INTRODUCTION TO MACHINE LEARNING COMPSCI 4ML3 LECTURE 13

HASSAN ASHTIANI

CLASSIFICATION

- PREDICT THE CATEGORY
- k-class classification
 - $y \in \{1, 2, 3, \dots, k\}$

EMAIL FILTER

1	2	5	ବ	7	6	3	S	ð	8
4	5	8	90	Ŋ	3	2	9	7	2
Z	ŝ	3	م	5	0	3	2	3	0
1	1	4	0	2	Л	2	S	3	6
8	S	حگر	0	4	0	5	5	3	9
9	5	4	2	2	7	1	6	0	9
1	Ļ	0	ζ	9	1	7	Ø	7	7
2	9	٦	\leq	6	4	2	2	2	9
4	4	4	ሪ	0	6	9	4	8	3
1	5	0	ζ	¥	Б	X	2	5	Λ

airplane	1	N.		X	*	1	2	-17-	-
automobile			Z		-	Tel			1-0
bird	S	5	2			4	1	1	12
cat	1		1	Si)		1	2	đ.	the sea
deer	1	48	X	R		Y	Y	1	-
dog	1	1	-	٩.	-			13	1
frog		19	-		290		and a	5	
horse	- Ale	-	P	2	1	17B	-3	24	-
ship	-		11	-	MA.	-	2	10	10-
truck	ALC: N		1	ġ.			A.A.	1	01.0

benign

-

-

ACCURACY, 0-1 LOSS

- FOR REGRESSION WE USED THE SQUARED LOSS
 - $l(y, \hat{y}) = (y \hat{y})^2$.
- LOSS FOR CLASSIFICATION?
 - THE ZERO-ONE LOSS (ERROR): $l^{0-1}(y, \hat{y}) = 1_{y \neq \hat{y}} \geq 0$

J = J

- PREDICTOR/LABELING-FUNCTION: $h: X \to Y$
- TRAINING SET: $Z = ((x^1, y^1), ..., (x^m, y^m))$
- EMPIRICAL (TRAINING) ERROR OF $h: L_Z^{0-1}(h) = \prod_{m \in I} \sum_{n \in I} \ell_{n}^{0-1}(h(x^{i})y^{i})$
- EXPECTED ERROR OF h: $L_D^{0-1} = \begin{bmatrix} \ell^{0-1}(h_{(X)}, y) \end{bmatrix}$

 $(\chi^{3}d) \sim D$

THE NEAREST NEIGHBOR CLASSIFIER

• $\hat{y}(x;Z) =$

- FIND THE CLOSEST x' to x in the data set
 - $\min_{x'} ||x x'||_2$
- OUTPUT THE LABEL OF x'
- DECISION BOUNDARY?

VORONOI DIAGRAM

NEAREST NEIGHBOR: PROS AND CONST

- Pros
 - BASICALLY NO TRAINING IS NEEDED.
 - NO PARAMETER OR HYPER-PARAMETER [∿]
 - EASY TO IMPLEMENT
 - Powerful and flexible U
 - NON-PARAMETRIC!
- Cons
 - HIGH TEST-TIME COMPUTATIONAL COMPLEXITY, MEMORY INTENSIVE
 - Curse-of-dimensionality!
- CAN WE USE NEAREST NEIGHBOR FOR REGRESSION?

CURSE OF DIMENSIONALITY FOR NN

- Assume points are in the d-dimensional unit cube
 - How many training points do I need to "Cover" this CUBE?
 - E.G., FOR ANY $x \in [0,1]^d$, I want to have at least one training point x^i such that $||x x^i||_2 < 0.1$
 - We need 10^d training points!
- NEAREST NEIGHBOR DOES NOT WORK WELL FOR HIGH
 DIMENSIONAL DATA

K-NEAREST NEIGHBOR

- $\hat{y}(x;Z) =$
 - Find the k closest points to x in the data set
 - Let $y^1, y^2, ..., y^k$ be the labels of these neighbor points
 - OUTPUT THE **MAJORITY VOTE** AMONG y^i s

- MORE ROBUST, SMOOTHER DECISION BOUNDARY, HIGHER-TRAINING ERROR BUT LESS PRONE TO OVERFITTING
 - STILL CURSE OF DIMENSIONALITY

LINEAR CLASSIFIER

• $\hat{y}_w(x) = sign(W^T x) = 1_{W^T x \ge 0}$ • How to find W given data set Z?

LINEAR CLASSIFIERS

- Empirical Risk Minimization
- $\widehat{W} = \arg\min_{w} L_Z^{0-1}(\widehat{y}_w) = \bigwedge_{w} \bigwedge_{w}$
- COMPUTATIONAL COMPLEXITY FOR d = 2?

 $\frac{1}{m} Z \mathcal{L} \left(\hat{\mathcal{Y}}_{w}(x^{i}), y^{i} \right)$

• HIGHER d?

HARDNESS OF LINEAR CLASSIFICATION

- IN GENERAL, FINDING THE LINEAR SEPARATOR WITH MINIMUM CLASSIFICATION ERROR IS NP-HARD (WITH RESPECT TO d)
- UNLESS....
 - DATA IS LINEARLY SEPARABLE!
 - .. OR OPTIMIZE ANOTHER LOSS FUNCTION INSTEAD!
- CAN'T WE JUST GO INTO HIGHER DIMENSIONS TO MAKE THE DATA LINEARLY SEPARABLE?

LINEARLY SEPARABLE DATA

SURROGATE LOSS FUNCTIONS

- SO FAR, WE ASSUMED THE CLASSIFIER RETURNS A DISCRETE VALUE
 - E.G., $\hat{y}_{W} = sign(W^{T}x) \in \{0,1\}$
- WHAT IF THE CLASSIFIER'S OUTPUT IS CONTINUOUS
 - E.G., $\hat{y}_w = W^T x$
 - \hat{y} will capture the "confidence" of the classifier too
- OTHER (CONTINUOUS) LOSS FUNCTIONS
 - MARGIN LOSS, CROSS-ENTROPY/NEGATIVE-LOG-LIKELIHOOD LOSS, ...
- POTENTIAL BENEFITS?
 - EASIER TO OPTIMIZE
 - MITIGATE OVERFITTING