
Real-Time Scheduling

Contents:

Threads
Event-driven program

Fall, 2024 Prof. Wenbo He@CAS, McMaster 1

Threads
• Threads give us a more efficient way to implement a task.

• With threads, multiple subtasks can be implemented as separate
streams in a single process.

• In the threads model, we break the memory space of a process into
two parts:

• One part contains the program-wide resources such as global data and
program instructions.

• The other contains information pertaining to the execution state of control
stream, such as the PC and the stack.

Fall, 2024 Prof. Wenbo He@CAS, McMaster 2

Memory Layout for Multithreaded Program

Fall, 2024 Prof. Wenbo He@CAS, McMaster 3

Single and Mutlitheaded Process

Fall, 2024 Prof. Wenbo He@CAS, McMaster 4

Advantages of Threads

• Shared Address space implies that the communication among threads
is more efficient.

• Context switching between threads in the same process is typically
faster than context switching between processes.

• It is much quicker to create a thread than a process.

• Thread programming is supported by POSIX

Fall, 2024 Prof. Wenbo He@CAS, McMaster 5

What is POSIX

• Portable Operating System Interface

• An interface standard developed by IEEE and approved by ANSI

• Ensures portability of applications across variations of Unix OSes

• Provides system calls for creation of a process or a thread

• Has real time extensions

Fall, 2024 Prof. Wenbo He@CAS, McMaster 6

Disadvantages of Threads
• Need of Synchronization – Global variables are shared between

threads: Inadvertent modification of shared variables can be
disastrous.

• Security: Many library functions are not thread safe.

• Lack of robustness: If one thread crashes, the whole application
crashes.

Fall, 2024 Prof. Wenbo He@CAS, McMaster 7

Question To Think

• Do we benefit from using a multi-threaded process when it
runs on a uniprocessor system?

• Speed of a program is either I/O bound or CPU bound

• If I/O bound (in most cases), multiple threads will make the process
more efficient.

Fall, 2024 Prof. Wenbo He@CAS, McMaster 8

pthread
• #include <pthread.h>
• Define a worker function

void *foo(void *args) { }

• Initialize pthread attr t
pthread_attr_t attr;
pthread_attr_init(attr);

• Create a thread
pthread_t thread;
pthread_create(&thread, &attr, worker function, arg);

• Exit current thread
pthread_exit(status)

Fall, 2024 Prof. Wenbo He@CAS, McMaster 9

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine) (void *), void *arg)

Thread Programming Example
#include <stdio.h>

#include <pthread.h>

#define NUM_THREADS 5

void *print_hello(void *threadid)

{

long* tid = threadid;

printf("Hello World! It’s me, thread #%ld!\n", *tid);

pthread_exit(NULL);

}

Fall, 2024 Prof. Wenbo He@CAS, McMaster 10

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
for (t = 0; t < NUM_THREADS; t++)
{

printf("In main: creating thread %ld\n", t);
rc = pthread_create(threads + t, NULL, print_hello, (void *) &t);
sleep(1);
if (rc)
{

printf("ERROR; return code from pthreadh_create() is %d\n",
rc);

return -1;
}

}
return 0;

} Fall, 2024 Prof. Wenbo He@CAS, McMaster 11

Must use “-pthread” option to compile.

Race Condition

• An error condition to parallel programs in which the outcome of a
program changes as the relative scheduling of different control flows
varies.

• Generally, race conditions can happen where the ordering of events
can affect the outcome of some computation.

• What is wrong with the race condition?
In engineering, we would like the outcome be predictable and

repeatable.

Fall, 2024 Prof. Wenbo He@CAS, McMaster 12

Another Example

#include <stdio.h>
#include <pthread.h>

int g = 0;

void *aThread()
{

g++;

sleep(1);
pthread_exit(NULL);

}

Fall, 2024 Prof. Wenbo He@CAS, McMaster 13

int main (int argc, char *argv[])
{

int i;
pthread_t thread[20];
for (i=0; i<20; i++)

{
if(pthread_create(thread+i, NULL, aThread, NULL))
{

printf("ERROR; return code from pthread_create()\n");
return -1;
}

printf("The value of g is %d after creating thread %d\n", g, i);
}
return 0;

}

Possible Results

Fall, 2024 Prof. Wenbo He@CAS, McMaster 14

Race Condition

• If function A is inserting a number to the list and function B is printing
the list, race condition occurs.

Fall, 2024 Prof. Wenbo He@CAS, McMaster 15

N3 6 1 15 8Pointer
to list

N

Function A Function B

Scheduler

int X=1 is a shared variable used to
enforce mutually exclusive
access to a linked list.

while (1){
if (X>0) {

X=0;
insert an elem in list;
X=1;
}

sleep(1);
}

N3 6 1 15 8

while (1){
if (X>0) {

X=0;
print list;
X=1;
}

sleep(1);
}

Pointer
to list

N

Do we have a race condition now?

Fall, 2024 Prof. Wenbo He@CAS, McMaster 16

Possible Solutions

•What are the possible solutions to race conditions
in a uniprocessor system?

• disable preemption/parallization when scheduling processes
(only the process itself can voluntarily relinquish the CPU)

• Use semaphores as atomic operation

Fall, 2024 Prof. Wenbo He@CAS, McMaster 17

Event Driven Program

• Let’s see two examples implementing the same functionality.

Fall, 2024 Prof. Wenbo He@CAS, McMaster 18

#include<stdio.h>

#include<pthread.h>

#include<stdlib.h>

#include<signal.h>

int r1=0;

int r2=0;

int sum=0;

int stopped=0;

void *myThread()

{

int i;

for(i=0; i<5; i++)

{

sleep(1);

time_t t;

//initialize random number generator

srand((unsigned) time(&t));

Fall, 2024 Prof. Wenbo He@CAS, McMaster 19

r1=rand();
r2=rand();
sum=r1+r2;
printf("i=%d, Sum=%d\n", i, sum);

}

stopped=1;
pthread_exit(NULL);

}

int main ()
{

pthread_t thread;

if(pthread_create(&thread, NULL, myThread, NULL))
{

printf("ERROR; return code from pthread_create()\n");
return -1;

}

while(!stopped);

pthread_join(thread, NULL);
return 0;

}

Example 1

#include<stdio.h>

#include<stdlib.h>

#include<signal.h>

int r1=0;

int r2=0;

int sum=0;

void handle_addRNGs(int sig)

{

time_t t;

//initialize random number genreator

srand((unsigned) time(&t));

r1=rand();

r2=rand();

sum=r1+r2;

kill(getpid(), SIGUSR2);

}
Fall, 2024 Prof. Wenbo He@CAS, McMaster 20

void handle_printSum(int sig)
{

printf("Sum=%d\n", sum);
}

int main ()
{

pid_t pid;
if ((pid = fork()) == 0)
{

int i;
for(i=0; i<5; i++)
{

sleep(1);
kill(getppid(), SIGUSR1);

}
exit(0);

}
else{

signal(SIGUSR2, handle_printSum);
signal(SIGUSR1, handle_addRNGs);

waitpid(pid, NULL, 0);
//printf("The End!\n");
exit(0);

}
}

Example 2

How a Process Knows that an Event Occurs?

Fall, 2024 Prof. Wenbo He@CAS, McMaster 21

Polling and Interrupt

• Polling: Constantly reading a memory location, in order to receive
updates of an event or input value.

• Interrupt: Upon receiving an interrupt signal, the processor interrupts
whatever it is doing and serves the request.

Fall, 2024 Prof. Wenbo He@CAS, McMaster 22

Polling
• We repetitively test a flag to capture the

occurrence of an event.

• Consider a system that handles packets of
data that arrive at the rate of 1 per second.
On arrival of a packet a flag packet-here is set
to 1.

for(; ;) {
if (packet-here)
{
process-data();
packet-here = 0;

}
}

Fall, 2024 Prof. Wenbo He@CAS, McMaster 23

signal(singal, handler);

void handler(int sig)
{

process-data();
}

int main()
{

...
while (1)
{

//Do some work
}

}

Interrupt

Handling of Multiple Tasks

Fall, 2024 Prof. Wenbo He@CAS, McMaster 24

Service
Functions in

main program

Polling based model
Interrupt based model

Pros and Cons of Polling

• Pros:
Simple to write and debug
Response time easy to determine

• Cons:
Generally not sufficient to handle complex systems or burst events
Waste of CPU time particularly when events polled occur infrequently

Fall, 2024 Prof. Wenbo He@CAS, McMaster 25

Polled loops are used for fast
response to single devices.

Brief Comparison

Interrupt Polling

Speed fast slow

Efficiency good poor

CPU waste low high

Multitasking yes yes

Complexity high low

Debugging difficult easy

Fall, 2024 Prof. Wenbo He@CAS, McMaster 26

Fall, 2024 Prof. Wenbo He@CAS, McMaster 27

	Real-Time Scheduling
	Threads
	Memory Layout for Multithreaded Program
	Single and Mutlitheaded Process
	Advantages of Threads
	What is POSIX
	Disadvantages of Threads
	Question To Think
	pthread
	Thread Programming Example
	Slide Number 11
	Race Condition
	Another Example
	Possible Results
	Race Condition
	Do we have a race condition now?
	Possible Solutions
	Event Driven Program
	Slide Number 19
	Slide Number 20
	How a Process Knows that an Event Occurs?
	Polling and Interrupt
	Polling
	Handling of Multiple Tasks
	Pros and Cons of Polling
	Brief Comparison
	Slide Number 27
	Slide Number 28
	Slide Number 29

