
Computer Arithmetic
CS/SE 4X03

Ned Nedialkov

McMaster University

September 5, 2023

The Patriot disaster

During the Gulf War in 1992, a Patriot missile missed an Iraqi Skud,
which killed 28 Americans. What happened?

• Patriot’s internal clock counted tenths of a second and stored the
result as an integer.

• To convert to a floating-point number, the time was multiplied by
0.1 stored in 24 bits.

• 0.1 in binary is 0.001 1001 1001 ..., which was chopped to 24 bits.

Roundoff error ≈ 9.5× 10−8.

• After 100 hours the measured time had an error of

100× 60× 60× 10× 9.5× 10−8 ≈ 0.34 seconds.

• A Skud flies at ≈ 1, 676 meters per second. 0.34 seconds error
results in

0.34× 1, 676 ≈ 569 meters

Vancouver Stock Exchange

• In 1982, the Vancouver Stock Exchange started an electronic stock
index set initially to 1,000 points.

• The index was updated after each transaction.

• In 22 months the index fell to 520.

• It was not supposed to fall in a bull market.

• Investigation showed each intermediate result was rounded to 2
decimals by chopping, e.g. 568.958 rounds to 568.95.

• When this was fixed, the index was 1098.892.

Ariane 5

• Launched on June 4, 1996.

• 36 seconds before self-destruction.

• A 64-bit floating-point number was converted to a 12-bit integer.

What is the output of this Matlab code?

a(1) = (1/cos(100*pi+pi/4))^2; % (1/ cos(100π + π/4))2 = 2
a(2) = 3*tan(atan(1e7))/1e7; % 3 tan(arctan(107))/107 = 3
x = 4;

for i=1:100 x = sqrt(x); end

for i=1:100 x = x*x; end

a(3) = x; % = 4

a(4) = 5*(1+exp(-100)-1)/(1+exp(-100)-1); % 5 1+e−100−1
1+e−100−1

= 5

a(5) = log(exp(6e+3))/1e+3; % ln(e6000)/1000 = 6
for i = 1:5

fprintf(’%d: %.16f\n’, i+1, a(i));

end

Useful links

• IEEE 754 double precision visualization

• C. Moler. Floating Point Numbers

• IEEE 754

• N. Higham. Half Precision Arithmetic: fp16 Versus bfloat16

• GNU Multiple Precision Arithmetic Library

• Quadruple-precision floating-point format

https://bartaz.github.io/ieee754-visualization/
https://blogs.mathworks.com/cleve/2014/07/07/floating-point-numbers/
https://en.wikipedia.org/wiki/IEEE_754
https://nhigham.com/2018/12/03/half-precision-arithmetic-fp16-versus-bfloat16/
https://en.wikipedia.org/wiki/GNU_Multiple_Precision_Arithmetic_Library
https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format

Outline

Floating-point number system

Rounding

Machine epsilon

IEEE 754

Cancellations

FP system Rounding Machine epsilon IEEE 754 Cancellations

Floating-point number system

A floating-point (FP) system is characterized by four integers
(β, t, L, U), where

• β is base of the system or radix

• t is number of digits or precision

• [L,U] is exponent range

A common way of expressing a FP number x is

x = ± d0.d1 · · · dt−1 × βe

where

• 0 ≤ di ≤ β − 1, i = 0, . . . , t− 1

• e ∈ [L,U]

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 8/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

x = ± d0.d1 · · · dt−1 × βe

• The string of base β digits d0d1 · · · dt−1 is called mantissa or
significand

• d1d2 · · · dt−1 is called fraction

• A FP number is normalized if d0 is nonzero
denormalized otherwise

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 9/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

Floating-point number system cont.

Example 1. Consider the FP (10, 3,−2, 2).

• The normalized numbers are of the form

±d0.d1d2 × 10e, d0 ̸= 0, e ∈ [−2, 2]

• largest positive number is 9.99× 102

• smallest positive normalized number is 1.00× 10−2

• smallest positive denormalized number 0.01× 10−2

• denormalized numbers are e.g. 0.23× 10−2, 0.11× 10−2

• 0 is represented as 0.00× 100

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 10/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

Rounding

How to store a real number

x = ± d0.d1 · · · dt−1dtdt+1 · · · × βe

in t digits?
Denote by fl(x) the FP representation of x

• Rounding by chopping (also called rounding towards zero)

• Rounding to nearest. fl(x) is the nearest FP to x
If a tie, round to the even FP

• Rounding towards +∞. fl(x) is the smallest FP ≥ x

• Rounding towards −∞. fl(x) is the largest FP ≤ x

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 11/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

Rounding cont.

Example 2. Consider the FP (10, 3,−2, 2).
Let x = 1.2789× 101

• chopping: fl(x) = 1.27× 101

• nearest: fl(x) = 1.28× 101

• +∞: fl(x) = 1.28× 101

• −∞: fl(x) = 1.27× 101

Let x = 1.275000. It is in the middle between 1.27 and 1.28.
When a tie, round to the even, the number with even last digit

• nearest: fl(x) = 1.28

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 12/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

Machine epsilon

• Machine epsilon: the distance from 1 to the next larger FP
number
E.g. in t = 5 decimal digits, ϵmach = 1.0001− 1.0000 = 10−4

1 1.00011.00005

ϵmach = 0.0001 = 10−4

u = 5× 10−5

Note: 1.00005 is not representable in this FP system, just
denotes the middle

• Unit roundoff: u = ϵmach/2

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 13/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

Machine epsilon cont.

When rounding to the nearest

fl(x) = x(1 + ϵ), where |ϵ| ≤ u

i.e.

fl(x)− x

x
= ϵ∣∣∣∣fl(x)− x

x

∣∣∣∣ = |ϵ| ≤ u

ϵ is the relative error in fl(x).

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 14/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

Machine epsilon cont.

Example 3. Consider the FP (10, 3,−2, 2).

• The machine epsilon is ϵmach = 1.01− 1.00 = 0.01.

• Unit roundoff is ϵmach/2 = 0.01 = 0.005 = 5× 10−3.

Let x = 1.2789× 101. With rounding to nearest,

fl(x) = 1.28× 101.

Then ∣∣∣∣fl(x)− x

x

∣∣∣∣ = |1.28× 101 − 1.2789× 101|
1.2789× 101

=
|1.28− 1.2789|

1.2789

≈ 8.6011× 10−4 < 5× 10−3

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 15/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

Machine epsilon cont.

Example 4. Consider the FP (10, 3,−2, 2). Let x = 3.4950001× 102.
With rounding to nearest,

fl(x) = 3.50× 102.

The absolute error in fl(x) is

fl(x)− x = 3.50× 102 − 3.4950001× 102 ≈ 0.5

which is large.
But the relative error is within u = 5× 10−3:∣∣∣∣fl(x)− x

x

∣∣∣∣ = |3.50× 102 − 3.4950001× 102|
3.4950001× 102

=
|3.50− 3.4950001|

3.4950001

≈ 1.4306× 10−3 < 5× 10−3

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 16/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

IEEE 754

• IEEE 754 standard for FP arithmetic (1985)

• IEEE 754-2008, IEEE 754-2019

• Most common (binary) single and double precision
since 2008 half precision

bits t L U ϵmach

single 32 24 −126 127 ≈ 1.2× 10−7

double 64 53 −1022 1023 ≈ 2.2× 10−16

range smallest

normalized denormalized

single ±3.4× 1038 ±1.2× 10−38 ±1.4× 10−45

double ±1.8× 10308 ±2.2× 10−308 ±4.9× 10−324

(These are ≈ values)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 17/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

IEEE 754 cont.
Exceptional values

• Inf, -Inf when the result overflows, e.g. 1/0.0

• NaN ”Not a Number” results from undefined operations e.g.
0/0, 0*Inf, Inf/Inf
NaNs propagate through computations

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 18/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

IEEE 754 cont.

• sign 0 positive, 1 negative

• exponent is biased

• first bit of mantissa is not stored, sticky bit, assumed 1

(Figures are from IEEE Standard 754 Floating Point Numbers

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 19/35

https://www.geeksforgeeks.org/ieee-standard-754-floating-point-numbers/

FP system Rounding Machine epsilon IEEE 754 Cancellations

IEEE 754 cont.

Single precision

• FP numbers

◦ biased exponent: from 1 to 254, bias: 127
◦ actual exponent: 1− 127 = −126 to 254− 127 = 127

• Inf

◦ sign: 0 for +Inf, 1 for -Inf
◦ biased exponent: all 1’s, 255
◦ fraction: all 0’s

• NaN

◦ sign: 0 or 1
◦ biased exponent: all 1’s, 255
◦ fraction: at least one 1

• 0

◦ sign: 0 for +0, 1 for −0
◦ biased exponent: all 0’s
◦ mantissa: all 0’s

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 20/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

IEEE 754 cont.

Double precision

• bias 1023

• biased exponent: from 1 to 2046

• actual exponent: from −1022 to 1023

• rest similar to single

Try IEEE 754 double precision visualization

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 21/35

https://bartaz.github.io/ieee754-visualization/

FP system Rounding Machine epsilon IEEE 754 Cancellations

IEEE 754 cont.
Why biased exponent?

What if the exponent is stored as a signed number in 2’s
complement representation?

Example 5.

• Consider single precision, and assume the exponent is stored as a
signed integer.

• Assume we have two positive numbers x > y with exponents

5 and −5, respectively.

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 22/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

Example 5. cont.

• 5 in 8 bits is 00000101

• −5 in 2’s complement is 11111011

• Then x and y are of the form

x = 0︸︷︷︸
+

00000101︸ ︷︷ ︸
5

· · ·︸︷︷︸
23 bits

y = 0︸︷︷︸
+

11111011︸ ︷︷ ︸
−5

· · ·︸︷︷︸
23 bits

If we compare them bit by bit, x < y, which is not the case.

• By having exponents as unsigned integers, it is easy to compare FP
numbers.

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 23/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

IEEE 754 cont.
FP arithmetic

For a real x and rounding to nearest

fl(x) = x(1 + ϵ), |ϵ| ≤ u

u is the unit roundoff of the precision

The arithmetic operations are correctly rounded, i.e. for x and y
IEEE numbers and rounding to the nearest

fl(x ◦ y) = (x ◦ y)(1 + ϵ), ◦ ∈ {+,−, ∗, /}, |ϵ| ≤ u

Also correctly rounded are

• conversions between formats and to and from strings

• square root

• fused multiply and add, FMA
Computes a ∗ x+ b with single rounding

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 24/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

IEEE 754 cont.

Example 6. Consider a decimal floating-point system with t = 5 and
rounding to nearest

• The machine epsilon is 1.0001− 1.0000 = 0.0001 = 10−4

• Unit roundoff is u = 10−4/2 = 5× 10−5

• Let x = 1.162611735194631

With rounding to nearest, fl(x) = 1.1626

fl(x) = x(1 + ϵ)

ϵ =
fl(x)− x

x
=

1.1626− 1.162611735194631

1.162611735194631
≈ −1.0094× 10−5

|ϵ| ≈ 1.0094× 10−5 < 5× 10−5︸ ︷︷ ︸
u

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 25/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

IEEE 754 cont.

Example 7. Assume t = 5. Suppose x is close to the middle of two FP
numbers, e.g. x = 1.000050000000000001× 104. Then

ϵ =
fl(x)− x

x
=

1.0001× 104 − 1.000050000000000001× 104

1.000050000000000001× 104

≈ 4.9998× 10−5 < 5× 10−5

That is, the relative error is close to the unit roundoff of 5× 10−5

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 26/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

IEEE 754 cont.

Example 8. Assume x, y, z are FP numbers. Find the error in
fl(z(x+ y)).

Since they are FP numbers, fl(x) = x, fl(y) = y, fl(z) = z. Then

fl(z(x+ y)) = fl(z) fl(x+ y) (1 + δ1) δ1 roundoff in fl(z) fl(x+ y)

= z(fl(x) + fl(y))(1 + δ2)(1 + δ1) δ2 roundoff in x+ y

= z(x+ y)(1 + δ1)(1 + δ2)

= z(x+ y)(1 + δ1 + δ2 + δ1δ2) drop δ1δ2

≈ z(x+ y)(1 + δ1 + δ2),

where |δ1,2| ≤ u. |δ1δ2| is very small compared to |δ1| and |δ2|, so we
neglect it

Denoting δ = δ1 + δ2, |δ| = |δ1 + δ2| ≤ |δ1|+ |δ2| ≤ 2u and

fl(z(x+ y)) = z(x+ y)(1 + δ), where|δ| ≤ 2u

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 27/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

IEEE 754 cont.

Example 9. Assume x, y real. What is the error in fl(xy)?

We have fl(x) = x(1 + δ1), fl(y) = y(1 + δ2), where |δ1,2| ≤ u.

fl(xy) = fl(x) fl(y) (1 + δ3) δ3 is the roundoff in fl(x) fl(y)

= x(1 + δ1)y(1 + δ2)(1 + δ3)

= xy(1 + δ1 + δ2 + δ3

+δ1δ2 + δ1δ3 + δ2δ3 + δ1δ2δ3︸ ︷︷ ︸
very small

)

≈ xy(1 + δ1 + δ2 + δ3).

Denoting δ = δ1 + δ2 + δ3,

|δ| ≤ |δ1|+ |δ2|+ |δ3| ≤ 3u

and
fl(xy) = xy(1 + δ), where |δ| ≤ 3u

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 28/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

Example 10 (Computing
√
x2 + y2).

• One can do sqrt(x*x+y*y)

• Assume double precision and suppose
x=1e200 and y=1e100

• x*x will overflow and the result is Inf

• sqrt(Inf+1e200) gives Inf

• Let M = max{|x|, |y|} and assume M = |x|. Then√
x2 + y2 = M

√
1 + (y/M)2

• Setting M=1e200, y1=y/M, compute M*sqrt(1+y1*y1), which gives
1e200

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 29/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

IEEE 754 cont.

Note

expression evaluates to
y1=y/M 1e100/1e200 = 1e-100

y1*y1 1e-200

1+y1*y1 1
sqrt(1+y1*y1) 1

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 30/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

Cancellations

Cancellations occur when subtracting nearby numbers that contain
roundoff

Example 11. Assume a decimal FP system with t = 5 digits and
rounding to nearest. Let x = 1.234567 and y = 1.234512 and compute
x− y in this FP system

fl(x) = fl(1.234567) = 1.2346 roundoff error

fl(y) = fl(1.234512) = 1.2345 roundoff error

fl(x)− fl(y) = 0.0001 NO roundoff error

= 1.0000× 10−4

• 1 is the result of subtracting 6 and 5, both containing roundoff

• fl(x)− fl(y) = 1.0000× 10−4 has no correct diggits:
catastrophic cancellation

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 31/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

Cancellations cont.

Example 11. cont.

• True result is
x− y = 1.234567− 1.234512 = 0.000055 = 5.5× 10−5

• The absolute error in fl(x)− fl(y) is small:

[fl(x)− fl(y)]− (x− y) = 1× 10−4 − 5.5× 10−5

= 10× 10−5 − 5.5× 10−5

= 4.5× 10−5

• The relative error in fl(x)− fl(y) is

[fl(x)− fl(y)]− (x− y)

x− y
=

4.5× 10−5

5.5× 10−5 =
4.5

5.5
≈ 0.82

or ≈ 82%.

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 32/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

Cancellations cont.

Example 12.
Let now x = 5.384576 and y = 4.894080

fl(x) = fl(5.384576) = 5.3846 roundoff error

fl(y) = fl(4.894080) = 4.8941 roundoff error

fl(x)− fl(y) = 0.4905 NO roundoff error

= 4.9050× 10−1

• 5 is the result of subtracting 1 from 6, both containing roundoff
errors

• The digits 4.90 are correct

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 33/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

Cancellations cont.

Example 12. cont.

• True result is x− y = 5.384576− 4.894080 = 0.490496

• The absolute error in fl(x)− fl(y) is

[fl(x)− fl(y)]− (x− y) ≈ 4.0000× 10−6

• The relative error in fl(x)− fl(y) is

[fl(x)− fl(y)]− (x− y)

x− y
≈ 4.0000× 10−6

0.490496

≈ 8.16× 10−6

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 34/35

FP system Rounding Machine epsilon IEEE 754 Cancellations

Cancellations cont.

Example 13. Consider the equivalent expressions x2 − y2 and
(x− y)(x+ y). Suppose |x| ≈ |y|. Which one is better to evaluate?
Assume x, y > 0; the case x, y < 0 is similar

• x− y may have cancellations; x+ y does not

• x2 and y2 would have (in general) roundoff errors from the
multiplications

• due to them, cancellations in x2 − y2 can be worse than in (x− y)

Try

x = 10000 * rand; y = x * (1 + 1e-10);

eval1 = (x - y) * (x + y); eval2 = x * x - y * y;

%compute more accurate result using vpa

xv = vpa(x); yv = vpa(y); acc = (xv - yv) * (xv + yv);

fprintf(’rel. error in (x-y)*(x+y) = % e\n’, (acc - eval1)/acc);

fprintf(’rel. error in x*x - y*y = % e\n’, (acc - eval2)/acc);

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 35/35

Computer Arithmetic—Cancellations
CS/SE 4X03

Ned Nedialkov

McMaster University

September 14, 2023

Consider x− y, x ̸= y.

Assume no roundoff in the subtraction, i.e. fl(x− y) = fl(x)− fl(y).
From fl(x) = x(1 + ϵ1), fl(y) = y(1 + ϵ2),

fl(x− y) = fl(x)− fl(y)

= x(1 + ϵ1)− y(1 + ϵ2)

= (x− y) + xϵ1 − yϵ2

= (x− y)

(
1 +

xϵ1 − yϵ2
x− y

)
The error

δ =
xϵ1 − yϵ2
x− y

can be arbitrary large when x ≈ y.

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 2/8

Example 1. Consider a decimal FP system with t = 5 digits. Let
x = 9.23450001 and y = 9.23455001.

Assuming rounding to the nearest, what is the relative error in
(a) fl(x+ y), (b) fl(x− y)?

x and y are represented as fl(x) = 9.2345 and fl(y) = 9.2346

Unit roundoff is 5× 10−5

(a)

fl(x+ y) = fl
[
fl(x) + fl(y)

]
= fl(9.2345 + 9.2346) = fl(1.84691× 10)

= 1.8469× 10

∣∣∣∣fl(x+ y)− (x+ y)

x+ y

∣∣∣∣ = ∣∣∣∣1.8469× 10− 1.846905002× 10

1.846905002× 10

∣∣∣∣
≈ 2.7× 10−6 < 5× 10−5

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 3/8

Example 1. cont.

(b)

fl(x− y) = fl
[
fl(x)− fl(y)

]
= fl(9.2345− 9.2346) = fl

(
−1.0000× 10−4)

= −1.0000× 10−4

∣∣∣∣fl(x− y)− (x− y)

x− y

∣∣∣∣ = ∣∣∣∣−1.0000× 10−4 − (−5.0000× 10−5)

−5.0000× 10−5

∣∣∣∣
=

∣∣∣∣−5× 10−5

−5× 10−5

∣∣∣∣
= 1 ≫ 5× 10−5

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 4/8

Example 2. How to evaluate
√
x+ 1−

√
x to avoid cancellations?

For large x,
√
x+ 1 ≈

√
x.

(
√
x+ 1−

√
x)

√
x+ 1 +

√
x√

x+ 1 +
√
x

=
1√

x+ 1 +
√
x

Evaluate
1√

x+ 1 +
√
x

Let x = 100000. In a 5-digit decima arithmetic,
x+ 1 = 1.0000× 105 + 1 = 100001 rounds to 1.0000× 105.

Then
√
x+ 1−

√
x gives 0, but

1√
x+ 1 +

√
x

=
1√

1.0000× 105 +
√

1.0000× 105
= 1.5811× 10−3

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 5/8

Example 3. Consider approximating e−x for x > 0 by

e−x ≈ 1− x+
x2

2!
− x3

3!
+ · · · (−1)k

xk

k!

for some k

From e−x = 1/ex, it is better to approximate

ex ≈ 1 + x+
x2

2!
+

x3

3!
+ · · ·+ xk

k!

and then compute 1/ex

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 6/8

Solving ax2 + bx+ c

Compute the roots of ax2 + bx+ c = 0

x1,2 =
−b±

√
b2 − 4ac

2a

If b2 ≫ 4ac > 0, there may be cancellations

Example 4. Consider 4-digit decimal arithmetic and take
a = 1.01, b = 98.73, c = 4.03.

= rounds to

b2 9747.6129 9748

4ac 16.2812 16.28

b2 − 4ac 9748− 16.28 9732

d =
√
b2 − 4ac

√
9732 98.65

−b+ d −98.73 + 98.65 −0.08

−b− d −98.73− 98.71 −197.4

x1 = (−b+ d)/(2a) −0.08/(2.02) −3.960× 10−2

x2 = (−b− d)/(2a) −197.4/(2.02) −97.72

Exact roots rounded to 4 digits −4.084× 10−2, −97.71

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 7/8

Solving ax2 + bx+ c cont.

d =
√
b2 − 4ac, avoid cancellations in −b± d

Use x1x2 = c/a

Compute using

d =
√
b2 − 4ac

if b ≥ 0
x1 = −(b+ d)/(2a)
x2 = c/(ax1)

else
x1 = (−b+ d)/(2a)
x2 = c/(ax1)

This algorithm gives x1 = −97.71, x2 = −4.084× 10−2

Exact roots rounded to 4 digits: −97.71, −4.084× 10−2

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 8/8

Background
CS/SE 4X03

Ned Nedialkov

McMaster University

September 18, 2023

Outline

Taylor series

Mean-value theorem

Errors in computing
Roundoff errors
Truncation errors

Computational error

Examples

Absolute and relative errors

Taylor series Mean-value Th Errors in computing Comp. error Examples Measuring errors

Taylor series

Taylor series of an infinitely differentiable (real or complex) f at c

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + · · ·

=

∞∑
k=0

f (k)(c)

k!
(x− c)k

Maclaurin series c = 0

f(x) = f(0) + f ′(c)x+
f ′′(0)

2!
x2 + · · ·

=

∞∑
k=0

f (k)(0)

k!
xk

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 3/22

Taylor series Mean-value Th Errors in computing Comp. error Examples Measuring errors

Taylor series cont.

Assume f has n+ 1 continuous derivative in [a, b], denoted
f ∈ Cn+1[a, b]
Then for any c and x in [a, b]

f(x) =

n∑
k

f (k)(c)

k!
(x− c)k + En+1,

where

En+1 =
f (n+1)(ξ)

(n+ 1)!
(x− c)n+1 and ξ = ξ(c, x) is between c and x

Replacing x by x+ h and c by x, we obtain

f(x+ h) =

n∑
k

f (k)(x)

k!
hk + En+1,

where En+1 = f(n+1)(ξ)
(n+1)! hn+1 and ξ is between x and x+ h

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 4/22

Taylor series Mean-value Th Errors in computing Comp. error Examples Measuring errors

Taylor series cont.

We say the error term En+1 is of order n+ 1 and write as

En+1 =
f (n+1)(ξ)

(n+ 1)!
hn+1 = O(hn+1)

That is,
|En+1| ≤ chn+1, for some c > 0

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 5/22

Taylor series Mean-value Th Errors in computing Comp. error Examples Measuring errors

Taylor series cont.

Example 1. How to approximate ex for given x?

ex = 1 + x+
x2

2!
+

x3

3!
+ · · ·

Suppose we approximate using ex ≈ 1 + x+ x2

2!

Then

ex = 1 + x+
x2

2!
+ E3, where E3 =

eξ

3!
x3, ξ between 0 and x

Let x = 0.1. Then e0.1 ≈ 1.1052. The error is

E3 =
eξ

3!
x3 ⪅

1.1052

3!
0.13 ≈ 1.8420× 10−4

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 6/22

Taylor series Mean-value Th Errors in computing Comp. error Examples Measuring errors

Taylor series cont.

How to check our calculation?

Example 2. We can compute a more accurate value using Matlab’s exp
function
The error in our approximation is

exp(x)-(1+x+x^2/2) ≈ 1.7092× 10−4

This is within the bound 1.8420× 10−4:

1.7092× 10−4 < 1.8420× 10−4

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 7/22

Taylor series Mean-value Th Errors in computing Comp. error Examples Measuring errors

Taylor series cont.

Example 3. If we approximate using three terms

ex ≈ 1 + x+
x2

2!
+

x3

3!

the error is

E4 =
eξ

4!
x4 ⪅

1.1052

4!
0.14 ≈ 4.6050× 10−6

Using exp(0.1), the error is

exp(x)-(1+x+x^2/2+x^3/6) ≈ 4.2514× 10−6

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 8/22

Taylor series Mean-value Th Errors in computing Comp. error Examples Measuring errors

Mean-value theorem

If f ∈ C1[a, b], a < b, then

f(b) = f(a) + (b− a)f ′(ξ), for some ξ ∈ (a, b)

From which

f ′(ξ) =
f(b)− f(a)

b− a

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 9/22

Taylor series Mean-value Th Errors in computing Comp. error Examples Measuring errors

Errors in computing
Roundoff errors

Example 4.

• Consider computing exp(0.1)

• 0.1 binary’s representation is infinite:

0.110 = (0.0 0011 0011 · · ·)2

• In floating-point arithmetic, this binary representation is rounded:
roundoff error

• The input to the exp function is not exactly 0.1 but 0.1 + ϵ, for some ϵ

• The exp function has its own error

• Then the output of exp(0.1) is rounded when converting from binary to
decimal

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 10/22

Taylor series Mean-value Th Errors in computing Comp. error Examples Measuring errors

Errors in computing cont.
Truncation errors

Consider

ex = 1 + x+
x2

2!
+

x3

3!
+

∞∑
k=4

xk

k!

Suppose we approximate

ex ≈ 1 + x+
x2

2!
+

x3

3!

That is we truncate the series. The resulting error is a truncation error

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 11/22

Taylor series Mean-value Th Errors in computing Comp. error Examples Measuring errors

Errors in computing cont.
Approximating first derivative

f(x) scalar with continuous second derivative

f(x+ h) = f(x) + f ′(x)h+
f ′′(ξ)

2
h2, ξ between x and x+ h

f ′(x)h = f(x+ h)− f(x)− f ′′(ξ)

2
h2

f ′(x) =
f(x+ h)− f(x)

h
− f ′′(ξ)

2
h

If we approximate

f ′(x) ≈ f(x+ h)− f(x)

h
the truncation error is −f ′′(ξ)

2
h

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 12/22

Taylor series Mean-value Th Errors in computing Comp. error Examples Measuring errors

Computational error

Computational error = (truncation error) + (rounding error)

Truncation error: difference between the true result and the result that
would be produced by an algorithm using exact arithmetic

Due to e.g. truncating an infinite series or replacing a derivative by finite
differences

Example 5. Replace f ′(x) by (f(x+ h)− f(x))/h From

f ′(x) =
f(x+ h)− f(x)

h
− 1

2
f ′′(ξ)h

the truncation error is − 1
2
f ′′(ξ)h

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 13/22

Taylor series Mean-value Th Errors in computing Comp. error Examples Measuring errors

Computational error cont.

Rounding error: difference between the result produced using
finite-precision arithmetic and exact arithmetic

Example 6. Consider evaluating

f(x+ h)− f(x)

h

In finite-precision arithmetic, we do not compute f(x+ h) exactly. Denote the
computed value by f1. Then

f1 = f(x+ h) + δ1

for some δ1. Similarly, we compute f2 and for some δ2,

f2 = f(x) + δ2

Note f(x+ h) and f(x) are the mathematically correct results, what we would
compute in infinite arithmetic

f1 and f2 are what is computed in floating-point arithmetic

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 14/22

Taylor series Mean-value Th Errors in computing Comp. error Examples Measuring errors

Example 6. cont.
Then we approximate f ′(x) by

f1 − f2
h

=
f(x+ h)− f(x)

h
+

δ1 − δ2
h

Ignoring the error in the subtraction and division in (f1 − f2)/h, the total
computational error is

f ′(x)− f1 − f2
h

=
f(x+ h)− f(x)

h
− 1

2
f ′′(ξ)h− f(x+ h)− f(x)

h
− δ1 − δ2

h

= −1

2
f ′′(ξ)h− δ1 − δ2

h

f ′(x) is the mathematically correct value, as if computed in infinite arithmetic
Denote by M the maximum of |f ′′(x)| for x between x and x+ h

Assume |δ1|, |δ1| ≤ ϵmach

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 15/22

Taylor series Mean-value Th Errors in computing Comp. error Examples Measuring errors

Example 6. cont.
Then ∣∣∣∣f ′(x)− f1 − f2

h

∣∣∣∣ = ∣∣∣∣−1

2
f ′′(ξ)h− δ1 − δ2

h

∣∣∣∣
≤

∣∣∣∣12f ′′(ξ)h

∣∣∣∣+ ∣∣∣∣δ1 − δ2
h

∣∣∣∣
≤ 1

2
Mh+

2ϵmach

h

Let g(h) = 1
2
Mh+ 2ϵmach/h. Then

g′(h) =
1

2
M − 2ϵmach

h2
= 0 when

h2 =
4ϵmach

M
, h = 2

√
ϵmach

M

g(h) is smallest when

h =
2√
M

√
ϵmach

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 16/22

Taylor series Mean-value Th Errors in computing Comp. error Examples Measuring errors

Try

clear all; close all;

x = pi/4;

h = 10.^(-16:.1:.1);

f = @(x) sin(x);

fpaccurate = cos(x);

fp = (f(x+h)-f(x))./h;

error = abs(fpaccurate - fp);

M = 1;

loglog(h, error,’.’, ’MarkerSize’, 10);

hold on;

loglog(h, 0.5*M*h+2*eps./h, ’LineWidth’,2);

xlabel(’h’); ylabel(’error’);

title("Approximaing f’(x), f(x) = sin(x), at x=pi/4");

xlim([h(1) h(end)]);

legend(’error in (f(x+h)-f(x))./h’, ’0.5*M*h+2*eps./h’)

set(gca, ’FontSize’, 12);

print("-depsc2", "deriverr.eps")

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 17/22

Taylor series Mean-value Th Errors in computing Comp. error Examples Measuring errors

10
-15

10
-10

10
-5

10
0

h

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

e
rr

o
r

Approximaing f'(x), f(x) = sin(x), at x=pi/4

error in (f(x+h)-f(x))./h

0.5*M*h+2*eps./h

The error is smallest at h ≈ √
ϵmach ≈ 10−8

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 18/22

Taylor series Mean-value Th Errors in computing Comp. error Examples Measuring errors

Examples

Example 7. Compute (3*(4/3-1)-1)*2^52 in your favourite language

exact value 0

double precision -1

single precision 536870912

Example 8. This code

#include <stdio.h>

int main() {

int i = 0, j = 0;

float f;

double d;

for (f = 0.5; f < 1.0; f += 0.1)

i++;

for (d = 0.5; d < 1.0; d += 0.1)

j++;

printf("float loop %d double loop %d \n", i, j);

}

outputs float loop 5 double loop 6

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 19/22

Taylor series Mean-value Th Errors in computing Comp. error Examples Measuring errors

Examples cont.

Example 9. Let ai = i · ai−1 − 1, where a0 = e− 1. Find a25

#include <stdio.h>

#include <math.h>

int main(){

int i;

a = exp(1)-1;

for (i = 1; i <= 25; i++)

a = i * a - 1;

printf("%e\n", a);

return 0;

}

Matlab

a = exp(1)-1;

for i = 1:25

a = i * a - 1;

end

fprintf(’%e\n’, a);

true value ≈ 3.993873e-02

C -2.242373e+09 clang v11.0.3, MacOS X
Matlab 4.645988e+09 R2020b
Octave -2.242373e+09

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 20/22

Taylor series Mean-value Th Errors in computing Comp. error Examples Measuring errors

Examples cont.

In Matlab, do doc vpa

• vpa(x)

◦ uses variable-precision floating-point arithmetic (VPA)
◦ evaluates x to ≥ d significant digits
◦ d is the value of the digits function

default default value for the number of digits is 32

• vpa(x,d) uses at least ≥ d significant digits

Example 9. cont.

clear all;

a = exp(vpa(1))-1;

for i = 1:25

a(i+1) = i * a(i) - 1;

end

fprintf(’%e \n’, a(end));

outputs 3.993873e-02

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 21/22

Taylor series Mean-value Th Errors in computing Comp. error Examples Measuring errors

Absolute and relative errors

Suppose y is exact result and ỹ is an approximation for y

• Absolute error |y − ỹ|
• Relative error |y − ỹ|/|y|

Example 10. Suppose y = 8.1472× 10−1 (accurate value), ỹ = 8.1483× 10−1

(approximation). Then

|y − ỹ| = 1.1000× 10−4,
|y − ỹ|
|y| = 1.3502× 10−4

Suppose y = 1.012× 1018 (accurate value), ỹ = 1.011× 1018 (approximation).
Then

|y − ỹ| = 1015,
|y − ỹ|
|y| ≈ 9.8814× 10−4 ≈ 10−3

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 22/22

Solving Linear Systems
Gauss Elimination

CS/SE 4X03

Ned Nedialkov

McMaster University

September 24, 2023

Outline

Linear systems

Example

Gauss elimination
Algorithm
Cost

Backward substitution
Algorithm
Cost

Total cost

Linear systems Example Gauss elimination Backward substitution Total cost

Linear systems

• Given an n× n nonsingular matrix A and an n-vector b solve

Ax = b

The following are equivalent

◦ A is nonsingular
◦ The determinant of A is nonzero, det(A) ̸= 0
◦ Columns (rows) are linearly independent
◦ There exists A−1 such that A−1A = AA−1 = I, where I is

the n× n identity matrix

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 3/14

Linear systems Example Gauss elimination Backward substitution Total cost

Linear systems cont.

• Dense system: A may have a small number of nonzeros

• Sparse system: most of the elements are zeros
See Florida Sparse Matrix Collection

• Direct methods: based on Gauss elimination

• Iterative methods: for large A

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 4/14

https://sparse.tamu.edu/

Linear systems Example Gauss elimination Backward substitution Total cost

Example

Ax =

 1 −1 3
1 1 0
3 −2 1

x1x2
x3

 =

113
3

 = b

Multiply first row by 1 and subtract from second row, multiply first
row by 3 and subtract from third row

A|b =

 1 −1 3 11
1 1 0 3
3 −2 1 3

 ×1 ×3
↓

↓

A|b←

 1 −1 3 11
0 2 −3 −8
0 1 −8 −30

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 5/14

Linear systems Example Gauss elimination Backward substitution Total cost

Example cont.

Multiply second row by 1
2 and subtract from third row

A|b←

 1 −1 3 11
0 2 −3 −8
0 1 −8 −30

 ×1
2
↓

A|b←

 1 −1 3 11
0 2 −3 −8
0 0 −6.5 −26

This is Gauss elimination, also called forward elimination

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 6/14

Linear systems Example Gauss elimination Backward substitution Total cost

Example cont.

1 −1 3
0 2 −3
0 0 −6.5

x1x2
x3

 =

a11 a12 a13
0 a22 a23
0 0 a33

x1x2
x3

 =

b1b2
b3

 11
−8
−26

x3 = b3/a33 = −26/(−6.5) = 4
x2 = (b2 − a23x3)/a22 = (−8− (−3)× 4)/2 = 2
x1 = (b1 − a12x2 − a13x3)/a11 = (11− (−1)× 2− 3× 4)/1 = 1

This is called backward substitution

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 7/14

Linear systems Example Gauss elimination Backward substitution Total cost

Gauss elimination
Algorithm

Algorithm 3.1 (Gauss elimination).
for k = 1 : n− 1 % for each row

for i = k + 1 : n % for each row below kth
mik = aik/akk % multiplier
% update row
for j = k + 1 : n

aij = aij −mikakj
bi = bi −mikbk % update bi

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 8/14

Linear systems Example Gauss elimination Backward substitution Total cost

Gauss elimination cont.
Cost

• We do not count the operations for updating b

• The third nested for loop executes n− k times

◦ n− k multiplications
◦ n− k additions

• The work per one iteration of the second nested for loop is
2(n− k) + 1, the 1 comes from the division

• This loop executes n− k times

• The total work for the second nested for loop is
2(n− k)2 + (n− k)

• The work for the outermost for loop is

n−1∑
k=1

[
2(n− k)2 + (n− k)

]
= 2

n−1∑
k=1

k2 +

n−1∑
k=1

k

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 9/14

Linear systems Example Gauss elimination Backward substitution Total cost

Gauss elimination cont.
Cost

Since 12 + 22 + 32 + · · ·+ n2 = n(n+ 1)(2n+ 1)/6

n−1∑
k=1

k2 = (n− 1)(n− 1 + 1)(2(n− 1) + 1)/6

= (n− 1)n(2n− 1)/6 = (n2 − n)(2n− 1)/6

= (2n3 − n2 − 2n2 + n)/6 =

= 1
3
n3 − 1

2
n2 + 1

6
n

Using the above and
∑n−1

k=1 k = (n−1)n
2 = 1

2n
2 − 1

2n,

2

n−1∑
k=1

k2 +

n−1∑
k=1

k = 2
(
1
3
n3 − 1

2
n2 + 1

6
n
)
+ 1

2
n2 − 1

2
n

= 2
3
n3 − n2 + 1

3
n+ 1

2
n2 − 1

2
n

= 2
3
n3 − 1

2
n2 − 1

6
n = 2

3
n3 +O(n2)

Total work for Gauss elimination is 2
3n

3 +O(n2)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 10/14

Linear systems Example Gauss elimination Backward substitution Total cost

Backward substitution

• After GE, we have
a1,1 a1,2 a1,3 · · · a1,n

a2,2 a2,3 · · · a2,n
a3,3 · · · a3,n

...
an−1,n−1 an−1,n

an,n

x1

x2

x3

...
xn−1

xn

 =

b1
b2
b3
...

bn−1

bn

• xn = bn/an,n

• an−1,n−1xn−1 + an−1,nxn = bn−1

xn−1 = (bn−1 − an−1,nxn)/an−1,n−1

• xk =
(
bk −

∑n
j=k+1 ak,jxj

)
/ak,k

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 11/14

Linear systems Example Gauss elimination Backward substitution Total cost

Backward substitution
Algorithm

Algorithm 4.1 (Backward substitution).
for k = n : −1 : 1

xk =
(
bk −

∑n
j=k+1 ak,jxj

)
/ak,k

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 12/14

Linear systems Example Gauss elimination Backward substitution Total cost

Backward substitution
Cost

• The work per iteration is

◦ n− k multiplications
◦ (n− k − 1) + 1 additions
◦ 1 division
◦ total 2(n− k) + 1 operations

• Total work is

n∑
k=1

(2(n− k) + 1) = 2

n∑
k=1

(n− k) +

n∑
k=1

1

= 2

n−1∑
k=1

k + n = 2
n(n− 1)

2
+ n

= n2 − n+ n = n2

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 13/14

Linear systems Example Gauss elimination Backward substitution Total cost

Total cost

• GE: 2
3n

3 − 1
2n

2 − 1
6n

• Backward substitution: n2

• Total cost is

2
3n

3 + 1
2n

2 − 1
6n = 2

3n
3 +O(n2) = O(n3)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 14/14

Gauss Elimination with Partial Pivoting (GEPP)
CS/SE 4X03

Ned Nedialkov

McMaster University

September 26, 2023

Outline

Example 1

GEPP

Example 2

Example 1 GEPP Example 2

Example 1. Consider

10−5x1 + x2 = 1

2x1 + x2 = 2

The solution is

x∗
1 ≈ 5.000025000125 · 10−1 ≈ 0.5

x∗
2 ≈ 9.999949999750 · 10−1 ≈ 1

Solve by Gauss elimination in t = 5 digit decimal floating-point

arithmetic

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 3/12

Example 1 GEPP Example 2

Example 1. cont.

• Eliminate with the first row, also called pivot row

• 10−5 is the pivot

• Multiply the first row by 2/10−5 = 2 · 105 :

2x1 + 2 · 105x2 = 2 · 105

and subtract from the second row:

(1− 2 · 105)x2 = 2− 2 · 105

• 1− 2 · 105 and 2− 2 · 105 round to −2.0000 · 105

• The second equation becomes

−2.0000 · 105x2 = −2.0000 · 105

from which we find x̃2 = 1.0000

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 4/12

Example 1 GEPP Example 2

Example 1. cont.

• Using 10−5x1 + x2 = 1, compute

x̃1 =
1− x̃2

10−5
=

0

10−5
= 0,

which is quite inaccurate

• The error in x̃2 is

x̃2 − x∗
2 ≈ 1− 9.99994999975 · 10−1 ≈ 5 · 10−6

• Hence
x̃2 ≈ x∗

2 + 5 · 10−6

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 5/12

Example 1 GEPP Example 2

Example 1. cont.

• Consider x̃1. We have

x̃1 =
1− x̃2

10−5
≈ 1− (x∗

2 + 5 · 10−6)

10−5

≈ 1− x∗
2

10−5︸ ︷︷ ︸
x∗
1

− 5 · 10−6︸ ︷︷ ︸
error in x̃2

· 1

10−5︸ ︷︷ ︸
1/pivot

= x∗
1 −(error in x̃2) ·

1

pivot︸ ︷︷ ︸
error in x̃1

= x∗
1 − 0.5

• The error in x̃2 is multiplied by 1/pivot = 105

The error in x̃1 is −0.5

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 6/12

Example 1 GEPP Example 2

Example 1. cont.

• Avoid small pivots. Swap the equations

2x1 + x2 = 2

10−5x1 + x2 = 1

• Multiply the first row by 10−5/2:

10−5x1 +
10−5

2
x2 = 10−5

and subtract from the second row(
1− 10−5

2

)
x2 = 1− 10−5

• 1− 10−5/2 and 1− 10−5 round to 1

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 7/12

Example 1 GEPP Example 2

Example 1. cont.

• The second equation is x2 = 1, find x̃2 = 1

• Using 2x1 + x2 = 2, x̃1 = 2−x̃2

2 = 0.5

• Using x̃2 ≈ x∗
2 + 5 · 10−6

x̃1 =
2− x̃2

2
≈ 2− (x∗

2 + 5 · 10−6)

2

=
2− x∗

2

2︸ ︷︷ ︸
x∗
1

− 5 · 10−6︸ ︷︷ ︸
error in x̃2

· 1

2︸︷︷︸
1/pivot

= x∗
1 −(error in x̃2) ·

1

pivot︸ ︷︷ ︸
error in x̃1

= x∗
1 − 2.5 · 10−6

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 8/12

Example 1 GEPP Example 2

GEPP

GEPP

• Eliminate with the row with the largest (in magnitude) entry

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 9/12

Example 1 GEPP Example 2

Example 2. Solve

x1 + x2 + x3 = 1

x1 + 1.0001x2 + 2x3 = 2

x1 + 2x2 + 2x3 = 3

with partial pivoting and t = 5 decimal arithmetic

Can chose any row to eliminate x1. Use first row:

x1 + x2 + x3 = 1

0.0001x2 + x3 = 1

x2 + x3 = 2

Swap rows 2 and 3 and eliminate with second row

x1 + x2 + x3 = 1

x2 + x3 = 2

0.0001x2 + x3 = 1

→
x1 + x2 + x3 = 1

x2 + x3 = 2

(1− 0.0001)x3 = 1− 0.0002

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 10/12

Example 1 GEPP Example 2

Example 2. cont. Using Matlab’s backslash operator, A\b where

A =

1 1 1
1 1.0001 2
1 2 2

 , b =

12
3

we obtain

[−1, 1.000100010001, 9.99899989999 · 10−1]

In 5-digit arithmetic,

0.9999x3 = 0.9998

x3 = 9.9990 · 10−1 error ≈ 10−8

x2 = 2− x3 = 1.0001 error ≈ −10−8

x1 = 1− x2 − x3 = −1 error ≈ 0

The errors in x1, x2, x3 are (in absolute value) ≈ 0, 10−8, 10−8,

respectively.

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 11/12

Example 1 GEPP Example 2

Example 2. cont.

If we eliminate with the second row, we multiply it by 104

x1 + x2 + x3 = 1

0.0001x2 + x3 = 1

x2 + x3 = 2

→
x1 + x2 + x3 = 1

0.0001x2 + x3 = 1

−9.9990 · 103x3 = −9.9980 · 103

Then

x3 = 9.9990 · 10−1 error in x3: ≈ 10−8

x2 =
1− x3

0.0001
= (1− x3) · 104 = 1.0000 −(error in x3)·104 ≈ −10−4

x1 = 1− x2 − x3 = −9.9990 · 10−1 error ≈ 10−4 − 10−8 ≈ 10−4

The errors now are (in absolute value) ≈ 10−4, 10−4, 10−8

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 12/12

LU Decomposition
CS/SE 4X03

Ned Nedialkov

McMaster University

October 2, 2023

Outline

LU decomposition

Example

Small pivots

Partial pivoting

lu(A)

LU decomposition Example Small pivots Partial pivoting lu(A)

LU decomposition

• Decompose A as A = LU , where

◦ L is unit lower-triangular
1’s on the main diagonal, 0’s above it

◦ U is upper-triangular
0’s below the main diagonal

• Consider solving Ax = b. From

Ax = LUx = b

L (Ux)︸ ︷︷ ︸
y

= b

we can solve first Ly = b for y and then Ux = y for x

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 3/19

LU decomposition Example Small pivots Partial pivoting lu(A)

LU decomposition cont.

A is n× n

• Gauss elimination takes O(n3) arithmetic operations

• LU decomposition takes O(n3) arithmetic operations

• Solving each of Ly = b and Ux = y takes O(n2) arithmetic
operations

• Suppose we need to solve m systems Ax = b(i), i = 1, . . . ,m
A is the same, the right-hand side changes

• If we solve them with GE O(mn3)

• Do LU decomposition first O(n3)

• Solve Ly = b(i), Ux = y, for i = 1 : m O(mn2)
Total LU+triangular solves O(n3 +mn2)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 4/19

LU decomposition Example Small pivots Partial pivoting lu(A)

Example of LU decomposition

A =

[
1 −1 3
1 1 0
3 −2 1

] ×1 ×3
↓

↓

• multipliers l2,1 = 1, l3,1 = 3

M1A =

 1 0 0
−1 1 0
−3 0 1

1 −1 3
1 1 0
3 −2 1

 =

 1 −1 3
0 2 −3
0 1 −8

 = A(1)

• multiplier l3,2 =
1
2

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 5/19

LU decomposition Example Small pivots Partial pivoting lu(A)

M2A
(1) =

1 0 0
0 1 0
0 −1

2 1

 1 −1 3
0 2 −3
0 1 −8

=

 1 −1 3
0 2 −3
0 0 −6.5

 = A(2) = U

We have

M2A
(1) = (M2M1)A = U

A = (M−1
1 M−1

2)︸ ︷︷ ︸
L

U

To compute M−1
1 , M−1

2 flip the signs of nonzero entries below the
main diagonal

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 6/19

LU decomposition Example Small pivots Partial pivoting lu(A)

Then

L = M−1
1 M−1

2 =

1 0 0
1 1 0
3 0 1

1 0 0
0 1 0
0 1

2 1

 =

1 0 0
1 1 0
3 1

2 1

1 0 0
1 1 0
3 1

2 1

︸ ︷︷ ︸

L

1 −1 3
0 2 −3
0 0 −6.5

︸ ︷︷ ︸

U

=

1 −1 3
1 1 0
3 −2 1

︸ ︷︷ ︸

A

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 7/19

LU decomposition Example Small pivots Partial pivoting lu(A)

Small pivots

• The matrix

A =

[
0 1
1 0

]
is nonsingular, but does not have LU factorization
Gauss elimination breaks down on this matrix since the
multiplier is 1/0

•

A =

[
1 1
1 1

]
is singular and has the LU factorization

A =

[
1 1
1 1

]
=

[
1 0
1 1

] [
1 1
0 0

]
= LU

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 8/19

LU decomposition Example Small pivots Partial pivoting lu(A)

Consider

A =

[
ϵ 1
1 1

]

• Multiply the first row by 1/ϵ and subtract from the second

L =

[
1 0
1
ϵ 1

]
, U =

[
ϵ 1
0 1− 1

ϵ

]
• When ϵ small, in floating-point arithmetic,

U ≈
[
ϵ 1
0 −1

ϵ

]
as 1− 1

ϵ ≈ −1
ϵ . Take e.g. ϵ = 10−16 in double precision

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 9/19

LU decomposition Example Small pivots Partial pivoting lu(A)

LU ≈
[
1 0
1
ϵ 1

] [
ϵ 1
0 −1

ϵ

]
=

[
ϵ 1
1 0

]
̸=

[
ϵ 1
1 1

]
= A

• Loss of accuracy

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 10/19

LU decomposition Example Small pivots Partial pivoting lu(A)

A =

[
ϵ 1
1 1

]

• Permute the rows

A =

[
1 1
ϵ 1

]
• Multiple first row by ϵ and subtract from second row[

1 1
0 1− ϵ

]

L =

[
1 0
ϵ 1

]
, U =

[
1 1
0 1− ϵ

]
Copyright © 2021-2023 N. Nedialkov. All rights reserved. 11/19

LU decomposition Example Small pivots Partial pivoting lu(A)

• Permuting the rows of A is PA, where P is permutation
matrix

PA =

[
0 1
1 0

] [
ϵ 1
1 1

]
=

[
1 1
ϵ 1

]

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 12/19

LU decomposition Example Small pivots Partial pivoting lu(A)

Partial pivoting

• If a pivot is small, then 1/(pivot) is large

• Roundoff errors are multiplied

Partial pivoting

• at step k = 1 : n− 1 chose the row q for which |aqk| is the
largest

• eliminate with row q
now we divide by the largest element in column k

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 13/19

LU decomposition Example Small pivots Partial pivoting lu(A)

Matlab’s lu

[L,U,P] = lu(A) returns L unit lower triangular, U upper
triangular, and P a permutation matrix such that A = P’*L*U.

That is A = P TLU , PA = LU

[L,U] = lu(A) returns permuted lower triangular L and upper
triangular U such that A = L*U.

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 14/19

LU decomposition Example Small pivots Partial pivoting lu(A)

Example 1.

Find the LU decomposition of 4 5 6
1 2 3
8 2 3

To eliminate with the first row, the multipliers are 1/4 and 2. We have4 5 6

0 0.75 1.5
0 −8 −9

To eliminate with the second row, the multiplier is −8/0.75. We have4 5 6

0 0.75 1.5
0 0 7

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 15/19

LU decomposition Example Small pivots Partial pivoting lu(A)

Example 1. cont.

Then 4 5 6
1 2 3
8 2 3

 =

 1 0 0
1/4 1 0
2 −8/0.75 1

4 5 6
0 0.75 1.5
0 0 7

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 16/19

LU decomposition Example Small pivots Partial pivoting lu(A)

Example 2.

Using partial pivoting, find the LU decomposition of4 5 6
1 2 3
8 2 3

We pivot with the third row. To swap the first and third rows,0 0 1

0 1 0
1 0 0

︸ ︷︷ ︸

P1

4 5 6
1 2 3
8 2 3

 =

8 2 3
1 2 3
4 5 6

To eliminate with the first row, the multipliers are 1/8 and 1/2. We have8 2 3
0 1.75 21/8
0 4 4.5

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 17/19

LU decomposition Example Small pivots Partial pivoting lu(A)

Example 2. cont.

Now we need to swap rows 2 and 3. This is the same as multiplying by a
permutation matrix1 0 0

0 0 1
0 1 0

︸ ︷︷ ︸

P2

8 2 3
0 1.75 21/8
0 4 4.5

 =

8 2 3
0 4 4.5
0 1.75 21/8

Now the multiplier is 1.75/4 and we have8 2 3
0 4 4.5
0 0 0.6562

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 18/19

LU decomposition Example Small pivots Partial pivoting lu(A)

Example 2. cont.

The total permutation is

P = P2P1 =

1 0 0
0 0 1
0 1 0

0 0 1
0 1 0
1 0 0

 =

0 0 1
1 0 0
0 1 0

Then

PA =

0 0 1
1 0 0
0 1 0

4 5 6
1 2 3
8 2 3

 =

 1 0 0
1/8 1 0
1/2 1.75/4 1

8 2 3
0 4 4.5
0 0 0.6562

 = LU

Check this result with Matlab’s lu.

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 19/19

Errors in Linear Systems Solving
CS/SE 4X03

Ned Nedialkov

McMaster University

October 2, 2023

Outline

Norms

Residual

Relative solution error

Norms Residual Relative solution error

Norms
Vector norms

Norm is a function ∥ · ∥ that satisfies for any x ∈ Rn

1. ∥x∥ ≥ 0, and ∥x∥ = 0 iff x = 0, the zero vector

2. ∥αx∥ = |α|∥x∥, α ∈ R
3. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for any x, y ∈ Rn

lp norms

∥x∥p =

(
n∑

i=1

|xi|p
)1/p

, 1 ≤ p ≤ ∞

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 3/12

Norms Residual Relative solution error

Norms cont.

• p = 1, one norm

∥x∥1 =
n∑

i=1

|xi|

• p = ∞, infinity or max norm

∥x∥∞ = max
i=1,...,n

|xi|

• p = 2, two or Euclidean norm

∥x∥2 =

√√√√ n∑
i=1

x2i

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 4/12

Norms Residual Relative solution error

Norms cont.
Matrix norms

• A ∈ Rm×n, ∥ · ∥ is a vector norm

• Matrix norm induced by this vector norm

∥A∥ = max
x ̸=0

∥Ax∥
∥x∥

= max
∥x∥=1

∥Ax∥

• Properties

1. ∥A∥ ≥ 0, and ∥A∥ = 0 iff A = 0, the zero matrix
2. ∥αA∥ = |α|∥A∥, α ∈ R
3. ∥A+B∥ = ∥A∥+ ∥B∥, for any A,B ∈ Rm×n

4. ∥AB∥ ≤ ∥A∥ · ∥B∥, for any A ∈ Rm×n and B ∈ Rn×p

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 5/12

Norms Residual Relative solution error

• Infinity norm, max row sum

∥A∥∞ = max
i

n∑
j=1

|aij |

• One norm, max column sum

∥A∥1 = max
j

n∑
i=1

|aij |

• Two norm

∥A∥2 = max
i

√
λi(ATA),

where λi(A
TA) is the ith eigenvalue of ATA

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 6/12

Norms Residual Relative solution error

Residual

Consider Ax = b

• Let x̃ be the computed solution, and let x be the exact
solution

• Relative error in the solution is

∥x− x̃∥
∥x∥

• Residual is

r = b−Ax̃

r = 0 ⇐⇒ b−Ax̃ = 0 ⇐⇒ x̃ = x

• In practice r ̸= 0

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 7/12

Norms Residual Relative solution error

• Ax = b and αAx = αb have the same solution
α is a scalar

• rα = αb− αAx̃ = α(b−Ax̃) can be arbitrarily large

• residual can be arbitrarily large

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 8/12

Norms Residual Relative solution error

Residual cont.

Example 1. Consider

A =

[
1.2969 0.8648
0.2161 0.1441

]
, b =

[
0.8642
0.1440

]
and the approximate solution x̃ = [0.9911,−0.487]T

• The residual is small:

r = b−Ax̃ ≈ [10−8,−10−8]T , ∥r∥∞ ≈ 10−8

• The exact solution is x = [2, −2]T . The error in x̃ is large:

x− x̃ = [1.513,−1.0089], ∥x− x̃∥∞ = 1.513

• Small residual does not imply small solution error

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 9/12

Norms Residual Relative solution error

Relative solution error

Given x̃, how large is

∥x− x̃∥
∥x∥

(1)

Using r = b−Ax̃ = Ax−Ax̃ = A(x− x̃),

x− x̃ = A−1r

∥x− x̃∥ = ∥A−1r∥ ≤ ∥A−1∥∥r∥ (2)

Using b = Ax, ∥b∥ = ∥Ax∥ ≤ ∥A∥∥x∥, and

∥x∥ ≥ ∥b∥
∥A∥

(3)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 10/12

Norms Residual Relative solution error

The condition number of A is

cond(A) = ∥A∥ · ∥A−1∥

Using (2–3) in (1),

∥x− x̃∥
∥x∥

≤ ∥A−1∥∥r∥
∥b∥
∥A∥

= ∥A−1∥∥A∥∥r∥
∥b∥

= cond(A)
∥r∥
∥b∥

∥x− x̃∥
∥x∥

≤ cond(A)
∥r∥
∥b∥

• If cond(A) is not large and ∥r∥/∥b∥ is small then small
relative error

• As a rule of thumb, if cond(A) ≈ 10k, then about k decimal
digits are lost when solving Ax = b.

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 11/12

Norms Residual Relative solution error

• In our example

A−1 = 108
[
0.1441 −0.8648
−0.2161 1.2869

]
• In the two norm, cond(A) ≈ 2.4973 · 108

cond(A)
∥r∥
∥b∥

≈ 4.0311

∥x− x̃∥
∥x∥

≈ 0.6429

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 12/12

Polynomial Interpolation
CS/SE 4X03

Ned Nedialkov

McMaster University

October 3, 2023

Outline

The problem

Representation

Basis functions

Monomial interpolation

Uniqueness of the interpolating polynomial

Lagrange interpolation

The problem Representation Basis functions Monomial Uniqueness Lagrange

The problem

Given data points
{
(xi, yi)

}n

i=0
find a function v(x) that fits the

data such that
v(xi) = yi, i = 0, . . . , n

Some applications

• Approximating functions. For a complicated function f(x)
find a simpler v(x) that approximates f(x). Usually it is less
expensive to work with v(x) than with f(x)

• We can use v(x) to approximate f(x) at some
x∗ ̸= x0, x1, . . . xn

• We may need derivatives or an integral of f , and we can
differentiate/integrate v

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 3/11

The problem Representation Basis functions Monomial Uniqueness Lagrange

Representation

v(x) =

n∑
j=0

cjϕj(x) = c0ϕ0(x) + c1ϕ1(x) + · · ·+ cnϕn(x)

• The cj are unknown coefficients

• The ϕj are given basis functions
They must be linearly independent
If v(x) = 0 for all x then cj = 0 for all j

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 4/11

The problem Representation Basis functions Monomial Uniqueness Lagrange

Representation cont.

From

v(xi) = c0ϕ0(xi) + c1ϕ1(xi) + · · ·+ cnϕn(xi) = yi, i = 0, . . . , n

we have the linear system of (n+ 1) equations for the ci
ϕ0(x0) ϕ1(x0) · · · ϕn(x0)
ϕ0(x1) ϕ1(x1) · · · ϕn(x1)

...
...

...
ϕ0(xn) ϕ1(xn) · · · ϕn(xn)

c0
c1
...
cn

 =

y0
y1
...
yn

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 5/11

The problem Representation Basis functions Monomial Uniqueness Lagrange

Basis functions

• Monomial basis

ϕj(x) = xj , j = 0, 1, . . . , n

v(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n

• Trigonometric functions, e.g.

ϕj(x) = cos(jx), j = 0, 1, . . . , n

Useful in signal processing, for wave and other periodic
behavior

• Piecewise interpolation: linear, quadratic, cubic, splines

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 6/11

The problem Representation Basis functions Monomial Uniqueness Lagrange

Monomial interpolation

The polynomial is of the form pn(x) = c0+ c1x+ c2x
2+ · · ·+ cnx

n

Example 1. Interpolate

xi 1 2 4
yi 1 3 3

using a polynomial of degree 2. We seek the coefficients of
p2(x) = c0 + c1x+ c2x

2

From

p2(1) = c0 + c1 + 1c2 = 1

p2(2) = c0 + 2c1 + 4c2 = 3

p2(4) = c0 + 4c1 + 16c2 = 3

Solve this linear system to obtain

p2(x) = − 7
3 + 4x− 2

3x
2

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 7/11

The problem Representation Basis functions Monomial Uniqueness Lagrange

Uniqueness of the interpolating polynomial

From
pn(xi) = c0 + c1xi + c2x

2
i + · · ·+ cnx

n
i = yi

we have the linear system
1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
...

...
1 xn x2n · · · xnn

c0
c1
...
cn

 =

y0
y1
...
yn

• The coefficient matrix is a Vandermonde matrix
Denote it by X

• det(X) =
∏n−1

i=0

[∏n
j=i+1(xj − xi)

]
Copyright © 2021-2023 N. Nedialkov. All rights reserved. 8/11

The problem Representation Basis functions Monomial Uniqueness Lagrange

Uniqueness of the interpolating polynomial cont.

If all xi are distinct then

• det(X) ̸= 0

• X is nonsingular

• this system has a unique solution

• there is a unique polynomial of degree ≤ n that interpolates
the data

However,

• this system can be poorly conditioned

• work is O(n3)

• difficult to add new points

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 9/11

The problem Representation Basis functions Monomial Uniqueness Lagrange

Lagrange interpolation

• Lagrange basis functions

Lj(xi) =

{
0 if i ̸= j

1 if i = j

• Lagrange polynomial pn(x) =
∑n

j=0 yjLj(x)

Then

pn(xi) =

n∑
j=0

yjLj(xi)

=

i−1∑
j=0

yj Lj(xi)︸ ︷︷ ︸
=0

+yi Li(xi)︸ ︷︷ ︸
=1

+

n∑
j=i+1

yj Lj(xi)︸ ︷︷ ︸
=0

= yi

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 10/11

The problem Representation Basis functions Monomial Uniqueness Lagrange

Lagrange interpolation cont.

Lj(x) =
(x− x0)(x− x1) · · · (x− xj−1)(x− xj+1) · · · (x− xn)

(xj − x0)(xj − x1) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xn)

=

n∏
i=0,i ̸=j

x− xi
xj − xi

Example: write the Lagrange polynomial for (1, 1), (2, 3), (4, 3)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 11/11

Polynomial Interpolation
Newton’s Form

CS/SE 4X03

Ned Nedialkov

McMaster University

October 15, 2023

Outline

Basis

Computing coefficients

Divided differences

Example

Basis Computing coefficients Divided differences Example

Basis

• Basis functions are

ϕj(x) =

j−1∏
i=0

(x−xi) = (x−x0)(x−x1) · · · (x−xj−1), j = 0 : n

• Example: for a cubic interpolant, we have

ϕ0(x) = 1

ϕ1(x) = x− x0

ϕ2(x) = (x− x0)(x− x1)

ϕ3(x) = (x− x0)(x− x1)(x− x2)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 3/10

Basis Computing coefficients Divided differences Example

Computing coefficients

Let yi = f(xi). From

pn(x) = c0 + c1(x− x0) + c2(x− x0)(x− x1) + · · ·
+ cn(x− x0)(x− x1) · · · (x− xn−1)

pn(xi) = c0 + c1(xi − x0) + c2(xi − x0)(xi − x1) + · · ·
+ cn(xi − x0)(xi − x1) · · · (xi − xn−1) = f(xi)

at x = x0, we have

pn(x0) = c0 + c1(x0 − x0) + c2(x0 − x0)(x0 − x1) + · · ·
+ cn(x0 − x0)(x0 − x1) · · · (x0 − xn−1) = f(x0)

c0 = f(x0)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 4/10

Basis Computing coefficients Divided differences Example

Computing coefficients

At x1,

pn(x1) = c0 + c1(x1 − x0) + c2(x1 − x0)(x1 − x1) + · · ·
+ cn(x1 − x0)(x1 − x1) · · · (x1 − xn−1) = f(x1)

c0 + c1(x1 − x0) = f(x1)

c1 =
f(x1)−c0
x1−x0

= f(x1)−f(x0)
x1−x0

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 5/10

Basis Computing coefficients Divided differences Example

Computing coefficients

At x2,

pn(x2) = c0 + c1(x2 − x0) + c2(x2 − x0)(x2 − x1)

+ c3(x2 − x0)(x2 − x1)(x2 − x2) + · · ·
+ cn(x1 − x0)(x1 − x1) · · · (x1 − xn−1) = f(x1)

Then

c0 + c1(x2 − x0) + c2(x2 − x0)(x2 − x1) = f(x2)

c2 =
f(x2)−c0−c1(x2−x0)

(x2−x0)(x2−x1)
=

f(x2)−f(x1)
x2−x1

−f(x1)−f(x0)
x1−x0

x2−x0

Exercise: verify the last equality

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 6/10

Basis Computing coefficients Divided differences Example

Divided differences

Given x0, x1, . . . , xn, where 0 ≤ i < j ≤ n, define

f [xi] = f(xi)

f [xi, . . . , xj] =
f [xi+1,...,xj]−f [xi,...,xj−1]

xj−xi

f [xi, . . . , xj] are divided differences over xi, . . . , xj

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 7/10

Basis Computing coefficients Divided differences Example

Divided differences

c0 = f(x0) = f [x0]

c1 =
f(x1)−f(x0)

x1−x0
= f [x0, x1]

c2 =
f(x2)−f(x1)

x2−x1
−f(x1)−f(x0)

x1−x0
x2−x0

= f [x1,x2]−f [x0,x1]
x2−x0

= f [x0, x1, x2]

...

cn = f [x1,...,xn]−f [x0,...,xn−1]
xn−x0

= f [x0, x1, . . . , xn]

pn(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1)

+f [x0, x1, . . . , xn](x− x0)(x− x1) · · · (x− xn−1)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 8/10

Basis Computing coefficients Divided differences Example

Example

i xi f [xi] f [·, ·] f [·, ·, ·]
0 1 1
1 2 3 2
2 4 3 0 −2

3

p2(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1)

= 1 + 2(x− 1)− 2
3(x− 1)(x− 2)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 9/10

Basis Computing coefficients Divided differences Example

Example

Suppose we add a new point (3, 5)

Then

i xi f [xi] f [·, ·] f [·, ·, ·] f [·, ·, ·, ·]
0 1 1
1 2 3 2
2 4 3 0 −2

3

3 3 5 −2 −2 −2
3

p3(x) = 1 + 2(x− 1)− 2
3(x− 1)(x− 2)

− 2
3(x− 1)(x− 2)(x− 4)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 10/10

Errors in Polynomial Interpolation
CS/SE 4X03

Ned Nedialkov

McMaster University

October 16, 2023

Outline

Polynomial interpolation error

Chebyshev nodes

Polynomial interpolation error Chebyshev nodes

Polynomial interpolation error

• Assume

◦ Polynomial pn of degree ≤ n interpolates f at n+ 1 distinct
points x0, x1, . . . , xn, where xi ∈ [a, b]

◦ f (n+1) is continuous on [a, b]

• Then, for each x ∈ [a, b], there is a ξ = ξ(x) ∈ (a, b) such that

f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!

n∏
i=0

(x− xi)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 3/8

Polynomial interpolation error Chebyshev nodes

Polynomial interpolation error cont.

• Let M = maxa≤t≤b |f (n+1)(t)|
Then

|f(x)− pn(x)| ≤
M

(n+ 1)!

n∏
i=0

|x− xi|

• Let h = (b− a)/n and let xi = a+ ih for i = 0, 1, . . . , n
Then

|f(x)− pn(x)| ≤
M

4(n+ 1)
hn+1

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 4/8

Polynomial interpolation error Chebyshev nodes

Polynomial interpolation error cont.

Example 1. Consider cos(x) and assume values f(xi) = cos(xi) are
given at 11 equally spaced points in [a, b] = [−π, π]. What is the error in
the interpolating polynomial?

Here n = 10 and h = (b− a)/n = 2π/10.
M = max−π≤t≤π | cos(n+1)(t)| = 1.

Then

|f(x)− cos(x)| ≤ M

4(n+ 1)
hn+1 =

1

4(11)
(2π/10)11 ≈ 1.3694× 10−4

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 5/8

Polynomial interpolation error Chebyshev nodes

Chebyshev nodes

• Suppose f(xi) is given at n+ 1 distinct points x0, x1, . . . , xn
in [a, b] and pn(x) of degree ≤ n interpolates f at these points

• We have for the error

max
x∈[a,b]

|f(x)− pn(x)| ≤
M

(n+ 1)!
max
s∈[a,b]

∣∣∣∣∣
n∏

i=0

(s− xi)

∣∣∣∣∣
where M = maxt∈[a,b] |f (n+1)(t)|

• How to chose the xi so

max
s∈[a,b]

∣∣∣∣∣
n∏

i=0

(s− xi)

∣∣∣∣∣
is minimized?

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 6/8

Polynomial interpolation error Chebyshev nodes

Chebyshev nodes cont.

• Chebyshev nodes on [−1, 1]:

xi = cos

(
2i+ 1

2n+ 2
π

)
, i = 0, 1, . . . , n

• Min-max property: over all possible xi they minimize
maxs∈[−1,1] |(s− x0)(s− x1) · · · (s− xn)|

min
x0,x1,...,xn

max
s∈[−1,1]

|(s− x0)(s− x1) · · · (s− xn)| = 2−n

• Error bound using Chebyshev nodes in [−1, 1]:

max
x∈[−1,1]

|f(x)− pn(x)| ≤
M

2n(n+ 1)!

M = maxt∈[−1,1] |f (n+1)(t)|

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 7/8

Polynomial interpolation error Chebyshev nodes

Chebyshev nodes cont.

• For a general [a, b],

xi = 0.5(a+ b) + 0.5(b− a) cos

(
2i+ 1

2n+ 2
π

)
, i = 0, 1, . . . , n

Example 2. In the previous example, if we chose Chebyshev nodes,

|f(x)− cos(x)| ≤ M

2n(n+ 1)!
=

1

210(10 + 1)!
≈ 2.4465× 10−11

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 8/8

Numerical Integration: Basic Rules
CS/SE 4X03

Ned Nedialkov

McMaster University

October 24, 2023

Outline

The problem

Derivation

Trapezoidal rule

Errror of trapezoidal rule

Midpoint rule

Error of midpoint rule

Simpson’s rule

The problem Derivation Trapezoidal rule Error Midpoint rule Error Simpson’s rule

The problem

• Approximate numerically the integral

If =

∫ b

a
f(x)dx

• Closed form may not exist, e.g.
∫ b
a e−x2

dx, or may be difficult
to compute

• The integrand f(x) may be known only at certain points
obtained via sampling (e.g. embedded applications)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 3/13

The problem Derivation Trapezoidal rule Error Midpoint rule Error Simpson’s rule

Derivation

If =

∫ b

a
f(x)dx ≈

n∑
j=0

ajf(xj)

• The sum is called a quadrature rule

• The aj are weights

• How to find them?

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 4/13

The problem Derivation Trapezoidal rule Error Midpoint rule Error Simpson’s rule

Derivation cont.

• Let x0, . . . , xn be distinct points in [a, b]

• Let pn(x) be the interpolating polynomial for f(x) through
these points

•
∫ b
a f(x)dx ≈

∫ b
a pn(x)dx

• From the Lagrange form pn(x) =
∑n

j=0 f(xj)Lj(x),∫ b

a
f(x)dx ≈

∫ b

a
pn(x)dx =

∫ b

a

n∑
j=0

f(xj)Lj(x)dx

=

n∑
j=0

f(xj)

∫ b

a
Lj(x)dx︸ ︷︷ ︸
aj

• aj =
∫ b
a Lj(x)dx

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 5/13

The problem Derivation Trapezoidal rule Error Midpoint rule Error Simpson’s rule

Trapezoidal rule

Let n = 1. Then x0 = a and x1 = b and

L0(x) =
x− x1

x0 − x1
=

x− b

a− b
, L1(x) =

x− x0

x1 − x0
=

x− a

b− a

f(x) ≈ p1(x) = f(x0)L0(x) + f(x1)L1(x)

= f(a)L0(x) + f(b)L1(x)

Integrating

If =

∫ b

a

f(x)dx ≈ f(a)

∫ b

a

L0(x)dx︸ ︷︷ ︸
a0

+f(b)

∫ b

a

L1(x)dx︸ ︷︷ ︸
a1

= f(a)

∫ b

a

x− b

a− b
dx+ f(b)

∫ b

a

x− a

b− a
dx

=
b− a

2
[f(a) + f(b)]

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 6/13

The problem Derivation Trapezoidal rule Error Midpoint rule Error Simpson’s rule

Trapezoidal rule cont.

If ≈ Itrap =
b− a

2

[
f(a) + f(b)

]
Example 1.

• Approximate
∫ 1

0
exdx = e− 1 = 1.7182 . . . using the trapezoidal

rule:

Itrap =
1

2
[f(0) + f(1)] = 0.5(1 + e) = 1.8591 · · ·

• Approximate
∫ 0.1

0
exdx = e0.1 − 1 = 0.10517 · · · using the

trapezoidal rule:

Itrap =
0.1

2
[f(0) + f(0.1)] = 0.05

(
1 + e0.1

)
= 0.10525 · · ·

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 7/13

The problem Derivation Trapezoidal rule Error Midpoint rule Error Simpson’s rule

Errror of trapezoidal rule

In the trapezoidal rule, f(x) is approximated by linear interpolation

p1(x) = f(a)
x− b

a− b
+ f(b)

x− a

b− a

The error is

f(x)− p1(x) =
1
2f

′′(ξ(x))(x− a)(x− b)

Then∫ b

a
(f(x)− p1(x))dx =

∫ b

a
f(x)dx− b− a

2
[f(a) + f(b)]

=
1

2

∫ b

a
f ′′(ξ(x))(x− a)(x− b)dx

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 8/13

The problem Derivation Trapezoidal rule Error Midpoint rule Error Simpson’s rule

Errror of trapezoidal rule cont.

(x− a)(x− b) ≤ 0 does not change sign on [a, b]

From the Mean-Value Theorem for integrals, there exists η ∈ (a, b)
such that∫ b

a
f ′′(ξ(x))(x− a)(x− b)dx = f ′′(η)

∫ b

a
(x− a)(x− b)dx

Using
∫ b
a (x− a)(x− b)dx = −(b− a)3/6, the error in the

trapezoidal rule is

If − Itrap = −f ′′(η)

12
(b− a)3

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 9/13

The problem Derivation Trapezoidal rule Error Midpoint rule Error Simpson’s rule

Midpoint rule

If ≈ Imid = (b− a)f

(
a+ b

2

)

Example 2.

• Approximate
∫ 1

0
exdx = e− 1 ≈ 1.7182 · · · using the midpoint rule:

Imid = (1− 0)f(0.5) = e0.5 = 1.6487 · · ·

• Approximate
∫ 0.1

0
exdx = e0.1 − 1 ≈ 0.10517 · · · using the midpoint

rule:
Imid = (0.1− 0)f(0.05) = 0.1e0.05 = 0.10512 · · ·

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 10/13

The problem Derivation Trapezoidal rule Error Midpoint rule Error Simpson’s rule

Error of midpoint rule

Let m = (a+ b)/2. Expand f in Taylor series

f(x) = f(m) + f ′(m)(x−m) + 1
2f

′′(ξ(x))(x−m)2

Then

If =

∫ b

a

f(x) = (b− a)f(m)︸ ︷︷ ︸
Imid

+
1

2

∫ b

a

f ′′(ξ(x))(x−m)2dx

Since (x−m)2 does not change sign, there exists η ∈ (a, b) such that

1

2

∫ b

a

f ′′(ξ(x))(x−m)2dx =
1

2
f ′′(η)

∫ b

a

(x−m)2dx =
f ′′(η)

24
(b− a)3

Then

If − Imid =
f ′′(η)

24
(b− a)3

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 11/13

The problem Derivation Trapezoidal rule Error Midpoint rule Error Simpson’s rule

Simpson’s rule

Let n = 2, and x0 = a, x1 = (a+ b)/2, x2 = b

Simpson’s rule is obtained from integrating the second order polynomial

p2(x) = f(x0)L0(x) + f(x1)L1(x) + f(x2)L2(x)

= f(a)L0(x) + f((a+ b)/2)L1(x) + f(b)L2(x)

If ≈ ISimpson =
b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
The error is

If − ISimpson = −f (4)(ξ)

90

(
b− a

2

)5

, ξ ∈ (a, b)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 12/13

The problem Derivation Trapezoidal rule Error Midpoint rule Error Simpson’s rule

Simpson’s rule cont.

Example 3. Approximate
∫ 1

0
exdx = e− 1 ≈ 1.71828 · · · using Simpson’s

rule:

ISimpson =
1

6
[f(0) + 4f (0.5) + f(1)] =

1

6
(1 + 4e0.5 + e)

= 1.71886 · · ·

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 13/13

Numerical Integration
Composite Rules

CS/SE 4X03

Ned Nedialkov

McMaster University

October 26, 2023

Outline

Composite trapezoidal rule

Error of composite trapezoidal rule

Composite Simpson & midpoint rules

Composite trapezoidal rule Error Composite Simpson & midpoint rules

How to increase the accuracy of a rule

• We can increase the degree of the polynomial, but the error
might be large

• Apply a basic rule over small subintervals

◦ subdivide [a, b] into r subintervals
◦ h = b−a

r length of each subinterval
◦ ti = a+ ih, i = 0, 1, . . . , r

t0 = a, tr = b ∫ b

a

f(x)dx =

r∑
i=1

∫ ti

ti−1

f(x)dx

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 3/7

Composite trapezoidal rule Error Composite Simpson & midpoint rules

Composite trapezoidal rule

From the basic rule on [ti−1, ti], i = 1, . . . , r∫ ti

ti−1

f(x)dx ≈ ti − ti−1

2
[f(ti−1) + f(ti)] =

h

2
[f(ti−1) + f(ti)]

we derive ∫ b

a

f(x)dx =

r∑
i=1

∫ ti

ti−1

f(x)dx ≈ h

2

r∑
i=1

[f(ti−1) + f(ti)]

=
h

2

(
r∑

i=1

f(ti−1) +
r∑

i=1

f(ti)

)

=
h

2
(f(t0) + f(t1) + · · ·+ f(tr−1))

+
h

2
(f(t1) + · · ·+ f(tr−1) + f(tr))

=
h

2
[f(a) + f(b)] + h

r−1∑
i=1

f(ti)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 4/7

Composite trapezoidal rule Error Composite Simpson & midpoint rules

Error of composite trapezoidal rule

From ∫ ti

ti−1

f(x)dx =
h

2
[f(ti−1) + f(ti)]−

f ′′(ηi)

12
h3

we have ∫ b

a

f(x)dx =

r∑
i=1

h

2
[f(ti−1) + f(ti)]︸ ︷︷ ︸
composite

−
r∑

i=1

f ′′(ηi)

12
h3

︸ ︷︷ ︸
error

Assuming f ′′(x) continuous on [a, b],

min
x∈[a,b]

f ′′(x) ≤ f ′′(ηi) ≤ max
x∈[a,b]

f ′′(x)

Then

min
x∈[a,b]

f ′′(x) ≤ 1

r

r∑
i=1

f ′′(ηi) ≤ max
x∈[a,b]

f ′′(x)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 5/7

Composite trapezoidal rule Error Composite Simpson & midpoint rules

Error of composite trapezoidal rule cont.

From the Intermediate Value Theorem, there exists µ, such that

f ′′(µ) =
1

r

r∑
i=1

f ′′(ηi)

Then the error is

−
r∑

i=1

f ′′(ηi)

12
h3 = − 1

12

[
1

r

r∑
i=1

f ′′(ηi)

]
r · h · h2

= −f ′′(µ)

12
(b− a)h2,

h = (b− a)/r, and r · h = b− a

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 6/7

Composite trapezoidal rule Error Composite Simpson & midpoint rules

Composite Simpson & midpoint rules

Simpson:

∫ b

a

f(x)dx ≈ h

3

f(a) + 2

r/2−1∑
i=1

f(t2i) + 4

r/2∑
i=1

f(t2i−1) + f(b)

Error

−f (4)(ζ)

180
(b− a)h4

Midpoint: ∫ b

a

f(x)dx ≈ h

r∑
i=1

f (a+ (i− 1/2)h)

Error
f ′′(ξ)

24
(b− a)h2

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 7/7

Linear Least Squares
CS/SE 4X03

Ned Nedialkov

McMaster University

November 6, 2023

Outline

Formulation

Linear fit

Example

Overdetermined systems

Normal equations

Formulation Linear fit Example Overdetermined systems Normal equations

Formulation

In linear least squares, we have n+ 1 basis functions and m+ 1
data points (xk, yk), k = 1, . . . ,m, where m > n

v(x) =

n∑
j=0

cjϕj(x), v(xk) ≈ yk, k = 0, . . . ,m

Find the cj such that the sum

m∑
k=0

(v(xk)− yk)
2 =

m∑
k=0

 n∑
j=0

cjϕj(xk)− yk

2

is minimized

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 3/17

Formulation Linear fit Example Overdetermined systems Normal equations

Least squares vs. interpolation

In interpolation, given (n+ 1) data points (xk, yk), we find a
function v(x) such that

v(x) =

n∑
j=0

cjϕj(x), v(xk) = yk, k = 0, . . . , n

In real-life applications, the data points may not be accurate,
e.g. may come from measurements

May not make sense to interpolate inaccurate data

With least squares, may want to pick up a trend in the data,
e.g. average temperature over last 10 years, is it warming or
cooling down?

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 4/17

Formulation Linear fit Example Overdetermined systems Normal equations

Linear fit

Suppose we search for a linear fit: y = ax+ b, i.e. find a and b

Error or residual
rk = axk + b− yk

Find a and b such that

ϕ(a, b) =

m∑
k=0

r2k =

m∑
k=0

(axk + b− yk)
2

is minimized

Necessary conditions for minimum:

∂ϕ

∂a
= 0,

∂ϕ

∂b
= 0

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 5/17

Formulation Linear fit Example Overdetermined systems Normal equations

0 =
∂ϕ

∂a
= 2

m∑
k=0

(axk + b− yk)xk

0 = a

m∑
k=0

x2k + b

m∑
k=0

xk −
m∑
k=0

ykxk

from which (
m∑
k=0

x2k

)
a+

(
m∑
k=0

xk

)
b =

m∑
k=0

xkyk (1)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 6/17

Formulation Linear fit Example Overdetermined systems Normal equations

0 =
∂ϕ

∂b
= 2

m∑
k=0

(axk + b− yk)

0 = a

m∑
k=0

xk + b

m∑
k=0

1−
m∑
k=0

yk

from which (
m∑
k=0

xk

)
a+ (m+ 1)b =

m∑
k=0

yk (2)

From (1) and (2) we have the linear system[∑m
k=0 x

2
k

∑m
k=0 xk∑m

k=0 xk m+ 1

] [
a
b

]
=

[∑m
k=0 xkyk∑m
k=0 yk

]

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 7/17

Formulation Linear fit Example Overdetermined systems Normal equations

Denote

p =

m∑
k=0

xk, q =

m∑
k=0

yk

r =

m∑
k=0

xkyk, s =

m∑
k=0

x2k

Then the system is [
s p
p m+ 1

] [
a
b

]
=

[
r
q

]
Solve for a and b

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 8/17

Formulation Linear fit Example Overdetermined systems Normal equations

This system can be also obtained as follows.

Write axk + b = yk, k = 1, . . . ,m as

Az =

x0 1
x1 1
...

...
xm 1

[
a
b

]
=

y0
y1
...
ym

 = f

Multiply both sided by AT , ATAz = AT f

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 9/17

Formulation Linear fit Example Overdetermined systems Normal equations

ATA =

[
x0 x1 · · · xm

1 1 · · · 1

]
x0 1
x1 1
...

...
xm 1

 =

[∑m
k=0 x

2
k

∑m
k=0 xk∑m

k=0 xk m+ 1

]

=

[
s p
p m+ 1

]

AT f =

[
x0 x1 · · · xm

1 1 · · · 1

]
y0
y1
...

ym

 =

[∑m
k=0 xkyk∑m
k=0 yk

]

=

[
r
q

]
Az = f is overdetermined, more equations than unknowns

In Matlab, find z by A\f

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 10/17

Formulation Linear fit Example Overdetermined systems Normal equations

Example

• Assume a program runs in αnβ, where α and β are real
constants we don’t know

• How to determine them?

• Run the program with sizes n1, n2, . . . , nm and measure the
corresponding CPU times t1, t2, . . . , tm, m > 2

• Write αnβ
i = ti, i = 1, . . . ,m

• Then
lnα+ β lnni = ln ti, i = 1, . . . ,m

• Let x = lnα

• Then
1 · x+ lnni · β = ln ti, i = 1, . . . ,m

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 11/17

Formulation Linear fit Example Overdetermined systems Normal equations

Write

1 · x+ lnn1 · β = ln t1

1 · x+ lnn2 · β = ln t2

...

1 · x+ lnnm · β = ln tm

Then

Ay =

1 lnn1

1 lnn2

...
...

1 lnnm

[
x
β

]
=

ln t1
ln t2
...

ln tm

 = b

Solve in Matlab as y = A\b; α = exp(y(1)) β = y(2)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 12/17

Formulation Linear fit Example Overdetermined systems Normal equations

Solving overdetermined systems

• A ∈ Rm×n, b ∈ Rm

m > n

• Ax = b is an overdetermined system: more equations than
variables

• Find x that minimizes ∥b−Ax∥2
• r = b−Ax

• ∥r∥22 =
∑m

i=1 r
2
i =

∑m
i=1

(
bi −

∑n
j=1 aijxj

)2
• Let

ϕ(x) =
1

2
∥r∥22 =

1

2

m∑
i=1

bi −
n∑

j=1

aijxj

2

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 13/17

Formulation Linear fit Example Overdetermined systems Normal equations

• We want to find the minimum of ϕ(x)

• Necessary conditions are

∂ϕ

∂xk
= 0, for k = 1, . . . , n

0 =
∂ϕ

∂xk
=

∂

∂xk

1

2

m∑
i=1

bi −
n∑

j=1

aijxj

2
=

1

2

m∑
i=1

∂

∂xk

bi −
n∑

j=1

aijxj

2

=

m∑
i=1

bi −
n∑

j=1

aijxj

 (−aik)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 14/17

Formulation Linear fit Example Overdetermined systems Normal equations

0 =

m∑
i=1

bi −
n∑

j=1

aijxj

 (−aik)

= −
m∑
i=1

aikbi +

m∑
i=1

aik

n∑
j=1

aijxj

We have

m∑
i=1

aik

n∑
j=1

aijxj =

m∑
i=1

aikbi, k = 1, . . . , n

This is the same as ATAx = AT b, as explained below

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 15/17

Formulation Linear fit Example Overdetermined systems Normal equations

A is m× n. AT is n×m.

Let y = Ax. yi =
∑n

j=1 aijxj , i = 1, . . . ,m.

The kth component of ATAx = AT y is

(ATAx)k = (AT y)k =

m∑
i=1

(AT)kiyi =

m∑
i=1

aikyi =

m∑
i=1

aik

n∑
j=1

aijxj

The kth component of AT b is

(AT b)k =

m∑
i=1

(AT)kibi =

m∑
i=1

aikbi

(ATAx)k = (AT b)k, k = 1, . . . , n is

m∑
i=1

aik

n∑
j=1

aijxj =
m∑
i=1

aikbi

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 16/17

Formulation Linear fit Example Overdetermined systems Normal equations

Normal equations

• ATAx = AT b are called normal equations

• If A has a full-column rank (all columns are linearly
independent),

min
x

∥b−Ax∥2

has a unique solution which is the solution to (ATA)x = AT b:

x = (ATA)−1AT b = A†b

• A† = (ATA)−1AT is the pseudo inverse of A

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 17/17

Adaptive Simpson
CS/SE 4X03

Ned Nedialkov

McMaster University

October 31, 2023

Outline

Derivation of Simpson’s rule

Adaptive Simpson

Subtleties

Derivation of Simpson’s rule Adaptive Simpson Subtleties

Derivation of Simpson’s rule

Simpson’s rule can be derived using the method of undetermined
coefficients

• Seek integration formula of the form∫ b

a
f(x)dx ≈ Af(a) +Bf

(
a+ b

2

)
+ Cf(b)

• Find A, B, C such that for quadratic polynomials the formula
is exact:∫ b

a
f(x)dx = Af(a) +Bf

(
a+ b

2

)
+ Cf(b)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 3/14

Derivation of Simpson’s rule Adaptive Simpson Subtleties

Derivation of Simpson’s rule cont.

• Let a = −1, b = 1. We should integrate exactly 1, x, x2:

f(x) = 1 :

∫ 1

−1
dx = 2 = A+B + C

f(x) = x :

∫ 1

−1
xdx = 0 = −A+ C

f(x) = x2 :

∫ 1

−1
x2dx =

2

3
= A+ C

from which A = 1/3, C = 1/3, B = 4/3

• Hence ∫ 1

−1
f(x)dx ≈ 1

3
[f(−1) + 4f(0) + f(1)]

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 4/14

Derivation of Simpson’s rule Adaptive Simpson Subtleties

Derivation of Simpson’s rule cont.

• Let y(x) = 0.5(b− a)x+ 0.5(b+ a), y(−1) = a, y(1) = b

• Changing variables:∫ b

a
f(x)dx ≈ b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 5/14

Derivation of Simpson’s rule Adaptive Simpson Subtleties

Adaptive Simpson

• Given a function f(x) on [a, b] and tolerance tol

• find Q such that
|Q− I| ≤ tol ,

where

I =

∫ b

a
f(x)dx

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 6/14

Derivation of Simpson’s rule Adaptive Simpson Subtleties

Adaptive Simpson cont.

Denote h = b− a. Then

I =

∫ b

a
f(x)dx = S(a, b) + E(a, b),

where

S(a, b) =
h

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
E(a, b) = − 1

90

(
h

2

)5

f (4)(ξ), ξ between a and b

Denote S1 = S(a, b) and E1 = E(a, b)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 7/14

Derivation of Simpson’s rule Adaptive Simpson Subtleties

Adaptive Simpson cont.

• Let c = (a+ b)/2 and apply Simpson on [a, c] and [c, b]:

I =

∫ b

a
f(x)dx = S(a, c) + S(c, b)︸ ︷︷ ︸

S2

+E(a, c) + E(c, b)︸ ︷︷ ︸
E2

• We can compute S1 and S2

• How to estimate the error? If f (4) does not change much on
[a, b]

E(a, c) = − 1

90

(
h/2

2

)5

f (4)(ξ1) =
1

32

[
− 1

90

(
h

2

)5

f (4)(ξ1)

]
, ξ1 ∈ [a, c]

≈ 1

32

[
− 1

90

(
h

2

)5

f (4)(ξ)

]

=
1

32
E1

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 8/14

Derivation of Simpson’s rule Adaptive Simpson Subtleties

Adaptive Simpson cont.

Similarly E(c, b) ≈ 1
32E1

• Hence

E2 = E(a, c) + E(c, b) ≈ 1

16
E1

• From I = S1 + E1 = S2 + E2,

S1 − S2 = E2 − E1 ≈ E2 − 16E2 = −15E2

E2 ≈ Ẽ2 =
1

15
(S2 − S1)

• Then

I =

∫ b

a
f(x)dx = S2 + E2 ≈ S2 + Ẽ2

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 9/14

Derivation of Simpson’s rule Adaptive Simpson Subtleties

Method outline

Given f , [a, b] and tol :

• c = (a+ b)/2

• Compute S1 = S(a, b) and S2 = S(a, c) + S(c, b)

• Ẽ2 = (S2 − S1)/15

• If |Ẽ2| ≤ tol return S2 + Ẽ2

else apply recursively on [a, c] and [c, b] with tol /2

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 10/14

Derivation of Simpson’s rule Adaptive Simpson Subtleties

Adaptive Simpson cont.

Algorithm 2.1 (Adaptive Simpson).
S = quadSimpson(f, a, b, tol)

h = b− a, c = (a+ b)/2

S1 = h
6 [f(a) + 4f(a+b

2) + f(b)]

S2 = h
12 [f(a) + 4f(a+c

2) + 2f(c) + 4f(c+b
2) + f(b)]

Ẽ2 = 1
15 (S2 − S1)

if |Ẽ2| ≤ tol

return Q = S2 + Ẽ2

else
Q1 = quadSimpson(f, a, c, tol/2)
Q2 = quadSimpson(f, c, b, tol/2)
return Q = Q1 +Q2

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 11/14

Derivation of Simpson’s rule Adaptive Simpson Subtleties

Why it works

• If |E2| ≈ |Ẽ2| ≤ tol , we can return Q = S2. Then

|I −Q| = |I − S2| = |E2| ≈ |Ẽ2| ≤ tol .

• However, but adding the error estimate, we can obtain a more
accurate approximation as

I = S2 + E2 ≈ Q = S2 + Ẽ2.

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 12/14

Derivation of Simpson’s rule Adaptive Simpson Subtleties

• Otherwise, let I1 =
∫ c
a f(x)dx, I2 =

∫ c
b f(x)dx

If
|I1 −Q1| ≤ tol /2 and |I2 −Q2| ≤ tol /2,

then

|I −Q| = |I1 + I2 − (Q1 +Q2)|
= |I1 −Q1 + I2 −Q2|
≤ |I1 −Q1|+ |I2 −Q2|
≤ tol /2 + tol /2

= tol

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 13/14

Derivation of Simpson’s rule Adaptive Simpson Subtleties

Subtleties

• The error estimate assumes f (4) does not vary much, but it
may, and then this estimate may not be accurate.
That is, Ẽ2 may not be a good approximation to E2.

• The recursion may run “deep” if tol is too small or f (4) varies
a lot
Insert a counter to stop the recursion when the depth exceeds
some number, e.g. 20

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 14/14

Introduction to Machine Learning
CS/SE 4X03

Ned Nedialkov

McMaster University

November 13, 2023

Outline

Example

Activation function

A simple network

Training

Steepest descent

Stochastic gradient descent

Example Activation function Network Training Steepest descent Stochastic GD

This is a summary of Sections 1-4 from
C. F. Higham, D. J. Higham, Deep Learning: An Introduction for
Applied Mathematicians

Figures are cropped from this article

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 3/21

https://epubs.siam.org/doi/10.1137/18M1165748
https://epubs.siam.org/doi/10.1137/18M1165748

Example Activation function Network Training Steepest descent Stochastic GD

Example

• Points in R2 classified in two categories A and B

• This is labeled data

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 4/21

Example Activation function Network Training Steepest descent Stochastic GD

• Given a new point, how to use the labeled data to classify this
point?
Possible classification

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 5/21

Example Activation function Network Training Steepest descent Stochastic GD

Activation function

• A neuron fires or is inactive

• Activation can be modeled by the sigmoid function

σ(x) =
1

1 + e−x

• σ(0) = 0.5, σ(x) ≈ 1 when x large, σ(x) ≈ 0 when x small

-10 -5 0 5 10

x

0

0.2

0.4

0.6

0.8

1
(x)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 6/21

Example Activation function Network Training Steepest descent Stochastic GD

• Steepness can be changed by scaling

• Location can be changed by shifting

• Useful property σ′(x) = σ(x)(1− σ(x))

-10 -5 0 5 10

x

0

0.2

0.4

0.6

0.8

1
(3*(x-5))

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 7/21

Example Activation function Network Training Steepest descent Stochastic GD

A simple network

• Each neuron

◦ outputs a real number
◦ sends to every neuron in next layer

• Neuron in next layer

◦ forms a linear combination of inputs + bias
◦ applies activation function

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 8/21

Example Activation function Network Training Steepest descent Stochastic GD

Consider layers 2 and 3

Layer 2: neurons 1 and 2 output real a1 and a2, respectively, and send to
neurons 1, 2, 3 in layer 3
Layer 3:

• neuron
1 combines a1 and a2 and
ads bias b1:

w11a1 + w12a2 + b1

outputs
σ (w11a1 + w12a2 + b1)

• neuron 2 outputs
σ (w21a1 + w22a2 + b2)

• neuron 3 outputs
σ (w31a1 + w32a2 + b3)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 9/21

Example Activation function Network Training Steepest descent Stochastic GD

Denote

W =

w11 w12

w21 w22

w31 w32

 , a =

[
a1
a2

]
, b =

b1b2
b3

z = Wa+ b

W is a matrix with weights, b is a bias vector

For a vector z, apply σ component wise

(σ(z))i = σ(zi)

The output of layer 3 is

σ(z) = σ(Wa+ b)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 10/21

Example Activation function Network Training Steepest descent Stochastic GD

• Denote the input by x, the W and b at layer i by W [i] and
b[i], and the output of layer i by a[i]

• Output of layer 2 is

a[2] = σ
(
W [2]x+ b[2]

)
∈ R2, W [2] ∈ R2×2, b[2] ∈ R2

• Output of layer 3 is

a[3] = σ
(
W [3]a[2] + b[3]

)
∈ R3, W [3] ∈ R3×2, b[3] ∈ R3

• Output of layer 4 is

a[4] = σ
(
W [4]a[3] + b[4]

)
∈ R2, W [4] ∈ R2×3, b[4] ∈ R2

• Write the above as

F (x) = σ
(
W [4]σ

(
W [3]σ

(
W [2]x+ b[2]

)
+ b[3]

)
+ b[4]

)
Copyright © 2021-2023 N. Nedialkov. All rights reserved. 11/21

Example Activation function Network Training Steepest descent Stochastic GD

• Layer i:

◦ W [i] is of size (# outputs)×(# inputs)
◦ b[i] is of size (# outputs)

Number of parameters is 23:
layer i inputs outputs W [i] b[i]

2 2 2 2× 2 2
3 2 3 3× 2 3
4 3 2 2× 3 2

16 7

• F (x) is a function from R2 → R2 with 23 parameters

• Training is about finding parameters

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 12/21

Example Activation function Network Training Steepest descent Stochastic GD

Training
Residual

• Denote the input points by x{i}

• Let

y
(
x{i}

)
=

[
1

0

]
if x{i} ∈ A[

0

1

]
if x{i} ∈ B

• Suppose we have computed W [2],W [3],W [4], b[2], b[3], b[4] and
evaluate F

(
x{i}

)
• Residual ∥∥∥y (x{i})− F

(
x{i}

)∥∥∥
2

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 13/21

Example Activation function Network Training Steepest descent Stochastic GD

Training
Cost function

• Cost function

Cost
(
W [2],W [3],W [4], b[2], b[3], b[4]

)
=

1

10

10∑
i=1

1

2

∥∥∥y (x{i})− F
(
x{i}

)∥∥∥2
2

• Training: find the parameters that minimize the cost function

• Nonlinear least squares problem

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 14/21

Example Activation function Network Training Steepest descent Stochastic GD

Classifying

• Suppose we have computed values for the parameters

• Given x ∈ R2, compute y = F (x)

• If y1 > y2 classify x as A, y closer to [1, 0]T

• If y1 < y2 classify x as B, y closer to [0, 1]T

• Tie breaking when =

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 15/21

Example Activation function Network Training Steepest descent Stochastic GD

Steepest descent

• Consider the parameters in a vector p ∈ Rs. Here s = 23

• Cost function is Cost(p)

• Find ∆p such that

Cost(p+∆p) < Cost(p)

• For small ∆p,

Cost(p+∆p) ≈ Cost(p) +
s∑

r=1

∂Cost(p)

∂pr
∆pr

= Cost(p) +∇Cost(p)T∆p

∇Cost(p) =
[
∂Cost(p)

∂p1
,
∂Cost(p)

∂p2
, · · · , ∂Cost(p)

∂ps

]T
Copyright © 2021-2023 N. Nedialkov. All rights reserved. 16/21

Example Activation function Network Training Steepest descent Stochastic GD

Example

• To illustrate the above, suppose

Cost(p) = p21 + p22 + 2p1 + 3

• Gradient is
∇Cost(p) = [2p1 + 2, 2p2]

T

Cost(p+∆p) ≈ Cost(p) +∇Cost(p)T∆p

= Cost(p) + (2p1 + 2)∆p1 + 2p2∆p2

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 17/21

Example Activation function Network Training Steepest descent Stochastic GD

Steepest descent cont

• Cost(p) ≥ 0

• From
Cost(p+∆p) ≈ Cost(p) +∇Cost(p)T∆p,

we want to make ∇Cost(p)T∆p as negative as possible

• Given ∇Cost(p) how to choose ∆p?

• For u, v ∈ Rs,
uT v = ∥u∥ · ∥v∥ cos θ

is most negative when v = −u
• Chose ∆p in the direction of −∇Cost(p)

That is move along the direction of steepest descent

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 18/21

Example Activation function Network Training Steepest descent Stochastic GD

∆p = pnew − p = −η∇Cost(p)
pnew = p− η∇Cost(p)

η is learning rate

Steepest descent:

chose initial p
repeat

p← p− η∇Cost(p)
until stopping criterion is met or max # of iterations is reached

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 19/21

Example Activation function Network Training Steepest descent Stochastic GD

• In general N input points

Cost(p) =
1

N

N∑
i=1

1

2

∥∥∥y (x{i})− F
(
x{i}

)∥∥∥2
2︸ ︷︷ ︸

Ci(p)

=
1

N

N∑
i=1

Ci(p)

∇Cost(p) = 1

N

N∑
i=1

∇Ci(p)

• N can be large

• Number of parameters can be very large

• Evaluating ∇Cost(p) can be very expensive

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 20/21

Example Activation function Network Training Steepest descent Stochastic GD

Stochastic gradient descent

• Idea: replace 1
N

∑N
i=1∇Ci(p) by random ∇Ci(p)

• Iterate until a stopping criterion is met or max # of iterations
is reached:

◦ pick a random integer i from {1, 2, . . . , N}
◦ p← p− η∇Ci(p)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 21/21

Newton’s Method for Nonlinear Equations
CS/SE 4X03

Ned Nedialkov

McMaster University

November 20, 2023

Outline

Scalar case

Examples

Convergence

Subtleties

Newton for systems of equations

Scalar case Examples Convergence Subtleties N for systems

Scalar case

• Given a scalar function f find a zero/root of f , i.e. an r such
that f(r) = 0

• f may have no zeros, one, or many

• Let r be a root of f and let xn ≈ r
From

0 = f(r) = f(xn) + f ′(xn)(r − xn) +O(|r − xn|2)
0 = f(r) ≈ f(xn) + f ′(xn)(r − xn)

we find xn+1 by solving

f(xn) + f ′(xn)(xn+1 − xn) = 0 (1)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 3/19

Scalar case Examples Convergence Subtleties N for systems

Scalar case cont.

• That is

xn+1 = xn − f(xn)

f ′(xn)
(2)

• We start with an initial guess x0 and compute x1, x2, . . .

• How to choose x0, does it converge to a root, when to stop
iterating...?

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 4/19

Scalar case Examples Convergence Subtleties N for systems

Interpretation

Given x0, we compute

x1 = x0 −
f(x0)

f ′(x0)

The tangent line at (x, f(x0)) is

l(x) = f(x0) + f ′(x0)(x− x0)

We find x1 such that l(x) crosses the x axis, l(x1) = 0:

0 = l(x1) = f(x0) + f ′(x0)(x1 − x0)

Similarly for x2, x3, . . .

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 5/19

Scalar case Examples Convergence Subtleties N for systems

Examples
Square root

• Given a > 0, compute
√
a

• Write x =
√
a, f(x) = x2 − a

• Apply (2):

xn+1 = xn − f(xn)

f ′(xn)
= xn − x2n − a

2xn

= xn − xn
2

+
a

2xn

= 0.5

(
xn +

a

xn

)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 6/19

Scalar case Examples Convergence Subtleties N for systems

• Let a = 2 and x0 = 3

• We compute
i xi |xi −

√
2|

1 1.8333333333333333 4.19e-01

2 1.4621212121212122 4.79e-02

3 1.4149984298948031 7.85e-04

4 1.4142137800471977 2.18e-07

5 1.4142135623731118 1.67e-14

6 1.4142135623730949 2.22e-16

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 7/19

Scalar case Examples Convergence Subtleties N for systems

Examples cont.
Dividing without division operation

• How to obtain a/b without division?

• a/b = a ∗ (1/b)
• Find 1/b. Write f(x) = 1/x− b and apply (2)

xn+1 = xn − f(xn)

f ′(xn)
= xn − 1/xn − b

−1/x2n

= xn + xn − bx2n

= xn(2− bxn)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 8/19

Scalar case Examples Convergence Subtleties N for systems

Examples cont.

• With b = 3 and x0 = 0.3, we compute
i xi |xi − 1/3|
1 0.3300000000000000 3.33e-03

2 0.3333000000000000 3.33e-05

3 0.3333333300000000 3.33e-09

4 0.3333333333333333 5.55e-17

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 9/19

Scalar case Examples Convergence Subtleties N for systems

Convergence

Theorem 1. If f , f ′, and f ′′ are continuous in a neighbourhood of a root
r of f and f ′(r) ̸= 0, then ∃δ > 0 such that if |r − x0| ≤ δ, then all xn

satisfy
|r − xn| ≤ δ, (3)

|r − xn+1| ≤ c(δ)|r − xn|2, (4)

where c(δ) is defined in (6), and xn converges to r

Let en = r − xn. (4) is

|en+1| ≤ c(δ)|en|2 (5)

If e.g. |en| ≈ 10−4, |en+1| ⪅ c(δ)10−8

If sufficiently close to r, each iteration ≈ doubles the number of accurate
digits

Quadratic convergence |en+1| ≤ constant · |en|2

Order of convergence is 2

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 10/19

Scalar case Examples Convergence Subtleties N for systems

Convergence cont.

Proof. From Taylor series,

0 = f(r) = f(xn) + f ′(xn)(r − xn) +
f ′′(ξ)

2
(r − xn)

2

= f(xn) + f ′(xn)en +
f ′′(ξ)

2
e2n

f(xn) + f ′(xn)en = −f ′′(ξ)

2
e2n, ξ is between r and xn

The error in xn+1 is

en+1 = r − xn+1 = r −
(
xn − f(xn)

f ′(xn)

)
= r − xn +

f(xn)

f ′(xn)

= en +
f(xn)

f ′(xn)
=

f(xn) + enf
′(xn)

f ′(xn)

= −1

2

f ′′(ξ)

f ′(xn)
e2n

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 11/19

Scalar case Examples Convergence Subtleties N for systems

Convergence cont.

For a δ > 0, let

c(δ) =
1

2

max|r−x|≤δ |f ′′(x)|
min|r−x|≤δ |f ′(x)|

(6)

Then (4) follows from

|en+1| =
1

2

|f ′′(ξ)|
|f ′(xn)|

e2n ≤ 1

2

max|r−x|≤δ |f ′′(x)|
min|r−x|≤δ |f ′(x)|

e2n

≤ c(δ)e2n

There exists δ such that c(δ)δ < 1 since

c(δ) → 1

2

∣∣∣∣f ′′(r)

f ′(r)

∣∣∣∣ as δ → 0

and f ′(r) ̸= 0 by assumption

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 12/19

Scalar case Examples Convergence Subtleties N for systems

Convergence cont.

If |en| = |r − xn| ≤ δ, then

|en+1| ≤ c(δ)e2n = c(δ) · en · en ≤ c(δ)δ · en
< ρen, where ρ = δc(δ) < 1

and (3) follows

Hence
|en| ≤ ρ|en−1| ≤ ρ2|en−2| ≤ · · · ≤ ρn|e0|

Since ρ < 1, |en| → r as n → ∞

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 13/19

Scalar case Examples Convergence Subtleties N for systems

Subtleties

We require f ′(r) ̸= 0

If f ′(r) = 0 and f ′′(r) ̸= 0, r is a double root, e.g. f(x) = (x− 1)2

A root r is of multiplicity m if f (k)(r) = 0 for all k = 1, 2, . . .m− 1 and
f (m)(r) ̸= 0. In this case

xn+1 = xn −m
f(xn)

f ′(xn)

is quadratically convergent

If f ′(xn) is not available, we can approximate f ′(xn) ≈ f(xn)−f(xn−1)
xn−xn−1

Then

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)

This is the secant method. Order of convergence is (1 +
√
5)/2 ≈ 1.618

(golden ratio)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 14/19

Scalar case Examples Convergence Subtleties N for systems

Newton for systems of equations

• Consider a system of n equations in n variables

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0

...

fn(x1, x2, . . . , xn) = 0

• Denote x = (x1, x2, . . . , xn)
T and F = (f1, f2, . . . , fn)

• Find x∗ (if it exists) such that F (x∗) = 0

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 15/19

Scalar case Examples Convergence Subtleties N for systems

Newton for systems of equations cont.

• Assume x∗ is such that F (x∗) = 0 and x(k) ≈ x∗

• From

0 = F (x∗) ≈ F (x(k)) + F ′(x(k))(x∗ − x(k))

find x(k+1) by solving (cf. (1))

F (x(k)) + F ′(x(k))(x(k+1) − x(k)) = 0 (7)

• F ′(x(k)) is the Jacobian of F at x(k), an n× n matrix

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 16/19

Scalar case Examples Convergence Subtleties N for systems

Newton for systems of equations cont.

• Let s = x(k+1) − x(k)

• Solve (assuming F ′(x(k)) nonsingular) linear system

F ′(x(k))s = −F (x(k)) (8)

and set

x(k+1) = x(k) + s (9)

• (8,9) is basic Newton for systems of equations

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 17/19

Scalar case Examples Convergence Subtleties N for systems

Example

• Consider

0 = F (x) =

{
x21 + x22 − 25

x21 − x2 − 1

• Jacobian is

F ′(x) =

(
2x1 2x2
2x1 −1

)
• Let x0 = (5, 1)T

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 18/19

Scalar case Examples Convergence Subtleties N for systems

• Then

F (x(0)) = (1, 23)T

J(x(0)) =

(
10 2
10 −1

)
• Solve J(x(0))s = −F (x(0))

• x(1) = x(0) + s and so on

• We compute

i x1 x2 ∥F (x)∥
1 3.433333333333334 8.333333333333332 5.63e+01

2 2.632585333089088 5.289308176100628 9.93e+00

3 2.358810087435537 4.489032143454986 7.19e-01

4 2.329316858408983 4.424847176309882 5.06e-03

5 2.329040359270796 4.424428918660463 2.63e-07
6 2.329040339044829 4.424428900898053 7.11e-15

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 19/19

Numerical Methods for IVP ODEs
CS/SE 4X03

Ned Nedialkov

McMaster University

November 28, 2023

Outline

The problem

ODE examples

ODEs

Euler’s method

Backward Euler

Stability

The problem Examples ODEs Euler’s method Backward Euler Stability

The problem

• Given
y′ = f(t, y), y(a) = c

compute y(t) on [a, b]

• y′ ≡ y′(t) ≡ dy
dt

• This is an Initial Value Problem (IVP) in Ordinary Differential
Equations (ODEs)

• We approximate y(t) at points ti in [a, b] using a numerical
method

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 3/23

The problem Examples ODEs Euler’s method Backward Euler Stability

ODE examples

y′ = −y + t

• Solution is y(t) = t− 1 + αe−t:

y′(t) = 1− αe−t

−y + t = −(t− 1 + αe−t) + t = 1− αe−t

• Given y(0) = c, e.g. c = 5,

y(0) = −1 + α = c = 5, α = 6

y(t) = t− 1 + 6e−t

is the solution with this initial condition

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 4/23

The problem Examples ODEs Euler’s method Backward Euler Stability

Motion of a pendulum

θ′′ = −g sin θ, θ′′ =
d2θ(t)

dt2

• ball of mass 1 attached to the end of a rigid, massless rod of
length r = 1

• g ≈ 9.81 is gravity

• t is time

• This is a second-order ODE. To write as a first-order ODE,
set y1 = θ, y2 = θ′ = y′1:

y′1 = y2

y′2 = −g sin(y1)

• Needed initial conditions are y1(0) and y2(0)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 5/23

The problem Examples ODEs Euler’s method Backward Euler Stability

ODEs

System of n first-order equations in n variables

y′ = f(t, y), f : R× Rn → Rn

Nonlinear: if f is nonlinear in y, linear otherwise

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 6/23

The problem Examples ODEs Euler’s method Backward Euler Stability

Autonomous ODE

y′ = f(y), y(a) = c

is an autonomous ODE, does not depend on time explicitly

y′ = f(t, y), y(a) = c

is non-autonomous

To convert a non-autonomous ODE to an autonomous set x = t
and then

x′ = 1

y′ = f(x, y), x(a) = a, y(a) = c

Set z = (z1, z2)
T = (x, y)T . Then z′ = f(z):

z′1 = 1

z′2 = f(z)
Copyright © 2021-2023 N. Nedialkov. All rights reserved. 7/23

The problem Examples ODEs Euler’s method Backward Euler Stability

High-order ODEs

y(n) = f
(
t, y, y′, . . . , y(n−1)

)
can be converted to first-order by setting

y1 = y

y2 = y′ = y′1

y3 = y′′ = y′2
...

yn = y(n−1) = y′n−1

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 8/23

The problem Examples ODEs Euler’s method Backward Euler Stability

Then

y′1 = y2

y′2 = y3
...

y′n = f(t, y1, y2, . . . , yn)

To solve, we need initial values for

y1(a), y2(a), . . . , yn(a)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 9/23

The problem Examples ODEs Euler’s method Backward Euler Stability

Euler’s method

• Let h = (b− a)/N , N > 1 is an integer

• h is stepsize

• Let t0 = a, ti = a+ ih, i = 0, 1, . . . , N

• From y′(ti) = f(ti, y(ti)), we write

y(ti+1) = y(ti) + hy′(ti) +
h2

2
y′′(ξi), ξi between ti andti+1

= y(ti) + hf(ti, y(ti)) +
h2

2
y′′(ξi)

≈ y(ti) + hf(ti, y(ti))

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 10/23

The problem Examples ODEs Euler’s method Backward Euler Stability

• Euler’s method:

y0 = c

yi+1 = yi + hf(ti, yi), i = 0, 1, . . . , N − 1

• Example: Euler’s method on y′ = −y + t, y(0) = y0 = 5, with
h = 0.1:

yi+1 = yi + hf(ti, yi) = yi + h(−yi + ti)

y1 = y0 + h(−y0 + t0) = 5 + 0.1(−5 + 0) = 4.5

y2 = y1 + h(−y1 + t1) = 4.5 + 0.1(−4.5 + 0.1) = 4.06

y3 = y2 + h(−y2 + t2) = 4.06 + 0.1(−4.06 + 0.2) = 3.674

• Exact solution is y(t) = t− 1 + 6e−t

• The corresponding exact values are y(0.1) ≈ 4.5290,
y(0.2) ≈ 4.1124, y(0.3) ≈ 3.7449

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 11/23

The problem Examples ODEs Euler’s method Backward Euler Stability

Example: Forward Euler on y′ = −y + t

0 0.5 1 1.5 2 2.5 3
1.5

2

2.5

3

3.5

4

4.5

5
y' = -y+t', y(0) = 5, h = 0.1

y(t) = t-1+6*exp(-t)

initial condition

forward Euler

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 12/23

The problem Examples ODEs Euler’s method Backward Euler Stability

Backward Euler

• We can write

y(ti) = y(ti+1)− hy′(ti+1) +
h2

2
y′′(ηi)

≈ y(ti+1)− hf(ti+1, y(ti+1))

y(ti+1) ≈ y(ti) + hf(ti+1, y(ti+1))

• Backward Euler

yi+1 = yi + hf(ti+1, yi+1)

• This is an implicit method; forward Euler is explicit

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 13/23

The problem Examples ODEs Euler’s method Backward Euler Stability

• Example: Backward Euler method on y′ = −y + t,
y(0) = y0 = 5, with h = 0.1:

yi+1 = yi + hf(ti+1, yi+1)

= yi + h(−yi+1 + ti+1)

• We need to solve for yi+1:

yi+1 = yi − hyi+1 + hti+1

yi+1 + hyi+1 = yi + hti+1

yi+1 =
yi + hti+1

1 + h

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 14/23

The problem Examples ODEs Euler’s method Backward Euler Stability

• We compute

y1 =
y0 + ht1
1 + h

=
5 + 0.1 · 0.1
1 + 0.1

≈ 4.5545

y2 =
y1 + ht2
1 + h

≈ 4.5545 + 0.1 · 0.2
1 + 0.1

≈ 4.1586

y3 =
y2 + ht3
1 + h

≈ 4.1586 + 0.1 · 0.3
1 + 0.1

≈ 3.7987

• The corresponding exact values are y(0.1) ≈ 4.5290,
y(0.2) ≈ 4.1124, y(0.3) ≈ 3.7449

• Here it was easy to solve for yi+1: f(t, y) = −y + t is linear in
y

• In general, it is non-linear: apply Newton’s method

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 15/23

The problem Examples ODEs Euler’s method Backward Euler Stability

Example: FE and BE on y′ = −y + t

0 0.5 1 1.5 2 2.5 3
1.5

2

2.5

3

3.5

4

4.5

5
y' = -y+t', y(0) = 5, h = 0.1

y(t) = t-1+6*exp(-t)

initial condition

forward Euler

backward Euler

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 16/23

The problem Examples ODEs Euler’s method Backward Euler Stability

Stability
Forward Euler

• Consider y′ = λy, y(0) = y0

• The exact solution is y(t) = eλty0
• Forward Euler with constant stepsize h is

yi+1 = yi + hf(ti, yi) = yi + hλyi

= (1 + hλ)yi

= (1 + hλ)2yi−1

...

= (1 + hλ)i+1y0

• If λ < 0, y(t) is decaying. Since |y(ti+1)| < |y(ti)|, we want
|yi+1| ≤ |yi|

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 17/23

The problem Examples ODEs Euler’s method Backward Euler Stability

Stability cont.

• For the method to be numerically stable, we require

|yi+1| = |1 + hλ| · |yi| ≤ |yi|

• That is |1 + hλ| ≤ 1, or

−1 ≤ 1 + hλ ≤ 1

−2 ≤ hλ ≤ 0

h ≤ 2

|λ|

• If |λ| is large, we can have a severe restriction on the stepsize
If e.g. y′ = −106y, h ≤ 2 · 10−6

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 18/23

The problem Examples ODEs Euler’s method Backward Euler Stability

Stability cont.

Example 1.

• Consider y′ = −10y, y(0) = y0

• Euler’s method is

yi+1 = yi + hλyi = (1− 10h)yi

• For stability h ≤ 0.2

• If e.g. h = 0.21 then

y1 = (1− 10 · 0.21)y0 = −1.1y0

y2 = −1.1y1 = 1.21y0

y3 = −1.1y2 = −1.331y0

...

yi = (−1.1)iy0

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 19/23

The problem Examples ODEs Euler’s method Backward Euler Stability

Stability

Example 1. cont.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1
 = -10, h = 0.05

e
 t
y

0

Forward Euler

0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

1
 = -10, h = 0.15

e
 t
y

0

Forward Euler

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1
 = -10, h = 0.2

e
 t
y

0

Forward Euler

0 0.5 1 1.5 2 2.5 3
-6

-4

-2

0

2

4
 = -10, h = 0.21

e
 t
y

0

Forward Euler

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 20/23

The problem Examples ODEs Euler’s method Backward Euler Stability

Stability
Backward Euler

• Consider the backward Euler on y′ = λy, where λ < 0

yi+1 = yi + hλyi+1

yi+1 =
1

1− hλ
yi

|yi+1| =
1

|1− hλ|
|yi|

≤ |yi| for any h > 0

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 21/23

The problem Examples ODEs Euler’s method Backward Euler Stability

Stability

Example 2.

• y′ = −10y

• Backward Euler is

yi+1 =
1

1 + 10h
yi

• Stable for any h > 0

• Backward Euler is absolutely (for any h > 0) stable

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 22/23

The problem Examples ODEs Euler’s method Backward Euler Stability

Stability

Example 2. cont.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1
 = -10, h = 0.05

e
 t
y

0

Backward Euler

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1
 = -10, h = 0.15

e
 t
y

0

Backward Euler

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1
 = -10, h = 0.2

e
 t
y

0

Backward Euler

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1
 = -10, h = 0.21

e
 t
y

0

Backward Euler

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 23/23

Errors, Convergence, Stiffness
CS/SE 4X03

Ned Nedialkov

McMaster University

November 28, 2023

Outline

Local truncation error and order

Local and global error

Convergence

Stiffness

Stiff vs Nonstiff

Order Local and global error Convergence Stiffness Stiff vs Nonstiff

Local truncation error and order

• Local truncation error is the amount by which the exact
solution fails to satisfy the numerical method

• Forward Euler yi+1 = yi + hf(ti, yi)
Using the exact solution y(t) in this formula

di =
y(ti+1)− y(ti)

h
− f(ti, y(ti)) =

h

2
y′′(ηi)

• Backward Euler di = −h
2y

′′(ξi)

• A method is of order q, if q is the lowest positive integer such
that for any sufficiently smooth exact solution y(t)

max
i

|di| = O(hq)

• Forward and backward Euler are of order q = 1

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 3/11

Order Local and global error Convergence Stiffness Stiff vs Nonstiff

Local and global error

• Global error is

ei = y(ti)− yi, i = 0, 1, . . . , N,

where y(ti) is the exact solution at ti and yi is the computed
approximation

• Consider
u′ = f(t, u), u(ti−1) = yi−1

The local error is
li = u(ti)− yi

where u(ti) is the exact solution to u′ = f(t, u) with initial
condition ui at ti

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 4/11

Order Local and global error Convergence Stiffness Stiff vs Nonstiff

Local vs global error

0 0.5 1 1.5 2 2.5

t

y
0

y
1

y
2

y
3 y

4

y
5

y
6

y
7

y
8

y'=f(t,y), y(0)=y
0

u'=f(t,u), u(t
i
)=y

i

computed approx

local errors

0 0.5 1 1.5 2 2.5

t

y
0

y
1

y
2

y
3 y

4

y
5

y
6

y
7

y
8

y'=f(t,y), y(0)=y
0

u'=f(t,u), u(t
i
)=y

i

computed approx

global errors

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 5/11

Order Local and global error Convergence Stiffness Stiff vs Nonstiff

• Numerical methods control the local error

• That is, select a stepsize such that the local error is within a
given tolerance

• Typically the global error is proportional to the tolerance

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 6/11

Order Local and global error Convergence Stiffness Stiff vs Nonstiff

Convergence

• A methods is said to converge if the maximum global error
goes to 0 as h → 0

• That is

max
i

ei = max
i

[y(ti)− yi] → 0 as h → 0

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 7/11

Order Local and global error Convergence Stiffness Stiff vs Nonstiff

Stiffness

• When the stepsize is restricted by stability rather than
accuracy

• When an explicit solver takes very small steps

• Matlab: nonstiff solvers ode45, ode113,...
stiff solvers: ode15s, ode23s

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 8/11

Order Local and global error Convergence Stiffness Stiff vs Nonstiff

Stiffness cont.

Van der Pol

y′1 = y2

y′2 = µ(1− y21)y2 − y1

µ is a constant

y(0) = (2, 0)T , t ∈ [0, 2000]

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 9/11

Order Local and global error Convergence Stiffness Stiff vs Nonstiff

Stiff vs Nonstiff
ode15s on Van der Pol, µ = 1000: integrated in ≈ 0.2 seconds, 408 steps

0 500 1000 1500 2000

Time t

-3

-2

-1

0

1

2

S
o
lu

ti
o
n
 y

1

Solution of van der Pol Equation, = 1000

0 500 1000 1500 2000

Time t

-1500

-1000

-500

0

500

1000

1500

S
o
lu

ti
o
n
 y

2

Solution of van der Pol Equation, = 1000

0 500 1000 1500 2000

t

0

20

40

60

80

100

S
te

p
s
iz

e

Stepsize

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 10/11

Order Local and global error Convergence Stiffness Stiff vs Nonstiff

Stiff vs Nonstiff
ode45 on Van der Pol, µ = 1000: integrated in ≈ 15 seconds, 4,624,409 steps

0 500 1000 1500 2000

t

0

0.005

0.01

0.015

0.02

0.025
S

te
p
s
iz

e
Stepsize

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 11/11

Runge-Kutta Methods
CS/SE 4X03

Ned Nedialkov

McMaster University

November 28, 2023

Outline

Trapezoid
Implicit trapezoidal method
Explicit trapezoidal method

Midpoint
Implicit midpoint method
Explicit midpoint method

4th order Runge-Kutta

Stepsize control

Trapezoid Midpoint 4th order Runge-Kutta Stepsize control

Implicit trapezoidal method

• Consider y′(t) = f(t, y), y(ti) = yi

• From y(ti+1) = y(ti) +
∫ t
ti
f(s, y(s))ds,

y(ti+1) = y(ti) +

∫ ti+1

ti

f(s, y(s))ds

• Use the trapezoidal rule for the integral

y(ti+1) = y(ti) +

∫ ti+1

ti

f(s, y(s))ds

≈ y(ti) +
h

2
[f(ti, y(ti)) + f(ti+1, y(ti+1))]

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 3/13

Trapezoid Midpoint 4th order Runge-Kutta Stepsize control

• From

y(ti+1) ≈ y(ti) +
h

2
[f(ti, y(ti)) + f(ti+1, y(ti+1))]

write

yi+1 = yi +
h

2
[f(ti, yi) + f(ti+1, yi+1)]

This is the implicit trapezoidal method

• We have to solve a nonlinear system in general for yi+1

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 4/13

Trapezoid Midpoint 4th order Runge-Kutta Stepsize control

• Local truncation error is

di =
y(ti+1)− y(ti)

h
− 1

2
[f(ti, y(ti)) + f(ti+1, y(ti+1))]

• di = O(h2)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 5/13

Trapezoid Midpoint 4th order Runge-Kutta Stepsize control

Explicit trapezoidal method

• In the implicit trapezoidal rule, we need to solve for yi+1

• We can approximate y(ti+1) first using forward Euler:

Y = yi + hf(ti, yi)

• Then plug Y into the formula for the implicit trapezoidal
method

yi+1 = yi +
h

2
[f(ti, yi) + f(ti+1, Y)]

• This is a two-stage explicit Runge-Kutta method

• Local truncation error is

di =
y(ti+1)− y(ti)

h
− 1

2
[f(ti, y(ti)) + f(ti+1, y(ti) + hf(ti, y(ti)))]

di = O(h2), a bit involved to derive it

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 6/13

Trapezoid Midpoint 4th order Runge-Kutta Stepsize control

Implicit midpoint

• Use the midpoint quadrature rule:

yi+1 = yi + hf
(
ti+1/2, yi+1/2

)
= yi + hf (ti + h/2, (yi + yi+1)/2)

• That is, we solve for yi+1

• Order is 2

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 7/13

Trapezoid Midpoint 4th order Runge-Kutta Stepsize control

Explicit midpoint method

• Take a step of size h/2 with forward Euler

Y = yi +
h

2
f(ti, yi)

• Plug into the formula from the midpoint quadrature rule:

yi+1 = yi + hf (ti + h/2, Y) ,

• This is a two-stage explicit Runge-Kutta method

• Order is 2

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 8/13

Trapezoid Midpoint 4th order Runge-Kutta Stepsize control

Classical 4th order Runge-Kutta

• Based on Simpson’s quadrature rule

• 4 stages

• Order 4, O(h4) accuracy

Y1 = yi

Y2 = yi +
h

2
f(ti, Y1)

Y3 = yi +
h

2
f(ti + h/2, Y2)

Y4 = yi + hf(ti + h/2, Y3)

yi+1 = yi +
h

6

[
f(ti, Y1) + 2f(ti + h/2, Y2) + 2f(ti + h/2, Y3) + f(ti+1, Y4)

]

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 9/13

Trapezoid Midpoint 4th order Runge-Kutta Stepsize control

Stepsize control

Example 1. Denote h = ti+1 − ti. Consider forward Euler and the explicit
trapezoidal methods

yi+1 = yi + hf(ti, yi), local error O(h2)

ŷi+1 = yi +
1
2h[f(ti, yi) + f(ti+1, yi+1)], local error O(h3)

The error in yi+1 is e = ∥yi+1 − ŷi+1∥. Given tolerance tol ,

if e ≤ tol
accept ŷi+1 at ti+1

predict h̄ for the next step
else
reject the step
predict h̄ < h
repeat the step with h̄

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 10/13

Trapezoid Midpoint 4th order Runge-Kutta Stepsize control

Example 1. cont.

The error is e = ch2 for some c ≥ 0

c =
e

h2

Suppose e ≤ tol . On the next step ē = c̄h̄2, for some c̄ ≥ 0

Assume c ≈ c̄. Then

ē = c̄h̄2 ≈ ch̄2 =
e

h2
h̄2

= e

(
h̄

h

)2

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 11/13

Trapezoid Midpoint 4th order Runge-Kutta Stepsize control

Example 1. cont.

From

ē ≈ e

(
h̄

h

)2

= tol ,

we can select

h̄ = h

(
tol

e

)1/2

To reduce the likelihood of stepsize rejections, aim at 0.5 tol and multiply
by 0.9:

h̄ = 0.9h

(
0.5 tol

e

)1/2

0.5 and 0.9 are safety factors

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 12/13

Trapezoid Midpoint 4th order Runge-Kutta Stepsize control

Example 1. cont.

If e ≥ tol , one can use the same formula.

How to form tol ?

Assume absolute atol and relative rtol tolerances are given. Then

tol = rtol · ∥yi∥+ atol

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 13/13

	Floating-point number system
	Rounding
	Machine epsilon
	IEEE 754
	Cancellations
	19b24bb6-3873-43ce-bf84-21c7056ec321.pdf
	Taylor series
	Mean-value theorem
	Errors in computing
	Roundoff errors
	Truncation errors

	Computational error
	Examples
	Absolute and relative errors

	81760fc7-270f-4e8e-b2a3-7c6fab5121ae.pdf
	Linear systems
	Example
	Gauss elimination
	Algorithm
	Cost

	Backward substitution
	Algorithm
	Cost

	Total cost

	22eeeca4-f1e3-4bb4-b524-2c43b0396cd7.pdf
	Example 1
	GEPP
	Example 2

	5de95000-8610-48bc-bf8a-0c96b1866d8e.pdf
	LU decomposition
	Example
	Small pivots
	Partial pivoting
	lu(A)

	85799cc8-63ca-48d8-bf8c-e26bd9674d75.pdf
	Norms
	Residual
	Relative solution error

	d708d60f-b8dc-4f75-8786-0cbe075d2a6f.pdf
	The problem
	Representation
	Basis functions
	Monomial interpolation
	Uniqueness of the interpolating polynomial
	Lagrange interpolation

	8a9eee89-0f7b-4c61-8a73-413bfb3868a4.pdf
	Basis
	Computing coefficients
	Divided differences
	Example

	6abf122b-eeb1-48c8-94cd-48914c878752.pdf
	Polynomial interpolation error
	Chebyshev nodes

	daac88ec-b5a2-4d72-99d1-385525e24878.pdf
	The problem
	Derivation
	Trapezoidal rule
	Errror of trapezoidal rule
	Midpoint rule
	Error of midpoint rule
	Simpson's rule

	cd93bea2-01c4-441d-8517-49bdaadc2245.pdf
	Composite trapezoidal rule
	Error of composite trapezoidal rule
	Composite Simpson & midpoint rules

	76caa1aa-b405-47db-8fc2-b15219ad9e79.pdf
	Formulation
	Linear fit
	Example
	Overdetermined systems
	Normal equations

	b01f7c1c-3d99-457c-b8e9-ef34f90c983c.pdf
	Derivation of Simpson's rule
	Adaptive Simpson
	Subtleties

	3f737ae2-db4e-4acf-a225-964ed3d01777.pdf
	Example
	Activation function
	A simple network
	Training
	Steepest descent
	Stochastic gradient descent

	4ae5bfb9-3bfb-43e2-8ff6-d775e1d586a8.pdf
	Scalar case
	Examples
	Convergence
	Subtleties
	Newton for systems of equations

	e18cec9c-d3d6-49ff-a95f-908b454e6b24.pdf
	The problem
	ODE examples
	ODEs
	Euler's method
	Backward Euler
	Stability

	ac54be2d-1802-4e5f-9e1d-03ceacc26fb0.pdf
	Local truncation error and order
	Local and global error
	Convergence
	Stiffness
	Stiff vs Nonstiff

	37ec99b0-74b8-48e4-b817-eafbe34cbc53.pdf
	Trapezoid
	Implicit trapezoidal method
	Explicit trapezoidal method

	Midpoint
	Implicit midpoint method
	Explicit midpoint method

	4th order Runge-Kutta
	Stepsize control

