COMPSCI 4ML3 - Introduction to Machine Learning Assignment 1 Solution

October 18, 2024

Alireza Daeijavad McMaster University

1. [80 points] Programming Component. Follow this link to open the Google Colab environment and make a copy of the notebook. Include the answers/graphs/pictures/analyses of the four tasks in your final pdf report. Additionally, upload your modified Jupyter notebook that includes your code (as a separate ipynb file). (for clarifications, post your questions in the Team's Q/A channel).

Solution: LINK

- 2. [30 points] "Driving high" is prohibited in the city, and the police have started using a tester that shows whether a driver is high on cannabis. The tester is a binary classifier (1 for positive result, and 0 for negative result) which is not accurate all the time:
 - If the driver is truly high, then the test will be positive with probability $1 \beta_1$ and negative with probability β_1 (so the probability of wrong result is β_1 in this case)
 - If the driver is not high, then the test will be positive with probability β_2 and negative with probability $1 \beta_2$ (so the probability of wrong result is β_2 in this case)

Assume the probability of (a randomly selected driver from the population) being "truly high" is α .

• [7 points] What is the probability that the tester shows a positive result for a (randomly selected) driver? (write your answer in terms of α , β_1 , β_2).

Solution: Let P(Positive) be the probability that the tester shows a positive result for a randomly selected driver. Using the law of total probability, we can express this as:

P(Positive) = P(Positive | High)P(High) + P(Positive | Not High)P(Not High)

Given the problem statement:

- $P(\text{High}) = \alpha$
- $P(\text{Not High}) = 1 \alpha$
- $P(\text{Positive} | \text{High}) = 1 \beta_1$
- $P(\text{Positive} \mid \text{Not High}) = \beta_2$

Thus, the probability of a positive result is:

 $P(\text{Positive}) = \alpha(1 - \beta_1) + (1 - \alpha)\beta_2$

• [7 points] The police have collected test results for n randomly selected drivers (i.i.d. samples). What is the likelihood that there are exactly n_+ positive samples among the n samples? Write your solution in terms of α , β_1 , β_2 , n_+ and n.

Solution: Each test result is an independent Bernoulli trial with success probability P(Positive). The likelihood function for observing n_+ positive results (out of n total tests) follows a binomial distribution:

$$P(n_+ \mid n, \alpha, \beta_1, \beta_2) = \binom{n}{n_+} \left(P(\text{Positive}) \right)^{n_+} \left(1 - P(\text{Positive}) \right)^{n_- n_+}$$

Substituting $P(\text{Positive}) = \alpha(1 - \beta_1) + (1 - \alpha)\beta_2$, the likelihood is:

$$P(n_{+} \mid n, \alpha, \beta_{1}, \beta_{2}) = \binom{n}{n_{+}} (\alpha(1 - \beta_{1}) + (1 - \alpha)\beta_{2})^{n_{+}} (1 - (\alpha(1 - \beta_{1}) + (1 - \alpha)\beta_{2}))^{n - n_{+}}$$

• [10 points] What is the maximum likelihood estimate of α given a set of n random samples from which n_+ are positive results? In this part, you can assume that β_1 and β_2 are fixed and given. Simplify your final result in terms of n, n_+ , β_1 , β_2 .

Solution:

$$\alpha^{ML} = \arg\min_{\alpha} \left[-\log P(n_+ \mid n, \alpha, \beta_1, \beta_2) \right]$$

Since $\log {n \choose n_+}$ is independent of α , it can be omitted. We now differentiate the remaining log-likelihood with respect to α :

$$\frac{\partial}{\partial \alpha} \left[n_+ \log \left(\alpha (1 - \beta_1) + (1 - \alpha) \beta_2 \right) + (n - n_+) \log \left(1 - \alpha (1 - \beta_1) - (1 - \alpha) \beta_2 \right) \right] = 0$$
$$\implies n_+ \frac{1 - \beta_1 - \beta_2}{\alpha (1 - \beta_1) + (1 - \alpha) \beta_2} + (n - n_+) \frac{-(1 - \beta_1) + \beta_2}{1 - \alpha (1 - \beta_1) - (1 - \alpha) \beta_2} = 0$$

Now we assume $1 - \beta_1 - \beta_2 \neq 0$ (otherwise, the likelihood does not depend on the values of α , and the derivative with respect to α is always zero). Therefore, we can factor out $1 - \beta_1 - \beta_2$, and this simplifies to:

$$\frac{n_+}{\alpha(1-\beta_1) + (1-\alpha)\beta_2} = \frac{n-n_+}{1-\alpha(1-\beta_1) - (1-\alpha)\beta_2}$$

Cross-multiply:

$$n_{+} (1 - \alpha(1 - \beta_{1}) - (1 - \alpha)\beta_{2}) = (n - n_{+}) (\alpha(1 - \beta_{1}) + (1 - \alpha)\beta_{2})$$

$$\implies n_{+} (1 - \alpha(1 - \beta_{1} - \beta_{2}) - \beta_{2}) = (n - n_{+}) (\alpha(1 - \beta_{1} - \beta_{2}) + \beta_{2})$$

Move all terms involving α to one side:

$$n_{+} - n_{+}\beta_{2} - (n - n_{+})\beta_{2} = \alpha \left[(n - n_{+})(1 - \beta_{1} - \beta_{2}) + n_{+}(1 - \beta_{1} - \beta_{2}) \right]$$

Simplify both sides:

$$n_+ - n\beta_2 = \alpha n(1 - \beta_1 - \beta_2)$$

Solve for α :

$$\alpha = \frac{n_+ - n\beta_2}{n(1 - \beta_1 - \beta_2)}$$

This is the maximum likelihood estimate (MLE) of α .

- [6 points] What will be the maximum likelihood estimate of α for the special cases of
 - (i) $\beta_1 = \beta_2 = 0$
 - (ii) $\beta_1 = \beta_2 = 0.5$
 - (iii) $\beta_1 = 0.2, \beta_2 = 0.3$

Solution:

(i)
$$\beta_1 = \beta_2 = 0$$

When both $\beta_1 = \beta_2 = 0$, the test is perfectly accurate. The probability of a positive result is $P(\text{Positive}) = \alpha$. The MLE for α is simply:

$$\hat{\alpha} = \frac{n_+}{n}$$

(ii) $\beta_1 = \beta_2 = 0.5$

When both $\beta_1 = \beta_2 = 0.5$, the test is entirely random, as it gives a positive result half the time regardless of the driver's actual condition. In this case, the probability of a positive result is always 0.5, and the MLE for α is undefined since the likelihood does not depend on α .

(iii)
$$\beta_1 = 0.2, \ \beta_2 = 0.3$$

Substituting these values into the MLE formula:

$$\hat{\alpha} = \frac{n_+ - 0.3n}{(1 - 0.2 - 0.3)n} = \frac{n_+ - 0.3n}{0.5n} = 2(n_+ - 0.3n)/n$$

Thus, the MLE for α in this case is:

$$\hat{\alpha} = 2(n_+ - 0.3n)/n$$