ENG 3PX3 - Engineering Economics

Optimization – Problem Formulation

NVF, Mathematical Models, and Optimization

 \rightarrow Given a set of parameters and constraints, how do we optimize all or part of our NVF?

 \rightarrow We will look briefly at model-based optimization

• We will not dive deep into the theory, rather we will provide an overview of optimization and show how to use Excel to perform optimization

 \rightarrow Given a problem, we develop a mathematical model to describe the problem.

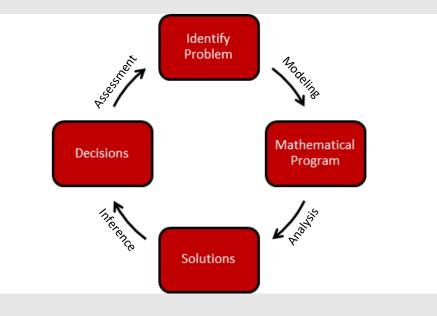
- Models include variables, constraints, objective function
- Example: Maximize net value considering labour, material, environment etc.

What is Model-based Optimization?

 \rightarrow Models are not perfect, they are a simplification of the real problem

- In model-based optimization, we draw conclusions from the *model* of the system, NOT from the problem itself
- It is critical to develop an appropriate model for your system/problem/scenario

 \rightarrow Model-based optimization is typically iterative



McMast

Components of an Optimization Model

- Optimization models (mathematical programs) typically include the following components \rightarrow
 - **Decision Variables:** (i.e., independent variables or terms dependent on them) What you're going to change (directly or indirectly) to find the best value of the objective you can.
 - **Constraints:** Set allowed values of decision variables (i.e., allowed inputs, i.e., the "domain" of the objective function).
 - Objective: The thing you will optimize (maximize or minimize) (i.e., NV)
 - Note: technically the objective is also a decision variable, just not one that you directly decide.
 - **Objective Function:** A mathematical function that determines the objective as a function of the decision variables (i.e., the NVF).

Components of an Optimization Model

 \rightarrow Typical set up for a generalized optimization program:

 $\min_{\boldsymbol{x}} \phi = f(\boldsymbol{x})$ s.t. $h(\boldsymbol{x}) = 0$ $q(\boldsymbol{x}) \leq 0$ $x_{lb} \leq x \leq x_{ub}$

← Objective Function

 \leftarrow "Subject to"

- ← Equality Constraints
- ← Inequality Constraints
- \leftarrow Variable Bounds

McMaste

Components of an Optimization Model

 \rightarrow Parameters:

Constants; terms you don't get to decide when optimizing •

 \rightarrow Decision Variables:

- Independent Variables (i.e., "direct" decision variables) •
 - Things you can change directly, your inputs
 - Example: hourly wage and labour hours
- **Dependent Variables (i.e., "indirect" decision variables)** •
 - Convenient combinations of independent variables that you might use as an intermediate term (or the objective itself).
 - Example: total labour cost (the product of hourly wage and labour hours)
 - Though it's possible to write the objective in terms of only independent variables, it likely leads to a very tough to read objective function where the physical meaning of terms is hidden

McMast

Decision variables can be discrete or continuous

ightarrowDiscrete variables, x_D

• Limited to a fixed or countable set of values (all-or-nothing, either-or, must be produced/purchased in integer quantities, *etc.*)

$$x_D \ \epsilon \ I = \{0, 1, 2, \dots\}$$

 \rightarrow Continuous variables, x_C

• May take on *any value* in a specified interval

 $x_c \in S \subset \mathbb{R}$ Where " \subset " means "is a subset of"

 \rightarrow It is much easier to model with continuous variables than with discrete variables

 \rightarrow If a discrete variable scale is large enough that rounding to the nearest integer causes *minimal* loss of model accuracy, then we can model that variable *continuously*

Constraints

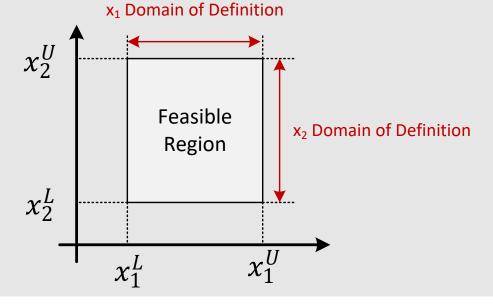
→Decision variables are usually *bounded* (finite allowed range) because of:

- **Physical reality**: e.g., cannot purchase negative raw materials, cannot have a temperature less than 0 K
- Model assumptions: e.g., cannot sleep less than 6 hours per day, pipe ID is around 1/8"

 \rightarrow The *domain of definition* is defined by a decision variable's upper (x^U) and lower bounds (x^L)

• The combination of domains of definition for all decision variables is the **feasible region** or

feasible set



Graphing Model Constraints

 \rightarrow The feasible set (or region) S of an optimization model is the collection of decision variables that satisfy *all* the model constraints:

$$\mathcal{S} \triangleq \{ \boldsymbol{x} : g(\boldsymbol{x}) \leq 0, h(\boldsymbol{x}) = 0, \boldsymbol{x}^{L} \leq \boldsymbol{x} \leq \boldsymbol{x}^{U} \}$$

 \rightarrow The set of all points satisfying h(x) = 0 results in a line or vector when plotting the feasible set.

→The set of all points satisfying $g(x) \le 0$ results in a region bounded above (≤) or below (≥) by a line defining the inequality.

Graphing Model Constraints Examples

Constraint set (A)

 $x_1 + x_2 \le 2$

 $3x_1 + x_2 \ge 3$

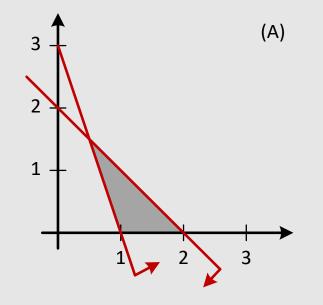
 x_1 , $x_2 \ge 0$

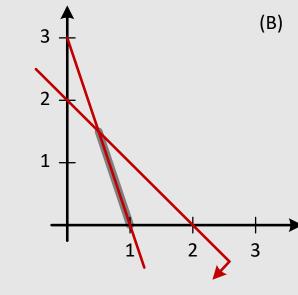
Constraint set (B) $x_1 + x_2 \le 2$ $3x_1 + x_2 = 3$

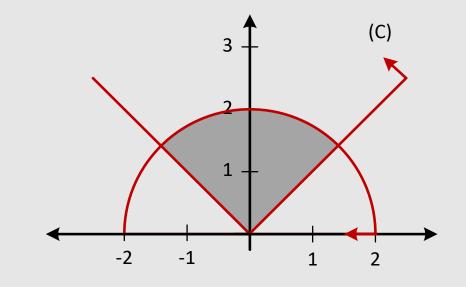
 x_1 , $x_2 \ge 0$

Constraint set (C)

$$\begin{aligned} x_1^2 + x_2^2 &\le 4 \\ |x_1| - x_2 &\le 0 \end{aligned}$$







Constraints + Objective Visualizing

Problem (A)

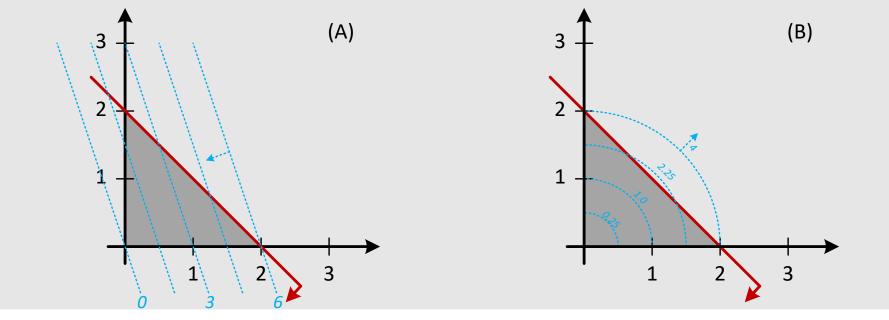
$$\min_{x_{1}, x_{2}} \phi = 3x_{1} + x_{2}$$
s.t.

$$x_{1} + x_{2} \le 2$$

$$x_{1}, x_{2} \ge 0$$

Problem (B)

$$\max_{x_1, x_2} \phi = x_1^2 + x_2^2$$
s.t.
 $x_1 + x_2 \le 2$
 $x_1, x_2 \ge 0$

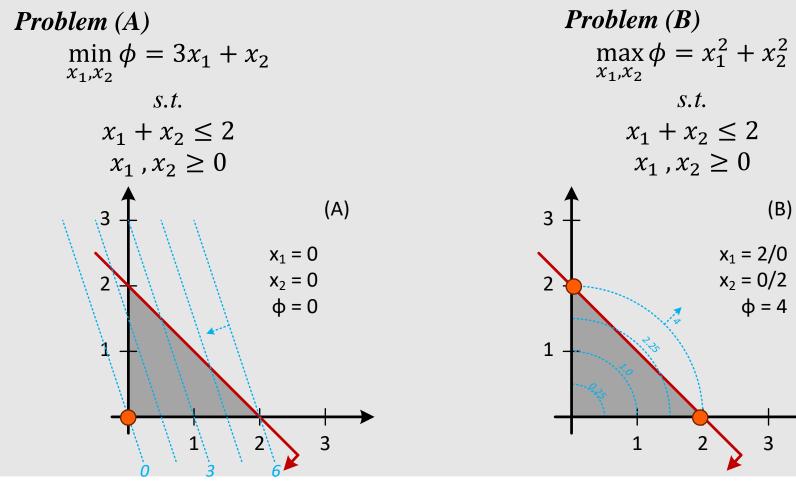


Optimization Outcomes

- \rightarrow Optimal solutions are points lying on the best objective function contour that intersects with at least one boundary of the feasible region.
- →The optimal value ϕ^* is defined to be the value of the objective at the optimum(s): $\phi^* \triangleq \phi(x^*)$.
- \rightarrow An optimization model can have only one true optimal value. It may have:
 - A **unique** optimal solution.
 - Several **alternative** solutions x^* yielding the same optimal ϕ^* .
 - No optimal solutions (either the problem is unbounded or infeasible).

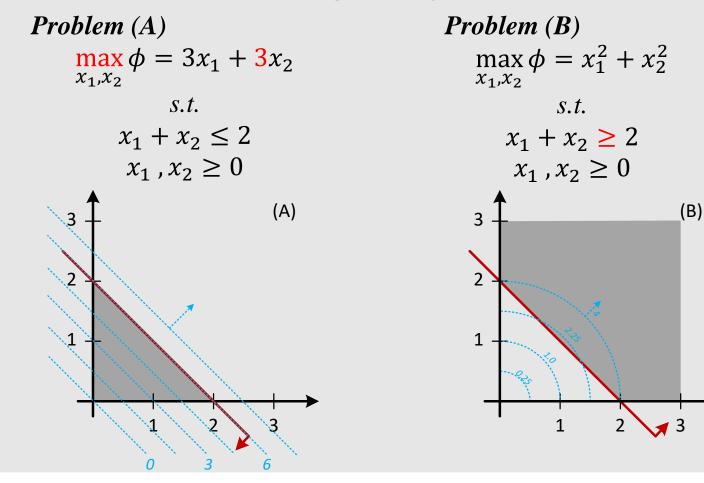
Optimization Outcomes

Considering the same optimization problems as before:



Optimization Outcomes

 \rightarrow Some optimization problems have degeneracy and unboundedness



Comments on Constraints

 \rightarrow A constraint $g(x) \le 0$ is said to be:

- Active (or binding) at some point x^* if $g(x^*) = 0$.
- **Inactive** at some point x^* if $g(x^*) < 0$.

 \rightarrow Active constraints:

- The set of constraints that are active at the optimal solution are known as the active set.
- Equality constraints are **ALWAYS** active at any feasible optimal point.
- No constraints (inequality or equality) may be violated at any optimal point.

Optimization Formulation Example

 \rightarrow A refinery distills crude petroleum into three products: gasoline, jet fuel, and lubricants.

 \rightarrow Your plant receives crude oil shipments from Canada and USA. You want to minimize the cost.

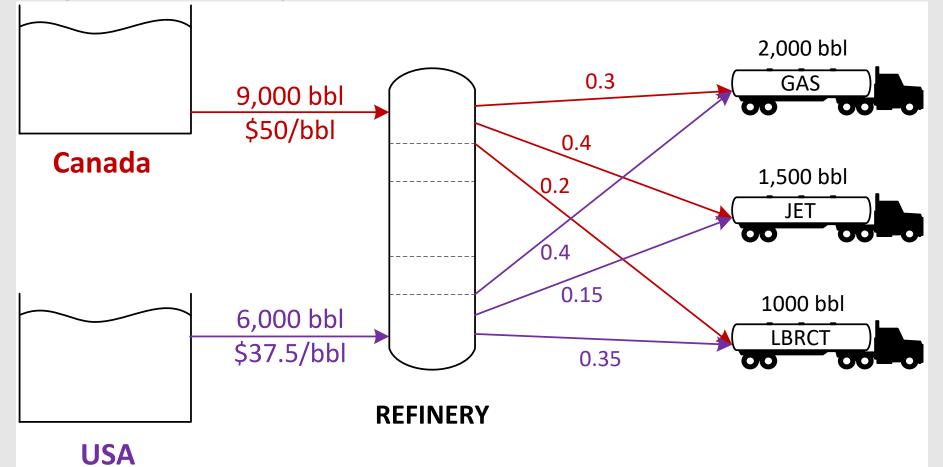
- Each barrel from Canada yields 0.3 barrels of gasoline, 0.4 barrels of jet fuel, and 0.2 barrels of lubricants.
- Each barrel from USA yields 0.4 barrels of gasoline, 0.15 barrels of jet fuel, and 0.35 barrels of lubricants.
- The remaining 0.1 (10%) from both sources is lost to the refining process.
- The Canadian oil costs your refinery \$50 per barrel and is available up to 9,000 barrels per day.
- The American crude costs your refinery \$37.5 but only available up to 6,000 barrels per day.

ightarrowYou have a contract with local distributors to provide per day

- 2,000 barrels of gasoline
- 1,500 barrels of jet fuel
- 1000 barrels of lubricant

Linear Optimization Example

 \rightarrow Draw a diagram of the supply network



Optimization Formulation Example

 \rightarrow Formulate the optimization problem:

$\min_{x_1,x_2} \boldsymbol{\phi}$	=	$50x_1 + 37.5x_2$	
Subjec			
$0.3x_1 + 0.4x_2$	\geq	2,000	
$0.4x_1 + 0.15x_2$	\geq	1,500	
$0.2x_1 + 0.35x_2$	\geq	1,000	
x_1	\leq	9,000	
x_2	\leq	6,000	
x_i	\geq	0	$(\forall i)$

Optimization Example

→For this problem, we can start with a graphical model:

- Plot the constraints and objective function
- Visually identify the optimal value and feasible set

