correctness:

C(t) —Cs(t)| <€ fork()

e createa child process that is identical to its parents, return @ to child process and pid

drift is RoC of the clock value from perfect clock. Given clock has bounded drift p ~ addalorof overhead as duplicated. Data space is not shared

o0s RTOS
philos time-sharing event-driven
t
| T -1 | P requirements high-throughput schedulablity (meet all hard deadlines)
metrics fast avg-response ensureed worst-case response
overload lairness meel critical deadlines
Monotonicity: ¥ty > t; : C(ts) > C(t;) preemption && syscall
“The act of lemporarily interrupting a currendy scheduled task for higher priority tasks.
NOTL: make doesn't recompile if DAG is not changed.
soft real ime firm real time hard real time
process
h h h
usefuiness usefuiness usefulness
+ independent execution, logical unit of work scheduled by 08
= in virtual memary:
* Stack: store local variables and function arguments
> > > *« Heaps: dyn located (think of malloc, calloc)
eadi / time - f time deadine/ tim « BSS segment: uninit data
I ne + Data segment: init data (global & statie variables)
« rext: RO region containing program insrructions
threads
interrupt polling stack heap
» program-wide resources: global data & instruction creation Member m Menbersm = new Member()
» cxecution state of control stream speed fast slow lifetime funetion runs 1o completion delete, fiee is called
» shared address space for faster context switching efficiency good poor srow fived dym added by O3
e stack overflow heap fragmentation
. . cpu-waste low hieh when size of memory is knewn, data size s small - large scale dyn mem
- Needs synchronisation (global variables are shared between threads) P &
- lack robustness {one thread can crash the whole program) multitasking yes yes Relative deadline, D,
complexity high low Response tume
-
debug difficult easy _>Tm
Thread's Completion time
Space Release time, r, ompetion
[rr———— i Absolute deadline, d,
{ioow Dm}‘ 1 scheduling
e 4

1. Priority-based preemptive scheduling

HIGH Task Completion

TR

—
Task \ /

Priority Task2 Task2

[maska] [Taski }-p>

Low
24 Praf Wenba He@CAS. MeMaster =
Time
Arrival Execution output
| code | I data | | files l I code | I data | | files l Temporal parameters:
- - N Time
stack |re |sters| |re lstersl |r |sters| . . .
|_, 9 g g Let the following be the scheduling parameters:
I stack | I stack | | stack I)
Wait Time
desc var Execution Time
thread e #of tasks n o
release/arrival-time v Respanse Time
absolute deadline d; & Utilisation factor w,
relative deadline Di =rij—d;
o for a task 7} with execution time ¢; and period p; is given by
. . execution time €
single-threaded process multithreaded process
response time R;
€
. o . . . u o
Period p; of a periodic task T; is min length of all time intervales between release times T on

of consecutive tasks.

. L. . - - . For system with n tasks overall system utilisation is U = S7°, u;
Phase of a Task ¢; is the release time r,; of a task T3, or ¢; = ri ¥ N et
cyclic executive

in phase are first instances of several tasks that are released simultaneously L . .
assume tasks are non-preemptive, jobs parameters with hard deadlines known.

© Representation
* no race condition, no deadlock, just function call

a periodic task 7} can be represented by: = however, very brittle, number of frame #' can be large, release times of tasks must be
fixed
* 4-tuple {¢:, P, e;, D;) &) maximum num of arriving jobs
« 3-tuple {£;, ¢;, 1), or (0, Py, ez, hyperperiod v g
« 2-tuple {P;. e;), or {0, P, e, P) N= —
i1 Pi

is the least common multiple (lem]

H

Frames: each task must fit within a single frame with size f => number of frames F = S

C1: A job must fit in a frame, or f > max e;%¥ 1 < i < n for all tasks

C2: hyperperiod has an integer number of frames, or & = integer

deadline-monotonic
C3: 2f — ged(P;, f) = D; per task.
= arbitrary deadlines then DM performs better than RM

= RM always fails if DM fails
Flow Graph for hyper-period
* Denote all jobs in hyperperiod of F frames as .J; - -- Jp

= Vertices:

* k job vertices Jy, Jo, - -+, Jj

= if every task has period equal to relative deadline, same as RM

Frames
S]1]k Jobs

Source Q

ame X

Priority Inversion

v Priority liheritance Protocal (PLE)

critical sections to avoid race condition

idea: increase the prigrites only upon resource contention

* I frame vertices x,y, -,z

avoid NPCS drawhack

= Edges:
* (source, J;) with capacity C; = ¢;
* Encode jobs' compute requirements
* (J;,x) with capacity f iff J; can be scheduled in frame 2
* encode periods and deadlines
= edge connected job node and frame node if the following are met:
1. job arrives before or at the starting time of the frame
2. job's absolute deadline larger or equal to ending time of frame
* (f,sink) with capacity f

* encodes limited computational capacity in each frame
rate-monotonic
* running on uniprocessor, tasks are preemptive, no OS overhead for preemption
task T has higher priority than task T} if p, < p;

¥ schedulability test for RM (Test 1)

Given n periodic processes, independent and preemptable, D; = p; for all processes,
periods of all tasks are integer multiples of each other

a1 sufficient condition for tasks to be scheduled on uniprocessor: U7 = Y77, o Sl

Y schedulability test for RM (Test 2)
 sufficient but not necessary condition is 7 = n - (2% — 1) for n periodic tasks

or 1 —+ o, we have [T <

idea: find ksuch that time & = & » py = ks e: feaand k< gy 5y for task 2

& general solution for RM-schedulability

‘The time demand function for sk §1 =

holds a time instant # chosen asf ko, (G 1, aland &; 1,00, |;"—

earliest-deadline first (EDE)

depends on closeness of absolute deadiines

¢) EDF schedulability test 1
set of # periodic tasks, cach whose reladve deadline is equal to or greater chan its

period
itF 300

& EDF schedulability test 2

relative deadlines are not equal to or greater than their periods

Higher priority task can be blocked by a lower priority cask duc to resource contention

shovis how resource contention can delay completion of higher prioricy casks

would still run into deadlock (think of RR task resource access)

» access shared resources guarded by Mutex or scmaphores

= acvess non preempiive subsysiems (slorage, networks)

Resource Access Control

mutex
scrially reusable: a resource cannot be interrupted

1t s 0o use &; units of resources R, it executes a lock LiR;; k), and unlocks

once it finished

Non-preemptive Critical Section Prutove] (NPCS)
idea: schedule all crideal sections non-precmptively

While a task holds a resource it executes at a priority higher than the priorities of all
tasks

a higher priority task is blocked only when some lower priority job is in critical
section

pros:
*» zk about resource requirements of tasks

cons:
* task van be blocked by o lower priority task (or o lung time even without resource

vonflict
Priority Ceiling Protocol (PCP)

idea: extends PIP to prevent deadlocks
* assigned priorities are fixed

* resource requirements of all the tasks that will request a resource R is known

ceiling(R) : highest priority. Each resource has fixed priority ceiling

« Priority ceiling of a resource is fixed since we assume that we know all the
resource requests. However, priority ceiling of the system is dynamically
changed.

« When the priority of a task is updated?

* When a task (T1) is blocked by another (T2) , we know that T2 is in its critical section
which holds or will request a certain resource required by T1 (note that the
contention occurs now or will occur in the future), so T2's priority is updated to the
priority of T1.

« Only when a task has higher priority than the system’s priority ceiling, the
task will acquire a certain resource if it is available.

PC P Assume € has a high priority (H), A has a low priority (L), and B has a medium priority (M).

C requests S1
Try lock S
pr,y) > ceficsh? B requests 52 and 53
Yep > lock|S,) A requests 53 and 52
c ABERTS]
Trylogk S,
prid(B| > ceil{s 7|
No| >
rickily sy (S)
midate bepx Ceiling|S1) = H (high|
bk afe lock Criling[57) = M {medium)
I 3 S Ceiling|53) - M {medium)
A
uniock unfock
(53 (9

Noa chained blocking!

* Atask can acquire a resource only if
* the resource is free, AND
* it has a higher priority than the priority ceiling of the system, or when the
requesting task is holding the resource(s) whose priority ceiling is equal to the
priority ceiling of the system.

* Atask can be blocked by at most one critical section.

* Higher run-time overhead than Priority Inheritance Protocol

