INTRODUCTION TO MACHINE LEARNING COMPSCI 4ML3 LECTURE 14

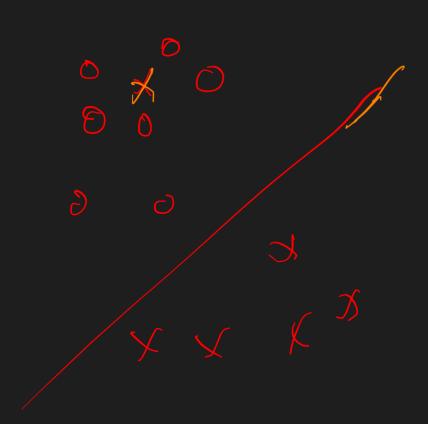
HASSAN ASHTIANI

LINEAR CLASSIFIER

- $\hat{y}_{w}(x) = sign(W^{T}x) = 1_{W^{T}x \ge 0}$
- How to find W given data set Z?

•
$$\widehat{W} = arg \min_{W} L_Z^{0-1}(\widehat{y}_W)$$

• How to minimize?



HARDNESS OF LINEAR CLASSIFICATION

- IN GENERAL, FINDING THE LINEAR SEPARATOR WITH MINIMUM CLASSIFICATION ERROR IS NP-HARD (WITH RESPECT TO d)
- UNLESS....
 - DATA IS LINEARLY SEPARABLE! ✓
 - .. OR OPTIMIZE A SURROGATE LOSS FUNCTION INSTEAD!
- CAN'T WE JUST GO INTO HIGHER DIMENSIONS TO MAKE THE DATA LINEARLY SEPARABLE?

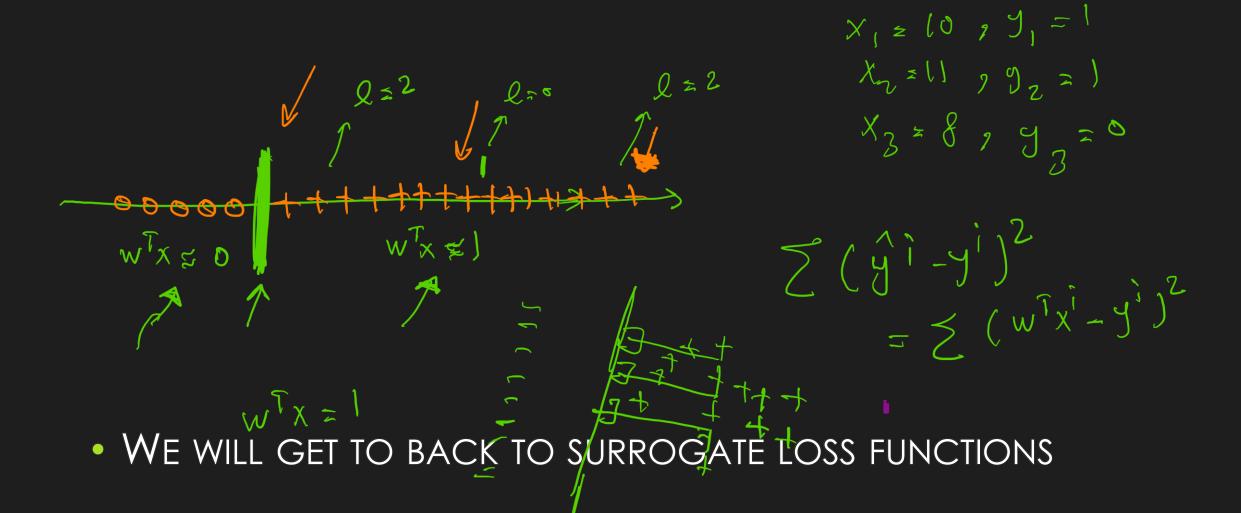
SURROGATE LOSS FUNCTIONS

- SO FAR, WE ASSUMED THE CLASSIFIER RETURNS A DISCRETE VALUE
 - E.G., $\hat{y}_w = sign(W^T x) \in \{0,1\}$
- WHAT IF THE CLASSIFIER'S OUTPUT IS CONTINUOUS

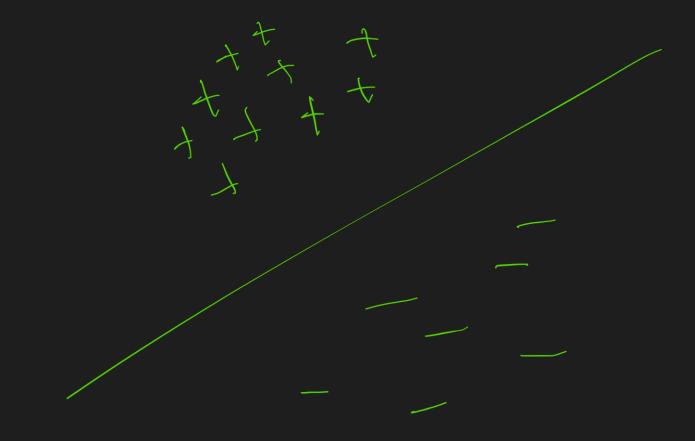
$$sgn(w^Tx)$$

- E.G., $\hat{y}_w = W^T x \mathscr{U}$
- \hat{y} will capture the "Confidence" of the classifier too
- OTHER (CONTINUOUS) LOSS FUNCTIONS
 - MARGIN LOSS, CROSS-ENTROPY/NEGATIVE-LOG-LIKELIHOOD LOSS, ...
- POTENTIAL BENEFITS?
 - EASIER TO OPTIMIZE 4
 - MITIGATE OVERFITTING

SQUARED LOSS FOR CLASSIFICATION?



LINEARLY SEPARABLE DATA



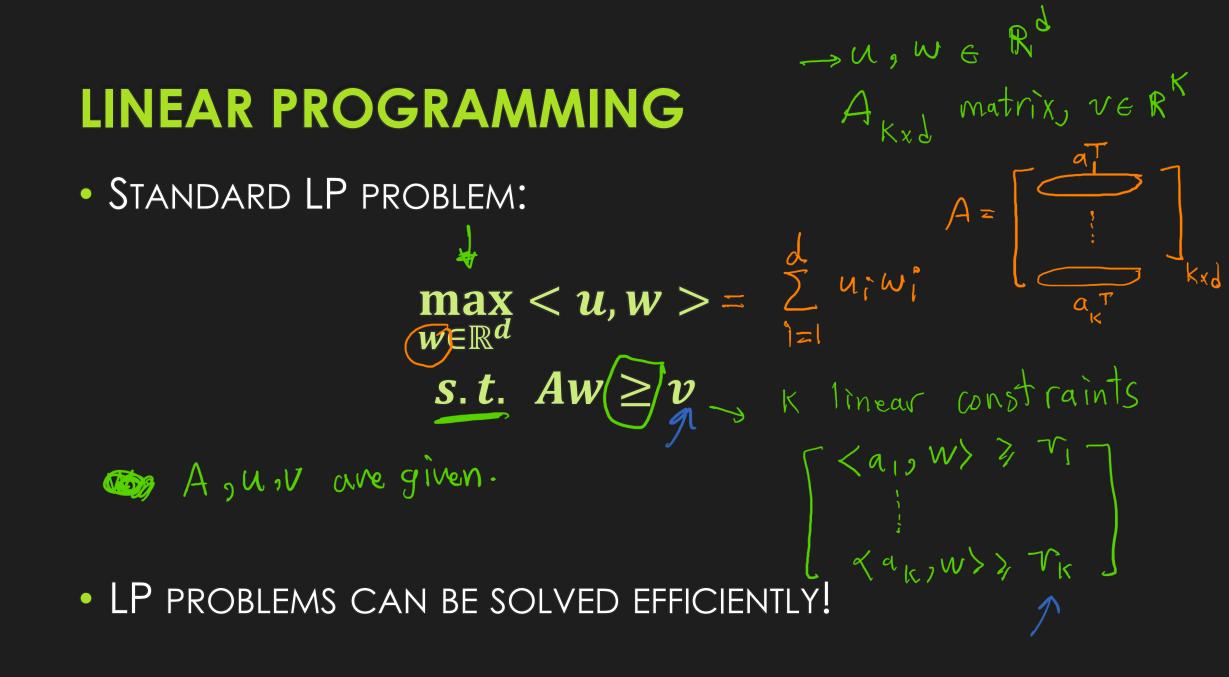
$y^{i} \in \{2, 4\}, -l^{i}$

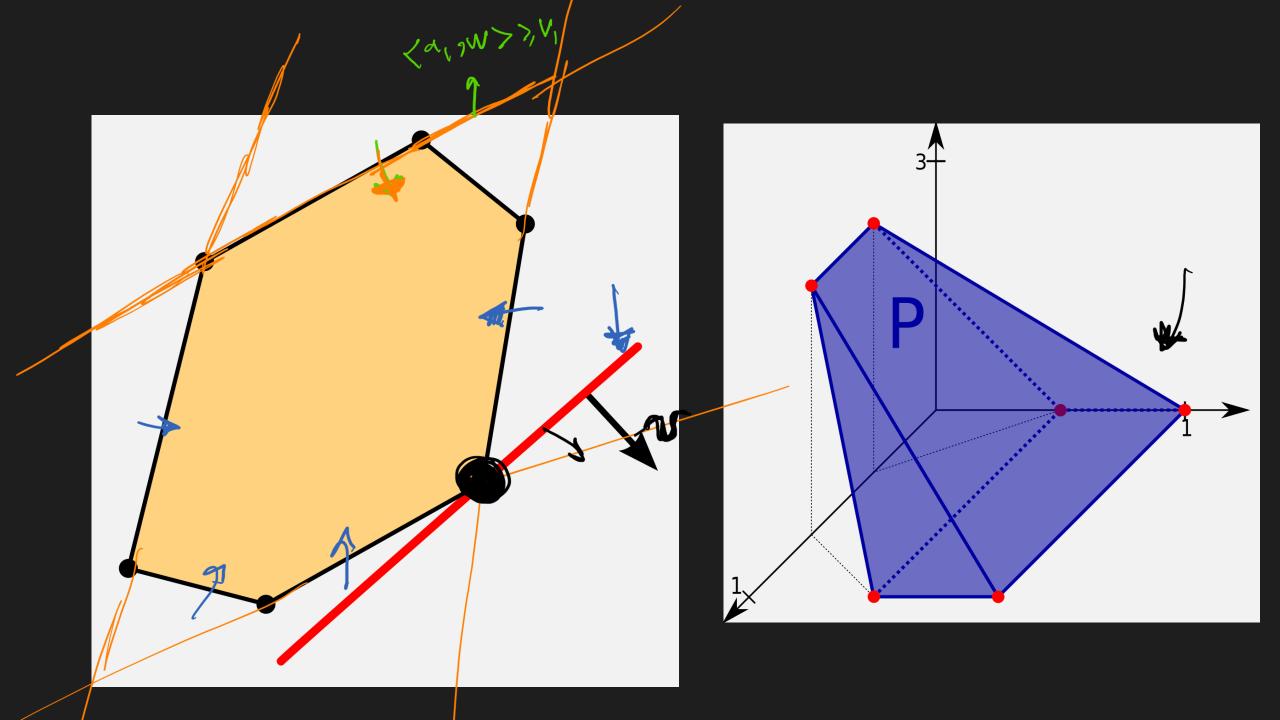
LINEARLY SEPARABLE DATA

- A BINARY CLASSIFICATION DATA SET $Z = \{(x^i, y^i)\}_{i=1}^n$ is Linearly separable if
 - There exists W^* such that

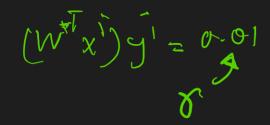
• FOR EVERY $i \in [n]$ we have $sgn(\langle x^i, W^* \rangle) = y^i$

- OR EQUIVALENTLY, FOR EVERY $i \in [n]$ we have $(W^{*T}x^i)y^i > 0$
- In other words, the classification error on Z is 0
- Can we find W^* efficiently for linearly separable data?





LP FOR CLASSIFICATION



 DATA IS LINEARLY SEPARABLE SO • $\exists W^*$ S.T. $\forall i \in [n]$, $(W^{*T}x^i)y^i > 0$ • SO, • $\exists W^*, \gamma > 0$ S.T. $\forall i \in [n], (W^{*T}x^i)y^i \ge \gamma_i$ • SO, When wold x 1 • $\exists W^*$, S.T. $\forall i \in [n], (W^{*T}x^i)y^i \ge 1$

LP FOR LINEAR CLASSIFICATION

- DEFINE $A = [x_j^i y^i]_{n \times d}$
- Then finding the optimal W is equivalent to

- We can use off-the-shelf LP solvers.
 - WHAT IF THE BEST W DOES NOT GO THROUGH THE ORIGIN? (IT HAS A BIAS OR INTERCEPT)? →

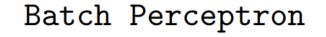
 $\max_{w\in\mathbb{R}^d}<\vec{0},w>$

s.t. $Aw \geq \vec{1}$

APPROACH 2: PERCEPTRON

- PROPOSED IN 50'S BY ROSENBLATT
- PREDECESSOR OF NEURAL NETWORKS
 - MULTI-LAYER PERCEPTRON!

ROSENBLATT'S PERCEPTRON



input: A training set $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ initialize: $\mathbf{w}^{(1)} = (0, \dots, 0)$ for $t = 1, 2, \dots$ if $(\exists i \text{ s.t. } y_i \langle \mathbf{w}^{(t)}, \mathbf{x}_i \rangle \leq 0)$ then $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + y_i \mathbf{x}_i$ else output $\mathbf{w}^{(t)}$

• In each update, W becomes "more correct" on x^i

• HTTPS://PHIRESKY.GITHUB.IO/KOGSYS-DEMOS/NEURAL-NETWORK-DEMO/?PRESET=ROSENBLATT+PERCEPTRON

THE GREEDY UPDATE

• In each update, W becomes "more correct" on x^i :

 $y^{1} \in i$ + i, -i?

 $W_{new}^{T} \times i y = \langle W_{old} + y' \times i , \chi i \rangle y$ $z W_{1}^{T} X^{i} y^{i} + \|X^{i}\|_{2}^{2} Y^{i} y^{j}$ Wold Xiyi \geq • WHAT ABOUT OTHER x j S? 2