INTRODUCTION TO MACHINE LEARNING COMPSCI 4ML3 LECTURE 27

HASSAN ASHTIANI

REVIEW AUTOENCODER

REVIEW: TAMING AUTOENCODERS

- IDEA: TRAIN AUTOENCODER IN A WAY THAT THE LATENT SPACE DISTRIBUTION LOOKS LIKE ISOTOPIC GAUSSIAN (?!)
 - Decoder learns to turn Gaussian noise into new images
- FOR GENERATING NEW IMAGES, SIMPLY FEED GAUSSIAN NOISE TO THE DECODER

SIMPLIFIED VARIATIONAL AUTOENCODER

$$\operatorname{MIN}\left(\sum_{x} \|\operatorname{Dec}(\operatorname{Sampler}(\operatorname{Enc}(x))) - x\|_{2}^{2} + \lambda \sum_{i=1}^{q} \left(-\operatorname{LOG}\left(\sigma_{i}^{2}\right) + \sigma_{i}^{2} + \mu_{i}^{2}\right)\right)$$

VARIATIONAL AUTOENCODERS

- VAE'S ORIGINAL FORMULATION IS MORE COMPLICATED
 - BASED ON EVIDENCE LOWER BOUND [ELBO], WHICH IS NOT COVERED IN THIS COURSE
- THE GENERATED IMAGES ARE SOMETIMES BLURRY...
 - ALTHOUGH P(z|x) is GAUSSIAN BY DESIGN... P(z) MAY NOT BE... $p(z) = \sum_{x} p(z,x) = \sum_{x} p(z,x) p(x)$
 - OTHER ISSUES? ightarrow

* Minimicing reconstruction error, -.

LATENT SPACE VISUALIZATION

• VAE FOR MNIST

MAKHZANI ET AL

GENERATIVE ADVERSARIAL NETWORKS

- CAN GENERATE REALISTIC IMAGES
 - BUT A BIT HARD TO TRAIN

• HTTPS://THISPERSONDOESNOTEXIST.COM/

GENERATIVE ADVERSARIAL NETWORKS

- TURN GAUSSIAN SAMPLES INTO REALISTIC IMAGES?
 - ONLY TRAIN A DECODER (SO NO LATENT REP)
 - BUT HOW TO TRAIN IT?
- IDEA: A SET OF GENERATED IMAGES ARE REALISTIC IF IT IS HARD TO DISTINGUISH THEM FROM REAL IMAGES
 - TRAIN A CLASSIFIER THAT TRIES TO DISTINGUISH REAL FROM FAKE IMAGES

ADVERSARIAL TRAINING

- GENERATE GENERATES AN IMAGE
 - Goal: fool the adversary

- THE ADVERSARY RECEIVES AN IMAGE AND DECIDES WHETHER THE IMAGE WAS REAL OR FAKE
 - GOAL: CLASSIFY CORRECTLY

- label et fake : 0 label of read: 1 DISCRIMINATOR'S OBJECTIVE • MAX $\sum_{x \in Data} \text{LOG } Disc(x) + \sum_{z \in N(0,I)} \text{LOG}(1 - Disc(G(z)))$ GENERATOR'S OBJECTIVE • $\operatorname{Min}_{G} \sum_{z \in N(0,I)} \operatorname{LOG}(1 - \operatorname{Disc}(G(z)))$
 - TRAIN THEM AT THE SAME TIME
 - DELICATE OPTIMIZATION, CAN BE UNSTABLE
 - IDEALLY, THE GENERATOR WOULD CONVERGE TO A SOLUTION THAT MANAGES TO FOOL THE DISCRIMINATOR

MODE COLLAPSE

- Some tricks for training GANs
 - BALANCE THE POWER OF DISC/GEN
 - IN THE BEGINNING THE DISCRIMINATOR CAN EASILY WIN
 - ORIGINAL GAN PAPER USED AN ALTERNATIVE OBJECTIVE FUNCTION ... TO HELP THE GENERATOR
 - USE OF ADAM INSTEAD OF SGD
 - ESPECIALLY FOR THE GENERATOR
 - HTTPS://GITHUB.COM/SOUMITH/GANHACKS

SGD ALTERNATIVES

•
$$w^{t+1} = w^t - \alpha \nabla_W(E(w))$$

- Performance is sensitive to the choice of α
- VARIABLE RATE DECAY
- ALTERNATIVES TO GRADIENT DESCENT
 - Using momentum

STYLE TRANSFER VIA (CYCLE) GANS

CYCLE GAN

- Two data sets (domain X and Y)
 - Find a transformation that maps X to Y and vice versa
 - UNPAIRED DATA
 - NO LABELS EITHER
- GANS: MAP GAUSSIANS TO IMAGES...
 - HERE: MAP ONE DOMAIN TO THE OTHER...
 - ...AND VICE VERSA

• TRAIN A DISCRIMINATOR/GEN FOR EACH DOMAIN

CYCLE-CONSISTENCY CONSTRAINT

• Additional constraint/loss:

$$\|X - F(G(x))\|_{2}^{2}$$

Translation example

ADVERSARIAL AUTOENCODER

• How to enforce the latent space to be Gaussian?

PITFALLS OF VAE

ADVERSARIAL AUTOENCODERS

MAKHZANI ET AL

•