INTRODUCTION TO MACHINE LEARNING COMPSCI 4ML3 LECTURE 19

HASSAN ASHTIANI

NAÏVE BAYES CLASSIFIERS

- THE NAÏVE BAYES ASSUMPTION:
 - GIVEN THE LABEL, THE COORDINATES ARE STATISTICALLY INDEPENDENT
 - $P(x|y = k, \Theta) = \pi_j P(x_j|y = k, \Theta)$
- CHOICES FOR $P(x|y = i, \Theta)$
 - GAUSSIAN, CATEGORICAL, BINOMIAL, ETC.
- How to find most probable y?

NAÏVE BAYES – INFERENCE $P(y=0|x_{2}0)$ vs $P(y=1|x_{2}0)$ exective ---find the classification rule

NAÏVE BAYES CLASSIFIERS

• ONLY NEED TO ESTIMATE THE DISTRIBUTION OF EACH COORDINATE SEPARATELY GIVEN THE LABEL. using ML.

• NO CURSE OF DIMENSIONALITY

- FAST COMPUTATION FOR LEARNING AND PREDICTION
- ASSUMPTIONS ARE STRONG MAY BE FAR FROM REALITY

sparately

INDEPENDENCE OF FEATURES

"THE GENERATIVE ASSUMPTION

GENERATIVE VS DISCRIMINATIVE MODELS p(X(y=0) 2P(gtz) P(x[y=1)

) (yzo)

- PROBABILISTIC GENERATIVE MODELS
 - TRY TO MODEL P(x, y)

 $(\mathbf{\hat{o}})$

- I.E., LEARN BOTH P(x|y) and P(y)
- WE ARE LEARNING P(x) AS WELL
- PROBABILISTIC DISCRIMINATIVE MODELS
 - TRY TO MODEL P(y|x) ONLY
 - No need to learn or model $\overline{P(x)}$
 - E.G., LOGISTIC REGRESSION •
- NON-PROBABILISTIC DISCRIMINATIVE APPROACHES

- Assume there is a plane in \mathbb{R}^d , parametrized by W
 - W separates the two classes ``Nicely''
 - NEAR THE BOUNDARY, LABELS ARE (MORE) RANDOM
 - THE MORE WE GET AWAY FROM THE BOUNDARY, THE MORE DETERMINISTIC THE LABELS ARE

0.5

 $p(y=0|X)_{2}$

• $P(Y = 1 | x, W) = \sigma(W^T x)$ • $P(Y = -1 | x, W) = 1 - \sigma(W^T x)$ • P(x | W) = P(x)

• Where

•
$$\sigma(a) = \frac{1}{1+e^{-a}}$$

ANOTHER EQUIVALENT FORM

• FOR $y \in \{-1,1\}, P(Y = y | x, W) = \sigma(yW^T x)$

- CHANGE TO $y \in \{0,1\},$ $P(Y = y|x,W) = \sigma(W^T x)^y (1 \sigma(W^T x))^{1-y} = \begin{cases} \Gamma(W^T x) & y = 0 \\ 1 \Gamma(W^T x) & y = 0 \end{cases}$ $Log(P(Y = y|x,W)) = y LOG \sigma(W^T x) + (1 y)LOG (1 \sigma(W^T x))$
- $p = \sigma(W^T x) \in [0,1]$
 - p IS A PROBABILITY, REPRESENTES THE CONFIDENCE OF THE MODEL

Vs = crossentropy(p3y)

- MAXIMIZE $\sum_{i=1}^{n} (y^{i}) \log p^{i} + (1 (y^{i})) \log(1 p^{i}))$
 - Related to the cross entropy loss (more on this later)

OPTIMIZING THE LIKELIHOOD

- NO CLOSED FORM SOLUTION
- BUT STILL A CONCAVE FUNCTION
 - COMPUTER THE GRADIENT

• USEFUL FACT:
$$\frac{\partial \sigma(a)}{\partial a} = \sigma(a) (1 - \sigma(a))$$

• DO GRADIENT DESCENT

