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SUPPORT VECTOR MACHINES

• PICK THE LINEAR SEPARATOR

THAT MAXIMIZES THE “MARGIN”

• MORE ROBUST TO “PERTURBATION”

• LESS OVERFITTING PROBLEM!

• WORKS WELL FOR

HIGH-DIMENSIONAL DATA (?)

• MORE ON THAT LATER!



DISTANCE OF A POINT TO A HYPERPLANE

THE EUCLIDEAN DISTANCE BETWEEN A POINT 𝑥 AND THE

HYPERPLANE PARAMETRIZED BY 𝑊 IS (WHY?)

|𝑊𝑇𝑥 + 𝑏|

||𝑊||2

• ONLY THE DIRECTION OF 𝑊 MATTERS (NOT 𝑊 2)

• ASSUME 𝑊 2=1, THEN THE DISTANCE IS

|𝑊𝑇𝑥 + 𝑏|



MAXIMUM MARGIN HYPERPLANE

• LET THE HYPERPLANE BE

PARAMETRIZED BY 𝑊 AND 𝑏

• ASSUME 𝑊 2 = 1

• (𝑊, 𝑏) HAS A 𝛾 MARGIN IF

• 𝑊𝑇𝑥 + 𝑏 > 𝛾 FOR EVERY BLUE 𝑥, AND

• 𝑊𝑇𝑥 + 𝑏 < −𝛾 FOR EVERY RED 𝑥



THE VERSION WITH “BIAS”

• SENSITIVE TO OUTLIERS…





SOFT-MARGIN SVM



EQUIVALENT FORM OF SOFT-MARGIN SVM

• NO CONSTRAINTS!

• REGULARIZATION!

• SVMS ARE GOOD FOR HIGH-DIMENSIONAL DATA!



EXERCISE

• PROVE THAT THESE

TWO FORMS OF

SOFT-SVM ARE

EQUIVALENT

𝜉𝑖 = MAX(0, 1 − 𝑦𝑖 < 𝑤, 𝑥𝑖 >)



OPTIMIZATION

• NO CONSTRAINTS! 

• WE CAN USE SPECIAL-PURPOSE SVM SOLVERS

• …OR WE CAN JUST USE “GRADIENT DESCENT”! 

https://www.mit.edu/~amini/projects.html



GRADIENT DESCENT
• MINIMIZE OBJECTIVE FUNCTION E(𝑤) WITH SINGLE REAL-VALUED OUTPUT?

• MOVE IN THE DIRECTION OF STEEPEST DESCENT

• GRADIENT OF A FUNCTION AT A POINT IS THE DIRECTION OF STEEPEST ASCENT AT THAT POINT.

• GRADIENT

• GRADIENT DECENT

• INITIALIZE 𝑤0

• FOR 𝑡 = 1, …

• 𝑤𝑡+1 = 𝑤𝑡 − 𝛼∇W(E(𝑤))

• TERMINATE AFTER A FEW ITERATIONS (OR UNTIL CONVERGENCE)

• 𝛼 : STEP SIZE OR LEARNING RATE

• AN IMPORTANT PARAMETER TO SET…CAN DEPEND ON 𝑡  (𝛼𝑡)





GRADIENT DESCENT: GUARANTEES

• CONVERGES TO A LOCAL MINIMUM/SADDLE POINT

• WITH APPROPRIATE LEARNING RATE (CAN DEPEND ON 𝑡)

• NOT NECESSARILY GLOBAL MINIMUM

• GUARANTEED GLOBAL MINIMUM FOR CONVEX FUNCTIONS

• SOFT SVM, LS, LOGISTIC REGRESSION (?)…

• MAY GET STUCK IN LOCAL MINIMUM FOR NON-CONVEX

• WIDELY USED IN NEURAL NETWORKS (MORE ABOUT THIS LATER)



CALCULATING THE GRADIENT

• 𝐸 𝑤 = 𝐿 𝑤 + 𝜆. 𝑅𝑒𝑔(𝑤)

• E.G., FOR SOFT SVM WE HAVE 𝑅𝑒𝑔 𝑤 = 𝑤 2
2

• IT IS OFTEN EASY TO TAKE THE DERIVATIVE OF THE REGULARIZATION TERM

• WHAT ABOUT THE LOSS TERM?

• 𝐿 𝑤 = σ𝑖 𝑙(𝑓𝑤(𝑥𝑖), 𝑦𝑖) 

• ොy = 𝑓𝑤(𝑥) IS THE PREDICTED VALUE

• 𝑙( ො𝑦, 𝑦) IS THE LOSS FUNCTION

• ∇𝑤𝐿 𝑤 = ∇W σ𝑖 𝑙 𝑓𝑤 𝑥𝑖 , 𝑦𝑖 = σ𝑖 ∇W 𝑙 𝑓𝑤(𝑥𝑖), 𝑦𝑖

• COMPUTE THE GRADIENT FOR EACH DATA POINT AND THEN SUM THEM UP

• A BIT TOO SLOW…. MANY ITERATIONS



CALCULATING THE GRADIENT

• ∇W 𝐿 𝑤 = σ𝑖 ∇W 𝑙 𝑓𝑤(𝑥𝑖), 𝑦𝑖

• DIVIDE THE TRAINING DATA INTO A NUMBER OF “BATCHES”

• 𝑆 = 𝑆1 ∪ 𝑆2 ∪ ⋯ ∪ 𝑆𝑚

• ∇W

𝑗
= σ 𝑥,𝑦 ∈𝑆𝑗

∇W 𝑙 𝑓𝑤(𝑥), 𝑦

• ∇W E 𝑤 = σ𝑗 ∇W

𝑗



MINI-BATCH GRADIENT DESCENT

• ∇W L 𝑤 = σ𝑗 ∇W

𝑗

• STANDARD GRADIENT DESCENT:  𝑤𝑡+1 = 𝑤𝑡 − 𝛼 (σ𝑗 ∇W

𝑗
)

• MINI-BATCH GRADIENT DESCENT:

• 𝐹𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑚

• 𝑤 = 𝑤 − 𝛼 (∇W

𝑗
)

• BENEFITS?

• MEMORY

• PARALLELIZATION

• POTENTIAL DISADVANTAGES

• CAN BE LESS STABLE



STOCHASTIC GRADIENT DESCENT

• INSTEAD OF DIVIDING THE DATA INTO BATCHES, RANDOMLY SELECT A 
SUBSET AS A BATCH

• ANOTHER BENEFIT: ADDS A KIND OF RANDOMNESS



WHAT IS MISSING?

• ∇W E 𝑤 = σ𝑖 ∇W 𝑙 𝑓𝑤(𝑥𝑖), 𝑦𝑖 + ∇W 𝑤 2
2

• HOW TO CALCULATE ∇W 𝑙 𝑓𝑤(𝑥𝑖), 𝑦𝑖 ?

• HOW TO CALCULATE ∇W 𝑤 2
2?

• WILL GET BACK TO THIS LATER BUT FOR NOW…

• “AUTOMATIC DIFFERENTIATION”



AUTOMATIC DIFFERENTIATION IN PYTORCH
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