INTRODUCTION TO MACHINE LEARNING COMPSCI 4ML3 LECTURE 15

HASSAN ASHTIANI

LINEARLY SEPARABLE DATA

- A BINARY CLASSIFICATION DATA SET $Z = \{(x^i, y^i)\}_{i=1}^n$ is Linearly separable if
 - There exists W^* such that
 - FOR EVERY $i \in [n]$ we have $sgn(\langle x^i, W^* \rangle) = y^i$
 - OR EQUIVALENTLY, FOR EVERY $i \in [n]$ we have $(W^{*T}x^i)y^i > 0$
- In other words, the classification error on Z is 0
- Can we find W^* efficiently for linearly separable data?

LP FOR LINEAR CLASSIFICATION

- DEFINE $A = \left[x_j^i y^i\right]_{n \times d}$
- Then finding the optimal W is equivalent to

 $\max_{w \in \mathbb{R}^d} < \vec{0}, w >$ s.t. $Aw \ge \vec{1}$

We can use off-the-shelf LP solvers!

APPROACH 2: PERCEPTRON

- PROPOSED IN 50'S BY ROSENBLATT
- PREDECESSOR OF NEURAL NETWORKS
 - MULTI-LAYER PERCEPTRON!

ROSENBLATT'S PERCEPTRON

Batch Perceptron

input: A training set $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ initialize: $\mathbf{w}^{(1)} = (0, \dots, 0)$ for $t = 1, 2, \dots$ if $(\exists i \text{ s.t. } y_i \langle \mathbf{w}^{(t)}, \mathbf{x}_i \rangle \leq 0)$ then $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + y_i \mathbf{x}_i$ else output $\mathbf{w}^{(t)}$

• In each update, W becomes "more correct" on x^i

• HTTPS://PHIRESKY.GITHUB.IO/KOGSYS-DEMOS/NEURAL-NETWORK-DEMO/?PRESET=ROSENBLATT+PERCEPTRON

THE GREEDY UPDATE

• In each update, W becomes "more correct" on x^i :

• WHAT ABOUT OTHER x^j'S?

Reproduced by the

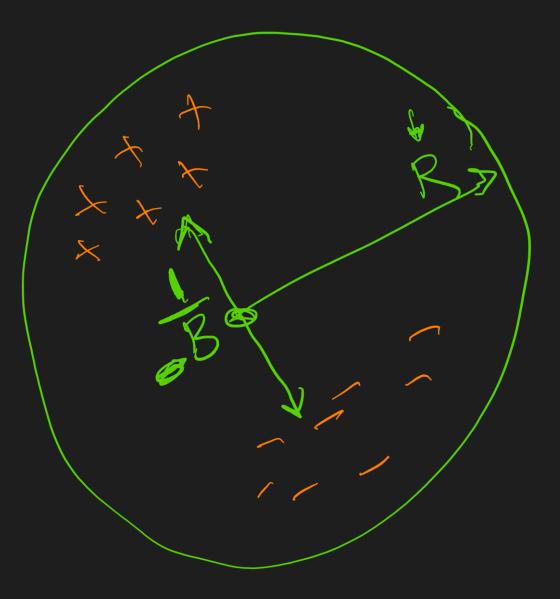
ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA Technical Report

ON CONVERGENCE PROOFS FOR PERCEPTRONS

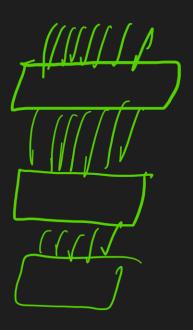
Prepared for: OFFICE OF NAVAL RESEARCH WASHINGTON, D.C.

CONTRACT Nonr 3438(00)

By: Albert B. J. Novikoff



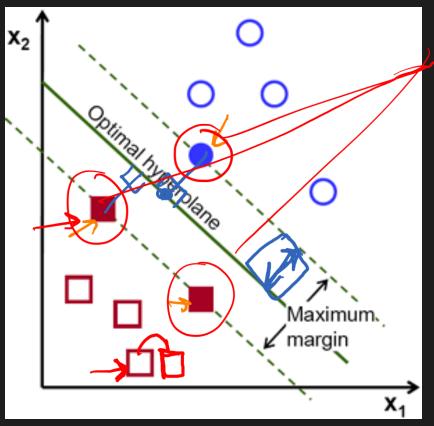
Novikoff, A. B. J. (1962). On convergence proofs on perceptrons. In *Proceedings of the Symposium on the Mathematical Theory of Automata*, Volume 12, pp. 615–622. Polytechnic Institute of Brooklyn.


CONVERGENCE OF PERCEPTRON

THEOREM 9.1 Assume that $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_m, y_m)$ is separable, let $B = \min\{\|\mathbf{w}\| : \forall i \in [m], y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \geq 1\}$, and let $R = \max_i \|\mathbf{x}_i\|$. Then, the Perceptron algorithm stops after at most $(RB)^2$ iterations, and when it stops it holds that $\forall i \in [m], y_i \langle \mathbf{w}^{(t)}, \mathbf{x}_i \rangle > 0$.

- #Steps does not explicitly depend on d (
- You can find more details about this lecture in
 - UNDERSTANDING MACHINE LEARNING, CHAPTER 9
 - HTTPS://WWW.CS.HUJI.AC.IL/~SHAIS/UNDERSTANDINGMACHINELEA RNING/UNDERSTANDING-MACHINE-LEARNING-THEORY-ALGORITHMS.PDF

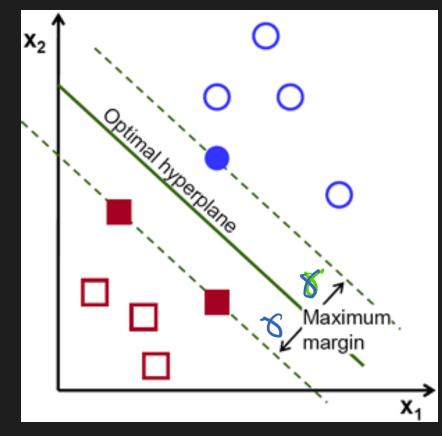
- IN 1969, MARVIN MINSKY AND SEYMOUR PAPERT
 ARGUED THAT IT IS IMPOSSIBLE TO LEARN XOR FUNCTION
 USING MULTILAYER PERCEPTRON...
 - ONLY GOOD FOR LINEARLY SEPARABLE DATA
- STACKING PERCEPTRONS?
- 70's: AI (CONNECTIONISM) WINTER


SUPPORT VECTOR MACHINES

 AMONG PERFECT LINEAR SEPARATORS, WHICH ONE SHOULD WE CHOOSE?

SUPPORT VECTOR MACHINES

- PICK THE LINEAR SEPARATOR
 THAT MAXIMIZES THE "MARGIN"
- MORE ROBUST TO "PERTURBATION"
- Less prone to overfitting
 - WORKS WELL FOR
 HIGH-DIMENSIONAL DATA (?)
 - MORE ON THAT LATER!


DISTANCE OF A POINT TO A HYPERPLANE

THE EUCLIDEAN DISTANCE BETWEEN A POINT x and the hyperplane parametrized by W is (why?) $\frac{|W^T x + b|}{||W||_2}$

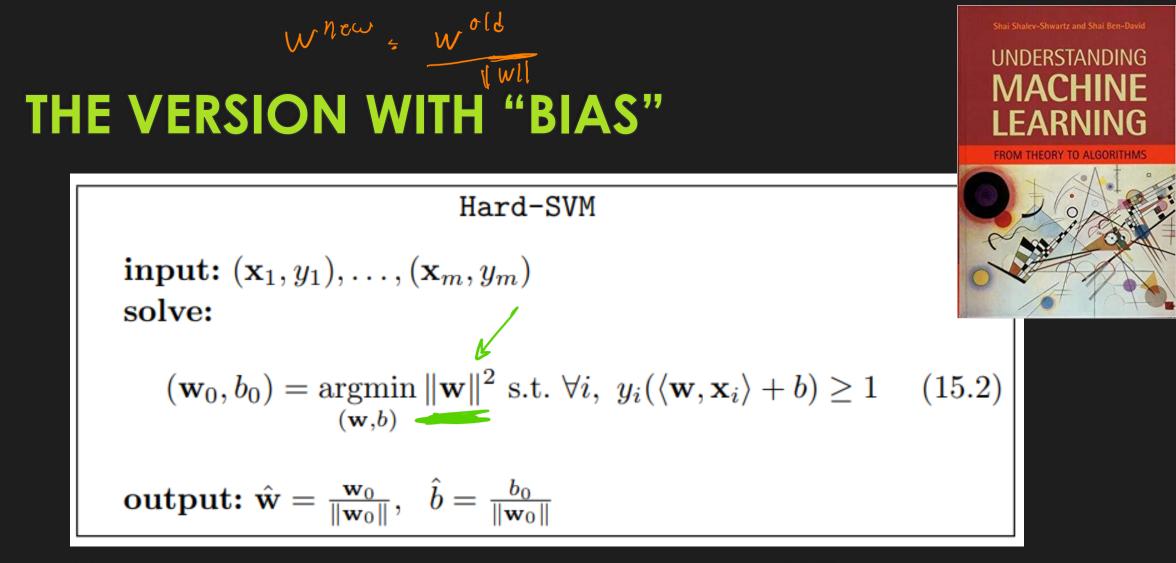
- THE DECISION BOUNDARY OF A LINEAR CLASSIFIER IS DETERMINED BY THE DIRECTION OF W (NOT $||W||_2$)
- ASSUME $||W||_2 = 1$, then the distance is $|W^T x + b|$

MAXIMUM MARGIN HYPERPLANE

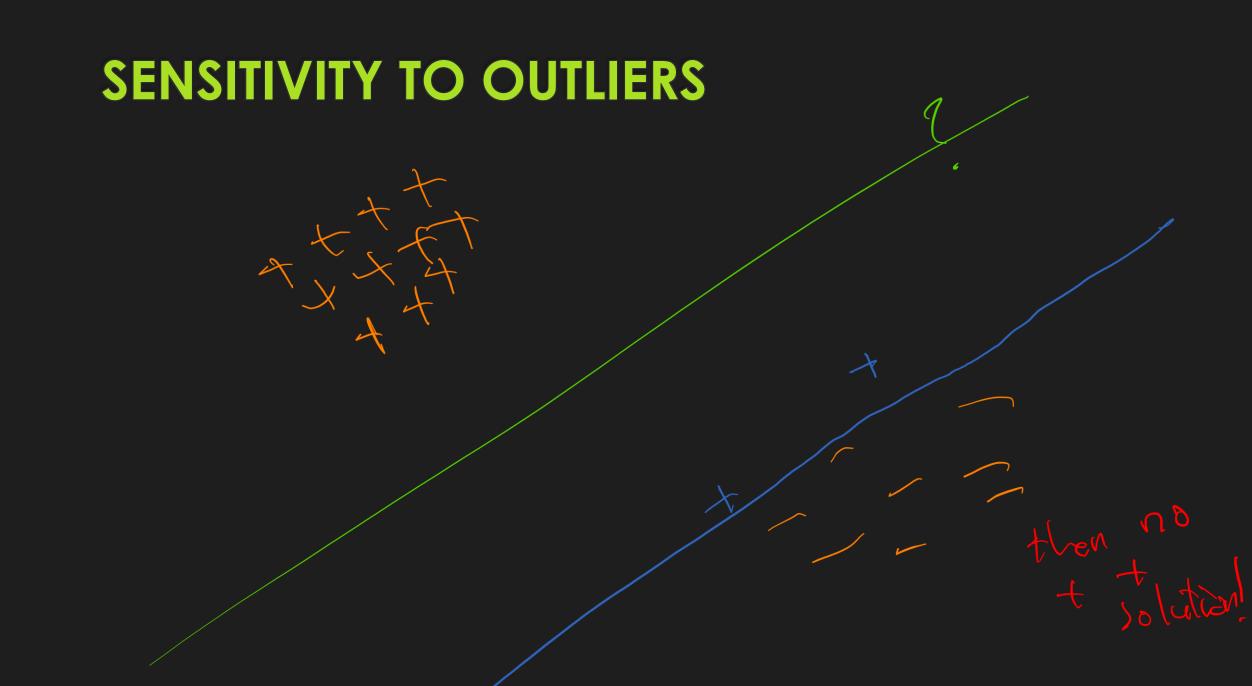
- LET THE HYPERPLANE BE PARAMETRIZED BY W and b
- ASSUME $||W||_2 = 1$
- W has a γ margin if
 - $W^T x + b \ge \gamma$ for every blue x, and
 - $W^T x + b < -\gamma$ for every red x

For simplicity, assume
$$b=0$$

 $y \in \{\pm 1\}$


•
$$Z = \{(x^i, y^i)\}_{i=1}^n, y \in \{-1, +1\}, ||W||_2 = 1$$

$$Margin(Z, w) = \min_{(X,Y) \in Z} w' X \mathcal{Y} = (X,Y) \in Z$$


$$= Max \delta$$

s.t. $\forall (x_1y) \in \mathbb{Z}, \quad w^T x y \geq \delta$

Margin (Z,w) <o -> Z is not linearly separate.

• WE COULD HAVE ALSO ADDED A DUMMY "1" FEATURE TO ALL POINTS SO AS TO ACCOUNT FOR THE BIAS/INTERCEPT

