
MECHTRON/SFWRENG 4AA4 - Lab 3
C Support for NI myRIO

Introduction:

NI myRIO is based on Xilinx 7000 series SoC which integrates the software programmability of a processor
(dual core ARM Cortex A9) with the hardware programmability of an FPGA resulting in high levels of
system performance, flexibility, and scalability. Graphical programming of LabView/Simulink was used
in MECHTRON/SFWRENG 3DX4 to implement different projects on NI myRIO. NI also provides C
Support for myRIO in order to use the processing and logic capabilities of myRIO by directly coding in
C programming language. We shall take this approach for most of the labs in this course. This requires a
set of tools particularly a development environment and a cross compiler, which compiles code developed
on a Microsoft Windows machine for NI Linux Real-Time target. This lab introduces you to such tools.

Goals:

Learn how to build and run real time programs written in C programming language on NI myRIO and get
conversant with C/C++ Development Tools for NI Linux Real-Time, Eclipse Edition.

Note: Before you go for your lab sessions, please read the following documents at your own convenience,
in addition to the class notes:

� C Support for myRIO User Guide6.0.pdf. Most of the software components mentioned in this doc-
ument have already been installed and configured on lab computers.

� Getting Started with C Development Tool(Eclipse).pdf

� Document at this link: http://www.drdobbs.com/soft-real-time-programming-with-linux/184402031.
Or, a PDF version can be found in folder of ”ref” for Lab 3 .

� Document at this link: https://hpc-tutorials.llnl.gov/posix/pthreads api/

Activities in the lab:

NOTE 1: The “C/C++ Development Tools for NI Linux Real-Time, Eclipse Edition” has been installed
on the lab computers. It can be found under “National Instruments” program group, or by searching for
it in the Windows system.

NOTE 2: The myRIOs used in the lab have been configured properly and are ready to use.

1

http://www.drdobbs.com/soft-real-time-programming-with-linux/184402031
https://hpc-tutorials.llnl.gov/posix/pthreads_api/


Part 1: Create a “Hello World” program to run on myRIO [25]

1. Launch the “C/C++ Development Tools for NI Linux Real-Time, Eclipse Edition”.

2. When prompted for a workplace, select a folder in which to store Eclipse projects and click OK.
(Tip: Enable Use this as the default and do not ask again to save a project folder as your
default workspace)

3. Create your first project to be run on myRIO:

� Switch to the C/C++ perspective (If Eclipse is not in the C/C++ perspective, select
Window>>Open Perspective>>Other to display the Open Perspective dialog box.
Then select C/C++ (default) and click OK). Select File>>New>>Project... to open
the New Project Wizard.

� Expand the C/C++ folder and select C Project or C++ Project. Click Next to open the
C Project page.

� Enter a project name in the Project name text box. Select the Hello World ANSI C
Project or Hello World C++ Project project type. Select Cross GCC in the Toolchains
list box to enable cross-compilation, which configures the compiler to create executable code for
embedded systems, such as your NI Linux Real-Time target.

� Click Next to open the Basic Settings page. Enter the basic properties of your project in the
Author, Copyright notice, Hello world greeting and Source text boxes.

� Click Next to open the Select Configurations page. Enable Debug to configure the project
to allow debugging your executable, and/or enable Release to configure the project to allow
building a smaller, faster executable optimized for release. (Note: For purposes of this tutorial,
ensure you enable Debug.)

� Click Next to open the Cross GCC Command page. In the Cross compiler prefix text
box, enter (include the hyphen at the end): arm-nilrt-linux-gnueabi-

In the Cross compiler path text box, browse (Do Not Copy!) to the location of the correct
compiler for the target that you will use: C:\build\17.0\arm\sysroots
\i686-nilrtsdk-mingw32\usr\bin\arm-nilrt-linux-gnueabi

� Click Finish to create your project and return to the workbench view.

NOTE:: After the project is created, errors ‘Program "g++" not found in PATH’, ‘Program

"gcc" not found in PATH’, or ‘symbol "EXIT SUCCESS" could not be resolved’ may appear
in the Problems tab in the lower part the Eclipse window. These errors can be safely ignored and
removed by right-clicking the errors and selecting Delete.

4. Build the C/C++ Project:

Before you can run your project, you need to test that your source code compiles by creating an
executable build of your project. Complete the following steps to create an executable build of a
C/C++ project.

� Switch to the C/C++ perspective.

2



� Modify the template source code if you want to adapt the template to your application needs,
or enter the C/C++ code if you selected a blank project. For purposes of this tutorial, you do
not need to make changes to the Hello Word ANSI Project source code.

� Right-click your project in the Project Explorer tab and select Properties.

� Select C/C++ Build in the left pane of the Properties dialog box.

� Select Internal builder from the Builder type pull-down menu to build the executable.
Selecting the Internal builder is to use C/C++ Development Tools for NI Linux Real-Time,
Eclipse Edition, instead of an external build file, to build the executable.

� Select Settings under C/C++ Build in the left pane of the Properties dialog box.

� Select Miscellaneous under Cross GCC Compiler in the Tool Settings tab.

� In the Other flags text box, add a space after the existing text, and then enter the following
settings to improve the performance of floating-point operations:
-mfpu=vfpv3 -mfloat-abi=softfp --sysroot=c:\build\17.0\arm\sysroots\cortexa9
-vfpv3-nilrt-linux-gnueabi

� Select Miscellaneous under Cross GCC Linker in the Tools Settings tab. In the Linker
Flags text box, enter:
--sysroot=C:\build\17.0\arm\sysroots\cortexa9-vfpv3-nilrt-linux-gnueabi

� In the left pane of the Properties dialog box, select Paths and Symbols under C/C++
General.

� Under the tab of include, for GNU C or GNU C++, add the following three paths:
C:\build\17.0\arm\sysroots\cortexa9-vfpv3-nilrt-linux-gnueabi\usr\include
\c++\4.9.2\
C:\build\17.0\arm\sysroots\cortexa9-vfpv3-nilrt-linux-gnueabi\usr\include
\c++\4.9.2\arm-nilrt-linux-gnueabi
C:\build\17.0\arm\sysroots\cortexa9-vfpv3-nilrt-linux-gnueabi\usr\include

� Click Apply and then OK to close the Properties dialog box.

� SelectProject>>Build Project in the workbench view to create an executable of your project.
If the build completes successfully, the Console tab will display Build Finished without any
errors, and a ‘Binaries’ folder will be created under the project in the Project Explorer panel.
with a binary file in the folder.

5. Configure a Remote System:

Before you can run the executable you created in the previous section on your NI Linux Real-Time
target, you need to add your target to the project. Complete the following steps to configure your
target as a remote system in C/C++ Development Tools for Linux Real-Time, Eclipse Edition.

� Select Window>>Open Perspective>>Other to open the Open Perspective dialog box.
Select Remote System Explorer. Click OK to add the Remote System Explorer perspective
to the workbench.

3



Figure 1: Define a Connection to Remote System

� Click the Define a connection to remote system button, circled in Figure 1, to open the
New Connection window.

� Select SSH Only under the General folder. Click Next to open the Remote SSH Only
System Connection window.

� Enter the IP address of your myRIO in the Host name text box. The assigned IP address can
be found on the sticker on the myRIO.

� (Optional) Change the connection name in the Connection name text box or enter a de-
scription in the Description text box to help you identify your target when it appears in the
Remote System Explorer perspective.

� Click Finish. Your target is displayed in the Remote Systems tab in the Remote System
Explorer perspective.

� Right click the connection name or the IP address of the target that you want to connect in the
Remote System Explorer, and select the Connect command from the context menu.

� When prompted, enter the user name and password assigned to your target and click OK. The
login name is “admin” and the password is “4aa4”.
At this stage, you can let the system remember your credentials by checking the checkboxes for
saving your user ID and your password.

� With a successful login, you establish an SSH connection to your target and enable transferring
files to it.

6. Run the C/C++ Executable on Your NI Linux Real-Time Target:

At this point, your project contains a target and an executable. Complete the following steps to run
your C/C++ executable on your target.

4



� Go back to the C/C++ Perspective. Select Run>>Run Configurations, or right click a
project in the Project Explorer and select Run as | Run Configurations... from the context
menu, to open the Run Configurations dialog box. Select C/C++ Remote Application in
the left pane. Click the New launch configuration button, circled in Figure 2, to specify
settings for running an executable on your target.

Figure 2: Create a New Run Configuration

� Select your connection name or the IP address of your target from the Connection pull-down
menu.

� Click the Browse button to the right of the Project box to select the project you will run,
Click the Search Project... button below theC/C++ Application box to choose aC/C++
Application to run.

� Click the Browse button beside the Remote Absolute File Path for C/C++ Applica-
tions text box to open the Select Remote C/C++ Application File dialog box. This will
set the path and the executable file name on the remote MyRIO target.

� Right-click the My Home directory in the list box and select New>>Folder to create a folder
on the target, or select an existing folder under the My Home directory, in which to place a
copy of the executable.

� Return to the Run Configuration window. Append your project name (or whatever name you
wish to assign to the executable that will be transferred to the target) to the path populated in
the Remote Absolute File Path for C/C++ Applications text box, as shown in Figure
3.

Note: You must have a valid remote absolute path and an application name for the
executable binary to run your project!!!

� Click Apply and then Run to transfer the executable binary to your target and to run it.

Note: The first time when you run the application, the system may give you error message
”Permission Denied”. This may be a bug of the Eclipse, which may try to run the executable
binary before the system get the binary ready to run. In this case, just try to run it again.

7. Change the output to your names (consistent with Avenue), your student number, your group
number, and the myRIO IP address. Take a screenshot of your result and show it to the TA
at the end of the lab session.

5



Figure 3: Specify a Name and a Remote Path for the Application

Part 2: Compile and run an example myRIO project [25]

1. Download the C Support for myRIO1900 v6.0.zip from the course web page, or copy it from folder
C:\Program Files(x86)\National Instrument\Eclipse on the lab computers.

2. Launch Eclipse, specify a workspace, and click OK to display the C/C++ perspective, if necessary.

3. Select File >> Import to display the Import dialog box.

4. Select General >> Existing Projects into Workspace and click Next to display the Import
Projects page.

5. Select Select archive file, click Browse and select the C Support for myRIO1900 v6.0.zip that
you download.

6. Ensure that all items are checked and click Finish to import C Support for myRIO to Eclipse.

7. In your workspace you will have twelve folders containing sample projects for myRIO and a folder
named ‘C Support for myRIO’ containing a sub-folder named ‘template project’, (along with other
sub-folders). In the lab part, we will use the example project ‘myRIO Example - Accelerometer’.

8. In the Project Explorer pane, right click project ‘myRIO Example - Accelerometer’ and select
Build Project from the context menu to build the example project.

Note 1: Check if there is a ‘Binaries’ folder under the project in the Project Explorer panel. If
so, it means the project was built successfully.

Note 2: After Part 1, the Eclipse may still remember your compiler settings so you can build your

6



project readily. Otherwise, you need to follow the Step 4 in Part 1 to configure the compiler first to
build your project.

9. In the Project Explorer pane, right click the project and select Run as >> Run configurations
to display the Run Configurations dialog box.

10. Follow the Step 6 in Part 1 to set up the Run Configurations and to deploy the project.

11. The output for this project is the x, y and z coordinates of the position of the myRIO box. Move
myRIO box and observe how the output changes.

12. Take a screenshot of your result and show it to the TA at the end of the lab session.

Part 3: Create a real-time task [25]

1. Find the myRio Template project, then rename it to a suitable name such as lab3part3.

2. Double click on the project name in the Project Explorer or use the arrow sign to the left of the
project name to open the folder. There is a main.c file in addition to other folders/files.

3. Double click main.c which opens in an editor. Notice that the template contains basic code to open
the myRIO FPGA session. You will not use the FPGA for this lab and can replace the code with
your own code.

4. Replace the code in main.c with that given in file named task1RT.c, which can be found in the
A2L, and build the project. You may see some error messages in the Problems tab, saying that
certain symbols could not be resolved, however if the messages in the Console tab indicate that the
project compiled successfully, these error messages can be deleted. Rebuild the project and no error
will be displayed!

5. Run the project on your myRIO by following the steps similar to those in part 1.

6. Add your name in the output. Take a screenshot of the messages displayed by the program
and show the output to the TA at the end of the lab session.

Part 4: Create a task as a thread [25]

A real time task can also be created as a thread. This is particularly useful when you want to run a number
of tasks simultaneously. In this part of the lab you will create a task similar to that in part 3 but as a
thread. Each thread needs a function that is required to execute after the thread is created in the main()
function.

1. Because the myRIO Template project has been renamed to lab3part3 in Part 3, we need to create
a new myRIO Template project:

� In Eclipse with C/C++ Perspective, select File>>Import to display the Import dialog box.

� SelectGeneral>>Existing Projects into Workspace and clickNext to display the Import
Projects page.

7



� Select Select archive file, navigate to<workspace>\C Support for myRIO\template project,
where <workspace> is the workspace directory that you have specified in Eclipse, and select the
myRIO Template v6.0.zip file. The myRIO Template now appears in the Projects list.

� Click Finish. A new myRIO Template project will appear in the Project Explorer.

2. Rename the myRIO Template project to a suitable name, such as lab3part4.

3. Replace the code in main.c in this project with that given in file named threadedTask.c, which can
be found in the A2L.

4. To build this project, we need to modify the settings for the Cross GCC compiler:

Right click on the project name in the Project Explorer and choose Properties. Under C/C++
Build >> Settings > Cross GCC Compiler > Symbols, click add button to add:

GNU SOURCE

in the Defined symbols (-D) window, then click Apply and OK. Now the project can be built.

5. Build and run the project on your myRIO.

6. Add your name in the output. Take a screenshot of your result and show the output to the
TA.

FAQ

Q: the console window shows “No build find” when I build the project in Part 1.
A: You may need to do Step 3 again, make sure the Cross Compiler prefix and “Cross-compiler Path” are
exactly the same as instructed. Make sure the value for the “Other flags” in Step 4 is correct.

Q: Cannot run my project in myRIO.
A: 1. Look at Figure 3 in the lab manual, you need to make sure the file paths are correct. Don‘t forget to
append a file name after the folder name for the Remote Absolute File Path for C/C++ Application.
2. Make sure you run the project on myRIO, not at the local computer.

Q: When I run the project, why do I get the “Permission denied” error?
A: Many times, the first time you run the project you will get this error. Try to run the project for the
second time. If you still get this error, ask your TA for help or to change a myRIO.

8


