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Symmetric Matrix

Symmetric Matrix

A square matrix A ∈ Rn×n is

Symmetric if A = AT . We say A ∈ Sn.
Anti-symmetric if A = −AT

Given any square matrix A ∈ Rn×n

A+ AT is symmetric

A− AT is anti-symmetric

A square matrix can be written as the sum of a symmetric and an
anti-symmetric matrix

A =
1

2
(A+ AT ) +

1

2
(A− AT )
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Quadratic Forms

Quadratic Forms I

Given a square matrix A ∈ Rn×n and a vector x ∈ Rn the scalar
xTAx ∈ R is called a quadratic form

xTAx =
[
x1 x2 . . . xn

] a1 a2 . . . an



x1
x2
...
xn


[
x1 x2 . . . xn

]

∑n

i=1 a1ixi∑n
i=1 a2ixi

...∑n
i=1 anixi

 =
n∑

j=1

(
xj

n∑
i=1

ajixi

)
=

n∑
i=1

n∑
j=1

aijxixj
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Quadratic Forms

Quadratic Forms Example

Write f (x) = 2x23 + x21 + 3x1x2 as a quadratic form. (x ∈ R3)
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Quadratic Forms

Quadratic Forms Example

Write f (x) = 2x23 + x21 + 3x1x2 as a quadratic form. (x ∈ R3)

f (x) = xT

 1 1.5 0
1.5 0 0
0 0 2

 x
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Positive Definite Matrix

Given a symmetric matrix A ∈ Sn

A is positive definite(PD) if xTAx > 0 for all non-zero
vectors x ∈ Rn. Also denoted as A ≻ 0. The set of all positive
definite matrices is denoted as Sn++

A is positive semidefinite(PSD) if xTAx ≥ 0 for all vectors
x ∈ Rn. Also denoted as A ⪰ 0. The set of all positive
semidefinite matrices is denoted as Sn+
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Negative Definite Matrix

Given a symmetric matrix A ∈ Sn

A is negative definite(ND) if xTAx < 0 for all non-zero
vectors x ∈ Rn. Also denoted as A ≺ 0.

A is negative semidefinite(NSD) if xTAx ≤ 0 for all vectors
x ∈ Rn. Also denoted as A ⪯ 0.

A symmetric matrix A ∈ Sn is indefinite if it is neither positive
semidefinite nor negative semidefinite

∃ x1, x2 ∈ Rn, xT1 Ax1 > 0, xT2 Ax2 < 0
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Positive and Negative Definite Matrices

Given a symmetric matrix A ∈ Sn, the matrix −A ∈ Sn is

negative definite if A is positive definite

positive definite if A is negative definite

A positive or negative definite matrix is always full rank and
invertible.

COMPSCI 4ML3: Tutorial 2 Review of Linear Algebra



Quadratic Forms
Definiteness

Eigenvectors and Eigenvalues
Additional Material and Examples

Definite Matrices

Positive and Negative Definite Matrices

Example Given any matrix A ∈ Rm×n, the matrix G = ATA is
positive semidefinite, which is called Gram matrix.
proof.

COMPSCI 4ML3: Tutorial 2 Review of Linear Algebra



Quadratic Forms
Definiteness

Eigenvectors and Eigenvalues
Additional Material and Examples

Definite Matrices

Positive and Negative Definite Matrices

Example Given any matrix A ∈ Rm×n, the matrix G = ATA is
positive semidefinite, which is called Gram matrix.
proof.

∀x ∈ Rd xTGx = xTATAx = (Ax)T (Ax) = ||Ax ||22 ≥ 0
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Eigenvectors and Eigenvalues

Given a square matrix A ∈ Rn×n, the non-zero vector x ∈ Cn is
called the eigenvector of A and λ ∈ C is called the corresponding
eigenvalue if

Ax = λx

Multiplying A by its eigenvector x results in a vector in the same
direction as x , scaled by the corresponding eigenvalue λ
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Finding Eigenvectors and Eigenvalues

Rewriting Ax = λx results in

(A− λI )x = 0

There exists a non-zero eigenvector iff the nullspace of (A− λI ) is
non-empty, which implies (A− λI ) is singular

|(A− λI )| = 0

Expanding the determinant results in a polynomial of degree at
most n

Eigenvalues λ1, . . . , λn ∈ C are the roots of the polynomial

Eigenvectors can be determined by solving linear equations
(A− λi I )xi = 0
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Finding Eigenvectors

Finding Eigenvectors and Eigenvalues

Example. Find the eigenvalues of A =

[
2 4
1 2

]
.
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Eigenvalues: Properties I

Given a square matrix A ∈ Rn

The trace of A is equal to the sum of its eigenvalues

tr(A) =
n∑

i=1

λi

The determinant of A is equal to the product of its eigenvalues

|A| =
n∏

i=1

λi

Rank of A is equal to the number of its non-zero eigenvalues
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Properties of Eigenvalues and Eigenvectors

Eigenvalues: Properties II

If A is invertible, xi are also eigenvectors of A−1 with
corresponding eigenvalues (1/λi ), i.e., A

−1xi = (1/λi )(xi )

Eigenvalues of D = Diag(d1, . . . , dn) are d1, . . . , dn

|D − λI | =
n∏

i=1

(di − λ)
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Orthogonal Matrix

Two vectors x , y ∈ Rn are orthogonal if xT y = 0

Vector x ∈ Rn is normalized if ∥x∥2 = 1

A matrix U ∈ Rn×n is orthogonal if its columns are orthogonal
and are normalized(orthonormal)

UTU = I = UUT

and U−1 = UT

When multiplied to a vector x ∈ Rn, the orthogonal matrix
U ∈ Rn×n will not change the Euclidian norm

∥Ux∥2 = ∥x∥2
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Symmetric Matrices

Eigenvectors and Eigenvalues: Symmetric Matrices

Given a symmetric matrix A ∈ Sn
The eigenvalues of A are real, i.e., λi ∈ R
Eigenvectors of A are orthonormal, i.e., matrix U of
eigenvectors is orthogonal.

The diagonalized form of A ∈ Sn is also called eigen
decomposition

A = UΛU−1 = UΛUT , Λ = Diag(λ1, . . . , λn)

Given any vector x ∈ Rn

xTAx = xTUΛUT x = (UT x)TΛUT x = yTΛy =
n∑

i=1

λiy
2
i
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Symmetric Matrices

Inverse of a Symmetric Matrix

Given a symmetric matrix A ∈ Sn, we know that the matrix of its
eigenvectors is orthogonal and full rank, i.e., U−1 = UT . If all the
eigenvalues are non-zero, i.e., A is full rank, using the eigen
decomposition we can write

A−1 = (UΛUT )−1 = (UT )−1Λ−1U−1 = UΛ−1UT

where Λ−1 = Diag(
1

λ1
, . . . ,

1

λn
)
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Definiteness

Eigenvalues and Definiteness

The symmetric square matrix A ∈ Sn is

positive definite if λi > 0

positive semidefinite if λi ≥ 0

negative definite if λi < 0

negative semidefinite if λi ≤ 0

indefinite if it has both positive and negative eigenvalues
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Additional Material and Examples
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Quadratic Forms II

From the equation above it can be concluded that aij and aji
contribute to the quadratic form in the same way.
Since xTAx is a scalar

xTAx = (xTAx)T = xTAT x = xT (
1

2
A+

1

2
AT )x

where B =
1

2
A+

1

2
AT is a symmetric matrix.

If D = Diag(d1, . . . , dn)

xTDx =
n∑

i=1

dix
2
i
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Singular Values I

Remember Eigenvalues of a symmetric square matrix A ∈ Sn are
real.
For a matrix A ∈ Rm×n the product ATA ∈ Rn×n is a square
symmetric matrix

The eigenvalues of ATA are real

The eigenvalues of ATA are non-negative
proof. If x ∈ Rn is an eigenvector of ATA and λ is its
corresponding eigenvalue, we know that ATAx = λx .
Therefore,

xTATAx = (Ax)T (Ax) = ∥Ax∥22 = xTλx = λ∥x∥22

Since ∥Ax∥22 ≥ 0 and ∥x∥22 ≥ 0, we conclude that λ ≥ 0
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Definition of Singular Values

Singular Values II

Given the matrix A ∈ Rm×n, denote λ1, . . . , λn ∈ R(may be
repeated) as the eigenvalues of ATA. The singular values of matrix
A are the square root of the eignevalues of ATA

σi =
√
λi , 1 ≤ i ≤ n

The rank of matrix A ∈ Rm×n is equal to the number of its
non-zero singular values
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Singular Value Decomposition(SVD)

Given a matrix A ∈ Rm×n and its non-zero singular values
σ1, . . . , σr , it can be decomposed(not unique) as

A = UΣV T

U ∈ Rm×m is orthogonal UTU = I

V ∈ Rn×n is orthogonal V TV = I

Σ ∈ Rm×n

Σii = σi , 1 ≤ i ≤ r

Σij = 0, otherwise
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Thin SVD

Given the matrix A ∈ Rm×n with rank equal r , the thin SVD can
be represented as

A = UΣV T

U ∈ Rm×r has the only r columns corresponding to
non-negative singular values

V ∈ Rr×n has the only r columns corresponding to
non-negative singular values

Σ ∈ Rr×r is a diagonal matrix with

Σii = σi , 1 ≤ i ≤ r

Σij = 0, otherwise
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SVD: Finding Orthogonal Matrices U and V

Eigendecomposition of the symmetric matrix ATA can be
formulated as

ATA = (UΣV T )T (UΣV T ) = (VΣTUT )(UΣV T ) = V (ΣTΣ)V T

The columns vi of matrix V are eigenvectors of ATA

Eigendecomposition of the symmetric matrix AAT can be
formulated as

AAT = (UΣV T )(UΣV T )T = (UΣV T )(VΣTUT ) = U(ΣΣT )UT

The columns ui of matrix U are eigenvectors of AAT
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SVD and Eigendecomposition

If matrix A ∈ Sn+ is symmetric and positive semidefinite, the
matrices U and V in the singular value decomposition are the same

A = UΣV T = UΣUT

In fact, the singular values of A are equal to its eigenvalues λi = σi
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Example of SVD I

Given A =
[
1 2

]
, we want to find its SVD. First we compute ATA

ATA =

[
1 2
2 4

]
Solving ∣∣∣∣1− λ 2

2 4− λ

∣∣∣∣ = λ2 − 5λ = 0

eigenvalues of ATA are

λ1 = 5, λ2 = 0
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Example of SVD II

Therefore, the singular values of A are

σ1 =
√
5, σ2 = 0

Solving

(A− λ1)v1 =

[
1− 5 2
2 4− 5

]
v1 =

[
−4 2
2 −1

]
v1 = 0

results in the first normalized eignevector v1 =
1√
5

[
1
2

]
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Example of SVD III

ATA is symmetric and its eigenvectors are orthonormal

v2 =
1√
5

[
−2
1

]
Therefore, matrix V can be represented as

V =

[
1√
5

−2√
5

2√
5

1√
5

]
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Example of SVD III

Computing matrix AAT = 1 results in a eignenvector u1 =
[
1
]
.

Therefore, the singular value decomposition of A can be
represented as

[
1 2

]
=

[
1
] [√

5 0
] [ 1√

5
−2√
5

2√
5

1√
5

]T
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Diagonalizable Matrix

Given a square matrix A ∈ Rn×n, its eigenvectors xi , and its
eigenvalues λi , two matrices X ∈ Rn×n and Λ ∈ Rn×n can be
defined as

X =

x1 x2 . . . xn

 , Λ = Diag(λ1, . . . , λn)

We can write
AX = XΛ

If X is invertible(i.e, full rank), matrix A is diagonalizable

A = XΛX−1
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Orthogonal Matrices Are Full Rank I

If U ∈ Rn×n is an orthogonal matrix, it is full rank, i.e., all the
columns are linearly independent

U =

u1 u2 . . . un


proof. If the columns are not linearly independent then

∃α1, . . . , αn, αi ̸= 0 , αiui =
n∑

j=1
j ̸=i

αjuj
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Orthogonal Matrices Are Full Rank II

Multiplying by uTi we have

αiu
T
i ui =

n∑
j=1
j ̸=i

αju
T
i uj

Since ui and uj are orthogonal

αi∥ui∥2 = 0

which is only possible if αi = 0 and it is a contradiction
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Positive (or Negative) Definite Matrices Are Full Rank

A positive or a negative definite matrix is always full rank.
proof. Suppose ith column is a linear combination of other columns

∃ x1, . . . , xi−1, xi+1, . . . , xn ∈ R, ai =
n∑

j=1
j ̸=i

xjaj

Set xi = −1

n∑
i=1

aixi = A

x1...
xn

 = Ax = 0

Therefore, xTAx = 0 for a non-zero vector x , which is a
contradiction.
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Eigenvalues and Definiteness: Proof

For the square matrix A ∈ Sn, the matrix of eigenvectors
U ∈ Rn×n is full rank and invertible. Therefore, its columns span
Rn and any vector y ∈ Rn can be represented in terms of UT x

xTAx = yTΛy =
n∑

i=1

λiy
2
i

Since ∀ 1 ≤ i ≤ n, y2i ≥ 0, the symmetric matrix A is

positive definite if λi > 0

positive semidefinite if λi ≥ 0

negative definite if λi < 0

negative semidefinite if λi ≤ 0

indefinite if it has both positive and negative eigenvalues
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Rank-Nullity Theorem

Given matrix A ∈ Rm×n

rank(A) + nullity(A) = n
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Eigenvalues: Application to Optimization Problems

Given a symmetric matrix A ∈ Sn

The solution to the minimization problem

min
x∈Rn

xTAx , subject to ∥x∥2 = 1

is the eigenvector corresponding to the minimum eigenvalue

The solution to the maximization problem

max
x∈Rn

xTAx , subject to ∥x∥2 = 1

is the eigenvector corresponding to the maximum eigenvalue
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Example of Finding Eigenvalues I

Given A =

[
−5 2
−9 6

]
, we want to find its eigenvalues and

eigenvectors∣∣∣∣−5− λ 2
−9 6− λ

∣∣∣∣ = −30+5λ−6λ+λ2+18 = λ2−λ−12 = (λ+3)(λ−4)

Eigenvalues of A are λ1 = −3 and λ2 = 4.
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Example of Finding Eigenvalues II

Solving

(A− λ1)x1 =

[
−5 + 3 2
−9 9

]
x1 =

[
−2 2
−9 9

]
x1 = 0

results in the first eignevector x1 =

[
1
1

]
Solving

(A− λ2)x2 =

[
−5 + 3 2
−9 9

]
x2 =

[
−9 2
−9 2

]
x2 = 0

results in the second eignevector x2 =

[
2
9

]
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Singular Values: Application to Optimization Problems

Given a matrix A ∈ Rm×n

The solution to the minimization problem

min
x∈Rn

∥Ax∥, subject to ∥x∥2 = 1

is the eigenvector corresponding to the minimum eigenvalue of
ATA

The solution to the maximization problem

max
x∈Rn

∥Ax∥, subject to ∥x∥2 = 1

is the eigenvector corresponding to the maximum eigenvalue
of ATA
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Pseudo-inverse

The pseudo-inverse of a matrix A = UΣV T is denoted as

A† = VΣ−1UT

where Σ−1 ∈ Rn×m is a diagonal matrix

Σ−1
ii = 1/σi , 1 ≤ i ≤ r

Σ−1
ij = 0, otherwise

If m ≥ n and A is full rank, i.e., linearly independent columns,
A† = (ATA)−1AT , which is also a left inverse A†A = I

If m ≤ n and A is full rank,i.e., linearly independent rows,
A† = AT (AAT )−1, which is also a right inverse AA† = I
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Finding Pseudo-Inverse of the Above SVD Example

The pseudo-inverse A† can be represented as

A† =

[
1√
5

−2√
5

2√
5

1√
5

] [√
5
0

] [
1
]
=

[
1√
5

−2√
5

2√
5

1√
5

] [√
5
0

]
=

1

5

[
1
2

]
Since A has linearly independent rows, the pseudo-inverse is also a
right inverse

AA† =
1

5

[
1 2

] [1
2

]
=

[
1
]

A†A =
1

5

[
1
2

] [
1 2

]
=

1

5

[
1 2
2 4

]
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Example of SVD I

Given A =

[
4 11 14
8 7 −2

]
, we want to find its SVD. First we

compute ATA

ATA =

 80 100 40
100 170 140
40 140 200


Eigenvalues of ATA are

λ1 = 360, λ2 = 90, λ3 = 0

Note Matrix ATA can have rank at most 2, therefore, it was
expected that λ3 = 0.
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Example of SVD II

Therefore, the singular values of A are

σ1 =
√
360 = 6

√
10, σ2 =

√
90 = 3

√
10, λ3 = 0

The matrix Σ ∈ R2×3 is represented as

Σ =

[
6
√
10 0 0

0 3
√
10 0

]
Finding eigenvectors of ATA, matrix V can be represented as

V =

 1/3 2/3 2/3
−2/3 −2/3 1/3
2/3 −2/3 1/3
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Example of SVD III

Matrix AAT can be computed as

AAT =

[
333 81
81 117

]
Finding the eigenvalues and eigenvectors of AAT , matrix U can be
represented as

U =

[
3/
√
10 1/

√
10

1/
√
10 −3/

√
10

]
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Example of SVD IV

The singular value decomposition of A can be represented as[
4 11 14
8 7 −2

]
=

[
3/
√
10 1/

√
10

1/
√
10 −3/

√
10

] [
6
√
10 0 0

0 3
√
10 0

] 1/3 2/3 2/3
−2/3 −2/3 1/3
2/3 −2/3 1/3

T
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Matrix Calculus I

If x ∈ Rn and y = f (x) ∈ Rm

∂y

∂x
=


∂y1
∂x1

∂y1
∂x2

. . . ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

. . . ∂y2
∂xn

...
...

. . .
...

∂ym
∂x1

∂ym
∂x2

. . . ∂ym
∂xn


Given x ∈ Rn, A ∈ Rm×n and y = Ax ∈ Rm

∂y

∂x
= A
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Matrix Calculus II

Given vectors x ∈ Rn, y ∈ Rm, and A ∈ Rm×n

∂yTAx

∂x
= yTA

∂yTAx

∂y
= xTAT

Given a square matrix A ∈ Rn×n

∂xTAx

∂x
= xT (A+ AT )

If A is symmetric,
∂xTAx

∂x
= 2xTA
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