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The Patriot disaster

During the Gulf War in 1992, a Patriot missile missed an Iraqi Skud,
which killed 28 Americans. What happened?

• Patriot’s internal clock counted tenths of a second and stored the
result as an integer.

• To convert to a floating-point number, the time was multiplied by
0.1 stored in 24 bits.

• 0.1 in binary is 0.001 1001 1001 ..., which was chopped to 24 bits.

Roundoff error ≈ 9.5× 10−8.

• After 100 hours the measured time had an error of

100× 60× 60× 10× 9.5× 10−8 ≈ 0.34 seconds.

• A Skud flies at ≈ 1, 676 meters per second. 0.34 seconds error
results in

0.34× 1, 676 ≈ 569 meters



Vancouver Stock Exchange

• In 1982, the Vancouver Stock Exchange started an electronic stock
index set initially to 1,000 points.

• The index was updated after each transaction.

• In 22 months the index fell to 520.

• It was not supposed to fall in a bull market.

• Investigation showed each intermediate result was rounded to 2
decimals by chopping, e.g. 568.958 rounds to 568.95.

• When this was fixed, the index was 1098.892.



Ariane 5

• Launched on June 4, 1996.

• 36 seconds before self-destruction.

• A 64-bit floating-point number was converted to a 12-bit integer.



What is the output of this Matlab code?

a(1) = (1/cos(100*pi+pi/4))^2; % (1/ cos(100π + π/4))2 = 2
a(2) = 3*tan(atan(1e7))/1e7; % 3 tan(arctan(107))/107 = 3
x = 4;

for i=1:100 x = sqrt(x); end

for i=1:100 x = x*x; end

a(3) = x; % = 4

a(4) = 5*(1+exp(-100)-1)/(1+exp(-100)-1); % 5 1+e−100−1
1+e−100−1

= 5

a(5) = log(exp(6e+3))/1e+3; % ln(e6000)/1000 = 6
for i = 1:5

fprintf(’%d: %.16f\n’, i+1, a(i));

end



Useful links

• IEEE 754 double precision visualization

• C. Moler. Floating Point Numbers

• IEEE 754

• N. Higham. Half Precision Arithmetic: fp16 Versus bfloat16

• GNU Multiple Precision Arithmetic Library

• Quadruple-precision floating-point format

https://bartaz.github.io/ieee754-visualization/
https://blogs.mathworks.com/cleve/2014/07/07/floating-point-numbers/
https://en.wikipedia.org/wiki/IEEE_754
https://nhigham.com/2018/12/03/half-precision-arithmetic-fp16-versus-bfloat16/
https://en.wikipedia.org/wiki/GNU_Multiple_Precision_Arithmetic_Library
https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format
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Floating-point number system

A floating-point (FP) system is characterized by four integers
(β, t, L, U), where

• β is base of the system or radix

• t is number of digits or precision

• [L,U ] is exponent range

A common way of expressing a FP number x is

x = ± d0.d1 · · · dt−1 × βe

where

• 0 ≤ di ≤ β − 1, i = 0, . . . , t− 1

• e ∈ [L,U ]
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x = ± d0.d1 · · · dt−1 × βe

• The string of base β digits d0d1 · · · dt−1 is called mantissa or
significand

• d1d2 · · · dt−1 is called fraction

• A FP number is normalized if d0 is nonzero
denormalized otherwise
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Floating-point number system cont.

Example 1. Consider the FP (10, 3,−2, 2).

• The normalized numbers are of the form

±d0.d1d2 × 10e, d0 ̸= 0, e ∈ [−2, 2]

• largest positive number is 9.99× 102

• smallest positive normalized number is 1.00× 10−2

• smallest positive denormalized number 0.01× 10−2

• denormalized numbers are e.g. 0.23× 10−2, 0.11× 10−2

• 0 is represented as 0.00× 100

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 10/35



FP system Rounding Machine epsilon IEEE 754 Cancellations

Rounding

How to store a real number

x = ± d0.d1 · · · dt−1dtdt+1 · · · × βe

in t digits?
Denote by fl(x) the FP representation of x

• Rounding by chopping (also called rounding towards zero)

• Rounding to nearest. fl(x) is the nearest FP to x
If a tie, round to the even FP

• Rounding towards +∞. fl(x) is the smallest FP ≥ x

• Rounding towards −∞. fl(x) is the largest FP ≤ x
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Rounding cont.

Example 2. Consider the FP (10, 3,−2, 2).
Let x = 1.2789× 101

• chopping: fl(x) = 1.27× 101

• nearest: fl(x) = 1.28× 101

• +∞: fl(x) = 1.28× 101

• −∞: fl(x) = 1.27× 101

Let x = 1.275000. It is in the middle between 1.27 and 1.28.
When a tie, round to the even, the number with even last digit

• nearest: fl(x) = 1.28
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Machine epsilon

• Machine epsilon: the distance from 1 to the next larger FP
number
E.g. in t = 5 decimal digits, ϵmach = 1.0001− 1.0000 = 10−4

1 1.00011.00005

ϵmach = 0.0001 = 10−4

u = 5× 10−5

Note: 1.00005 is not representable in this FP system, just
denotes the middle

• Unit roundoff: u = ϵmach/2
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Machine epsilon cont.

When rounding to the nearest

fl(x) = x(1 + ϵ), where |ϵ| ≤ u

i.e.

fl(x)− x

x
= ϵ∣∣∣∣fl(x)− x

x

∣∣∣∣ = |ϵ| ≤ u

ϵ is the relative error in fl(x).
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Machine epsilon cont.

Example 3. Consider the FP (10, 3,−2, 2).

• The machine epsilon is ϵmach = 1.01− 1.00 = 0.01.

• Unit roundoff is ϵmach/2 = 0.01 = 0.005 = 5× 10−3.

Let x = 1.2789× 101. With rounding to nearest,

fl(x) = 1.28× 101.

Then ∣∣∣∣fl(x)− x

x

∣∣∣∣ = |1.28× 101 − 1.2789× 101|
1.2789× 101

=
|1.28− 1.2789|

1.2789

≈ 8.6011× 10−4 < 5× 10−3
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Machine epsilon cont.

Example 4. Consider the FP (10, 3,−2, 2). Let x = 3.4950001× 102.
With rounding to nearest,

fl(x) = 3.50× 102.

The absolute error in fl(x) is

fl(x)− x = 3.50× 102 − 3.4950001× 102 ≈ 0.5

which is large.
But the relative error is within u = 5× 10−3:∣∣∣∣fl(x)− x

x

∣∣∣∣ = |3.50× 102 − 3.4950001× 102|
3.4950001× 102

=
|3.50− 3.4950001|

3.4950001

≈ 1.4306× 10−3 < 5× 10−3
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IEEE 754

• IEEE 754 standard for FP arithmetic (1985)

• IEEE 754-2008, IEEE 754-2019

• Most common (binary) single and double precision
since 2008 half precision

bits t L U ϵmach

single 32 24 −126 127 ≈ 1.2× 10−7

double 64 53 −1022 1023 ≈ 2.2× 10−16

range smallest

normalized denormalized

single ±3.4× 1038 ±1.2× 10−38 ±1.4× 10−45

double ±1.8× 10308 ±2.2× 10−308 ±4.9× 10−324

(These are ≈ values)
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IEEE 754 cont.
Exceptional values

• Inf, -Inf when the result overflows, e.g. 1/0.0

• NaN ”Not a Number” results from undefined operations e.g.
0/0, 0*Inf, Inf/Inf
NaNs propagate through computations
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IEEE 754 cont.

• sign 0 positive, 1 negative

• exponent is biased

• first bit of mantissa is not stored, sticky bit, assumed 1

(Figures are from IEEE Standard 754 Floating Point Numbers

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 19/35
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IEEE 754 cont.

Single precision

• FP numbers

◦ biased exponent: from 1 to 254, bias: 127
◦ actual exponent: 1− 127 = −126 to 254− 127 = 127

• Inf

◦ sign: 0 for +Inf, 1 for -Inf
◦ biased exponent: all 1’s, 255
◦ fraction: all 0’s

• NaN

◦ sign: 0 or 1
◦ biased exponent: all 1’s, 255
◦ fraction: at least one 1

• 0

◦ sign: 0 for +0, 1 for −0
◦ biased exponent: all 0’s
◦ mantissa: all 0’s
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IEEE 754 cont.

Double precision

• bias 1023

• biased exponent: from 1 to 2046

• actual exponent: from −1022 to 1023

• rest similar to single

Try IEEE 754 double precision visualization
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IEEE 754 cont.
Why biased exponent?

What if the exponent is stored as a signed number in 2’s
complement representation?

Example 5.

• Consider single precision, and assume the exponent is stored as a
signed integer.

• Assume we have two positive numbers x > y with exponents

5 and −5, respectively.
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Example 5. cont.

• 5 in 8 bits is 00000101

• −5 in 2’s complement is 11111011

• Then x and y are of the form

x = 0︸︷︷︸
+

00000101︸ ︷︷ ︸
5

· · ·︸︷︷︸
23 bits

y = 0︸︷︷︸
+

11111011︸ ︷︷ ︸
−5

· · ·︸︷︷︸
23 bits

If we compare them bit by bit, x < y, which is not the case.

• By having exponents as unsigned integers, it is easy to compare FP
numbers.
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IEEE 754 cont.
FP arithmetic

For a real x and rounding to nearest

fl(x) = x(1 + ϵ), |ϵ| ≤ u

u is the unit roundoff of the precision

The arithmetic operations are correctly rounded, i.e. for x and y
IEEE numbers and rounding to the nearest

fl(x ◦ y) = (x ◦ y)(1 + ϵ), ◦ ∈ {+,−, ∗, /}, |ϵ| ≤ u

Also correctly rounded are

• conversions between formats and to and from strings

• square root

• fused multiply and add, FMA
Computes a ∗ x+ b with single rounding
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IEEE 754 cont.

Example 6. Consider a decimal floating-point system with t = 5 and
rounding to nearest

• The machine epsilon is 1.0001− 1.0000 = 0.0001 = 10−4

• Unit roundoff is u = 10−4/2 = 5× 10−5

• Let x = 1.162611735194631

With rounding to nearest, fl(x) = 1.1626

fl(x) = x(1 + ϵ)

ϵ =
fl(x)− x

x
=

1.1626− 1.162611735194631

1.162611735194631
≈ −1.0094× 10−5

|ϵ| ≈ 1.0094× 10−5 < 5× 10−5︸ ︷︷ ︸
u

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 25/35



FP system Rounding Machine epsilon IEEE 754 Cancellations

IEEE 754 cont.

Example 7. Assume t = 5. Suppose x is close to the middle of two FP
numbers, e.g. x = 1.000050000000000001× 104. Then

ϵ =
fl(x)− x

x
=

1.0001× 104 − 1.000050000000000001× 104

1.000050000000000001× 104

≈ 4.9998× 10−5 < 5× 10−5

That is, the relative error is close to the unit roundoff of 5× 10−5
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IEEE 754 cont.

Example 8. Assume x, y, z are FP numbers. Find the error in
fl(z(x+ y)).

Since they are FP numbers, fl(x) = x, fl(y) = y, fl(z) = z. Then

fl(z(x+ y)) = fl(z) fl(x+ y) (1 + δ1) δ1 roundoff in fl(z) fl(x+ y)

= z(fl(x) + fl(y))(1 + δ2)(1 + δ1) δ2 roundoff in x+ y

= z(x+ y)(1 + δ1)(1 + δ2)

= z(x+ y)(1 + δ1 + δ2 + δ1δ2) drop δ1δ2

≈ z(x+ y)(1 + δ1 + δ2),

where |δ1,2| ≤ u. |δ1δ2| is very small compared to |δ1| and |δ2|, so we
neglect it

Denoting δ = δ1 + δ2, |δ| = |δ1 + δ2| ≤ |δ1|+ |δ2| ≤ 2u and

fl(z(x+ y)) = z(x+ y)(1 + δ), where|δ| ≤ 2u
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IEEE 754 cont.

Example 9. Assume x, y real. What is the error in fl(xy)?

We have fl(x) = x(1 + δ1), fl(y) = y(1 + δ2), where |δ1,2| ≤ u.

fl(xy) = fl(x) fl(y) (1 + δ3) δ3 is the roundoff in fl(x) fl(y)

= x(1 + δ1)y(1 + δ2)(1 + δ3)

= xy(1 + δ1 + δ2 + δ3

+δ1δ2 + δ1δ3 + δ2δ3 + δ1δ2δ3︸ ︷︷ ︸
very small

)

≈ xy(1 + δ1 + δ2 + δ3).

Denoting δ = δ1 + δ2 + δ3,

|δ| ≤ |δ1|+ |δ2|+ |δ3| ≤ 3u

and
fl(xy) = xy(1 + δ), where |δ| ≤ 3u
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Example 10 (Computing
√
x2 + y2).

• One can do sqrt(x*x+y*y)

• Assume double precision and suppose
x=1e200 and y=1e100

• x*x will overflow and the result is Inf

• sqrt(Inf+1e200) gives Inf

• Let M = max{|x|, |y|} and assume M = |x|. Then√
x2 + y2 = M

√
1 + (y/M)2

• Setting M=1e200, y1=y/M, compute M*sqrt(1+y1*y1), which gives
1e200

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 29/35



FP system Rounding Machine epsilon IEEE 754 Cancellations

IEEE 754 cont.

Note

expression evaluates to
y1=y/M 1e100/1e200 = 1e-100

y1*y1 1e-200

1+y1*y1 1
sqrt(1+y1*y1) 1
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Cancellations

Cancellations occur when subtracting nearby numbers that contain
roundoff

Example 11. Assume a decimal FP system with t = 5 digits and
rounding to nearest. Let x = 1.234567 and y = 1.234512 and compute
x− y in this FP system

fl(x) = fl(1.234567) = 1.2346 roundoff error

fl(y) = fl(1.234512) = 1.2345 roundoff error

fl(x)− fl(y) = 0.0001 NO roundoff error

= 1.0000× 10−4

• 1 is the result of subtracting 6 and 5, both containing roundoff

• fl(x)− fl(y) = 1.0000× 10−4 has no correct diggits:
catastrophic cancellation
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Cancellations cont.

Example 11. cont.

• True result is
x− y = 1.234567− 1.234512 = 0.000055 = 5.5× 10−5

• The absolute error in fl(x)− fl(y) is small:

[fl(x)− fl(y)]− (x− y) = 1× 10−4 − 5.5× 10−5

= 10× 10−5 − 5.5× 10−5

= 4.5× 10−5

• The relative error in fl(x)− fl(y) is

[fl(x)− fl(y)]− (x− y)

x− y
=

4.5× 10−5

5.5× 10−5 =
4.5

5.5
≈ 0.82

or ≈ 82%.
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Cancellations cont.

Example 12.
Let now x = 5.384576 and y = 4.894080

fl(x) = fl(5.384576) = 5.3846 roundoff error

fl(y) = fl(4.894080) = 4.8941 roundoff error

fl(x)− fl(y) = 0.4905 NO roundoff error

= 4.9050× 10−1

• 5 is the result of subtracting 1 from 6, both containing roundoff
errors

• The digits 4.90 are correct
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Cancellations cont.

Example 12. cont.

• True result is x− y = 5.384576− 4.894080 = 0.490496

• The absolute error in fl(x)− fl(y) is

[fl(x)− fl(y)]− (x− y) ≈ 4.0000× 10−6

• The relative error in fl(x)− fl(y) is

[fl(x)− fl(y)]− (x− y)

x− y
≈ 4.0000× 10−6

0.490496

≈ 8.16× 10−6
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Cancellations cont.

Example 13. Consider the equivalent expressions x2 − y2 and
(x− y)(x+ y). Suppose |x| ≈ |y|. Which one is better to evaluate?
Assume x, y > 0; the case x, y < 0 is similar

• x− y may have cancellations; x+ y does not

• x2 and y2 would have (in general) roundoff errors from the
multiplications

• due to them, cancellations in x2 − y2 can be worse than in (x− y)

Try

x = 10000 * rand; y = x * (1 + 1e-10);

eval1 = (x - y) * (x + y); eval2 = x * x - y * y;

%compute more accurate result using vpa

xv = vpa(x); yv = vpa(y); acc = (xv - yv) * (xv + yv);

fprintf(’rel. error in (x-y)*(x+y) = % e\n’, (acc - eval1)/acc);

fprintf(’rel. error in x*x - y*y = % e\n’, (acc - eval2)/acc);
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Consider x− y, x ̸= y.

Assume no roundoff in the subtraction, i.e. fl(x− y) = fl(x)− fl(y).
From fl(x) = x(1 + ϵ1), fl(y) = y(1 + ϵ2),

fl(x− y) = fl(x)− fl(y)

= x(1 + ϵ1)− y(1 + ϵ2)

= (x− y) + xϵ1 − yϵ2

= (x− y)

(
1 +

xϵ1 − yϵ2
x− y

)
The error

δ =
xϵ1 − yϵ2
x− y

can be arbitrary large when x ≈ y.
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Example 1. Consider a decimal FP system with t = 5 digits. Let
x = 9.23450001 and y = 9.23455001.

Assuming rounding to the nearest, what is the relative error in
(a) fl(x+ y), (b) fl(x− y)?

x and y are represented as fl(x) = 9.2345 and fl(y) = 9.2346

Unit roundoff is 5× 10−5

(a)

fl(x+ y) = fl
[
fl(x) + fl(y)

]
= fl(9.2345 + 9.2346) = fl(1.84691× 10)

= 1.8469× 10

∣∣∣∣fl(x+ y)− (x+ y)

x+ y

∣∣∣∣ = ∣∣∣∣1.8469× 10− 1.846905002× 10

1.846905002× 10

∣∣∣∣
≈ 2.7× 10−6 < 5× 10−5
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Example 1. cont.

(b)

fl(x− y) = fl
[
fl(x)− fl(y)

]
= fl(9.2345− 9.2346) = fl

(
−1.0000× 10−4)

= −1.0000× 10−4

∣∣∣∣fl(x− y)− (x− y)

x− y

∣∣∣∣ = ∣∣∣∣−1.0000× 10−4 − (−5.0000× 10−5)

−5.0000× 10−5

∣∣∣∣
=

∣∣∣∣−5× 10−5

−5× 10−5

∣∣∣∣
= 1 ≫ 5× 10−5
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Example 2. How to evaluate
√
x+ 1−

√
x to avoid cancellations?

For large x,
√
x+ 1 ≈

√
x.

(
√
x+ 1−

√
x)

√
x+ 1 +

√
x√

x+ 1 +
√
x

=
1√

x+ 1 +
√
x

Evaluate
1√

x+ 1 +
√
x

Let x = 100000. In a 5-digit decima arithmetic,
x+ 1 = 1.0000× 105 + 1 = 100001 rounds to 1.0000× 105.

Then
√
x+ 1−

√
x gives 0, but

1√
x+ 1 +

√
x

=
1√

1.0000× 105 +
√

1.0000× 105
= 1.5811× 10−3
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Example 3. Consider approximating e−x for x > 0 by

e−x ≈ 1− x+
x2

2!
− x3

3!
+ · · · (−1)k

xk

k!

for some k

From e−x = 1/ex, it is better to approximate

ex ≈ 1 + x+
x2

2!
+

x3

3!
+ · · ·+ xk

k!

and then compute 1/ex
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Solving ax2 + bx+ c

Compute the roots of ax2 + bx+ c = 0

x1,2 =
−b±

√
b2 − 4ac

2a

If b2 ≫ 4ac > 0, there may be cancellations

Example 4. Consider 4-digit decimal arithmetic and take
a = 1.01, b = 98.73, c = 4.03.

= rounds to

b2 9747.6129 9748

4ac 16.2812 16.28

b2 − 4ac 9748− 16.28 9732

d =
√
b2 − 4ac

√
9732 98.65

−b+ d −98.73 + 98.65 −0.08

−b− d −98.73− 98.71 −197.4

x1 = (−b+ d)/(2a) −0.08/(2.02) −3.960× 10−2

x2 = (−b− d)/(2a) −197.4/(2.02) −97.72

Exact roots rounded to 4 digits −4.084× 10−2, −97.71
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Solving ax2 + bx+ c cont.

d =
√
b2 − 4ac, avoid cancellations in −b± d

Use x1x2 = c/a

Compute using

d =
√
b2 − 4ac

if b ≥ 0
x1 = −(b+ d)/(2a)
x2 = c/(ax1)

else
x1 = (−b+ d)/(2a)
x2 = c/(ax1)

This algorithm gives x1 = −97.71, x2 = −4.084× 10−2

Exact roots rounded to 4 digits: −97.71, −4.084× 10−2
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Taylor series Mean-value Th Errors in computing Comp. error Examples Measuring errors

Taylor series

Taylor series of an infinitely differentiable (real or complex) f at c

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + · · ·

=

∞∑
k=0

f (k)(c)

k!
(x− c)k

Maclaurin series c = 0

f(x) = f(0) + f ′(c)x+
f ′′(0)

2!
x2 + · · ·

=

∞∑
k=0

f (k)(0)

k!
xk
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Taylor series cont.

Assume f has n+ 1 continuous derivative in [a, b], denoted
f ∈ Cn+1[a, b]
Then for any c and x in [a, b]

f(x) =

n∑
k

f (k)(c)

k!
(x− c)k + En+1,

where

En+1 =
f (n+1)(ξ)

(n+ 1)!
(x− c)n+1 and ξ = ξ(c, x) is between c and x

Replacing x by x+ h and c by x, we obtain

f(x+ h) =

n∑
k

f (k)(x)

k!
hk + En+1,

where En+1 = f(n+1)(ξ)
(n+1)! hn+1 and ξ is between x and x+ h
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Taylor series cont.

We say the error term En+1 is of order n+ 1 and write as

En+1 =
f (n+1)(ξ)

(n+ 1)!
hn+1 = O(hn+1)

That is,
|En+1| ≤ chn+1, for some c > 0
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Taylor series cont.

Example 1. How to approximate ex for given x?

ex = 1 + x+
x2

2!
+

x3

3!
+ · · ·

Suppose we approximate using ex ≈ 1 + x+ x2

2!

Then

ex = 1 + x+
x2

2!
+ E3, where E3 =

eξ

3!
x3, ξ between 0 and x

Let x = 0.1. Then e0.1 ≈ 1.1052. The error is

E3 =
eξ

3!
x3 ⪅

1.1052

3!
0.13 ≈ 1.8420× 10−4
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Taylor series cont.

How to check our calculation?

Example 2. We can compute a more accurate value using Matlab’s exp
function
The error in our approximation is

exp(x)-(1+x+x^2/2) ≈ 1.7092× 10−4

This is within the bound 1.8420× 10−4:

1.7092× 10−4 < 1.8420× 10−4
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Taylor series cont.

Example 3. If we approximate using three terms

ex ≈ 1 + x+
x2

2!
+

x3

3!

the error is

E4 =
eξ

4!
x4 ⪅

1.1052

4!
0.14 ≈ 4.6050× 10−6

Using exp(0.1), the error is

exp(x)-(1+x+x^2/2+x^3/6) ≈ 4.2514× 10−6
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Mean-value theorem

If f ∈ C1[a, b], a < b, then

f(b) = f(a) + (b− a)f ′(ξ), for some ξ ∈ (a, b)

From which

f ′(ξ) =
f(b)− f(a)

b− a
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Errors in computing
Roundoff errors

Example 4.

• Consider computing exp(0.1)

• 0.1 binary’s representation is infinite:

0.110 = (0.0 0011 0011 · · · )2

• In floating-point arithmetic, this binary representation is rounded:
roundoff error

• The input to the exp function is not exactly 0.1 but 0.1 + ϵ, for some ϵ

• The exp function has its own error

• Then the output of exp(0.1) is rounded when converting from binary to
decimal
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Errors in computing cont.
Truncation errors

Consider

ex = 1 + x+
x2

2!
+

x3

3!
+

∞∑
k=4

xk

k!

Suppose we approximate

ex ≈ 1 + x+
x2

2!
+

x3

3!

That is we truncate the series. The resulting error is a truncation error
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Errors in computing cont.
Approximating first derivative

f(x) scalar with continuous second derivative

f(x+ h) = f(x) + f ′(x)h+
f ′′(ξ)

2
h2, ξ between x and x+ h

f ′(x)h = f(x+ h)− f(x)− f ′′(ξ)

2
h2

f ′(x) =
f(x+ h)− f(x)

h
− f ′′(ξ)

2
h

If we approximate

f ′(x) ≈ f(x+ h)− f(x)

h
the truncation error is −f ′′(ξ)

2
h

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 12/22



Taylor series Mean-value Th Errors in computing Comp. error Examples Measuring errors

Computational error

Computational error = (truncation error) + (rounding error)

Truncation error: difference between the true result and the result that
would be produced by an algorithm using exact arithmetic

Due to e.g. truncating an infinite series or replacing a derivative by finite
differences

Example 5. Replace f ′(x) by (f(x+ h)− f(x))/h From

f ′(x) =
f(x+ h)− f(x)

h
− 1

2
f ′′(ξ)h

the truncation error is − 1
2
f ′′(ξ)h
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Computational error cont.

Rounding error: difference between the result produced using
finite-precision arithmetic and exact arithmetic

Example 6. Consider evaluating

f(x+ h)− f(x)

h

In finite-precision arithmetic, we do not compute f(x+ h) exactly. Denote the
computed value by f1. Then

f1 = f(x+ h) + δ1

for some δ1. Similarly, we compute f2 and for some δ2,

f2 = f(x) + δ2

Note f(x+ h) and f(x) are the mathematically correct results, what we would
compute in infinite arithmetic

f1 and f2 are what is computed in floating-point arithmetic
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Example 6. cont.
Then we approximate f ′(x) by

f1 − f2
h

=
f(x+ h)− f(x)

h
+

δ1 − δ2
h

Ignoring the error in the subtraction and division in (f1 − f2)/h, the total
computational error is

f ′(x)− f1 − f2
h

=
f(x+ h)− f(x)

h
− 1

2
f ′′(ξ)h− f(x+ h)− f(x)

h
− δ1 − δ2

h

= −1

2
f ′′(ξ)h− δ1 − δ2

h

f ′(x) is the mathematically correct value, as if computed in infinite arithmetic
Denote by M the maximum of |f ′′(x)| for x between x and x+ h

Assume |δ1|, |δ1| ≤ ϵmach
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Example 6. cont.
Then ∣∣∣∣f ′(x)− f1 − f2

h

∣∣∣∣ = ∣∣∣∣−1

2
f ′′(ξ)h− δ1 − δ2

h

∣∣∣∣
≤

∣∣∣∣12f ′′(ξ)h

∣∣∣∣+ ∣∣∣∣δ1 − δ2
h

∣∣∣∣
≤ 1

2
Mh+

2ϵmach

h

Let g(h) = 1
2
Mh+ 2ϵmach/h. Then

g′(h) =
1

2
M − 2ϵmach

h2
= 0 when

h2 =
4ϵmach

M
, h = 2

√
ϵmach

M

g(h) is smallest when

h =
2√
M

√
ϵmach

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 16/22



Taylor series Mean-value Th Errors in computing Comp. error Examples Measuring errors

Try

clear all; close all;

x = pi/4;

h = 10.^(-16:.1:.1);

f = @(x) sin(x);

fpaccurate = cos(x);

fp = (f(x+h)-f(x))./h;

error = abs(fpaccurate - fp);

M = 1;

loglog(h, error,’.’, ’MarkerSize’, 10);

hold on;

loglog(h, 0.5*M*h+2*eps./h, ’LineWidth’,2);

xlabel(’h’); ylabel(’error’);

title("Approximaing f’(x), f(x) = sin(x), at x=pi/4");

xlim([h(1) h(end)]);

legend(’error in (f(x+h)-f(x))./h’, ’0.5*M*h+2*eps./h’)

set(gca, ’FontSize’, 12);

print("-depsc2", "deriverr.eps")
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Approximaing f'(x), f(x) = sin(x), at x=pi/4

error in (f(x+h)-f(x))./h

0.5*M*h+2*eps./h

The error is smallest at h ≈ √
ϵmach ≈ 10−8
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Examples

Example 7. Compute (3*(4/3-1)-1)*2^52 in your favourite language

exact value 0

double precision -1

single precision 536870912

Example 8. This code

#include <stdio.h>

int main() {

int i = 0, j = 0;

float f;

double d;

for (f = 0.5; f < 1.0; f += 0.1)

i++;

for (d = 0.5; d < 1.0; d += 0.1)

j++;

printf("float loop %d double loop %d \n", i, j);

}

outputs float loop 5 double loop 6
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Examples cont.

Example 9. Let ai = i · ai−1 − 1, where a0 = e− 1. Find a25

#include <stdio.h>

#include <math.h>

int main(){

int i;

a = exp(1)-1;

for (i = 1; i <= 25; i++)

a = i * a - 1;

printf("%e\n", a);

return 0;

}

Matlab

a = exp(1)-1;

for i = 1:25

a = i * a - 1;

end

fprintf(’%e\n’, a);

true value ≈ 3.993873e-02

C -2.242373e+09 clang v11.0.3, MacOS X
Matlab 4.645988e+09 R2020b
Octave -2.242373e+09
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Examples cont.

In Matlab, do doc vpa

• vpa(x)

◦ uses variable-precision floating-point arithmetic (VPA)
◦ evaluates x to ≥ d significant digits
◦ d is the value of the digits function

default default value for the number of digits is 32

• vpa(x,d) uses at least ≥ d significant digits

Example 9. cont.

clear all;

a = exp(vpa(1))-1;

for i = 1:25

a(i+1) = i * a(i) - 1;

end

fprintf(’%e \n’, a(end));

outputs 3.993873e-02
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Absolute and relative errors

Suppose y is exact result and ỹ is an approximation for y

• Absolute error |y − ỹ|
• Relative error |y − ỹ|/|y|

Example 10. Suppose y = 8.1472× 10−1 (accurate value), ỹ = 8.1483× 10−1

(approximation). Then

|y − ỹ| = 1.1000× 10−4,
|y − ỹ|
|y| = 1.3502× 10−4

Suppose y = 1.012× 1018 (accurate value), ỹ = 1.011× 1018 (approximation).
Then

|y − ỹ| = 1015,
|y − ỹ|
|y| ≈ 9.8814× 10−4 ≈ 10−3
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Linear systems

• Given an n× n nonsingular matrix A and an n-vector b solve

Ax = b

The following are equivalent

◦ A is nonsingular
◦ The determinant of A is nonzero, det(A) ̸= 0
◦ Columns (rows) are linearly independent
◦ There exists A−1 such that A−1A = AA−1 = I, where I is

the n× n identity matrix
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Linear systems cont.

• Dense system: A may have a small number of nonzeros

• Sparse system: most of the elements are zeros
See Florida Sparse Matrix Collection

• Direct methods: based on Gauss elimination

• Iterative methods: for large A

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 4/14
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Example

Ax =

 1 −1 3
1 1 0
3 −2 1

x1x2
x3

 =

113
3

 = b

Multiply first row by 1 and subtract from second row, multiply first
row by 3 and subtract from third row

A|b =

 1 −1 3 11
1 1 0 3
3 −2 1 3

 ×1 ×3
↓

↓

A|b←

 1 −1 3 11
0 2 −3 −8
0 1 −8 −30
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Example cont.

Multiply second row by 1
2 and subtract from third row

A|b←

 1 −1 3 11
0 2 −3 −8
0 1 −8 −30

 ×1
2
↓

A|b←

 1 −1 3 11
0 2 −3 −8
0 0 −6.5 −26


This is Gauss elimination, also called forward elimination

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 6/14
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Example cont.

1 −1 3
0 2 −3
0 0 −6.5

x1x2
x3

 =

a11 a12 a13
0 a22 a23
0 0 a33

x1x2
x3

 =

b1b2
b3

 11
−8
−26


x3 = b3/a33 = −26/(−6.5) = 4
x2 = (b2 − a23x3)/a22 = (−8− (−3)× 4)/2 = 2
x1 = (b1 − a12x2 − a13x3)/a11 = (11− (−1)× 2− 3× 4)/1 = 1

This is called backward substitution
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Gauss elimination
Algorithm

Algorithm 3.1 (Gauss elimination).
for k = 1 : n− 1 % for each row

for i = k + 1 : n % for each row below kth
mik = aik/akk % multiplier
% update row
for j = k + 1 : n

aij = aij −mikakj
bi = bi −mikbk % update bi

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 8/14



Linear systems Example Gauss elimination Backward substitution Total cost

Gauss elimination cont.
Cost

• We do not count the operations for updating b

• The third nested for loop executes n− k times

◦ n− k multiplications
◦ n− k additions

• The work per one iteration of the second nested for loop is
2(n− k) + 1, the 1 comes from the division

• This loop executes n− k times

• The total work for the second nested for loop is
2(n− k)2 + (n− k)

• The work for the outermost for loop is

n−1∑
k=1

[
2(n− k)2 + (n− k)

]
= 2

n−1∑
k=1

k2 +

n−1∑
k=1

k

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 9/14
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Gauss elimination cont.
Cost

Since 12 + 22 + 32 + · · ·+ n2 = n(n+ 1)(2n+ 1)/6

n−1∑
k=1

k2 = (n− 1)(n− 1 + 1)(2(n− 1) + 1)/6

= (n− 1)n(2n− 1)/6 = (n2 − n)(2n− 1)/6

= (2n3 − n2 − 2n2 + n)/6 =

= 1
3
n3 − 1

2
n2 + 1

6
n

Using the above and
∑n−1

k=1 k = (n−1)n
2 = 1

2n
2 − 1

2n,

2

n−1∑
k=1

k2 +

n−1∑
k=1

k = 2
(
1
3
n3 − 1

2
n2 + 1

6
n
)
+ 1

2
n2 − 1

2
n

= 2
3
n3 − n2 + 1

3
n+ 1

2
n2 − 1

2
n

= 2
3
n3 − 1

2
n2 − 1

6
n = 2

3
n3 +O(n2)

Total work for Gauss elimination is 2
3n

3 +O(n2)
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Backward substitution

• After GE, we have
a1,1 a1,2 a1,3 · · · a1,n

a2,2 a2,3 · · · a2,n
a3,3 · · · a3,n

...
an−1,n−1 an−1,n

an,n




x1

x2

x3

...
xn−1

xn

 =


b1
b2
b3
...

bn−1

bn


• xn = bn/an,n

• an−1,n−1xn−1 + an−1,nxn = bn−1

xn−1 = (bn−1 − an−1,nxn)/an−1,n−1

• xk =
(
bk −

∑n
j=k+1 ak,jxj

)
/ak,k
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Backward substitution
Algorithm

Algorithm 4.1 (Backward substitution).
for k = n : −1 : 1

xk =
(
bk −

∑n
j=k+1 ak,jxj

)
/ak,k

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 12/14
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Backward substitution
Cost

• The work per iteration is

◦ n− k multiplications
◦ (n− k − 1) + 1 additions
◦ 1 division
◦ total 2(n− k) + 1 operations

• Total work is

n∑
k=1

(2(n− k) + 1) = 2

n∑
k=1

(n− k) +

n∑
k=1

1

= 2

n−1∑
k=1

k + n = 2
n(n− 1)

2
+ n

= n2 − n+ n = n2

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 13/14



Linear systems Example Gauss elimination Backward substitution Total cost

Total cost

• GE: 2
3n

3 − 1
2n

2 − 1
6n

• Backward substitution: n2

• Total cost is

2
3n

3 + 1
2n

2 − 1
6n = 2

3n
3 +O(n2) = O(n3)
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Example 1 GEPP Example 2

Example 1. Consider

10−5x1 + x2 = 1

2x1 + x2 = 2

The solution is

x∗
1 ≈ 5.000025000125 · 10−1 ≈ 0.5

x∗
2 ≈ 9.999949999750 · 10−1 ≈ 1

Solve by Gauss elimination in t = 5 digit decimal floating-point

arithmetic
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Example 1. cont.

• Eliminate with the first row, also called pivot row

• 10−5 is the pivot

• Multiply the first row by 2/10−5 = 2 · 105 :

2x1 + 2 · 105x2 = 2 · 105

and subtract from the second row:

(1− 2 · 105)x2 = 2− 2 · 105

• 1− 2 · 105 and 2− 2 · 105 round to −2.0000 · 105

• The second equation becomes

−2.0000 · 105x2 = −2.0000 · 105

from which we find x̃2 = 1.0000

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 4/12
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Example 1. cont.

• Using 10−5x1 + x2 = 1, compute

x̃1 =
1− x̃2

10−5
=

0

10−5
= 0,

which is quite inaccurate

• The error in x̃2 is

x̃2 − x∗
2 ≈ 1− 9.99994999975 · 10−1 ≈ 5 · 10−6

• Hence
x̃2 ≈ x∗

2 + 5 · 10−6
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Example 1. cont.

• Consider x̃1. We have

x̃1 =
1− x̃2

10−5
≈ 1− (x∗

2 + 5 · 10−6)

10−5

≈ 1− x∗
2

10−5︸ ︷︷ ︸
x∗
1

− 5 · 10−6︸ ︷︷ ︸
error in x̃2

· 1

10−5︸ ︷︷ ︸
1/pivot

= x∗
1 −(error in x̃2) ·

1

pivot︸ ︷︷ ︸
error in x̃1

= x∗
1 − 0.5

• The error in x̃2 is multiplied by 1/pivot = 105

The error in x̃1 is −0.5
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Example 1. cont.

• Avoid small pivots. Swap the equations

2x1 + x2 = 2

10−5x1 + x2 = 1

• Multiply the first row by 10−5/2:

10−5x1 +
10−5

2
x2 = 10−5

and subtract from the second row(
1− 10−5

2

)
x2 = 1− 10−5

• 1− 10−5/2 and 1− 10−5 round to 1
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Example 1. cont.

• The second equation is x2 = 1, find x̃2 = 1

• Using 2x1 + x2 = 2, x̃1 = 2−x̃2

2 = 0.5

• Using x̃2 ≈ x∗
2 + 5 · 10−6

x̃1 =
2− x̃2

2
≈ 2− (x∗

2 + 5 · 10−6)

2

=
2− x∗

2

2︸ ︷︷ ︸
x∗
1

− 5 · 10−6︸ ︷︷ ︸
error in x̃2

· 1

2︸︷︷︸
1/pivot

= x∗
1 −(error in x̃2) ·

1

pivot︸ ︷︷ ︸
error in x̃1

= x∗
1 − 2.5 · 10−6
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GEPP

GEPP

• Eliminate with the row with the largest (in magnitude) entry
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Example 2. Solve

x1 + x2 + x3 = 1

x1 + 1.0001x2 + 2x3 = 2

x1 + 2x2 + 2x3 = 3

with partial pivoting and t = 5 decimal arithmetic

Can chose any row to eliminate x1. Use first row:

x1 + x2 + x3 = 1

0.0001x2 + x3 = 1

x2 + x3 = 2

Swap rows 2 and 3 and eliminate with second row

x1 + x2 + x3 = 1

x2 + x3 = 2

0.0001x2 + x3 = 1

→
x1 + x2 + x3 = 1

x2 + x3 = 2

(1− 0.0001)x3 = 1− 0.0002
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Example 2. cont. Using Matlab’s backslash operator, A\b where

A =

1 1 1
1 1.0001 2
1 2 2

 , b =

12
3


we obtain

[−1, 1.000100010001, 9.99899989999 · 10−1]

In 5-digit arithmetic,

0.9999x3 = 0.9998

x3 = 9.9990 · 10−1 error ≈ 10−8

x2 = 2− x3 = 1.0001 error ≈ −10−8

x1 = 1− x2 − x3 = −1 error ≈ 0

The errors in x1, x2, x3 are (in absolute value) ≈ 0, 10−8, 10−8,

respectively.
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Example 1 GEPP Example 2

Example 2. cont.

If we eliminate with the second row, we multiply it by 104

x1 + x2 + x3 = 1

0.0001x2 + x3 = 1

x2 + x3 = 2

→
x1 + x2 + x3 = 1

0.0001x2 + x3 = 1

−9.9990 · 103x3 = −9.9980 · 103

Then

x3 = 9.9990 · 10−1 error in x3: ≈ 10−8

x2 =
1− x3

0.0001
= (1− x3) · 104 = 1.0000 −(error in x3)·104 ≈ −10−4

x1 = 1− x2 − x3 = −9.9990 · 10−1 error ≈ 10−4 − 10−8 ≈ 10−4

The errors now are (in absolute value) ≈ 10−4, 10−4, 10−8

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 12/12



LU Decomposition
CS/SE 4X03

Ned Nedialkov

McMaster University

October 2, 2023



Outline

LU decomposition

Example

Small pivots

Partial pivoting

lu(A)



LU decomposition Example Small pivots Partial pivoting lu(A)

LU decomposition

• Decompose A as A = LU , where

◦ L is unit lower-triangular
1’s on the main diagonal, 0’s above it

◦ U is upper-triangular
0’s below the main diagonal

• Consider solving Ax = b. From

Ax = LUx = b

L (Ux)︸ ︷︷ ︸
y

= b

we can solve first Ly = b for y and then Ux = y for x
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LU decomposition Example Small pivots Partial pivoting lu(A)

LU decomposition cont.

A is n× n

• Gauss elimination takes O(n3) arithmetic operations

• LU decomposition takes O(n3) arithmetic operations

• Solving each of Ly = b and Ux = y takes O(n2) arithmetic
operations

• Suppose we need to solve m systems Ax = b(i), i = 1, . . . ,m
A is the same, the right-hand side changes

• If we solve them with GE O(mn3)

• Do LU decomposition first O(n3)

• Solve Ly = b(i), Ux = y, for i = 1 : m O(mn2)
Total LU+triangular solves O(n3 +mn2)
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LU decomposition Example Small pivots Partial pivoting lu(A)

Example of LU decomposition

A =

[
1 −1 3
1 1 0
3 −2 1

] ×1 ×3
↓

↓

• multipliers l2,1 = 1, l3,1 = 3

M1A =

 1 0 0
−1 1 0
−3 0 1

1 −1 3
1 1 0
3 −2 1

 =

 1 −1 3
0 2 −3
0 1 −8

 = A(1)

• multiplier l3,2 =
1
2
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M2A
(1) =

1 0 0
0 1 0
0 −1

2 1

 1 −1 3
0 2 −3
0 1 −8


=

 1 −1 3
0 2 −3
0 0 −6.5

 = A(2) = U

We have

M2A
(1) = (M2M1)A = U

A = (M−1
1 M−1

2 )︸ ︷︷ ︸
L

U

To compute M−1
1 , M−1

2 flip the signs of nonzero entries below the
main diagonal
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Then

L = M−1
1 M−1

2 =

1 0 0
1 1 0
3 0 1

1 0 0
0 1 0
0 1

2 1

 =

1 0 0
1 1 0
3 1

2 1


1 0 0
1 1 0
3 1

2 1


︸ ︷︷ ︸

L

1 −1 3
0 2 −3
0 0 −6.5


︸ ︷︷ ︸

U

=

1 −1 3
1 1 0
3 −2 1


︸ ︷︷ ︸

A
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LU decomposition Example Small pivots Partial pivoting lu(A)

Small pivots

• The matrix

A =

[
0 1
1 0

]
is nonsingular, but does not have LU factorization
Gauss elimination breaks down on this matrix since the
multiplier is 1/0

•

A =

[
1 1
1 1

]
is singular and has the LU factorization

A =

[
1 1
1 1

]
=

[
1 0
1 1

] [
1 1
0 0

]
= LU
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Consider

A =

[
ϵ 1
1 1

]

• Multiply the first row by 1/ϵ and subtract from the second

L =

[
1 0
1
ϵ 1

]
, U =

[
ϵ 1
0 1− 1

ϵ

]
• When ϵ small, in floating-point arithmetic,

U ≈
[
ϵ 1
0 −1

ϵ

]
as 1− 1

ϵ ≈ −1
ϵ . Take e.g. ϵ = 10−16 in double precision
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LU ≈
[
1 0
1
ϵ 1

] [
ϵ 1
0 −1

ϵ

]
=

[
ϵ 1
1 0

]
̸=

[
ϵ 1
1 1

]
= A

• Loss of accuracy
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A =

[
ϵ 1
1 1

]

• Permute the rows

A =

[
1 1
ϵ 1

]
• Multiple first row by ϵ and subtract from second row[

1 1
0 1− ϵ

]

L =

[
1 0
ϵ 1

]
, U =

[
1 1
0 1− ϵ

]
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• Permuting the rows of A is PA, where P is permutation
matrix

PA =

[
0 1
1 0

] [
ϵ 1
1 1

]
=

[
1 1
ϵ 1

]
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Partial pivoting

• If a pivot is small, then 1/(pivot) is large

• Roundoff errors are multiplied

Partial pivoting

• at step k = 1 : n− 1 chose the row q for which |aqk| is the
largest

• eliminate with row q
now we divide by the largest element in column k
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Matlab’s lu

[L,U,P] = lu(A) returns L unit lower triangular, U upper
triangular, and P a permutation matrix such that A = P’*L*U.

That is A = P TLU , PA = LU

[L,U] = lu(A) returns permuted lower triangular L and upper
triangular U such that A = L*U.
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Example 1.

Find the LU decomposition of 4 5 6
1 2 3
8 2 3


To eliminate with the first row, the multipliers are 1/4 and 2. We have4 5 6

0 0.75 1.5
0 −8 −9


To eliminate with the second row, the multiplier is −8/0.75. We have4 5 6

0 0.75 1.5
0 0 7
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Example 1. cont.

Then 4 5 6
1 2 3
8 2 3

 =

 1 0 0
1/4 1 0
2 −8/0.75 1

4 5 6
0 0.75 1.5
0 0 7
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Example 2.

Using partial pivoting, find the LU decomposition of4 5 6
1 2 3
8 2 3


We pivot with the third row. To swap the first and third rows,0 0 1

0 1 0
1 0 0


︸ ︷︷ ︸

P1

4 5 6
1 2 3
8 2 3

 =

8 2 3
1 2 3
4 5 6



To eliminate with the first row, the multipliers are 1/8 and 1/2. We have8 2 3
0 1.75 21/8
0 4 4.5
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Example 2. cont.

Now we need to swap rows 2 and 3. This is the same as multiplying by a
permutation matrix1 0 0

0 0 1
0 1 0


︸ ︷︷ ︸

P2

8 2 3
0 1.75 21/8
0 4 4.5

 =

8 2 3
0 4 4.5
0 1.75 21/8



Now the multiplier is 1.75/4 and we have8 2 3
0 4 4.5
0 0 0.6562
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Example 2. cont.

The total permutation is

P = P2P1 =

1 0 0
0 0 1
0 1 0

0 0 1
0 1 0
1 0 0

 =

0 0 1
1 0 0
0 1 0


Then

PA =

0 0 1
1 0 0
0 1 0

4 5 6
1 2 3
8 2 3

 =

 1 0 0
1/8 1 0
1/2 1.75/4 1

8 2 3
0 4 4.5
0 0 0.6562

 = LU

Check this result with Matlab’s lu.

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 19/19



Errors in Linear Systems Solving
CS/SE 4X03

Ned Nedialkov

McMaster University

October 2, 2023



Outline

Norms

Residual

Relative solution error



Norms Residual Relative solution error

Norms
Vector norms

Norm is a function ∥ · ∥ that satisfies for any x ∈ Rn

1. ∥x∥ ≥ 0, and ∥x∥ = 0 iff x = 0, the zero vector

2. ∥αx∥ = |α|∥x∥, α ∈ R
3. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for any x, y ∈ Rn

lp norms

∥x∥p =

(
n∑

i=1

|xi|p
)1/p

, 1 ≤ p ≤ ∞
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Norms Residual Relative solution error

Norms cont.

• p = 1, one norm

∥x∥1 =
n∑

i=1

|xi|

• p = ∞, infinity or max norm

∥x∥∞ = max
i=1,...,n

|xi|

• p = 2, two or Euclidean norm

∥x∥2 =

√√√√ n∑
i=1

x2i
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Norms cont.
Matrix norms

• A ∈ Rm×n, ∥ · ∥ is a vector norm

• Matrix norm induced by this vector norm

∥A∥ = max
x ̸=0

∥Ax∥
∥x∥

= max
∥x∥=1

∥Ax∥

• Properties

1. ∥A∥ ≥ 0, and ∥A∥ = 0 iff A = 0, the zero matrix
2. ∥αA∥ = |α|∥A∥, α ∈ R
3. ∥A+B∥ = ∥A∥+ ∥B∥, for any A,B ∈ Rm×n

4. ∥AB∥ ≤ ∥A∥ · ∥B∥, for any A ∈ Rm×n and B ∈ Rn×p
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• Infinity norm, max row sum

∥A∥∞ = max
i

n∑
j=1

|aij |

• One norm, max column sum

∥A∥1 = max
j

n∑
i=1

|aij |

• Two norm

∥A∥2 = max
i

√
λi(ATA),

where λi(A
TA) is the ith eigenvalue of ATA
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Residual

Consider Ax = b

• Let x̃ be the computed solution, and let x be the exact
solution

• Relative error in the solution is

∥x− x̃∥
∥x∥

• Residual is

r = b−Ax̃

r = 0 ⇐⇒ b−Ax̃ = 0 ⇐⇒ x̃ = x

• In practice r ̸= 0
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Norms Residual Relative solution error

• Ax = b and αAx = αb have the same solution
α is a scalar

• rα = αb− αAx̃ = α(b−Ax̃) can be arbitrarily large

• residual can be arbitrarily large
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Residual cont.

Example 1. Consider

A =

[
1.2969 0.8648
0.2161 0.1441

]
, b =

[
0.8642
0.1440

]
and the approximate solution x̃ = [0.9911,−0.487]T

• The residual is small:

r = b−Ax̃ ≈ [10−8,−10−8]T , ∥r∥∞ ≈ 10−8

• The exact solution is x = [2, −2]T . The error in x̃ is large:

x− x̃ = [1.513,−1.0089], ∥x− x̃∥∞ = 1.513

• Small residual does not imply small solution error
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Relative solution error

Given x̃, how large is

∥x− x̃∥
∥x∥

(1)

Using r = b−Ax̃ = Ax−Ax̃ = A(x− x̃),

x− x̃ = A−1r

∥x− x̃∥ = ∥A−1r∥ ≤ ∥A−1∥∥r∥ (2)

Using b = Ax, ∥b∥ = ∥Ax∥ ≤ ∥A∥∥x∥, and

∥x∥ ≥ ∥b∥
∥A∥

(3)
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The condition number of A is

cond(A) = ∥A∥ · ∥A−1∥

Using (2–3) in (1),

∥x− x̃∥
∥x∥

≤ ∥A−1∥∥r∥
∥b∥
∥A∥

= ∥A−1∥∥A∥∥r∥
∥b∥

= cond(A)
∥r∥
∥b∥

∥x− x̃∥
∥x∥

≤ cond(A)
∥r∥
∥b∥

• If cond(A) is not large and ∥r∥/∥b∥ is small then small
relative error

• As a rule of thumb, if cond(A) ≈ 10k, then about k decimal
digits are lost when solving Ax = b.
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• In our example

A−1 = 108
[
0.1441 −0.8648
−0.2161 1.2869

]
• In the two norm, cond(A) ≈ 2.4973 · 108

cond(A)
∥r∥
∥b∥

≈ 4.0311

∥x− x̃∥
∥x∥

≈ 0.6429
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The problem Representation Basis functions Monomial Uniqueness Lagrange

The problem

Given data points
{
(xi, yi)

}n

i=0
find a function v(x) that fits the

data such that
v(xi) = yi, i = 0, . . . , n

Some applications

• Approximating functions. For a complicated function f(x)
find a simpler v(x) that approximates f(x). Usually it is less
expensive to work with v(x) than with f(x)

• We can use v(x) to approximate f(x) at some
x∗ ̸= x0, x1, . . . xn

• We may need derivatives or an integral of f , and we can
differentiate/integrate v
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Representation

v(x) =

n∑
j=0

cjϕj(x) = c0ϕ0(x) + c1ϕ1(x) + · · ·+ cnϕn(x)

• The cj are unknown coefficients

• The ϕj are given basis functions
They must be linearly independent
If v(x) = 0 for all x then cj = 0 for all j
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Representation cont.

From

v(xi) = c0ϕ0(xi) + c1ϕ1(xi) + · · ·+ cnϕn(xi) = yi, i = 0, . . . , n

we have the linear system of (n+ 1) equations for the ci
ϕ0(x0) ϕ1(x0) · · · ϕn(x0)
ϕ0(x1) ϕ1(x1) · · · ϕn(x1)

...
...

...
ϕ0(xn) ϕ1(xn) · · · ϕn(xn)



c0
c1
...
cn

 =


y0
y1
...
yn
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Basis functions

• Monomial basis

ϕj(x) = xj , j = 0, 1, . . . , n

v(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n

• Trigonometric functions, e.g.

ϕj(x) = cos(jx), j = 0, 1, . . . , n

Useful in signal processing, for wave and other periodic
behavior

• Piecewise interpolation: linear, quadratic, cubic, splines
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Monomial interpolation

The polynomial is of the form pn(x) = c0+ c1x+ c2x
2+ · · ·+ cnx

n

Example 1. Interpolate

xi 1 2 4
yi 1 3 3

using a polynomial of degree 2. We seek the coefficients of
p2(x) = c0 + c1x+ c2x

2

From

p2(1) = c0 + c1 + 1c2 = 1

p2(2) = c0 + 2c1 + 4c2 = 3

p2(4) = c0 + 4c1 + 16c2 = 3

Solve this linear system to obtain

p2(x) = − 7
3 + 4x− 2

3x
2
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Uniqueness of the interpolating polynomial

From
pn(xi) = c0 + c1xi + c2x

2
i + · · ·+ cnx

n
i = yi

we have the linear system
1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
...

...
1 xn x2n · · · xnn



c0
c1
...
cn

 =


y0
y1
...
yn



• The coefficient matrix is a Vandermonde matrix
Denote it by X

• det(X) =
∏n−1

i=0

[∏n
j=i+1(xj − xi)

]
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Uniqueness of the interpolating polynomial cont.

If all xi are distinct then

• det(X) ̸= 0

• X is nonsingular

• this system has a unique solution

• there is a unique polynomial of degree ≤ n that interpolates
the data

However,

• this system can be poorly conditioned

• work is O(n3)

• difficult to add new points
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Lagrange interpolation

• Lagrange basis functions

Lj(xi) =

{
0 if i ̸= j

1 if i = j

• Lagrange polynomial pn(x) =
∑n

j=0 yjLj(x)

Then

pn(xi) =

n∑
j=0

yjLj(xi)

=

i−1∑
j=0

yj Lj(xi)︸ ︷︷ ︸
=0

+yi Li(xi)︸ ︷︷ ︸
=1

+

n∑
j=i+1

yj Lj(xi)︸ ︷︷ ︸
=0

= yi
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Lagrange interpolation cont.

Lj(x) =
(x− x0)(x− x1) · · · (x− xj−1)(x− xj+1) · · · (x− xn)

(xj − x0)(xj − x1) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xn)

=

n∏
i=0,i ̸=j

x− xi
xj − xi

Example: write the Lagrange polynomial for (1, 1), (2, 3), (4, 3)
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Basis Computing coefficients Divided differences Example

Basis

• Basis functions are

ϕj(x) =

j−1∏
i=0

(x−xi) = (x−x0)(x−x1) · · · (x−xj−1), j = 0 : n

• Example: for a cubic interpolant, we have

ϕ0(x) = 1

ϕ1(x) = x− x0

ϕ2(x) = (x− x0)(x− x1)

ϕ3(x) = (x− x0)(x− x1)(x− x2)
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Computing coefficients

Let yi = f(xi). From

pn(x) = c0 + c1(x− x0) + c2(x− x0)(x− x1) + · · ·
+ cn(x− x0)(x− x1) · · · (x− xn−1)

pn(xi) = c0 + c1(xi − x0) + c2(xi − x0)(xi − x1) + · · ·
+ cn(xi − x0)(xi − x1) · · · (xi − xn−1) = f(xi)

at x = x0, we have

pn(x0) = c0 + c1(x0 − x0) + c2(x0 − x0)(x0 − x1) + · · ·
+ cn(x0 − x0)(x0 − x1) · · · (x0 − xn−1) = f(x0)

c0 = f(x0)
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Computing coefficients

At x1,

pn(x1) = c0 + c1(x1 − x0) + c2(x1 − x0)(x1 − x1) + · · ·
+ cn(x1 − x0)(x1 − x1) · · · (x1 − xn−1) = f(x1)

c0 + c1(x1 − x0) = f(x1)

c1 =
f(x1)−c0
x1−x0

= f(x1)−f(x0)
x1−x0
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Computing coefficients

At x2,

pn(x2) = c0 + c1(x2 − x0) + c2(x2 − x0)(x2 − x1)

+ c3(x2 − x0)(x2 − x1)(x2 − x2) + · · ·
+ cn(x1 − x0)(x1 − x1) · · · (x1 − xn−1) = f(x1)

Then

c0 + c1(x2 − x0) + c2(x2 − x0)(x2 − x1) = f(x2)

c2 =
f(x2)−c0−c1(x2−x0)

(x2−x0)(x2−x1)
=

f(x2)−f(x1)
x2−x1

−f(x1)−f(x0)
x1−x0

x2−x0

Exercise: verify the last equality
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Divided differences

Given x0, x1, . . . , xn, where 0 ≤ i < j ≤ n, define

f [xi] = f(xi)

f [xi, . . . , xj ] =
f [xi+1,...,xj ]−f [xi,...,xj−1]

xj−xi

f [xi, . . . , xj ] are divided differences over xi, . . . , xj
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Basis Computing coefficients Divided differences Example

Divided differences

c0 = f(x0) = f [x0]

c1 =
f(x1)−f(x0)

x1−x0
= f [x0, x1]

c2 =
f(x2)−f(x1)

x2−x1
−f(x1)−f(x0)

x1−x0
x2−x0

= f [x1,x2]−f [x0,x1]
x2−x0

= f [x0, x1, x2]

...

cn = f [x1,...,xn]−f [x0,...,xn−1]
xn−x0

= f [x0, x1, . . . , xn]

pn(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1)

+f [x0, x1, . . . , xn](x− x0)(x− x1) · · · (x− xn−1)
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Basis Computing coefficients Divided differences Example

Example

i xi f [xi] f [·, ·] f [·, ·, ·]
0 1 1
1 2 3 2
2 4 3 0 −2

3

p2(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1)

= 1 + 2(x− 1)− 2
3(x− 1)(x− 2)
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Basis Computing coefficients Divided differences Example

Example

Suppose we add a new point (3, 5)

Then

i xi f [xi] f [·, ·] f [·, ·, ·] f [·, ·, ·, ·]
0 1 1
1 2 3 2
2 4 3 0 −2

3

3 3 5 −2 −2 −2
3

p3(x) = 1 + 2(x− 1)− 2
3(x− 1)(x− 2)

− 2
3(x− 1)(x− 2)(x− 4)
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Polynomial interpolation error Chebyshev nodes

Polynomial interpolation error

• Assume

◦ Polynomial pn of degree ≤ n interpolates f at n+ 1 distinct
points x0, x1, . . . , xn, where xi ∈ [a, b]

◦ f (n+1) is continuous on [a, b]

• Then, for each x ∈ [a, b], there is a ξ = ξ(x) ∈ (a, b) such that

f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!

n∏
i=0

(x− xi)
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Polynomial interpolation error Chebyshev nodes

Polynomial interpolation error cont.

• Let M = maxa≤t≤b |f (n+1)(t)|
Then

|f(x)− pn(x)| ≤
M

(n+ 1)!

n∏
i=0

|x− xi|

• Let h = (b− a)/n and let xi = a+ ih for i = 0, 1, . . . , n
Then

|f(x)− pn(x)| ≤
M

4(n+ 1)
hn+1
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Polynomial interpolation error Chebyshev nodes

Polynomial interpolation error cont.

Example 1. Consider cos(x) and assume values f(xi) = cos(xi) are
given at 11 equally spaced points in [a, b] = [−π, π]. What is the error in
the interpolating polynomial?

Here n = 10 and h = (b− a)/n = 2π/10.
M = max−π≤t≤π | cos(n+1)(t)| = 1.

Then

|f(x)− cos(x)| ≤ M

4(n+ 1)
hn+1 =

1

4(11)
(2π/10)11 ≈ 1.3694× 10−4
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Polynomial interpolation error Chebyshev nodes

Chebyshev nodes

• Suppose f(xi) is given at n+ 1 distinct points x0, x1, . . . , xn
in [a, b] and pn(x) of degree ≤ n interpolates f at these points

• We have for the error

max
x∈[a,b]

|f(x)− pn(x)| ≤
M

(n+ 1)!
max
s∈[a,b]

∣∣∣∣∣
n∏

i=0

(s− xi)

∣∣∣∣∣
where M = maxt∈[a,b] |f (n+1)(t)|

• How to chose the xi so

max
s∈[a,b]

∣∣∣∣∣
n∏

i=0

(s− xi)

∣∣∣∣∣
is minimized?
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Chebyshev nodes cont.

• Chebyshev nodes on [−1, 1]:

xi = cos

(
2i+ 1

2n+ 2
π

)
, i = 0, 1, . . . , n

• Min-max property: over all possible xi they minimize
maxs∈[−1,1] |(s− x0)(s− x1) · · · (s− xn)|

min
x0,x1,...,xn

max
s∈[−1,1]

|(s− x0)(s− x1) · · · (s− xn)| = 2−n

• Error bound using Chebyshev nodes in [−1, 1]:

max
x∈[−1,1]

|f(x)− pn(x)| ≤
M

2n(n+ 1)!

M = maxt∈[−1,1] |f (n+1)(t)|
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Polynomial interpolation error Chebyshev nodes

Chebyshev nodes cont.

• For a general [a, b],

xi = 0.5(a+ b) + 0.5(b− a) cos

(
2i+ 1

2n+ 2
π

)
, i = 0, 1, . . . , n

Example 2. In the previous example, if we chose Chebyshev nodes,

|f(x)− cos(x)| ≤ M

2n(n+ 1)!
=

1

210(10 + 1)!
≈ 2.4465× 10−11
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The problem Derivation Trapezoidal rule Error Midpoint rule Error Simpson’s rule

The problem

• Approximate numerically the integral

If =

∫ b

a
f(x)dx

• Closed form may not exist, e.g.
∫ b
a e−x2

dx, or may be difficult
to compute

• The integrand f(x) may be known only at certain points
obtained via sampling (e.g. embedded applications)
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The problem Derivation Trapezoidal rule Error Midpoint rule Error Simpson’s rule

Derivation

If =

∫ b

a
f(x)dx ≈

n∑
j=0

ajf(xj)

• The sum is called a quadrature rule

• The aj are weights

• How to find them?
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Derivation cont.

• Let x0, . . . , xn be distinct points in [a, b]

• Let pn(x) be the interpolating polynomial for f(x) through
these points

•
∫ b
a f(x)dx ≈

∫ b
a pn(x)dx

• From the Lagrange form pn(x) =
∑n

j=0 f(xj)Lj(x),∫ b

a
f(x)dx ≈

∫ b

a
pn(x)dx =

∫ b

a

n∑
j=0

f(xj)Lj(x)dx

=

n∑
j=0

f(xj)

∫ b

a
Lj(x)dx︸ ︷︷ ︸
aj

• aj =
∫ b
a Lj(x)dx
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Trapezoidal rule

Let n = 1. Then x0 = a and x1 = b and

L0(x) =
x− x1

x0 − x1
=

x− b

a− b
, L1(x) =

x− x0

x1 − x0
=

x− a

b− a

f(x) ≈ p1(x) = f(x0)L0(x) + f(x1)L1(x)

= f(a)L0(x) + f(b)L1(x)

Integrating

If =

∫ b

a

f(x)dx ≈ f(a)

∫ b

a

L0(x)dx︸ ︷︷ ︸
a0

+f(b)

∫ b

a

L1(x)dx︸ ︷︷ ︸
a1

= f(a)

∫ b

a

x− b

a− b
dx+ f(b)

∫ b

a

x− a

b− a
dx

=
b− a

2
[f(a) + f(b)]
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Trapezoidal rule cont.

If ≈ Itrap =
b− a

2

[
f(a) + f(b)

]
Example 1.

• Approximate
∫ 1

0
exdx = e− 1 = 1.7182 . . . using the trapezoidal

rule:

Itrap =
1

2
[f(0) + f(1)] = 0.5(1 + e) = 1.8591 · · ·

• Approximate
∫ 0.1

0
exdx = e0.1 − 1 = 0.10517 · · · using the

trapezoidal rule:

Itrap =
0.1

2
[f(0) + f(0.1)] = 0.05

(
1 + e0.1

)
= 0.10525 · · ·
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Errror of trapezoidal rule

In the trapezoidal rule, f(x) is approximated by linear interpolation

p1(x) = f(a)
x− b

a− b
+ f(b)

x− a

b− a

The error is

f(x)− p1(x) =
1
2f

′′(ξ(x))(x− a)(x− b)

Then∫ b

a
(f(x)− p1(x))dx =

∫ b

a
f(x)dx− b− a

2
[f(a) + f(b)]

=
1

2

∫ b

a
f ′′(ξ(x))(x− a)(x− b)dx
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The problem Derivation Trapezoidal rule Error Midpoint rule Error Simpson’s rule

Errror of trapezoidal rule cont.

(x− a)(x− b) ≤ 0 does not change sign on [a, b]

From the Mean-Value Theorem for integrals, there exists η ∈ (a, b)
such that∫ b

a
f ′′(ξ(x))(x− a)(x− b)dx = f ′′(η)

∫ b

a
(x− a)(x− b)dx

Using
∫ b
a (x− a)(x− b)dx = −(b− a)3/6, the error in the

trapezoidal rule is

If − Itrap = −f ′′(η)

12
(b− a)3
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The problem Derivation Trapezoidal rule Error Midpoint rule Error Simpson’s rule

Midpoint rule

If ≈ Imid = (b− a)f

(
a+ b

2

)

Example 2.

• Approximate
∫ 1

0
exdx = e− 1 ≈ 1.7182 · · · using the midpoint rule:

Imid = (1− 0)f(0.5) = e0.5 = 1.6487 · · ·

• Approximate
∫ 0.1

0
exdx = e0.1 − 1 ≈ 0.10517 · · · using the midpoint

rule:
Imid = (0.1− 0)f(0.05) = 0.1e0.05 = 0.10512 · · ·
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The problem Derivation Trapezoidal rule Error Midpoint rule Error Simpson’s rule

Error of midpoint rule

Let m = (a+ b)/2. Expand f in Taylor series

f(x) = f(m) + f ′(m)(x−m) + 1
2f

′′(ξ(x))(x−m)2

Then

If =

∫ b

a

f(x) = (b− a)f(m)︸ ︷︷ ︸
Imid

+
1

2

∫ b

a

f ′′(ξ(x))(x−m)2dx

Since (x−m)2 does not change sign, there exists η ∈ (a, b) such that

1

2

∫ b

a

f ′′(ξ(x))(x−m)2dx =
1

2
f ′′(η)

∫ b

a

(x−m)2dx =
f ′′(η)

24
(b− a)3

Then

If − Imid =
f ′′(η)

24
(b− a)3
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The problem Derivation Trapezoidal rule Error Midpoint rule Error Simpson’s rule

Simpson’s rule

Let n = 2, and x0 = a, x1 = (a+ b)/2, x2 = b

Simpson’s rule is obtained from integrating the second order polynomial

p2(x) = f(x0)L0(x) + f(x1)L1(x) + f(x2)L2(x)

= f(a)L0(x) + f((a+ b)/2)L1(x) + f(b)L2(x)

If ≈ ISimpson =
b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
The error is

If − ISimpson = −f (4)(ξ)

90

(
b− a

2

)5

, ξ ∈ (a, b)
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The problem Derivation Trapezoidal rule Error Midpoint rule Error Simpson’s rule

Simpson’s rule cont.

Example 3. Approximate
∫ 1

0
exdx = e− 1 ≈ 1.71828 · · · using Simpson’s

rule:

ISimpson =
1

6
[f(0) + 4f (0.5) + f(1)] =

1

6
(1 + 4e0.5 + e)

= 1.71886 · · ·
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Composite trapezoidal rule Error Composite Simpson & midpoint rules

How to increase the accuracy of a rule

• We can increase the degree of the polynomial, but the error
might be large

• Apply a basic rule over small subintervals

◦ subdivide [a, b] into r subintervals
◦ h = b−a

r length of each subinterval
◦ ti = a+ ih, i = 0, 1, . . . , r

t0 = a, tr = b ∫ b

a

f(x)dx =

r∑
i=1

∫ ti

ti−1

f(x)dx
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Composite trapezoidal rule Error Composite Simpson & midpoint rules

Composite trapezoidal rule

From the basic rule on [ti−1, ti], i = 1, . . . , r∫ ti

ti−1

f(x)dx ≈ ti − ti−1

2
[f(ti−1) + f(ti)] =

h

2
[f(ti−1) + f(ti)]

we derive ∫ b

a

f(x)dx =

r∑
i=1

∫ ti

ti−1

f(x)dx ≈ h

2

r∑
i=1

[f(ti−1) + f(ti)]

=
h

2

(
r∑

i=1

f(ti−1) +
r∑

i=1

f(ti)

)

=
h

2
(f(t0) + f(t1) + · · ·+ f(tr−1))

+
h

2
( f(t1) + · · ·+ f(tr−1) + f(tr))

=
h

2
[f(a) + f(b)] + h

r−1∑
i=1

f(ti)
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Error of composite trapezoidal rule

From ∫ ti

ti−1

f(x)dx =
h

2
[f(ti−1) + f(ti)]−

f ′′(ηi)

12
h3

we have ∫ b

a

f(x)dx =

r∑
i=1

h

2
[f(ti−1) + f(ti)]︸ ︷︷ ︸
composite

−
r∑

i=1

f ′′(ηi)

12
h3

︸ ︷︷ ︸
error

Assuming f ′′(x) continuous on [a, b],

min
x∈[a,b]

f ′′(x) ≤ f ′′(ηi) ≤ max
x∈[a,b]

f ′′(x)

Then

min
x∈[a,b]

f ′′(x) ≤ 1

r

r∑
i=1

f ′′(ηi) ≤ max
x∈[a,b]

f ′′(x)
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Error of composite trapezoidal rule cont.

From the Intermediate Value Theorem, there exists µ, such that

f ′′(µ) =
1

r

r∑
i=1

f ′′(ηi)

Then the error is

−
r∑

i=1

f ′′(ηi)

12
h3 = − 1

12

[
1

r

r∑
i=1

f ′′(ηi)

]
r · h · h2

= −f ′′(µ)

12
(b− a)h2,

h = (b− a)/r, and r · h = b− a
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Composite Simpson & midpoint rules

Simpson:

∫ b

a

f(x)dx ≈ h

3

f(a) + 2

r/2−1∑
i=1

f(t2i) + 4

r/2∑
i=1

f(t2i−1) + f(b)


Error

−f (4)(ζ)

180
(b− a)h4

Midpoint: ∫ b

a

f(x)dx ≈ h

r∑
i=1

f (a+ (i− 1/2)h)

Error
f ′′(ξ)

24
(b− a)h2
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Formulation Linear fit Example Overdetermined systems Normal equations

Formulation

In linear least squares, we have n+ 1 basis functions and m+ 1
data points (xk, yk), k = 1, . . . ,m, where m > n

v(x) =

n∑
j=0

cjϕj(x), v(xk) ≈ yk, k = 0, . . . ,m

Find the cj such that the sum

m∑
k=0

(v(xk)− yk)
2 =

m∑
k=0

 n∑
j=0

cjϕj(xk)− yk

2

is minimized
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Least squares vs. interpolation

In interpolation, given (n+ 1) data points (xk, yk), we find a
function v(x) such that

v(x) =

n∑
j=0

cjϕj(x), v(xk) = yk, k = 0, . . . , n

In real-life applications, the data points may not be accurate,
e.g. may come from measurements

May not make sense to interpolate inaccurate data

With least squares, may want to pick up a trend in the data,
e.g. average temperature over last 10 years, is it warming or
cooling down?
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Linear fit

Suppose we search for a linear fit: y = ax+ b, i.e. find a and b

Error or residual
rk = axk + b− yk

Find a and b such that

ϕ(a, b) =

m∑
k=0

r2k =

m∑
k=0

(axk + b− yk)
2

is minimized

Necessary conditions for minimum:

∂ϕ

∂a
= 0,

∂ϕ

∂b
= 0
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0 =
∂ϕ

∂a
= 2

m∑
k=0

(axk + b− yk)xk

0 = a

m∑
k=0

x2k + b

m∑
k=0

xk −
m∑
k=0

ykxk

from which (
m∑
k=0

x2k

)
a+

(
m∑
k=0

xk

)
b =

m∑
k=0

xkyk (1)
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0 =
∂ϕ

∂b
= 2

m∑
k=0

(axk + b− yk)

0 = a

m∑
k=0

xk + b

m∑
k=0

1−
m∑
k=0

yk

from which (
m∑
k=0

xk

)
a+ (m+ 1)b =

m∑
k=0

yk (2)

From (1) and (2) we have the linear system[∑m
k=0 x

2
k

∑m
k=0 xk∑m

k=0 xk m+ 1

] [
a
b

]
=

[∑m
k=0 xkyk∑m
k=0 yk

]
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Denote

p =

m∑
k=0

xk, q =

m∑
k=0

yk

r =

m∑
k=0

xkyk, s =

m∑
k=0

x2k

Then the system is [
s p
p m+ 1

] [
a
b

]
=

[
r
q

]
Solve for a and b
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This system can be also obtained as follows.

Write axk + b = yk, k = 1, . . . ,m as

Az =


x0 1
x1 1
...

...
xm 1


[
a
b

]
=


y0
y1
...
ym

 = f

Multiply both sided by AT , ATAz = AT f
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ATA =

[
x0 x1 · · · xm

1 1 · · · 1

]
x0 1
x1 1
...

...
xm 1

 =

[∑m
k=0 x

2
k

∑m
k=0 xk∑m

k=0 xk m+ 1

]

=

[
s p
p m+ 1

]

AT f =

[
x0 x1 · · · xm

1 1 · · · 1

]
y0
y1
...

ym

 =

[∑m
k=0 xkyk∑m
k=0 yk

]

=

[
r
q

]
Az = f is overdetermined, more equations than unknowns

In Matlab, find z by A\f
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Example

• Assume a program runs in αnβ, where α and β are real
constants we don’t know

• How to determine them?

• Run the program with sizes n1, n2, . . . , nm and measure the
corresponding CPU times t1, t2, . . . , tm, m > 2

• Write αnβ
i = ti, i = 1, . . . ,m

• Then
lnα+ β lnni = ln ti, i = 1, . . . ,m

• Let x = lnα

• Then
1 · x+ lnni · β = ln ti, i = 1, . . . ,m
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Write

1 · x+ lnn1 · β = ln t1

1 · x+ lnn2 · β = ln t2

...

1 · x+ lnnm · β = ln tm

Then

Ay =


1 lnn1

1 lnn2

...
...

1 lnnm


[
x
β

]
=


ln t1
ln t2
...

ln tm

 = b

Solve in Matlab as y = A\b; α = exp(y(1)) β = y(2)
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Solving overdetermined systems

• A ∈ Rm×n, b ∈ Rm

m > n

• Ax = b is an overdetermined system: more equations than
variables

• Find x that minimizes ∥b−Ax∥2
• r = b−Ax

• ∥r∥22 =
∑m

i=1 r
2
i =

∑m
i=1

(
bi −

∑n
j=1 aijxj

)2
• Let

ϕ(x) =
1

2
∥r∥22 =

1

2

m∑
i=1

bi −
n∑

j=1

aijxj

2
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• We want to find the minimum of ϕ(x)

• Necessary conditions are

∂ϕ

∂xk
= 0, for k = 1, . . . , n

0 =
∂ϕ

∂xk
=

∂

∂xk

1

2

m∑
i=1

bi −
n∑

j=1

aijxj

2
=

1

2

m∑
i=1

∂

∂xk

bi −
n∑

j=1

aijxj

2

=

m∑
i=1

bi −
n∑

j=1

aijxj

 (−aik)
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0 =

m∑
i=1

bi −
n∑

j=1

aijxj

 (−aik)

= −
m∑
i=1

aikbi +

m∑
i=1

aik

n∑
j=1

aijxj

We have

m∑
i=1

aik

n∑
j=1

aijxj =

m∑
i=1

aikbi, k = 1, . . . , n

This is the same as ATAx = AT b, as explained below
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A is m× n. AT is n×m.

Let y = Ax. yi =
∑n

j=1 aijxj , i = 1, . . . ,m.

The kth component of ATAx = AT y is

(ATAx)k = (AT y)k =

m∑
i=1

(AT )kiyi =

m∑
i=1

aikyi =

m∑
i=1

aik

n∑
j=1

aijxj

The kth component of AT b is

(AT b)k =

m∑
i=1

(AT )kibi =

m∑
i=1

aikbi

(ATAx)k = (AT b)k, k = 1, . . . , n is

m∑
i=1

aik

n∑
j=1

aijxj =
m∑
i=1

aikbi
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Normal equations

• ATAx = AT b are called normal equations

• If A has a full-column rank (all columns are linearly
independent),

min
x

∥b−Ax∥2

has a unique solution which is the solution to (ATA)x = AT b:

x = (ATA)−1AT b = A†b

• A† = (ATA)−1AT is the pseudo inverse of A

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 17/17
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Derivation of Simpson’s rule Adaptive Simpson Subtleties

Derivation of Simpson’s rule

Simpson’s rule can be derived using the method of undetermined
coefficients

• Seek integration formula of the form∫ b

a
f(x)dx ≈ Af(a) +Bf

(
a+ b

2

)
+ Cf(b)

• Find A, B, C such that for quadratic polynomials the formula
is exact:∫ b

a
f(x)dx = Af(a) +Bf

(
a+ b

2

)
+ Cf(b)
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Derivation of Simpson’s rule cont.

• Let a = −1, b = 1. We should integrate exactly 1, x, x2:

f(x) = 1 :

∫ 1

−1
dx = 2 = A+B + C

f(x) = x :

∫ 1

−1
xdx = 0 = −A+ C

f(x) = x2 :

∫ 1

−1
x2dx =

2

3
= A+ C

from which A = 1/3, C = 1/3, B = 4/3

• Hence ∫ 1

−1
f(x)dx ≈ 1

3
[f(−1) + 4f(0) + f(1)]

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 4/14
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Derivation of Simpson’s rule cont.

• Let y(x) = 0.5(b− a)x+ 0.5(b+ a), y(−1) = a, y(1) = b

• Changing variables:∫ b

a
f(x)dx ≈ b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
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Adaptive Simpson

• Given a function f(x) on [a, b] and tolerance tol

• find Q such that
|Q− I| ≤ tol ,

where

I =

∫ b

a
f(x)dx

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 6/14
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Adaptive Simpson cont.

Denote h = b− a. Then

I =

∫ b

a
f(x)dx = S(a, b) + E(a, b),

where

S(a, b) =
h

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
E(a, b) = − 1

90

(
h

2

)5

f (4)(ξ), ξ between a and b

Denote S1 = S(a, b) and E1 = E(a, b)
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Adaptive Simpson cont.

• Let c = (a+ b)/2 and apply Simpson on [a, c] and [c, b]:

I =

∫ b

a
f(x)dx = S(a, c) + S(c, b)︸ ︷︷ ︸

S2

+E(a, c) + E(c, b)︸ ︷︷ ︸
E2

• We can compute S1 and S2

• How to estimate the error? If f (4) does not change much on
[a, b]

E(a, c) = − 1

90

(
h/2

2

)5

f (4)(ξ1) =
1

32

[
− 1

90

(
h

2

)5

f (4)(ξ1)

]
, ξ1 ∈ [a, c]

≈ 1

32

[
− 1

90

(
h

2

)5

f (4)(ξ)

]

=
1

32
E1
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Adaptive Simpson cont.

Similarly E(c, b) ≈ 1
32E1

• Hence

E2 = E(a, c) + E(c, b) ≈ 1

16
E1

• From I = S1 + E1 = S2 + E2,

S1 − S2 = E2 − E1 ≈ E2 − 16E2 = −15E2

E2 ≈ Ẽ2 =
1

15
(S2 − S1)

• Then

I =

∫ b

a
f(x)dx = S2 + E2 ≈ S2 + Ẽ2
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Method outline

Given f , [a, b] and tol :

• c = (a+ b)/2

• Compute S1 = S(a, b) and S2 = S(a, c) + S(c, b)

• Ẽ2 = (S2 − S1)/15

• If |Ẽ2| ≤ tol return S2 + Ẽ2

else apply recursively on [a, c] and [c, b] with tol /2
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Adaptive Simpson cont.

Algorithm 2.1 (Adaptive Simpson).
S = quadSimpson(f, a, b, tol)

h = b− a, c = (a+ b)/2

S1 = h
6 [f(a) + 4f(a+b

2 ) + f(b)]

S2 = h
12 [f(a) + 4f(a+c

2 ) + 2f(c) + 4f( c+b
2 ) + f(b)]

Ẽ2 = 1
15 (S2 − S1)

if |Ẽ2| ≤ tol

return Q = S2 + Ẽ2

else
Q1 = quadSimpson(f, a, c, tol/2)
Q2 = quadSimpson(f, c, b, tol/2)
return Q = Q1 +Q2
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Why it works

• If |E2| ≈ |Ẽ2| ≤ tol , we can return Q = S2. Then

|I −Q| = |I − S2| = |E2| ≈ |Ẽ2| ≤ tol .

• However, but adding the error estimate, we can obtain a more
accurate approximation as

I = S2 + E2 ≈ Q = S2 + Ẽ2.
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• Otherwise, let I1 =
∫ c
a f(x)dx, I2 =

∫ c
b f(x)dx

If
|I1 −Q1| ≤ tol /2 and |I2 −Q2| ≤ tol /2,

then

|I −Q| = |I1 + I2 − (Q1 +Q2)|
= |I1 −Q1 + I2 −Q2|
≤ |I1 −Q1|+ |I2 −Q2|
≤ tol /2 + tol /2

= tol
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Subtleties

• The error estimate assumes f (4) does not vary much, but it
may, and then this estimate may not be accurate.
That is, Ẽ2 may not be a good approximation to E2.

• The recursion may run “deep” if tol is too small or f (4) varies
a lot
Insert a counter to stop the recursion when the depth exceeds
some number, e.g. 20
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Example Activation function Network Training Steepest descent Stochastic GD

This is a summary of Sections 1-4 from
C. F. Higham, D. J. Higham, Deep Learning: An Introduction for
Applied Mathematicians

Figures are cropped from this article
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Example

• Points in R2 classified in two categories A and B

• This is labeled data

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 4/21
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• Given a new point, how to use the labeled data to classify this
point?
Possible classification

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 5/21
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Activation function

• A neuron fires or is inactive

• Activation can be modeled by the sigmoid function

σ(x) =
1

1 + e−x

• σ(0) = 0.5, σ(x) ≈ 1 when x large, σ(x) ≈ 0 when x small

-10 -5 0 5 10

x

0

0.2

0.4

0.6

0.8

1
(x)
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• Steepness can be changed by scaling

• Location can be changed by shifting

• Useful property σ′(x) = σ(x)(1− σ(x))

-10 -5 0 5 10

x

0

0.2

0.4

0.6

0.8

1
(3*(x-5))
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A simple network

• Each neuron

◦ outputs a real number
◦ sends to every neuron in next layer

• Neuron in next layer

◦ forms a linear combination of inputs + bias
◦ applies activation function
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Consider layers 2 and 3

Layer 2: neurons 1 and 2 output real a1 and a2, respectively, and send to
neurons 1, 2, 3 in layer 3
Layer 3:

• neuron
1 combines a1 and a2 and
ads bias b1:

w11a1 + w12a2 + b1

outputs
σ (w11a1 + w12a2 + b1)

• neuron 2 outputs
σ (w21a1 + w22a2 + b2)

• neuron 3 outputs
σ (w31a1 + w32a2 + b3)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 9/21
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Denote

W =

w11 w12

w21 w22

w31 w32

 , a =

[
a1
a2

]
, b =

b1b2
b3


z = Wa+ b

W is a matrix with weights, b is a bias vector

For a vector z, apply σ component wise

(σ(z))i = σ(zi)

The output of layer 3 is

σ(z) = σ(Wa+ b)
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• Denote the input by x, the W and b at layer i by W [i] and
b[i], and the output of layer i by a[i]

• Output of layer 2 is

a[2] = σ
(
W [2]x+ b[2]

)
∈ R2, W [2] ∈ R2×2, b[2] ∈ R2

• Output of layer 3 is

a[3] = σ
(
W [3]a[2] + b[3]

)
∈ R3, W [3] ∈ R3×2, b[3] ∈ R3

• Output of layer 4 is

a[4] = σ
(
W [4]a[3] + b[4]

)
∈ R2, W [4] ∈ R2×3, b[4] ∈ R2

• Write the above as

F (x) = σ
(
W [4]σ

(
W [3]σ

(
W [2]x+ b[2]

)
+ b[3]

)
+ b[4]

)
Copyright © 2021-2023 N. Nedialkov. All rights reserved. 11/21
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• Layer i:

◦ W [i] is of size (# outputs)×(# inputs)
◦ b[i] is of size (# outputs)

Number of parameters is 23:
layer i inputs outputs W [i] b[i]

2 2 2 2× 2 2
3 2 3 3× 2 3
4 3 2 2× 3 2

16 7

• F (x) is a function from R2 → R2 with 23 parameters

• Training is about finding parameters
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Example Activation function Network Training Steepest descent Stochastic GD

Training
Residual

• Denote the input points by x{i}

• Let

y
(
x{i}

)
=



[
1

0

]
if x{i} ∈ A[

0

1

]
if x{i} ∈ B

• Suppose we have computed W [2],W [3],W [4], b[2], b[3], b[4] and
evaluate F

(
x{i}

)
• Residual ∥∥∥y (x{i})− F

(
x{i}

)∥∥∥
2
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Training
Cost function

• Cost function

Cost
(
W [2],W [3],W [4], b[2], b[3], b[4]

)
=

1

10

10∑
i=1

1

2

∥∥∥y (x{i})− F
(
x{i}

)∥∥∥2
2

• Training: find the parameters that minimize the cost function

• Nonlinear least squares problem
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Classifying

• Suppose we have computed values for the parameters

• Given x ∈ R2, compute y = F (x)

• If y1 > y2 classify x as A, y closer to [1, 0]T

• If y1 < y2 classify x as B, y closer to [0, 1]T

• Tie breaking when =
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Steepest descent

• Consider the parameters in a vector p ∈ Rs. Here s = 23

• Cost function is Cost(p)

• Find ∆p such that

Cost(p+∆p) < Cost(p)

• For small ∆p,

Cost(p+∆p) ≈ Cost(p) +
s∑

r=1

∂Cost(p)

∂pr
∆pr

= Cost(p) +∇Cost(p)T∆p

∇Cost(p) =
[
∂Cost(p)

∂p1
,
∂Cost(p)

∂p2
, · · · , ∂Cost(p)

∂ps

]T
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Example

• To illustrate the above, suppose

Cost(p) = p21 + p22 + 2p1 + 3

• Gradient is
∇Cost(p) = [2p1 + 2, 2p2]

T

Cost(p+∆p) ≈ Cost(p) +∇Cost(p)T∆p

= Cost(p) + (2p1 + 2)∆p1 + 2p2∆p2
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Steepest descent cont

• Cost(p) ≥ 0

• From
Cost(p+∆p) ≈ Cost(p) +∇Cost(p)T∆p,

we want to make ∇Cost(p)T∆p as negative as possible

• Given ∇Cost(p) how to choose ∆p?

• For u, v ∈ Rs,
uT v = ∥u∥ · ∥v∥ cos θ

is most negative when v = −u
• Chose ∆p in the direction of −∇Cost(p)

That is move along the direction of steepest descent
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∆p = pnew − p = −η∇Cost(p)
pnew = p− η∇Cost(p)

η is learning rate

Steepest descent:

chose initial p
repeat

p← p− η∇Cost(p)
until stopping criterion is met or max # of iterations is reached
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• In general N input points

Cost(p) =
1

N

N∑
i=1

1

2

∥∥∥y (x{i})− F
(
x{i}

)∥∥∥2
2︸ ︷︷ ︸

Ci(p)

=
1

N

N∑
i=1

Ci(p)

∇Cost(p) = 1

N

N∑
i=1

∇Ci(p)

• N can be large

• Number of parameters can be very large

• Evaluating ∇Cost(p) can be very expensive
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Stochastic gradient descent

• Idea: replace 1
N

∑N
i=1∇Ci(p) by random ∇Ci(p)

• Iterate until a stopping criterion is met or max # of iterations
is reached:

◦ pick a random integer i from {1, 2, . . . , N}
◦ p← p− η∇Ci(p)
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Scalar case Examples Convergence Subtleties N for systems

Scalar case

• Given a scalar function f find a zero/root of f , i.e. an r such
that f(r) = 0

• f may have no zeros, one, or many

• Let r be a root of f and let xn ≈ r
From

0 = f(r) = f(xn) + f ′(xn)(r − xn) +O(|r − xn|2)
0 = f(r) ≈ f(xn) + f ′(xn)(r − xn)

we find xn+1 by solving

f(xn) + f ′(xn)(xn+1 − xn) = 0 (1)
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Scalar case cont.

• That is

xn+1 = xn − f(xn)

f ′(xn)
(2)

• We start with an initial guess x0 and compute x1, x2, . . .

• How to choose x0, does it converge to a root, when to stop
iterating...?
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Interpretation

Given x0, we compute

x1 = x0 −
f(x0)

f ′(x0)

The tangent line at (x, f(x0)) is

l(x) = f(x0) + f ′(x0)(x− x0)

We find x1 such that l(x) crosses the x axis, l(x1) = 0:

0 = l(x1) = f(x0) + f ′(x0)(x1 − x0)

Similarly for x2, x3, . . .
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Examples
Square root

• Given a > 0, compute
√
a

• Write x =
√
a, f(x) = x2 − a

• Apply (2):

xn+1 = xn − f(xn)

f ′(xn)
= xn − x2n − a

2xn

= xn − xn
2

+
a

2xn

= 0.5

(
xn +

a

xn

)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 6/19



Scalar case Examples Convergence Subtleties N for systems

• Let a = 2 and x0 = 3

• We compute
i xi |xi −

√
2|

1 1.8333333333333333 4.19e-01

2 1.4621212121212122 4.79e-02

3 1.4149984298948031 7.85e-04

4 1.4142137800471977 2.18e-07

5 1.4142135623731118 1.67e-14

6 1.4142135623730949 2.22e-16
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Examples cont.
Dividing without division operation

• How to obtain a/b without division?

• a/b = a ∗ (1/b)
• Find 1/b. Write f(x) = 1/x− b and apply (2)

xn+1 = xn − f(xn)

f ′(xn)
= xn − 1/xn − b

−1/x2n

= xn + xn − bx2n

= xn(2− bxn)
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Examples cont.

• With b = 3 and x0 = 0.3, we compute
i xi |xi − 1/3|
1 0.3300000000000000 3.33e-03

2 0.3333000000000000 3.33e-05

3 0.3333333300000000 3.33e-09

4 0.3333333333333333 5.55e-17
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Convergence

Theorem 1. If f , f ′, and f ′′ are continuous in a neighbourhood of a root
r of f and f ′(r) ̸= 0, then ∃δ > 0 such that if |r − x0| ≤ δ, then all xn

satisfy
|r − xn| ≤ δ, (3)

|r − xn+1| ≤ c(δ)|r − xn|2, (4)

where c(δ) is defined in (6), and xn converges to r

Let en = r − xn. (4) is

|en+1| ≤ c(δ)|en|2 (5)

If e.g. |en| ≈ 10−4, |en+1| ⪅ c(δ)10−8

If sufficiently close to r, each iteration ≈ doubles the number of accurate
digits

Quadratic convergence |en+1| ≤ constant · |en|2

Order of convergence is 2
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Convergence cont.

Proof. From Taylor series,

0 = f(r) = f(xn) + f ′(xn)(r − xn) +
f ′′(ξ)

2
(r − xn)

2

= f(xn) + f ′(xn)en +
f ′′(ξ)

2
e2n

f(xn) + f ′(xn)en = −f ′′(ξ)

2
e2n, ξ is between r and xn

The error in xn+1 is

en+1 = r − xn+1 = r −
(
xn − f(xn)

f ′(xn)

)
= r − xn +

f(xn)

f ′(xn)

= en +
f(xn)

f ′(xn)
=

f(xn) + enf
′(xn)

f ′(xn)

= −1

2

f ′′(ξ)

f ′(xn)
e2n
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Convergence cont.

For a δ > 0, let

c(δ) =
1

2

max|r−x|≤δ |f ′′(x)|
min|r−x|≤δ |f ′(x)|

(6)

Then (4) follows from

|en+1| =
1

2

|f ′′(ξ)|
|f ′(xn)|

e2n ≤ 1

2

max|r−x|≤δ |f ′′(x)|
min|r−x|≤δ |f ′(x)|

e2n

≤ c(δ)e2n

There exists δ such that c(δ)δ < 1 since

c(δ) → 1

2

∣∣∣∣f ′′(r)

f ′(r)

∣∣∣∣ as δ → 0

and f ′(r) ̸= 0 by assumption
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Convergence cont.

If |en| = |r − xn| ≤ δ, then

|en+1| ≤ c(δ)e2n = c(δ) · en · en ≤ c(δ)δ · en
< ρen, where ρ = δc(δ) < 1

and (3) follows

Hence
|en| ≤ ρ|en−1| ≤ ρ2|en−2| ≤ · · · ≤ ρn|e0|

Since ρ < 1, |en| → r as n → ∞
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Subtleties

We require f ′(r) ̸= 0

If f ′(r) = 0 and f ′′(r) ̸= 0, r is a double root, e.g. f(x) = (x− 1)2

A root r is of multiplicity m if f (k)(r) = 0 for all k = 1, 2, . . .m− 1 and
f (m)(r) ̸= 0. In this case

xn+1 = xn −m
f(xn)

f ′(xn)

is quadratically convergent

If f ′(xn) is not available, we can approximate f ′(xn) ≈ f(xn)−f(xn−1)
xn−xn−1

Then

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)

This is the secant method. Order of convergence is (1 +
√
5)/2 ≈ 1.618

(golden ratio)
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Newton for systems of equations

• Consider a system of n equations in n variables

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0

...

fn(x1, x2, . . . , xn) = 0

• Denote x = (x1, x2, . . . , xn)
T and F = (f1, f2, . . . , fn)

• Find x∗ (if it exists) such that F (x∗) = 0
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Newton for systems of equations cont.

• Assume x∗ is such that F (x∗) = 0 and x(k) ≈ x∗

• From

0 = F (x∗) ≈ F (x(k)) + F ′(x(k))(x∗ − x(k))

find x(k+1) by solving (cf. (1))

F (x(k)) + F ′(x(k))(x(k+1) − x(k)) = 0 (7)

• F ′(x(k)) is the Jacobian of F at x(k), an n× n matrix
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Newton for systems of equations cont.

• Let s = x(k+1) − x(k)

• Solve (assuming F ′(x(k)) nonsingular) linear system

F ′(x(k))s = −F (x(k)) (8)

and set

x(k+1) = x(k) + s (9)

• (8,9) is basic Newton for systems of equations
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Example

• Consider

0 = F (x) =

{
x21 + x22 − 25

x21 − x2 − 1

• Jacobian is

F ′(x) =

(
2x1 2x2
2x1 −1

)
• Let x0 = (5, 1)T
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• Then

F (x(0)) = (1, 23)T

J(x(0)) =

(
10 2
10 −1

)
• Solve J(x(0))s = −F (x(0))

• x(1) = x(0) + s and so on

• We compute

i x1 x2 ∥F (x)∥
1 3.433333333333334 8.333333333333332 5.63e+01

2 2.632585333089088 5.289308176100628 9.93e+00

3 2.358810087435537 4.489032143454986 7.19e-01

4 2.329316858408983 4.424847176309882 5.06e-03

5 2.329040359270796 4.424428918660463 2.63e-07
6 2.329040339044829 4.424428900898053 7.11e-15
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The problem Examples ODEs Euler’s method Backward Euler Stability

The problem

• Given
y′ = f(t, y), y(a) = c

compute y(t) on [a, b]

• y′ ≡ y′(t) ≡ dy
dt

• This is an Initial Value Problem (IVP) in Ordinary Differential
Equations (ODEs)

• We approximate y(t) at points ti in [a, b] using a numerical
method
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ODE examples

y′ = −y + t

• Solution is y(t) = t− 1 + αe−t:

y′(t) = 1− αe−t

−y + t = −(t− 1 + αe−t) + t = 1− αe−t

• Given y(0) = c, e.g. c = 5,

y(0) = −1 + α = c = 5, α = 6

y(t) = t− 1 + 6e−t

is the solution with this initial condition
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Motion of a pendulum

θ′′ = −g sin θ, θ′′ =
d2θ(t)

dt2

• ball of mass 1 attached to the end of a rigid, massless rod of
length r = 1

• g ≈ 9.81 is gravity

• t is time

• This is a second-order ODE. To write as a first-order ODE,
set y1 = θ, y2 = θ′ = y′1:

y′1 = y2

y′2 = −g sin(y1)

• Needed initial conditions are y1(0) and y2(0)

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 5/23



The problem Examples ODEs Euler’s method Backward Euler Stability

ODEs

System of n first-order equations in n variables

y′ = f(t, y), f : R× Rn → Rn

Nonlinear: if f is nonlinear in y, linear otherwise
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The problem Examples ODEs Euler’s method Backward Euler Stability

Autonomous ODE

y′ = f(y), y(a) = c

is an autonomous ODE, does not depend on time explicitly

y′ = f(t, y), y(a) = c

is non-autonomous

To convert a non-autonomous ODE to an autonomous set x = t
and then

x′ = 1

y′ = f(x, y), x(a) = a, y(a) = c

Set z = (z1, z2)
T = (x, y)T . Then z′ = f(z):

z′1 = 1

z′2 = f(z)
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High-order ODEs

y(n) = f
(
t, y, y′, . . . , y(n−1)

)
can be converted to first-order by setting

y1 = y

y2 = y′ = y′1

y3 = y′′ = y′2
...

yn = y(n−1) = y′n−1
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Then

y′1 = y2

y′2 = y3
...

y′n = f(t, y1, y2, . . . , yn)

To solve, we need initial values for

y1(a), y2(a), . . . , yn(a)
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Euler’s method

• Let h = (b− a)/N , N > 1 is an integer

• h is stepsize

• Let t0 = a, ti = a+ ih, i = 0, 1, . . . , N

• From y′(ti) = f(ti, y(ti)), we write

y(ti+1) = y(ti) + hy′(ti) +
h2

2
y′′(ξi), ξi between ti andti+1

= y(ti) + hf(ti, y(ti)) +
h2

2
y′′(ξi)

≈ y(ti) + hf(ti, y(ti))
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• Euler’s method:

y0 = c

yi+1 = yi + hf(ti, yi), i = 0, 1, . . . , N − 1

• Example: Euler’s method on y′ = −y + t, y(0) = y0 = 5, with
h = 0.1:

yi+1 = yi + hf(ti, yi) = yi + h(−yi + ti)

y1 = y0 + h(−y0 + t0) = 5 + 0.1(−5 + 0) = 4.5

y2 = y1 + h(−y1 + t1) = 4.5 + 0.1(−4.5 + 0.1) = 4.06

y3 = y2 + h(−y2 + t2) = 4.06 + 0.1(−4.06 + 0.2) = 3.674

• Exact solution is y(t) = t− 1 + 6e−t

• The corresponding exact values are y(0.1) ≈ 4.5290,
y(0.2) ≈ 4.1124, y(0.3) ≈ 3.7449
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Example: Forward Euler on y′ = −y + t

0 0.5 1 1.5 2 2.5 3
1.5

2

2.5

3

3.5

4

4.5

5
y' = -y+t', y(0) = 5, h = 0.1

y(t) = t-1+6*exp(-t)

initial condition

forward Euler
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Backward Euler

• We can write

y(ti) = y(ti+1)− hy′(ti+1) +
h2

2
y′′(ηi)

≈ y(ti+1)− hf(ti+1, y(ti+1))

y(ti+1) ≈ y(ti) + hf(ti+1, y(ti+1))

• Backward Euler

yi+1 = yi + hf(ti+1, yi+1)

• This is an implicit method; forward Euler is explicit
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• Example: Backward Euler method on y′ = −y + t,
y(0) = y0 = 5, with h = 0.1:

yi+1 = yi + hf(ti+1, yi+1)

= yi + h(−yi+1 + ti+1)

• We need to solve for yi+1:

yi+1 = yi − hyi+1 + hti+1

yi+1 + hyi+1 = yi + hti+1

yi+1 =
yi + hti+1

1 + h
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• We compute

y1 =
y0 + ht1
1 + h

=
5 + 0.1 · 0.1
1 + 0.1

≈ 4.5545

y2 =
y1 + ht2
1 + h

≈ 4.5545 + 0.1 · 0.2
1 + 0.1

≈ 4.1586

y3 =
y2 + ht3
1 + h

≈ 4.1586 + 0.1 · 0.3
1 + 0.1

≈ 3.7987

• The corresponding exact values are y(0.1) ≈ 4.5290,
y(0.2) ≈ 4.1124, y(0.3) ≈ 3.7449

• Here it was easy to solve for yi+1: f(t, y) = −y + t is linear in
y

• In general, it is non-linear: apply Newton’s method
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Example: FE and BE on y′ = −y + t

0 0.5 1 1.5 2 2.5 3
1.5

2

2.5

3

3.5

4

4.5

5
y' = -y+t', y(0) = 5, h = 0.1

y(t) = t-1+6*exp(-t)

initial condition

forward Euler

backward Euler

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 16/23



The problem Examples ODEs Euler’s method Backward Euler Stability

Stability
Forward Euler

• Consider y′ = λy, y(0) = y0

• The exact solution is y(t) = eλty0
• Forward Euler with constant stepsize h is

yi+1 = yi + hf(ti, yi) = yi + hλyi

= (1 + hλ)yi

= (1 + hλ)2yi−1

...

= (1 + hλ)i+1y0

• If λ < 0, y(t) is decaying. Since |y(ti+1)| < |y(ti)|, we want
|yi+1| ≤ |yi|
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Stability cont.

• For the method to be numerically stable, we require

|yi+1| = |1 + hλ| · |yi| ≤ |yi|

• That is |1 + hλ| ≤ 1, or

−1 ≤ 1 + hλ ≤ 1

−2 ≤ hλ ≤ 0

h ≤ 2

|λ|

• If |λ| is large, we can have a severe restriction on the stepsize
If e.g. y′ = −106y, h ≤ 2 · 10−6
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Stability cont.

Example 1.

• Consider y′ = −10y, y(0) = y0

• Euler’s method is

yi+1 = yi + hλyi = (1− 10h)yi

• For stability h ≤ 0.2

• If e.g. h = 0.21 then

y1 = (1− 10 · 0.21)y0 = −1.1y0

y2 = −1.1y1 = 1.21y0

y3 = −1.1y2 = −1.331y0

...

yi = (−1.1)iy0
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Stability

Example 1. cont.
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Stability
Backward Euler

• Consider the backward Euler on y′ = λy, where λ < 0

yi+1 = yi + hλyi+1

yi+1 =
1

1− hλ
yi

|yi+1| =
1

|1− hλ|
|yi|

≤ |yi| for any h > 0
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Stability

Example 2.

• y′ = −10y

• Backward Euler is

yi+1 =
1

1 + 10h
yi

• Stable for any h > 0

• Backward Euler is absolutely (for any h > 0) stable
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Stability

Example 2. cont.
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Order Local and global error Convergence Stiffness Stiff vs Nonstiff

Local truncation error and order

• Local truncation error is the amount by which the exact
solution fails to satisfy the numerical method

• Forward Euler yi+1 = yi + hf(ti, yi)
Using the exact solution y(t) in this formula

di =
y(ti+1)− y(ti)

h
− f(ti, y(ti)) =

h

2
y′′(ηi)

• Backward Euler di = −h
2y

′′(ξi)

• A method is of order q, if q is the lowest positive integer such
that for any sufficiently smooth exact solution y(t)

max
i

|di| = O(hq)

• Forward and backward Euler are of order q = 1
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Local and global error

• Global error is

ei = y(ti)− yi, i = 0, 1, . . . , N,

where y(ti) is the exact solution at ti and yi is the computed
approximation

• Consider
u′ = f(t, u), u(ti−1) = yi−1

The local error is
li = u(ti)− yi

where u(ti) is the exact solution to u′ = f(t, u) with initial
condition ui at ti
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Local vs global error
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• Numerical methods control the local error

• That is, select a stepsize such that the local error is within a
given tolerance

• Typically the global error is proportional to the tolerance
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Convergence

• A methods is said to converge if the maximum global error
goes to 0 as h → 0

• That is

max
i

ei = max
i

[y(ti)− yi] → 0 as h → 0
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Stiffness

• When the stepsize is restricted by stability rather than
accuracy

• When an explicit solver takes very small steps

• Matlab: nonstiff solvers ode45, ode113,...
stiff solvers: ode15s, ode23s
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Stiffness cont.

Van der Pol

y′1 = y2

y′2 = µ(1− y21)y2 − y1

µ is a constant

y(0) = (2, 0)T , t ∈ [0, 2000]
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Stiff vs Nonstiff
ode15s on Van der Pol, µ = 1000: integrated in ≈ 0.2 seconds, 408 steps
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Stiff vs Nonstiff
ode45 on Van der Pol, µ = 1000: integrated in ≈ 15 seconds, 4,624,409 steps
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Trapezoid Midpoint 4th order Runge-Kutta Stepsize control

Implicit trapezoidal method

• Consider y′(t) = f(t, y), y(ti) = yi

• From y(ti+1) = y(ti) +
∫ t
ti
f(s, y(s))ds,

y(ti+1) = y(ti) +

∫ ti+1

ti

f(s, y(s))ds

• Use the trapezoidal rule for the integral

y(ti+1) = y(ti) +

∫ ti+1

ti

f(s, y(s))ds

≈ y(ti) +
h

2
[f(ti, y(ti)) + f(ti+1, y(ti+1))]
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• From

y(ti+1) ≈ y(ti) +
h

2
[f(ti, y(ti)) + f(ti+1, y(ti+1))]

write

yi+1 = yi +
h

2
[f(ti, yi) + f(ti+1, yi+1)]

This is the implicit trapezoidal method

• We have to solve a nonlinear system in general for yi+1

Copyright © 2021-2023 N. Nedialkov. All rights reserved. 4/13



Trapezoid Midpoint 4th order Runge-Kutta Stepsize control

• Local truncation error is

di =
y(ti+1)− y(ti)

h
− 1

2
[f(ti, y(ti)) + f(ti+1, y(ti+1))]

• di = O(h2)
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Explicit trapezoidal method

• In the implicit trapezoidal rule, we need to solve for yi+1

• We can approximate y(ti+1) first using forward Euler:

Y = yi + hf(ti, yi)

• Then plug Y into the formula for the implicit trapezoidal
method

yi+1 = yi +
h

2
[f(ti, yi) + f(ti+1, Y )]

• This is a two-stage explicit Runge-Kutta method

• Local truncation error is

di =
y(ti+1)− y(ti)

h
− 1

2
[f(ti, y(ti)) + f(ti+1, y(ti) + hf(ti, y(ti)))]

di = O(h2), a bit involved to derive it
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Implicit midpoint

• Use the midpoint quadrature rule:

yi+1 = yi + hf
(
ti+1/2, yi+1/2

)
= yi + hf (ti + h/2, (yi + yi+1)/2)

• That is, we solve for yi+1

• Order is 2
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Trapezoid Midpoint 4th order Runge-Kutta Stepsize control

Explicit midpoint method

• Take a step of size h/2 with forward Euler

Y = yi +
h

2
f(ti, yi)

• Plug into the formula from the midpoint quadrature rule:

yi+1 = yi + hf (ti + h/2, Y ) ,

• This is a two-stage explicit Runge-Kutta method

• Order is 2
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Trapezoid Midpoint 4th order Runge-Kutta Stepsize control

Classical 4th order Runge-Kutta

• Based on Simpson’s quadrature rule

• 4 stages

• Order 4, O(h4) accuracy

Y1 = yi

Y2 = yi +
h

2
f(ti, Y1)

Y3 = yi +
h

2
f(ti + h/2, Y2)

Y4 = yi + hf(ti + h/2, Y3)

yi+1 = yi +
h

6

[
f(ti, Y1) + 2f(ti + h/2, Y2) + 2f(ti + h/2, Y3) + f(ti+1, Y4)

]
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Trapezoid Midpoint 4th order Runge-Kutta Stepsize control

Stepsize control

Example 1. Denote h = ti+1 − ti. Consider forward Euler and the explicit
trapezoidal methods

yi+1 = yi + hf(ti, yi), local error O(h2)

ŷi+1 = yi +
1
2h[f(ti, yi) + f(ti+1, yi+1)], local error O(h3)

The error in yi+1 is e = ∥yi+1 − ŷi+1∥. Given tolerance tol ,

if e ≤ tol
accept ŷi+1 at ti+1

predict h̄ for the next step
else
reject the step
predict h̄ < h
repeat the step with h̄
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Trapezoid Midpoint 4th order Runge-Kutta Stepsize control

Example 1. cont.

The error is e = ch2 for some c ≥ 0

c =
e

h2

Suppose e ≤ tol . On the next step ē = c̄h̄2, for some c̄ ≥ 0

Assume c ≈ c̄. Then

ē = c̄h̄2 ≈ ch̄2 =
e

h2
h̄2

= e

(
h̄

h

)2
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Trapezoid Midpoint 4th order Runge-Kutta Stepsize control

Example 1. cont.

From

ē ≈ e

(
h̄

h

)2

= tol ,

we can select

h̄ = h

(
tol

e

)1/2

To reduce the likelihood of stepsize rejections, aim at 0.5 tol and multiply
by 0.9:

h̄ = 0.9h

(
0.5 tol

e

)1/2

0.5 and 0.9 are safety factors
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Trapezoid Midpoint 4th order Runge-Kutta Stepsize control

Example 1. cont.

If e ≥ tol , one can use the same formula.

How to form tol ?

Assume absolute atol and relative rtol tolerances are given. Then

tol = rtol · ∥yi∥+ atol
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