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THE TRADE-OFF

• A POWERFUL/FLEXIBLE CURVE-FITTING METHOD

• SMALL TRAINING ERROR

• REQUIRES MORE TRAINING DATA TO GENERALIZE

• OTHERWISE LARGE TEST ERROR

• A LESS FLEXIBLE CURVE-FITTING METHOD

• LARGER TRAINING ERROR

• REQUIRES LESS TRAINING DATA

• SMALLER DIFFERENCE BETWEEN TRAINING AND TEST ERROR

• THE SO-CALLED “BIAS-VARIANCE” TRADE-OFF



THE CASE OF MULTIVARIATE POLYNOMIALS

• ASSUME 𝑀 ≫ 𝑑

• NUMBER OF TERMS (MONOMIALS): ≈ (
𝑀

𝑑
)𝑑

• #TRAINING SAMPLES ≈ #PARAMETERS ≈ (
𝑀

𝑑
)𝑑

• #TRAINING SAMPLES SHOULD INCREASE EXPONENTIALLY WITH 𝑑

• SUSCEPTIBLE TO OVER-FITTING…

• AN EXAMPLE OF CURSE OF DIMENSIONALITY!

• WE CAN SAY SAMPLE COMPLEXITY OF LEARNING MULTIVARIATE

POLYNOMIALS IS EXPONENTIAL IN 𝑑

• ORTHOGONAL TO COMPUTATIONAL COMPLEXITY



MODEL SELECTION: HOW TO AVOID OVERFITTING?

• SELECTING M (THE COMPLEXITY OF THE MODEL)

• BASED ON 𝑑 (DIMENSION) AND 𝑛 (NUMBER OF SAMPLES)

• MORE PRACTICALLY, TRY SEVERAL OPTIONS FOR M

• USE A HOLDOUT (EVALUATION) SAMPLE

• NEVER USE TEST DATA TO TUNE PARAMETERS!





AVOID OVERFITTING WITH REGULARIZED 

LEAST SQUARES

𝒎𝒊𝒏
𝑾∈𝓡𝒅

‖𝑿𝑾− 𝒀‖𝟐
𝟐 + 𝝀‖𝑾‖𝟐

𝟐

• ENCOURAGE A SOLUTION WITH A SMALLER NORM

• 𝑊𝑅𝐿𝑆 = 𝑋𝑇𝑋 + 𝜆𝐼 −1𝑋𝑇𝑌

• EXERCISE: PROVE THAT THIS IS THE OPTIMAL SOLUTION

• DOES THE INVERSE ALWAYS EXIST? 

• YES! (EXERCISE: PROVE)

• HOW TO CHOOSE 𝝀?





POLYNOMIAL CURVE-FITTING REVISITED

• MAP THE INPUTS 𝑥𝑖 TO A HIGHER DIMENSIONAL SPACE

• A KIND OF “PRE-PROCESSING” THE DATA

• DO LINEAR REGRESSION ON THE HIGH-DIMENSIONAL SPACE

• EQUIVALENT TO PERFORMING NON-LINEAR REGRESSION IN THE ORIGINAL SPACE

• MAP 𝜙 𝑥 : R𝑑1 ⟼ R𝑑2 WHERE 𝑑2 ≫ 𝑑1

• 𝜙 𝑥 =

𝜙1 𝑥
…

𝜙𝑑2 𝑥
IS NONLINEAR, E.G., 𝑥 ∈ 𝑅 AND 𝜙 𝑥 =

𝑥
𝑥2

𝑥3

…
𝑥𝑑2

• WHAT IF 𝑑2 IS MUCH LARGER THAN THE NUMBER OF SAMPLES?



CURVE-FITTING WITH BASIS FUNCTIONS

• FEATURE MAP: 𝜙 𝑥 : R𝑑1 ⟼ R𝑑2 𝑑2 ≫ 𝑑1

• Φ𝑛×𝑑2 = 𝜙 𝑥1 … 𝜙 𝑥𝑛 𝑇

• TRAINING

• 𝑾∗ = 𝒎𝒊𝒏
𝑾

‖𝚽𝑾− 𝒀‖𝟐
𝟐 + 𝝀‖𝑾‖𝟐

𝟐

• 𝑾∗ = 𝚽𝑇𝚽+ 𝜆𝐼 −1𝚽𝑇𝑌

• PREDICTION

• ෝ𝒚 =< 𝑾∗, 𝝓 𝒙 > = 𝑾∗𝑻𝝓(𝒙)



OTHER CHOICES OF 𝜙 𝑥

• PICK A FIXED (NONLINEAR) Φ 𝑥

• ENCODES YOUR PRIOR KNOWLEDGE ABOUT THE DATA

• FEATURE ENGINEERING!

• POLYNOMIAL BASIS FUNCTIONS

• GAUSSIAN BASIS FUNCTIONS: 

• 𝜙𝑖 𝑥 = 𝑒
−

𝑥−𝜇𝑖 2
2

2𝜎2

• DFT (FFT), WAVELET FOR TIME SERIES

• IS IT POSSIBLE TO LEARN THE MAPPING 𝜙𝑖 𝑥 ITSELF?

• LATER, E.G., NEURAL NETWORKS







COMPUTATIONAL COMPLEXITY OF NAÏVE RLS

• TRAINING: CALCULATE WRLS = 𝜙𝑇𝜙 + 𝜆𝐼 −1𝜙𝑇𝑌

• BOTTLENECK: MATRIX INVERSION

• HOW MANY OPERATIONS?

• PREDICTION: ො𝑦 =< 𝜙 𝑥 ,𝑤𝑅𝐿𝑆 >

• HOW MANY OPERATIONS?

• REGULARIZATION ALLOWS US TO GO INTO HIGH-DIMENSIONAL SPACE WITHOUT

OVERFITTING, BUT IT DOES NOT SOLVE THE COMPUTATIONAL PROBLEM



COMPUTATIONAL COMPLEXITY

current best 

• MATRIX MULTIPLICATION (N-BY-N MATRICES)

• NATIVE METHOD: O(𝑁3)

• STRASSEN’S ALGORITHM: O(𝑁2.8074)

• COPPERSMITH–WINOGRAD-LIKE ALGORITHMS [CURRENT BEST

O(𝑁2.3728639)]

• MATRIX INVERSION

• GAUSSIAN ELIMINATION: O(𝑁3)

• POSSIBLE TO REDUCE IT TO MULTIPLICATION

https://arxiv.org/abs/1401.7714


THE COMPUTATIONAL PROBLEM

• CAN WE SOLVE THE REGULARIZED LEAST SQUARES IN

R𝑑2 WITHOUT EXPLICITLY MAPPING THE DATA INTO R𝑑2?  

• 𝑾∗ = 𝒎𝒊𝒏
𝑾∈𝑹𝒅𝟐

‖𝚽𝑾− 𝒀‖𝟐
𝟐 + 𝝀‖𝑾‖𝟐

𝟐

• SOMETHING LIKE MULTIPLICATION USING FFT

• IF SO, WE COULD EVEN MAP THE DATA TO AN INFINITE

DIMENSIONAL SPACE!!



FFT AND MULTIPLICATION
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