Mectrom/Sfwr Eng 4aa4 - Lab 7

Resource sharing protocols

Introduction:

By the time you start with this lab, most of the scheduling algorithms and resource
sharing protocols would have been discussed in the class (hopefully). In this lab you
will get some hands-on experience on how the priority inversion takes place and learn
about protocols such as Priority Inheritance and Priority Ceiling that try to minimize
the blockage of the highest priority task.

Goals:

e Understand how priority inversion may occur and use priority inheritance algo-
rithm to avoid it

e Use a simulation software to simulate the schedule of a set of tasks

e Priority Ceiling and Priority Inheritance protocols for resource sharing

Note: Before you go for your lab sessions, please read the following documents at
your own convenient time, in addition to the class notes:

e http://linux.die.net/man/3/pthread_mutexattr_setprotocol

e Pthreads APIL:
https://computing.llnl.gov/tutorials/pthreads/#PthreadsAPI
e Pthreads and pthread mutexes at the link:
https://computing.llnl.gov/tutorials/pthreads/#Mutexes
e Posix semaphores at the link:

http://www.csc.villanova.edu/ " mdamian/threads/posixsem.html

Part 1[30]
Priority Inversion:

e As discussed in class, priority inversion may occur when a task with lower
priority holding a resource is preempted by a task with a higher priority. The
CPU control is passed on to the task with higher priority but the lower priority
task still holds the control on the resource it has previously locked. In this
situation, if the higher priority task needs the same resource that is held by the
lower priority task, it will be blocked and a task with a priority lower than that
of this task may be allowed to run. Depending upon the number of tasks and
their relative priorities, the higher priority task may be blocked for an indefinite
period of time.

e One way to minimize the effects of priority inversion is the use of priority inher-
itance protocol which insures that the task that owns a resource executes at the
priority of the highest priority task blocked on that resource. When execution is
complete, the task relinquishes the resource and returns to its normal priority.
Therefore, the inheriting task is protected from preemption by an intermediate
priority task. In order to implement the protocol, mutexes are used to lock the
shared resources. A mutex works similar to a semaphore, however it is possible
to set one of the following resource sharing protocols for mutexes:

PTHREAD_PRIO_NONE,
PTHREAD_PRIO_INHERIT,
PTHREAD_PRIO_PROTECT

Follow the steps given below carefully. You are incremently building a project
that will demonstrate priority inversion.

e Start with a new C-project in your work space that creates three real time tasks
as threads. This is similar to what you have done in earlier labs. However in
order to keep things simple the tasks will not be periodic i. e. they will just
run once. Each time a task runs it will execute a job that uses CPU time.
Implement a function similar to the one given below for this purpose:

void workfor (long n, int task) //Use CPU time
{
long counter=0;
while (counter < n)
{ counter++;

}
printf("Task %d finished spinning\n", task);

e Set the priorities of tasks 1, 2 and 3 as 45, 42 and 40 respectively.

e Use different values of ‘n’” while calling the above function in each of the three
tasks to represent the work being done by each task. For example, values such as
1000000, 100000000 and 200000000 can be used for tasks 1, 2 and 3 respectively.

e You want to measure the time for which each task runs. Linux provides
several time functions and clocks. Please use the CLOCK_MONOTONIC as
done in earlier labs and use “clock_gettime()” function to get the time on
CLOCK_MONOTONIC. This function saves the current value of time in sec-
onds and nanoseconds in a structure of type “timespec_t”. For more details
refer to man pages or similar sources on the internet.

e Call the “clock_gettime()” function as soon as a task is created and save the
seconds and nanoseconds when it started then print this time on console.

e Call the function again when a task has finished doing its work. The difference
between this time and the start time is a good measure of the time for whic h
a task runs. Print this value on the screen.

So far in this project you have not used a semaphore, a mutex or a condition
variable.

Build your project and run it on myRIO to ensure you are on the right track
so far!.

The output should be similar to that shown below:

Taskl created: sec 2703, nsec 401366245
Task2 created: sec 2703, nsec 401775346
Task3 created: sec 2703, nsec 401967640
Hello! This is taskl, Priority:45

Task 1 done spinning

Taskl took 0 seconds, 16928869 nsec
Hello! This is task2, Priority:42

Task 2 done spinning

Task?2 took 1 seconds, 218866716 nsec
Hello! This is task3, Priority:40

Task 3 done spinning

Task3 took 4 seconds, -378185506 nsec
logout

e Show the output to one of your TAs.

Part 2:[30]
Continue working with your project in part 1.

e In order to create priority inversion, task 1 and task 3 will share a resource
represented by a mutex. Declare a mutex and a mutex attribute object with
global scope:

pthread_mutex_t mutex;
pthread_mutexattr_t mutex_attr;

e Both the task 1 and the task 3 put a lock on this mutex before carrying out
their main work and unlock it after finishing with the work. The task 2 does
not use this mutex as it does not share a resource with either of the other two
tasks. Refer to links cited at the start of this document to find out how to lock
and unlock a mutex.

e Now you need to control the execution of each task. For this purpose you will
use a total of five semaphores. Two semaphores for each of the high and medium
priority tasks to signal that they are ready to run (assume they are identified as
semHi_rdy and semMid_rdy) and three semaphores for allowing each of the three
tasks to run (assume they are identified as: semLow_r, semMid_r, semHi_r).

3

e The five semaphores are declared with global scope and are initialized to zero in
the main() function so that any task that waits on one of these semaphores, gets
suspended util some other task calls the “pthread_post()” function releasing the
semaphore.

e The mutex is also initialized in the main() function after setting protocol for
mutex_attr to PTHREAD_PRIO_NONE (i. e. no protocol):

if (pthread_mutexattr_setprotocol(&mutex_attr, PTHREAD_PRIO_NONE))
{perror("mutex init"); exit(1);}

if (pthread_mutex_init (&mutex, &mutex_attr))
{perror("mutex init"); exit(1);}

e The three tasks are created one after the other in the main() function but each
task gets suspended before it starts doing any useful work.

e Taskl and task 2 call “pthread_post()” function to release the semaphores indi-
cating that they are ready to run (semHi_rdy and semMid_rdy) and then wait on
their respective semaphores that stop them from running (semMid_r, semHi_r).
The code in task 1 , for example may look similar to that shown below:

stack_prefault();
sem_post (&semHi_rdy) ;
sem_wait(&semHi_r);

e Task 3 waits on semLow_r and gets suspended.

e The lowest priority task is allowed to run first. This is done by relasing semLow_r
in the main() function one second after all three tasks are created (use sleep()
function). It puts a lock on the mutex then waits on semHi rdy and semMid _rdy
until the these two tasks are ready to run. Once task 3 gets a notification
through two semaphores from task 1 and task2 that they are ready it releases
the semaphores blocking them (semHi_r, semMid_r,) and lets them run. Task
3 then performs its work and releases the mutex.

The code for task 3 for this item may look similar to that shown below:

pthread_mutex_lock (&mutex) ;
sem_wait (&semMid_rdy) ;
sem_wait (&semHi_rdy) ;
sem_post (&semHi_r) ;
sem_post (&semMid_r) ;

printf("Hello! This is task3, Priority:%d\n", param.sched_priority);
workfor (200000000, 3);

clock_gettime (CLOCK_MONOTONIC ,&t);

printf ("Task3 took %1ld seconds, %1d nsec\n", (t.tv_sec - sec), (t.tv_ns
pthread_mutex_unlock(&mutex) ;

4

Re-build the project and run it on myRIO.

Observe and note the outcome. The output should be similar to that shown
below:

Taskl created: sec 13926, nsec 515545234
Task2 created: sec 13926, nsec 516099286
Task3 created: sec 13926, nsec 516224713
Hello! This is task2, Priority:42

Task 2 done spinning

Task2 took 1 seconds, 207566372 nsec
Hello! This is task3, Priority:40

Task 3 done spinning

Task3 took 4 seconds, -390183557 nsec
Hello! This is taskl, Priority:45

Task 1 done spinning

Taskl took 4 seconds, -377406802 nsec

Show the output to a TA.

Part 3[40]
Priority inversion protocol:

Modify your code for part 2 such that before initializing the mutex, its protocol
is set to “PTHREAD_PRIO_INHERIT”.

Make no other changes, build and run the project.
Show the output to a TA.

Modify your cofde such that the value for ‘n’ passed to the ‘workfor()’ function
for task 2 is 500000000 instead of earlier 100000000.

Use “PTHREAD_PRIO_NONE” for the mutex_attr.

Build and run the project again and show the output to a TA.

