure of the relation —;»; that is,

define

L a——é—»aforanya,

n+1 . . n 1
. a?ﬂlf there exists v such thata?'yand 7?[‘1, and
. a—é—»ﬂifa—;—»ﬂforsomenzo.

A string in (NUZX)* derivable from the start symbol S is called a sentential
form. A sentential form is called a sentence if it consists only of terminal
symbols; that is, if it is in £*. The language generated by G, denoted L(G),
is the set of all sentences:

L(G)={zeXT*| S%):c}.
A subset B C T* is a context-free language (CFL) if B = L(G) for some
context-free grammar G.
The nonregular set {a™b™ | n > 0} is a CFL. It is generated by the grammar
S — aSh|e,
where € is the null string. More precisely, G = (N, Z, P, S), where
N ={$},
% = {a, b},
P={S — aSbh, S — €}

Here is a derivation of a®b® in G:

s L, aSh L. aaShb - aaaShbb —— aaabbd.
G G G G

The first three steps apply the production S — aSb and the last applies
the production S — €. Thus

S 2, aaabbb.
G

134

Lecture 19

Example 19.2

One can show by induction on n that
55 gmpn
G k]

so all strings of the form a™b™ are in L(G); conversely, the only strings in
L(G) are of the form a™b", as can be shown by induction on the length of
the derivation. 0

The nonregular set

{palindromes over {a,b}*} = {z € {a,b}* | z = rev z}
is a CFL generated by the grammar

S —aSa|bSb|a|b]|e.

The first two productions generate any number of balanced a’s or b’s at
the outer ends of the string, working from the outside in. The last three
productions are used to finish the derivation. The productions S — a and
S — b are used to generate an odd-length palindrome with an a or b,
respectively, as the middle symbol; and the production S — € is used to
generate an even-length palindrome. a

Historical Notes

Context-free grammars and languages were introduced by Chomsky {17,
18, 20]. although they were foreshadowed by the systems of Post [100]
and Markov [83]. Backus-Naur form was used to specify the syntax of
programming languages by Backus [7] and Naur [93].

Lecture 20

Balanced Parentheses

Intuitively, a string of parentheses is balanced if each left parenthesis has a
matching right parenthesis and the matched pairs are well nested. The set
PAREN of balanced strings of parentheses [] is the prototypical context-
free language and plays a pivotal role in the theory of CFLs.

The set PAREN is generated by the grammar
$— [S1|S8S]e

This is not obvious, so let’s give a proof. First we need a formal character-
ization of balanced. To avoid confusing notation, we’ll use

L(z) «f #[(z) = the number of left parentheses in z,

R(z) 4 (z) = the number of right parentheses in z.
We will define a string z of parentheses to be balanced if and only if
(i) L(z) = R(z), and
(ii) for all prefixes y of z, L(y) > R(y).

(Recall that a prefiz of z is a string y such that z = yz for some 2.) To
see that this definition correctly captures the intuitive notion of balanced,
note that property (i) says that there must be the same number of left

136 Lecture 20

parentheses as right parentheses, which must certainly be true if z is bal-
anced; and property (ii) says that for any way of partitioning z into yz,
there cannot be more right parentheses in y than left parentheses, because
right parentheses can only match left parentheses to the left of them. Thus
(i) and (ii) are certainly necessary conditions for a string to be balanced.
To see that they are sufficient, draw the graph of the function L(y) — R(y)
as y ranges over prefixes of z:

N W

AVAN
/ NN N
N/

N

ct c1 €1 1 C1 1 *0¢T01 1 [0 11

Property (i) says that the graph ends with value 0 (i.e., L(z) — R(z) = 0),
and (ii) says that it never dips below 0 on the way across. If the graph
satisfies these two properties, then given any parenthesis in the string, one
can find the matching parenthesis by shooting upward and ricocheting off
the graph twice.

Theorem 20.1

(D
I I
1 I
! I
! |
C]

Thus we will take (i) and (ii) as our formal definition of balanced strings of
parentheses and prove that the given grammar generates exactly the set of
such strings, no more and no less.

Let G be the CFG
S—[S]1]|5S]e
Then
L(G) = {z € {[,1}* | = satisfies (i) and (ii)}.

Proof. We show the inclusion in both directions. Both arguments will be by
induction, but induction on different things.

Balanced Parentheses 137

First we show the forward inclusion: if S — =z, then z satisfies (i) and (ii).
Thus any string generated by G is balanced.

We would like to use induction on the length of the derivation of z from
S, but since the intermediate sentential forms in this derivation will con-
tain nonterminals, we need to strengthen our induction hypothesis to allow
nonterminals. Thus we will actually show that for any a € (N U X)*, if

S ? o, then o satisfies (i) and (ii). This will be proved by induction on

the length of the derivation S —;» a.

Basis

If § —> o, then & = § by definition of the relation — . But the sentential
form S satisfies (i) and (ii) trivially.
Induction step
Suppose S "—2—1‘ a. Let § be the sentential form immediately preceding a in
the derivation. Then
n 1

SebPge
By the induction hypothesis, 3 satisfies (i) and (ii). There are now three
cases, corresponding to the three productions in the grammar that could

have been applied in the last step to derive a from 3. We will show in each
case that properties (i) and (ii) are preserved.

The first two cases, corresponding to productions S — ¢ and S — S3, are
aasy because neither production changes the number or order of parenthe-
ses. In either:case there exist 81, B2 € (N U X)* such that

— _J BB if S — € was applied,
p=mSk and a= { 51553, if S — SS was applied;

and in either case o satisfies (i) and (ii) iff 8 does.

If the last production applied was S — [S], then there exist 8;,8: €
(N U X)* such that

B=pSB and a=pi[S106,,
and by the induction hypothesis (i) and (ii) hold of 8. Then
L(a)=L(B)+1
=R(B)+1 since 8 satisfies (i)
= R(a),

thus (i) holds of a. To show that (ii) holds of , let ¥ be an arbitrary prefix
of . We want to show that L(y) > R(v). Either

138 Lecture 20

® v is a prefix of B, in which case v is a prefix of 3, so (ii) holds for the
prefix v by the induction hypothesis; or

® ~ is a prefix of 5, [S but not of £1, in which case

L(v) = L(B) +1
> R(B1) +1 induction hypothesis, since £, is a prefix of 8
> R(B1)

= R(y); or
® v = (3,816, where 6 is a prefix of 3, in which case

L(y)=L(£:1S6) +1
> R($1S6)+1 induction hypothesis
= R(7)-

Thus in all cases L() > R(7). Since y was arbitrary, (ii) holds of a. This
concludes the inductive proof that if S -:;-> z, then z is balanced.

Now we wish to show the other direction: if z is balanced, then S — z.
This is done by induction on |z|. Assume that z satisfies (i) and (ii).

Basis

If |z| = 0, we have £ = € and S —;» z in one step using the production
S —e

Induction step

If |z| > 0, we break the argument into two cases: either

(a) there exists a proper prefix y of z (one such that 0 < |y| < |z|)
satisfying (i) and (ii), or

(b) no such prefix exists.

In case (a), we have z = yz for some 2, 0 < |z| < |z}, and z satisfies (i) and
(ii) as well:
L(z) = L(z) — L(y) = R(z) - R(y) = R(2),
and for any prefix w of 2,
L(w) = L(yw) — L(y)
> R(yw) - R(y) since yw is a prefix of z and L(y) = R(y)
= R(w).

Balanced Parentheses 139

By the induction hypothesis, S — y and S — 2. Then we can derive

by starting with the production § — SS, then deriving y from the first S,
then deriving z from the second S:

S 885 ySSyz=1.
G G G
In case (b), no such y exists. Then z = [2] for some z, and z satisfies (i)
and (ii). It satisfies (i) since
L(z) = L(z) - 1 = R(z) — 1 = R(2),
and it satisfies (ii) since for all nonnull prefixes v of z,
L{u) - R(v) = L([u) -1 - R([u) >0

since L([u) — R([u) > 1 because we are in case (b). By the induction
hypothesis, S —;» z. Combining this derivation with the production § —
[S], we get a derivation of z:

S—é—»[S]—é»[z]:m.

Thus every string satisfying (i) and (ii) can be derived. a

Lecture 21

Normal Forms

Definition 21.1

For many applications, it is often helpful to assume that CFGs are in one
or another special restricted form. Two of the most useful such forms are
Chomsky normal form (CNF) and Greibach normal form (GNF).

A CFG isin Chomsky normal form (CNF) if all productions are of the form
A — BC or A — a,

where A,B,C € N and a € X. A CFG is in Greibach normal form (GNF)
if all productions are of the form

A—vaBle-"Bk

for some k > 0, where 4,By,...,B; € N and a € . Note that ¥k = 0 is
allowed, giving productions of the form A — a. a

For example, the two grammars
S — AB| AC| SS, C — S$B, Ao, B —1], (21.1)
S — [B|[SB|[BS|[SBS, B -] (21.2)

are grammars in Chomsky and Greibach normal form, respectively, for the
set of all nonnull strings of balanced parentheses [].

No grammar in Chomsky or Greibach form can generate the null string €
(Why not?). Apart from this one exception, they are completely general:

Normal Forms 141

Theorem 21.2

Lemma 21.3

For any CFG G, there is a CFG G' in Chomsky normal form and o« CFG
G" in Greibach normal form such that

L(G") = L(G') = L(G) - {e}.

Getting Rid of e and Unit Productions

To prove Theorem 21.2, we must first show how to gét rid of all e-productions
A — ¢ and unit productions A — B. These productions are bothersome
because they make it hard to determine whether applying a production
makes any progress toward deriving a string of terminals. For instance,
with unit productions, there can be loops in the derivation, and with e-
productions, one can generate very long strings of nonterminals and then
erase them all. Without e- or unit productions, every step in the derivation
makes demonstrable progress toward the terminal string in the sense that
either the sentential form gets strictly longer or a new terminal symbol
appears.

We cannot simply throw out the ¢- and unit productions, because they may
be needed to generate some strings in L(G); so before we throw them out,
we had better throw in some other productions we can use instead.

For any CFG G = (N, £, P, S), there is a CFG G’ with no e- or unit
productions such that L(G) = L(G) - {¢}

Proof. Let P be the smallest set of productions containing P and closed
under the two rules

(a) if A— aBf and B — ¢ are in ﬁ, then A — af is in P; and
(b) if A— B and B — « are in P, then A — yis in P.

We can construct P inductively from P by adding productions as required
to satisfy (a) and (b). Note that only finitely many productions ever get
added, since each new right-hand side is a substring of an old right-hand
side. Thus P is still finite.

Now let G be the grammar

G= (N %, B, 8).
Since P C every derivation of G is a derivation of G; thus L(G) C L(G).
But L(G) = L(G), since each new production that was thrown in because

of rule (a) or (b) can be simulated in two steps by the two productions that
caused it to be thrown in.

142

Lecture 21

Now we show that for nonnull z € T*, any derivation S —- z of mini-

G
mum length does not use any - or unit productions. Thus the - and unit
productions are superfluous and can be deleted from G with impunity.

Let z # € and consider a minimum-length derivation S —a» z. Suppose for

a contradiction that an e-production B — ¢ is used at some point in the
derivation, say

S = YB6 — 76 — 3.
T

One of v, 6 is nonnull, otherwise £ would be null, contradicting the assump-
tion that it {sn’t. Thus that occurrence of B must first have appeared earlier
in the derivation when a production of the form A — aBg was applied:

S -7 n A0 -5 naBBO 2 yBE - 46 X
5 10 5 maBBl = 1Bl 1l oz

for some m,n,k > 0. But by rule (a), A — af is also in P, and this
production could have been applied at that point instead, giving a strictly
shorter derivation of z:

S 2+ 140 = nafh 2 16— 3.
- b A
This contradicts our assumption that the derivation was of minimum length.

A similar argument shows that unit productions do not appear in mxmmum—
length derivations in G. Let ¢ # ¢ and consider a derivation S — z of

G
minimum length. Suppose a unit production A — B is used at some point,
say

S - aAB — aBf — z.
G G G

We must eventually dispose of that occurrence of B, say by applying a
production B — v later on.

$ - adf — aBB 2 0Bl - 10 2o .
7 oAB = aBb 0Bl —ml

But by rule (b), A — v<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>