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Nonlinear Optimization
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Solver Review

→Recall that we can use Solver to find an 

optimal value (maximum, minimum, or target 

value) for a formula in the objective cell
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Solver Review

→Recall that we can use Solver to find an 

optimal value (maximum, minimum, or target 

value) for a formula in the objective cell

→Solver adjusts the decision variable cells to 

compute the formulas in the objective and 

constraint cells

→It will adjust the values in the decision variable 

cells to satisfy the constraints and produce the 

optimal solution



5

Nonlinear Functions

→Consider the following NVF with 3 independent decision variables, D, L, and V:

𝑁𝑉 = $532 1 − 𝑐𝑉′ −
$3𝐿′𝐷′2

𝑉′
− $32

𝐿′ − 0.25 𝐿′

𝐷′4𝑉′2
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Nonlinear Functions

→Consider the following NVF with 3 independent decision variables, D, L, and V:

𝑁𝑉 = $532 1 − 𝑐𝑉′ −
$3𝐿′𝐷′2

𝑉′
− $32

𝐿′ − 0.25 𝐿′

𝐷′4𝑉′2

where each variable is unitless and defined relative to a starting or default value, i.e., 

𝐷′ ≡
𝐷

2mm
, 𝐿′ ≡

𝐿

30 cm
, and 𝑉′ ≡

𝑉

5 V

and these relative variables are allowed the following ranges:

𝐷′ ∈ 0.05,8 , 𝐿′ ∈ 0.1,10 , 𝑉′ ∈ 0.2,4 , 

(and 𝑐 = 0.02 is a parameter).
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Nonlinear Functions

→Consider the following NVF with 3 independent decision variables, D, L, and V:

𝑁𝑉 = $532 1 − 𝑐𝑉′ −
$3𝐿′𝐷′2

𝑉′
− $32

𝐿′ − 0.25 𝐿′

𝐷′4𝑉′2

→This objective function is nonlinear in these variables (it isn’t just a linear combination of 

them, 𝑐1𝐷 + 𝑐2𝐿 + 𝑐3𝑉)

• This means that Simplex LP won’t work

• ...but there are other solvers!
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Solving Methods on Excel

1. LP Simplex

• Used for linear models, 

• e.g., 𝑁𝑉 = 500𝑥1 + 15,000𝑥2
2. Generalized Reduced Gradient (GRG) Nonlinear

• Used for continuous, smooth nonlinear models

• e.g., 𝑁𝑉 = 500𝑥1𝑥2 + 15,000𝑥2
2

3. Evolutionary

• Used for discontinuous, non-smooth models

• e.g., Use of IF, COUNT, CEILING, etc. 

• or continuous ones with multiple local extrema

• e.g., 𝑁𝑉 =
3

(𝑥−2)2+1
+

4

𝑥−8 2+1
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Recall: Simplex LP (Solver Option #1)

→A model in which the objective cell and all constraints are linear functions of the decision 

variables

→Linear models will always be convex and are usually easier to solve than nonlinear models

→Since all the constraints are linear, the global optimal solution will lie at an “extreme point” 

where two or more constraints intersect

→In Simplex LP, it is always possible to determine whether the model has:

1. No feasible solution,

2. An unbounded objective, or

3. A globally optimal solution.



10

GRG Nonlinear (Solver Option #2)

→Generalized Reduced Gradient (GRG) Nonlinear is an algorithm used for models in which at 

least one of the constraints (or the objective) is a smooth nonlinear function of the decision 

variables

→Nonlinear constraints can make the feasible region have concave boundaries (which means 

simplex won’t work even if the objective is linear)

→GRG approach:

• Compute gradient at trial solution and move in direction of negative (when minimizing) or 

positive (when maximizing) gradient

• (do complex things to optimize how much of a step you take based on things like how quickly 

the gradient is changing)
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GRG Nonlinear (Solver Option #2)

→GRG methods can normally only find a local optimal solution 

• Based on the starting point of the decision variables, it can get stuck at a local optimum 

• The multistart option can increase the chance of finding a global optimal solution

→Solver will iterate until either:

• The maximum number of iterations (ran out of tries) is met

• The step size is smaller than the defined tolerance (got as close as we asked)
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GRG Nonlinear Example

→Consider the following nonlinear model:

max
𝑥1,𝑥2

𝜙 = 𝑥2 cos 2𝑥1 + 𝑥1 sin 𝑥2

s.t.

𝑥1, 𝑥2 ≤ 10

𝑥1, 𝑥2 ≥ 1
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GRG Nonlinear Example

→We can express the model in Excel as:
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GRG Nonlinear Example

→We will run the model with the following three starting values:

• 𝑥1, 𝑥2 = 1,1

• 𝑥1, 𝑥2 = 5,5

• 𝑥1, 𝑥2 = 9,9

→Notice how we get different results with each trial run:



15

GRG Nonlinear Example

→Our initial guesses 1,1 , 5,5 , 9,9 each resulted in a different local maxima!
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Evolutionary (Solver Option #3)

→Discontinuous and non-smooth nonlinear models should use the evolutionary solver

• e.g., if the function is non-smooth or discontinuous (so may not always have a gradient)

• e.g., if you have multiple local optima points that could confuse the GRG.
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Evolutionary (Solver Option #3)

→The Evolutionary Solver:

• uses random sampling to generate a population of trial solutions 

• refines where to generate the next generation of samples based on ‘fitness’ of the trial solutions

• Keeps going until the current solution stops getting better

• Relies on randomness, so each run may result in different answers or speeds

• More robust than GRG (i.e., less easily fooled and less sensitive to initial conditions depending on 

the objective), but typically slower than GRG (takes more iterations) when the function is well 

behaved.
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Example:

→Consider the following NVF with 3 independent decision variables, D, L, and V:

𝑁𝑉 = $532 1 − 𝑐𝑉′ −
$3𝐿′𝐷′2

𝑉′
− $32

𝐿′ − 0.25 𝐿′

𝐷′4𝑉′2

where each variable is unitless and defined relative to a starting or default value, i.e., 

𝐷′ ≡
𝐷

2mm
, 𝐿′ ≡

𝐿

30 cm
, and 𝑉′ ≡

𝑉

5 V

and these relative variables are allowed the following ranges:

𝐷′ ∈ 0.05,8 , 𝐿′ ∈ 0.1,10 , 𝑉′ ∈ 0.2,4 , (and 𝑐 = 0.02 is a parameter).

Which solver is best for this?
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Example:

→Consider the following NVF with 3 independent decision variables, D, L, and V:

𝑁𝑉 = $532 1 − 𝑐𝑉′ −
$3𝐿′𝐷′2

𝑉′
− $32

𝐿′ − 0.25 𝐿′

𝐷′4𝑉′2

→This objective function is nonlinear in these variables (it isn’t just a linear combination of 

them, 𝑐1𝐷 + 𝑐2𝐿 + 𝑐3𝑉)

• This means that Simplex LP won’t work

→But it is well behaved in the allowed range of variables (no discontinuities)

• → GRG nonlinear is likely best, but if there are multiple local extrema it could be tricked 

and we’ll need to use GRG with multistart or evolutionary.
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Nonlinear Functions

→Consider the following NVF in terms with 3 independent decision variables to choose 

from, D, L, and V: 𝑁𝑉 = $532 1 − 𝑐𝑉′ −
$3𝐿′𝐷′2

𝑉′
− $32

𝐿′−0.25 𝐿′

𝐷′4𝑉′2

• Setup and solved with GRG →
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Nonlinear Functions

→Consider the following NVF in terms with 3 independent decision variables to choose 

from, D, L, and V: 𝑁𝑉 = $532 1 − 𝑐𝑉′ −
$3𝐿′𝐷′2

𝑉′
− $32

𝐿′−0.25 𝐿′

𝐷′4𝑉′2

• Setup and solved with GRG →

How can we find out how sensitive the optimum (inputs and NV) is to 
parameters (like 𝒄) if we can’t use Simplex LP and get a sensitivity report?
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Nonlinear Solver Sensitivity Analysis

→Redo the optimization at a different parameter value

Increase parameter, c, by 10% and redo the optimization
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Nonlinear Solver Sensitivity Analysis

→Redo the optimization at a different parameter value

New optimum values for decision variables
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Nonlinear Solver Sensitivity Analysis

→Redo the optimization at a different parameter value

New optimal value for objective function
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Nonlinear Solver Sensitivity Analysis

→Redo the optimization at a different parameter value

New optimal value for objective function

Determine the effect of changing the parameter on NV and decision variable:
𝜕𝑁𝑉@𝑜𝑝𝑡

𝜕𝑐
≈
Δ𝑁𝑉@𝑜𝑝𝑡

Δ𝑐
=
524.8992 − 525.2756

0.022 − 0.02
= −188.2

similarly, 
𝜕𝐷′

𝜕𝑐
≈
Δ𝐷′

Δ𝑐
=
1.531181 − 1.520791

0.022 − 0.02
= 5.195
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Nonlinear Solver Sensitivity Analysis
→Spider plot has optimum’s change for % increase & decrease of parameter (not slope directly)
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Dealing with non-numeric decision variables

→Recall the NVF for nanoRIMS we worked with in Lecture 6 (to make spider & tornado plots):

𝑁𝑉 =
$896

week
− 𝐶𝑖𝑛𝑔𝑟𝑒𝑑 + 𝐶𝑠𝑝𝑎𝑐𝑒 + 𝐶𝑡𝑖𝑚𝑒 + 𝐶𝑑𝑒𝑣𝑖𝑐𝑒

𝑁𝑉 =
$896

week
−

$5

100 mL
× 𝑞𝑖𝑛𝑔𝑟𝑒𝑑 +

$12.5

hr
×
1

8
× 𝑡𝐹𝑢𝑚𝑒𝐻𝑜𝑜𝑑 +

$15

hr
× 𝑡𝐺𝑟𝑎𝑑𝑆𝑡𝑢𝑑𝑒𝑛𝑡 + 𝐶𝑑𝑒𝑣𝑖𝑐𝑒 +

$10

52
×

𝜌 ሶ𝒱
32 ሶ𝒱
𝜋𝐷4

ሶ𝒱
𝜋
+ 12𝜈𝐿 + 𝑔𝛥𝑧

10 mW
+ $1.1875

𝜋𝐷2

cm2

e.g., suppose we believe we can add a self-correction system to nanoRIMS 
for a cost increase of $400/yr reducing Grad Student  time required by 1 
hr/wk.  How could we modify the function to consider this non-numeric 
decision variable (add self-correction system or don’t)?

Is it possible to use a solver with “non-numeric” decision variables??? 
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Dealing with non-numeric decision variables

→Recall the NVF for nanoRIMS we worked with in Lecture 6 (to make spider & tornado plots):

𝑁𝑉 =
$896

week
− 𝐶𝑖𝑛𝑔𝑟𝑒𝑑 + 𝐶𝑠𝑝𝑎𝑐𝑒 + 𝐶𝑡𝑖𝑚𝑒 + 𝐶𝑑𝑒𝑣𝑖𝑐𝑒

𝑁𝑉 =
$896

week
−

$5

100 mL
× 𝑞𝑖𝑛𝑔𝑟𝑒𝑑 +

$12.5

hr
×
1

8
× 𝑡𝐹𝑢𝑚𝑒𝐻𝑜𝑜𝑑 +

$15

hr
× 𝑡𝐺𝑟𝑎𝑑𝑆𝑡𝑢𝑑𝑒𝑛𝑡 + 𝐶𝑑𝑒𝑣𝑖𝑐𝑒 +

$10

52
×

𝜌 ሶ𝒱
32 ሶ𝒱
𝜋𝐷4

ሶ𝒱
𝜋
+ 12𝜈𝐿 + 𝑔𝛥𝑧

10 mW
+ $1.1875

𝜋𝐷2

cm2

e.g., suppose we believe we can add a self-correction system to nanoRIMS 
for a cost increase of $400/yr reducing GS time required by 1 hr/wk.  
How could we modify the function to consider this non-numeric decision 
variable (add self-correction system or don’t)?

Is it possible to use a solver with “non-numeric” decision variables??? 

Warning – takes a long time!

Note that with evolutionary the lower & upper 
bounds need to be specified with direct references 
(B11:B12) and not indirect ones (G11:G12)
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