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A Brief Review

• Given:
• A set of real-time tasks
• A scheduling algorithm

• Is the task set schedulable?
• Yes → all deadlines met, forever
• No → at some point a deadline might be missed

• Ways to schedule
• Without priority (e.g. cyclic executive)
• Static priorities
• Dynamic priorities

• Priorities is computed at runtime
• More flexible, but less predictable
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Static Priority Assignment
• A higher priority task is executed first than a lower priority task.

• Priority based on Criticality?
• If we consider hard real time applications, they are of the same level of importance.

• Shorter period tasks get higher priority 
 Rate monotonic (RM)

• Tasks with shorter relative deadlines get higher priority 
 Deadline monotonic (DM)

• Both RM and DM…
• Have good theoretical properties
• Work well in practice
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RM Assumptions

• Tasks are running on uniprocessor system

• Tasks are preemptive

• There is no OS overhead
for preemption.
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Rate Monotonic (RM) Scheduling Algorithm

• RM is a static-priority approach, and one of the most popular algorithms.

• At any time instant, an RM scheduler executes the instance of the ready 
task that has the highest priority.

• The priority of a task is inversely related to its period (i.e. if task Ti has a 
period pi, and another task Tj has a period pj, then Ti has a higher priority 
than Tj, if pi < pj.

If two or more tasks have the same period, the scheduler selects one of these jobs at 
random.
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Example

• You are given a set of periodic tasks: 
T1: 0, 5, 10, 15, 20, …
T2: 1, 5, 9, 13, 17,…
T3: 2, 22, 42, 62, …

• Here, we use a 4-tuple expression to represent the tasks:
T1(0; 5; 2; 5), T2(1; 4; 1; 4), T3(2; 20; 2; 20)
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Question: Can RM make the tasks meet their deadlines?
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Difference between CE and RM
• T1: (2,1) and T2:(3,1) 
Think what happens if an instance (say the second instance) of T1 is delayed 
for 1 time unit? 

• With CE (f=1):
T1 T2 T1 T2 T1 I (no late arrival)
T1 T2 ? T2 T1 I  (deadline missed when the 2nd instance of T1 is late!)

• With RM:
T1 T2 T1 T2 T1 I  (no late arrival)
T1 T2 I  T1 T1 T2 (all deadlines met when the 2nd instance of T1 is late!)
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Schedulability Test

• Determining if a specific set of tasks satisfying certain criteria 
can be successfully scheduled (completing execution of every 
task by its specified deadline) using a specific scheduler.

• This test is often done at compile time, before the computer 
system and its tasks start execution.
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Optimal Scheduler

• Optimal scheduler is one which may fail to meet the deadline of a 
task, only if no other scheduler can meet it. 

• Note that “Optimal” in real-time scheduling does not necessarily 
mean “fastest average response time” or “shortest average waiting 
time”.
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Schedulability Test for RM (Test 1)

• There are n periodic processes, independent and preemptable.
• 𝐷𝐷i ≥ 𝑝𝑝𝑝 for all processes
• Periods of all the tasks are integer multiples of each other
• A necessary and sufficient condition for such tasks to be scheduled 

on a uniprocessor using RM algorithm:

U = ∑𝑖𝑖=1𝑛𝑛 𝑒𝑒𝑖𝑖
𝑝𝑝𝑖𝑖
≤ 1
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An Example

• Consider a task set with 3 tasks: T1:(4; 1); T2:(2; 1); T3:(8; 2). 
Is this task set schedulable?

• Note that p1 = 2*p2,  p3 = 4*p2 = 2*p1
• The task set belongs to the special class of tasks for which 

the above schedulability test applies
• Now U = 1/4+1/2+2/8 = 1 
• Therefore this task set is RM schedulable
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Schedulability Test for RM (Test 2)

If the tasks have arbitrary periods, a sufficient but not 
necessary schedulability condition is:

𝑈𝑈 ≤ 𝑛𝑛 2 �1 𝑛𝑛 − 1
where n is the number of periodic tasks.

Task sets with a utilization smaller than 𝑛𝑛 2 ⁄1 𝑛𝑛 − 1 are 
schedulable by RM algorithm.
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For Different n Values

• Consider the case where there is 
only one task in the system, i.e. n=1, 
𝑈𝑈 ≤ 1

• Similarly, for n=2, we get 𝑈𝑈 ≤ 0.824

• For n=∞, we get 𝑈𝑈 ≤ 0.693.
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Proof of case n → ∞

• lim
𝑛𝑛→∞

𝑛𝑛 2 ⁄1 𝑛𝑛 − 1 = ∞ � 0

• Apply L’Hospital’s Rule: lim
𝑛𝑛→∞

𝑛𝑛 2 ⁄1 𝑛𝑛 − 1 = lim
𝑛𝑛→∞

𝑑𝑑
𝑑𝑑𝑛𝑛 2 �1 𝑛𝑛−1

𝑑𝑑
𝑑𝑑𝑛𝑛( ⁄1 𝑛𝑛)

= lim
𝑛𝑛→∞

2 �1 𝑛𝑛 ln 2 ( �1 𝑛𝑛)′

( �1 𝑛𝑛)′
= lim

𝑛𝑛→∞
2 �1 𝑛𝑛 ln 2 = ln 2
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Consider the sufficient condition in Test 2

• If CPU utilization of a system for real-time tasks is less than 69.3% 
(i.e., U<=69.3%), we know that these periodic tasks are schedulable 
using RM.

• A set of real-time tasks T1:(4; 1); T2:(2; 1); T3:(8; 2) incurs CPU 
utilization 100% (> 𝑛𝑛 2 ⁄1 𝑛𝑛 − 1 ). Is it still schedulable using RM?

• If a set of tasks are not schedulable, the CPU utilization must be larger 
than 69.3%. (true or false?)
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Schedulability Test for RM (Test 3)

• A sufficient and necessary condition for scheduability by RM 
algorithm can be derived as follows:

• Consider a set of tasks (T1; T2; … Ti) with (p1 < p2 < p3 < … < pi). 
Assume all tasks are in phase. The moment T1 is released, the 
processor will interrupt anything else it is doing and start processing 
this task as it has the highest priority (lowest period). Therefore the 
only condition that must be satisfied to ensure that T1 can be feasibly 
scheduled is that:

e1 ≤ p1
• This is clearly a necessary and sufficient condition.
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• The task T2 will be executed successfully if its first instance can find 
enough time over the time interval (0, p2) that is not used by T1. (p2 
is the period of T2 and the first instance of T2 must complete before 
the second instance arrives)

• Suppose T2 finishes at t. The total number of instances of task T1 
released over the time interval [0; t) is 𝑡𝑡

𝑝𝑝1
• If T2 is to finish at t, then every instance of task T1, released during 

time interval (0; t), must be completed and in addition there must be 
e2 time available for execution of T2, i. e. the following condition 
must be satisfied:

𝑡𝑡 =
𝑡𝑡
𝑝𝑝1

𝑒𝑒1 + 𝑒𝑒2
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How To Find Such t for T2?

• Note that every interval has infinite number of points, so we cannot 
exhaustively check for every possible t.

• Consider 𝑡𝑡
𝑝𝑝1

, it only changes at multiples of p1, with jumps of e1. So 
if we can find an integer k, such that the time t = k*p1≥ k*e1 +e2 and 
k*p1≤p2, we have the necessary and sufficient condition for T2 to be 
schedulable under the RM algorithm.
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Next, consider Task T3
• It is sufficient to show that the first instance of T3 completes before the 

arrival of its next instance at p3. If T3 completes its execution at t, then by 
an argument similar to that for T2, We must have:

𝑡𝑡 =
𝑡𝑡
𝑝𝑝1

𝑒𝑒1 +
𝑡𝑡
𝑝𝑝2

𝑒𝑒2 + 𝑒𝑒3

• T3 is schedulable iff there is some t ∈(0; p3) such that the above 
condition is satisfied. Again the right side of above equation changes in 
multiples of p1 and p2. It is therefore sufficient to check that

𝑡𝑡 =
𝑡𝑡
𝑝𝑝1

𝑒𝑒1 +
𝑡𝑡
𝑝𝑝2

𝑒𝑒2 + 𝑒𝑒3

is satisfied for some t that is a multiple of p1 and/or p2, such that t ≤ p3.
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General Statement of Test 3
Test 3 for schedulability under RM algorithm can now be stated as: The time 
demand function for task 𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛):

𝜔𝜔𝑖𝑖(𝑡𝑡) = �
𝑘𝑘=1

𝑖𝑖
𝑡𝑡
𝑝𝑝𝑘𝑘

𝑒𝑒𝑘𝑘 ≤ 𝑡𝑡

0 ≤ 𝑡𝑡 ≤ 𝑝𝑝𝑖𝑖
holds for a time instant t chosen as follows:

𝑡𝑡 = 𝑘𝑘𝑗𝑗𝑝𝑝𝑗𝑗 , (𝑗𝑗 = 1, … . 𝑖𝑖 )
and

𝑘𝑘𝑗𝑗 = 1, … ,
𝑝𝑝𝑖𝑖
𝑝𝑝𝑗𝑗

iff the task Ti is RM-schedulable.
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An Example: T1(3, 1), T2(5,1), T3(10, 2)
• For the first i tasks:
• When i=1, k1=1, t=p1=3, so w_1(t) = e1=1< p1=3
• When i=2, k1=1 and k2=1, t=3 and t=5, we have 

w_2(3)=e1+e2=2<3
w_2(5)=2e1+e2=3<5

• When i=3, k1=1,2,3; k2=1,2; k3=1. So t=3,6,9,5,10  and 
w_3(3) = e1+e2+e3=4>t=3
w_3(5) = 2e1+e2+e3=5=t
w_3(6) = 2e1+2e2+e3=6=t
w_3(9) = 3e1+2e2+e3=7<t
w_3(10)=4e1+2e2+e3=8<10
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So it is RM schedulable



End
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