FUNDAMENTALS OF MACHINE LEARNING COMPSCI 4ML3 LECTURE 0 HASSAN ASHTIANI

WHAT IS MACHINE LEARNING?

What can I help you with?

• CYCLEGAN https://junyanz.github.io/CycleGAN/

- "A STILL OF KERMIT THE FROG IN SPIRITED AWAY (2001)"
- "A STILL OF KERMIT THE FROG IN BLADE RUNNER 2049 (2017)"

DALLE

HTTPS://TWITTER.COM/HVNSLSTANGEL/STATUS/1531506455714492416?s=21&t=PSJY4ETM_DLKBWFRGHY1YA

Write a New Years poem based on the Fibonacci numbers.

As we say goodbye to the year that's past, We look ahead to a new one at last. The Fibonacci numbers guide our way, As we start anew on this New Year's day.

One, the first number, represents a start, A fresh beginning with an open heart. One leads to two, then three and five, A progression, as we strive to thrive.

Eight and thirteen come next in line, A reminder that we're all intertwined. Twenty-one, thirty-four, and fifty-five, All part of the cycle, the cycle of life.

So here's to a new year, full of hope and cheer, May the Fibonacci sequence guide us, never steer us wrong. Happy New Year!

https://twitter.com/divbyzero/status/1609649684066213893

AI VS ML VS PATTERN RECOGNITION

- ARTIFICIAL INTELLIGENCE (AI): GET MACHINES TO
 - THINK/ACT LIKE HUMANS
 - THINK/ACT INTELLIGENTLY/RATIONALLY
- MACHINE LEARNING (ML): MAKING MACHINES INTELLIGENT BY
 - ALLOWING THEM TO LEARN FROM EXPERIENCE/DATA
 - INSTEAD OF GIVING DETAILED INSTRUCTIONS TO A MACHINE, WE PROGRAM IT TO "FIND" GOOD INSTRUCTIONS BASED ON THE GIVEN EXAMPLES
- MACHINE LEARNING IS A TERM USED (INITIALLY) BY COMPUTER SCIENTISTS
- **PATTERN RECOGNITION** IS AN OLDER TERM, USED (INITIALLY) BY ENGINEERS
- For the most part, ML and PR are now used interchangeably, though ML is somewhat broader and has more emphasis on data

- **SUPERVISED LEARNING (**PREDICTION)
- **REINFORCEMENT LEARNING (CONTROL)**
- UNSUPERVISED LEARNING

- SUPERVISED LEARNING (PREDICTION)
 - GOAL: GIVEN NEW INPUT, PREDICT THE OUTPUT
 - EXAMPLE: DIGIT CLASSIFICATION
 - TRAINING DATA: INPUT-OUTPUT PAIRS
 - "SUPERVISED": SOMEONE PROVIDED THE OUTPUT

1 4	25	5 8	0 D	7	63	3	S 9	0 7	<u></u>
S	ŝ	3	2	5	0	3	Ź	3	l
1	1	4	0	2	٨	5	S	3	6
8	6	حگر	0	4	0	4	5	3	\$
9	5	4	2	2	7	1	6	0	\tilde{c}
4	7	Ø	3	9	1	7	Ø	7) +-
2	9	Г	7	6	4	2	2	2	9
4	4	4	λ	Q	6	9	4	8	1 . 1
(5	0	3	¥	6	8	2	5	1

- **Reinforcement Learning** (CONTROL)
 - (SEQUENTIAL) DECISION MAKING TO ACHIEVE A DESIRED OUTCOME, OR MAXIMIZE THE "REWARD"
 - THE AGENT OBSERVES THE WORLD, MAKES AN ACTION, RECEIVES A (DELAYED) REWARD
 - MAY INVOLVE PLANNING, PREDICTION, ETC.
 - EXAMPLE: ROBOTICS, PLAYING BOARD GAMES (ALPHAGO)

- UNSUPERVISED LEARNING
 - All sorts of things outside supervised learning
 - TRAINING DATA: JUST **UNANNOTATED** INPUT EXAMPLES
 - EXAMPLE: CLUSTERING (ORGANIZE PHOTO ALBUM INTO FOLDERS)
 - EXAMPLE: COMPRESSION (DESCRIBE DATA USING FEWER PARAMETERS)
 - EXAMPLE: UNSUPERVISED IMAGE GENERATION

- This taxonomy is coarse/inaccurate
- TAXONOMY BASED THE "GOAL" OR THE "TECHNIQUES"?
- Using unsupervised techniques for supervised learning
 - DIMENSIONALITY REDUCTION, ZERO-SHOT LEARNING
- Combining supervised, unsupervised, reinforcement learning
 - EXAMPLE: LANGUAGE MODELS (CHATGPT)
- Semi-supervised learning
- •

COMPSCI 4ML3

• FOCUSES MOSTLY ON SUPERVISED LEARNING.

- THE CURRENT SUCCESS OF ML IS MOSTLY DUE TO THE PROGRESS IN SUPERVISED LEARNING METHODS.
- TOPICS INCLUDE
 - LINEAR AND NON-LINEAR REGRESSION
 - PROBABILISTIC/BAYESIAN INFERENCE
 - LINEAR AND NON-LINEAR CLASSIFICATION
 - NEURAL NETWORKS AND DEEP LEARNING

COMPSCI 4ML3

- OTHER TOPICS (TIME PERMITTING)
 - Ensemble learning
 - GENERATIVE ADVERSARIAL NETWORKS
 - Adversarial Perturbations
 - INTRO TO SELF-SUPERVISED LEARNING
 - INTRO TO LEARNING THEORY
 - TRANSFORMERS

COMPSCI 4ML3: APPROACH

- EMPHASIS ON MATHEMATICAL MODELING
 - THERE IS A LOT OF MATH IN ML.
 - EXPRESSING PROBLEMS/METHODS BY MATH HELPS OBTAINING A CLEAR UNDERSTANDING AND A PRINCIPLED APPROACH
 - IT IS IMPORTANT TO WRITE YOUR OWN NOTES IN CLASS!
 - SLIDES WILL BE UPLOADED BEFORE CLASS
 - ANNOTATIONS WILL BE UPLOADED AFTER CLASS

COMPSCI 4ML3: APPROACH

- WHAT KIND OF MATH IS INVOLVED? (AND WHY?)
 - LINEAR ALGEBRA (DATA IS REPRESENTED AS MATRICES)
 - PROBABILITY AND STATISTICS (TO MODEL RANDOMNESS IN DATA)
 - CALCULUS (FUNCTIONS AND DERIVATIVES ARE CENTRAL TOOLS)
- Some review in tutorials

COMPSCI 4ML3: APPROACH

- EMPHASIS ON **PRINCIPLES**
 - NOT JUST A LONG LIST OF ML METHODS/TECHNIQUES
 - NOT JUST USING ML PACKAGES
 - IF NOT CAREFUL, THEY CAN BE USED INAPPROPRIATELY
 - THEY GET OUTDATED QUICKLY
 - UNDERSTANDING EACH METHOD DEEPLY
 - ASK QUESTIONS!
 - Focus on the principles/ideas behind each method
 - You can then use those principles in various contexts

RECOMMENDED BOOKS

Shai Shalev-Shwartz and Shai Ben-David

UNDERSTANDING MACHINE LEARNING

FROM THEORY TO ALGORITHMS

COMPSCI 4ML3 POLICIES

- Course outline is available on Avenue
- MAKE SURE TO READ IT THOROUGHLY