
Mectron/Sfwr Eng 4AA4 - Lab 10
PID Controller

Part 1: PID Controller Introduction

In this lab you are required to write code to create a real time task to be run on MyRIO to control the
position of the shaft on Quanser SRV02 Plant. The task will get a “set point” input from users for the
desired motor shaft position, will get the “feedback” signals proportional to the shaft positions from the
potentiometer installed on the motor assembly. Then the realtime task will calculate the “process errors”
between the “set point” and the “feedback” signals. The realtime task will implement a PID controller,
which, based on the process errors, will calculate values for the output signals. The output signals will
drive the motor to bring its shaft to the desired position. See Figure 1 for the block diagram for PID control.

Figure 1: Block Diagram of PID Control

In time domain, a PID controller can be represented by the following differential equation:

u(t) = Kpe(t) +Ki

∫ t

0

e(t)dt+Kd
de(t)

dt

Using Euler’s approximation method:

dx

dt
≈ x(k)− x(k − 1)

T

For proportional part:
u(k) = Kpe(k)

1



For integral part:

u(t) = Ki

∫ t

0

e(η)dη

Take derivative on both sides:
du(t)

dt
= Kie(t)

Using Euler’s approximation:

u(k)− u(k − 1)

T
= Kie(k)

That is:
u(k) = u(k − 1) +KiTe(k)

This can be further simplified by considering that:

u(k − 1) = u(k − 2) +KiTe(k − 1)

Substituting it into earlier equation:

u(k) = u(k − 2) +KiT (e(k − 1) + e(k))

As the initial value u(0) = 0, then the contribution from the integral component can be written
as:

u(k) = KiT
i=k∑
i=1

e(k)

The derivative part approximates to:

u(k) =
kd
T
[e(k)− e(k − 1)]

So the PID controller approximates to:

u(k) = Kpe(t) +KiT
i=k∑
i=1

e(k) +
kd
T
[e(k)− e(k − 1)]

Part 2: PID Controller Implementation

In order to implement the above differential equation numerically, you need to:

� Initialize various variable. Assume u(0) = e(0) = 0 and set initial values for Kp, Ki, Kd.

� For each cycle:

– Read the potentiometer from one of the analog input channels on connector C connected to
Quanser Terminal Board. Note that -180 to +180 degree movement of the potentiometer cor-
responds to -5.0 to +5.0 volts. Therefore one degree of rotation corresponds to 5.0/180 volts.
In the lab it was found that volts/degree = 5.0/176 gives more suitable results. For a target
position of 90 degrees, it will be necessary to output 90 x 5.0/176 volts.

2



– Calculate current error say errorC.

– Calculate the proportional, integral and derivative contributions as follows:

* Proportional component = Kp ∗ errorC.

* Integral component = Previous integral component + Ki ∗T ∗errorC. Where T is the inte-
gration time interval, here is your realtime task time period for each reading and integration
cycles.

* Derivative component = kd
T
(errorC − errorP ). Where errorP is the errorC in the previous

cycle.

* Calculate the PID output by adding together the three parts above.

* Write the output to one of the analog output channels on connector C connected to Quanser
Terminal Board. Please note, the unit of your errorC may be in “degree” of position.
Depending on the units (or the scale) of the Kp, Ki and Kd, your PID output may be in
unit of “degree” too. While the MyRIO function you will use to write the output to the
analog channel to make the motor move may require you to supply a parameter in “volt”.

� You need to ensure that the set point, Kd,Ki and Kp can be passed on to the module as command
line parameters, so that different values can be tried until a satisfactory control is achieved.

� The rated voltage of the motors used in this lab is 10 volts. But large input voltages may damage
motors′ parts. You must limit your output signal within ±6 volts in your code, and ensure
that the signal being output at any time does not violate these limits. If the calculated value of
output signal is higher than 6V, for example, then limit it to 6V, and if the calculated output signal
is lower than -6V, limit it to -6V.

� Due to the system error or control accuracy, an angel tolerance (0.5 degree) needs to be used in your
code. Once the process result falls within this tolerance range around the set point position, you may
consider the control system satisfied users′ requirement. For example, if the target position angel is
90 degree, then if the feedback fall within the range from 89.5 to 90.5 degree, you can assume the
system has done its job.

� Analog Value Registers contain the values read from analog input channels or the values for
outputting to analog output channels. The values are given in bits/volt. You must scale and offset
the values in the Analog Value Registers before using them. But these are all taken care of by
channel scaling functions provided by MyRIO C programming library. The scaling values are assigned
to channels by first declaring a struct of type “MyRio Aio” say C0 and then using the built in function
“Aio Scaling(&C0)” to assign the pre-defined scaling factors to the channel C0. For more details
about scaling weights please refer to the document: MyRIO Shipping Personality Reference6.0.pdf.

� In the RT task that implements the PID controller, you can make it to have a period of 1ms (0.001
sec).

� Compile your code, run it with different values of Kd, Kp, Ki to get the best control. Start with
Ki = 0, Kd = 0, and Kp to be the value you got from model simulation in Part 2 of Lab 9. Gradually
change the Kp value to achieve the best control result. Too high Kp value will make the system
unstable. Too low Kp value will make the system take too long time to set to the target position. So
use your judgement carefully.

3



� Once you get a good control with a Kp, adjust the value of Ki. Observe how the Ki will affect your
control system. You may need to slightly adjust Kp while you are trying to find the best value for
Ki.

� Once you have your satisfied Kp and Ki, you can work on Kd. Observe how the Kd will affect your
control system.

� Once you are satisfied with your application, demonstrate your work to your TA.

Score

� Finish DAC code, make the DC motor rotate. 25 points

� Finish ADC code, get the potentiometer voltage. 25 points

� Finish PID function code, including degree-volt conversion, PID error calculation, etc. 25 points

� Get the best Kp, Ki and Kd. 25 point

4


