Real Time Systems and Control Applications

. Contents
Priority in OS

Fall, 2024 Prof. Wenbo He@CAS, McMaster 1

Linux Priority Levels and Nice Values

 Linux has static priority ranged from 0 to 139, where 0 to 99 are reserved
for real time tasks, and 100 to 139 for users.

Higher Priority
o 20 Nice +19
| Realtime | Normal |
0 99 100 139

RRRRRRRRRRRRRRRRRRRRRRRRRRR

1 | 1 1 1
-20 -10 0 10 19
DEFAU

e The priority is represented as a nice value (niceness) from [-20, 19]
mapping to priority level 100 to 139.

* The lower the NICE (or priority) value, the higher priority a process gets.
By default the priority Nice value is zero.

Changing Process Priority

* nice --- change process priority on Linux

e Example:
nice —10 <aProcess>: set the process with a priority which has nice value 10
nice —n —10 <aProcess>: increase the nice value of a process by 10
(note that —is a hyphen, not negative sign)

Wait, does Linux allow you to change a process priority?

It is fine to set a process with a lower priority, but you will need a superuser’s
privilege to set a higher priority of a process.

Fall, 2024 Prof. Wenbo He@CAS, McMaster

Get and Set Process Priority in C

Code Example

#include <sys/resource.h> ﬂindude <sys/resource.ho \
int getpriority(int which, id_t who); int which = PRIO_PROCESS;
id_t pid:;
int setpriority(int which, id_t who, int value); int ret
T — ’ : pid = getpid();

Int priority = -20;

The value which is one of ret = getpriority(which, pid);
PR10O_PROCESS, PRIO_PGRP, or PRIO_USER ret = Setpriority(which, p|d’ pr|0r|ty)1

\. /

Fall, 2024 Prof. Wenbo He@CAS, McMaster 4

http://pubs.opengroup.org/onlinepubs/7908799/xsh/getpriority.html
https://linux.die.net/include/sys/resource.h

Alternatively call nice() in your program

“int nice(int inc);” increases the process priority by inc.

Example:
nice(10);
This sets the priority of the process as current priority+10

unprivileged user can only lower the process priority.

Fall, 2024 Prof. Wenbo He@CAS, McMaster

#include <stdio.h>

#include <string.h>

Code Example 1: #include <sys/types.h>
fork() without explicitly
assigning priority void main(void){

pid_t pid;

int =0, num =10;

pid = fork();
if (pid == 0){
pid = getpid();
Child Process for (i = 1; i <= num; i++)
printf("This line is in Child Process from pid %d, iteration = %d\n", pid, i);
}
else{

pid = getpid();
Parent Process - for (i=1;i<=num;i++) {
printf("This line is in Parent Process from pid %d, iteration = %d\n", pid, i);

218 0

218 0

218 0

218 0

218 o0

218 o0

218 o0

218 o0

218 o0

e s

e s

e s

e s

e s

e s

E10

e s

E10

Output o

m
b I
it

m
b |
it

m
b |
it

m
b |
it

m
b |
it

m
b |
it

m
b |
it

m
b |
it

m
b |
it

K= I O Oy A I e Oy Y O R

i
ot

Lo

de

tn

tn

tn

tn

tn

tn

tn

tn

N

[T T e & O e TN T i Y e T O i L i |

tn

n b L Lo L LI B B B LI L6

]]]]]]]]]]

N o L [=

o

-]

L s O = |

[IS S i TR O B T

uaf}

|

LN o O s |

Though parent and child
processes are running in
parallel, parent process
usually finished earlier
because there is a large
overhead copying
everything in parent
process to create the child
process, so it is likely that
the system schedules
parent process earlier than
child process.

Set Scheduling Policy on Linux

e Function to set process priority is declared in <sched.h>
int sched setscheduler(pid_t pid, int policy, const struct sched param *param);

where pid is of type pid_t is declared in <sys/types.h>

e Linux supports the following "normal" (i.e., non-real-time) scheduling policies
(represented by policy):

e SCHED_OTHER: the standard round-robin time-sharing policy;
e SCHED_BATCH: for "batch" style execution of processes;
e SCHED_IDLE: for running very low priority background jobs;

e Linux supports the following “real-time" scheduling policies:
e SCHED FIFO: a First-In-First-Out policy;
e SCHED_RR: a round-robin policy.
e SCHED_DEADLINE: for earliest deadline first policy.

sched setscheduler()

#include <sched.h>

struct sched_param param;
param.sched_priority = 10;

if(sched_setscheduler(pid, SCHED_FIFO, ¶m) ==-1) {
perror("sched setscheduler failed in Parent Process.\n");

}

Need to be a privileged user to make a function call, sched_setscheduler()!!!

Code Example 2:
fork() with priority

Fall, 2024

Hinc
Hinc
Hinc
#Hinc

void

{

ude <stdio.h>
ude <string.h>
ude <sys/types.h>
ude <sched.h>

main(void)

pid_t pid;
int 1=0, num =10, ni;

struct sched_param param;

pid = fork();

Prof. Wenbo He@CAS, McMaster

10

if (pid == 0){
pid = getpid();
for (i=1; i <= num; i++)
printf("This line is in Child Process from pid %d, iteration = %d\n", pid, i);
}

else{
pid = getpid();

param.sched_priority = 18;
if(sched_setscheduler(pid, SCHED RR, ¶m) ==-1)
perror("sched_setscheduler failed in Parent Process.\n");

ni=nice(18);
printf("nice() function returns %d in Parent Process.\n", ni);

for (i=1; i <= num; i++)
printf("This line is in Parent Process from pid %d, iteration = %d\n", pid, i);

}

Fall, 202}1 Prof. Wenbo He@CAS, McMaster

11

Effect of changing process priority

When nice() lowers the priority
of parent process, child process
get finished earlier.

[BT =

=1 ¢

[N

0 mmmmmmm
iy

]
-

TF
—
—
_—
e
TF
—
TF
S

[Y = L T % T =}

Y,

L5 e |

[I s I N (% (Y U 1 N 1 N [N % [1 (]

R R e I R R R
= =T = B = B = B = N = B - I -
(4]

o I e I I I = = I |
I T I IO O =

Creating a Thread With a Specified Priority

e Structure sched paramis declared in #include <sched.h>. One of the fields is
sched_priority which is used to set the process priority.

struct sched param param;
param.sched priority=20;

* Functions to set priority:
pthread attr getschedparam (&tattr, ¶m);

param.sched priority = 10;
pthread attr_ setschedparam (&tattr, ¶m);

or
pthread create(&thread, &tattr, worker function, arg);

Data Fields of pthread attr t

int flags
int stacksize
int contentionscope
int inheritsched
int detachstate
int sched
struct sched_param param One of the fields is “sched_priority”

struct timespec starttime deadline period

Implementing Periodic Tasks

Sleep Functions

* You can use these functions sleep(), nanosleep(), clock nanosleep()
to generate periodic tasks.

#include <unistd.h>
unsigned int sleep(unsigned int seconds);

#include <time.h>
Int nanosleep(const struct timespec *req, struct timespec *rem),

#include <time.h>

Int clock_nanosleep(clockid t clockid, int flags, const struct
timespec *request, struct timespec *remain);

Fall, 2024 Prof. Wenbo He@CAS, McMaster

16

sleep() v.s. nanosleep() & clock_nanosleep()

* They suspends the execution of the calling process/thread.

*sleep() has low resolution, nanosleep(), clock nanosleep()
has high resolutions since they use timespec to represent
time

struct timespec {
time ttv _sec; /* seconds */
long tv_nsec; /* nanoseconds [0 .. 999999999] */

Fall, 2024 Prof. Wenbo He@CAS, McMaster 17

nanosleep() v.s. clock _nanosleep()

clock_nanosleep() is more flexible.
Int clock_nanosleep (clockid t clock id, int flags,
const struct timespec *request, struct timespec * remain);

Example:
clock nanosleep(CLOCK_MONOTONIC, TIMER _ABSTIME, &t, NULL);

It suspends the execution of calling thread or process until the time value of the
clock specified by clock_id reaches the absolute time specified by the time
argument, or the process is terminated.

Fall, 2024 Prof. Wenbo He@CAS, McMaster 18

Argument of clock _nanosleep()

Clockid type takes one of the following values: CLOCK_REALTIME,
CLOCK_MONOTONIC, and CLOCK_ PROCESS CPUTIME_ID.

If flags is O or TIMER_ABSTIME, then the value specified in request is
Interpreted as an interval or an absolute time as measured by the clock, clock id.

struct timespec {
time_ttv_sec; /* seconds */
long tv_nsec; /* nanoseconds [0 .. 999999999] */

¥

remain: if not NULL, it is remaining time to sleep when it has been interrupted
by a signal before it reaches the specified sleep time.

Fall, 2024 Prof. Wenbo He@CAS, McMaster 19

Implementing A Periodic Task

#include <stdio.h>
#include <time.h>
void periodicTask(void);

int main() {
struct timespec mytimespec;
mytimespec.tv_sec = 0;
mytimespec.tv_nsec = 500000000; /* 500 ms */

while(1) {
periodicTask();
nanosleep(&mytimespec,NULL);

}

return O;

}

void periodicTask(void) {
printf("This would be printed periodically\n");

}

Fall, 2024 Prof. Wenbo He@CAS, McMaster

20

End

Fall, 2024

Prof. Wenbo He@CAS, McMaster

21

	Real Time Systems and Control Applications
	Linux Priority Levels and Nice Values
	Changing Process Priority
	Get and Set Process Priority in C
	Alternatively call nice() in your program
	Slide Number 6
	Output of the Code
	Set Scheduling Policy on Linux
	sched_setscheduler()
	Slide Number 10
	Slide Number 11
	Effect of changing process priority
	Creating a Thread With a Specified Priority
	Data Fields of pthread_attr_t
	Implementing Periodic Tasks
	Sleep Functions
	sleep() v.s. nanosleep() & clock_nanosleep()
	nanosleep() v.s. clock_nanosleep()
	Argument of clock_nanosleep()
	Implementing A Periodic Task
	End
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26

