
Real-Time Operating Systems

Contents:
System call

Makefile
Processes

Fall, 2024 Prof. Wenbo He@CAS, McMaster 1

Preemption
• Preemption is the act of temporarily interrupting a currently

scheduled task in favour of a higher priority task.

• Why we assume tasks are preemptible in RTOS?

• Linux System
• Kernel programs can always preempt user-space programs
• Until 2.6 kernels, the kernel itself was not preemtible
• Kernel preemption has been introduced in 2.6 kernels, and one can enable or

disable the pre-emption

Fall, 2024 Prof. Wenbo He@CAS, McMaster 2

Comment on Building and Loading Module

Fall, 2024 Prof. Wenbo He@CAS, McMaster 3

After building the kernel object, you will get hello.ko

Then you may want to insert the kernel module using
Insmod hello.ko

Can you succeed on Linux?

Why we learn kernel/module programming for real-time tasks?

System Calls

Fall, 2024 Prof. Wenbo He@CAS, McMaster 4

printf(), System.out.println(), and write()

System Calls
…
write(fd1, buf, strlen(buf));
…

#include <stdio.h>
void main()
{

printf("Hello World.\n");
}

public class HelloWorld {
public static void main(String[] args){

System.out.println("Hello, World");
}

}

C Program Java Program

… …

Fall, 2024 Prof. Wenbo He@CAS, McMaster 5

Can You Make A RAW System Call?

• Both C program did the same thing.

• Why it is rare to make a raw system call from a user program?
• APIs provided in library is easy to use compared to actual system call
• APIs provides some form of Security/Protection to the kernel because you are not interacting with the kernel
• APIs provides better portability
• APIs can be more efficient

#include <stdio.h>
void main()
{

printf("Hello World.\n");
}

C Program

void main()
{

write(1, "Hello World.\n“, 13);
}

C Program

Fall, 2024 Prof. Wenbo He@CAS, McMaster 6

Makefile

Fall, 2024 Prof. Wenbo He@CAS, McMaster 7

Idea Text
Editor

Like notepad

Text File

Program in
English-like
language

Compiler
Compile + Assembler

Pre-Processor

Linker

Executable
File

EXE or COM

0 errors

P File

0 errors

0 errors

Special instructions
that modify the source
code.

Libraries

Object
File

The C Compilation Process

Fall, 2024 Prof. Wenbo He@CAS, McMaster 8

How to compile multiple source files?

#include “file2.h”

int main()
{
printName();
return 0;

}

#include <stdio.h>

void printName()
{
printf(“My name is
Wenbo.”);

}

file1.c file2.c

file2.h

void printName(void);

Fall, 2024 Prof. Wenbo He@CAS, McMaster 9

Compiling Multiple Files

$ gcc -c file1.c file2.c

$ ls
file1.c file2.h file2.c file1.o file2.o

$ gcc file1.o file2.o
file1.c file2.h file2.c file1.o file2.o a.out

How to compile a large number of source files?

Fall, 2024 Prof. Wenbo He@CAS, McMaster 10

Makefile
•To compile a simple program,

gcc –o myprogram main.c

•To compile a large project with many source files, e.g.,
gcc -c file1.c
gcc -c file2.c
…
gcc -o file1.o file2.o

Question:
If you changed a small piece of code, do you need to compile the code all over again?

No. But, it is hard to track which parts need to be recompiled.
Fall, 2024 Prof. Wenbo He@CAS, McMaster 11

Makefile

•Make gets its instruction from the “makefile” file.
–It's a collection of rules and instructions explaining how to compile your program.

•The first rule in your make file is your default rule.
–If you make a mistake building your rule, your application will not compile properly.

•You just need to type “make” at the command-line to run make. This will run the
default rule.
make

–makefile is the default instruction file and is automatically used.
–To execute a specific action, specify that action as an argument.
make clean

Fall, 2024 Prof. Wenbo He@CAS, McMaster 12

final_target: sub_target final_target.c
Instruction_to_create_final_target

sub_target: sub_target.c
Instruction_to_create_sub_target

Example

•Makefile consists of a series of rules
–target: requirements target build instructions

•Makefile example:
myprogram: file1.o file2.o

gcc –o myprogram file1.o file2.o
file1.o: file1.c

gcc -c file1.c
file2.o: file2.c

gcc -c file2.c
clean:

rm -f myprogram file1.o file2.o

Fall, 2024 Prof. Wenbo He@CAS, McMaster 13

Dependency Tree

file4.ofile3.o

file3.c file4.c

file3.h file4.h

file2.o

file2.c

file2.h

file1.o

file1.c

myprogram

If something changes what needs to be recompiled?

Fall, 2024 Prof. Wenbo He@CAS, McMaster 14

Processes

Fall, 2024 Prof. Wenbo He@CAS, McMaster 15

Process

• A program in execution.
• An abstraction of a running program
• The logical unit of work scheduled by operating system.

Fall, 2024 Prof. Wenbo He@CAS, McMaster 16

Processes are independent, carry considerable state information,
have separate address spaces and interact through system-
provided inter-process communication mechanism.

Program in Virtual Memory
• Stack: Used to store function arguments and local

variables, and the return address of functions that
called the current function.

• Heap: Memory is dynamically located by system
calls

• new(), malloc(), calloc(), …
• BSS segment: uninitialized data
• Data segment: initialized data

• global variables and static variables
• Text: Read-only region containing program

instructions (or program code)
Fall, 2024 Prof. Wenbo He@CAS, McMaster 17

Stack v.s. Heap

Fall, 2024 Prof. Wenbo He@CAS, McMaster 18

Stack Heap
Creation of an object Member m; Member* m = new

Member();
Lifetime Function runs to completion delete, free is called
Grow in size? Fixed size More memory can be added

by the operating system
Common error Stack overflow Heap fragmentation
Which one to use? Know the size of memory to be

used, or when data size is small
When you need a large scale
of dynamic memory

Multiple Processes
• We could divide a program into

multiple tasks by creating multiple
processes using the fork()
command.

• Fork() creates a child process
identical to its parent.

• fork() returns a value of 0 to the
child process and returns the
process ID of the child process to
the parent process.

Fall, 2024 Prof. Wenbo He@CAS, McMaster 19

If the call to fork() is executed successfully, Unix will
(1) Make two identical copies of address spaces, one for the
parent and the other for the child.
(2) Both processes will start their execution at the next
statement following the fork() call.

A program before
and after a fork

Fall, 2024 Prof. Wenbo He@CAS, McMaster 20

Fork() Call

• Lot of overhead to create process as
everything duplicated. Also, data space
isn't shared, so harder to communicate.

• Variables initiated before fork() will be
duplicated in both parent and child
process. After fork() branch is needed
to separate the parent and the child.

Fall, 2024 Prof. Wenbo He@CAS, McMaster 21

void main(void)
{

pid_t pid;
pid = fork();

if (pid == 0)
ChildProcess();

else
ParentProcess();

}

	Real-Time Operating Systems
	Preemption
	Comment on Building and Loading Module
	System Calls
	printf(), System.out.println(), and write()
	Can You Make A RAW System Call?
	Makefile
	Slide Number 8
	How to compile multiple source files?
	Compiling Multiple Files
	Makefile
	Makefile
	Example
	Dependency Tree
	Processes
	Process
	Program in Virtual Memory
	Stack v.s. Heap
	Multiple Processes
	A program before and after a fork
	Fork() Call

