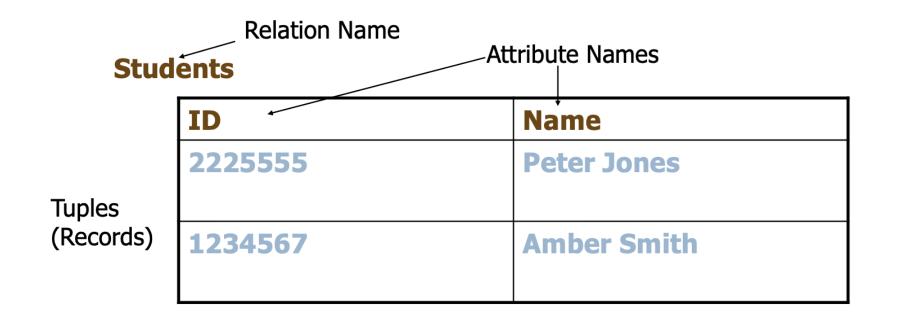
SFWRENG 3DB3 Tutorial

Anjola Adewale


Week 2 Tutorial

Agenda

- Review of Relational Model and Keys
- E-R Diagram
 - Notations
 - Relationship Types
 - Examples

Relational Model

- A relation is a table
 - Schema: relation name and attribute list
 - Ex: Students (id, name)
- Relation model is simple, but effective

- A key is a set of attributes that uniquely identifies tuples in a relation
- A set of attributes K is a superkey for a relation r if r cannot contain two distinct tuples t₁ and t₂ such that t₁[K] = t₂[K]
- **K** is a candidate key for r if k is a minimal superkey

Example of keys

sid	l name	login	age	gpa
50000	Dave	dave@cs	19	3.2
53666	Jones	jones@cs	18	3.3
53688	Smith	smith@ee	18	3.2
53650	Smith	smith@math	19	3.7
53831	Madayan	madayan@music	11	1.8
53832	Guldu	guldu@music	12	2.0

• Superkeys:

- {name, age}
- {login}
- {name, login}
- {sid}
- {sid, login, name, age, gpa}
- Etc...

- Keys:
 - {login}
 - {sid} : Primary key
 - {name, age}
 - {age, gpa}

Caution!

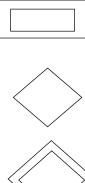
- The red keys could be candidate keys of above *given* data.
- However, they might prevent the addition of new students.
 - New student who has <u>same name</u> and <u>age</u> cannot be added.
 - Two students who have <u>same age cannot</u> have same gpa.

Foreign Key

- A foreign key is an attribute (or a set of attributes) in one table that uniquely identifies a row of another table. It establishes a relationship between two tables.
- A foreign key must correspond to the primary key of the referenced table.

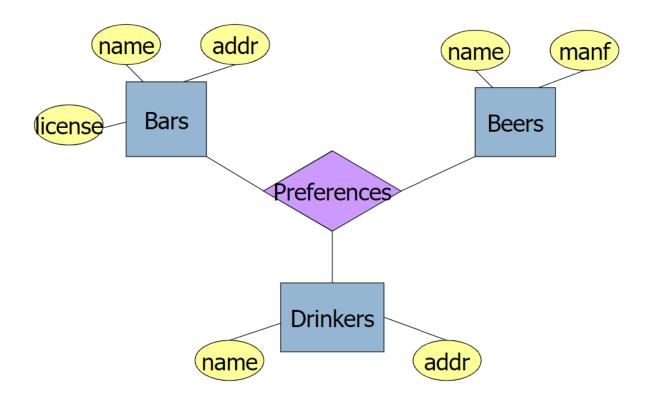
Foreign key			Primary key					
cid	grade	studid		> sid	name	login	age	gpa
Carnatic 101	С	53831,	۱ ٨	50000	Dave	dave@cs	19	3.3
Reggae203	В	53832,		<u>53666</u>	Jones	jones@cs	18	3.4
Topology 112	Α	53650-		53688	Smith	smith@ee	18	3.2
History 105	В	53666′	1, 1	53650	Smith	smith@math	19	3.8
			, 4	53831	Madayan	madayan@music	11	1.8
			4	<u>53832</u>	<u>Guldu</u>	gu1du@music	12	2.0

Referential Integrity


 Referential integrity is used to guarantee that attributes in one relation refer to existing tuples in another relation referenced in a relationship

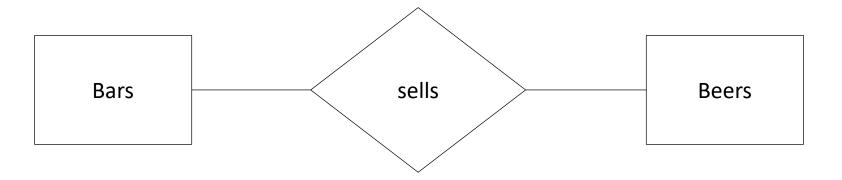
Employee ID	Name	DOB	Department No	Department No	Name	Manager	#em
123	John Smith	02/25/1978	5	5	Finance	Jane Mae	10
456	Alice Doe	04/06/1984	3	2	Sales	Bob Brown	15
789	John Smith	09/17/1990	3	4	Development	Sally Roe	30

Is there a foreign key or referential integrity violation between these relations?

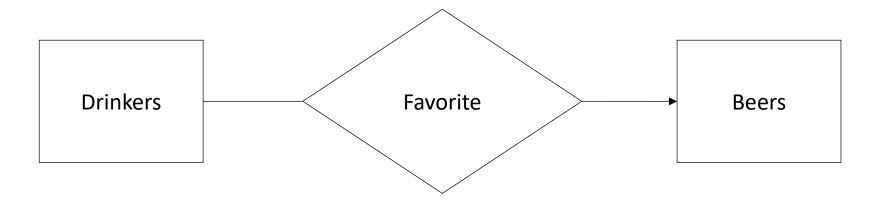

ER Diagram Notations

- Entity
- Weak Entity
- Relationship
- Supporting Relationship
- Attribute
- Primary Key Attribute

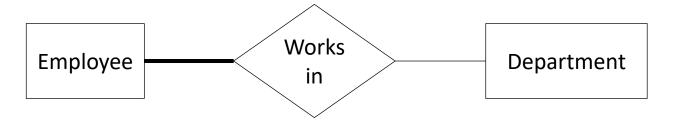
ER Terms


- Entity: Is a "thing" or object
- Attribute: Is a property of an entity set
- Relationship: Association between entity sets

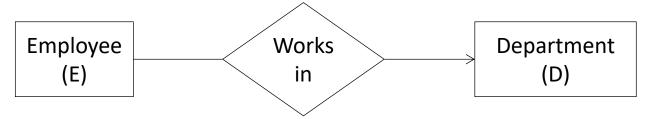
List entities, attributes, and relationships


Many-to-Many Relationship

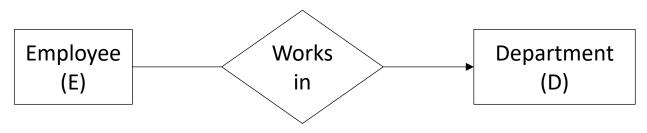
- An entity of either set can be connected to many (zero, one or more) entities of the other set
 - E.g., a bar sells many beers, and a beer is sold by many bars

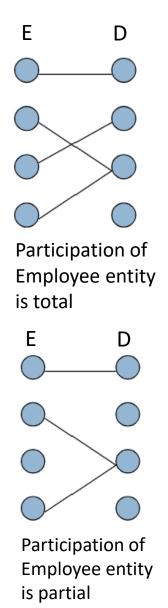

Many-to-One Relationship

- Each entity of the first set is connected to at most one entity (zero or one) of the second set. But an entity of the second set can be connected to zero, one, or many entities of the first set
 - E.g., a drinker has at most one favorite beer, and a beer can be the favorite of many drinkers


Participation

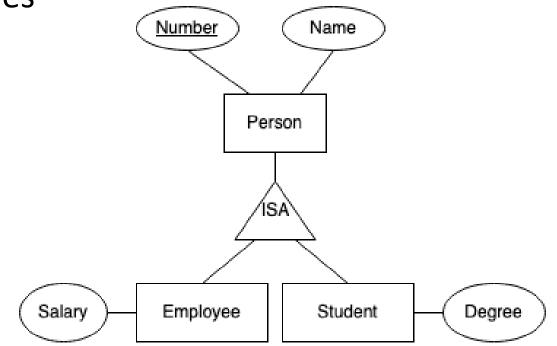
- Total Participation: At least one entity in the set participates in the relationship
 - E.g., Department must have at least one Employee




Many-to-One Relationship (Participation)

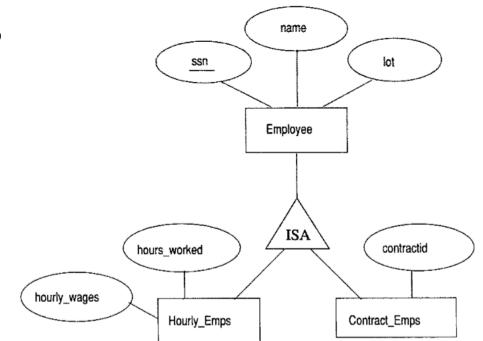
- Participation of the entity is total: open arrow
 - E.g., Every employee works in one department (exactly one)

- Participation of the entity is partial
 - E.g., Employee has at most one department (zero or one)

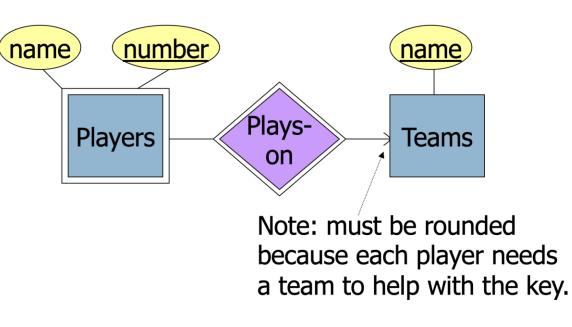

One-to-One Relationship

- Each entity of either entity set is related to at most one entity of the other set
 - E.g., a manufacturer has exactly one best-seller beer, and a beer is the bestseller of at most one manufacturer
 - Caution: carefully draw the type of arrow (w.r.t. relationship)

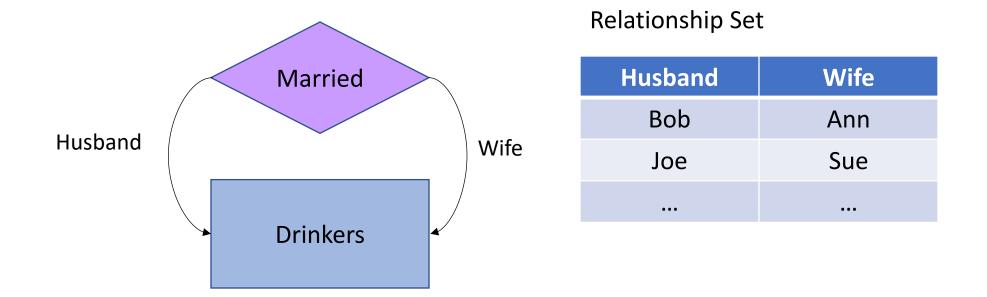
Subclasses/ISA Relationship


- Subclass are a special type of entity set that inherit properties from a parent entity
- The subclass must have all attributes of the parent as well as having additional properties

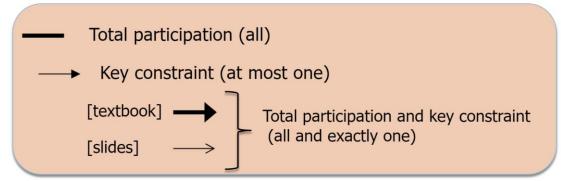
Subclasses/ISA Relationship


• Overlap constraints

- Can two sub-classes contain the same entity?
- E.g., Can Joe be an Hourly_Emps as well as a Contract_Emps entity?
- By default: No
- Covering constraints
 - Does every Employee entity have to be an Hourly_Emps or a Contract_Emps entity?
 - By default: No

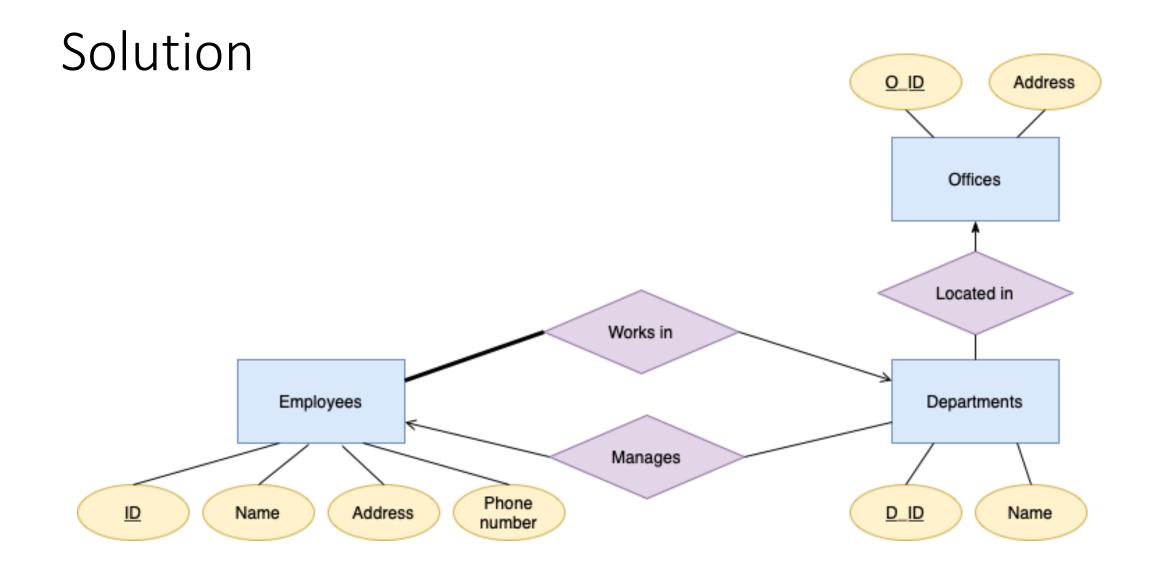

Weak Entity

- A weak entity does not have enough information to have its own primary key and relies on a supporting entity for unique identification
- To identify the (weak) entity, we need one (or more) many-to-one (supporting) relationship(s) to other (supporting) entity set(s)
 - E.g., 'number' in 'Players' together with the 'name' in 'Teams' related to the 'Plays-on' should be unique
 - Supporting relationship is many-to-one



Role

- An entity set may appear more than once in a relationship
 - Label the edges between the relationship



Example 1

Suppose you are given the following requirements for a simple database for the industry:

- o the Industry has many departments,
- o each department has an ID, name, a manager, an office and a set of employees,
 - $\circ~$ each department must have at least one employee
 - $\circ~$ each department is located in at most one office
- each employee belongs to exactly one department,
- each department has exactly one manager and a single employee is allowed to manage many departments,
- o each employee has an ID, a name, an address and a phone number,
- $\,\circ\,$ each office has an ID and an address.
- $\,\circ\,$ Note: ID is the primary key for department, employee and office

Example 2

Suppose you are given the following requirements for a simple database for the National Hockey League (NHL):

- The NHL has many teams and each team has:
 - A name, city, coach, and a set of players.
 - Each team must have at least one player.
- Each player belongs to exactly one team.
- Each player has:
 - A name, position, skill level, and injury records.
- Injury records include a description and are logged with a date of injury for each player.
- Games are played between two teams (referred to as host_team and guest_team) and have a date and a score.
- Note: Name is the primary key for the team and player entities.

Solution

Will be posted at the end of Tutorial