Real Time Systems and Control Applications

Contents Z-plane Stability Root Locus in z-plane

Recall Z-Transform Formula **G(s)** Imaginary axis $(i\omega)$ s-plane locations of system Laplace Transform of sampled data poles $s = \sigma \pm i\omega$ - X ∞ Real axis (σ) $\mathcal{L}(f^*(t)) = \sum f(kT) e^{-kST}$ X $k=0$ Type equation here. **STABLE** UNSTABLE Define $z = e^{ST}$, now the z-Transform is defined as: **G(z)**∞ z-plane $Z{f(t)} = Z(f^*(t)) = \sum$ $f(kT) z^{-k}$ $k=0$

Mapping Stability Region from s-plane to z-plane

• From continuous control, we know that: the region of stability is the left half of s-plane. Given $G(s) \rightarrow G(z)$, determine the stability region on z-plane?

• By definition,
$$
z = e^{sT}
$$
. Let $s = \alpha + j\omega$, then
\n
$$
z = e^{sT} = e^{T(\alpha + j\omega)} = e^{\alpha T} e^{j\omega T}
$$
\n
$$
z = e^{\alpha T} (cos\omega T + j sin\omega T) = \boxed{e^{\alpha T} \angle \omega T}
$$

• A point or region on s-plane can be mapped into a corresponding point or region on z-plane.

Question: If T=0.5, which point on z-plane is mapped from the point (2,0) on s-plane? How about (0,1)?

We assume $s = \alpha + j\omega$

- Points on the j ω -axis, α have zero values, so $e^{\alpha T} = 1$. Thus points on the $j\omega$ -axis of s-plane map into points on the unit circle on z-plane.
- If α is positive, $e^{\alpha T} > 1$. Thus points on the positive real axis of s-plane map into points outside the unit circle on z-plane.
- If α is negative, $e^{\alpha T}$ < 1. Thus points on the negative real axisof splane map into points inside the unit circle on z-plane.

Mapping from s-plane to z-plane

Vertical lines on the s-plane map to circles with constant radius on the *z*-plane.

Mapping from s-plane to z-plane

Horizontal lines on the *s*-plane map to lines of constant angle on the z-plane.

Stability of Digital Control System

• Stable, if all poles of closed loop transfer function are inside the unit circle on z-plane.

- Unstable, if any of the poles is outside the unit circle.
- Marginally stable, if one or more poles are on the unit circle and all other poles are inside the unit circle.

Example

What T value makes the system stable?

•
$$
G(s) = \frac{1 - e^{-sT}}{s} \frac{10}{s+1} = 10 \times (1 - e^{-sT}) \left[\frac{1}{s} - \frac{1}{s+1} \right]
$$
 $G(z) = \frac{z-1}{z} Z \left[\frac{10}{s(s+1)} \right]$

• Taking z-transfer function:

$$
G(z) = 10 \times \left(1 - z^{-1}\right) \left[\frac{z}{z - 1} - \frac{z}{z - e^{-T}}\right] = 10 \frac{1 - e^{-T}}{z - e^{-T}}
$$

- Closed-loop TF in z-plane is $z) =$ $G(Z)$ $1 + G(z)$ = $10(1 - e^{-T})$ $z-(11e^{-T}-10)$
- The pole is

$$
z=(11e^{-T}-10)
$$

Value of poles when T changes

- $z = (11e^{-T} 10)$
- $T = 0 \rightarrow z = 1$
- $T = 0.1 \rightarrow z = -0.05$
- $T = 0.2 \rightarrow z = -1$
- $T = 0.3$ $\rightarrow z = -1.85$

The system is stable for $T \leq 0.2$

 \bullet …

Root Locus on Z-Plane

Determines the location of roots of the characteristic equation of a closed loop control system as the overall system gain (often denoted by *K*) varies.

Steps to plot closed-loop poles

1. Derive the open loop function $K\overline{G}H$.

2. Factor numerator and denominator to get open loop zeros and poles.

3.Plot roots of $1 + K\overline{GH} = 0$ in *z*-Plane as K varies.

Note that while construction rules for the *z*-plane are identical with those for the *s*-Plane.

Consider Sampled-data System

- The closed-loop transfer function is $\frac{K G(z)}{1+KZ[G(z)]}$ $1+KZ[G(S)H(S)]$ $\triangleq \frac{K \ G(Z)}{1 + K \ \overline{G}H}$ $1+KG$
- System characteristic equation is $1 + K\overline{GH} = 0$, and $K\overline{GH}$ is open loop TF

Rules To Plot Root Locus

$$
1 + K\overline{GH}(z) = 0 \qquad \overline{GH}(z) = \frac{N(z)}{D(z)}
$$

1. Loci originate on the poles of $K\overline{GH}$ and terminate on its zeros.

2. The loci are symmetrical with respect to the real axis.

3. The number of asymptotes is equal to the number of poles of KGH , n_{p} , minus the number of its zeros, n_z . The angles of the asymptotes are found by $\theta_a = \frac{(2k+1)\pi}{n_n - n_z}$ $n_p - n_Z$, $k = 0, 1, 2, ...$ $\left(n_p - n_{\scriptscriptstyle Z} - 1\right)$, where n_p is # of finite poles and n_z is # of finite zeros.

Rules to Plot Root Locus

4. The origin of the asymptotes on the real axis is given by:

$$
\sigma = \frac{\sum \text{poles of } \overline{GH}(z) - \sum \text{zeros of } \overline{GH}(z)}{n_p - n_z}
$$

5. The breakaway point for the locus between two poles (or the break-in point for the locus between two zeros) is found by

$$
\frac{d[\overline{GH}(z)]}{dz}=0
$$

Root Locus Example

• Consider the system, we have

$$
G(z) = \left(1 - z^{-1}\right)Z\left[\frac{K}{s^2(s+1)}\right]_{(T=1)} = K\frac{z-1}{z}\left[\frac{z^2e^{-1} + z - 2ze^{-1}}{(z-1)^2(z-e^{-1})}\right] = \frac{K(ze^{-1} + 1 - 2e^{-1})}{(z-1)(z-e^{-1})}
$$

• Hence, the open loop transfer function $G(z) = \frac{0.368K(z+0.718)}{(z-1)(z-0.368)}$ $(z-1)(z-0.368)$

Plot the Locus of Roots

(1) Start at $z=1$ and $z=0.368$, and terminate at $z=-0.718$ and $z=$ infinity

(2) Break-away or break-in points: $\frac{d}{dt}$ \boldsymbol{d} $G(z) = 0$ occurs at $z = 0.64$ and $z = -2.08$

$$
\frac{d}{dz}G(z) = \frac{0.368K}{(z-1)(z-0.368)} + \frac{(-1)0.368K(z+0.718)}{[(z-1)(z-0.368)]^2}(2z-1.368) = 0
$$

 \rightarrow $z^2 + 1.436z - 1.35 = 0$ \rightarrow $z = 0.64$ or $z = -2.08$

What is the corresponding K value for $z = 0.64$ or $z = -2.08$?

Open-loop TF: $G(z) = \frac{0.368K(z+0.718)}{(z-1)(z-0.368)}$

 $(z-1)(z-0.368)$

What gain value of K yields breakin and break-away points?

Open-loop Transfer Function

$$
G(z) = \frac{0.368K(z + 0.718)}{(z - 1)(z - 0.368)}
$$

• $z = 0.64$ or $z = -2.08$ are the poles of close loop system The characteristic equation is $1 + G(z) = 0$. Hence, $0.368K(z + 0.718) + (z - 1)(z - 0.368) = 0$

• Substitute $z = 0.64$ or $z = -2.08$, and we get

$$
K = 0.20
$$
 at $z = 0.64$

and $K = 15.0$ at $z = -2.08$

The K value achieving marginally stable makes the root locus $1 + G(z) = 0$ cross the unit circle.

• K value that makes the roots appear on the unit circle implies the gain value for stability.

• So K satisfies: 0.368K z + 0.718 + − 1 − 0.368 = 0 || = 1

 $K = 2.39$

If $z = \alpha + jw$ is on the unit circle, we must have $\alpha^2 + w^2 = 1$ (Not $\alpha^2 + (jw)^2 = 1$)

End!