Quadratic Forms Definiteness Eigenvectors and Eigenvalues Additional Material and Examples

COMPSCI 4ML3: Tutorial 2

Slides by Alireza Fathollah Pour

McMaster University

Winter 2024

COMPSCI 4ML3: Tutorial 2

Review of Linear Algebra

★ ∃ ► < ∃ ►</p>

Symmetric Matrix

Symmetric Matrix

A square matrix $A \in \mathbb{R}^{n \times n}$ is

- Symmetric if $A = A^T$. We say $A \in \mathbb{S}^n$.
- Anti-symmetric if $A = -A^T$

Given any square matrix $A \in \mathbb{R}^{n \times n}$

- $A + A^T$ is symmetric
- $A A^T$ is anti-symmetric

A square matrix can be written as the sum of a symmetric and an anti-symmetric matrix

$$A = \frac{1}{2}(A + A^{T}) + \frac{1}{2}(A - A^{T})$$

A B A A B A

Quadratic Forms

Quadratic Forms I

Given a square matrix $A \in \mathbb{R}^{n \times n}$ and a vector $x \in \mathbb{R}^n$ the scalar $x^T A x \in \mathbb{R}$ is called a quadratic form

$$x^{T}Ax = \begin{bmatrix} x_{1} & x_{2} & \dots & x_{n} \end{bmatrix} \begin{bmatrix} | & | & | & | \\ a_{1} & a_{2} & \dots & a_{n} \\ | & | & | & | \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}$$
$$\begin{bmatrix} x_{1} & x_{2} & \dots & x_{n} \end{bmatrix} \begin{bmatrix} \sum_{i=1}^{n} a_{1i}x_{i} \\ \sum_{i=1}^{n} a_{2i}x_{i} \\ \vdots \\ \sum_{i=1}^{n} a_{ni}x_{i} \end{bmatrix} = \sum_{j=1}^{n} \left(x_{j} \sum_{i=1}^{n} a_{ji}x_{i} \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}x_{i}x_{j}$$

★ ∃ ► < ∃ ►</p>

Quadratic Forms Definiteness Eigenvectors and Eigenvalues Additional Material and Examples

Quadratic Forms

Quadratic Forms Example

Write $f(x) = 2x_3^2 + x_1^2 + 3x_1x_2$ as a quadratic form. $(x \in \mathbb{R}^3)$

COMPSCI 4ML3: Tutorial 2

< □ ▷ < ⊡ ▷ < ⊡ ▷ < ⊡ ▷
 Review of Linear Algebra

Quadratic Forms Definiteness Eigenvectors and Eigenvalues Additional Material and Examples

Quadratic Forms

Quadratic Forms Example

Write
$$f(x) = 2x_3^2 + x_1^2 + 3x_1x_2$$
 as a quadratic form. $(x \in \mathbb{R}^3)$

$$f(x) = x^{T} \begin{bmatrix} 1 & 1.5 & 0 \\ 1.5 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix} x$$

COMPSCI 4ML3: Tutorial 2

Positive Definite Matrix

Positive Definite Matrix

Given a symmetric matrix $A \in \mathbb{S}^n$

- A is positive definite(PD) if x^TAx > 0 for all non-zero vectors x ∈ ℝⁿ. Also denoted as A ≻ 0. The set of all positive definite matrices is denoted as Sⁿ₊₊
- A is positive semidefinite(PSD) if x^TAx ≥ 0 for all vectors x ∈ ℝⁿ. Also denoted as A ≥ 0. The set of all positive semidefinite matrices is denoted as Sⁿ₊

Negative Definite Matrix

Negative Definite Matrix

Given a symmetric matrix $A \in \mathbb{S}^n$

- A is negative definite(ND) if x^TAx < 0 for all non-zero vectors x ∈ ℝⁿ. Also denoted as A ≺ 0.
- A is negative semidefinite(NSD) if x^TAx ≤ 0 for all vectors x ∈ ℝⁿ. Also denoted as A ≤ 0.

A symmetric matrix $A \in \mathbb{S}^n$ is **indefinite** if it is neither positive semidefinite nor negative semidefinite

$$\exists x_1, x_2 \in \mathbb{R}^n, x_1^T A x_1 > 0, x_2^T A x_2 < 0$$

A B + A B +

Definite Matrices

Positive and Negative Definite Matrices

Given a symmetric matrix $A \in \mathbb{S}^n$, the matrix $-A \in \mathbb{S}^n$ is

- negative definite if A is positive definite
- positive definite if A is negative definite

A positive or negative definite matrix is always *full rank* and *invertible*.

A B A A B A

Definite Matrices

Positive and Negative Definite Matrices

Example Given any matrix $A \in \mathbb{R}^{m \times n}$, the matrix $G = A^T A$ is positive semidefinite, which is called **Gram** matrix. **proof.**

< □ > < 凸

A B b A B b

Definite Matrices

Positive and Negative Definite Matrices

Example Given any matrix $A \in \mathbb{R}^{m \times n}$, the matrix $G = A^T A$ is positive semidefinite, which is called **Gram** matrix. **proof.**

$$\forall x \in \mathbb{R}^d \quad x^T G x = x^T A^T A x = (Ax)^T (Ax) = ||Ax||_2^2 \ge 0$$

< □ > < 凸

A B A A B A

Definition of Eigenvectors

Eigenvectors and Eigenvalues

Given a square matrix $A \in \mathbb{R}^{n \times n}$, the non-zero vector $x \in \mathbb{C}^n$ is called the eigenvector of A and $\lambda \in \mathbb{C}$ is called the corresponding eigenvalue if

$$Ax = \lambda x$$

Multiplying A by its eigenvector x results in a vector in the same direction as x, scaled by the corresponding eigenvalue λ

- 4 回 ト 4 ヨ ト 4 ヨ ト

Finding Eigenvectors

Finding Eigenvectors and Eigenvalues

Rewriting $Ax = \lambda x$ results in

$$(A - \lambda I)x = 0$$

There exists a non-zero eigenvector iff the nullspace of $(A - \lambda I)$ is non-empty, which implies $(A - \lambda I)$ is *singular*

$$|(A - \lambda I)| = 0$$

Expanding the determinant results in a polynomial of degree at most \boldsymbol{n}

- Eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ are the roots of the polynomial
- Eigenvectors can be determined by solving linear equations $(A \lambda_i I)x_i = 0$

Quadratic Forms Definiteness **Eigenvectors and Eigenvalues** Additional Material and Examples

Finding Eigenvectors

Finding Eigenvectors and Eigenvalues

Example. Find the eigenvalues of $A = \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix}$.

COMPSCI 4ML3: Tutorial 2

Review of Linear Algebra

A B + A B +

Eigenvalues: Properties I

Given a square matrix $A \in \mathbb{R}^n$

• The trace of A is equal to the sum of its eigenvalues

$$\operatorname{tr}(A) = \sum_{i=1}^n \lambda_i$$

• The determinant of A is equal to the product of its eigenvalues

$$|A| = \prod_{i=1}^n \lambda_i$$

• Rank of A is equal to the number of its non-zero eigenvalues

Properties of Eigenvalues and Eigenvectors

Eigenvalues: Properties II

If A is invertible, x_i are also eigenvectors of A⁻¹ with corresponding eigenvalues (1/λ_i), i.e., A⁻¹x_i = (1/λ_i)(x_i)

• Eigenvalues of
$$D = \text{Diag}(d_1, \ldots, d_n)$$
 are d_1, \ldots, d_n

$$|D - \lambda I| = \prod_{i=1}^{n} (d_i - \lambda)$$

★ ∃ ► < ∃ ►</p>

Orthogonality

Orthogonal Matrix

- Two vectors $x, y \in \mathbb{R}^n$ are orthogonal if $x^T y = 0$
- Vector $x \in \mathbb{R}^n$ is normalized if $||x||_2 = 1$
- A matrix U ∈ ℝ^{n×n} is orthogonal if its columns are orthogonal and are normalized(orthonormal)

$$U^{\mathsf{T}}U = I = UU^{\mathsf{T}}$$

and $U^{-1} = U^T$

• When multiplied to a vector $x \in \mathbb{R}^n$, the orthogonal matrix $U \in \mathbb{R}^{n \times n}$ will not change the Euclidian norm

$$||Ux||_2 = ||x||_2$$

Eigenvectors and Eigenvalues: Symmetric Matrices

Given a symmetric matrix $A \in \mathbb{S}^n$

- The eigenvalues of A are real, i.e., $\lambda_i \in \mathbb{R}$
- Eigenvectors of A are orthonormal, i.e., matrix U of eigenvectors is *orthogonal*.

The diagonalized form of $A \in \mathbb{S}^n$ is also called **eigen** decomposition

$$A = U\Lambda U^{-1} = U\Lambda U^T, \Lambda = \text{Diag}(\lambda_1, \dots, \lambda_n)$$

Given any vector $x \in \mathbb{R}^n$

$$x^{T}Ax = x^{T}U\Lambda U^{T}x = (U^{T}x)^{T}\Lambda U^{T}x = y^{T}\Lambda y = \sum_{i=1}^{n} \lambda_{i}y_{i}^{2}$$

4 3 5 4 3 5 5

Symmetric Matrices

Inverse of a Symmetric Matrix

Given a symmetric matrix $A \in \mathbb{S}^n$, we know that the matrix of its eigenvectors is orthogonal and full rank, i.e., $U^{-1} = U^T$. If *all* the eigenvalues are **non-zero**, i.e., A is full rank, using the eigen decomposition we can write

$$A^{-1} = (U\Lambda U^T)^{-1} = (U^T)^{-1}\Lambda^{-1}U^{-1} = U\Lambda^{-1}U^T$$

where $\Lambda^{-1} = \text{Diag}(\frac{1}{\lambda_1}, \dots, \frac{1}{\lambda_n})$

A B < A B </p>

Definiteness

Eigenvalues and Definiteness

The symmetric square matrix $A \in \mathbb{S}^n$ is

- positive definite if $\lambda_i > 0$
- positive semidefinite if $\lambda_i \ge 0$
- negative definite if $\lambda_i < 0$
- negative semidefinite if $\lambda_i \leq 0$
- indefinite if it has both positive and negative eigenvalues

4 1 1 1 4 1 1 1

Quadratic Forms Definiteness Eigenvectors and Eigenvalues Additional Material and Examples

Additional Material and Examples

COMPSCI 4ML3: Tutorial 2

Review of Linear Algebra

A B A A B A

Quadratic Forms II

From the equation above it can be concluded that a_{ij} and a_{ji} contribute to the quadratic form in the same way. Since $x^T A x$ is a scalar

$$x^{T}Ax = (x^{T}Ax)^{T} = x^{T}A^{T}x = x^{T}(\frac{1}{2}A + \frac{1}{2}A^{T})x$$

where $B = \frac{1}{2}A + \frac{1}{2}A^T$ is a symmetric matrix. • If $D = \text{Diag}(d_1, \dots, d_n)$

$$x^T D x = \sum_{i=1}^n d_i x_i^2$$

A B > A B >

Singular Values I

Remember Eigenvalues of a symmetric square matrix $A \in \mathbb{S}^n$ are real.

For a matrix $A \in \mathbb{R}^{m \times n}$ the product $A^T A \in \mathbb{R}^{n \times n}$ is a square symmetric matrix

- The eigenvalues of $A^T A$ are real
- The eigenvalues of A^TA are non-negative proof. If x ∈ ℝⁿ is an eigenvector of A^TA and λ is its corresponding eigenvalue, we know that A^TAx = λx. Therefore,

$$x^{T}A^{T}Ax = (Ax)^{T}(Ax) = ||Ax||_{2}^{2} = x^{T}\lambda x = \lambda ||x||_{2}^{2}$$

Since $||Ax||_2^2 \ge 0$ and $||x||_2^2 \ge 0$, we conclude that $\lambda \ge 0$

Singular Values II

Given the matrix $A \in \mathbb{R}^{m \times n}$, denote $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ (may be repeated) as the eigenvalues of $A^T A$. The singular values of matrix A are the square root of the eignevalues of $A^T A$

$$\sigma_i = \sqrt{\lambda_i}, \quad 1 \le i \le n$$

• The rank of matrix $A \in \mathbb{R}^{m \times n}$ is equal to the number of its non-zero singular values

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Singular Value Decomposition(SVD)

Given a matrix $A \in \mathbb{R}^{m \times n}$ and its non-zero singular values $\sigma_1, \ldots, \sigma_r$, it can be decomposed(not unique) as

 $A = U \Sigma V^T$

- $U \in \mathbb{R}^{m \times m}$ is orthogonal $U^T U = I$
- $V \in \mathbb{R}^{n \times n}$ is orthogonal $V^T V = I$
- $\Sigma \in \mathbb{R}^{m \times n}$

$$\Sigma_{ii} = \sigma_i, \quad 1 \le i \le r$$

 $\Sigma_{ii} = 0, \quad \text{otherwise}$

Thin SVD

Given the matrix $A \in \mathbb{R}^{m \times n}$ with rank equal r, the thin SVD can be represented as

$$A = U \Sigma V^T$$

- U ∈ ℝ^{m×r} has the only r columns corresponding to non-negative singular values
- V ∈ ℝ^{r×n} has the only r columns corresponding to non-negative singular values
- $\Sigma \in \mathbb{R}^{r \times r}$ is a diagonal matrix with

$$\Sigma_{ii} = \sigma_i, \quad 1 \le i \le r$$

 $\Sigma_{ij} = 0, \quad \text{otherwise}$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

SVD: Finding Orthogonal Matrices U and V

Eigendecomposition of the symmetric matrix $A^T A$ can be formulated as

$$A^{\mathsf{T}}A = (U\Sigma V^{\mathsf{T}})^{\mathsf{T}}(U\Sigma V^{\mathsf{T}}) = (V\Sigma^{\mathsf{T}}U^{\mathsf{T}})(U\Sigma V^{\mathsf{T}}) = V(\Sigma^{\mathsf{T}}\Sigma)V^{\mathsf{T}}$$

• The columns v_i of matrix V are eigenvectors of $A^T A$ Eigendecomposition of the symmetric matrix AA^T can be formulated as

$$AA^{T} = (U\Sigma V^{T})(U\Sigma V^{T})^{T} = (U\Sigma V^{T})(V\Sigma^{T}U^{T}) = U(\Sigma\Sigma^{T})U^{T}$$

The columns u_i of matrix U are eigenvectors of AA^T

SVD and Eigendecomposition

If matrix $A \in \mathbb{S}^n_+$ is symmetric and positive semidefinite, the matrices U and V in the singular value decomposition are the same

$$A = U\Sigma V^T = U\Sigma U^T$$

In fact, the singular values of A are equal to its eigenvalues $\lambda_i = \sigma_i$

4 1 1 1 4 1 1 1

Example of SVD I

Given $A = \begin{bmatrix} 1 & 2 \end{bmatrix}$, we want to find its SVD. First we compute $A^T A$

$$A^{\mathsf{T}}A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

Solving

$$\begin{vmatrix} 1-\lambda & 2\\ 2 & 4-\lambda \end{vmatrix} = \lambda^2 - 5\lambda = 0$$

eigenvalues of $A^T A$ are

$$\lambda_1 = 5, \ \lambda_2 = 0$$

A B A A B A

SVD

Example of SVD II

Therefore, the singular values of A are

$$\sigma_1=\sqrt{5},\,\sigma_2=0$$

Solving

$$(A - \lambda_1)v_1 = \begin{bmatrix} 1 - 5 & 2 \\ 2 & 4 - 5 \end{bmatrix} v_1 = \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} v_1 = 0$$

results in the first normalized eignevector $v_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

A B A A B A

< 4 ₽ >

Example of SVD III

 $A^{T}A$ is symmetric and its eigenvectors are orthonormal

$$u_2 = rac{1}{\sqrt{5}} \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

Therefore, matrix V can be represented as

$$V = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}$$

★ ∃ ► < ∃ ►</p>

Example of SVD III

Computing matrix $AA^T = 1$ results in a eignenvector $u_1 = [1]$. Therefore, the singular value decomposition of A can be represented as

$$\begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} \sqrt{5} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}^{I}$$

Diagonalizable Matrix

Given a square matrix $A \in \mathbb{R}^{n \times n}$, its eigenvectors x_i , and its eigenvalues λ_i , two matrices $X \in \mathbb{R}^{n \times n}$ and $\Lambda \in \mathbb{R}^{n \times n}$ can be defined as

$$X = \begin{bmatrix} | & | & | \\ x_1 & x_2 & \dots & x_n \\ | & | & | \end{bmatrix}, \Lambda = \mathsf{Diag}(\lambda_1, \dots, \lambda_n)$$

We can write

$$AX = X\Lambda$$

If X is invertible(i.e, full rank), matrix A is diagonalizable

$$A = X\Lambda X^{-1}$$

Review of Linear Algebra

4 1 1 4 1 1 1

Orthogonal Matrices Are Full Rank I

If $U \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, it is full rank, i.e., all the columns are linearly independent

$$U = \begin{bmatrix} | & | & | \\ u_1 & u_2 & \dots & u_n \\ | & | & | \end{bmatrix}$$

proof. If the columns are not linearly independent then

$$\exists \alpha_1, \ldots, \alpha_n, \alpha_i \neq 0, \alpha_i u_i = \sum_{\substack{j=1\\j\neq i}}^n \alpha_j u_j$$

4 1 1 1 4 1 1 1

Orthogonal Matrices Are Full Rank II

Multiplying by u_i^T we have

$$\alpha_i u_i^{\mathsf{T}} u_i = \sum_{\substack{j=1\\j\neq i}}^n \alpha_j u_i^{\mathsf{T}} u_j$$

Since u_i and u_j are orthogonal

$$\alpha_i \|u_i\|^2 = 0$$

which is only possible if $\alpha_i = 0$ and it is a contradiction

b 4 E b 4 E b

Positive (or Negative) Definite Matrices Are Full Rank

A positive or a negative definite matrix is always *full rank*. proof. Suppose *i*th column is a linear combination of other columns

$$\exists x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n \in \mathbb{R}, a_i = \sum_{\substack{j=1\\j\neq i}}^n x_j a_j$$

Set $x_i = -1$ $\sum_{i=1}^n a_i x_i = A \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = Ax = 0$

Therefore, $x^T A x = 0$ for a non-zero vector x, which is a contradiction.

COMPSCI 4ML3: Tutorial 2

Eigenvalues and Definiteness: Proof

For the square matrix $A \in \mathbb{S}^n$, the matrix of eigenvectors $U \in \mathbb{R}^{n \times n}$ is full rank and invertible. Therefore, its columns span \mathbb{R}^n and any vector $y \in \mathbb{R}^n$ can be represented in terms of $U^T x$

$$x^T A x = y^T \Lambda y = \sum_{i=1}^n \lambda_i y_i^2$$

Since $\forall 1 \leq i \leq n, y_i^2 \geq 0$, the symmetric matrix A is

- positive definite if $\lambda_i > 0$
- positive semidefinite if $\lambda_i \ge 0$
- negative definite if $\lambda_i < 0$
- negative semidefinite if $\lambda_i \leq 0$
- indefinite if it has both positive and negative eigenvalues

Rank-Nullity Theorem

Given matrix $A \in \mathbb{R}^{m \times n}$

rank(A) + nullity(A) = n

COMPSCI 4ML3: Tutorial 2

< □ ▶ < ⊡ ▶ < ⊡ ▶ < Ξ ▶
 Review of Linear Algebra

Eigenvalues: Application to Optimization Problems

Given a symmetric matrix $A \in \mathbb{S}^n$

• The solution to the minimization problem

$$\min_{x \in \mathbb{R}^n} x^T A x, \quad \text{subject to } \|x\|_2 = 1$$

is the eigenvector corresponding to the minimum eigenvalue

• The solution to the maximization problem

$$\max_{x \in \mathbb{R}^n} x^T A x, \quad \text{subject to } \|x\|_2 = 1$$

is the eigenvector corresponding to the maximum eigenvalue

(4) (日本)

Example of Finding Eigenvalues I

Given
$$A = \begin{bmatrix} -5 & 2 \\ -9 & 6 \end{bmatrix}$$
, we want to find its eigenvalues and eigenvectors

$$\begin{vmatrix} -5 - \lambda & 2 \\ -9 & 6 - \lambda \end{vmatrix} = -30 + 5\lambda - 6\lambda + \lambda^2 + 18 = \lambda^2 - \lambda - 12 = (\lambda + 3)(\lambda - 4)$$

Eigenvalues of A are $\lambda_1 = -3$ and $\lambda_2 = 4$.

Example of Finding Eigenvalues II

Solving

$$(A - \lambda_1)x_1 = \begin{bmatrix} -5+3 & 2\\ -9 & 9 \end{bmatrix} x_1 = \begin{bmatrix} -2 & 2\\ -9 & 9 \end{bmatrix} x_1 = 0$$

results in the first eignevector $x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ Solving

$$(A - \lambda_2)x_2 = \begin{bmatrix} -5 + 3 & 2 \\ -9 & 9 \end{bmatrix} x_2 = \begin{bmatrix} -9 & 2 \\ -9 & 2 \end{bmatrix} x_2 = 0$$

results in the second eignevector $x_2 = \begin{vmatrix} 2 \\ 9 \end{vmatrix}$

Singular Values: Application to Optimization Problems

Given a matrix $A \in \mathbb{R}^{m imes n}$

• The solution to the minimization problem

$$\min_{x \in \mathbb{R}^n} \|Ax\|, \quad \text{subject to } \|x\|_2 = 1$$

is the eigenvector corresponding to the minimum eigenvalue of $A^{\mathcal{T}}A$

• The solution to the maximization problem

$$\max_{x \in \mathbb{R}^n} \|Ax\|, \quad \text{subject to } \|x\|_2 = 1$$

is the eigenvector corresponding to the maximum eigenvalue of $A^T A$

Pseudo-inverse

The pseudo-inverse of a matrix $A = U \Sigma V^T$ is denoted as

$$A^{\dagger} = V \Sigma^{-1} U^{T}$$

where $\Sigma^{-1} \in \mathbb{R}^{n imes m}$ is a diagonal matrix

$$egin{aligned} & \Sigma_{ii}^{-1} = 1/\sigma_i, \quad 1 \leq i \leq r \ & \Sigma_{ij}^{-1} = 0, \quad \text{otherwise} \end{aligned}$$

- If $m \ge n$ and A is full rank, i.e., linearly independent columns, $A^{\dagger} = (A^{T}A)^{-1}A^{T}$, which is also a left inverse $A^{\dagger}A = I$
- If $m \le n$ and A is full rank, i.e., linearly independent rows, $A^{\dagger} = A^{T} (AA^{T})^{-1}$, which is also a right inverse $AA^{\dagger} = I$.

Finding Pseudo-Inverse of the Above SVD Example

The pseudo-inverse A^{\dagger} can be represented as

$$A^{\dagger} = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \sqrt{5} \\ 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \sqrt{5} \\ 0 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Since A has linearly independent rows, the pseudo-inverse is also a right inverse

$$AA^{\dagger} = \frac{1}{5} \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}$$
$$A^{\dagger}A = \frac{1}{5} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

4 1 1 1 4 1 1 1

Example of SVD I

Given
$$A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$$
, we want to find its SVD. First we compute $A^T A$
 $A^T A = \begin{bmatrix} 80 & 100 & 40 \\ 100 & 170 & 140 \\ 40 & 140 & 200 \end{bmatrix}$

Eigenvalues of $A^T A$ are

$$\lambda_1 = 360, \, \lambda_2 = 90, \, \lambda_3 = 0$$

Note Matrix $A^T A$ can have rank at most 2, therefore, it was expected that $\lambda_3 = 0$.

COMPSCI 4ML3: Tutorial 2

Review of Linear Algebra

E 6 4 E 6

Example of SVD II

Therefore, the singular values of A are

$$\sigma_1 = \sqrt{360} = 6\sqrt{10}, \ \sigma_2 = \sqrt{90} = 3\sqrt{10}, \ \lambda_3 = 0$$

The matrix $\boldsymbol{\Sigma} \in \mathbb{R}^{2 \times 3}$ is represented as

$$\Sigma = egin{bmatrix} 6\sqrt{10} & 0 & 0 \ 0 & 3\sqrt{10} & 0 \end{bmatrix}$$

Finding eigenvectors of $A^T A$, matrix V can be represented as

$$V = \begin{bmatrix} 1/3 & 2/3 & 2/3 \\ -2/3 & -2/3 & 1/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix}$$

COMPSCI 4ML3: Tutorial 2

Review of Linear Algebra

Example of SVD III

Matrix AA^T can be computed as

$$AA^{T} = \begin{bmatrix} 333 & 81 \\ 81 & 117 \end{bmatrix}$$

Finding the eigenvalues and eigenvectors of AA^T , matrix U can be represented as

$$U = egin{bmatrix} 3/\sqrt{10} & 1/\sqrt{10} \ 1/\sqrt{10} & -3/\sqrt{10} \end{bmatrix}$$

★ ∃ ► < ∃ ►</p>

Example of SVD IV

The singular value decomposition of A can be represented as

$$\begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix} = \begin{bmatrix} 3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & -3/\sqrt{10} \end{bmatrix} \begin{bmatrix} 6\sqrt{10} & 0 & 0 \\ 0 & 3\sqrt{10} & 0 \end{bmatrix} \begin{bmatrix} 1/3 & 2/3 & 2/3 \\ -2/3 & -2/3 & 1/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix}^{T}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Matrix Calculus I

If $x \in \mathbb{R}^n$ and $y = f(x) \in \mathbb{R}^m$

$$\frac{\partial y}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}$$

• Given $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$ and $y = Ax \in \mathbb{R}^m$

$$\frac{\partial y}{\partial x} = A$$

Matrix Calculus II

Given vectors $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, and $A \in \mathbb{R}^{m \times n}$

•
$$\frac{\partial y^T A x}{\partial x} = y^T A$$

• $\frac{\partial y^T A x}{\partial y} = x^T A^T$

Given a square matrix $A \in \mathbb{R}^{n \times n}$

•
$$\frac{\partial x^T A x}{\partial x} = x^T (A + A^T)$$

• If A is symmetric, $\frac{\partial x^T A x}{\partial x} = 2x^T A$