ENG 3PX3 - Engineering Economics

Linear Optimization

Linear Optimization

→Linear programming (i.e., linear optimization) is the best (i.e., optimal) method of optimizing if the model is linear

- Even when the model is nonlinear (i.e., contains nonlinear terms such as \sqrt{x} , x^2 , x_1x_2 , ...), you might want to *locally linearize it** just to use linear programming.
 - *You can do this with a linearization (a first order Taylor series expansion) around the point

 \rightarrow Wide variety of use cases in economics and beyond

- Resource allocation
- Project selection
- Scheduling and Capital budgeting
- Energy network optimization

 \rightarrow Is the most widely used optimization method (by people; *maybe* not machines or nature)

Linear Program Definition

→An optimization model is a Linear Program (and therefore can be solved with *linear programming*) if it:

- is comprised of only continuous variables (variables aren't discrete or discontinuous),
- has a single linear objective function (e.g., 3x + 2y z instead of $3x^2 + 2y z$, otherwise could have a max or min *not* at a boundary), and
- has only linear equality and/or inequality constraints (i.e., boundaries of the feasible region are straight lines).

3

Linear Program Definition

 \rightarrow A linear program has the following general formulation notation:

 $\min_{x} \phi = c^{T} x$ s.t. $A_{h} x = b_{h}$ $A_{g} x \leq b_{g}$ $x_{lb} \leq x \leq x_{ub}$ ← Objective Function
 ← "Subject to"
 ← Equality Constraints
 ← Inequality Constraints
 ← Variable Bounds

- $x_j \rightarrow j^{th}$ decision variable.
- $c_j \rightarrow j^{th}$ cost coefficient for the j^{th} decision variable.
- $a_{i,j} \rightarrow \text{constraint coefficient for variable } j \text{ in constraint } i.$
- $b_i \rightarrow \text{RHS}$ coefficient for constraint *i*
- A_h and A_g both have *n* columns and m_h and m_g rows, respectively

4

Linear Program Definition

 \rightarrow Note how this notion is different from the 'general' formulation previously described

Generalized ProgramLinear Program $\min_{x} \phi = f(x)$ $\min_{x} \phi = c^{T} x$ s.t.s.t.h(x) = 0s.t. $g(x) \leq 0$ $A_{h}x = b_{h}$ $x_{lb} \leq x \leq x_{ub}$ $x_{lb} \leq x \leq x_{ub}$

→We can replace the objective function f(x) with a left-multiplication by vector c^T (i.e., a dot product) because we specify that the objective function is a linear combination of the decision variables x
 →The constraints are updated to specify linear combinations instead of general functions

McMaste

Recall: Linear Optimization Example

 \rightarrow A refinery distills crude petroleum into three products: gasoline, jet fuel, and lubricants.

ightarrowYour plant receives crude oil shipments from two locations: Canada and USA

- Each barrel from Canada yields 0.3 barrels of gasoline, 0.4 barrels of jet fuel, and 0.2 barrels of lubricants.
- Each barrel from USA yields 0.4 barrels of gasoline, 0.15 barrels of jet fuel, and 0.35 barrels of lubricants.
- The remaining 0.1 (10%) from both sources is lost to the refining process.
- The Canadian oil costs your refinery \$50 per barrel and is available up to 9,000 barrels per day.
- The American crude costs your refinery \$37.5 but only available up to 6,000 barrels per day.

ightarrowYou have a contract with local distributors to provide per day

- 2,000 barrels of gasoline
- 1,500 barrels of jet fuel
- 1000 barrels of lubricant

McMast

Linear Optimization Example

 \rightarrow Draw a diagram of the supply network

7

Recall: Linear Optimization Example

 \rightarrow Formulate the linear optimization problem:

$\min_{x_1,x_2} \boldsymbol{\phi}$	=	$50x_1 + 37.5x_2$	
Subjec	ct to		
$0.3x_1 + 0.4x_2$	\geq	2,000	
$0.4x_1 + 0.15x_2$	\geq	1, 500	
$0.2x_1 + 0.35x_2$	2	1,000	
x_1	\leq	9,000	
x_2	\leq	6,000	
<i>xi</i>	\geq	0	$(\forall i)$

McMaster

Recall: Linear Optimization Example - Excel

→For this simple linear model, we can start with a graphical model:

- Plot the constraints and objective function
- Visually identify the optimal value and feasible set

$\min_{x_1,x_2} \boldsymbol{\phi}$	= 50	$0x_1 + 37.5x_2$	
Subje	ct to		
$0.3x_1 + 0.4x_2$	\geq	2,000	
$0.4x_1 + 0.15x_2$	\geq	1, 500	
$0.2x_1 + 0.35x_2$	\geq	1,000	
x ₁	\leq	9,000	
x ₂	\leq	6,000	
<i>x_i</i>	\geq	0	$(\forall i)$

Linear Optimization Example - Excel

 \rightarrow We can also verify this solution

using Excel

 \rightarrow Our model can be entered into

Excel like this \rightarrow

	А	В	С	D	Е	F	G
1	Oil Refinery						
2							
3	Country	Variable	#bbl	Cost/bbl	Gas	Jet	Lubricant
4	Canada	x1	1	\$ 50.00	0.3	0.4	0.2
5	USA	x2	1	\$ 37.50	0.4	0.15	0.35
6	Objective Function						
7	Cost	\$ 87.50	Forumla: =	C4*D4+C5	*D5		
8							
9	Constraints				Formula		
10	Gas Demand	0.7	>=	2000	C4*E4+C5	*E5	
11	Jet Demand	0.55	>=	1500	C4*F4+C5	*F5	
12	Lubricant Demand	0.55	>=	1000	C4*G4+C5	*G5	
13	Canada Limit	1	<=	9000	C4		
14	USA Limit	1	<=	6000	D4		
15	Non-negative x1	1	>=	0	C4		
16	Non-negative x2	1	>=	0	D4		
47							

McMaster

Linear Optimization Example - Excel

\rightarrow After setting up the Excel sheet, use Data \rightarrow Analyze \rightarrow Solver:

B7	· · · · · · · · · · · · · · · · · · ·	$(\checkmark f_x)$				Solver Parameters X	
	А	В	С	D	Е		1
1	Oil Refinery					Set Objective: \$8\$7	
2							
3	Country	Variable	#bbl	Cost/bbl	Gas	To: O Max O Min O Value Of: 0	
4	Canada	x1	1	\$ 50.00	C	By Changing Variable Cells:	
5	USA	x2	1	\$ 37.50	C	SC\$4:SC\$5	
6	Objective Function					3(34:3(3)	
7	Cost	\$ 87.50	Forumla: =	C4*D4+C5	*D5	Subject to the Constraints:	
8						\$B\$10:\$B\$12 >= \$D\$10:\$D\$12	
9	Constraints				Formula	\$B\$13;\$B\$14 <= \$D\$13;\$D\$14 \$B\$15;\$B\$16 >= \$D\$15;\$D\$16	
10	Gas Demand	0.7	>=	2000	C4*E4+	<u>Change</u>	
	Jet Demand	0.55			C4*F4+0		
12	Lubricant Demand	0.55	>=	1000	C4*G4+	Delete	
13	Canada Limit	1	<=	9000	C4		
14	USA Limit	1	<=	6000	D4	<u>R</u> eset All	
15	Non-negative x1	1	>=	0	C4	Load/Save	
16	Non-negative x2	1	>=	0	D4	Make Unconstrained Variables Non-Negative	
17							
18					_	Select a Solving Simplex LP Options Options	
19						Hickory .	
20					_	Solving Method	
21						Select the GRG Nonlinear engine for Solver Problems that are smooth nonlinear. Select the LP Simplex	
22						engine for linear Solver Problems, and select the Evolutionary engine for Solver problems that are non-smooth.	
23							
24							
25						Help Solve Cl <u>o</u> se	
26							

For linear models use "Simplex LP"

11

Linear Optimization Example - Excel

\rightarrow Solve \rightarrow OK

Solver Results	×
Solver found a solution. All Constraints and optimality conditions are satisfied.	Reports
 Keep Solver Solution Restore Original Values 	Answer Sensitivity Limits
Return to Solver Parameters Dialog	Outline Reports
<u>O</u> K <u>C</u> ancel	<u>S</u> ave Scenario
Solver found a solution. All Constraints and optimali	ity conditions are satisfied.

When the GRG engine is used, Solver has found at least a local optimal solution. When Simplex LP is used, this means Solver has found a global optimal solution.

	А	В	С	D	E	F	G	
1	Oil Refinery							
2								
3	Country	Variable	#bbl	Cost/bbl	Gas	Jet	Lubricant	
4	Canada	x1	2608.696	\$ 50.00	0.3	0.4	0.2	
5	USA	x2	3043.478	\$ 37.50	0.4	0.15	0.35	
6	Objective Function							
7	Cost	\$244,565.22	Forumla: =	C4*D4+C5	*D5			
8								
9	Constraints				Formula			
10	Gas Demand	2000	>=	2000	C4*E4+C5	*E5		
11	Jet Demand	1500	>=	1500	C4*F4+C5	*F5		
12	Lubricant Demand	1586.956522	>=	1000	C4*G4+C5	*G5		
13	Canada Limit	2608.695652	<=	9000	C4			
14	USA Limit	3043.478261	<=	6000	D4			
15	Non-negative x1	2608.695652	>=	0	C4			
16	Non-negative x2	3043.478261	>=	0	D4			

12

McMaster

Answer Report

- →The Answer Report gives the following computation details:
 - Time and number of iterations to solve
 - Objective function results
 - Decision variables
 - Constraints (cell value, formula, status (binding/not binding) and slack)
- \rightarrow Slack
 - shows how far the optimal solution is from the constraint.
 - For binding constraints, the slack is 0. Changing non-binding variables within their slack value will not change the optimal solution.

		A B	С	D	E	F	G
1	3						
1	4	Objective	e Cell (Min)			_	
1	5	Cell	Name	Original Value	Final Value	-	
1	6	\$B\$7	Cost Variable	\$ 87.50	\$ 244,565.22	-	
- 1	7					•	
1	8						
1	9	Variable	Cells				
2	0	Cell	Name	Original Value	→Final Value	Integer	•
	1	\$C\$4	Canada #bbl	1	2608.695652	Contin	•
2	2	\$C\$5	USA #bbl	1	3043.478261	Contin	-
2	3						•
2	4						
2	5	Constrair	nts				
2	6	Cell	Name	Cell Value	Formula	Status	Slack
2	7	\$B\$10	Gas Demand Variable	2000	\$B\$10>=\$D\$10	Binding	0
2	8	\$B\$11	Jet Demand Variable	1500	\$B\$11>=\$D\$11	Binding	0
2	9	\$B\$12	Lubricant Demand Variable	1586.956522	\$B\$12>=\$D\$12	Not Binding	586.9565217
3	0	\$B\$13	Canada Limit Variable	2608.695652	\$B\$13<=\$D\$13	Not Binding	6391.304348
3	1	\$B\$14	USA Limit Variable	3043.478261	\$B\$14<=\$D\$14	Not Binding	2956.521739
3	2	\$B\$15	Non-negative x1 Variable	2608.695652	\$B\$15>=\$D\$15	Not Binding	2608.695652
3	3	\$B\$16	Non-negative x2 Variable	3043.478261	\$B\$16>=\$D\$16	Not Binding	3043.478261
			-				

Sensitivity Report (1/2): Decision Variables

 \rightarrow The Sensitivity Report is used to analyze how the model's constraints affect the optimum \rightarrow Decision variables (final value, reduced cost, objective coefficient (*c*), allowable increase/decrease)

- Reduced cost is the amount the objective function will change if the variable bounds are tightened (x_{lb} is increased or x_{ub} is decreased)
- Allowable increase/decrease indicate how much the objective coefficient must change before the optimal solution changes (note that the objective function value may change, but not the solution)
- \rightarrow **100% Rule:** If there are simultaneous changes to the objective coefficients and

 $\sum_{each \ coefficient} \left(\frac{Proposed \ Change}{Allowable \ Change} \right) \leq 100\%$ then the optimal solution would not change

Sensitivity Report (2/2): Constraints

→Constraints (final value, shadow price, constraints RH side, allowable increase/decrease)

- Final value shows the value of the constraints at the optimal solution
 - The difference between Constraints R.H. side and the final value is the slack of the constraint
- The shadow price of a constraint is the marginal improvement of the objective function value if the RHS is increased by 1 unit (while holding all other constraints constant)
 - All inactive constraints will have a shadow price of 0
- Allowable increase/decrease shows how much the constraint can change before the shadow price changes

	A B	С	D	Е	F	G	Н
4							
5							
6	Variable (Cells					
7			Final	Reduced	Objective	Allowable	Allowable
8	Cell	Name	Value	Cost	Coefficient	Increase	Decrease
9	ŞC\$4	Canada #bbl	2608.695652	0	50	50	21.875
10	\$C\$5	USA #bbl	3043.478261	0	37.5	29.16666667	18.75
11							
12	Constrain						
12	Constrain	its					
13		its	Final	Shadow	Constraint	Allowable	Allowable
		Name	Final Value	Shadow Price	Constraint R. H. Side	Allowable	Allowable Decrease
13	Cell		*				
13 14	Cell \$B\$10	Name	Value	Price	R.H. Side	Increase	Decrease
13 14 15	Cell \$B\$10 \$B\$11	Name Gas Demand Variable	Value 2000	Price 65.2173913	R.H. Side 2000	Increase 850	Decrease 613.6363636
13 14 15 16	Cell \$B\$10 \$B\$11 \$B\$12	Name Gas Demand Variable Jet Demand Variable	Value 2000 1500	Price 65.2173913 76.08695652	R.H. Side 2000 1500	Increase 850 1166.666667	Decrease 613.6363636 750
13 14 15 16 17	Cell \$B\$10 \$B\$11 \$B\$12 \$B\$13	Name Gas Demand Variable Let Demand Variable Lubricant Demand Variable	Value 2000 1500 1586.956522	Price 65.2173913 76.08695652 0	R.H. Side 2000 1500 1000	Increase 850 1166.666667 586.9565217	Decrease 613.6363636 750 1E+30
13 14 15 16 17	Cell \$B\$10 \$B\$11 \$B\$12 \$B\$13 \$B\$14	Name Gas Demand Variable Let Demand Variable Lubricant Demand Variable Canada Limit Variable	Value 2000 1500 1586.956522 2608.695652	Price 65.2173913 76.08695652 0 0	R.H. Side 2000 1500 1000 9000	Increase 850 1166.666667 586.9565217 1E+30	Decrease 613.6363636 750 1E+30 6391.304348
13 14 15 16 17 18 19	Cell \$B\$10 \$B\$11 \$B\$12 \$B\$13 \$B\$14 \$B\$15	Name Gas Demand Variable Let Demand Variable Lubricant Demand Variable Canada Limit Variable USA Limit Variable	Value 2000 1500 1586.956522 2608.695652 3043.478261	Price 65.2173913 76.08695652 0 0 0	R.H. Side 2000 1500 1000 9000 6000	Increase 850 1166.666667 586.9565217 1E+30 1E+30	Decrease 613.6363636 750 1E+30 6391.304348 2956.521739

LP with Integer Variables

\rightarrow You can only purchase integer number of barrels.

Α	В	С	D	E	1	F		Solver Parameters				
Oil Refinery												
Country	Variable	#bbl	Cost/bbl	Gas	Jet		Lut	Se <u>t</u> Objective:		\$B\$7		
Canada		2609	\$ 50.00	0.3	;	0.4		То: <u>М</u> ах	Min	Value Of:	0	
USA		3044	\$ 37.50	0.4	ł	0.15		0	0 <u>a</u>	0 1		
Objective Function								By Changing Variable Ce	lls:			
Cost	\$244,600.00	Forumla: =	=C4*D4+C5	*D5				\$C\$4:\$C\$5				
Constraints				Formula			-	Subject to the Constraint				
Gas Demand	2000.3	>=	2000	C4*E4+C5	*F5			\$B\$10:\$B\$12 >= \$D\$10: \$B\$13:\$B\$14 <= \$D\$13:				<u>A</u> dd
Jet Demand	1500.2			C4*F4+C5				¢8¢15;¢8¢16 - ¢0¢15;				Channer
Lubricant Demand	1587.2			C4*G4+C5				\$C\$4:\$C\$5 = integer				<u>C</u> hange
Canada Limit	2609		9000									<u>D</u> elete
USA Limit	3044	<=	6000	D4								
Non-negative x1	2609	>=	0	C4								<u>R</u> eset All
Non-negative x2	3044	>=	0	D4							~	Load/Save
							_	Ma <u>k</u> e Unconstrained	Variables Non-N	Vegative		Eddybure
								S <u>e</u> lect a Solving Method:	implex LP		~	Options
										lver Problems that are sn select the Evolutionary en		
								Help			<u>S</u> olve	Close

Add integer constraints to the decision variables

 \times

LP with Integer Variables

report)

\rightarrow Only answer report is available in Excel for integer problems (i.e. no sensitivity

	AB	С	D	E	F	G
13			5	-		
14	Objective Cell (I	Min)				
15	Cell	Name	Original Value	Final Value		
16	\$B\$7	Cost Variable	\$ 244,565.22	\$ 244,600.00	-	
17	<u> </u>		. ,			
18						
19	Variable Cells					
20	Cell	Name	Original Value	Final Value	Integer	
21	\$C\$4	Canada #bbl	2608.695652	2609	Integer	
22	\$C\$5	USA #bbl	3043.478261	3044	Integer	
23						
24						
25	Constraints					
26	Cell	Name	Cell Value	Formula	Status	Slack
27	\$B\$10	Gas Demand Variable	2000.3	\$B\$10>=\$D\$10	Not Binding	0.
28	\$B\$11	Jet Demand Variable	1500.2	\$B\$11>=\$D\$11	Not Binding	0.
29	\$B\$12	Lubricant Demand Variable	1587.2	\$B\$12>=\$D\$12	Not Binding	587.
30	\$B\$13	Canada Limit Variable	2609	\$B\$13<=\$D\$13	Not Binding	639
31	\$B\$14	USA Limit Variable	3044	\$B\$14<=\$D\$14	Not Binding	295
32	\$B\$15	Non-negative x1 Variable	2609	\$B\$15>=\$D\$15	Not Binding	260
33	\$B\$16	Non-negative x2 Variable	3044	\$B\$16>=\$D\$16	Not Binding	304
34	CCC4.CCCF_I					
5-	\$C\$4:\$C\$5=I	nteger				

18

McMaster

Maximize profit:

sale price –

(manufacturing cost + shipping cost)

$$\Rightarrow \max_{x} \phi = c^{T} X$$
$$\Rightarrow \text{ s.t. } \Rightarrow$$

McMaster

Formulating the Problem on Excel: Objective

	A	В	С	D	E	F	G	Н	I.	J	K
1	Variable Index	Device	Plant	Retailer	Cost	Shipping	Price	Profit/device	Devices Made		Total Profit
2	A11	Α	1	1	\$200.00	\$ 20.00	\$500.00	\$ 280.00	0		C
3	A12	Α	1	2	\$ 200.00	\$ 30.00	\$450.00	\$ 220.00	0		
4	A13	Α	1	3	\$200.00	\$ 50.00	\$400.00	\$ 150.00	0		
5	A21	Α	2	1	\$150.00	\$ 60.00	\$500.00	\$ 290.00	0		
6	A22	Α	2	2	\$150.00	\$ 40.00	\$450.00	\$ 260.00	0		
7	A23	Α	2	3	\$150.00	\$ 10.00	\$400.00	\$ 240.00	0		
8	B11	В	1	1	\$350.00	\$ 20.00	\$650.00	\$ 280.00	0		
9	B12	В	1	2	\$ 350.00	\$ 30.00	\$650.00	\$ 270.00	0		
0	B13	В	1	3	\$ 350.00	\$ 50.00	\$600.00	\$ 200.00	0		
1	B21	В	2	1	\$ 300.00	\$ 60.00	\$650.00	\$ 290.00	0		
2	B22	В	2	2	\$ 300.00	\$ 40.00	\$650.00	\$ 310.00	0		
3	B23	В	2	3	\$ 300.00	\$ 10.00	\$600.00	\$ 290.00	0		
4	C11	С	1	1	\$ 300.00	\$ 20.00	\$ 600.00	\$ 280.00	0		
5	C12	С	1	2	\$ 300.00	\$ 30.00	\$650.00	\$ 320.00	0		
6	C13	С	1	3	\$ 300.00	\$ 50.00	\$550.00	\$ 200.00	0		
7	C21	С	2	1	\$350.00	\$ 60.00	\$600.00	\$ 190.00	0		
8	C22	С	2	2	\$350.00	\$ 40.00	\$650.00	\$ 260.00	0		
9	C23	C	2	3	\$ 350.00	\$ 10.00	\$550.00	\$ 190.00	0		

Formulating the Problem on Excel: Constraints

	А	В	С	D	Е	F	G
21	Constraints						
22	Name	Value		RHS	Formula		
23	A Demand 1	0	<=	3,000	12+15		
24	A Demand 2	0	<=	4000	13+16		
25	A Demand 3	0	<=	2000	14+17		
26	B Demand 1	0	<=	5000	18+111		
27	B Demand 2	0	<=	3000	19+112		
28	B Demand 3	0	<=	5000	110+113		
29	C Demand 1	0	<=	7000	14+ 17		
30	C Demand 2	0	<=	3000	115+118		
31	C Demand 3	0	<=	3000	116+119		
32	A Capacity 1	0	<=	10000	SUM(12:14))	
33	A Capacity 2	0	<=	12000	SUM(I5:I7))	
34	B Capacity 1	0	<=	5000	SUM(18:11	D)	
35	B Capacity 2	0	<=	8000	SUM(I11:I:	13)	
36	C Capacity 1	0	<=	7000	SUM(I14:I	16)	
37	C Capacity 2	0	<=	5000	SUM(I17:I:	19)	
38	Total Capacity 1	0	<=	15000	SUM(12:14,	18:110,114:1	16)
39	Total Capacity 2	0	<=	20000	SUM(15:17,	111:113,117	:119)
40	Shipping Capacit	0	<=	10000	12+18+114		
41	Shipping Capacit	0	<=	5000	I3+I9+I15		
42	Shipping Capacit	0	<=	3000	14+110+116	5	
43	Shipping Capacit	0	<=	3000	15+111+117	1	
44	Shipping Capacit	0	<=	5000	16+112+118	3	
45	Shpping Capacity	0	<=	8000	17+113+119)	

Solution Diagram

Solution

Total Profit: \$8,540,000

