INTRODUCTION TO MACHINE LEARNING COMPSCI 4ML3

> Lecture 24 Hassan Ashtiani

NO FREE LUNCH

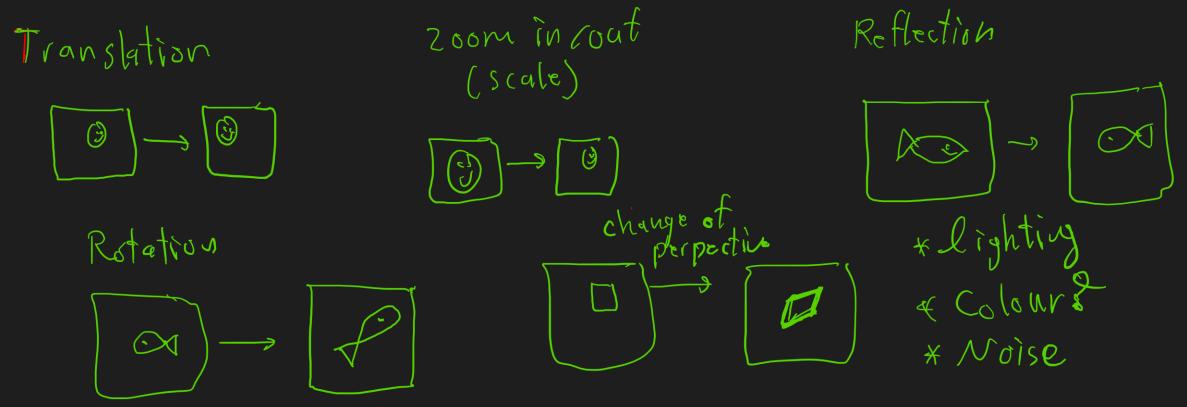
- LARGER NETWORKS CAN FIT ANY DATA SET BUT
 - THE MORE FLEXIBLE THE MODEL THE MORE TRAINING DATA IS REQUIRED
 - COMPUTATIONAL COMPLEXITY

How can we address these drawbacks?

INCORPORATE DOMAIN KNOWLEDGE

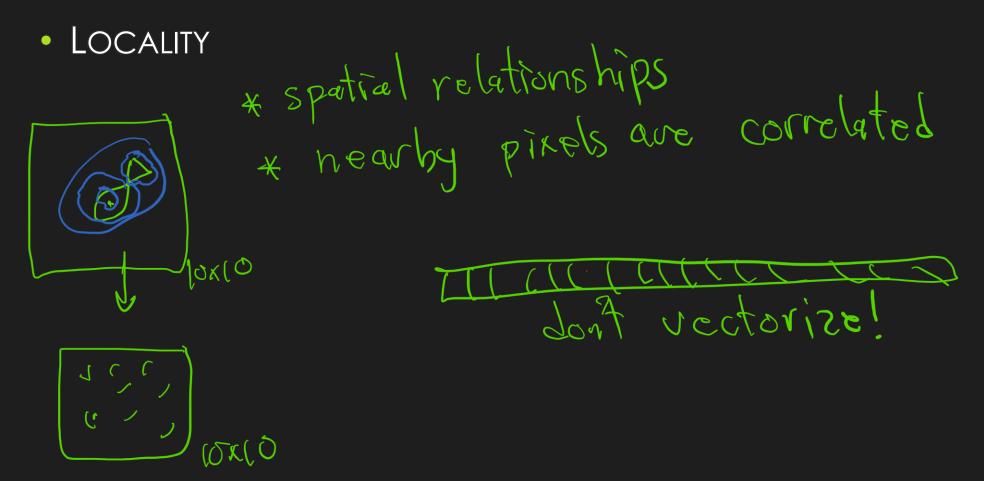
THE CASE OF IMAGE CLASSIFICATION

- IMAGE DATA HAS A LOT OF "STRUCTURE"
 - INVARIANCE



THE CASE OF IMAGE CLASSIFICATION

• IMAGE DATA HAS A LOT OF "STRUCTURE"

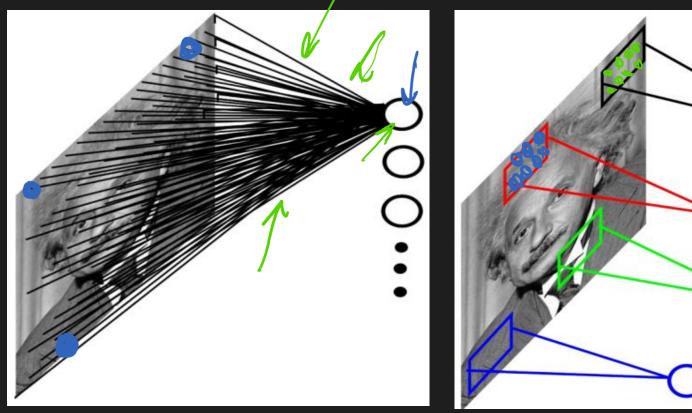


STRUCTURAL REGULARIZATION

- CAN WE USE THE PROPERTIES OF IMAGES TO REDUCE THE NUMBER OF PARAMETERS, WITHOUT COMPROMISING THE DISCRIMINATIVE POWER OF THEM?
- REGULARIZATION BY LITERALLY REDUCING THE NUMBER OF PARAMETERS

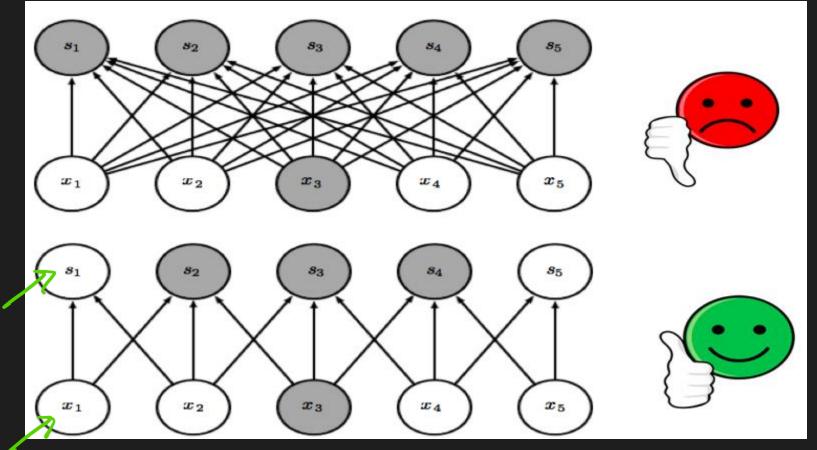
EXPLOITING LOCALITY

• Sparse connectivity rather than full connectivity



Pictures taken from Ranzato slides

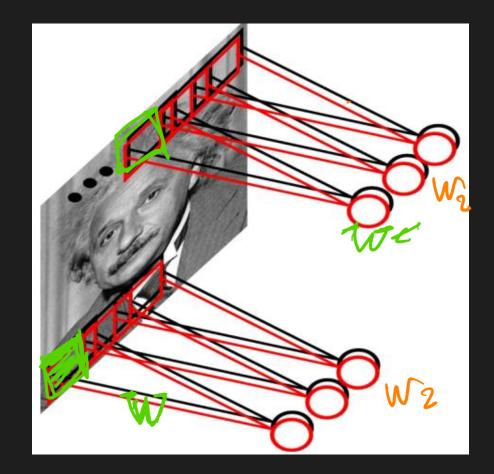
EXPLOITING LOCALITY



Taken from the Deep Learning book material

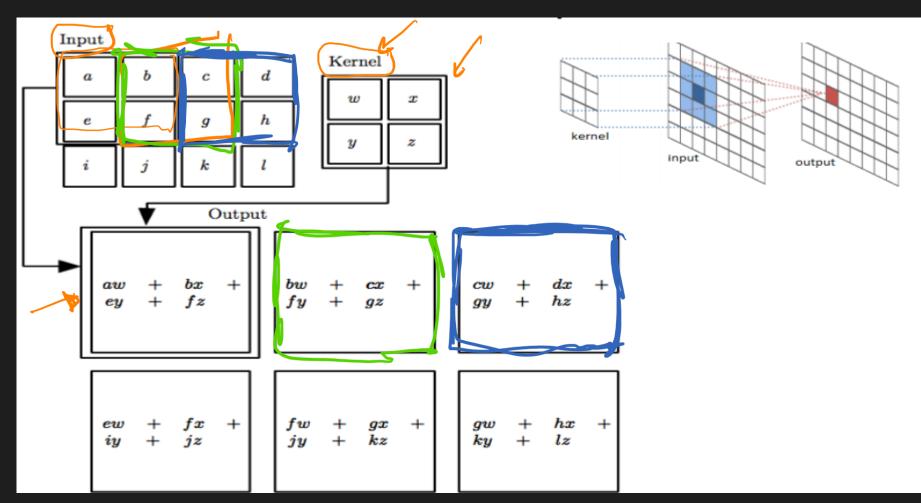
EXPLOITING INVARIANCE

- IF EXTRACTING A NOSE
 IS USEFUL IN ONE PART
 OF THE IMAGE, IT WILL BE
 USEFUL IN OTHER PARTS OF
 THE IMAGE AS WELL
- PARAMETER SHARING!



THE CONVOLUTION OPERATOR

TO BE MORE ACCURATE, THE KERNEL SHOULD BE FLIPPED.

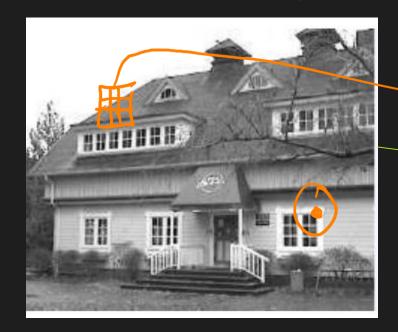


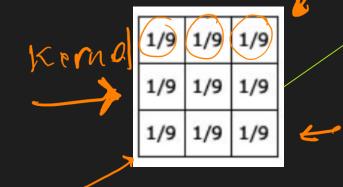
Taken from the Deep Learning book material

CONVOLUTION OPERATOR

- 1-D CONVOLUTION
 - y = (x * w)
 - $y(i) = \sum_t x(t)w(i-t)$
- 2-d convolution
 - y = (x * w)
 - $y(i,j) = \sum_{t_1} \sum_{t_2} x(t_1,t_2) w(i-t_1,j-t_2)$
- Useful not only for images, but for other signals

BLUR





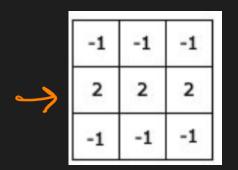
Example taken from http://aishack.in/tutorials/image-convolution-examples/

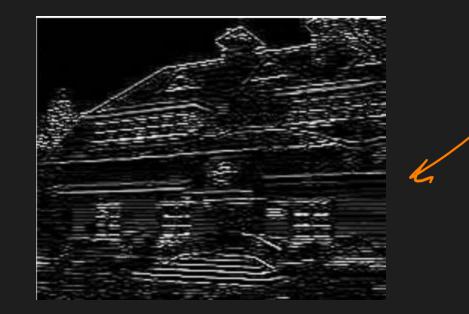
GAUSSIAN BLUR

		-	-			
0	0	0	5	0	0	0
0	5	18	32	18	5	0
0	18	64	100	64	18	0
5	32	100	100	100	32	5
0	18	64	100	64	18	0
0	5	18	32	18	5	0
0	0	0	5	0	0	Ô

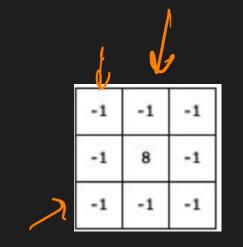
M

HORIZONTAL LINE





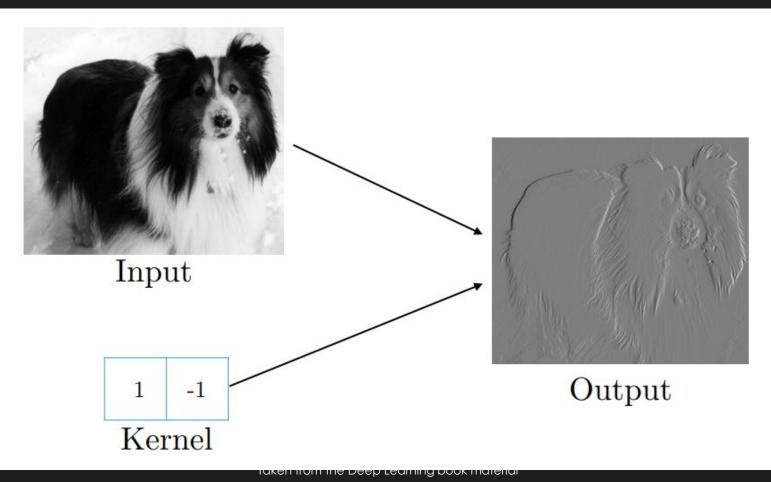
A KIND OF EDGE DETECTOR



A KIND OF EDGE DETECTOR

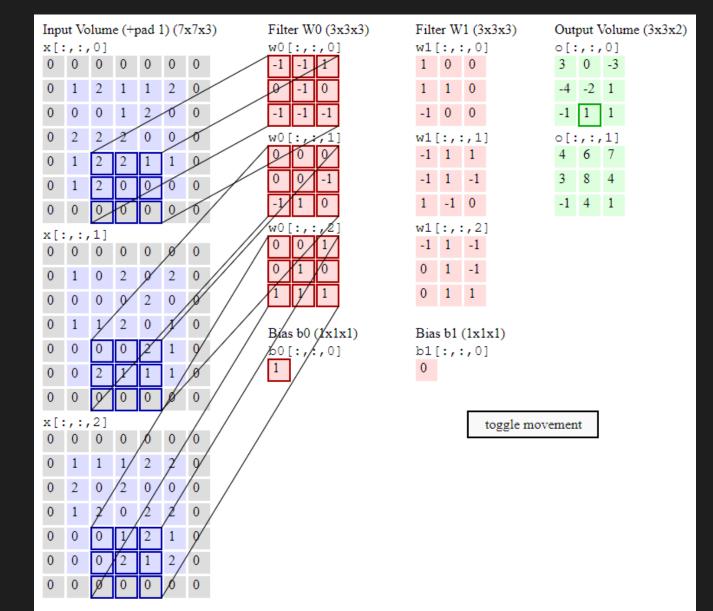
The use of convolution for image processing is Quite old

..BUT USING AN END-TO-END LEARNING APPROACH WHERE THE FILTERS/KERNELS ARE ALSO LEARNED IS THE POWER OF CONVOLUTIONAL NEURAL NETWORKS



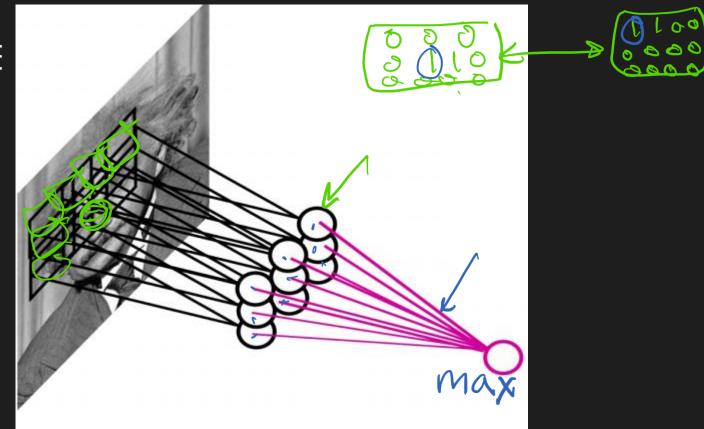
http://cs231n.github.io/convolutional-networks/

- PADDING
- STRIDE
- CHANNEL
- KERNEL VS FILTER



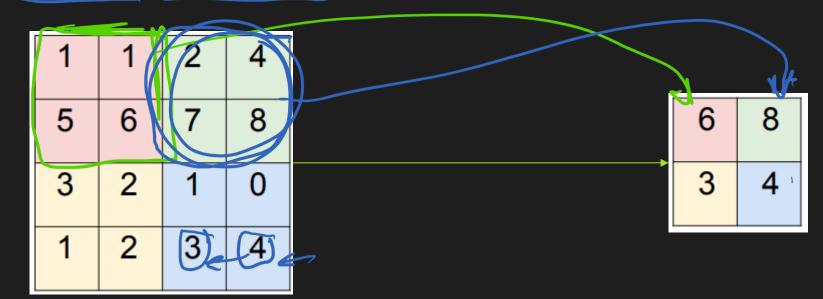
EXPLOITING LOCAL TRANSLATION-INVARIANCE

- IT DOES NOT MATTER
 EXACTLY WHICH OF THE
 SMALL PATCHES OF
 THE IMAGE INCLUDE
 A NOSE!
- MAX POOLING LAYER REDUCES THE NUMBER OF PARAMETERS

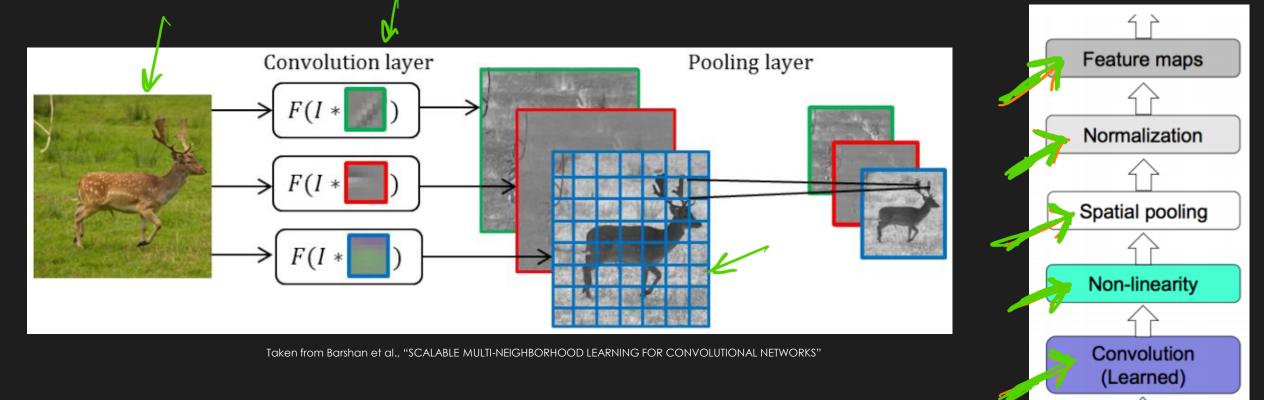


MAX POOLING

- 2x2 MAX POOLING
 - STRIDE=2, NO PADDING



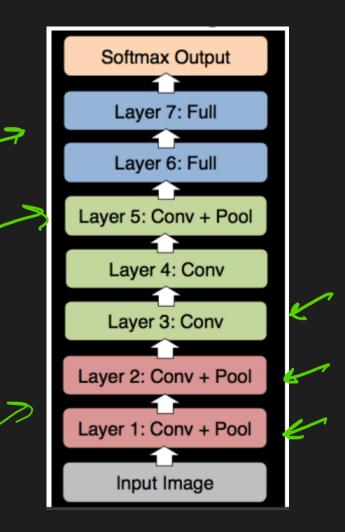
A FULL CONVOLUTIONAL LAYER



Input Image

BREAKTHROUGH IN IMAGENET

- IMAGENET CLASSIFICATION CHALLENGE
 - MILLIONS OF IMAGES
 - Thousands of classes
- IN 2012, ALEXNET USED WON THE COMPETITION BY A HIGH MARGIN
 - ~15% ERROR COMPARED TO ~25% OF THE NEXT TEAM
 - THEY USED A CONVOLUTIONAL ARCHITECTURE
 - THEY USED GPUS FOR SPEEDUP
- CNNS BECAME VERY POPULAR



THINGS THE FIRST LAYER DETECTS

THINGS THE 2ND LAYER DETECTS

