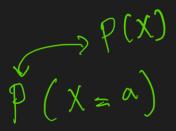
INTRODUCTION TO MACHINE LEARNING COMPSCI 4ML3 LECTURE 9

Hassan Ashtiani



REVIEW: BAYES RULE, CHAIN RULE p(x) = p(x)

- Joint distribution: P(X, Y)
- SUM RULE: $P(X) = \sum_{X} P(X, Y)$
- CONDITIONAL DISTRIBUTION: P(X|Y) =
- > BAYES RULE: P(X|Y) = P(Y|X)P(X)
 - CHAIN RULE: $P(X_1, X_2, \dots, X_k) \stackrel{(r)}{=}$ $P(X_1) P(X_2(X_1) P(X_3 | X_2, X_1), \dots, P(X_K | X_1, X_2, X_{k-1})$

P(X, X) P(Y)

 $P(X_1, X_2, \dots, X_k | Y) = P(X_1 | Y) P(X_2 | X_1, Y)$

 $P(X|Y), P(Y|X) \rightarrow P(X_{9}Y)=?$

REVIEW: INDEPENDENCE • X AND Y ARE INDEPENDENT IF P(X,Y) = P(X)

Assume X_1, \ldots, X_k are independent given Y

• $P(X_1, X_2, ..., X_k | Y) =$ $p(X_1, Y) p(X_2 | Y) \cdots p(X_k | Y)$

STATISTICAL APPROACH TO ML

- Our goal is to do well on New/Unseen (Test) data
- WE WERE MOSTLY MINIMIZING THE TRAINING ERROR
 - DIRECTLY/SYSTEMATICALLY OPTIMIZING THE TEST ERROR?
- There is uncertainly about the unseen data
 - WE CANNOT BE 100% SURE ABOUT THE PERFORMANCE OF <u>ANY</u>
 <u>METHOD</u> ON THE TEST DATA
 - A METHOD THAT WORKS WELL ON TEST SET MOST OF THE TIME?

I.I.D ASSUMPTION

- Assume there is an underlying (unknown) distribution D
- Assume that each of the training and test instances are sampled independently from D
- We say train and test sets are i.i.d. (independent and identically distributed) samples generated from D

I.I.D ASSUMPTION

- WHY ARE THESE ASSUMPTIONS NECESSARY?
 - SAME DISTRIBUTION FOR ALL SAMPLES ("IDENTICALLY")
 - INDEPENDENT SAMPLES ("INDEPENDENTLY")
 - Same distribution for train and test
 - The distribution is unknown

PARAMETER ESTIMATION

- ASSUME THAT THE DISTRIBUTION COMES FROM SOME KNOWN FAMILY
 - Bernoulli, Gaussian, ...
- Use the training set to estimate the value of the unknown distribution parameters
- Useful in both unsupervised and supervised learning

BIASED COIN EXAMPLE (UNSUPERVISED)

- FLIPPING A COIN
 - Outcome is head (0) or tail (1), so $x \in \{0,1\}$

•
$$P(x = 0) = \alpha$$
, $P(x = 1) = 1 - \alpha$

- x is a Bernoulli random variable
- BIAS (α) IS UNKNOWN (THE PARAMETER)
- Given an i.i.d sample, estimate α

•
$$X = (x^1, x^2, x^3, ..., x^n)$$

• E.G.,
$$n = 10$$
, $X = (0,0,1,1,0,1,0,1,0,0)$

ESTIMATING THE BIAS OF THE COIN

- Let $n_0 = \#$ Heads, $n_1 = \#$ Tails (so $n_0 + n_1 = n$) • Is $\hat{\alpha} = \frac{n_0}{n_0 + n_1}$ A GOOD ESTIMATE?
- IS THERE A RATIONAL BEHIND THIS ESTIMATE?

MAXIMUM LIKELIHOOD ESTIMATE (MLE)

GIVEN THE TRAINING SET $X = (x^1, x^2, ..., x^n)$, estimate α .

• MLE MAXIMIZES THE PROBABILITY OF THE OBSERVATIONS GIVEN THE PARAMETERS

•
$$\alpha^{ML} = \underset{\alpha}{argmax} P (X|\alpha)$$

EQUIVALENTLY (WHY?)

•
$$\alpha^{ML} = \underset{\alpha}{\operatorname{argmin}} - \operatorname{LOG}(\Sigma_{i}^{\prime}P(x^{i}|\alpha)) - \sum \operatorname{log}(P(x^{i}|\alpha))$$

GATIVE-LOG-LIKELIHOOD $ML = \operatorname{argmax} P(X | d) = \operatorname{argmin} - P(X | d)$ = argmin - log p(x|a) $= \operatorname{argmin}_{A} \operatorname{log}_{i=1} \operatorname{TC}_{P}(X^{i}|A)$ monotone $= argmin - \sum_{i=1}^{n} \log p(x^{i}|x)$ 00

ELIHOOD FOR COINS E 6 R 10 0 C F Likelihood = $P(X \mid \alpha) = \prod_{i=1}^{n} P(X^{i} \mid \alpha) =$ $= \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & x' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & x' = 1 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & x' = 1 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & x' = 1 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^{i}(a)) \\ \vdots & y' = 0 \end{array} \right) \left(\begin{array}{ccc} T & p(x^$ $\alpha^{n_{0}} (1-\alpha)^{n_{1}} = f(\alpha)$ $= (n_{0} \alpha^{n_{0}-1} (1-\alpha)^{n_{1}} - \alpha^{n_{0}} n_{1} (1-\alpha)^{n_{1}}$ $= n_{0} \alpha^{n_{0}-1} (1-\alpha) - n_{1} \alpha^{n_{0}} n_{1} (1-\alpha)^{n_{1}}$

MAXIMUM A POSTERIORI ESTIMATE

 MAXIMIZES THE PROBABILITY OF THE PARAMETERS GIVEN THE OBSERVATIONS

•
$$\alpha^{MAP} = \underset{\alpha}{argmax} P(\alpha|X)$$

•
$$\alpha^{MAP} = \underset{\alpha}{argmin} \left(-LOG(P(\alpha)) - \sum_{i=1}^{n} LOG P(x^{i}|\alpha) \right)$$

PRIOR VS POSTERIOR DISTRIBUTIONS

- $P(\alpha)$ Captures the **prior** distribution
- $P(\alpha|X)$ captures the **posterior** distribution
- IN OTHER WORDS,
 - We start by a prior belief about value of α
 - Our belief is updated after seeing some real data
 - This is a **Bayesian** Approach

MAP FOR COINS – UNIFORM PRIOR

MAP FOR COINS – NONUNIFORM PRIOR