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Linear Optimization

→Linear programming (i.e., linear optimization) is the best (i.e., optimal) method of optimizing if

the model is linear

• Even when the model is nonlinear (i.e., contains nonlinear terms such as 𝒙, 𝒙𝟐, 𝒙𝟏𝒙𝟐, …), you

might want to locally linearize it* just to use linear programming.

• *You can do this with a linearization (a first order Taylor series expansion) around the point

→Wide variety of use cases in economics and beyond

• Resource allocation

• Project selection

• Scheduling and Capital budgeting

• Energy network optimization

→Is the most widely used optimization method (by people; maybe not machines or nature)
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Linear Program Definition

→An optimization model is a Linear Program (and therefore can be solved with linear 

programming) if it:

• is comprised of only continuous variables (variables aren’t discrete or discontinuous),

• has a single linear objective function (e.g., 3𝑥 + 2𝑦 − 𝑧 instead of 3𝑥2 + 2𝑦 − 𝑧, 

otherwise could have a max or min not at a boundary), and

• has only linear equality and/or inequality constraints (i.e., boundaries of the feasible 

region are straight lines).
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Linear Program Definition

→A linear program has the following general formulation notation:

min
𝒙

𝜙 = 𝒄𝑇𝒙  Objective Function

s.t.  “Subject to”

𝐴ℎ𝒙 = 𝒃ℎ  Equality Constraints

𝐴𝑔𝒙 ≤ 𝒃𝑔  Inequality Constraints

𝒙𝑙𝑏 ≤ 𝒙 ≤ 𝒙𝑢𝑏  Variable Bounds

• 𝑥𝑗 → jth decision variable.

• 𝑐𝑗 → jth cost coefficient for the jth decision variable.

• 𝑎𝑖,𝑗 → constraint coefficient for variable j in constraint i.

• 𝑏𝑖 → RHS coefficient for constraint i 

• 𝐴ℎ and 𝐴𝑔 both have n columns and mh and mg rows, respectively
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Linear Program Definition

→Note how this notion is different from the ‘general’ formulation previously described

→We can replace the objective function 𝑓(𝒙) with a left-multiplication by vector 𝒄𝑇 (i.e., a dot product) because 

we specify that the objective function is a linear combination of the decision variables 𝒙

→The constraints are updated to specify linear combinations instead of general functions

min
𝒙

𝜙 = 𝒄𝑇𝒙

s.t.

𝐴ℎ𝒙 = 𝒃ℎ

𝐴𝑔𝒙 ≤ 𝒃𝑔

𝒙𝑙𝑏 ≤ 𝒙 ≤ 𝒙𝑢𝑏

min
𝒙

𝜙 = 𝑓(𝒙)

s.t.

ℎ 𝒙 = 0

𝑔 𝒙 ≤ 0

𝒙𝑙𝑏 ≤ 𝒙 ≤ 𝒙𝑢𝑏

Generalized Program Linear Program
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Recall: Linear Optimization Example

→A refinery distills crude petroleum into three products: gasoline, jet fuel, and lubricants. 

→Your plant receives crude oil shipments from two locations: Canada and USA

• Each barrel from Canada yields 0.3 barrels of gasoline, 0.4 barrels of jet fuel, and 0.2 barrels of lubricants.

• Each barrel from USA yields 0.4 barrels of gasoline, 0.15 barrels of jet fuel, and 0.35 barrels of lubricants.

• The remaining 0.1 (10%) from both sources is lost to the refining process. 

• The Canadian oil costs your refinery $50 per barrel and is available up to 9,000 barrels per day.

• The American crude costs your refinery $37.5 but only available up to 6,000 barrels per day.

→You have a contract with local distributors to provide per day

• 2,000 barrels of gasoline

• 1,500 barrels of jet fuel

• 1000 barrels of lubricant 
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Linear Optimization Example

→Draw a diagram of the supply network
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Recall: Linear Optimization Example

→Formulate the linear optimization problem:

𝐦𝐢𝐧
𝒙𝟏,𝒙𝟐

𝝓 = 𝟓𝟎𝒙𝟏 + 𝟑𝟕. 𝟓𝒙𝟐

Subject to

𝟎. 𝟑𝒙𝟏 + 𝟎. 𝟒𝒙𝟐 ≥ 𝟐, 𝟎𝟎𝟎

𝟎. 𝟒𝒙𝟏 + 𝟎. 𝟏𝟓𝒙𝟐 ≥ 𝟏, 𝟓𝟎𝟎

𝟎. 𝟐𝒙𝟏 + 𝟎. 𝟑𝟓𝒙𝟐 ≥ 𝟏, 𝟎𝟎𝟎

𝒙𝟏 ≤ 𝟗, 𝟎𝟎𝟎

𝒙𝟐 ≤ 𝟔, 𝟎𝟎𝟎

𝒙𝒊 ≥ 𝟎 (∀ 𝒊)
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Recall: Linear Optimization Example - Excel

→For this simple linear model, we can start with a 

graphical model:

• Plot the constraints and objective function

• Visually identify the optimal value and feasible set
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OPT

x2

x1

𝐦𝐢𝐧
𝒙𝟏,𝒙𝟐

𝝓 = 𝟓𝟎𝒙𝟏 + 𝟑𝟕. 𝟓𝒙𝟐

Subject to

𝟎. 𝟑𝒙𝟏 + 𝟎. 𝟒𝒙𝟐 ≥ 𝟐, 𝟎𝟎𝟎
𝟎. 𝟒𝒙𝟏 + 𝟎. 𝟏𝟓𝒙𝟐 ≥ 𝟏, 𝟓𝟎𝟎
𝟎. 𝟐𝒙𝟏 + 𝟎. 𝟑𝟓𝒙𝟐 ≥ 𝟏, 𝟎𝟎𝟎

𝒙𝟏 ≤ 𝟗, 𝟎𝟎𝟎
𝒙𝟐 ≤ 𝟔, 𝟎𝟎𝟎
𝒙𝒊 ≥ 𝟎 (∀ 𝒊)
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Linear Optimization Example - Excel

→We can also verify this solution 

using Excel

→Our model can be entered into 

Excel like this →
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Linear Optimization Example - Excel

→After setting up the Excel sheet, use Data → Analyze → Solver:

For linear models 

use “Simplex LP”
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Linear Optimization Example - Excel

→Solve → OK
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Answer Report

→The Answer Report gives the following 

computation details:

• Time and number of iterations to solve

• Objective function results 

• Decision variables 

• Constraints (cell value, formula, status 

(binding/not binding) and slack)

→Slack

• shows how far the optimal solution is 

from the constraint. 

• For binding constraints, the slack is 0. 

Changing non-binding variables within 

their slack value will not change the 

optimal solution.
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Sensitivity Report (1/2): Decision Variables

→The Sensitivity Report is used to analyze how the model’s constraints affect the optimum

→Decision variables (final value, reduced cost, objective coefficient (𝑐), allowable increase/decrease) 

• Reduced cost is the amount the objective function will change if the variable bounds are tightened (𝒙𝑙𝑏 is 

increased or 𝒙𝑢𝑏 is decreased)

• Allowable increase/decrease indicate how 

much the objective coefficient must change 

before the optimal solution changes (note 

that the objective function value may change, 

but not the solution)

→100% Rule: If there are simultaneous changes to 

the objective coefficients and 

σ𝑒𝑎𝑐ℎ 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡
𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐶ℎ𝑎𝑛𝑔𝑒

𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝐶ℎ𝑎𝑛𝑔𝑒
≤ 100% 

then the optimal solution would not change
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Sensitivity Report (2/2): Constraints

→Constraints (final value, shadow price, constraints RH side, allowable increase/decrease)

• Final value shows the value of the constraints at the optimal solution 

• The difference between Constraints R.H. side and the final value is the slack of the constraint

• The shadow price of a constraint is the 

marginal improvement of the objective 

function value if the RHS is increased by 

1 unit (while holding all other constraints 

constant)

• All inactive constraints will have a 

shadow price of 0

• Allowable increase/decrease shows 

how much the constraint can change 

before the shadow price changes
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LP with Integer Variables

→You can only purchase integer number of barrels. 

Add integer constraints 

to the decision variables
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LP with Integer Variables

→Only answer report is available in Excel for integer problems (i.e. no sensitivity 

report)
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Linear Programming in Excel Example 2
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Linear Programming in Excel Example 2

Maximize profit:

sale price –

(manufacturing cost + shipping cost)

→max
𝒙

𝜙 = 𝒄𝑇𝑿

→ s.t.→
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Linear Programming in Excel Example 2

max
𝒙

𝜙 = 𝒄𝑇𝑿
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Linear Programming in Excel Example 2

max
𝒙

𝜙 = 𝒄𝑇𝑿
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Linear Programming in Excel Example 2

max
𝒙

𝜙 = 𝒄𝑇𝑿
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Linear Programming in Excel Example 2

max
𝒙

𝜙 = 𝒄𝑇𝑿
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Formulating the Problem on Excel: Objective
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Formulating the Problem on Excel: Constraints
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Solution Diagram
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