INTRODUCTION TO MACHINE LEARNING COMPSCI 4ML3

> Lecture 23 Hassan Ashtiani

COMPUTING THE GRADIENT EFFICIENTLY

- $\nabla_{W}(L(w,b)) = \sum_{i} \nabla_{W}(l(f_{w,b}(x^{i}), y^{i}))$ How to calculate $\nabla_{W}(l(f_{w,b}(x^{i}), y^{i}))$?

 - This can be computationally expensive

COMPUTING THE GRADIENT?

- NAÏVE APPROACH:
 - COMPUTATIONALLY EXPENSIVE FOR DEEP MODELS
 - Some of the computations are repetitive
- WHAT TO DO?
 - A KIND OF "DYNAMIC PROGRAMMING"
- BACK PROPAGATION

BACK-PROPAGATION

- Use chain rule (for vector-valued functions)
- LINEAR TIME IN TERMS OF THE NUMBER OF WEIGHTS!
- Forward phase
 - COMPUTE THE INPUT/OUTPUTS OF ACTIVATION FUNCTIONS
- BACKWARD PHASE
 - COMPUTE THE GRADIENTS, LAYER-BY-LAYER

 $\frac{\partial L}{\partial w_5} = \frac{\partial L}{\partial a_3} + \frac{\partial a_3}{\partial w_5}$ usin matrix/vector to do these How calcering?

MULTI-VARIATE CHAIN RULE AND A MODULAR APPROACH

C

ЭX

θX1

m III

VANISHING GRADIENT

- For deeper networks, the partial derivatives
 - FOR THE OUTPUT LAYER VS THE INPUT LAYER?
- For sigmoid activation functions
 - $\sigma'(x) \in [0,1]$
 - For "saturated" neurons $\sigma'(x) pprox 0$
 - GRADIENT "DOES NOT REACH" THE FIRST LAYERS
- WHAT CAN WE DO?

VANISHING GRADIENT

- Some activation functions are better
 - LEAKY RELU (ALSO RELU/MAX-OUT)
 - But gradient still can vanish after a couple layers
- BETTER INITIALIZATION
- A POSSIBLE WORKAROUND
- Use "shortcuts" for the gradient to flow
 ResNets, Can have 100s of layers!

WC

GRADIENT CAN FLOW

UNIVERSAL APPROXIMATION THEOREM

- FEED-FORWARD NETWORKS WITH SIGMOID ACTIVATION FUNCTIONS CAN APPROXIMATE ANY BOUNDED CONTINUOUS FUNCTION UP TO DESIRABLE ACCURACY
 - ONLY A SINGLE HIDDEN LAYER IS NEEDED!
 - GEORGE CYBENKO, 1989
 - ALSO HOLDS FOR OTHER USUAL ACTIVATION FUNCTIONS
- IS THERE A POINT IN HAVING MORE THAN ONE HIDDEN LAYER?

DEEP VS SHALLOW NETWORKS

LOW-LEVEL TO HIGH-LEVEL COMPUTATIONS/DETECTIONS

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

DEEP VS SHALLOW NETWORKS

errors # neurons

• THERE ARE FUNCTIONS THAT CAN BE APPROXIMATED WITH A SMALL BUT DEEP NETWORK...WHEREAS A WIDE SHALLOW NETWORK REQUIRES MANY MORE NEURONS TO APPROXIMATE IT

REGULARIZING NNS

- GOOD NEURAL NETWORKS ARE OFTEN OVER-PARAMETRIZED!
 - PRONE TO OVER-FITTING
- 1. ADDING REGULARIZATION TERMS TO THE OBJECTIVE FUNCTION
 - $E(w) + ||w||^2 \swarrow$
- 2. EARLY STOPPING
- 3. Adding noise <
- 4. STRUCTURAL REGULARIZATION

REGULARIZING NNS WITH DROPOUT

Training

- FOR EACH ITERATION OF STOCHASTIC GRADIENT DESCENT AND FOR EACH TRAINING DATA POINT DO:
 - Drop each node with probability p

Testing

• Don't drop the nodes, but for all nodes, but multiply the value of activations by (1 - p)

- (b) After applying dropout.

DOUBLE DESCENT?

