Real Time Systems and Control Applications

Contents First Order Systems Second Order Systems

Time Constant of First Order Systems

- First order system
- The output of a general first order system to a step input:

$$
Y(s) = X(s) G(s) = \frac{a}{s (s + a)}
$$

• This results in a time domain output given by: $y(t) = 1 - e^{-at}$, where parameter a is the only parameter that affects the output. $t=$ $\frac{1}{a}$, y(t) = 0.63.

 $\frac{1}{a}$ is the time constant of the response, and is the time it takes for the step
response to rise to 62% of its final value response to rise to 63% of its final value.

Response in Time Domain

- Rise Time (T_r) : time for the waveform to go from 0.1 to 0.9 of its final value. For first order systems: $T_r = \frac{2.2}{a}$ \boldsymbol{a}
- Settling Time (T_s) : time for the response to reach and stay within 2% of its final value. For first order systems: $T_{\scriptscriptstyle S} = \frac{4}{a}$ \boldsymbol{a}

Another First Order Response Example

• Give $G(s) = \frac{1}{s+a}$, what is the time constant, rise time, and settling time? time?

•
$$
\Upsilon(s) = \frac{1}{a} \left(\frac{1}{s} - \frac{1}{s+a} \right) \Rightarrow y(t) = \frac{1}{a} (1 - e^{-at})
$$

Solution:

• Time constant τ makes $y(\tau) = \frac{1}{a}$ \boldsymbol{a} $*0.63$, so $\tau = \frac{1}{a}$ \boldsymbol{a} • Rise time $t_r = t_2 - t_1$, where t_2 makes $y(t_2) = \frac{1}{a}$ $\frac{1}{a} * 0.9$ and t_1 makes $y(t_1) =$ 1 $\frac{1}{a} * 0.1$, hence $t_r = \frac{2.3 - 0.1}{a}$ \boldsymbol{a} $= 2.2 *$ 1 \boldsymbol{a} • Settling time t_s makes $y(t_s)$ =0.98 $\frac{1}{a}$, hence $t_s \cong \frac{4}{a}$ \boldsymbol{a}

More Example

The figure shows the response of three first order systems having transfer function $\frac{K}{a}$ $5+a$, where the values of K are different for the three systems.

Answer the following questions:

- 1. Which of the three curves (1, 2, 3) represents a system with the lowest time constant?
- 2. The big dots on the three graphs represent the time when the response settles within 2% of the final value. Find the transfer function for each of the three systems.

Solution

• The settling time for first order systems is given by $\mathsf{T}_{\mathsf{s}}\text{=} \frac{4}{a}$ \boldsymbol{a} .

• From the figure, the values of T_s are 7.8, 3.9 and 0.8 respectively, so the value a for 3 systems are roughly 0.5, 1.0 and 5 respectively.

Since the steady state value of each system is 1, so K=a. Therefore the transfer function of the systems are $\frac{0.5}{s+0.5}$, $\frac{1}{s+1}$, and $\frac{5}{s+5}$.

Second Order Systems

• Most real-world systems are not first order systems. A general second order system defined by the transfer function:

$$
G(s) = \frac{b}{s^2 + as + b}
$$

• Find the poles of this transfer function to examine the behaviour of the output response. Using quadratic formula:

$$
s_1, s_2 = \frac{-a \pm \sqrt{a^2 - 4b}}{2}
$$

A Special Case (a=0)

• If a = 0, the transfer function is $G(s) = \frac{b}{s^2 + b}$, and the poles will have only imaginary part $\pm jw$ and by definition the **natural frequency** $w_n = \sqrt{b}$ is the frequency of oscillation of this system.

Damping Coefficient ζ , when α is not zero

- The complex poles have a real part $\sigma = \frac{-a}{2}$.
- The magnitude of σ is called the exponential decay frequency, and w_n the natural frequency. We define the *Damping Ratio* or *Damping Coefficient*, ζ as

$$
\zeta = \frac{Exponential \ decay \ frequency}{Natural \ frequency}
$$

$$
\therefore \ \zeta = \frac{|\sigma|}{w_n} = \frac{\frac{a}{2}}{w_n} \quad \text{so that} \ \ a = 2\zeta \, w_n
$$

General Second Order Transfer Function

• The general second order transfer function can now be written as: $G(s) =$ $\frac{n}{2}$ 2 $s^2 + 2\zeta w_n s + w_n^2$

$$
s_1, s_2 = -\zeta w_n \pm w_n \sqrt{\zeta^2 - 1}
$$

• From above we can examine the effect of parameter ζ on the output of a second order system.

Effect Of Parameter ζ

Summary of Observations

• Two imaginary poles at $\pm j\omega_n$: ζ = 0 (**undamped**)

Natural response: undamped sinusoid of frequency ω_n equal to the imaginary part of the poles. Or $c(t) = A \cos(\omega_n t - \varphi)$

• Two complex poles at $\sigma_d \pm j\omega_d$: $0 < \zeta < 1$ (**underdamped**) Natural response: Underdamped response in the form of sinusoid with an exponential envelope whose time constant is equal to the reciprocal of the pole's real part. Or $c(t) = A e^{(-\sigma_d)t} \cos(\omega_d t - \varphi)$, where $w_d =$ $W_n\sqrt{1-\overline{\zeta^2}}$.

Continued…

• Two real poles at σ_1 : ζ = 1 (**critically damped**)

Natural response: critically damped system has the time domain response as:

$$
c(t) = K t e^{\sigma_1 t}
$$

• Two real poles at σ_1 and σ_2 : $\zeta > 1$ (**overdamped**) Natural response: overdamped with two exponentials having time constants equal to the reciprocal of the pole locations. Or $c(t) = K(e^{\sigma_1 t} + e^{\sigma_2 t})$

Second Order Impulse Response

Underdamped Second Order Step Response

• The general Transfer Function of a second order system is:

$$
G(s) = \frac{w_n^2}{s^2 + 2\zeta w_n s + w_n^2}
$$

• Consider response for a step input. The transfer function of response C(s) is given by:

$$
C(s) = \frac{w_n^2}{s(s^2 + 2\zeta w_n s + w_n^2)}
$$

• Taking the inverse LT to get response in time domain results in:

$$
c(t) = 1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta w_n t} \cos(\sqrt{1 - \zeta^2} \omega_n t + \varphi)
$$

where
$$
\varphi = \tan^{-1} \left(\frac{\zeta}{\sqrt{1-\zeta^2}} \right)
$$
.

Peak Time, Tp

 $(t) = 1 - \frac{1}{\sqrt{4}}$ $1 - \zeta^2$ $e^{-\zeta w_n t}$ cos($\sqrt{1 - \zeta^2} \omega_n t + \varphi$) $\varphi = \tan^{-1} \left(\frac{\zeta}{\sqrt{2\pi}} \right)$ $1-\zeta^2$)

The time required to reach the first or maximum peak. This can be found by differentiating c(t), and equating to zero which gives:

$$
T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}
$$

Because
$$
c'(t) = -\frac{1}{\sqrt{1-\zeta^2}} e^{-\zeta w_n t} \sin\left(\sqrt{1-\zeta^2}\omega_n t + \varphi\right) \sqrt{1-\zeta^2}\omega_n -
$$

$$
\frac{1}{\sqrt{1-\zeta^2}}\left(-\zeta w_n\right)e^{-\zeta w_n t}\cos\left(\sqrt{1-\zeta^2}\omega_n t + \varphi\right) = 0
$$

:. $\tan\left(\sqrt{1-\zeta^2}\omega_n t + \varphi\right) = \frac{\zeta}{\sqrt{1-\zeta^2}}$

Therefore,
$$
\sqrt{1 - \zeta^2} \omega_n t = \pi
$$
 \Rightarrow $T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$

Percent Overshoot, % OS

The amount that the waveform overshoots the steady state of final value at peak time, expressed as percentage of steady state value: %OS = $\frac{c_{max} - c_{final}}{c_{final}}$ c_{final} \times 100, where $c_{final} = 1$ and $c_{max} = c(T_p)$. Substituting the expression for $c(T_p) = 1 + e$ $-\frac{\pi \zeta}{\sqrt{2}}$ 1−ζ²

in previous subsection and some manipulation results in: $%$ OS = e $-\frac{\pi\zeta}{\sqrt{2\pi}}$ 1−ζ² \times 100.

Note that %OS is a function of ζ, the damping ratio only. The above expression gives an expression for ζ in terms of %OS.

$$
\zeta = \frac{-\ln(\frac{\%OS}{100})}{\sqrt{\pi^2 + \ln^2(\frac{\%OS}{100})}}
$$

Finding
$$
T_p
$$
 and %OS From Transfer Function

• Given a transfer function
$$
G(s) = \frac{100}{s^2 + 15s + 100}
$$
, find T_p and %OS.

Solution:
$$
\omega_n = \sqrt{100} = 10
$$
 and $\zeta = \frac{\frac{a}{2}}{\omega_n} = 15/20 = 0.75$.

$$
\therefore T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} = 0.475 \text{ s}
$$

And finally, %OS = $e^{-\frac{\pi \zeta}{\sqrt{1 - \zeta^2}}} \times 100 = e^{-\frac{0.75\pi}{\sqrt{1 - 0.75^2}}} \times 100 = 2.838\%.$

How are T_p And T_s Related To Location of Poles

Lines of Constants T_p , T_s and %OS on s-Plane

- Note that horizontal lines on s-plane are lines of constant ω_d consequently they represent lines of constant Tp. Also vertical lines represent constant values of and are therefore lines of constant Ts.
- Finally, since $\zeta = cos\theta$, radial lines represent lines of constant damping ratio. But %Overshoot depends only on ζ .

$$
\sqrt{-\frac{\pi \zeta}{\sqrt{1-\zeta^2}}} \times 100
$$

Location Of Poles vs Response (1)

Location Of Poles vs Response (2)

Location Of Poles vs Response (3)

