
Mechtron/Sfwr Eng 4AA4 - Lab 8
Resource sharing protocols and controlling servo motors

Introduction:

Pulse Width Modulation (PWM) is a term used to describe a type of digital signal that can result in a
varying output voltage. Although a digital signal can only be high (usually 5V or 3.3V) or low (ground)
at any time, one can change the proportion of time the signal is high compared to the time when it is
low over a consistent time interval. The duration for which the signal is high is called “On Time” and is
usually described as a percentage of the time period of the signal for which it is high. This percentage is
called “ Duty Cycle”. For example a digital signal that is high for half of its time period has a duty cycle
of 50%. Average value of the signal varies according to its duty cycle.

The position of a servo motor can be controlled by using a PWM control signal where there is a 0.2 to 2
ms high impulse every 20ms. The impulses′ duration corresponds with the position of the motor where:

� 0.2ms is full left (0 degree)

� 1.1ms is the middle (90 degrees)

� 2ms is full right (180 degrees)

Goals:

� Design and implement a real time task to generate a PWM signal on one of the myRIO pins.

� Use the PWM signal to control the position of a servo motor.

� Learn about and implement FIFO buffers within Linux for inter-process communication.

� Learn about and implement shared memory for inter-process communication.

Reference materials:

Please read the following reference materials before lab session starts. Some of the following materials can
be found in the ref folder after you download and unzip the lab8.zip file.

� MyRIO Shipping Personality Reference6.0.pdf.
The section about PWM. Page 22 and 23 are going to be very useful.

� MyRio.pdf
For myRIO-1900, only some specific pins have PWM functions. Please refer to page 4 and page 6 to
figure out which pins you will need to use for this lab.

� https://www.softprayog.in/programming/interprocess-communication-using-fifos-in-linux

1

https://www.softprayog.in/programming/interprocess-communication-using-fifos-in-linux

� http://www.tldp.org/LDP/lpg/node18.html
These two references are for Part 2 of this lab, which will use the FIFO buffer.

� shared memory.pdf (from: http://home.deib.polimi.it/fornacia/lib/exe/fetch.php?media=teaching:piatt
sw rete polimi:unix-shm.pdf)
Part 3 of this lab will explore the shared memory. These slides can give you a quick tutorial for how
to implement and use shared memory on Unix/Linux system.

Part 1: Servo motor position control [35]

The frequency (or the time period) of the PWM signal generated by myRIO-1900 is determined
by the value set in the PWM Maximum Count Register and the clock divider which is determined by
the value set in the PWM Clock Select Register. With the MODE bit in the PWM Configuration

Register being set to 1, the PWM counter would repeat cycles of incrementing from 0 to the value spec-
ified in the PWM Maximum Count Register then resetting to 0, at a certain clock rate. The frequency of
these cycles is the PWM frequency.

By default, the PWM counter and other myRIO-1900 hardware run at the base clock frequency, which is
40MHz. With a clock divider N, which is determined by the value set in the PWM Clock Select Register,
The PWM counter will run at a lower clock rate of (40/N) MHz.

The following formula can be used to calculate your PWM frequency:

fPWM =
fclk

N(X + 1)
(1)

where:

fPWM is the frequency of the PWM signal generated by myRIO-1900.
N is the clock divider whose value is determined by the settings in the PWM Clock Select Register.
X is the value set in the PWM Maximum Count Register.

The duty cycle of the PWM signal is determined by the compare value set in the PWM Compare

Register. For example, with proper settings in the PWM Configuration Register, when PWM counter
counts from 0 to the compare value, the output on the PWM pin can be set to 1, once the PWM counter
equals the compare value, the output on the PWM pin can be cleared, hence gives a certain period of
“on time” and a certain duty cycle.

1. Create a new project using the myRIO template. The sample project “myRIO Example--PWM” can
be used as a guide for the coming steps.

2. Enable PWM on the board using the function “PWM Configure()”.

� The configuration should be done by using a “MyRio PWM” structure, which is defined in “PWM.h”.

2

http://www.tldp.org/LDP/lpg/node18.html
http://home.deib.polimi.it/fornacia/lib/exe/fetch.php?media=teaching:piatt_sw_rete_polimi:unix-shm.pdf
http://home.deib.polimi.it/fornacia/lib/exe/fetch.php?media=teaching:piatt_sw_rete_polimi:unix-shm.pdf

� Make sure take notes of your configuration–you should configure the PWM0 on MXP port A.

Note: if you get errors saying PWMA xxxx is NOT found, you can simply ignore them, or you
can delete the errors, clean the project, and rebuild it. Also make sure that “PWM.h” is included.

3. The output pins of PWM are shared with other on board devices. It is therefore necessary to select
the PWM on the appropriate SELECT register (use function NiFpga WriteU8()).

4. For the servo motors used in our lab, the PWM time period must be 20ms, which corresponds to a
frequency of 50Hz. According to Equation 1, this can be achieved by choosing different combinations
of clock dividers and the maximum count values. We can use the clock divider “Pwm 16x” in our
lab.

� With the clock divider to be 16, the PWM counter increments at 40MHz / 16 = 2.5MHz. If
set the maximum value of the PWM counter to 49,999, the frequency of the PWM signal,
i.e., the frequency that the counter counts from 0 to 49,999 will be 2.5MHz / 50,000 = 50Hz.

� To position the servo motor to its left most position, a 0.2ms high impulse is needed. With
the selected clock divider, counting 500 ticks will take the PWM counter 0.2ms. This means
setting the compare value to 499 in the PWM Compare Register will generate a PWM signal
to position the servo motor to its full left position.

� Setting the compare value to 4999 in the PWM Compare Register will generate a PWM signal
to position the servo motor to its full right position.

5. Code your program to prompt users to input the desired motor position in degrees between 0 to 180.
Coerce any input values that are out of the range to either 0 or 180 degree.

6. Attach the servo motor to the appropriate myRIO pins. The servo motor wires are: Red: +5V,
Black: GND, Yellow/White: PWM Signal.

7. Build and run your project on myRIO. Test your program to make sure you can position the servo
motor to 0, 90 and 180 degrees. Demonstrate your working project to one of the TAs. Note: Save
a copy of this part of work for your bonus part later.

Part 2: Use FIFO to pass values to control motor position [50]

� Part 1 focused on just changing the position of the motor. In part 1, the motor control application
takes inputs directly from users and use the inputs to control the servo motor.

� Linux provides a mechanism called FIFO, which is a unidirectional buffer that can be used for inter-
process communication. In this part, we will implement a user application to take input from the
user, and then use a FIFO to pass the input to a motor control application.

� You should use external sources (Google) to learn more about the Linux FIFO buffer. The two
references in the Reference materials section are great resources.

� A very barebone example program, FIFOSample.c, for creating and using FIFO can be found in the
data folder in lab8.zip file. The FIFOSample.c is not complete, but can be used as a starting point.

3

� Please NOTE 1: By default, blocking will occur on a FIFO. In other words, if a FIFO is opened
for reading, the process will be blocked until some other processes open the FIFO for writing. if a
FIFO is opened for writing, the process will be blocked until some other processes open the FIFO
for reading. When you code and test your user and motor control applications in this lab part,
sometimes you may see your programs being ”blocked”.

� Please NOTE 2: If you do not want your application to be blocked by the above mentioned FIFO
nature, the O NONBLOCK flag can be used in an open() call to disable the default blocking
action (not sure for fopen() call). Using this flag may help you when you debug your client (user
application) and server (motor control) application separately. HOWEVER, it will be tricky to do
this lab if you use this flag. Therefore, you are recommendedNOT TO USE the O NONBLOCK
flag in this lab although it may help you when debug part of your program, unless you have interest
to explore around.

1. Create a new project from the myRIO Template. Use code modified from Part 1 so that a FIFO is
created and the desired motor position is read from the FIFO buffer. The value in the FIFO will be
written by a user application program.

2. Create a new project from the template of Hello World. This application will open the FIFO created
by the motor control application, will read a desired motor position from the user and write this user
input into the FIFO.

3. Build and run these two projects. By running the projects, the build binaries are downloaded
to the myRIO to a specific folder with specific names, which are specified by the Eclipse’s Run
Configuration.

4. Use a SSH client such as Bitvise SSH Client to connect to the myRIO. Open two terminals.

5. In one terminal, navigate to the appropriate folder, launch your motor control application (do not
forget to prefix a “./” before the binary name). The application now should be waiting to read a
value from a FIFO.

6. In another terminal, launch your user application which allows you to input a value for desired motor
position.

7. Test and debug your applications. Demonstrate your working projects to one of your TAs.

Part 3: Use shared memory to pass values to control motor

position [15]

� Another inter-process communication method is to use shared memory. In this part of the lab you
are required to modify your code to store and read data from shared memory instead of passing it
through the FIFO buffer.

� The example code in the shared memory.pdf slides uses a struct type variable. Your project may
just need an integer or a float type variable.

4

� To use the shared memory, both the client and the server applications need to use shmget(), shmat()

and other related functions, but the variable names to hold the returned values from these functions
may be different. The key for the shared memory NEEDs TO BE THE SAME in the applications
using this shared memory.

1. Follow the steps in Part 2 to create two projects, or copy the two projects from Part 2.

2. Modify your motor control application to read the desired motor position from the shared memory.

3. Modify your user application project to make the user input to be stored in shared memory.

4. Build and test your applications. Demonstrate your working projects to one of your TAs.

Bonus [discretionary]

Modify your code from part 1 to make the servo motor moves from the minimum position (0 degrees) to
the maximum position (180 degrees) and back to the minimum position (0 degrees) continuously. This is
known as a “sweep” function.

5

