INTRODUCTION TO MACHINE LEARNING COMPSCI 4ML3 LECTURE 5

Hassan Ashtiani

THE TRADE-OFF

- A POWERFUL/FLEXIBLE CURVE-FITTING METHOD
 - Small training error
 - Requires more training data to generalize
 - OTHERWISE LARGE TEST ERROR
- A LESS FLEXIBLE CURVE-FITTING METHOD
 - LARGER TRAINING ERROR
 - Requires less training data
 - Smaller difference between training and test error
- THE SO-CALLED "BIAS-VARIANCE" TRADE-OFF

THE CASE OF MULTIVARIATE POLYNOMIALS

- Assume $M \gg d$
- NUMBER OF TERMS (MONOMIALS): $\approx \left(\frac{M}{d}\right)^d$
- #TRAINING SAMPLES \approx #PARAMETERS $\approx (\frac{M}{d})^d$
 - #TRAINING SAMPLES SHOULD INCREASE EXPONENTIALLY WITH d
 - SUSCEPTIBLE TO OVER-FITTING...
 - AN EXAMPLE OF **CURSE OF DIMENSIONALITY!**
- We can say <u>**Sample complexity**</u> of learning multivariate polynomials is exponential in d
 - ORTHOGONAL TO COMPUTATIONAL COMPLEXITY

MODEL SELECTION: HOW TO AVOID OVERFITTING?

• SELECTING (M) (THE COMPLEXITY OF THE MODEL)

SASED ON d (dimension) and n (number of samples)

• MORE PRACTICALLY, TRY SEVERAL OPTIONS FOR M

• USE A HOLDOUT (EVALUATION) SAMPLE

T.

• NEVER USE TEST DATA TO TUNE PARAMETERS!

* Mis a Hyperparmeter

AVOID OVERFITTING WITH REGULARIZED LEAST SQUARES $\min_{W \in \mathcal{R}^d} ||XW - Y||_2^2 + \lambda ||W||_2^2 \checkmark$

0 = 1000000

000001 = 100000

Wzo -> 100

W= (0.1,0.1,0.0)

p, vgl

• ENCOURAGE A SOLUTION WITH A SMALLER NORM

- $W^{RLS} = (X^T X + \lambda I)^{-1} X^T Y$
 - EXERCISE: PROVE THAT THIS IS THE OPTIMAL SOLUTION
- DOES THE INVERSE ALWAYS EXIST?
 - Yes! (Exercise: Prove) $\lambda > 0$
- How to choose λ ?

 $= (0.01, 0.01, 0.1, 0.1, 0.01) \rightarrow \text{small horns}$ w= (0, 0, 0, 0.1, 0) - sparse vector

POLYNOMIAL CURVE-FITTING REVISITED

- Map the inputs x^i to a higher dimensional space
 - A KIND OF "PRE-PROCESSING" THE DATA
- DO <u>LINEAR</u> REGRESSION ON THE HIGH-DIMENSIONAL SPACE
 - Equivalent to performing <u>NON-LINEAR</u> REGRESSION IN THE ORIGINAL SPACE
- MAP $\phi(x)$: $\mathbb{R}^{d_1} \mapsto \mathbb{R}^{d_2}$ where $d_2 \gg d_1$

•
$$\phi(x) = \begin{pmatrix} \phi_1(x) \\ \dots \\ \phi_{d_2}(x) \end{pmatrix}$$
 is nonlinear, e.g., $x \in R$ and $\phi(x) = \begin{pmatrix} e^{-1} \\ e^$

• What if d_2 is much larger than the number of samples?

CURVE-FITTING WITH BASIS FUNCTIONS

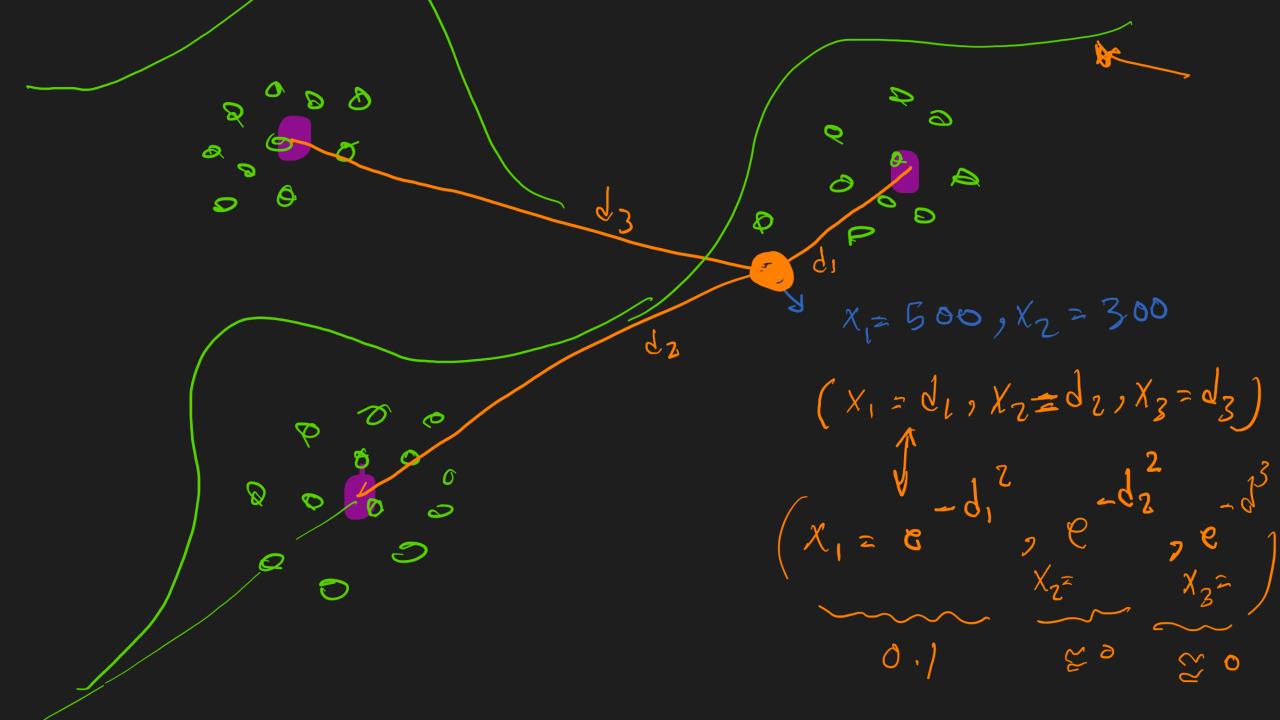
- FEATURE MAP: $\phi(x)$: $\mathbb{R}^{d_1} \mapsto \mathbb{R}^{d_2} \quad d_2 \gg d_1$
- $\Phi_{n \times d_2} = [\phi(x^1) \quad \dots \quad \phi(x^n)]^T \xrightarrow{} X_{n \times d_1}$ TRAINING
 - $W^* = \min_W \|\Phi W Y\|_2^2 + \lambda \|W\|_2^2$
 - $W^* = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T Y$

PREDICTION

•
$$\widehat{y} = \langle W^*, \phi(x) \rangle = W^{*T}\phi(x)$$

OTHER CHOICES OF $\phi(x)$

- PICK A <u>FIXED</u> (NONLINEAR) $\Phi(x)$
 - ENCODES YOUR PRIOR KNOWLEDGE ABOUT THE DATA
 - FEATURE ENGINEERING!
- POLYNOMIAL BASIS FUNCTIONS
 - Gaussian basis functions:
 - $\phi_i(x) = e^{-\frac{\|x-\mu_i\|_2^2}{2\sigma^2}}$
 - DFT (FFT), WAVELET FOR TIME SERIES
- Is it possible to learn the mapping $\phi_i(x)$ itself?
 - LATER, E.G., NEURAL NETWORKS



COMPUTATIONAL COMPLEXITY OF NAÏVE RLS

- TRAINING: CALCULATE $W^{\text{RLS}} = (\phi^T \phi + \lambda I)^{-1} \phi^T Y$
- BOTTLENECK: MATRIX INVERSION
 - HOW MANY OPERATIONS?
- PREDICTION: $\hat{y} = \langle \phi(x), w^{RLS} \rangle$
 - HOW MANY OPERATIONS?

 REGULARIZATION ALLOWS US TO GO INTO HIGH-DIMENSIONAL SPACE WITHOUT OVERFITTING, BUT IT DOES NOT SOLVE THE COMPUTATIONAL PROBLEM

COMPUTATIONAL COMPLEXITY

- MATRIX MULTIPLICATION (N-BY-N MATRICES)
 - NATIVE METHOD: $O(N^3)$
 - STRASSEN'S ALGORITHM: $O(N^{2.8074})$
 - COPPERSMITH-WINOGRAD-LIKE ALGORITHMS [CURRENT BEST $O(N^{2.3728639})$]
- MATRIX INVERSION
 - Gaussian Elimination: $O(N^3)$
 - POSSIBLE TO REDUCE IT TO MULTIPLICATION

THE COMPUTATIONAL PROBLEM

- CAN WE SOLVE THE REGULARIZED LEAST SQUARES IN \mathbb{R}^{d_2} without explicitly mapping the data into \mathbb{R}^{d_2} ?
 - $W^* = \min_{W \in \mathbb{R}^{d_2}} \|\Phi W Y\|_2^2 + \lambda \|W\|_2^2$
- Something like multiplication using FFT
- IF SO, WE COULD EVEN MAP THE DATA TO AN INFINITE DIMENSIONAL SPACE!!

FFT AND MULTIPLICATION