Quiz 7 December 16, 2024 8:37 AM $X(h) = (\frac{1}{2})^k [u(h) - u(k-b)]$ $\left(\overline{\mathbb{Q}}\right)$ $\overline{z^{\prime}}$ By def \rightarrow $\left(\frac{1}{L}\right)$ $u(k) - u(k - 10)$ $\overline{On\overline{h}y}=1$ when $k>10$ $only = 1$ when $k > 9$ 30) this parties here is only 1 when 0 = k=9. Zero otherwise. <u>Germetric Serres</u> $-k$ $a(r^{n})$ $\frac{1}{2z}$ $\left(\frac{1}{2z}\right)^{I_0}$ $2\overline{z}$ - $\left(\frac{1}{2a}\right)$ \overline{a} $\overline{-2z}$ $k=0$ $k = 0$ $\overline{-\overline{l^2}}$ $\left(\frac{1}{2i}\right)$ - $2z -$ Q $F(z) = 3+2z^{-1}$ $rac{z^2}{z^2}$ $2+32^{1}+2^{-2}$ <u>Partiel Frac Decomp.</u>
 $\frac{2z^2+3z+1= (2z+1)(z+1)}{2z^2+3z+1= (2z+1)(z+1)}$ $32^{2}+22$ $2z^{2}+3z+1$ $A + B$ $F(z)$ $=3z+2$ $\overline{2z+1}$ $2+1$ Z $22^{2}324$ $Az+A+B\lambda z+B$ 22221 $\Gamma(z)$ \mathbf{I} \mathcal{A} $A+B=2$, $2B+B=3$ $\overline{\mathcal{Z}}$ $2z+1$ $2 + 1$ $A=2-8$ $\longrightarrow 2B+2-8=3$ \mathbf{z} $F(z) = \frac{z}{2z+1}$ \overline{z} +1 $A=1$ \leftarrow $B=1$ $\boldsymbol{\mathcal{Z}}$ $\boldsymbol{\mathcal{Z}}$ $\overline{2}$ $\frac{1}{2+2}$ \overline{z} v $\frac{1}{2} \cdot \frac{1}{2}$ \overline{z} $\frac{1}{2}$ - $\frac{1}{2}$ $f(k) = \frac{1}{2}(-\frac{1}{2})^{k} + (-1)^{k}$ $\overline{\textcircled{3}}$ Q3: what is the system characteristic equation? #Note: I use this motation equivalently; ZOH(s). G(s) => G(z) => Z(G(s)) samplers acting as zort zoulls). G₁(5)= G2(2) $U(s)$ $\overline{\mathbf{w}}$ $U^*(s)$ $\overline{G_2(s)}$ $E(s)$ TOM $E^*(s)$ $G_1(s)$ $R(s)$ + $\mathcal{C}(s)$ $20H(s) G(s) = G_1(z)$ $H(s)$ $\underbrace{\mathbb{R}^{(k)} \rightarrow C}$ $\overline{\mathcal{L}(s)}$ \Rightarrow $G_{\mathcal{L}}(z)$ $612)$ $\sqrt{44}$ $A_i =$ $G_{2}(z)$ $\sqrt{+G_{2}(z)}H(s)$ $=$ $G_2(z)$ TF ZOHISIGISTHIST

<u>G2(Z)</u> $=$ $\frac{G_{2}(z)}{1+Z(G_{2})H(1)}$ $A_2 = G(\vec{z}) A_1 (\vec{z})$ $R(s)$ $G(z)$ $A_i(z)$ → $F + A$ $G_{\iota}(\mathcal{E})$ $G_{i}(z)$ $G_i(z)A_i(z)$ $A_3(z) = F(z)$ = $Z/G(s)H(s)$ 6(S)H(s) $^{+}$ $\frac{G_{2}(z)}{zZ(G,N)}$ $+7$ $G(x)H(x)$ $G(z)$ $G_2(z)$ $F(z)$ σ ₁ σ)Hts) s^{\prime} , characteristic equation is $1+$ [[G(s)H(s)] + (n₁(z) G₂(z) = 0 uper acts as Zor $\left(\hspace{-1.5mm}\mathbb{Q}\right)$ 46 $Q₄$ $C(s)$ $\overline{M}(s)$ Note $R(s)$ $F(s)$ $\bar{1}$ $D(z)$ = $e + 1$ কি Consider a system with T=1. The digital controller has a variable gain K. (a) Write the closed-loop characteristic equation of the discrete system. <u> Note</u> Determine the closed-loop poles for which the system is marginally stable, and determine the (b) corresponding K values. $ZoH(s)$ ·6(s) Consider an analog system with all sampling removed and with $G_p = \frac{K}{s+1}$. Find the range for K for (c) which the analog system is stable. $=$ Compare the ranges of K from (b) and (c), tell the effects on stability of adding sampling (d) component to analog system $\overline{z_0}$ H (s) Note $ZoH(s) \cdot D(z) \cdot \frac{1-e^{-\pi s}}{s}$ α $A(s) =$ <u> ZOH(s) · G(s) = 7</u> $(G(s))$ ZOHLS) D(z) ZOHLS) · $D(z) - ZoH(s) - ZoH(s)$ partial $\frac{A}{4} + \frac{B}{4}$ DLE $5(5+1)$ in hindsight - 2 - 64.

 $7\sum$ s(st) **VLE** $1 - 5$ $A_{s+A+B}s$ in hindsight $5($ st n icouldine taken $A=$ Z trans. directly = $A+B=0$ here; would have $5+1$ been eurser oops. $\beta = -1$ \mathbf{z} $D(z)$ $2 - 1$ $rac{z}{z-z^{-T}}$ $\theta(z)$ \leq $\overline{z-e^{-T}}$ $\overline{z-1}$ $=$ θ (z) $\frac{\frac{1}{2}}{2}$ $\frac{1-z}{z-e^{-T}}$ θ tz $7 + 2 - 1$ $=$ $\theta(z)$ $D(z)$ 0.6321 \equiv $\frac{1}{2 - 0.36}$ $\overline{}$ $2 - 0.3679$ $F(s) =$ $K\left(\frac{0.6321}{200.3679}\right)$ $7 - 0.3679$ Char. Egn $7 - 0.3679$ $2 - 0.3679 + 0.63211$ $0 = 2 - 0.3679 + 0.6321$ K b) manginally stable \rightarrow $|z|$ = $|$ $0 = 2 - 0.3679 + 0.6321K$ $Z = 0.3679 - 0.6321K$ $0.6321 = -0.6321K$ $1.3679 = -0.63211$ $k=+$ $k = 2.164$ + the value considered. $C)$ $R(S)$ K <u>df/</u> $\frac{1}{2}$ $+\frac{1}{2}$ $\mathbin{\texttt{st}}$ Char ezia \equiv $5+1+1$ $5+1+k$ stability - 5,50 $5+1+K=0$ $5 = -1 - k \le 0$ $-$ K 卞

 $K \gamma$ d) Analog system stubbe for all K>D. Digital system only stubbe OCK <2.16 \mathcal{F} $G(z) = K \frac{0.05(z+1)}{(z-1)^2}$ Breakowley pts
 $\frac{dG(z)}{dz} = 0$ stability con \overline{O} $\frac{0.05(z-1)^{2}-2(z-1)(0.05)(z+1)-0}{(z+1)^{4}cos^{4}(-z+1)}$ $(2-1)^2-2(2-1)(2+1)=0$ $\frac{z^2-2z+1-2z^2+2=0}{-z^2-2z+3=0}$ $\overline{\epsilon}$ \overline{z} $\overline{2}$ $\mathbf \sigma$ branches on real axis only to the eff of here. $(z+3)(z-1)=0$ $\overline{z=1,-3}$ = breakcountys, $\widehat{\left(\!\mathcal{L}\right)}$ Q₆ Zero-order
 $E(s) = \frac{1}{s}$
 $T = 1 s$
 $T = 1 s$
 $T = \frac{1 - e^{-Ts}}{s}$
 $T = \frac{1}{s}$ $\frac{\text{Plant}^2}{\frac{5s}{s+0.1}}$ • For the given system: (1) Find the output transfer function of $C(z)$. (2) Find the system response at the sampling instances $c(nT)$. (3) Determine the input of the plant $M(s)$, then calculate $c(t)$. $ZOL(S) \cdot G(s)$ partial free $\frac{58}{2}$ $\frac{8}{5+0.1} = \frac{A_{5}+0.1A+B_{5}}{5(5+1)}$ $\overline{z}-1$ $\frac{5z}{7-2z}$ $A+B=5$
 $B=5$ $A=O$ $5z$ $=$ $\frac{5}{4}$ $(L_{\mathbf{z}})$ $C(z) = c(nT) = 5e^{-0.1nT} = 5e^{-0.1n}$ 3. Lassure we ass it's an analogy system for this or it doesn't

