INTRODUCTION TO MACHINE LEARNING COMPSCI 4ML3 LECTURE 15

HASSAN ASHTIANI

### LINEARLY SEPARABLE DATA

- A BINARY CLASSIFICATION DATA SET  $Z = \{(x^i, y^i)\}_{i=1}^n$  is Linearly separable if
  - There exists  $W^*$  such that
    - FOR EVERY  $i \in [n]$  we have  $sgn(\langle x^i, W^* \rangle) = y^i$
    - OR EQUIVALENTLY, FOR EVERY  $i \in [n]$  we have  $(W^{*T}x^i)y^i > 0$
- In other words, the classification error on Z is 0
- Can we find  $W^*$  efficiently for linearly separable data?

### LP FOR LINEAR CLASSIFICATION

- DEFINE  $A = \left[x_j^i y^i\right]_{n \times d}$
- Then finding the optimal W is equivalent to

 $\max_{w \in \mathbb{R}^d} < \vec{0}, w >$ s.t.  $Aw \ge \vec{1}$ 

### We can use off-the-shelf LP solvers!

# **APPROACH 2: PERCEPTRON**

- PROPOSED IN 50'S BY ROSENBLATT
- PREDECESSOR OF NEURAL NETWORKS
  - MULTI-LAYER PERCEPTRON!



# **ROSENBLATT'S PERCEPTRON**

Batch Perceptron

input: A training set  $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ initialize:  $\mathbf{w}^{(1)} = (0, \dots, 0)$ for  $t = 1, 2, \dots$ if  $(\exists i \text{ s.t. } y_i \langle \mathbf{w}^{(t)}, \mathbf{x}_i \rangle \leq 0)$  then  $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + y_i \mathbf{x}_i$ else output  $\mathbf{w}^{(t)}$ 

### • In each update, W becomes "more correct" on $x^i$

• HTTPS://PHIRESKY.GITHUB.IO/KOGSYS-DEMOS/NEURAL-NETWORK-DEMO/?PRESET=ROSENBLATT+PERCEPTRON

## THE GREEDY UPDATE

• In each update, W becomes "more correct" on  $x^i$ :

• WHAT ABOUT OTHER x<sup>j</sup>'S?





Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA Technical Report

#### ON CONVERGENCE PROOFS FOR PERCEPTRONS

Prepared for: OFFICE OF NAVAL RESEARCH WASHINGTON, D.C.

CONTRACT Nonr 3438(00)

By: Albert B. J. Novikoff

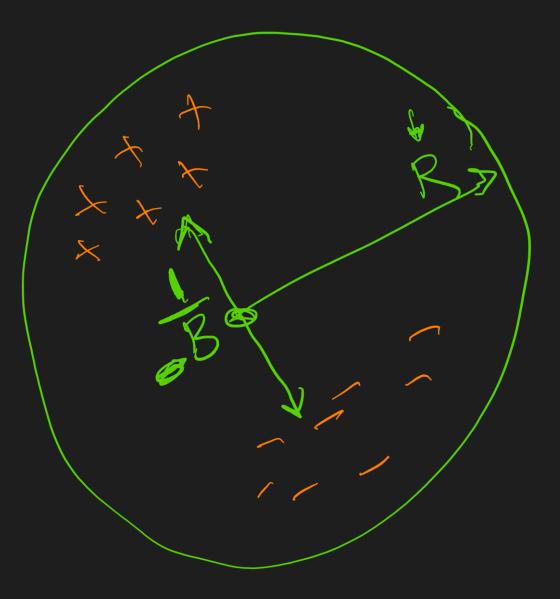


Novikoff, A. B. J. (1962). On convergence proofs on perceptrons. In *Proceedings of the Symposium on the Mathematical Theory of Automata*, Volume 12, pp. 615–622. Polytechnic Institute of Brooklyn.

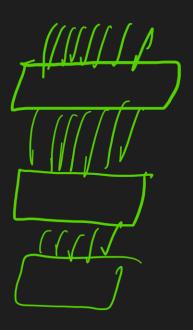
# **CONVERGENCE OF PERCEPTRON**

THEOREM 9.1 Assume that  $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_m, y_m)$  is separable, let  $B = \min\{\|\mathbf{w}\| : \forall i \in [m], y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \geq 1\}$ , and let  $R = \max_i \|\mathbf{x}_i\|$ . Then, the Perceptron algorithm stops after at most  $(RB)^2$  iterations, and when it stops it holds that  $\forall i \in [m], y_i \langle \mathbf{w}^{(t)}, \mathbf{x}_i \rangle > 0$ .

- #Steps does not explicitly depend on d (
- You can find more details about this lecture in
  - UNDERSTANDING MACHINE LEARNING, CHAPTER 9
  - HTTPS://WWW.CS.HUJI.AC.IL/~SHAIS/UNDERSTANDINGMACHINELEA RNING/UNDERSTANDING-MACHINE-LEARNING-THEORY-ALGORITHMS.PDF



- IN 1969, MARVIN MINSKY AND SEYMOUR PAPERT
  ARGUED THAT IT IS IMPOSSIBLE TO LEARN XOR FUNCTION
  USING MULTILAYER PERCEPTRON...
  - ONLY GOOD FOR LINEARLY SEPARABLE DATA
- STACKING PERCEPTRONS?
- 70's: AI (CONNECTIONISM) WINTER



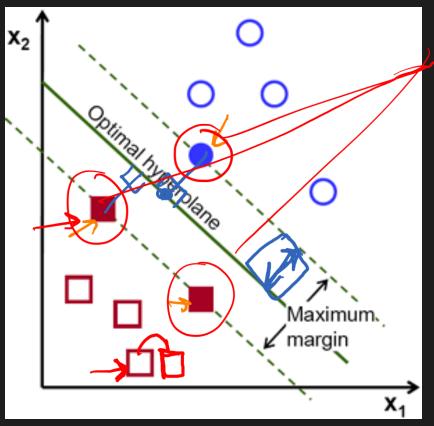
## **SUPPORT VECTOR MACHINES**

 AMONG PERFECT LINEAR SEPARATORS, WHICH ONE SHOULD WE CHOOSE?



# **SUPPORT VECTOR MACHINES**

- PICK THE LINEAR SEPARATOR
  THAT MAXIMIZES THE "MARGIN"
- MORE ROBUST TO "PERTURBATION"
- Less prone to overfitting
  - WORKS WELL FOR
    HIGH-DIMENSIONAL DATA (?)
  - MORE ON THAT LATER!



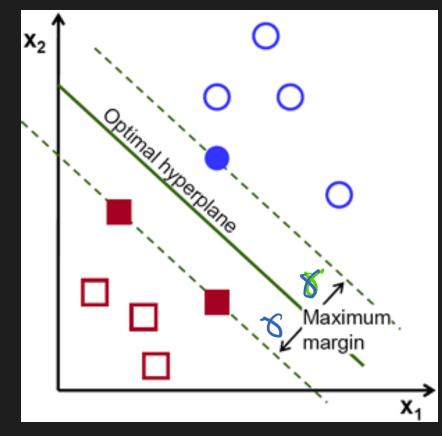
### **DISTANCE OF A POINT TO A HYPERPLANE**

THE EUCLIDEAN DISTANCE BETWEEN A POINT x and the hyperplane parametrized by W is (why?)  $\frac{|W^T x + b|}{||W||_2}$ 

- THE DECISION BOUNDARY OF A LINEAR CLASSIFIER IS DETERMINED BY THE DIRECTION OF W (NOT  $||W||_2$ )
- ASSUME  $||W||_2 = 1$ , then the distance is  $|W^T x + b|$

## **MAXIMUM MARGIN HYPERPLANE**

- LET THE HYPERPLANE BE PARAMETRIZED BY W and b
- ASSUME  $||W||_2 = 1$
- W has a  $\gamma$  margin if
  - $W^T x + b \ge \gamma$  for every blue x, and
  - $W^T x + b < -\gamma$  for every red x



For simplicity, assume 
$$b=0$$
  
 $y \in \{\pm 1\}$ 

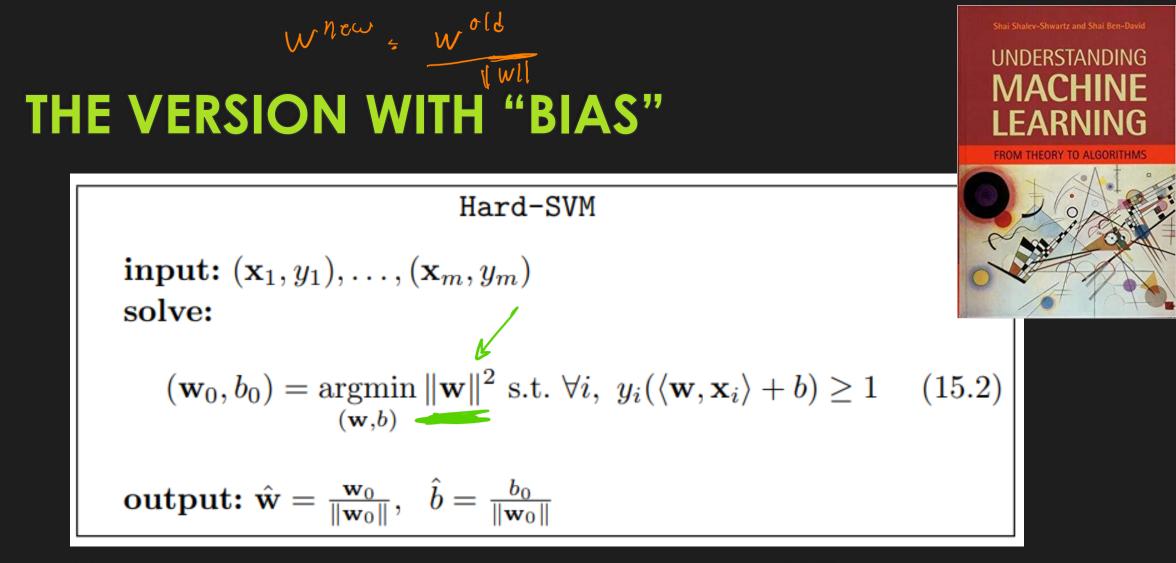
• 
$$Z = \{(x^i, y^i)\}_{i=1}^n, y \in \{-1, +1\}, ||W||_2 = 1$$

$$Margin(Z, w) = \min_{(X,Y) \in Z} w' X \mathcal{Y} = (X,Y) \in Z$$

$$= Max \delta$$
  
s.t.  $\forall (x_1y) \in \mathbb{Z}, \quad w^T x y \geq \delta$ 

Margin (Z,w) <o -> Z is not linearly separate.

### 



• WE COULD HAVE ALSO ADDED A DUMMY "1" FEATURE TO ALL POINTS SO AS TO ACCOUNT FOR THE BIAS/INTERCEPT

