
Real Time Systems and Control Applications

Contents

RTOS and Kernel Module

Fall, 2024 Prof. Wenbo He@CAS, McMaster 1



TA Responsibility

• Celine Sana sanay (Lab 1,2)
• Xunzhou Ye yex33 (Lab 3,6)
• Chengqi Li lic222 (Lab 4,5)
• TA5 (Lab 7,8)
• Liuyin Shi shil9 (Lab 9,10)

Fall, 2024 Prof. Wenbo He@CAS, McMaster 2



Review of Concepts

• What is an operating system?
• System software that manages hardware and 

software resources and provides common services 
for computer programs.

• What does an OS do?
• System Supervision
• Resource Allocation
• Security
• Communication Services
• …

Fall, 2024 Prof. Wenbo He@CAS, McMaster 3



Kernel and Kernel Space

• User Space is the space in memory 
where user processes run

• Kernel Space is the space in memory 
where kernel processes run

Fall, 2024 Prof. Wenbo He@CAS, McMaster 4

• Services provided by Kernels
• Process management
• Memory Management
• File System
• Scheduling
• Interrupt Handling
• Inter-process Communication and 

Networking

Kernel

Operating System



User and Kernel (or Supervisor) Modes

• The set of instructions are usually divided into two classes:
• Those that can be executed by a user
• Those that can be executed by the kernel

Fall, 2024 Prof. Wenbo He@CAS, McMaster 5

Operation 
Modes

Kernel Mode User Mode

1. All the instruction are allowed, including 
OS routings

Only limited instruction are allowed

2. Unlimited hardware access Direct access to the hardware and the 
memory is prohibited to avoid malicious 
users



How OS Delivers The Services To User Process?

Fall, 2024

• User processes request a service from Kernel by making a System Call

• The library procedure involved in a system call.
• This procedure puts parameters of the system call in suitable registers and 

then issues a TRAP instruction.
• The control is passed on to Kernel, it checks the validity of parameters, 

performs the requested service
• When finished, a code is put in a register telling if the operation was carried 

out successfully or it failed.
• A Return from TRAP instruction is then executed and the control is passed 

back to the user process.

Prof. Wenbo He@CAS, McMaster 6



System Call And Argument Passing

Fall, 2024 Prof. Wenbo He@CAS, McMaster 7

• User Space and Kernel Space are 
in different spaces.

• When a System Call is executed, 
the arguments to the call are 
passed from User Space to Kernel 
Space

• A user process becomes a kernel 
process when it executes a 
system call.



Real-Time Operating System (RTOS)

• RTOS
• Designed for real-time tasks, where correctness depends on logic of the result and 

response time
• Hard or Soft RTS depends on how to define cost of missing deadline

• Examples of commercial RTOSs: 
VxWorks, RTLinux, LynxOS, Windows CE, RTAI, QNX, etc.

• What makes an OS Real Time?
• Guarantee that deadlines are met
• Predictability
• Not necessarily fast, and may be mediocre throughputs

Fall, 2024 Prof. Wenbo He@CAS, McMaster 8



Process Scheduling
• OS must decide which process to run first and in what order the 

remaining processes should run.

• Scheduling Algorithms
• FIFO
• Round Robin
• Priority Queueing
• …

Fall, 2024 Prof. Wenbo He@CAS, McMaster 9

Flow 1

Flow 2

Flow 3

Flow 4

Round-
Robin 

service

High Priority Queue

Low Priority Queue
Always serve high 
priority queue if it is 
not empty

FIFO



Objectives of A Scheduler
• A good scheduling algorithm for non-real-time system has the following 

objectives:
Fairness: make sure that each process gets its fair share of CPU.
Efficiency: keep the CPU busy to serve as much workload as possible.
Response Time: minimize waiting time of users to obtain results
Throughput: maximize the number of tasks processed per hour.

• Objective of RTOS
Meet deadlines!

Fall, 2024 Prof. Wenbo He@CAS, McMaster 10



Difference between OS and RTOS.

Schedulability is the ability of tasks to meet all hard deadlines

OS v.s. RTOS

Operating System Real-Time Operating 
Systems

Design philosophy Time-sharing Event driven

Design requirement High throughput Schedulability

Performance metric Fast average response Ensured worst-case response

Overload Fairness Meet critical deadlines

Fall, 2024 Prof. Wenbo He@CAS, McMaster 11



Is LINUX a RTOS?

• Linux provides limited kernel-mode preemption to execute any task during 
system calls

• Kernel programs can always preempt user-space programs
• Until 2.6 kernels, the kernel itself was not preemtible. Kernel preemption has been 

introduced in 2.6 kernels, and one can enable or disable the preemption.

• If without kernel mode pre-emption, a kernel task may have exclusive 
access to some data for a long time delaying a RT task 

• Linux reorders requests from multiple processes and batch operations to 
use the hardware more efficiently

Fall, 2024 Prof. Wenbo He@CAS, McMaster 12



Two Approaches To Implement RTOS Based on 
Linux

• Add a new layer of RT Kernel with full control of interrupts and processor 
key features.

• RTAI and RTLinux, both use real-time kernel as the main kernel, and treat Linux OS 
the lowest running task

• Make necessary changes in Linux Kernel to make it suitable for real time 
applications. (Preempt RT)

• Implement RT tasks as kernel modules

Fall, 2024 Prof. Wenbo He@CAS, McMaster 13

Note that Preempt RT in labs is provided by National Instruments as part of NI myRIO, 
so the kernel threads are preemptable.



Kernel Module

• A Kernel module is piece of code that can be loaded and unloaded 
into the kernel upon demand. They extend the functionality of the 
kernel without the need to reboot the system.

• We do not need to include all the possible anticipated functionality  
into the base kernel.

• Do not waste memory, and 
• Users do not have to rebuild and reboot the base kernel every time they 

require new functionality

Fall, 2024 Prof. Wenbo He@CAS, McMaster 14



Related Commands
• insmod, rmmod, lsmod, modinfo

Insert a module: insmod ./myModule.ko

Remove a module: rmmod myModule

lsmod shows what are currently loaded into the kernel

modinfo shows information about a Linux Kernel module

Fall, 2024 Prof. Wenbo He@CAS, McMaster 15



Development Fundamentals

A real time task running as a kernel module consists of three sections:

1. Function init_module(): Invoked by insmod to prepare for later 
invocation of module's functions. It can be used to allocate required 
system resources, declare and start tasks etc.

2. Task specific code (based on POSIX API)
3. Function cleanup_module(): Invoked by rmmod to inform kernel 

that the module's functions will not be called any more. A good 
place to release all of the system resources allocated during the 
lifetime of the module, stop and delete tasks etc.

Fall, 2024 Prof. Wenbo He@CAS, McMaster 16



A Simple Example

• #include <linux/module.h>
• #include <linux/kernel.h>

• int init_module(void) { 
printk(KERN_INFO "Hello World\n");
return 0;

}

• void cleanup_module(void){
printk(KERN_INFO "Goodbye Cruel World!\n");

}

Fall, 2024 Prof. Wenbo He@CAS, McMaster 17



Compiling Kernel Modules

Fall, 2024 Prof. Wenbo He@CAS, McMaster 18

obj-m +=hello.o

all:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

clean:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

A Sample MakeFile



module_init() and init_module()

In the current versions of Linux it is possible to use any suitable name 
for the init and cleanup functions.

In order to do that one has to begin the name of functions with _ _init
and _ _exit macros, then use module_init() and module_exit() macros 
after defining these functions.

The module_init() macro defines which function is to be called at module insertion time

Fall, 2024 Prof. Wenbo He@CAS, McMaster 19

Init_module() is the default entrance of module initialization function, 
and one can define his or her own initialization function in module_init



#include <linux/module.h> /*Every module requires it*/
#include <linux/kernel.h> /*KERN_INFO needs it*/
#include <linux/init.h> /* Required by macros*/

static char *my_string __initdata = "dummy";
static int my_int __initdata = 4;
/* Init function with user defined name*/
static int __init hello_4_init(void)  {  

printk (KERN_INFO "Hello %s world, number %d\n",my_string, my_int);
return 0;

}
/* Exit function with user defined name*/
static void __exit hello_4_exit(void)  {

printk(KERN_INFO "Goodbye cruel world 4\n");
}
/*Macros to be used after defining init and exit functions*/
module_init(hello_4_init);
module_exit(hello_4_exit);

Fall, 2024 Prof. Wenbo He@CAS, McMaster 20



Other Examples of Macros

• MODULE_LICENSE(): use GPL

• MODULE_DESCRIPTION(): To describe what the module does

• MODULE_AUTHOR(): Name of the person who wrote code for the 
module

• MODULE_SUPPORTED_DEVICES(): Declares what type of devices the 
module supports

Fall, 2024 Prof. Wenbo He@CAS, McMaster 21



Example
#include <linux/module.h> /*Every module requires it*/
#include <linux/kernel.h> /*KERN_INFO needs it*/
#include <linux/init.h> /* Required by macros*/
#define DRIVER_AUTHOR " Wenbo He"
#define DRIVER_DESC "SE 4AA4/6GA3 example4"
static char *my_string __initdata = "dummy";
static int my_int __initdata = 4;
/* Init function with user defined name*/
static int __init hello_4_init(void)
{

printk (KERN_INFO "Hello %s world, number %d\n",my_string, my_int);
return 0;

}

Fall, 2024 Prof. Wenbo He@CAS, McMaster 22



/* Exit function with user defined name*/
static void __exit hello_4_exit(void)
{

printk(KERN_INFO "Goodbye cruel world 4\n");
}

// Task specific functions go here.

/*Macros to be used after defining init and exit functions*/
module_init(hello_4_init);
module_exit(hello_4_exit);

MODULE_LICENSE("GPL"); /* Avoids kernel taint message*/
MODULE_AUTHOR(DRIVER_AUTHOR); /* Who wrote this module? */
MODULE_DESCRIPTION(DRIVER_DESC); /* What does this module do */

Fall, 2024 Prof. Wenbo He@CAS, McMaster 23



Passing Commandline Arguments

• Command line arguments can be passed to modules but NOT with 
argv and argc

• First declare variables that will be used to store values passed on 
commandline

• Then set them up using macro module_param(name, type, 
permissions)

• At run time insmod will fill up the variables with values pass

Fall, 2024 Prof. Wenbo He@CAS, McMaster 24



Example:
static int my_int = 5; (initialize defaults)

module_param(my_int, int, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)

MODULE_PARM_DESC(my_int, "An integer")
Macro function, MODULE_PARM_DESC(), is used to document arguments that 
the module can take.

After compiling, the module with parameter can be inserted as (Assume the 
model is called hello)
insmod hello.ko my_int=10

Fall, 2024 Prof. Wenbo He@CAS, McMaster 25


	Real Time Systems and Control Applications
	TA Responsibility
	Review of Concepts
	Kernel and Kernel Space
	User and Kernel (or Supervisor) Modes
	How OS Delivers The Services To User Process?
	System Call And Argument Passing
	Real-Time Operating System (RTOS)
	Process Scheduling
	Objectives of A Scheduler
	OS v.s. RTOS	
	Is LINUX a RTOS?
	Two Approaches To Implement RTOS Based on Linux
	Kernel Module
	Related Commands
	Development Fundamentals
	A Simple Example
	Compiling Kernel Modules
	module_init() and init_module()
	Slide Number 20
	Other Examples of Macros
	Example
	Slide Number 23
	Passing Commandline Arguments
	Example:

