x(t) X(S) X(z) & derivatives and integral thus the dime domain oucput s ylt) — 1 e
5(t) — 1 t= 0’ 1 1 lfl:[.,(‘,]] = I'{s) then we have & time constant
0 t=kT,k#0
H
L usually, ¢ = £, and y{t) = 0.63, hence 63.2% co find the rise rime.
1 t=kT, . . £17'(0)] = F(s) -~ 1(0)
0t—k)=9\0 tskr | © ‘ i [ stoar - 22 P .
b s wy, = Vb is the frequency of oscillation of this system.
: 1 z
u(t), unit step . )
t Lz (T_Z) For hivher derivatives we have C1£7(8)] — 62 F(s) — s£{01 — £{0)
rL z—1)?
= inverse form 0 setding time T,
t2 2 T22(2+1)
st (2—1)3 . T, time for response co reach and stay with 2% of its final value
1 e
1 z 1 Tt st
€ “ sta z—e—aT £{FE) 2mj *]‘-Lgl“./‘:_jm. Fls)etds for first arder: T, = 1
\()](?.\' llnd FOTOS
1—eat a (1—e 1)z ! ol |
s(s+a z—1)(z—e°T ) ) ) it S S—
( ) ( N ) zeros and poles generate the amplitede for both forced and watural resy - Initial slope = 7o constant
- 1 Tze T )
te (s+a)? (z—e aT)2 e
a_ s+2 08 d
$2e-at 9 T2e T z(z4eoT) ¥is) aln t3) o7} /
—a 2t et 5
G il 0 ] (St
- - (R
> T BT
be —bt _ ae —at (b—a)s z z2(b—a)—(be " —ae™™) | _q _5are poles and s = —2 are zeros 04k
(s+a)(s+b) (z—e oT)(2—e ) 03
: _w __ zsinwl 2 poles [
sin wt 82 -w? 2z coswT+1 0.1
1 1 1
cos wi 2(z—coswT) * at origin, generated step function 0 1 7 3 4 5 !
{> .. 9 == o, . T3 e o a a a a
s2+tw? z2—2zcoswl'+1 * at -5 generate transient response e~ T
-
. ¢ ze T sin wT 7.
e " sinwt s 7 { = g T ) 5T
(s—a)?+w? 22 2ze T coswT'te | L. X
Condition Poles pole type Damping  Natural Response ¢{t)
seak time 1) :
ped » damping ratio is defined as: Ratio (C)
. Undamped Ljw, imaginary € =0 Acos(w,t — )
time required (o reacl the first or maxinnun peak ) P - EIn — - ‘,'
- exponential decay [requency _ el Undcrdumpcd wy £ Jwg cumplcx 0=¢=1 Ael=" cos{wat — )
natural frequency Wn where wy — w, \,.-“'l —¢?
_ T i § 221 —1 gyt
Ty = ST #4QS {percent overshoot] Tmm”{) real ¢ Kte
Way -
o So that & = 2¢u, damped
second-order systems %OS - e VIC  100% overdamped 77 92 real (=1 K(e™ 4 e™)
underdamped second-order step response  Transfer function of Zero-Order hold
geneml order system: or in terms of damping ratio ¢:
Transfer function C(s) is given by ) 1 e
b o —In 208 E(u(i)—u(t—T))—T—T
(T ! :
€= Frs V)
2
C(s) - w?
A8) = ———+
- _ Cls) — w? 8(s? + 2Cw,s +w?)
I'hus the pole for this system: (s) = 2 9 e D
! 52+ 2Cuwys + w?
response in time-domain via inverse Laplace transform:
N 2
—a++va?—4b 51,82 = wy, +w c-1
81,82 = g C n n C
2
T, = il 1 ; —
general second order = 72 c(t)=1 e S0t cos(y/ 1 — (Rwnt + )
Wy \/1 o C V1 ¢?
) 4 location response
Gis) = i = of poles
YT s ocu,s —u? Cwy | poles
i where ¢ = tan™'(— Same
N 2
81,80 — —Cuw, —w, v (2 —1 envelope
b ¢ Ve 7 is the sampling period, and - is the sampling rate in cpeles per second P
inding the discrete transfer function
sampled data syscem
-~ N +dx43 N M . . . . o
7(s) = o error = 21 relesence inpuc r is the sequence of sample values #{&7)
A sampler is a swicch rhat closes every T seconds:
Gls) = s +4s+3 0375 0.25 + 0.375 where n is number of bits used for digicalisatic
59— 652 + 8s s s+2  si4 ) ):‘ ; Same
o o A Sl P =D FOA = K1) (0200 frequency
G(t) = £ (G(s) 0‘3’5:- 0.25¢"% + 0;37')ﬁ Z resolution of A/T) convercer &0 9 ’
G(z) — Z(G(t) — 0.375 +0.25—= —0.375 -
’ ’ z—1 y—e 2 z-e ¥ o
etz T, we have the follonwing definition: minimum value of the output that can be re Transfer funcrion of sampled daea:
number, or 3+
2 setransfor stability
z-transform Ris)=Lir (i) = )_: :'{H':l»_k"r Same
o b
5 \ ¢ntar PR Avarchnn
Z{r(t}} = P(z) = Z(r{t]) = kz (k7Y system pole location criteria on z-plane i '
o Seable All pales inside wnit circle Linearity: it w(n) — afi(n) | bfaiv) chen X(2) = aFy{z)  bFa(:)
& mapping from s-plane to z-plane Unstable Any poles oumide unit circle . hifii
2= e (coswT + jsinuT) Marginally e or mare pales on unit circle. remaiming poles mside unit ime shing:
’ Seahle circle
final value theorem Z &t} = X{2)
- k=1
W ASSUITIE 5§ — ox 'l'.a' (2 B nici o —
B # definition Z[x(n + k)] — ZkX(Z) —zk E x()z1
- Ty o () exises, then the follow exists: i=0
Locarion on s-plane Value of @ Valuc of 7 Mapping on z-planc
Imaginary axis () @ U P | On unit cirele k—1
) . . ). I Lim o{k) — lim{z ~ 1)X(z]
Rigrhe half plane axi Outside unit circle o 9

Zlx(n=1)] = 27 %X(x) + 27% z x(=i)#t

=0

Left half-plane a0 Inside unie carcle



PID control

: K,G,
Proportional ok
(P)
K; .
G(*(S) = Kp -+ T + Kps
; K
Integral (I) T
in time domain:
' Pl }\'/+8K,.
. d(e(t Sk, )s—K
u(t) = Kpe(t) + K;/ e(n)dn + KD$ (1=K, )s—K;
0 e
Derivative %
Component Discrete-Time Equation (D) ! n)s
Proportional u(k) = Kpe(k)
k . System Transfer Function
Integral u(k) = K;TY.[  eli) T
. ype
Derivative  u(k) = 52[e(k) — e(k — 1)) , o
Basis T

approximate of PID controller:
u(k) = Kpe(k) + K, TS0 e(i) + B2 [e(k) — e(k — 1)]

Assume the transfer function is given by

)R(5)]

w/ d'igiml C(z) H(s))
sensing
. device
Uls £
p(s) = L) _ g, 2+
E(s) s+b
w/ digital
controller
2 difference equation
\
u(k) = (1 — bT)u(k — 1) + Ko(aT — 1)E(k — 1) + Kpe(k)
D(s)  rule z-transfer
function D(z)
The corresponding z-transtorm — forward ﬁ
U(z)  KolaT—1)z '+ Ky Koz + Ko(aT — 1)
= 3 a a
E(z) 1+ (b7 —1)z ! z+ (bT — 1) s« backward  Toyima
= Ky(aT — 1) — zK,|/[z + (bT — 1)]
= mpzoid  GEG OGO

z-transform of difference equation discrete equivalent

example: Given D(s) = %, u(kT) = u(k)

Consider the example

U(s)(s + a) = aB(s) (Laplace transform) gives

P U(s) a

ulk+1)-u(k) X R _ _ o TT, _

+ + au(k) — ae(k) D(s) = E(s) =%ta U(s)s = aE(s)
: — ' (t) = —au(t) + ae(t)

difference equation is u(k + 1) = (1 — aT)u(k) + aTe(k)

z-transtorm is % = F La;—- = SF T

i u(t) / [—au(T) + ae(7)dr
25+a !
s(s—-a)

Given the following frequency domain function: #(s) =

ustify whether the Final Value Theorem can or cannot be used to find

he steady state value of f(¢). discrete system

&
\nswer: Not applicable, since the steady state tends to infinity.
im £(¢) = lim (3e® - 1) = o
Solve y 'k + 2] — Sylk + 1] — 6y[k] = 0, where y[0] =0, y[1] = 2.
Z{ylk + 2]} — 5Z2{ulk + 1]} + 6Z{y[k]} = 0

w(kT) = w(hT —T) + f

WO—T

Taking 7 transforms:

22Y(z) =zyl0] zyll] BzY(z) | Bzy|0] | 6Y(z) =0

Rearranging and using initial conditions:

Basic control action - Affects speed of
resporse

- Cannot eliminate
steady-state error

Integrates error
over time

- Eliminates steady-
state error

- Output reaches 1 at
steady state

Combines P and 1 - P impacts response
speed

- I forces zero steady-
state error

Based on rate of - Adds open-loop

change zero
£
N 1
’ zt stability
Diagram i .
& damping
R(s) Eis) E¥is) i)
—O—/ Gis
a - T
His)
Ris) ~ x| . I i)
_.‘ s .
1 J
(e
.
i % T ¢
\— His) %
approximation z-planc stability
to s-plane
5 =t zesT+1  discrete —
continuou
z—1 1 : 5
54 Z¢ o5 discrere +
continuou
. 2 2 z—1 : .
5+ % discrete

continuou

Steps to plot closed-loop poles
1. Derive the open loop function K(7H.

U( ) 2. Factor numerator and denominator to get open loop zeros and §
all(s

3.Plot roots of 1 + KGI = 0 in z-Plane as K varies.

1. Loci originate on the poles of X1/ and terminate on its zeros.
2. The loci are symmetrical with respect to the real axis.

3. The number of asymptotes is equal to the number of poles of KGH. n,,

minus the number of its zeros, n,. The angles of the asymptotes are
found by 6, = (:kt::ﬁ. k=0,1,2,..(n, — n, — 1), where n, is # of finite
v 'z

poles and n, is # of finite zeros.

(—au(t) + ae(7)|dr

4. The origin of the asymptotes on the real axis is given by

Zpoles of ai(z)—z:zeros of @(z)
o=
n_—n.

5. The breakaway point for the locus between two
coles (or the break-in point for the locus between

(2" =52+ 6)V(2) = 2z - L o Wwo zeros) is found by
2z dIGH
Y(z) — [GH(2)]
(=) 22 —-5z2+6 7
Using partial fractions:
* Consider the system. we have
2 2
Y(z)—m‘ﬁ cir ) Nz I'd 7 ‘]|z’e‘|z Zze'| Kize "+ 1-2e ")
7 (177 s+ 7z |iz=1P(z—e )]  (z—1)z—e )

Using inverse transforms straight from the table to get the solution: r-n

068X 124D,

o=

ylk] =2 % 35 — 2 x 2f * Hence, the openloop transfer function 7(z) —




correctness:

C(t) —Cs(t)| <€ fork()

e createa child process that is identical to its parents, return @ to child process and pid

drift is RoC of the clock value from perfect clock. Given clock has bounded drift p ~ addalorof overhead as duplicated. Data space is not shared

o0s RTOS
philos time-sharing event-driven
t
| T -1 | P requirements  high-throughput  schedulablity (meet all hard deadlines)
metrics fast avg-response  ensureed worst-case response
overload lairness meel critical deadlines
Monotonicity: ¥ty > t; : C(ts) > C(t;) preemption && syscall
“The act of lemporarily interrupting a currendy scheduled task for higher priority tasks.
NOTL: make doesn't recompile if DAG is not changed.
soft real ime firm real time hard real time
process
h h h
usefuiness usefuiness usefulness
+ independent execution, logical unit of work scheduled by 08
= in virtual memary:
* Stack: store local variables and function arguments
> > > *« Heaps: dyn located (think of malloc, calloc)
eadi / time - f time deadine/ tim « BSS segment: uninit data
I ne + Data segment: init data (global & statie variables)
« rext: RO region containing program insrructions
threads
interrupt  polling stack heap
» program-wide resources: global data & instruction creation Member m Menbersm = new Member()
» cxecution state of control stream speed fast slow lifetime  funetion runs 1o completion delete, fiee is called
» shared address space for faster context switching efficiency good poor srow fived dym added by O3
e stack overflow heap fragmentation
. . cpu-waste low hieh when size of memory is knewn, data size s small - large scale dyn mem
- Needs synchronisation (global variables are shared between threads) P &
- lack robustness {one thread can crash the whole program) multitasking  yes yes Relative deadline, D,
complexity high low Response tume
-
debug difficult easy _>Tm
Thread's Completion time
Space Release time, r, ompetion
[rr———— i Absolute deadline, d,
{ioow Dm}‘ 1 scheduling
e 4

1. Priority-based preemptive scheduling

HIGH

TR

P ption \ - Task Completion
Task /
Priority Task2 Task2
[ Taski | Taski__ k=P
Low ' ”
24 Praf Wenba He@CAS. MeMaster =
Time
Arrival Execution output
| code | I data | | files l I code | I data | | files l Temporal parameters:
- - N Time
stack |re ustersl |re lstersl |r |sters| . . .
|_, 9 g g Let the following be the scheduling parameters:
I stack | I stack | | stack I )
Wait Time
desc var Execution Time
thread e #of tasks n o
release/arrival-time v Respanse Time
absolute deadline d; & Utilisation factor w,
relative deadline Di =rij—d;
o for a task 7} with execution time ¢; and period p; is given by
. . execution time €
single-threaded process multithreaded process
response time R;
€
. . . . . o . . . u o
Period p; of a periodic task T; is min length of all time intervales between release times T on

of consecutive tasks.

. L. . - - . For system with n tasks overall system utilisation is U = S7°, u;
Phase of a Task ¢; is the release time r,; of a task T3, or ¢; = ri ¥ N et
cyclic executive

in phase are first instances of several tasks that are released simultaneously L . .
assume tasks are non-preemptive, jobs parameters with hard deadlines known.

© Representation
* no race condition, no deadlock, just function call

a periodic task 7} can be represented by: = however, very brittle, number of frame #' can be large, release times of tasks must be
fixed
* 4-tuple {¢:, P, e;, D;) &) maximum num of arriving jobs
« 3-tuple {£;, ¢;, 1), or (0, Py, ez, hyperperiod v g
« 2-tuple {P;. e;), or {0, P, e, P) N= —
i1 Pi

is the least common multiple (lem]

H

Frames: each task must fit within a single frame with size f => number of frames F = S



C1: A job must fit in a frame, or f > max e;%¥ 1 < i < n for all tasks

C2: hyperperiod has an integer number of frames, or & = integer

deadline-monotonic

C3: 2f — ged( P, f) = D; per task.

= arbitrary deadlines then DM performs better than RM Source

= RM always fails if DM fails

Flow Graph for hyper-period

* Denote all jobs in hyperperiod of F frames as J; --- Jp
* Vertices:
* k job vertices Jy, Ja, -+, Ji

* I frame vertices x,y, -,z

« if every task has period equal to relative deadline, same as RM

Jobs

S J1--Jk

ame X

Priority Inversion

v Priority liheritance Protocal (PLE)

critical sections to avoid race condition

idea: increase the prigrites only upon resource contention

Higher priority task can be blocked by a lower priority cask duc to resource contention

avoid NPCS drawhack

= Edges:
* (source, J;) with capacity C; = ¢;
* Encode jobs' compute requirements e e
¢ (J;,x) with capacity f iff J; can be scheduled i
* encode periods and deadlines
= edge connected job node and frame node i
1. job arrives before or at the starting time
2. job's absolute deadline larger or equal tc
* (f,sink) with capacity f

* encodes limited computational capacity in
rate-monotonic
* running on uniprocessor, tasks are preemptive, no OS overhead for preemption

task T; has higher priority than task T; if p; < p;

¥ schedulability test for RM (Test 1)

Given n periodic processes, independent and preemptable, D; = p, for all processe

periods of all tasks are integer multiples of each other

n
=1

a1 sufficient condition for tasks to be scheduled on uniprocessor: U = ;— =1

Y schedulability test for RM (Test 2)

 sufficient but not necessary condition is I < n - (2 — 1) for n periodic tasks

or B — ¢, we have I7 < In(2) = 0,693
carliest-deadline first (EDF)

depends on closeness of absolute deadlines

&) EDF schedulability test 1

set of n periodic tasks, each whose relative deadline is equal to or greater than its
period

seNan e
iff L‘;l(;

¢) EDF schedulability test 2

relative deadlines are not equal to or greater than their periods

€; )
min(D;, p;)

3 <

G(z) _Un 2+ 1)z - 0.9512)

E(z)  (z- 0.9039)(z - 0.8616)

& general solution for RM-schedulability

The time demand funcrion for rask i; | =

holds a time instant { chasen as { = kyp; (j = 1,--- 2] and k; = 1, .-, [ £

Jsing DM ta schedule T1{50; 50; 25; 100}; T2(0; 62.5; 10; 20); T3(0; 125; 25; 50}

showis how resource contention can delay completion of higher prioricy casks

veould still run into deadlock (think of RR task resource aceess)

» access shared resources guarded by Mutex or scmaphores

L R L I TR C I TR TP

= acvess non preempiive subsysiems (slorage, networks)

Resource Access Control

mutex

serially reusable: a resource cannot be interrupted

- e
wift) = Y [— evsit

= P Wants to use &; units of resources R, it exccutes a lock LiR;; &), and unlocks

once it finished

0

Non-preemptive Critical Section Protoce] (NPCS)
" idea: schedule all crideal sections non-precmptively

L. . xecutes at a priority higher than the priorities of all
Priority Inheritance Protocol (PIP)

. . PR N mly when some lower priority job is in eritical
ld(‘l’l: mcrease [ht.‘ priorities Dl\ly upon resource contention

avoid NPCS drawback

of tasks

would still run into deadlock (think of RR rask resource access) riority task for o lung tme even without resource

T, only blocked by T,
] [ .

f N
Return to
priority 4!

< J

rules:

» When a task 'I'l is blocked due to non availabilicy of a resource char
it n(“ﬂdﬁ. l’he rﬂsk T2 rh;ll' h()]ds th(-‘ resource Hnd (:(“‘lﬂe(]llently hl(l('kﬂ
T1, and T2 inherits the current priority of task T1.

» T2 executes at the inherited priority until it releases R.

» Upon the release of R, the priority o

Priority Ceiling P ol (PCP
it held when it acauired the resource rority Letling Frotoco ( )

idea: extends PIP to prevent deadlocks

« If lower priority task TL blocks a higher priority task TH,
priority(T'L) = priority(TH])

* When TL releases a resource, it returns to its normal prioricy if it
doesn’t block any task. Or it returns to the highest priority of the
rasks waiting for a resource held by ‘I'L

» Transitive

3 ll(z) -~ 72 + 00488z — 0.9512 _ 1+ 0.0488271 — 09512772
" E(z)  z*+ 17655z~ 0.7788 1+ L7656z 1 - 0.7788z ¢

SO Uiz){1+ 1765527 — 0.778827¢) = E(2)(1 + 0.04882™1 — 0.9512277)

‘Il blocked by 12: priority{12) — prioriey(1'1}
« T2 blocked by T3: priority{T3) — prioriey(T1)

:i1ing(R) : highest priority. Each resource has fixed priority ceiling

By applying inverse Z-Transform to the above equation, the result is:
u(k) = e(k) + 0.0188¢(k — 1) — 0.9512e(k — 2)

=1.7655u(k — 1) + 0.7788u{k — 2) o ||| s

>CP

Assume € has a high priority (H), A has a low priceity (L), and 8 has a medium pricrity (M),

€ requests 51
B requests 52 and 53
A requests 53 and 52

150

175 | (200 25 |20

Ceiingls1) = W (high)
Ceiingls2) = M (medium]
Ceinzls) = M (medium]

No chained Slacking!



