INTRODUCTION TO MACHINE LEARNING COMPSCI 4ML3

> Lecture 22 Hassan Ashtiani

UNIVERSAL APPROXIMATION THEOREM

ANY POTENTIAL DRAWBACK FOR NEURAL NETS?

- More flexible models require more training data
- "NO FREE LUNCH" 🖌
 - COMPUTATIONAL COMPLEXITY

How can we address these drawbacks? Other models?

- INCORPORATE DOMAIN KNOWLEDGE
- More on this later

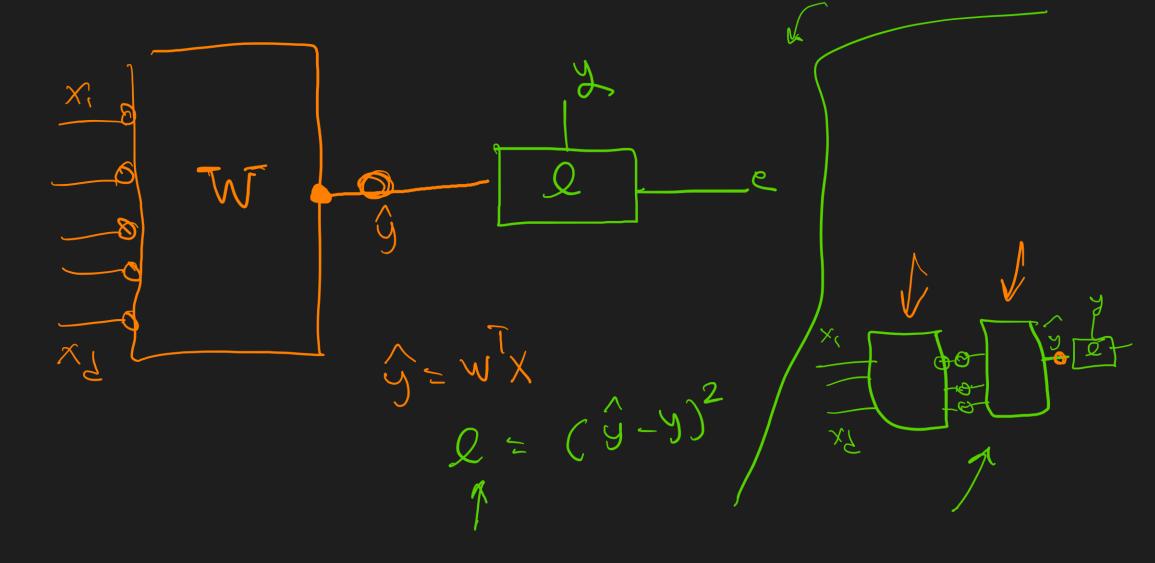
• IS THERE A POINT IN HAVING MORE THAN ONE HIDDEN LAYER?

FEED-FORWARD NNS FOR SUPERVISED LEARNING

- LOSS FUNCTION?
- - OUTPUT LAYER?

• OTHER KINDS OF LAYERS/ARCHITECTURES?

REGRESSION: LEAST SQUARES EXAMPLE



class LinearRegression(nn.Module):

def __init__(self, input_dim, output_dim) -> None:
 super().__init__()
 self.fc = nn.Linear(input_dim, output_dim)

def forward(self, x):
 return self.fc(x)

model = LinearRegression(input_size, output_size)

```
loss = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
```

```
for epoch in range(n_iters):
    y_pred = model(X)
    l = loss(Y,y_pred)
    l.backward()
    optimizer.step()
    optimizer.zero_grad()
```

REGRESSION WITH NNS

- THE OUTPUT LAYER CAN BE

 - JUST LINEAR (NO ACTIVATION FUNCTION) [-009+00]
 LINEAR + RECTIFIED LINEAR UNITS (RELU) [09+00]

 $\left[\left[\left(\ast \gamma \right) \right] \right]$

 $\mathcal{N}\mathcal{N}$

- -> LINEAR + SIGMOID [0,1]
 - LINEAR + HYPERBOLIC TANGENT (-1,+1)^d
- LOSS FUNCTION

- SQUARED LOSS
- ABSOLUTE LOSS (ℓ_1)

CLASSIFICATION WITH NNS

NUMBER OF OUTPUTS?

- SINGLE OUTPUT (BINARY CLASSIFICATION)
 - ONE-HOT ENCODING (BINARY OR MULTICLASS)

 $\frac{p[y=1]}{p[y=2]} (om pac)$

-p[y=1] How likely is it that x belowys to y=1...

CLASSIFICATION WITH NNS

OUTPUT LAYER AND LOSS FUNCTION?

• OUTPUT LAYER: LINEAR + "THRESHOLD/ARGMAX"?

· LOSS: 0-1 FUNCTION? Hard to optimize - so it flard to optimize for training

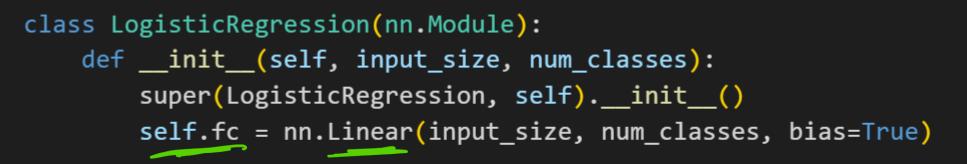
CLASSIFICATION WITH NNS

OUTPUT LAYER AND LOSS FUNCTION?

- Output layer: Linear + Softmax
- LOSS: NEGATIVE LOG-LIKELIHOOD (CROSS-ENTROPY)

• IN PYTORCH, CROSSENTROPY LOSS INCLUDES A SOFTMAX

LOGISTIC REGRESSION



def forward(self, x):
 return self.fc(x)

model = LogisticRegression(input_size, num_classes)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)

MULTIPLE LAYERS MODELS

class NonlinearModel(nn.Module):

def __init__(self, input_size, num_classes):
 super(ModifiedModel, self).__init__()
 self.fc1 = nn.Linear(input_size, 5000)
 self.fc2 = nn.Linear(5000, num_classes)
 self.relu = nn.ReLU()

def forward(self, x):
 x = self.fc1(x)
 x = self.relu(x)
 return self.fc2(x)

Kernels US multilæger NNS

LINEAR CLASSIFICATION WITH HINGE LOSS

STOCHASTIC GRADIENT DESCENT

```
Algorithm 8.1 Stochastic gradient descent (SGD) update

Require: Learning rate schedule \epsilon_1, \epsilon_2, \ldots

Require: Initial parameter \boldsymbol{\theta}

k \leftarrow 1

while stopping criterion not met do

Sample a minibatch of m examples from the training set \{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(m)}\} with

corresponding targets \boldsymbol{y}^{(i)}.

Compute gradient estimate: \hat{\boldsymbol{g}} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})

Apply update: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon_k \hat{\boldsymbol{g}}

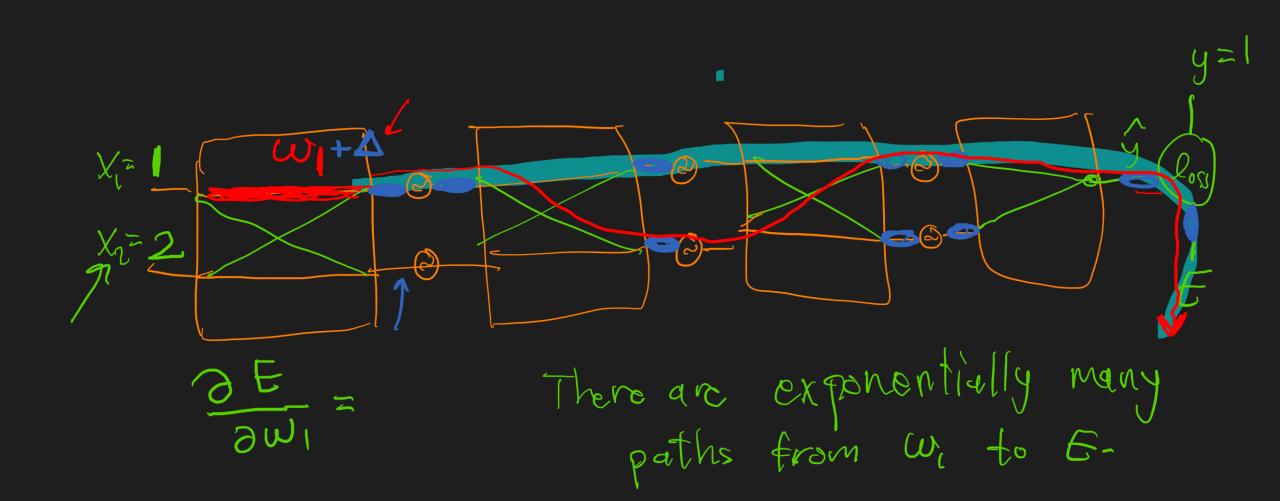
k \leftarrow k + 1

end while
```

WHAT IS MISSING? • $\nabla_{W}(E(w,b)) = \sum_{i} \nabla_{W}(l(f_{w,b}(x^{i}), y^{i})))$ • How to calculate $\nabla_{W}(l(f_{w,b}(x^{i}), y^{i}))$?

THIS CAN BE COMPUTATIONALLY EXPENSIVE

NAÏVE APPROACH



COMPUTING THE GRADIENT?

- NAÏVE APPROACH:
 - COMPUTATIONALLY EXPENSIVE FOR DEEP MODELS
 - Some of the computations are repetitive
- WHAT TO DO?
 - A KIND OF "DYNAMIC PROGRAMMING"
 - BACK PROPAGATION

BACK-PROPAGATION

- Use chain rule (for vector-valued functions)
- LINEAR TIME IN TERMS OF THE NUMBER OF WEIGHTS!
- Forward phase
 - COMPUTE THE INPUT/OUTPUTS OF ACTIVATION FUNCTIONS
- BACKWARD PHASE
 - COMPUTE THE GRADIENTS, LAYER-BY-LAYER

MULTI-VARIATE CHAIN RULE AND A MODULAR APPROACH