x(t)		X(s)	$\mathbf{X}(\mathbf{z})$	& derivatives	and integral		thus	the time domain	output is $y(t)$ =	$=1-e^{-at}$	
$\delta(t) = egin{cases} 1 & t = 0, \ 0 & t = kT, \end{cases}$	k eq 0	1	1	if $\mathcal{L}[f(t)] = F(t)$	(s) then we hav	е		time constant	· (i) · a an l ·		La de deserva
$\delta(t - kT) = \begin{cases} 1 & t = 0 \\ 0 & t \neq 0 \end{cases}$	$=kT,\ eq kT$	e^{-kTs}	z^{-k}			$[t)] = sF(s) - dt$ $[t] = \frac{F(s)}{s}$	f(0)			oscillation of th	
u(t), unit step		1/s	$\frac{z}{z-1}$		70		w _n	- V D III III	equency of		
t		$\frac{1}{s^2}$		For higher deriva	tives we have L	$ f''(t) = s^2 F$	(s) - sf(0)	- f'(0)			
t^2		$\frac{2}{s^3}$	$T^2z(z+1)$	inverse form				settling time			
e^{-at}		_1_	$\frac{z}{z-e^{-aT}}$	L-	${}^{1}{F(s)} = \frac{1}{2\pi i}$	$\lim_{n \to \infty} \int_{-\infty}^{\sigma + j\omega} F$	$(s)e^{st} ds$			nd stay with 2% of i	its final value
$1-e^{-at}$		s+a a	$(1 - e^{-aT})z$	poles and zeros	ΔNJ	$w \rightarrow \infty J_{\sigma - j\omega}$		for first order: T o(t)	s = 1 n		
		1	$\frac{(z-1)(z-e^{-aT})}{T_{\pi e}^{-aT}}$	zeros and poles gener	rate the amplitude	for hoth forced ar	ıd natural resq	1.0	Initial slope =	$\frac{1}{\text{time constant}} = a$	
te^{-at}		$\frac{1}{(s+a)^2}$	$\frac{Tze^{-aT}}{(z-e^{-aT})^2}$		Y(s) =	s+2		0.9			
t^2e^{-at}		$\frac{2}{(s+a)^3}$	$\frac{T^2 e^{-aT} z(z + e^{-aT})}{(z - e^{-aT})^3}$					0.7	63% of final at t = one time of		
$be^{-bt} - ae^{-at}$		$\frac{(b-a)s}{(s+a)(s+b)}$	$\frac{z\big[z(b-a)-(be^{-aT}-ae^{-bT})\big]}{(z-e^{-aT})(z-e^{-bT})}$	s = 0, -5 are poles	and $s = -2$ are z	zeros		0.5 0.4 0.3 0.2			
$\sin \omega t$		$\frac{\omega}{s^2+\omega^2}$	$\frac{z\sin\omega T}{z^2 - 2z\cos\omega T + 1}$	Ø poles				0.1			<u> </u>
$\cos \omega t$		$\frac{s}{s^2+\omega^2}$	$\frac{z(z-\cos\omega T)}{z^2-2z\cos\omega T+1}$	0 0	enerated <mark>step fun</mark> ite transient respo			0 1	$T_r \longrightarrow$	$\frac{3}{a}$ $\frac{4}{a}$	$\frac{5}{a}$
$e^{-at}\sin\omega t$		$\frac{\omega}{(s+a)^2+\omega^2}$	$\frac{(ze^{-aT}\sin\omega T)}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$			1		-			
peak time T_p	'	damping ratio	is defined as:		Condition	Poles	pole type	Damping Ratio (ζ)	Natural R	esponse $c(t)$	
time required to reach the first or m	naximum ped	ak	exponential decay frequency		Undamped Underdamped	$\pm j\omega_n$ $\omega_d \pm j\omega_d$	imaginary complex	$\zeta = 0$ $0 < \zeta < 1$	$A\cos(\omega_n t)$ $Ae^{(-\sigma_d)t}\cos(\omega_n t)$		
	π	ζ	$= \frac{\text{exponential decay frequency}}{\text{natural frequency}} =$	$\frac{1}{w_n}$	Onderdamped				where w_d	$= w_n \sqrt{1 - \zeta^2}$	
$T_p =$	$\omega_n \sqrt{1-\zeta}$	$\frac{\zeta^2}{\zeta^2}$ So that $a=2\zeta w_n$	%OS (percent overshoot)		critically damped	σ_1	real	$\zeta = 1$	$Kte^{\sigma_1 t}$		
second-order systems		250		$\sqrt{1-\zeta^2} \times 100\%$	overdamped	σ_1 σ_2	real	$\zeta > 1$	$K(e^{\sigma_1 t} + e^{\sigma_2 t})$	σ_{2}^{t})	
general order system:			or in terms of damping ratio ζ:	unc	lerdamped sec	cond-order s	tep respons	Transfer fund	ction of Zero-	Order hold	
				Tra	ınsfer functio	n $C(s)$ is giv	en by		C((x)	$-u(t-T) = \frac{1}{2}$	e^{sT}
G($(s) = \frac{1}{s^2 + 1}$	$\frac{b}{as+b}$	$\zeta = \frac{-\ln}{\sqrt{\pi^2 + 1}}$	$\ln \frac{N_{00}}{100}$ $\ln^{2}(\frac{S_{i}OS}{100})$					L(u(t)	$(-u(t-1)) = \frac{1}{s}$	s
			an ²			C(s) =	$=\frac{a}{s(s^2+2c^2)}$	$\frac{v_n^2}{w_n s + w_n^2}$			
Thus the pole for this system	1:		$G(s)=rac{w_n^2}{s^2+2\zeta w_n s+w_n^2}$	-							
s_1, s_2	$a_{2} = \frac{-a + 1}{a}$	$\sqrt{a^2-4b}$	$s_1, s_2 = -\zeta w_n \pm w_n \sqrt{\zeta^2 - \zeta^2}$	res _l	oonse in time	-domain via	inverse La	place transfor	m:		
general second order		2	$T_p = rac{\pi}{\omega_n \sqrt{1-\zeta^2}}$		c(t) :	= 11	$= e^{-\zeta w_n t}$	$\cos(\sqrt{1-\zeta^2}u$	$\omega_n t + arphi)$		
	2					$\sqrt{1}$ –	$-\zeta^2$			response	
$G(s) = \frac{1}{s^2}$	$+2\zeta w_n s + u$	ν_n^2	$T_s\congrac{4}{\zeta\omega_n}$	wh	ere $\varphi= an^-$	1(<u>\(\zeta\)</u>)			f poles	*	
$s_1, s_2 = -\zeta u$	$w_n \pm w_n \sqrt{\zeta^2}$	$^{2}-1$	T is the sampling period			V1-C			ame nvelope	*3 *2 jw *1 * rlo	
finding the discrete transfer fo	unction		2 is the sampling period	, and 4 15 1110 5mi	sampled d					x 1 s-pla	ine a
$G(s) = rac{s^2 + 4s + 3}{s^3 + 6s^2 + 8s}$				$error = \frac{M}{2^{n+}}$	reference in	nput r is the sequ	ence of sample	values $r(kT)$		Y I Pole motion	1
2		0.075				is a switch that c	loses every T s	econds:		* 1 models	
$G(s) = \frac{s^2 + 4s + 3}{s^3 + 6s^2 + 8s} = \frac{0.3}{s^3}$			where n is number of bi	its used for digitali	satic	$r^{i}(t) = \sum_{i=1}^{\infty}$	$r(kT)\delta(t-k)$		ame	, jo	
$G(t) = \mathcal{L}^{-1}(G(s)) = 0.375 + G(z) = Z(G(t)) = 0.375 - \frac{z}{z - z}$	$+0.25e^{-2c}$ + -0.25 -	$+0.375e^{-4i}$ $\frac{z}{-2}$ $+0.375$	z /resolution of A/D	converter		k-	.0	., () II	equency	* × × * *	-plane
$z=e^{zT}$, we have the following defin		- P-41	$z = e^{-4t}$ minimum value of the number, or $\frac{M}{2n}$	e output that can	be re-Transfer fu	nction of sample	d data:			+ X X	ole tion
∅ z-transform		stability	number, or 2n			$R^*(s) =$	$C(r^*(t)) = \sum_{k=0}^{\infty}$	$r(kT)e^{-ksT}$ c.	ame	2 1	
$Z\{r(t)\} = F(z) = Z(r^*(t))$	$t)) = \sum_{n=0}^{\infty} r(kT)$	z^{-k} system	pole location criteria on z-plane					0	vershoot	3 ja	
ల్లి mapping from s-plane to z-p	20-0	Stable Unstable	All poles inside unit circle Any poles outside unit circle				$(n) + bf_2(n)$ t	hen $X(z)=aF_1(.$	$z) + bF_2(z)$	** 1 3-pli	→ σ
$z = e^{aT}(\cos a)$	$\omega T + j \sin \omega T$		One or more poles on unit circle, rer circle	naining poles inside u	Time sh	ifting:				Pole motion	n
			final value theorem				Z[x(t)] = Z	ž.	k−1	3	
we assume $s=lpha-j\omega$			definition			Z[x(n +	$k)]=z^k$	$X(z)-z^k$	$\sum x(i)z^{-}$	-i	
Location on s-plane Value of α Value of		lapping on z-plane	If $\lim_{k\to\infty} x(k)$ exists, then the follow	exists:				i	i=0		
Right half-plane $\alpha > 0$ $\epsilon^{\alpha t}$	>1 O	n unit circle rutside unit circle	$\lim_{k\to\infty}x(k)=\lim_{z\to 1}(z)$	(z-1)X(z)		Z[x(n-k)]	$)] = z^{-k}.$	$X(z) + z^{-k}$	$\sum_{k=1}^{\kappa-1} \chi(-i)$	z^i	
Left half-plane $\alpha < 0$ $e^{\alpha T}$	[< 1 In	iside unit circle				Err Xive - 28,			$\underset{i=0}{\overset{\checkmark}{=}}$		

PID	control	

$$G_C(s) = K_p + rac{K_I}{s} + K_D s$$

in time domain:

$$u(t) = K_P e(t) + K_I \int_0^t e(\eta) d\eta + K_D \frac{d(e(t))}{dt}$$

$$u(t) = K_P e(t) + K_I \int_0^t e(\eta) d\eta + K_D \frac{d(e(t))}{dt}^{ ext{ PI}}$$

$$u(t) = K_P e(t) + K_I \int_0^t e(\eta) d\eta + K_D rac{d(e(t))}{dt}$$

Component Discrete-Time Equation

Proportional
$$u(k) = K_P e(k)$$

Integral $u(k) = K_I T \sum_{i=1}^k e(i)$

Derivative $u(k) = \frac{K_D}{D} [e(k) - e(k-1)]$

$$u(k) = K_P e(k) + K_I T \sum_{i=1}^n e(i) + \frac{K_D}{T} [e(k) - e(k-1)]$$

Assume the transfer function is given by

$$D(s) = \frac{U(s)}{E(s)} = K_0 \frac{s+a}{s+b}$$

difference equation

$$u(k) = (1 - bT)u(k - 1) + K_0(aT - 1)E(k - 1) + K_0e(k)$$

The corresponding z-transform

$$\begin{split} \frac{U(z)}{E(z)} &= \frac{K_0(aT-1)z^{-1} + K_0}{1 + (bT-1)z^{-1}} = \frac{K_0z + K_0(aT-1)}{z + (bT-1)} \\ &= [K_0(aT-1) + zK_0]/[z + (bT-1)] \end{split}$$

z-transform of difference equation

example: Given
$$D(s) = \frac{a}{s+a}$$
, $u(kT) = u(k)$

$$U(s)(s+a)=aE(s)$$
 (Laplace transform) gives $\frac{u(k+1)-u(k)}{T}+au(k)=ae(k)$

difference equation is u(k+1) = (1 - aT)u(k) + aTe(k)

z-transform is
$$\frac{U(z)}{E(z)}=\frac{aTz^{-1}}{1+(aT-1)z^{-1}}=\frac{aT}{z+(aT-1)}$$

Given the following frequency domain function: $F(s) = \frac{2s+a}{s(s-a)}$ ustify whether the Final Value Theorem can or cannot be used to find he steady state value of f(t).

Answer: Not applicable, since the steady state tends to infinity. $\lim_{t\to\infty} f(t) = \lim_{t\to\infty} (3e^{at} - 1) = \infty$

Solve y[k+2]-5y[k+1]+6y[k]=0 , where y[0]=0 , y[1]=2

$$\mathcal{Z}\{y[k+2]\} - 5\mathcal{Z}\{y[k+1]\} + 6\mathcal{Z}\{y[k]\} = 0$$

$$z^2Y(z) - zy[0] - zy[1] - 5zY(z) + 5zy[0] + 6Y(z) = 0$$

Rearranging and using initial conditions:

$$(z^2 - 5z + 6)Y(z) = 2z$$
$$Y(z) = \frac{2z}{z}$$

$$Y(z) = \frac{2z}{z^2 - 5z + 6}$$

Using partial fractions:
$$Y(z) = \frac{-2}{-} + \frac{-2}{-}$$

Transfer Function

 $\frac{C(z)}{R(z)} = \frac{G(z)}{1+Z[G(s)H(s)]}$

Proportional

Integral (I)

Derivative

(D)

System

w/ digital sensing device

w/ digital controller

Type

Basis

Combines P and I

Integrates error over time

Based on rate of

change

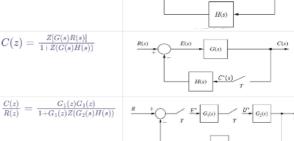
Basic control action

- Eliminates steadystate error - Output reaches 1 at steady state

- Affects speed of

- Cannot eliminate

steady-state error


response

- P impacts response

speed - I forces zero steady-

- Adds open-loop C C . ct stability

Diagram damping

$+ K_0 e(k)$						
	D(s)	rule	z-transfer	approximation	z-plane	stability
			function $D(z)$		to s-plane	
	$\frac{a}{s+a}$	forward	$\frac{a}{(z-1)/T+a}$	$s \leftarrow rac{z-1}{T}$	$z \leftarrow sT + 1$	$discrete \to$
T = 1)						continuou
$\frac{(r-1)}{(1)}$	$\frac{a}{s+a}$	backward	$\frac{a}{(z-1)/(Tz)+a}$	$s \leftarrow \frac{z-1}{Tz}$	$z \leftarrow \tfrac{1}{1-Ts}$	discrete ←
						continuou
	$\frac{a}{s+a}$	trapzoid	$\frac{a}{(2/T)[(z-1)/(z+1)]+a}$	$s \leftarrow \tfrac{2}{T} \tfrac{z-1}{z+1}$	$z \leftarrow \tfrac{1+Ts/2}{1-Ts/2}$	$discrete \leftrightarrow$
discrete o	equivale	nt				

Consider the example

$$D(s) = \frac{U(s)}{E(s)} = \frac{a}{s+a} \rightarrow U(s)s = aE(s) - aU(s)$$

$$u(t) = \int_0^t [-au(au) + ae(au)] d au$$

1. Derive the open loop function $K\overline{GH}$

2. Factor numerator and denominator to get open loop zeros and p

continuou

Steps to plot closed-loop poles

3.Plot roots of $1 + K\overline{GH} = 0$ in z-Plane as K varies

- Loci originate on the poles of KGII and terminate on its zeros.
- 2. The loci are symmetrical with respect to the real axis.
- 3. The number of asymptotes is equal to the number of poles of $K\overline{GH},\, n_p,$ minus the number of its zeros, n_r . The angles of the asymptotes are found by $\theta_a = \frac{(2k+1)\pi}{n_p - n_z}$, $k = 0, 1, 2, ... (n_p - n_z - 1)$, where n_p is # of finite poles and n_z is # of finite zeros.

 $u(kT) = u(kT - T) + \int_{kT - T}^{kT} [-au(\tau) + ae(\tau)]d\tau$

4. The origin of the asymptotes on the real axis is given by

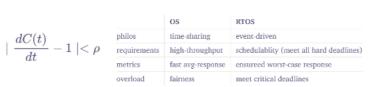
$$\sigma = \frac{\sum \text{poles of } \overline{GH}(z) - \sum \text{zeros of } \overline{GH}(z)}{n_n - n_z}$$

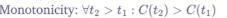
5. The breakaway point for the locus between two poles (or the break-in point for the locus between :wo zeros) is found by

$$\frac{d[\overline{GH}(z)]}{dz} = 0$$

discrete system

• Hence, the open loop transfer function $G(z) = \frac{0.368 K(z+0.718)}{(z-1)(z-0.360)}$


 $G(z) = \left(1 - z^{-1}\right) Z \left[\frac{K}{s^2(s+1)} \right]_{(T=1)} = K \frac{z-1}{z} \left[\frac{z^2 e^{-1} + z - 2ze^{-1}}{(z-1)^2 (z-e^{-1})} \right]$


correctness: $|C(t) - Cs(t)| < \epsilon$

drift is RoC of the clock value from perfect clock. Given clock has bounded drift ρ

fork()

- create a child process that is identical to its parents, return 0 to child process and pid
- add a lot of overhead as duplicated. Data space is not shared

preemption && syscall

The act of temporarily interrupting a currently scheduled task for higher priority tasks.

NOTE: make doesn't recompile if DAG is not changed.

process

- * independent execution, logical unit of work scheduled by OS
- in virtual memory:
- * Stack: store local variables and function arguments
- Heaps: dyn located (think of malloc, calloc)
- BSS segment: uninit data
- * Data segment: init data (global & static variables)
- text: RO region containing program instructions

deadline time	deadline	→ time		deadline	
threads			interrupt	polling	
 program-wide resources; global data & instruction execution state of control stream 		speed	fast	slow	

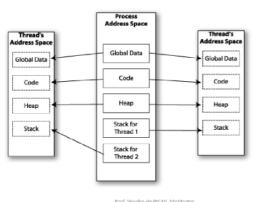
- Needs synchronisation (global variables are shared between threads)
- lack robustness (one thread can crash the whole program)

shared address space for faster context switching

	interrupt	polling
speed	fast	slow
efficiency	good	poor
cpu-waste	low	high
multitasking	yes	yes
complexity	high	low
debug	difficult	easy

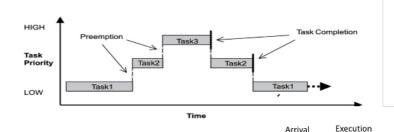
Relative deadline, D.

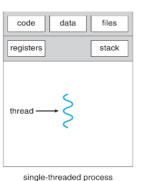
Absolute deadline, d

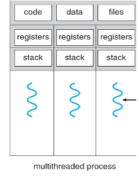

Execution Time

Response Time

output


Time


Response time



1. Priority-based preemptive scheduling

Temporal parameters:

Let the following be the scheduling parameters:

desc	var
# of tasks	n
release/arrival-time	$r_{i,j}$
absolute deadline	d_i
relative deadline	$D_i = r_{i,j} - d_i$
execution time	e_i
response time	R_i

 ${\Large \bigodot }$ Utilisation factor u_i

for a task T_i with execution time e_i and period p_i is given by

For system with n tasks overall system utilisation is $U = \sum_{i=1}^{n} u_i$

$$u_i = \frac{e_i}{p_i}$$

Wait Time

Period p_i of a periodic task T_i is \min length of all time intervales between release times of consecutive tasks.

Phase of a Task ϕ_i is the release time $r_{i,1}$ of a task T_i , or $\phi_i = r_{i,1}$

in phase are first instances of several tasks that are released simultaneously

to produce the first historices of several tasks that the released simulation

& Representation

a periodic task T_i can be represented by:

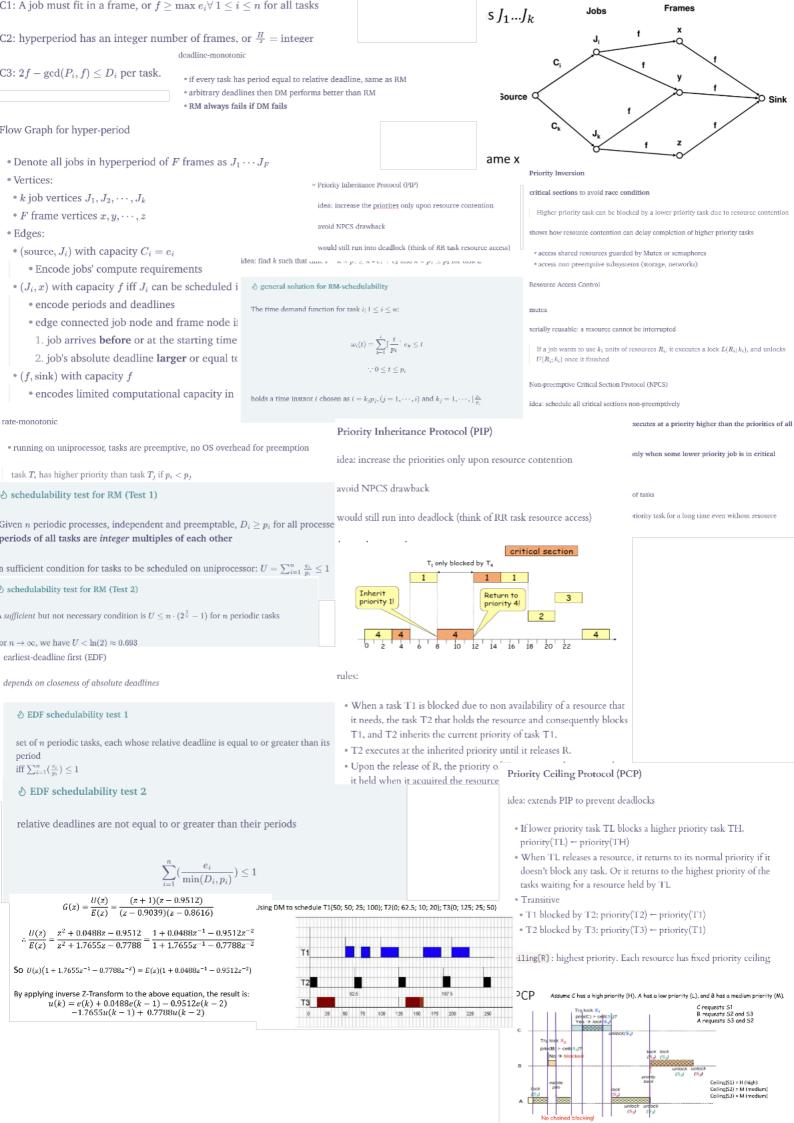
- * 4-tuple (ϕ_i, P_i, e_i, D_i)
- * 3-tuple (P_i, e_i, D_i) , or $(0, P_i, e_i, D_i)$

* 2-tuple (P_i, e_i) , or $(0, P_i, e_i, P_i)$

cyclic executive

assume tasks are non-preemptive, jobs parameters with hard deadlines known.

- no race condition, no deadlock, just function call
- * however, very brittle, number of frame F can be large, release times of tasks must be fixed


b maximum num of arriving jobs

hyperperiod

is the least common multiple (lcm)

$$N = \sum_{i=1}^{n} \frac{H}{p_i}$$

Frames: each task must fit within a single frame with size f = > number of frames $F = \frac{H}{f}$

