
SQL:
DATA DEFINITION LANGUAGE

2

Database Schemas in SQL

¨ SQL is primarily a query language, for getting
information from a database.
¤ Data manipulation language (DML)

¨ But SQL also includes a data-definition component
for describing database schemas.
¤ Data definition language (DDL)

3

Creating (Declaring) a Relation

¨ Simplest form is:
 CREATE TABLE <name> (
 <list of elements>
);
¨ To delete a relation:
 DROP TABLE <name>;

4

Elements of Table Declarations

¨ Most basic element: an attribute and its type.
¨ The most common types are:

¤ INT or INTEGER (synonyms).
¤ REAL or FLOAT (synonyms).
¤ CHAR(n) = fixed-length string of n characters.
¤ VARCHAR(n) = variable-length string of up to n

characters.

5

Example: Create Table

 CREATE TABLE Sells (
 bar CHAR(20),

 beer VARCHAR(20),
 price REAL

);

6

SQL Values

¨ Integers and reals are represented as you would
expect.

¨ Strings are too, except they require single quotes.
¤ Two single quotes = real quote, e.g., ’Joe’’s Bar’.

¨ Any value can be NULL
¤ Unless attribute has NOT NULL constraint
¤ E.g., price REAL not null,

7

Dates and Times

¨ DATE and TIME are types in SQL.
¨ The form of a date value is:
 DATE ’yyyy-mm-dd’

¤ Example: DATE ’2007-09-30’ for Sept. 30,
2007.

8

Times as Values

¨ The form of a time value is:
 TIME ’hh:mm:ss’
with an optional decimal point and fractions of a

second following.
¤ Example: TIME ’15:30:02.5’ = two and a

half seconds after 3:30PM.

9

Declaring Keys

¨ An attribute or list of attributes may be declared
PRIMARY KEY or UNIQUE.

¨ Either says that no two tuples of the relation may
agree in all the attribute(s) on the list.

10

Our Running Example

 Beers(name, manf)
 Bars(name, addr, license)
 Drinkers(name, addr, phone)
 Likes(drinker, beer)
 Sells(bar, beer, price)
 Frequents(drinker, bar)
¨ Underline = key (tuples cannot have the same

value in all key attributes).

11

Declaring Single-Attribute Keys

¨ Place PRIMARY KEY or UNIQUE after the type in
the declaration of the attribute.

¨ Example:
 CREATE TABLE Beers (

 name CHAR(20) UNIQUE,
 manf CHAR(20)

);

12

Declaring Multiattribute Keys

¨ A key declaration can also be another element in
the list of elements of a CREATE TABLE statement.

¨ This form is essential if the key consists of more than
one attribute.
¤ May be used even for one-attribute keys.

13

Example: Multiattribute Key

¨ The bar and beer together are the key for Sells:
 CREATE TABLE Sells (

 bar CHAR(20),

 beer VARCHAR(20),

 price REAL,

 PRIMARY KEY (bar, beer)

);

14

PRIMARY KEY vs. UNIQUE

1. There can be only one PRIMARY KEY for a
relation, but several UNIQUE attributes.

2. No attribute of a PRIMARY KEY can ever be NULL
in any tuple. But attributes declared UNIQUE
may have NULL’s, and there may be several
tuples with NULL.

15

Kinds of Constraints

¨ Keys
¨ Foreign-key, or referential-integrity.
¨ Domain constraints

¤ Constrain values of a particular attribute.

¨ Tuple-based constraints
¤ Relationship among components.

¨ Assertions: any SQL boolean expression

16

Foreign Keys

¨ Values appearing in attributes of one relation
must appear together in certain attributes of
another relation.

¨ Example: in Sells(bar, beer, price), we might
expect that a beer value also appears in
Beers.name

17

Expressing Foreign Keys

¨ Use keyword REFERENCES, either:
1. After an attribute (for one-attribute keys).
2. As an element of the schema:

 FOREIGN KEY (<list of attributes>)
 REFERENCES <relation> (<attributes>)
¨ Referenced attributes must be declared PRIMARY

KEY or UNIQUE.

18

Example: With Attribute

CREATE TABLE Beers (

 name CHAR(20) PRIMARY KEY,

 manf CHAR(20));

CREATE TABLE Sells (

 bar CHAR(20),

 beer CHAR(20) REFERENCES Beers(name),

 price REAL);

19

Example: As Schema Element

CREATE TABLE Beers (
 name CHAR(20) PRIMARY KEY,
 manf CHAR(20));

CREATE TABLE Sells (
 bar CHAR(20),
 beer CHAR(20),
 price REAL,
 FOREIGN KEY(beer) REFERENCES

Beers(name));

20

Enforcing Foreign-Key Constraints

¨ If there is a foreign-key constraint from relation R
to relation S, two violations are possible:
1. An insert or update to R introduces values not found

in S.
2. A deletion or update to S causes some tuples of R to

“dangle.”

21

Actions Taken --- (1)

¨ Example: suppose R = Sells, S = Beers.
¨ An insert or update to Sells that introduces a

nonexistent beer must be rejected.
¨ A deletion or update to Beers that removes a beer

value found in some tuples of Sells can be handled
in three ways…

22

Actions Taken --- (2)

1. Default : Reject the modification.
2. Cascade : Make the same changes in Sells.

¤ Deleted beer: delete Sells tuple.
¤ Updated beer: change value in Sells.

3. Set NULL : Change the beer to NULL.

23

Example: Cascade

¨ Delete the Bud tuple from Beers:
¤ Then delete all tuples from Sells that have beer = ’Bud’.

¨ Update the Bud tuple by changing ’Bud’ to
’Budweiser’:
¤ Then change all Sells tuples with beer = ’Bud’ to beer

= ’Budweiser’.

24

Example: Set NULL

¨ Delete the Bud tuple from Beers:
¤ Change all tuples of Sells that have beer = ’Bud’ to

have beer = NULL.

¨ Update the Bud tuple by changing ’Bud’ to
’Budweiser’:
¤ Same change as for deletion.

25

Choosing a Policy

¨ When we declare a foreign key, we may choose
policies SET NULL or CASCADE independently for
deletions and updates.

¨ Follow the foreign-key declaration by:
ON [UPDATE, DELETE][SET NULL CASCADE]
¨ Two such clauses may be used.
¨ Otherwise, the default (reject) is used.

26

Example: Setting Policy

CREATE TABLE Sells (
 bar CHAR(20),
 beer CHAR(20),
 price REAL,
 FOREIGN KEY(beer)
 REFERENCES Beers(name)
 ON DELETE SET NULL
 ON UPDATE CASCADE
);

27

Attribute-Based Checks

¨ Constraints on the value of a particular attribute.
¨ Add CHECK(<condition>) to the declaration for the

attribute.
¨ The condition may use the name of the attribute, but

any other relation or attribute name must be in a
subquery.

28

Example: Attribute-Based Check

CREATE TABLE Sells (

 bar CHAR(20),

 beer CHAR(20) CHECK (beer IN
 (SELECT name FROM Beers)),

 price REAL CHECK (price <= 5.00)

);

29

Timing of Checks

¨ Attribute-based checks are performed only when a
value for that attribute is inserted or updated.
¤ Example: CHECK (price <= 5.00) checks every

new price and rejects the modification (for that tuple) if
the price is more than $5.

¤ Example: CHECK (beer IN (SELECT name
FROM Beers)) not checked if a beer is deleted
from Beers (unlike foreign-keys).

30

Tuple-Based Checks

¨ CHECK (<condition>) may be added as a
relation-schema element.

¨ The condition may refer to any attribute of the
relation.
¤ But other attributes or relations require a subquery.

¨ Checked on insert or update only.

31

Example: Tuple-Based Check

¨ Only Joe’s Bar can sell beer for more than $5:
 CREATE TABLE Sells (

 bar CHAR(20),

 beer CHAR(20),

 price REAL,

 CHECK (bar = ’Joe’’s Bar’ OR

 price <= 5.00)

);

Asg 1 Update: Missing attribute in Baggage
1

Baggage Ticket

Type Weight

Qty

Has

Fragile

INTRODUCTION TO SQL

3

Why SQL?

¨ SQL is a very-high-level language.
¤ Structured Query Language
¤ Say “what to do” rather than “how to do it.”
¤ Avoid a lot of data-manipulation details needed in

procedural languages like C++ or Java.

¨ Database management system figures out “best”
way to execute query.
¤ Called “query optimization.”

Credit: Renee J. Miller

4

Database Schemas in SQL

¨ SQL is primarily a query language, for getting
information from a database.
¤ Data manipulation language (DML)

¨ But SQL also includes a data-definition component
for describing database schemas.
¤ Data definition language (DDL)

5

Select-From-Where Statements

SELECT desired attributes
 FROM one or more tables
 WHERE condition about tuples of
 the tables

6

Our Running Example

¨ Our SQL queries will be based on the following
database schema.
¤ Underline indicates key attributes.

 Beers(name, manf)
 Bars(name, addr, license)
 Drinkers(name, addr, phone)
 Likes(drinker, beer)
 Sells(bar, beer, price)
 Frequents(drinker, bar)

7

Example

¨ Using Beers(name, manf), what beers are made by
Anheuser-Busch?

 SELECT name
 FROM Beers
 WHERE manf = ’Anheuser-Busch’;

8

Result of Query

 name
 Bud
 Bud Lite
 Michelob
 . . .

The answer is a relation with a single attribute,
name, and tuples with the name of each beer
by Anheuser-Busch, such as Bud.

9

Meaning of Single-Relation Query

¨ Begin with the relation in the FROM clause.
¨ Apply the selection indicated by the WHERE clause.
¨ Apply the extended projection indicated by the

SELECT clause.

10

Operational Semantics - General

¨ Think of a tuple variable visiting each tuple of the
relation mentioned in FROM.

¨ Check if the tuple assigned to the tuple variable
satisfies the WHERE clause.

¨ If so, compute the attributes or expressions of the
SELECT clause using the components of this tuple.

11

Operational Semantics

Check if
Anheuser-Busch

name manf

Bud Anheuser-Busch If so, include t.name
in the result

Tuple-variable t
loops over all
tuples

12

Example

¨ What beers are made by Anheuser-Busch?
 SELECT name
 FROM Beers
 WHERE manf = ’Anheuser-Busch’;
OR:
 SELECT t.name
 FROM Beers t
 WHERE t.manf =’Anheuser-Busch’;

Note: these are identical queries.

13

* In SELECT clauses

¨ When there is one relation in the FROM clause, * in the
SELECT clause stands for “all attributes of this relation.”

¨ Example: Using Beers(name, manf):
 SELECT *

 FROM Beers
 WHERE manf = ’Anheuser-Busch’;

14

Result of Query:

 name manf
 Bud Anheuser-Busch
 Bud Lite Anheuser-Busch
 Michelob Anheuser-Busch

Now, the result has each of the attributes
of Beers.

15

Renaming Attributes

¨ If you want the result to have different attribute
names, use “AS <new name>” to rename an attribute.

¨ Example: Using Beers(name, manf):
 SELECT name AS beer, manf

 FROM Beers
 WHERE manf = ’Anheuser-Busch’

16

Result of Query:

 beer manf
 Bud Anheuser-Busch
 Bud Lite Anheuser-Busch
 Michelob Anheuser-Busch

17

Expressions in SELECT Clauses

¨ Any valid expression can appear as an element of a
SELECT clause.

¨ Example: Using Sells(bar, beer, price):
 SELECT bar, beer,

 price*95 AS priceInYen
 FROM Sells;

18

Result of Query

 bar beer priceInYen
 Joe’s Bud 285
 Sue’s Miller 342
 … … …

19

Example: Constants as Expressions

¨ Using Likes(drinker, beer):

 SELECT drinker,
 ’likes Bud’ AS whoLikesBud

 FROM Likes

 WHERE beer = ’Bud’;

20

Result of Query

 drinker whoLikesBud
 Sally likes Bud
 Fred likes Bud
 … …

21

Complex Conditions in WHERE Clause

¨ Boolean operators AND, OR, NOT.
¨ Comparisons =, <>, <, >, <=, >=.

22

Example: Complex Condition

¨ Using Sells(bar, beer, price), find the price Joe’s Bar
charges for Bud:

SELECT price
FROM Sells
WHERE bar = ’Joe’’s Bar’ AND
 beer = ’Bud’;

23

Patterns

¨ A condition can compare a string to a pattern by:
¤ <Attribute> LIKE <pattern> or <Attribute> NOT

LIKE <pattern>

¨ Pattern is a quoted string
¤ % = “any string”;
¤ _ = “any character”.

24

Example: LIKE

¨ Using Drinkers(name, addr, phone) find the drinkers
with exchange 555:

SELECT name

FROM Drinkers
WHERE phone LIKE ’%555-_ _ _ _’;

25

NULL Values

¨ Tuples in SQL relations can have NULL as a value
for one or more components.

¨ Meaning depends on context. Two common cases:
¤ Missing value : e.g., we know Joe’s Bar has some

address, but we don’t know what it is.
¤ Inapplicable : e.g., the value of attribute spouse for an

unmarried person.

26

Comparing NULL’s to Values

¨ The logic of conditions in SQL is really 3-valued
logic: TRUE, FALSE, UNKNOWN.

¨ Comparing any value (including NULL itself) with
NULL yields UNKNOWN.

¨ A tuple is in a query answer iff the WHERE clause is
TRUE (not FALSE or UNKNOWN).

27

Three-Valued Logic

¨ To understand how AND, OR, and NOT work in 3-
valued logic

¨ For TRUE result
¤ OR: at least one operand must be TRUE
¤ AND: both operands must be TRUE
¤ NOT: operand must be FALSE

¨ For FALSE result
¤ OR: both operands must be FALSE
¤ AND: at least one operand must be FALSE
¤ NOT: operand must be TRUE

¨ Otherwise, result is UNKNOWN

28

Example

¨ From the following Sells relation:
 bar beer price
 Joe’s Bar Bud NULL

 SELECT bar
 FROM Sells
 WHERE price < 2.00 OR price >= 5.00;

UNKNOWN UNKNOWN

UNKNOWN

29

Multi-Relation Queries

¨ Interesting queries often combine data from more
than one relation.

¨ We can address several relations in one query by
listing them all in the FROM clause.

¨ Distinguish attributes of the same name by
“<relation>.<attribute>” .

30

Example: Joining Two Relations

¨ Using relations Likes(drinker, beer) and
Frequents(drinker, bar), find the beers liked by at
least one person who frequents Joe’s Bar.

SELECT beer
FROM Likes, Frequents
WHERE bar = ’Joe’’s Bar’ AND
 Frequents.drinker = Likes.drinker;

31

Example: Joining Two Relations

¨ Alternatively can use explicit (named) tuple variables

 SELECT beer
 FROM Likes l, Frequents f
 WHERE bar = ’Joe’’s Bar’ AND
 f.drinker = l.drinker;

32

Formal Semantics

¨ Almost the same as for single-relation queries:
§ Start with the product of all the relations in the

FROM clause.
§ Apply the selection condition from the WHERE clause.
§ Project onto the list of attributes and expressions in

the SELECT clause.

33

Operational Semantics

¨ Imagine one tuple-variable for each relation in the
FROM clause.
¤ These tuple-variables visit each combination of tuples,

one from each relation.

¨ If the tuple-variables are pointing to tuples that
satisfy the WHERE clause, send these tuples to the
SELECT clause.

34

Example

drinker bar drinker beer

tv1 tv2

 Sally Bud

 Sally Joe’s

 Likes

 Frequents

 to outputcheck these
are equal

check
for Joe

35

Explicit Tuple-Variables

¨ Sometimes, a query needs to use two copies of
the same relation.

¨ Distinguish copies by following the relation name
by the name of a tuple-variable, in the FROM
clause.

¨ It’s always an option to rename relations this way,
even when not essential.

36

Example: Self-Join

¨ From Beers(name, manf), find all pairs of beers
by the same manufacturer.
¤ Do not produce pairs like (Bud, Bud).
¤ Do not produce the same pair twice like (Bud, Miller)

and (Miller, Bud).

1

Select-From-Where Statements

SELECT desired attributes
 FROM one or more tables
 WHERE condition about tuples of
 the tables

2

Example

¨ Using Beers(name, manf), what beers are made by
Anheuser-Busch?

 SELECT name
 FROM Beers
 WHERE manf = ’Anheuser-Busch’;

3

Result of Query

 name
 Bud
 Bud Lite
 Michelob
 . . .

The answer is a relation with a single attribute,
name, and tuples with the name of each beer
by Anheuser-Busch, such as Bud.

4

Operational Semantics

Check if
Anheuser-Busch

name manf

Bud Anheuser-Busch If so, include t.name
in the result

Tuple-variable t
loops over all
tuples

5

Comparing NULL’s to Values

¨ The logic of conditions in SQL is really 3-valued
logic: TRUE, FALSE, UNKNOWN.

¨ Comparing any value (including NULL itself) with
NULL yields UNKNOWN.

¨ A tuple is in a query answer iff the WHERE clause is
TRUE (not FALSE or UNKNOWN).

6

Three-Valued Logic

¨ To understand how AND, OR, and NOT work in 3-
valued logic

¨ For TRUE result
¤ OR: at least one operand must be TRUE
¤ AND: both operands must be TRUE
¤ NOT: operand must be FALSE

¨ For FALSE result
¤ OR: both operands must be FALSE
¤ AND: at least one operand must be FALSE
¤ NOT: operand must be TRUE

¨ Otherwise, result is UNKNOWN

7

Example

¨ From the following Sells relation:
 bar beer price
 Joe’s Bar Bud NULL

 SELECT bar
 FROM Sells
 WHERE price < 2.00 OR price >= 5.00;

UNKNOWN UNKNOWN

UNKNOWN

8

Multi-Relation Queries

¨ Interesting queries often combine data from more
than one relation.

¨ We can address several relations in one query by
listing them all in the FROM clause.

¨ Distinguish attributes of the same name by
“<relation>.<attribute>” .

9

Example: Joining Two Relations

¨ Using relations Likes(drinker, beer) and
Frequents(drinker, bar), find the beers liked by at
least one person who frequents Joe’s Bar.

SELECT beer
FROM Likes, Frequents
WHERE bar = ’Joe’’s Bar’ AND
 Frequents.drinker = Likes.drinker;

10

Example: Joining Two Relations

¨ Alternatively can use explicit (named) tuple variables

 SELECT beer
 FROM Likes l, Frequents f
 WHERE bar = ’Joe’’s Bar’ AND
 f.drinker = l.drinker;

11

Formal Semantics

¨ Almost the same as for single-relation queries:
§ Start with the product of all the relations in the

FROM clause.
§ Apply the selection condition from the WHERE clause.
§ Project onto the list of attributes and expressions in

the SELECT clause.

12

Operational Semantics

¨ Imagine one tuple-variable for each relation in the
FROM clause.
¤ These tuple-variables visit each combination of tuples,

one from each relation.

¨ If the tuple-variables are pointing to tuples that
satisfy the WHERE clause, send these tuples to the
SELECT clause.

13

Example

drinker bar drinker beer

tv1 tv2

 Sally Bud

 Sally Joe’s

 Likes

 Frequents

 to outputcheck these
are equal

check
for Joe

14

Explicit Tuple-Variables

¨ Sometimes, a query needs to use two copies of
the same relation.

¨ Distinguish copies by following the relation name
by the name of a tuple-variable, in the FROM
clause.

¨ It’s always an option to rename relations this way,
even when not essential.

15

Example: Self-Join

¨ From Beers(name, manf), find all pairs of beers
by the same manufacturer.
¤ Do not produce pairs like (Bud, Bud).
¤ Do not produce the same pair twice like (Bud, Miller)

and (Miller, Bud).

SELECT b1.name, b2.name
FROM Beers b1, Beers b2
WHERE b1.manf = b2.manf AND
 b1.name < b2.name;

16

Subqueries

¨ A parenthesized SELECT-FROM-WHERE statement
(subquery) can be used as a value in a number
of places, including FROM and WHERE clauses.

¨ Example: in place of a relation in the FROM
clause, we can use a subquery and then query its
result.
¤ Must use a tuple-variable to name tuples of the

result.

17

Example: Subquery in FROM

¨ Find the beers liked by at least one person who
frequents Joe’s Bar.

SELECT beer

FROM Likes, (SELECT drinker

 FROM Frequents
 WHERE bar = ’Joe’’s Bar’)JD

WHERE Likes.drinker = JD.drinker;

Drinkers who
frequent Joe’s Bar

18

Subqueries often obscure queries

¨ Find the beers liked by at least one person who
frequents Joe’s Bar.

SELECT beer
FROM Likes l, Frequents f
WHERE l.drinker = f.drinker AND
 bar = ’Joe’’s Bar’;

Simple join query

19

Subqueries That Return One Tuple

¨ If a subquery is guaranteed to produce one
tuple, then the subquery can be used as a value.
¤ Usually, the tuple has one component.
¤ Remember SQL’s 3-valued logic.

20

Example: Single-Tuple Subquery

¨ Using Sells(bar, beer, price), find the bars that
serve Miller for the same price Joe charges for
Bud.

Two queries would work:
§ Find the price Joe charges for Bud.
§ Find the bars that serve Miller at that price.

21

Query + Subquery Solution

SELECT bar
 FROM Sells
 WHERE beer = ’Miller’ AND price
 = (SELECT price
 FROM Sells
 WHERE bar = ’Joe’’s Bar’
 AND beer = ’Bud’);

The price at
which Joe
sells Bud

What if price of Bud is NULL?

§ Find the price Joe charges for Bud.
§ Find the bars that serve Miller at that price.

Sells(bar, beer, price)

22

Query + Subquery Solution

SELECT bar
 FROM Sells
 WHERE beer = ’Miller’ AND
 price = (SELECT price
 FROM Sells
 WHERE beer = ’Bud’);

What if subquery
returns multiple
values?

23

Recap: Conditions in WHERE Clause

¨ Boolean operators AND, OR, NOT.

¨ Comparisons =, <>, <, >, <=, >=.
¨ LIKE operator

¨ SQL includes a between comparison operator

¨ Example: Find the names of all instructors with salary between
$90,000 and $100,000 (that is, ³ $90,000 and £ $100,000)
¤ select name

 from instructor
 where salary between 90000 and 100000

36

Subqueries

¨ A parenthesized SELECT-FROM-WHERE statement
(subquery) can be used as a value in a number
of places, including FROM and WHERE clauses.

¨ Example: in place of a relation in the FROM
clause, we can use a subquery and then query its
result.
¤ Must use a tuple-variable to name tuples of the

result.

37

Example: Subquery in FROM

¨ Find the beers liked by at least one person who
frequents Joe’s Bar.

SELECT beer

FROM Likes, (SELECT drinker

 FROM Frequents
 WHERE bar = ’Joe’’s Bar’)JD

WHERE Likes.drinker = JD.drinker;

Drinkers who
frequent Joe’s Bar

38

Subqueries often obscure queries

¨ Find the beers liked by at least one person who
frequents Joe’s Bar.

SELECT beer
FROM Likes l, Frequents f
WHERE l.drinker = f.drinker AND
 bar = ’Joe’’s Bar’;

Simple join query

39

Subqueries That Return One Tuple

¨ If a subquery is guaranteed to produce one
tuple, then the subquery can be used as a value.
¤ Usually, the tuple has one component.
¤ Remember SQL’s 3-valued logic.

40

Example: Single-Tuple Subquery

¨ Using Sells(bar, beer, price), find the bars that
serve Miller for the same price Joe charges for
Bud.

Two queries would work:
§ Find the price Joe charges for Bud.
§ Find the bars that serve Miller at that price.

41

Query + Subquery Solution

SELECT bar
 FROM Sells
 WHERE beer = ’Miller’ AND price
 = (SELECT price
 FROM Sells
 WHERE bar = ’Joe’’s Bar’
 AND beer = ’Bud’);

The price at
which Joe
sells Bud

What if price of Bud is NULL?

§ Find the price Joe charges for Bud.
§ Find the bars that serve Miller at that price.

Sells(bar, beer, price)

42

Query + Subquery Solution

SELECT bar
 FROM Sells
 WHERE beer = ’Miller’ AND
 price = (SELECT price
 FROM Sells
 WHERE beer = ’Bud’);

What if subquery
returns multiple
values?

43

Recap: Conditions in WHERE Clause

¨ Boolean operators AND, OR, NOT.

¨ Comparisons =, <>, <, >, <=, >=.
¨ LIKE operator

¨ SQL includes a between comparison operator

¨ Example: Find the names of all instructors with salary between
$90,000 and $100,000 (that is, ³ $90,000 and £ $100,000)
¤ select name

 from instructor
 where salary between 90000 and 100000

44

The Operator ANY

¨ x = ANY(<subquery>) is a boolean condition that is
true iff x equals at least one tuple in the subquery
result.
¤ = could be any comparison operator.

¨ Example: x >= ANY(<subquery>) means x is not the
uniquely smallest tuple produced by the subquery.
¤ Note tuples must have one component only.

45

The Operator ALL

¨ x <> ALL(<subquery>) is true iff for every tuple
t in the relation, x is not equal to t.
¤ That is, x is not in the subquery result.

¨ <> can be any comparison operator.
¨ Example: x >= ALL(<subquery>) means there is

no tuple larger than x in the subquery result.

46

Example: ALL

¨ From Sells(bar, beer, price), find the beer(s) sold for
the highest price.

 SELECT beer
 FROM Sells
 WHERE price >=
 ALL(SELECT price
 FROM Sells);

price from the outer
Sells must not be
less than any price.

47

The IN Operator

¨ <value> IN (<subquery>) is true if and only if the
<value> is a member of the relation produced by
the subquery.
¤ Opposite: <value> NOT IN (<subquery>).

¨ IN-expressions can appear in WHERE clauses.
¨ WHERE col IN (value1, value2, …)

IN is Concise
48

¨ SELECT * FROM Cartoons
 WHERE LastName IN (‘Simpsons', 'Smurfs’, ’Flintstones’)

q SELECT * FROM Cartoons
WHERE LastName = ‘Simpsons’
OR LastName = ‘Smurfs’
OR LastName = ‘Flintstones’

49

Example: IN

¨ Using Beers(name, manf) and Likes(drinker, beer), find
the name and manufacturer of each beer that Fred
likes.

 SELECT *
 FROM Beers
 WHERE name IN (SELECT beer
 FROM Likes
 WHERE drinker = ’Fred’);

The set of
beers Fred
likes

50

IN vs. Join

SELECT R.a

FROM R, S

WHERE R.b = S.b;

SELECT R.a

FROM R

WHERE b IN (SELECT b FROM S);

51

IN is a Predicate About R’s Tuples

SELECT a

FROM R

WHERE b IN (SELECT b FROM S);

One loop, over
the tuples of R

a b
1 2
3 4
 R

b c
2 5
2 6
 S

(1,2) satisfies
the condition;
1 is output once.

Two 2’s

52

This Query Pairs Tuples from R, S

SELECT a

FROM R, S

WHERE R.b = S.b;

Double loop, over
the tuples of R and S

a b
1 2
3 4
 R

b c
2 5
2 6
 S

(1,2) with (2,5)
and (1,2) with
(2,6) both satisfy
the condition;
1 is output twice.

42

Query + Subquery Solution

SELECT bar
 FROM Sells
 WHERE beer = ’Miller’ AND
 price = (SELECT price
 FROM Sells
 WHERE beer = ’Bud’);

What if subquery
returns multiple
values?

43

The Operator ANY

¨ x = ANY(<subquery>) is a boolean condition that is
true iff x equals at least one tuple in the subquery
result.
¤ = could be any comparison operator.

¨ Example: x >= ANY(<subquery>) means x is not the
uniquely smallest tuple produced by the subquery.
¤ Note tuples must have one component only.

44

The Operator ALL

¨ x <> ALL(<subquery>) is true iff for every tuple
t in the relation, x is not equal to t.
¤ That is, x is not in the subquery result.

¨ <> can be any comparison operator.
¨ Example: x >= ALL(<subquery>) means there is

no tuple larger than x in the subquery result.

45

The IN Operator

¨ <value> IN (<subquery>) is true if and only if the
<value> is a member of the relation produced by
the subquery.
¤ Opposite: <value> NOT IN (<subquery>).

¨ IN-expressions can appear in WHERE clauses.
¨ WHERE col IN (value1, value2, …)

46

IN vs. Join

SELECT R.a

FROM R, S

WHERE R.b = S.b;

SELECT R.a

FROM R

WHERE b IN (SELECT b FROM S);

47

IN is a Predicate About R’s Tuples

SELECT a

FROM R

WHERE b IN (SELECT b FROM S);

One loop, over
the tuples of R

a b
1 2
3 4
 R

b c
2 5
2 6
 S

(1,2) satisfies
the condition;
1 is output once.

Two 2’s

48

This Query Pairs Tuples from R, S

SELECT a

FROM R, S

WHERE R.b = S.b;

Double loop, over
the tuples of R and S

a b
1 2
3 4
 R

b c
2 5
2 6
 S

(1,2) with (2,5)
and (1,2) with
(2,6) both satisfy
the condition;
1 is output twice.

49

Back to our original query…

SELECT bar
 FROM Sells
 WHERE beer = ’Miller’ AND
 price = (SELECT price
 FROM Sells
 WHERE beer = ’Bud’);

Use IN() or = ANY()

Recap
50

¨ IN() is equivalent to = ANY()
¨ For ANY(), you can use other comparison operators

such as >, <,... etc, but not applicable for IN()

¨ The < >ANY operator, however, differs from NOT IN:
¤ < >ANY means not = a, or not = b, or not = c
¤ NOT IN means not = a, and not = b, and not = c.
¤ <>ALL means the same as NOT IN.

Example: =ANY
51

Bar Beer Price

Jane Miller 3.00

Joe Miller 4.00

Joe Bud 3.00

Jack Bud 4.00

Tom Miller 4.50

Sells
SELECT Bar
FROM Sells
WHERE Beer = ‘Miller' AND Price =

ANY(SELECT Price
 FROM Sells
 WHERE Beer=‘Bud')

Bar

Jane

Joe

Result

52

The Exists Operator

¨ EXISTS(<subquery>) is true if and only if the
subquery result is not empty.

¨ Example: From Beers(name, manf) , find those beers
that are the unique (only) beer made by their
manufacturer.

Credit: Renee J. Miller

53

Example: EXISTS

SELECT name
 FROM Beers b1
 WHERE NOT EXISTS (
 SELECT *
 FROM Beers
 WHERE manf = b1.manf AND
 name <> b1.name);

Set of
beers
with the
same
manf as
b1, but
not the
same
beer

Notice scope rule: manf refers
to closest nested FROM with
a relation having that attribute.
(Some DBMS consider this
ambiguous.)

Notice the
SQL “not
equals”
operator

54

Union, Intersection, and Difference

¨ Union, intersection, and difference of relations are
expressed by the following forms, each involving
subqueries:
¤ (<subquery>) UNION (<subquery>)
¤ (<subquery>) INTERSECT (<subquery>)
¤ (<subquery>) EXCEPT (<subquery>)

Visually
55

A B
A EXCEPT B B EXCEPT A

A
INTERSECT

B

A UNION B
(no duplicates)

56

Example: Intersection

¨ Using Likes(drinker, beer), Sells(bar, beer, price),
and Frequents(drinker, bar), find the drinkers and
beers such that:

§ The drinker likes the beer, and
§ The drinker frequents at least one bar that sells

the beer.

57

Solution

(SELECT * FROM Likes)
 INTERSECT
(SELECT drinker, beer
 FROM Sells, Frequents
 WHERE Frequents.bar = Sells.bar
);

The drinker frequents
a bar that sells the
beer.

subquery is
really a stored
table.

1

Union, Intersection, and Difference

¨ Union, intersection, and difference of relations are
expressed by the following forms, each involving
subqueries:
¤ (<subquery>) UNION (<subquery>)
¤ (<subquery>) INTERSECT (<subquery>)
¤ (<subquery>) EXCEPT (<subquery>)

2

Example: Intersection

¨ Using Likes(drinker, beer), Sells(bar, beer, price),
and Frequents(drinker, bar), find the drinkers and
beers such that:

§ The drinker likes the beer, and
§ The drinker frequents at least one bar that sells

the beer.

3

Solution

(SELECT * FROM Likes)
 INTERSECT
(SELECT drinker, beer
 FROM Sells, Frequents
 WHERE Frequents.bar = Sells.bar
);

The drinker frequents
a bar that sells the
beer.

subquery is
really a stored
table.

4

Bag Semantics

¨ A bag (or multiset) is like a set, but an element
may appear more than once.

¨ Example: {1,2,1,3} is a bag.
¨ Example: {1,2,3} is also a bag that happens to

be a set.

5

Bag (Multiset) Semantics

¨ SQL primarily uses bag semantics
¨ The SELECT-FROM-WHERE statement uses bag

semantics
¤ originally for efficiency reasons

¨ The default for union, intersection, and difference is
set semantics.
¤ That is, duplicates are eliminated as the operation is

applied.

6

Motivation: Efficiency

¨ When doing projection, it is easier to avoid
eliminating duplicates.
¤ Just work tuple-at-a-time.

¨ For intersection or difference, it is most efficient
to sort the relations first.
¤ At that point you may as well eliminate the

duplicates anyway.

7

Controlling Duplicate Elimination

¨ Force the result to be a set by SELECT DISTINCT . . .
¨ Force the result to be a bag (i.e., don’t eliminate

duplicates) by ALL, as in
 . . . UNION ALL . . .

8

Example: DISTINCT

¨ From Sells(bar, beer, price), find all the different
prices charged for beers:

 SELECT DISTINCT price
 FROM Sells;

Notice that without DISTINCT, each price would be listed as
many times as there were bar/beer pairs at that price.

9

Example: ALL

¨ Using relations Frequents(drinker, bar) and
Likes(drinker, beer):

¨ Lists drinkers who frequent more bars than they like
beers, and do so as many times as the difference
of those counts.

(SELECT drinker FROM Frequents)
 EXCEPT ALL
(SELECT drinker FROM Likes);

Ordering the Display of Tuples

¨ List in alphabetic order the names of all instructors
 select name
 from instructor
 order by name

¨ We may specify desc for descending order or asc for ascending
order, for each attribute; ascending order is the default.

¤ Example: order by name desc

Credit: Silberchatz, Korth & Sudarshan

10

Humour

SQL query walks into a bar, and approaches two
tables and asks, can I join you?

11

DATABASE MODIFICATIONS

Database Modifications
13

¨ A modification command does not return a result
(as a query does), but changes the database in
some way.

¨ Three kinds of modifications:
1. Insert a tuple or tuples.
2. Delete a tuple or tuples.
3. Update the value(s) of an existing tuple or tuples.

Insertion
14

¨ To insert a single tuple:
 INSERT INTO <relation>
 VALUES (<list of values>);
¨ Example: add to Likes(drinker, beer) the fact that

Sally likes Bud.
 INSERT INTO Likes
 VALUES(’Sally’, ’Bud’);

Specifying Attributes in INSERT
15

¨ We may add to the relation name a list of
attributes.

¨ Two reasons to do so:
1. We forget the standard order of attributes for the

relation.
2. We don’t have values for all attributes, and we want

the system to fill in missing components with NULL or a
default value.

Example: Specifying Attributes
16

¨ Another way to add the fact that Sally likes Bud to
Likes(drinker, beer):

INSERT INTO Likes(beer, drinker)

VALUES(’Bud’, ’Sally’);

Adding Default Values
17

¨ In a CREATE TABLE statement, we can follow an
attribute by DEFAULT and a value.

¨ When an inserted tuple has no value for that
attribute, the default will be used.

Example: Default Values
18

CREATE TABLE Drinkers (
 name CHAR(30) PRIMARY KEY,

 addr CHAR(50)

 DEFAULT ’123 Sesame St.’,

 phone CHAR(16)

);

Example: Default Values
19

 INSERT INTO Drinkers(name)
 VALUES(’Sally’);

Resulting tuple:

Sally 123 Sesame St NULL
name address phone

Inserting Many Tuples
20

¨ We may insert the entire result of a query into a
relation, using the form:

 INSERT INTO <relation>
 (<subquery>);

Example: Insert a Subquery
21

¨ Using Frequents(drinker, bar), enter into the new
relation Buddies(name) all of Sally’s “potential
buddies,”

¨ i.e., those drinkers who frequent at least one bar
that Sally also frequents.

INSERT INTO Buddies

(SELECT

);

Solution
22

INSERT INTO Buddies
(SELECT d2.drinker
 FROM Frequents d1, Frequents d2
 WHERE d1.drinker = ’Sally’ AND
 d2.drinker <> ’Sally’ AND
 d1.bar = d2.bar
);

Pairs of Drinker
tuples where the
first is for Sally,
the second is for
someone else,
and the bars are
the same.

The other
drinker

“Those drinkers who frequent at least one bar
that Sally also frequents”

Deletion
23

¨ To delete tuples satisfying a condition from some
relation:

 DELETE FROM <relation>
 WHERE <condition>;

Example: Deletion
24

¨ Delete from Likes(drinker, beer) the fact that Sally
likes Bud:

DELETE FROM Likes
WHERE drinker = ’Sally’ AND

 beer = ’Bud’;

Example: Delete all Tuples
25

¨ Make the relation Likes empty:

 DELETE FROM Likes;

¨ Note no WHERE clause needed.

Example: Delete Some Tuples
26

¨ Delete from Beers(name, manf) all beers for
which there is another beer by the same
manufacturer.

Beers with the same
manufacturer and
a different name
from the name of
the beer represented
by tuple b.

DELETE FROM Beers b
WHERE
 EXISTS (
 SELECT name
 FROM Beers
 WHERE manf = b.manf AND
 name <> b.name);

Semantics of Deletion --- (1)
27

¨ Suppose Anheuser-Busch makes only Bud and Bud
Lite.

¨ Suppose we come to the tuple b for Bud first.
¨ The subquery is nonempty, because of the Bud

Lite tuple, so we delete Bud.
¨ Now, when b is the tuple for Bud Lite, do we

delete that tuple too?

Semantics of Deletion --- (2)
28

¨ Answer: we do delete Bud Lite as well.
¨ The reason is that deletion proceeds in two stages:

1. Mark all tuples for which the WHERE condition is
satisfied.

2. Delete the marked tuples.

Updates
29

¨ To change certain attributes in certain tuples of a
relation:

 UPDATE <relation>
 SET <list of attribute assignments>
 WHERE <condition on tuples>;

Example: Update
30

¨ Change drinker Fred’s phone number to 555-1212:

 UPDATE Drinkers
 SET phone = ’555-1212’

 WHERE name = ’Fred’;

Example: Update Several Tuples
31

¨ Make $4 the maximum price for beer:

 UPDATE Sells
 SET price = 4.00

 WHERE price > 4.00;

AGGREGATION, GROUPING
& OUTER JOINS

2

Aggregation

¨ SUM, AVG, COUNT, MIN, and MAX can be applied
to a column in a SELECT clause to produce that
aggregation on the column.

¨ COUNT(*) counts the number of tuples.

3

Example: Aggregation

¨ From Sells(bar, beer, price), find the average price
of Bud:

 SELECT AVG(price)
 FROM Sells

 WHERE beer = ’Bud’;

4

Eliminating Duplicates in an Aggregation

¨ Use DISTINCT inside an aggregation.
¨ Example: find the number of different prices

charged for Bud:

 SELECT COUNT(DISTINCT price)
 FROM Sells

 WHERE beer = ’Bud’;

5

NULL’s Ignored in Aggregation

¨ NULL never contributes to a sum, average, or count,
and can never be the minimum or maximum of a
column.

¨ But if all the values in a column are NULL, then the
result of the aggregation is NULL.
¤ Exception: COUNT of an empty set is 0.

6

Example: Effect of NULL’s

SELECT count(*)
FROM Sells
WHERE beer = ’Bud’;

SELECT count(price)
FROM Sells
WHERE beer = ’Bud’;

The number of bars
that sell Bud.

The number of bars
that sell Bud at a
known price (i.e., where
price is not NULL)

Sells(bar, beer, price)

Example Query
7

¨ Find the age of the youngest employee at each
rating level

SELECT MIN (age)
FROM Employees
WHERE rating = i

8

Grouping

¨ We may follow a SELECT-FROM-WHERE expression
by GROUP BY and a list of attributes.

¨ The relation that results from the SELECT-FROM-
WHERE is grouped according to the values of all
those attributes, and any aggregation is applied
only within each group.

SELECT rating, MIN(age)
FROM Employees
GROUP BY rating

9

Example: Grouping

¨ From Sells(bar, beer, price), find the average price
for each beer:

 SELECT beer, AVG(price)
 FROM Sells

 GROUP BY beer;

beer AVG(price)

Bud 2.33
Miller 4.55
… …

10

Example: Grouping

¨ From Sells(bar, beer, price) and Frequents(drinker,
bar), find for each drinker the average price of
Bud at the bars they frequent:

 Compute all
drinker-bar-
price triples
for Bud.

Then group
them by
drinker.

SELECT drinker, AVG(price)
FROM Frequents, Sells
WHERE beer = ’Bud’ AND
 Frequents.bar = Sells.bar

GROUP BY drinker;

11

Restriction on SELECT Lists With Aggregation

¨ If any aggregation is used, then each element
of the SELECT list must be either:

1. Aggregated, or
2. An attribute on the GROUP BY list.

12

Illegal Query Example

 SELECT bar, beer, AVG(price)
 FROM Sells
 GROUP BY bar

¨ But this query is illegal in SQL.
¨ Only one tuple output for each bar, no unique

way to select which beer to output

A Closer Look

SELECT bar, beer, AVG(price) AS avgP
FROM Sells
GROUP BY bar

Bar Beer Price

Joe Bud 3.00

Joe Miller 4.00

Tom Bud 3.50

Tom Miller 4.25

Jane Bud 3.25

Jane Miller 4.75

Jane Coors 4.00

Sells

bar beer avgP

Joe ? 3.50

Tom ? 3.88

Jane ? 4.00

Result

{Bud, Miller, Coors}?

beer

Only one tuple output for each
bar, no unique way to select
which beer to output

13

14

HAVING Clauses

¨ HAVING <condition> may follow a GROUP BY
clause.

¨ If so, the condition applies to each group, and
groups not satisfying the condition are eliminated.

15

Example: HAVING

¨ From Sells(bar, beer, price) and Beers(name, manf),
find the average price of those beers that are
either served in at least three bars or are
manufactured by Pete’s.

16

Solution

SELECT beer, AVG(price)
FROM Sells
GROUP BY beer
HAVING COUNT(bar) >= 3 OR
 beer IN (SELECT name
 FROM Beers
 WHERE manf = ’Pete’’s’);

Beers manu-
factured by
Pete’s.

Beer groups with at least
3 non-NULL bars

Sells(bar, beer, price) and Beers(name, manf),

17

Requirements on HAVING Conditions

¨ Anything goes in a subquery.
¨ Outside subqueries, they may refer to attributes

only if they are either:
1. A grouping attribute, or
2. Aggregated

 (same condition as for SELECT clauses with
aggregation).

A Final Example
18

Bar Beer Price Qty

Joe Bud 3.00 2

Joe Miller 4.00 2

Tom Bud 3.50 1

Tom Miller 4.25 4

Jane Bud 3.25 1

Jane Miller 4.75 3

Jane Coors 4.00 2

Sells
SELECT Bar, SUM(Qty) AS sumQ
FROM Sells
GROUP BY Bar
HAVING sum(Qty) > 4

Bar sumQ

Tom 5

Jane 6

Result

Assignment 2
1

¨ Due Nov 4th at 10:00pm
¤ Populate database early!
¤ Practice SQL queries as prep for midterm

¨ This week: outerjoins, views, indexes
¨ Midterm material cut-off this Thursday’s lecture
¨ Review midterm practice questions: Oct 21, 23

2

Example: Grouping

¨ From Sells(bar, beer, price), find the average price
for each beer:

 SELECT beer, AVG(price)
 FROM Sells

 GROUP BY beer;

beer AVG(price)

Bud 2.33
Miller 4.55
… …

3

Restriction on SELECT Lists With Aggregation

¨ If any aggregation is used, then each element
of the SELECT list must be either:

1. Aggregated, or
2. An attribute on the GROUP BY list.

4

Illegal Query Example

 SELECT bar, beer, AVG(price)
 FROM Sells
 GROUP BY bar

¨ But this query is illegal in SQL.
¨ Only one tuple output for each bar, no unique

way to select which beer to output

A Closer Look

SELECT bar, beer, AVG(price) AS avgP
FROM Sells
GROUP BY bar

Bar Beer Price

Joe Bud 3.00

Joe Miller 4.00

Tom Bud 3.50

Tom Miller 4.25

Jane Bud 3.25

Jane Miller 4.75

Jane Coors 4.00

Sells

bar beer avgP

Joe ? 3.50

Tom ? 3.88

Jane ? 4.00

Result

{Bud, Miller, Coors}?

beer

Only one tuple output for each
bar, no unique way to select
which beer to output

5

6

Example: HAVING

¨ From Sells(bar, beer, price) and Beers(name, manf),
find the average price of those beers that are
either served in at least three bars or are
manufactured by Pete’s.

7

Solution

SELECT beer, AVG(price)
FROM Sells
GROUP BY beer
HAVING COUNT(bar) >= 3 OR
 beer IN (SELECT name
 FROM Beers
 WHERE manf = ’Pete’’s’);

Beers manu-
factured by
Pete’s.

Beer groups with at least
3 non-NULL bars

Sells(bar, beer, price) and Beers(name, manf),

8

Requirements on HAVING Conditions

¨ Anything goes in a subquery.
¨ Outside subqueries, they may refer to attributes

only if they are either:
1. A grouping attribute, or
2. Aggregated

 (same condition as for SELECT clauses with
aggregation).

Cross Product
9

¨ Evaluating joins involves combining two or more relations
¨ Given two relations, S and R, each row of S is paired with

each row of R
¨ Result schema: one attribute from each attribute of S and

R

Example
10

Bar Beer Price

Joe Bud 3.00

Tom Miller 4.00

Jane Lite 3.25

Sells

Drinker Bar

Aaron Joe

Mary Jane

Frequents

(Bar) Beer Price Drinker (Bar)

Joe Bud 3.00 Aaron Joe

Joe Bud 3.00 Mary Jane

Tom Miller 4.00 Aaron Joe

Tom Miller 4.00 Mary Jane

Jane Lite 3.25 Aaron Joe

Jane Lite 3.25 Mary Jane

Sells x Frequents

SELECT drinker
FROM Frequents, Sells
WHERE beer = ’Bud’ AND
 Frequents.bar = Sells.bar

Drinker

Aaron

Cross product,
also known as the
Cartesian product

Joined Relations

¨ Join operations take two relations and return as a
result another relation.

¨ A join operation is a Cartesian product which requires
that tuples in the two relations match (under some
condition). It also specifies the attributes that are
present in the result of the join

11

©Silberschatz, Korth and Sudarshan

Join Operations – Example

¨ Relation course

 Relation prereq

 Observe that

 prereq information is missing for CS-315 and

 course information is missing for CS-347

12

Outer Join

¨ An extension of the join operation that avoids loss of information.
¨ Suppose you have two relations R and S. A tuple of R that has

no tuple of S with which it joins is said to be dangling.
¤ Similarly for a tuple of S.

¨ Computes the join and then adds tuples from one relation that
does not match tuples in the other relation to the result of the
join.

¨ Outerjoin preserves dangling tuples by padding them with NULL.

13

Left Outer Join

 course left outer join prereq

14

¨ course prereq

Right Outer Join
15

¨ course prereq

 course right outer join prereq

Full Outer Join
16

¨ course prereq

 course full outer join prereq

Inner Join
17

¨ course prereq

¨ course inner join prereq on
course.course_id = prereq.course_id

18

Outerjoins

¨ R OUTER JOIN S is the core of an outerjoin
expression. It is modified by:

1. Optional NATURAL in front of OUTER.
§ Check equality on all common attributes
§ No two attributes with the same name in the output

2. Optional ON <condition> after JOIN.
3. Optional LEFT, RIGHT, or FULL before OUTER.

 LEFT = pad dangling tuples of R only.
 RIGHT = pad dangling tuples of S only.
 FULL = pad both; this choice is the default.

Credit: Renee J. Miller

19

Example: Outerjoin

R = A B S = B C

 1 2 2 3
 4 5 6 7

(1,2) joins with (2,3), but the other two tuples
are dangling.

A B C

 1 2 3
 4 5 NULL
 NULL 6 7

R NATURAL FULL OUTERJOIN S =

VIEWS

Scenario

Class list
Scholarship

students
Engineering

Students

21

21

Views

¨ In most cases, it is not desirable for all users to see
the entire data instance.

¨ A view provides a mechanism to hide certain data
from the view of certain users.

22

22

Levels of Abstraction

¨ Many views, single conceptual
(logical) schema and physical
schema.
¤ Views describe how users see

the data.

¤ Conceptual schema defines
logical structure

¤ Physical schema describes the
files and indexes used.

Physical Schema

Conceptual Schema

View 1 View 2 View 3

23

23

Credit: Renee J. Miller

24

Views

¨ A view is a relation defined in terms of stored
tables (called base tables) and other views.

¨ Two kinds:
1. Virtual = not stored in the database; just a query

for constructing the relation.
2. Materialized = actually constructed and stored.

25

Declaring Views

¨ Declare by:

 CREATE [MATERIALIZED] VIEW <name> AS <query>;

¨ A view name
¨ A possible list of attribute names (for example, when arithmetic

operations are specified or when we want the names to be different
from the attributes in the base relations)

¨ A query to specify the view contents

¨ Default is virtual.

26

Example: View Definition

¨ CanDrink(drinker, beer) is a view “containing” the
drinker-beer pairs such that the drinker frequents at
least one bar that serves the beer:

 CREATE VIEW CanDrink AS

 SELECT drinker, beer

 FROM Frequents, Sells

 WHERE Frequents.bar = Sells.bar;

27

Example: Accessing a View

¨ Query a view as if it were a base table.
¤ Also: a limited ability to modify views if it makes

sense as a modification of one underlying base
table.

¨ Example query:
 SELECT beer FROM CanDrink
 WHERE drinker = ’Sally’;

28

Another Example

¨ Example: View Synergy has (drinker, beer, bar)
triples such that the bar serves the beer, the
drinker frequents the bar and likes the beer.

29

Example: The View

CREATE VIEW Synergy AS
 SELECT Likes.drinker, Likes.beer, Sells.bar
 FROM Likes, Sells, Frequents
 WHERE Likes.drinker = Frequents.drinker
 AND Likes.beer = Sells.beer
 AND Sells.bar = Frequents.bar;

Natural join of Likes,
Sells, and Frequents

Pick one copy of
each attribute

30

Updates on Views

¨ Generally, it is impossible to modify a virtual view,
because it doesn’t exist.

¨ Can’t we “translate” updates on views into
“equivalent” updates on base tables?
¤ Not always (in fact, not often)
¤ Most systems prohibit most view updates

¨ We cannot insert into Synergy --- it is a virtual view.

31

Interpreting a View Insertion

¨ But we could try to translate a (drinker, beer, bar)
triple into three insertions of projected pairs, one
for each of Likes, Sells, and Frequents.

Insertion

INSERT INTO LIKES VALUES(n.drinker, n.beer);
 INSERT INTO SELLS(bar, beer) VALUES(n.bar, n.beer);

 INSERT INTO FREQUENTS VALUES(n.drinker, n.bar);

¤ Sells.price will have to be NULL.
¤ There isn’t always a unique translation.

32

33

Materialized Views

¨ Materialized = actually constructed and stored (keeping
a temporary table)

¨ Concerns: maintaining correspondence between the
base table and the view when the base table is
updated

¨ Strategy: incremental update

Example
34

View_Class list
(materialized)

View_Scholarship
students
(virtual)

View_Engineering
Students
(virtual)

Q
Q

Periodic
updates

1

Views

¨ A view is a relation defined in terms of stored
tables (called base tables) and other views.

¨ Two kinds:
1. Virtual = not stored in the database; just a query

for constructing the relation.
2. Materialized = actually constructed and stored.

2

Example: View Definition

¨ CanDrink(drinker, beer) is a view “containing” the
drinker-beer pairs such that the drinker frequents at
least one bar that serves the beer:

 CREATE VIEW CanDrink AS

 SELECT drinker, beer

 FROM Frequents, Sells

 WHERE Frequents.bar = Sells.bar;

3

Example: Accessing a View

¨ Query a view as if it were a base table.
¤ Also: a limited ability to modify views if it makes

sense as a modification of one underlying base
table.

¨ Example query:
 SELECT beer FROM CanDrink
 WHERE drinker = ’Sally’;

4

Another Example

¨ Example: View Synergy has (drinker, beer, bar)
triples such that the bar serves the beer, the
drinker frequents the bar and likes the beer.

5

Example: The View

CREATE VIEW Synergy AS
 SELECT Likes.drinker, Likes.beer, Sells.bar
 FROM Likes, Sells, Frequents
 WHERE Likes.drinker = Frequents.drinker
 AND Likes.beer = Sells.beer
 AND Sells.bar = Frequents.bar;

Natural join of Likes,
Sells, and Frequents

Pick one copy of
each attribute

6

Updates on Views

¨ Generally, it is impossible to modify a virtual view,
because it doesn’t exist.

¨ Can’t we “translate” updates on views into
“equivalent” updates on base tables?
¤ Not always (in fact, not often)
¤ Most systems prohibit most view updates

¨ We cannot insert into Synergy --- it is a virtual view.

7

Materialized Views

¨ Materialized = actually constructed and stored (keeping
a temporary table)

¨ Concerns: maintaining correspondence between the
base table and the view when the base table is
updated

¨ Strategy: incremental update

Example
8

View_Class list
(materialized)

View_Scholarship
students
(virtual)

View_Engineering
Students
(virtual)

Q
Q

Periodic
updates

Materialized View Updates
9

¨ Update on a single view without aggregate
operations: update may map to an update on the
underlying base table (most SQL implementations)

¨ Views involving joins: an update may map to an
update on the underlying base relations not always
possible

INDEXES

Example
11

¨ Find the price of beers manufactured by Pete’s and
sold by Joe.

SELECT price
FROM Beers, Sells
WHERE manf = ‘Pete’’s’ AND bar = ‘Joe’ AND
Sells.beer = Beers.name

12

An Index

¨ A data structure used to speed access to tuples of a
relation, based on values of one or more attributes
(“search key” fields)

¨ Organizes records via trees or hashing
¨ Given a value v, the index takes us to only those tuples

that have v in the attribute(s) of the index.

¨ Example: use BeerInd (on manf) and SellInd (on bar,
beer) to find the prices of beers manufactured by Pete’s
and sold by Joe.

B+ Tree Index
13

¨ The B+ tree structure is the most common index type in databases
¨ Index files can be quite large, often stored on disk, partially loaded

into memory as needed

¨ Each node is at least 50% full

root

Internal (index)
nodes

leaf nodes (data
entries)

Credit: S. Lee

Level 1

Level 2

Level 3

B+ Tree Index
14

Supports equality and range-searches efficiently

Non-leaf

Pages
(Sorted by search key)

Leaf

Pages
(direct search)

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Credit: Renee Miller

Example
15

q Find 28*? 29*? All > 15* and < 30*
q Insert/delete: Find data entry in leaf, then

change it. Need to adjust parent sometimes.
q And change sometimes bubbles up the tree

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries < 17 Entries >= 17

Inserting a Data Entry
16

q Find correct leaf L.
q Put data entry onto L.

q If L has enough space, done!
q Else, must split L (into L and a new node L2)

qRedistribute entries evenly, copy up middle key.
q Insert index entry pointing to L2 into parent of L.

q This can happen recursively
q To split index node, redistribute entries evenly, but

push up middle key.
q Splits “grow” tree; root split increases height.

2* 3* 14* 16*

135

7*5* 8*

Insert data
value 4

4

Deleting a Data Entry
17

q Start at root, find leaf L
where entry belongs.

q Remove the entry.
q If L is at least half-full, done!
q If not,

qTry to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

q If re-distribution fails, merge L and sibling.

q If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

q Merge could propagate to root, decreasing height.

2* 3* 14* 16*

135

7*6* 8*

Delete value 3

B+ Tree: Most Widely Used Index
1

v Insert/delete at log F N cost; keep tree height-
balanced. (F = fanout, N = # leaf pages)

v Minimum 50% occupancy (except for root). Each
node contains d <= m <= 2d entries. The
parameter d is called the order of the tree.

v Node with order d = 2,
e.g., 2 <= m <= 4

B+ Trees in Practice
2

v Typical order: 100.
v Typical fill-factor: ln 2 = 66.5% (approx)

v average fanout = 2 x 100 x 66.5% = 133
v Typical capacities:

v Height 4: 1334 = 312,900,721 pages
v Height 3: 1333 = 2,352,637 pages

v For typical orders (d ~ 100-200), a shallow B+
tree can accommodate very large files.

B+ Tree Index
3

Supports equality and range-searches efficiently

Non-leaf

Pages
(Sorted by search key)

Leaf

Pages
(direct search)

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Credit: Renee Miller

Insertion Example
4

2* 3* 5* 7* 14* 16* 24* 27* 29* 33* 34* 38* 39*

Root

17 24 30

19* 20* 22*

13

8*

Insertion Example
5

2* 3* 24* 27* 29* 33* 34* 38* 39*

Root

17 24 30

14* 16* 19* 20* 22*

13

5* 7* 8*

5
?

After Inserting 8*
6

v Notice that root was split, leading to increase in height.

2* 3* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*5* 7* 8*

Root
17

24 30135

v Observe how
minimum
occupancy is
guaranteed in
both leaf and
index pg splits.

v Note difference
between copy-up
and bump-up;
Why do we handle
leaf page split
and index page
split differently?

2* 3* 5* 7* 8*

5
Entry to be inserted in parentnode.
(Note that 5 is copied up and
continues to appear in the leaf.)

5 24 30

17

13

Entry to be inserted in parent node.
(Note that 17 is bumped up and only

appears once in the index. Contrast
this with a leaf split.)

Copy-Up vs. Bump-Up
7

Deleting a Data Entry
8

q Start at root, find leaf L
where entry belongs.

q Remove the entry.
q If L is at least half-full, done!
q If not,

qTry to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

q If re-distribution fails, merge L and sibling.

q If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

q Merge could propagate to root, decreasing height.

2* 3* 14* 16*

135

7*6* 8*

Delete value 3

v What happens if we delete 20* next?

2* 3* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*5* 7* 8*

Root
17

24 30135

Deleting 19* is Straightforward
9

Example Tree: Deleting 19* and 20*
10

v Deleting 19* is easy.
v Deleting 20* is done with re-distribution.

Notice how new middle key is copied up.
v What happens if we delete 24* now?

2* 3* 14* 16* 33* 34* 38* 39*5* 7* 8* 22* 24* 27* 29*

Root

17

30135 27

Deleting 24* …
11

v Must merge.
v Observe `toss’ of

index entry (on
right), and `pull
down’ of index entry
(below).

22* 27* 29* 33* 34* 38* 39*

30

2* 3* 22* 27* 29* 33* 34* 38* 39*5* 7* 8* 14* 16*

Root
305 13 17

Balanced vs. Unbalanced Trees
12

¨ In a balanced tree, every path from the root to a leaf node is
the same length.

Credit: S. Lee

Hash Based Indexes
13

• Good for equality searches
• Your index is a collection of buckets (bucket = page)
• Define a hash function, h, that maps a key to a

bucket.
• Store the corresponding data in that bucket.
• Collisions
• Multiple keys hash to the same bucket.
• Store multiple keys in the same bucket.

• What do you do when buckets fill?
• Chaining: link new pages(overflow pages) off the bucket.

Example
• Directory is array of size4.
• To find bucket for r, take last

`global depth’ # bits of h(r);
we denote r by h(r).
• If h(r) = 5 = binary 101, it

is in bucket pointed to by
01.

00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

BucketA

BucketB

BucketC

BucketD

DATAPAGES

v Insert: If bucket is full, split it (allocate new page, re-distribute).

v If necessary, double the directory. (As we will see, splitting a
bucket does not always require doubling; we can tell by
comparing global depth with local depth for the split bucket.)

10*

4* 12* 32* 16*

15* 7* 19*

1* 5* 21* 13*

Three basic alternatives for data entries in any index
15

¨ Three basic alternatives for data entries in any index
¤ Alternative 1: By Value
¤ Alternative 2: By Reference
¤ Alternative 3: By List of references

Credit: J. Hellerstein

Alternative 1 Index (B+ Tree)
16

¨ Record contents are stored in the index file
¤ No need to follow pointers

17

5 24

(2, Joe) (3, Jim) (5, Kay) (7, Dan) (20, Tim)

Root Node

(24, Kit)

Data Entries

Interior Nodes

uid name

2 Joe

3 Jim

5 Kay

7 Dan

20 Tim

24 Kit

Alternative 2 Index
17

¨ Alternative 2: By Reference, <k, rid of matching data record>

uid name

2 Joe

3 Jim

5 Kay

7 Dan

20 Tim

24 Kit

(2, Joe) (3, Jim) (5, Kay) (7, Dan) (20, Tim) (24, Kit)

17

5 24

(2, [1,1]) (3, [1,2]) (5, [2,1]) (7, [2,2]) (20, [3,1])

Root Node

(24, [3,2])

Data Entries

Interior Nodes

Index File

Index Contains
(Key, Record Id)

Pairs

Alternative 3 Index
18

¨ Alternative 3: By List of references, <k, list of rids of matching data records>
¤ Alternative 3 more compact than alternative 2

n For very large rid lists, single data entry spans multiple blocks

(2, Joe) (2, Jim) (2, Kay) (3, Dan) (3, Tim) (20, Kit)

17

5 24

(2, {[1,1], [1,2], [2, 1]} (3, {[2,2], [3, 1]}) (20, {3, 2}])

Root Node

…

Data Entries

Interior Nodes

Index File

Index Contains
(Key, {list of record Id}) Pairs

Key Record Id

2 {[1,1],
[1,2],
[1,3]}

3 4

…

Indexing By Reference
19

¨ Both Alternative 2 and Alternative 3 index data by
reference

¨ By-reference is required to support multiple indexes per
table
¤Otherwise, we would be replicating entire tuples
¤Replicating data leads to complexity when we’re doing

updates, so it’s something we want to avoid

Alternative 2 vs Alternative 3 Table
Illustration

20

SSN Last
Name

First
Name

Salary

123 Gonzalez Amanda $400

443 Gonzalez Joey $300

244 Gonzalez Jose $140

134 Hong Sue $400

Key Record Id

Gonzalez [3, 1]

Gonzalez [3, 2]

Gonzalez [3, 3]

Hong [3, 4]

Key Record Id

Gonzalez [3, {1, 2, 3}]

Hong [3,4]

Alternative 2
Index data entries Alternative 3

Index data entries

