[Quadratic Forms](#page-1-0) [Eigenvectors and Eigenvalues](#page-10-0) [Additional Material and Examples](#page-19-0)

COMPSCI 4ML3: Tutorial 2

Slides by Alireza Fathollah Pour

McMaster University

Winter 2024

COMPSCI 4ML3: Tutorial 2 **Review of Linear Algebra** Review of Linear Algebra

化重新润滑脂

4 0 8

 299

э

Symmetric Matrix

A square matrix $A \in \mathbb{R}^{n \times n}$ is

- Symmetric if $A = A^T$. We say $A \in \mathbb{S}^n$.
- Anti-symmetric if $A=-A^{\mathcal{T}}$

Given any square matrix $A \in \mathbb{R}^{n \times n}$

- $A+A^{\mathcal{T}}$ is symmetric
- $A-A^{\mathcal{T}}$ is anti-symmetric

A square matrix can be written as the sum of a symmetric and an anti-symmetric matrix

$$
A = \frac{1}{2}(A + A^{T}) + \frac{1}{2}(A - A^{T})
$$

 $\mathcal{A} \ \equiv \ \mathcal{B} \ \ \mathcal{A} \ \equiv \ \mathcal{B}$

Quadratic Forms |

Given a square matrix $A \in \mathbb{R}^{n \times n}$ and a vector $x \in \mathbb{R}^n$ the scalar $\mathsf{x}^\mathcal{T} A \mathsf{x} \in \mathbb{R}$ is called a quadratic form

$$
x^{T}Ax = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} | & | & & | \\ a_1 & a_2 & \dots & a_n \\ | & | & & | \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}
$$

$$
\begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} \sum_{i=1}^{n} a_{1i}x_i \\ \sum_{i=1}^{n} a_{2i}x_i \\ \vdots \\ \sum_{i=1}^{n} a_{ni}x_i \end{bmatrix} = \sum_{j=1}^{n} \left(x_j \sum_{i=1}^{n} a_{ji}x_i \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}x_i x_j
$$

4 D F

化重新润滑脂

э

 QQ

[Quadratic Forms](#page-1-0) [Eigenvectors and Eigenvalues](#page-10-0) [Additional Material and Examples](#page-19-0) **Additional Material and Examples** [Quadratic Forms](#page-2-0)

Quadratic Forms Example

Write $f(x) = 2x_3^2 + x_1^2 + 3x_1x_2$ as a quadratic form. $(x \in \mathbb{R}^3)$

COMPSCI 4ML3: Tutorial 2 **Review of Linear Algebra** Review of Linear Algebra

医单位 医单位

→同→

4日下

 QQ

э

[Quadratic Forms](#page-1-0) [Eigenvectors and Eigenvalues](#page-10-0) [Additional Material and Examples](#page-19-0) [Quadratic Forms](#page-2-0)

Quadratic Forms Example

Write
$$
f(x) = 2x_3^2 + x_1^2 + 3x_1x_2
$$
 as a quadratic form. $(x \in \mathbb{R}^3)$

$$
f(x) = x^T \begin{bmatrix} 1 & 1.5 & 0 \\ 1.5 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix} x
$$

COMPSCI 4ML3: Tutorial 2 **Review of Linear Algebra** Review of Linear Algebra

É

Positive Definite Matrix

Given a symmetric matrix $A \in \mathbb{S}^n$

- A is $\boldsymbol{positive}$ definite(PD) if $x^T Ax > 0$ for all non-zero vectors $x \in \mathbb{R}^n$. Also denoted as $A \succ 0$. The set of all positive definite matrices is denoted as \mathbb{S}^n_{++}
- A is **positive semidefinite(PSD)** if $x^T Ax \ge 0$ for all vectors $x \in \mathbb{R}^n$. Also denoted as $A \succeq 0$. The set of all positive semidefinite matrices is denoted as \mathbb{S}^n_+

 $\left\{ \left. \left. \left(\mathsf{H} \right) \right| \times \left(\mathsf{H} \right) \right| \times \left(\mathsf{H} \right) \right\}$

Negative Definite Matrix

Given a symmetric matrix $A \in \mathbb{S}^n$

- A is $\boldsymbol{\mathsf{negative}}$ definite(ND) if $x^TAx < 0$ for all non-zero vectors $x \in \mathbb{R}^n$. Also denoted as $A \prec 0$.
- A is **negative semidefinite(NSD)** if $x^T Ax \leq 0$ for all vectors $x\in\mathbb{R}^n$. Also denoted as $A\preceq0.$

A symmetric matrix $A \in \mathbb{S}^n$ is **indefinite** if it is neither positive semidefinite nor negative semidefinite

$$
\exists\, x_1,x_2\in\mathbb{R}^n,\, x_1^\mathcal{T}Ax_1>0,\, x_2^\mathcal{T}Ax_2<0
$$

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

Positive and Negative Definite Matrices

Given a symmetric matrix $A \in \mathbb{S}^n$, the matrix $-A \in \mathbb{S}^n$ is

- negative definite if A is positive definite \bullet
- \bullet positive definite if A is negative definite

A positive or negative definite matrix is always full rank and invertible.

4 D F

- 4 重 8 - 4 重 8

 Ω

∍

[Quadratic Forms](#page-1-0) **[Definiteness](#page-5-0)** [Eigenvectors and Eigenvalues](#page-10-0) [Additional Material and Examples](#page-19-0) and the Contract of Contract [Definite Matrices](#page-7-0)

Positive and Negative Definite Matrices

Example Given any matrix $A \in \mathbb{R}^{m \times n}$, the matrix $G = A^T A$ is positive semidefinite, which is called Gram matrix. proof.

◂**◻▸ ◂◚▸**

医单位 医单位

э

[Quadratic Forms](#page-1-0) **[Definiteness](#page-5-0)** [Eigenvectors and Eigenvalues](#page-10-0) [Additional Material and Examples](#page-19-0)

Positive and Negative Definite Matrices

Example Given any matrix $A \in \mathbb{R}^{m \times n}$, the matrix $G = A^T A$ is positive semidefinite, which is called Gram matrix. proof.

$$
\forall x \in \mathbb{R}^d \quad x^T G x = x^T A^T A x = (Ax)^T (Ax) = ||Ax||_2^2 \ge 0
$$

4 **ED**

医单位 医单位

э

Eigenvectors and Eigenvalues

Given a square matrix $A \in \mathbb{R}^{n \times n}$, the non-zero vector $x \in \mathbb{C}^n$ is called the eigenvector of A and $\lambda \in \mathbb{C}$ is called the corresponding eigenvalue if

$$
Ax=\lambda x
$$

Multiplying A by its eigenvector x results in a vector in the same direction as x, scaled by the corresponding eigenvalue λ

[Quadratic Forms](#page-1-0) [Eigenvectors and Eigenvalues](#page-10-0) [Additional Material and Examples](#page-19-0) [Finding Eigenvectors](#page-11-0)

Finding Eigenvectors and Eigenvalues

Rewriting $Ax = \lambda x$ results in

$$
(A - \lambda I)x = 0
$$

There exists a non-zero eigenvector iff the nullspace of $(A - \lambda I)$ is non-empty, which implies $(A - \lambda I)$ is singular

$$
|(A-\lambda I)|=0
$$

Expanding the determinant results in a polynomial of degree at most n

- **Eigenvalues** $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ are the roots of the polynomial
- **•** Eigenvectors can be determined by solving linear equations $(A - \lambda_i I)x_i = 0$ イロト イ押ト イヨト イヨト

э

[Quadratic Forms](#page-1-0) [Eigenvectors and Eigenvalues](#page-10-0) [Additional Material and Examples](#page-19-0) [Finding Eigenvectors](#page-11-0)

Finding Eigenvectors and Eigenvalues

Example. Find the eigenvalues of $A = \begin{bmatrix} 2 & 4 \ 1 & 2 \end{bmatrix}$.

4 D F

 $A \equiv A \quad A \equiv A$

э

 QQ

Eigenvalues: Properties I

Given a square matrix $A \in \mathbb{R}^n$

• The trace of A is equal to the sum of its eigenvalues

$$
\text{tr}(A) = \sum_{i=1}^n \lambda_i
$$

• The determinant of A is equal to the product of its eigenvalues

$$
|A| = \prod_{i=1}^n \lambda_i
$$

Rank of A is equal to the number of its non-zero eigenvalues \bullet

4 D F

[Quadratic Forms](#page-1-0) [Eigenvectors and Eigenvalues](#page-10-0)
Additional Material and Examples

[Properties of Eigenvalues and Eigenvectors](#page-13-0)

Eigenvalues: Properties II

If A is invertible, x_i are also eigenvectors of A^{-1} with corresponding eigenvalues $(1/\lambda_i)$, i.e., $A^{-1}x_i = (1/\lambda_i)(x_i)$

• Eigenvalues of
$$
D = Diag(d_1, ..., d_n)
$$
 are $d_1, ..., d_n$

$$
|D - \lambda I| = \prod_{i=1}^n (d_i - \lambda)
$$

4 D F

化重新润滑脂

э

Orthogonal Matrix

- Two vectors $x,y\in\mathbb{R}^n$ are orthogonal if $x^{\mathcal{T}}y=0$
- Vector $x \in \mathbb{R}^n$ is normalized if $||x||_2 = 1$ \bullet
- A matrix $U \in \mathbb{R}^{n \times n}$ is orthogonal if its columns are orthogonal and are normalized(orthonormal)

$$
U^T U = I = U U^T
$$

and $U^{-1}=U^{\mathsf{T}}$

When multiplied to a vector $x\in\mathbb{R}^n$, the orthogonal matrix $U \in \mathbb{R}^{n \times n}$ will not change the Euclidian norm

$$
\|Ux\|_2 = \|x\|_2
$$

э

 QQQ

Eigenvectors and Eigenvalues: Symmetric Matrices

Given a symmetric matrix $A \in \mathbb{S}^n$

- The eigenvalues of A are real, i.e., $\lambda_i \in \mathbb{R}$ \bullet
- \bullet Eigenvectors of A are orthonormal, i.e., matrix U of eigenvectors is orthogonal.

The diagonalized form of $A \in \mathbb{S}^n$ is also called eigen decomposition

$$
A = U \Lambda U^{-1} = U \Lambda U^{T}, \Lambda = \text{Diag}(\lambda_1, \ldots, \lambda_n)
$$

Given any vector $x \in \mathbb{R}^n$

$$
x^T A x = x^T U \Lambda U^T x = (U^T x)^T \Lambda U^T x = y^T \Lambda y = \sum_{i=1}^n \lambda_i y_i^2
$$

化重新润滑脂

Inverse of a Symmetric Matrix

Given a symmetric matrix $A \in \mathbb{S}^n$, we know that the matrix of its eigenvectors is orthogonal and full rank, i.e., $\mathcal{U}^{-1} = \mathcal{U}^T.$ If *all* the eigenvalues are **non-zero**, i.e., A is full rank, using the eigen decomposition we can write

$$
A^{-1} = (U\Lambda U^{\mathsf{T}})^{-1} = (U^{\mathsf{T}})^{-1}\Lambda^{-1}U^{-1} = U\Lambda^{-1}U^{\mathsf{T}}
$$

where $\Lambda^{-1} = \text{Diag}(\frac{1}{\lambda_1}, \dots, \frac{1}{\lambda_n})$

4 **ED**

化重新润滑脂

[Quadratic Forms](#page-1-0) [Eigenvectors and Eigenvalues](#page-10-0) [Additional Material and Examples](#page-19-0)

Eigenvalues and Definiteness

The symmetric square matrix $A \in \mathbb{S}^n$ is

- positive definite if $\lambda_i > 0$
- \bullet positive semidefinite if $\lambda_i > 0$
- negative definite if $\lambda_i < 0$ \bullet
- negative semidefinite if $\lambda_i \leq 0$ \bullet
- indefinite if it has both positive and negative eigenvalues

4 **ED**

 $\mathcal{A} \ \equiv \ \mathcal{B} \ \ \mathcal{A} \ \equiv \ \mathcal{B}$

[Quadratic Forms](#page-1-0) [Eigenvectors and Eigenvalues](#page-10-0) [Additional Material and Examples](#page-19-0)

[Additional Material and Examples](#page-19-0)

COMPSCI 4ML3: Tutorial 2 **Review of Linear Algebra** Review of Linear Algebra

← ロ → → ← 何 →

 $A \equiv A \quad A \equiv A$

É

Quadratic Forms II

From the equation above it can be concluded that a_{ii} and a_{ii} contribute to the quadratic form in the same way. Since $x^T A x$ is a scalar

$$
x^T A x = (x^T A x)^T = x^T A^T x = x^T (\frac{1}{2} A + \frac{1}{2} A^T) x
$$

where $B=\frac{1}{2}$ $\frac{1}{2}A + \frac{1}{2}$ $\frac{1}{2}A^T$ is a symmetric matrix. If $D = Diag(d_1, \ldots, d_n)$

$$
x^T D x = \sum_{i=1}^n d_i x_i^2
$$

医单侧 医单位

Singular Values I

Remember Eigenvalues of a symmetric square matrix $A \in \mathbb{S}^n$ are real.

For a matrix $A \in \mathbb{R}^{m \times n}$ the product $A^TA \in \mathbb{R}^{n \times n}$ is a square symmetric matrix

- The eigenvalues of $A^T A$ are real
- The eigenvalues of $A^T A$ are non-negative proof. If $x\in\mathbb{R}^n$ is an eigenvector of A^TA and λ is its corresponding eigenvalue, we know that $A^T A x = \lambda x.$ Therefore,

$$
x^{T}A^{T}Ax = (Ax)^{T}(Ax) = ||Ax||_{2}^{2} = x^{T}\lambda x = \lambda ||x||_{2}^{2}
$$

Since $\|Ax\|_2^2 \geq 0$ $\|Ax\|_2^2 \geq 0$ and $\|x\|_2^2 \geq 0$, we con[clu](#page-20-0)[de](#page-22-0) [t](#page-20-0)[ha](#page-21-0)[t](#page-22-0) $\lambda \geq 0$

Singular Values II

Given the matrix $A \in \mathbb{R}^{m \times n}$, denote $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ (may be repeated) as the eigenvalues of $A^\mathcal{T} A$. The singular values of matrix A are the square root of the eignevalues of A^TA

$$
\sigma_i=\sqrt{\lambda_i}, \quad 1\leq i\leq n
$$

The rank of matrix $A \in \mathbb{R}^{m \times n}$ is equal to the number of its non-zero singular values

Singular Value Decomposition(SVD)

Given a matrix $A \in \mathbb{R}^{m \times n}$ and its non-zero singular values σ_1,\ldots,σ_r , it can be decomposed(not unique) as

 $A = U\Sigma V^T$

- $U \in \mathbb{R}^{m \times m}$ is orthogonal $U^{T}U = I$
- $V \in \mathbb{R}^{n \times n}$ is orthogonal $V^{T}V = I$
- $\Sigma \in \mathbb{R}^{m \times n}$

$$
\Sigma_{ii} = \sigma_i, \quad 1 \le i \le r
$$

$$
\Sigma_{ij} = 0, \quad \text{otherwise}
$$

э

 QQQ

Thin SVD

Given the matrix $A \in \mathbb{R}^{m \times n}$ with rank equal r, the thin SVD can be represented as

$$
A = U \Sigma V^T
$$

- $U \in \mathbb{R}^{m \times r}$ has the only r columns corresponding to non-negative singular values
- $V \in \mathbb{R}^{r \times n}$ has the only r columns corresponding to non-negative singular values
- $\Sigma \in \mathbb{R}^{r \times r}$ is a diagonal matrix with

$$
\Sigma_{ii} = \sigma_i, \quad 1 \le i \le r
$$

$$
\Sigma_{ij} = 0, \quad \text{otherwise}
$$

э

 QQQ

SVD: Finding Orthogonal Matrices U and V

Eigendecomposition of the symmetric matrix $A^T A$ can be formulated as

$$
A^T A = (U\Sigma V^T)^T (U\Sigma V^T) = (V\Sigma^T U^T)(U\Sigma V^T) = V(\Sigma^T \Sigma) V^T
$$

The columns v_i of matrix V are eigenvectors of A^TA Eigendecomposition of the symmetric matrix AA^T can be formulated as

$$
AA^T = (U\Sigma V^T)(U\Sigma V^T)^T = (U\Sigma V^T)(V\Sigma^T U^T) = U(\Sigma\Sigma^T)U^T
$$

•[T](#page-48-0)he columns u_i of matrix U are eigenv[ect](#page-24-0)[ors](#page-26-0) [of](#page-25-0) AA^T AA^T

SVD and Eigendecomposition

If matrix $A \in \mathbb{S}^n_+$ is symmetric and positive semidefinite, the matrices U and V in the singular value decomposition are the same

$$
A = U\Sigma V^T = U\Sigma U^T
$$

In fact, the singular values of A are equal to its eigenvalues $\lambda_i = \sigma_i$

医毛囊 医牙骨下的

Example of SVD I

Given $A = \begin{bmatrix} 1 & 2 \end{bmatrix}$, we want to find its SVD. First we compute A^TA

$$
A^T A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}
$$

Solving

$$
\begin{vmatrix} 1 - \lambda & 2 \\ 2 & 4 - \lambda \end{vmatrix} = \lambda^2 - 5\lambda = 0
$$

eigenvalues of $A^\mathcal{T} A$ are

$$
\lambda_1=5,\,\lambda_2=0
$$

4 **ED**

 $A \equiv A \quad A \equiv A$

э

 QQ

Example of SVD II

Therefore, the singular values of A are

$$
\sigma_1=\sqrt{5},\,\sigma_2=0
$$

Solving

$$
(A - \lambda_1) v_1 = \begin{bmatrix} 1 - 5 & 2 \\ 2 & 4 - 5 \end{bmatrix} v_1 = \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} v_1 = 0
$$

results in the first normalized eignevector $v_1 = \frac{1}{\sqrt{2}}$ 5 $\lceil 1 \rceil$ 2 1

化重复化重复

Þ

 QQ

← ロ → → ← 何 →

Example of SVD III

 $A^\mathcal{T} A$ is symmetric and its eigenvectors are orthonormal

$$
v_2=\frac{1}{\sqrt{5}}\begin{bmatrix}-2\\1\end{bmatrix}
$$

Therefore, matrix V can be represented as

$$
V = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}
$$

化重新润滑脂

э

 QQ

4 0 8

Example of SVD III

Computing matrix $A A^{\mathcal{T}} = 1$ results in a eignenvector $\mathbf{u}_1 = \begin{bmatrix} 1 \end{bmatrix}$. Therefore, the singular value decomposition of A can be represented as

$$
\begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} \sqrt{5} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}^T
$$

◂**◻▸ ◂◚▸**

医单侧 医单位

э

Diagonalizable Matrix

Given a square matrix $A \in \mathbb{R}^{n \times n}$, its eigenvectors x_i , and its eigenvalues λ_i , two matrices $X \in \mathbb{R}^{n \times n}$ and $\Lambda \in \mathbb{R}^{n \times n}$ can be defined as

$$
X = \begin{bmatrix} | & | & & | \\ x_1 & x_2 & \dots & x_n \\ | & | & & | \end{bmatrix}, \Lambda = \text{Diag}(\lambda_1, \dots, \lambda_n)
$$

We can write

$$
AX = X\Lambda
$$

If X is invertible(i.e, full rank), matrix A is **diagonalizable**

$$
A = X \Lambda X^{-1}
$$

4 **ED**

→ 何 ▶ → ヨ ▶ → ヨ ▶

Orthogonal Matrices Are Full Rank I

If $U \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, it is full rank, i.e., all the columns are linearly independent

$$
U = \begin{bmatrix} | & | & & | \\ u_1 & u_2 & \dots & u_n \\ | & | & & | \end{bmatrix}
$$

proof. If the columns are not linearly independent then

$$
\exists \alpha_1, \ldots, \alpha_n, \alpha_i \neq 0, \alpha_i u_i = \sum_{\substack{j=1 \ j \neq i}}^n \alpha_j u_j
$$

4 0 8

化重新润滑脂

[Quadratic Forms](#page-1-0) [Eigenvectors and Eigenvalues](#page-10-0) [Additional Material and Examples](#page-19-0) [SVD](#page-23-0)

Orthogonal Matrices Are Full Rank II

Multiplying by $u_i^{\mathcal{T}}$ we have

$$
\alpha_i u_i^T u_i = \sum_{\substack{j=1 \ j \neq i}}^n \alpha_j u_i^T u_j
$$

Since u_i and u_i are orthogonal

$$
\alpha_i \|u_i\|^2 = 0
$$

which is only possible if $\alpha_i = 0$ and it is a contradiction

4 D F

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

Positive (or Negative) Definite Matrices Are Full Rank

A positive or a negative definite matrix is always full rank. proof. Suppose ith column is a linear combination of other columns

$$
\exists x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n\in\mathbb{R},\ a_i=\sum_{\substack{j=1\\j\neq i}}^n x_j a_j
$$

Set $x_i = -1$ $\sum_{n=1}^{n}$ $i=1$ $a_i x_i = A$ $\sqrt{ }$ \vert x_1 . . . xn 1 $= Ax = 0$

Therefore, $x^T Ax = 0$ for a non-zero vector x, which is a contradiction. イロト イ母 トイヨ トイヨ トー

COMPSCI 4ML3: Tutorial 2 **Review of Linear Algebra** Review of Linear Algebra

Eigenvalues and Definiteness: Proof

For the square matrix $A \in \mathbb{S}^n$, the matrix of eigenvectors $U \in \mathbb{R}^{n \times n}$ is full rank and invertible. Therefore, its columns span \mathbb{R}^n and any vector $\mathsf{y} \in \mathbb{R}^n$ can be represented in terms of $U^{\mathcal{T}}\mathsf{x}$

$$
x^T A x = y^T \Lambda y = \sum_{i=1}^n \lambda_i y_i^2
$$

Since \forall $1 \leq i \leq n, y_i^2 \geq 0$, the symmetric matrix A is

- positive definite if $\lambda_i > 0$
- positive semidefinite if $\lambda_i > 0$ \bullet
- negative definite if $\lambda_i < 0$ \bullet
- negative semidefinite if $\lambda_i < 0$ \bullet
- indefinite if it has both positive and ne[gat](#page-34-0)i[ve](#page-36-0)[eig](#page-35-0)[e](#page-36-0)[n](#page-22-0)[v](#page-23-0)[al](#page-48-0)[u](#page-18-0)[es](#page-19-0) \bullet

[Eigenvectors and Eigenvalues](#page-10-0) [Additional Material and Examples](#page-19-0) [SVD](#page-23-0)

Rank-Nullity Theorem

Given matrix $A \in \mathbb{R}^{m \times n}$

rank (A) + nullity (A) = n

COMPSCI 4ML3: Tutorial 2 **Review of Linear Algebra** Review of Linear Algebra

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{B} + \mathbf{A}$

重

Eigenvalues: Application to Optimization Problems

Given a symmetric matrix $A \in \mathbb{S}^n$

• The solution to the minimization problem

$$
\min_{x \in \mathbb{R}^n} x^T A x, \quad \text{subject to } ||x||_2 = 1
$$

is the eigenvector corresponding to the minimum eigenvalue

• The solution to the maximization problem

$$
\max_{x \in \mathbb{R}^n} x^T A x, \quad \text{subject to } \|x\|_2 = 1
$$

is the eigenvector corresponding to the maximum eigenvalue

Example of Finding Eigenvalues I

Given
$$
A = \begin{bmatrix} -5 & 2 \\ -9 & 6 \end{bmatrix}
$$
, we want to find its eigenvalues and eigenvectors

$$
\begin{vmatrix} -5 - \lambda & 2 \\ -9 & 6 - \lambda \end{vmatrix} = -30 + 5\lambda - 6\lambda + \lambda^2 + 18 = \lambda^2 - \lambda - 12 = (\lambda + 3)(\lambda - 4)
$$

Eigenvalues of A are $\lambda_1 = -3$ and $\lambda_2 = 4$.

医单位 医单位

K ロ ▶ K 何 ▶

 QQ

э

Example of Finding Eigenvalues II

Solving

$$
(A-\lambda_1)x_1=\begin{bmatrix}-5+3&2\\-9&9\end{bmatrix}x_1=\begin{bmatrix}-2&2\\-9&9\end{bmatrix}x_1=0
$$

1

1

4 0 8

results in the first eignevector $x_1 = \begin{bmatrix} 1 \ 1 \end{bmatrix}$ 1 Solving

$$
(A - \lambda_2)x_2 = \begin{bmatrix} -5+3 & 2 \\ -9 & 9 \end{bmatrix} x_2 = \begin{bmatrix} -9 & 2 \\ -9 & 2 \end{bmatrix} x_2 = 0
$$

results in the second eignevector $x_2 =$ $\sqrt{2}$ 9

Singular Values: Application to Optimization Problems

Given a matrix $A \in \mathbb{R}^{m \times n}$

• The solution to the minimization problem

$$
\min_{x \in \mathbb{R}^n} \|Ax\|, \quad \text{subject to } \|x\|_2 = 1
$$

is the eigenvector corresponding to the minimum eigenvalue of A^TA

• The solution to the maximization problem

$$
\max_{x\in\mathbb{R}^n}\|Ax\|,\quad \text{subject to}\,\|x\|_2=1
$$

is the eigenvector corresponding to the maximum eigenvalue of $A^T A$ イロト イ押ト イヨト イヨト

Pseudo-inverse

The pseudo-inverse of a matrix $A = U \Sigma V^{\mathcal{T}}$ is denoted as

$$
A^{\dagger} = V \Sigma^{-1} U^{\mathsf{T}}
$$

where $\Sigma^{-1} \in \mathbb{R}^{n \times m}$ is a diagonal matrix

$$
\Sigma_{ii}^{-1} = 1/\sigma_i, \quad 1 \le i \le r
$$

$$
\Sigma_{ij}^{-1} = 0, \quad \text{otherwise}
$$

- **If** $m > n$ and A is full rank, i.e., linearly independent columns, $A^\dagger = (A^T A)^{-1} A^T$, which is also a left inverse $A^\dagger A = I$
- **If** $m \le n$ and A is full rank, i.e., linearly independent rows, $A^\dagger = A^\mathcal{T} (A A^\mathcal{T})^{-1}$ $A^\dagger = A^\mathcal{T} (A A^\mathcal{T})^{-1}$, which is also a right [in](#page-40-0)[ve](#page-42-0)[rs](#page-40-0)e $A A^\dagger = I$ $A A^\dagger = I$ $A A^\dagger = I$ $A A^\dagger = I$

Finding Pseudo-Inverse of the Above SVD Example

The pseudo-inverse A^\dagger can be represented as

$$
A^\dagger = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \sqrt{5} \\ 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \sqrt{5} \\ 0 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 1 \\ 2 \end{bmatrix}
$$

Since A has linearly independent rows, the pseudo-inverse is also a right inverse

$$
AA^{\dagger} = \frac{1}{5} \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}
$$

$$
A^{\dagger}A = \frac{1}{5} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}
$$

化重新润滑脂

Example of SVD I

Given
$$
A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}
$$
, we want to find its SVD. First we
compute $A^{T}A$

$$
A^{T}A = \begin{bmatrix} 80 & 100 & 40 \\ 100 & 170 & 140 \\ 40 & 140 & 200 \end{bmatrix}
$$

Eigenvalues of $A^T A$ are

$$
\lambda_1=360,\,\lambda_2=90,\,\lambda_3=0
$$

Note Matrix A^TA can have rank at most 2, therefore, it was expected that $\lambda_3 = 0$.

COMPSCI 4ML3: Tutorial 2 **Review of Linear Algebra** Review of Linear Algebra

化重新润滑脂

Þ

 QQ

4 0 8

Example of SVD II

Therefore, the singular values of A are

$$
\sigma_1 = \sqrt{360} = 6\sqrt{10}, \, \sigma_2 = \sqrt{90} = 3\sqrt{10}, \, \lambda_3 = 0
$$

The matrix $\Sigma \in \mathbb{R}^{2 \times 3}$ is represented as

$$
\Sigma = \begin{bmatrix} 6\sqrt{10} & 0 & 0 \\ 0 & 3\sqrt{10} & 0 \end{bmatrix}
$$

Finding eigenvectors of A^TA , matrix V can be represented as

$$
V = \begin{bmatrix} 1/3 & 2/3 & 2/3 \\ -2/3 & -2/3 & 1/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix}
$$

COMPSCI 4ML3: Tutorial 2 Review of Linear Algebra

Example of SVD III

Matrix AA^T can be computed as

$$
AA^T = \begin{bmatrix} 333 & 81 \\ 81 & 117 \end{bmatrix}
$$

Finding the eigenvalues and eigenvectors of AA^T , matrix U can be represented as √ √

$$
U = \begin{bmatrix} 3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & -3/\sqrt{10} \end{bmatrix}
$$

化重新润滑脂

э

 Ω

4日下

Example of SVD IV

The singular value decomposition of A can be represented as

$$
\begin{bmatrix} 4 & 11 & 14 \ 8 & 7 & -2 \end{bmatrix} = \begin{bmatrix} 3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & -3/\sqrt{10} \end{bmatrix} \begin{bmatrix} 6\sqrt{10} & 0 & 0 \\ 0 & 3\sqrt{10} & 0 \end{bmatrix} \begin{bmatrix} 1/3 & 2/3 & 2/3 \\ -2/3 & -2/3 & 1/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix}^T
$$

医单位 医单位

← ロ → → ← 何 →

 298

э

Matrix Calculus I

If $x \in \mathbb{R}^n$ and $y = f(x) \in \mathbb{R}^m$

$$
\frac{\partial y}{\partial x} = \begin{bmatrix}\n\frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\
\frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_2}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_n}\n\end{bmatrix}
$$

Given $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$ and $y = Ax \in \mathbb{R}^m$

$$
\frac{\partial y}{\partial x} = A
$$

化重新润滑脂

← ロ → → ← 何 →

 QQ

目

Matrix Calculus II

Given vectors $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, and $A \in \mathbb{R}^{m \times n}$

$$
\begin{aligned}\n\bullet \quad & \frac{\partial y^T A x}{\partial x} = y^T A \\
\bullet \quad & \frac{\partial y^T A x}{\partial y} = x^T A^T\n\end{aligned}
$$

Given a square matrix $A \in \mathbb{R}^{n \times n}$

\n- $$
\frac{\partial x^T A x}{\partial x} = x^T (A + A^T)
$$
\n- If *A* is symmetric,
$$
\frac{\partial x^T A x}{\partial x} = 2x^T A
$$
\n

医单位 医单位

← ロ → → ← 何 →

 QQ

э