Problem 1: Ordinary Least Squares in Python

Assume the input has one dimension x and the target function is $f(x) = (x - 0.1)^3 - 5(x - 0.5)^2 + 10x +$ $5\sin 5x + 10$. Using ordinary least squares solution

- (a) Find $a \in \mathbb{R}$ such that the hyperplane $\hat{y} = ax$ fits the data the best when x is distributed from a Gaussian with mean 0 and variance 1, $x \sim \mathcal{N}(0, 1)$.
- (b) Find $a, b \in \mathbb{R}$ such that the hyperplane $\hat{y} = ax + b$ fits the data the best when x is distributed from a Gaussian with mean 0 and variance 1, $x \sim \mathcal{N}(0, 1)$.

Problem 2: Ordinary Least Squares

We will use least squares to find the best line ˆy = ax+b that fits a non-linear function, namely f(x) = x2−3x4+ - ...---, ⁴ **Problem 2: Ordinary Least Squares**
We will use least squares to find the best line $\hat{y} = ax + b$ that fits a non-linear function, namely $f(x) = x^2 - 3x^4 + 2$.
For this, assume that you are given a set of *n* training points Find a line that fits the training data the best when $n \to \infty$. $+ b$ that
 $\lim_{n \to \infty}$ $\frac{n\rightarrow\infty}{\lambda}, \frac{n\rightarrow\infty}{\lambda}, \frac{n\rightarrow\infty}{\lambda}, -3(\frac{n\rightarrow}{\lambda})^2$ i, yⁱ) $\sum_{i=1}^{n}$ = {(($\frac{4i}{n}$), (4*i*/*n*)² - 3(4*i*/*n*)

($\frac{4i}{n}$, ($\frac{4i}{n}$), (4*i*/*n*)² - 3(4*i*/*n*)

($\frac{4i}{n}$, ($\frac{4i}{n}$) - 3 ($\frac{4i}{n}$) + 2

(4*i*/*n*)² - 3(4*i*/*n*)⁴ + 2)². Introduction to Machi
 Ordinary Lea

uares to find the best lifthat you are given a set

s the training data the

g ordinary least squar
 $\lim_{b} \sum_{i=1}^{n} (ax^i + b - y^i)^2 =$
 $\rightarrow \infty$, we can work v

pome from a uniform diale

Solution. Writing ordinary least squares we have

$$
\min_{a,b} \sum_{i=1}^{n} (ax^i + b - y^i)^2 = \min_{a,b} \sum_{i=1}^{n} (a(4i/n) + b - ((4i/n))^2 - 3(4i/n))^2.
$$
 (1)

↳

 $\overline{\mathbf{A}}$

 $\frac{0}{1}$ 4

 $\frac{4|x|}{\frac{4}{n}}, \frac{4}{\frac{4}{n}}, \frac{1}{\frac{4}{n}}, \dots, \frac{4}{n}$

 \overline{p}

In the case that $n \to \infty$, we can work with integral instead of summation. In this case, we know that the training samples come from a uniform distribution on [0, 4], i.e., $x^i \sim U_{[0,4]}$ since there is an equal chance for any $x \in [0,4]$ to be drawn. We know that for $X \sim U_{[0,4]}$, we have $f_X(x) = 1/4$ if $x \in [0,4]$ and $f_X(x) = 0$ if $x \notin [0, 4].$ $- ((4i)/n)$

f summat
 $\frac{x^i \sim U_0}{x^i}$
 $\frac{x^i}{x}$

Rewriting the OLS we have

$$
\min_{a,b} \int_{x=0}^{x=4} (ax+b-f(x))^2 f_X(x) dx = \min_{a,b} \int_{x=0}^{x=4} (ax+b-(x^2-3x^4+2))^2 f_X(x) dx = \min_{a,b} g(a,b).
$$

We can then expand the expression inside the integral and calculate the integral

/

$$
g(a,b) = \int_{x=0}^{x=4} \frac{1}{4} \left[9x^8 - 6x^6 + 6ax^5 + (6b - 11)x^4 - 2ax^3 + (a^2 - 2b + 4)x^2 + (2ab - 4a)x + (b^2 - 4b + 4) \right] dx
$$

= $\frac{1}{4} \left[x^9 - \frac{6}{7}x^7 + ax^6 + \frac{(6b - 11)}{5}x^5 - \frac{a}{2}x^4 + \frac{(a^2 - 2b + 4)}{3}x^3 + (ab - 2a)x^2 + (b^2 - 4b + 4)x \right]_0^4$
= 61487.27 + 984a + $\frac{4388}{15}b + 4ab + \frac{16}{3}a^2 + b^2$.

To obtain the values of a and b that minimize the function $g(a, b)$, we can compute the partial derivatives of $g(a, b)$ with respect to a and b and find the pair (a, b) that result in zero derivatives.

$$
\frac{\partial g(a,b)}{\partial a} = \frac{32}{3}a + 4b + 984 \longrightarrow Q
$$

$$
\frac{\partial g(a,b)}{\partial b} = 2b + 4a + \frac{4388}{15} \longrightarrow Q
$$
 (2)

Setting the derivatives equal to 0 in equation (2), we need to solve the following system of linear equations

$$
\frac{32}{3}a + 4b = -984
$$

$$
2b + 4a = -\frac{4388}{15}.
$$

Solving the system of linear equation we conclude that $a = \frac{-748}{5}$ and $b = \frac{2294}{15}$ are the solutions of OLS and $\hat{y} = -149.6x + 152.93$ is the best line that fits $f(x) = x^2 - 3x^4 + 2$ using OLS. Example 149.6x + 152.93

Figure 1: Optimal values of W found by simulating OLS for $n = 1000$ training samples. Optimal $W =$ [−147.18, 148.56]. re 1: Optimal values of W found by simulating OLS for $n = 10$
7.18,148.56].
 $\bigwedge \longrightarrow \emptyset$