ENG 3PX3 - Engineering Economics

Nonlinear Optimization

Solver Review

 $\rightarrow \mbox{Recall}$ that we can use Solver to find an

optimal value (maximum,	minimum, or target
value) for a formula in the	objective cell

	А	В	С	D	E	F	G	
1	Oil Refinery							
2								
3	Country	Variable	#bbl	Cost/bbl	Gas	Jet	Lubricant	
4	Canada	x1	2608.696	\$ 50.00	0.3	0.4	0.2	
5	USA	x2	3043.478	\$ 37.50	0.4	0.15	0.35	
6	Objective Function							
7	Cost	\$244,565.22	Forumla: =	C4*D4+C5				
8								
9	Constraints				Formula			
10	Gas Demand	2000	>=	2000	C4*E4+C5	*E5		
11	Jet Demand	1500	>=	1500	C4*F4+C5	*F5		
12	Lubricant Demand	1586.956522	>=	1000	C4*G4+C5	*G5		
13	Canada Limit	2608.695652	<=	9000	C4			
14	USA Limit	3043.478261	<=	6000	D4			
15	Non-negative x1	2608.695652	>=	0	C4			
16	Non-negative x2	3043.478261	>=	0	D4			

Solver Review

 \rightarrow Recall that we can use Solver to find an

optimal value (maximum, minimum, or target

value) for a formula in the objective cell

 \rightarrow Solver adjusts the decision variable cells to

compute the formulas in the objective and

constraint cells

	А	В	С	D	E	F	G	
1	Oil Refinery							
2								
3	Country	Variable	#bbl	Cost/bbl	Gas	Jet	Lubricant	
4	Canada	x1	2608.696	\$ 50.00	0.3	0.4	0.2	
Э	USA	x2	3043.478	\$ 37.50	0.4	0.15	0.35	
6	Objective Functio	on						
7	Cost	\$244,565.22	Forumla: =	C4*D4+C5	*D5			
8								
9	Constraints				Formula			
10	Gas Demand	2000) >=	2000	C4*E4+C5	*E5		
11	Jet Demand	1500) >=	1500	C4*F4+C5	*F5		
12	Lubricant Deman	1586.956522	2 >=	1000	C4*G4+C5	*G5		
13	Canada Limit	2608.695652	2 <=	9000	C4			
14	USA Limit	3043.478261	<=	6000	D4			
15	Non-negative x1	2608.695652	2 >=	0	C4			
16	Non-negative x2	3043.478261	>=	0	D4			

Solver Review

 \rightarrow Recall that we can use Solver to find an

optimal value (maximum, minimum, or target value) for a formula in the objective cell

→Solver adjusts the decision variable cells to compute the formulas in the objective and constraint cells

→It will adjust the values in the decision variable cells to satisfy the constraints and produce the optimal solution

	Α	В	С	D	E	F	G	
1	Oil Refinery							
2								
3	Country	Variable	#bbl	Cost/bbl	Gas	Jet	Lubricant	
4	Canada	x1	2608.696	\$ 50.00	0.3	0.4	0.2	
5	USA	x2	3043.478	\$ 37.50	0.4	0.15	0.35	
6	Objective Function							
7	Cost	\$244,565.22	Forumla: =C4*D4+C5*D5		*D5			
8								
9	Constraints				Formula			
10	Gas Demand	2000	>=	2000	C4*E4+C5	*E5		
11	Jet Demand	1500	>=	1500	C4*F4+C5	*F5		
12	Lubricant Demand	1586.956522	>=	1000	C4*G4+C5	*G5		
13	Canada Limit	2608.695652	<=	9000	C4			
14	USA Limit	3043.478261	<=	6000	D4			
15	Non-negative x1	2608.695652	>=	0	C4			
16	Non-negative x2	3043.478261	>=	0	D4			

 \rightarrow Consider the following NVF with 3 independent decision variables, *D*, *L*, and *V*:

$$NV = \$532(1 - cV') - \frac{\$3L'D'^2}{V'} - \$32\frac{L' - 0.25\sqrt{L'}}{D'^4V'^2}$$

 $\Rightarrow \text{Consider the following NVF with 3 independent decision variables, D, L, and V:}$ $NV = \$532(1 - cV') - \frac{\$3L'D'^2}{V'} - \$32\frac{L' - 0.25\sqrt{L'}}{D'^4V'^2}$

where each variable is unitless and defined relative to a starting or default value, i.e.,

$$D' \equiv \frac{D}{2 \text{ mm}}$$
, $L' \equiv \frac{L}{30 \text{ cm}}$, and $V' \equiv \frac{V}{5 \text{ V}}$

and these relative variables are allowed the following ranges:

 $D' \in (0.05,8), L' \in (0.1,10), V' \in (0.2,4),$ (and c = 0.02 is a parameter).

 \rightarrow Consider the following NVF with 3 independent decision variables, *D*, *L*, and *V*:

$$NV = \$532(1 - cV') - \frac{\$3L'D'^2}{V'} - \$32\frac{L' - 0.25\sqrt{L'}}{D'^4V'^2}$$

 \rightarrow This objective function is *nonlinear* in these variables (it isn't just a linear combination of them, $c_1D + c_2L + c_3V$)

- This means that Simplex LP won't work
 - ...but there are other solvers!

Solving Methods on Excel

- 1. LP Simplex
 - Used for linear models,
 - e.g., $NV = 500x_1 + 15,000x_2$
- 2. Generalized Reduced Gradient (GRG) Nonlinear
 - Used for continuous, smooth nonlinear models
 - e.g., $NV = 500x_1x_2 + 15,000x_2^2$
- 3. Evolutionary
 - Used for discontinuous, non-smooth models
 - e.g., Use of IF, COUNT, CEILING, etc.
 - or continuous ones with multiple local extrema

• e.g.,
$$NV = \frac{3}{(x-2)^2+1} + \frac{4}{(x-8)^2+1}$$

Se <u>t</u> Obje	ctive:		\$B\$7		
To:	◯ <u>M</u> ax	Мі <u>п</u>	◯ <u>V</u> alue Of:	0	
By Chang	jing Variable C	ells:			
\$C\$4:\$C	-				
S <u>u</u> bject t	o the Constrain	its:			
	3\$12 >= \$D\$10 3\$14 <= \$D\$13			^	∆dd
	3\$16 >= \$D\$15				<u>C</u> hange
					<u>D</u> elete
					<u>R</u> eset All
				~	Load/Save
🗹 Ma <u>k</u> e	e Unconstraine	d Variables Non-N	legative		
S <u>e</u> lect a Method:		Simplex LP		1	Options
Solving	Method				
	for linear Solve		ver Problems that are s elect the Evolutionary e		
				Solve	Close

Recall: Simplex LP (Solver Option #1)

- →A model in which the objective cell and all constraints are linear functions of the decision variables
- \rightarrow Linear models will always be convex and are usually easier to solve than nonlinear models
- →Since all the constraints are linear, the global optimal solution will lie at an "extreme point" where two or more constraints intersect
- \rightarrow In Simplex LP, it is always possible to determine whether the model has:
 - 1. No feasible solution,
 - 2. An unbounded objective, or
 - 3. A globally optimal solution.

GRG Nonlinear (Solver Option #2)

- →Generalized Reduced Gradient (GRG) Nonlinear is an algorithm used for models in which at least one of the constraints (or the objective) is a smooth nonlinear function of the decision variables
- →Nonlinear constraints can make the feasible region have concave boundaries (which means simplex won't work even if the objective is linear)
- \rightarrow GRG approach:
 - Compute gradient at trial solution and move in direction of negative (when minimizing) or positive (when maximizing) gradient
 - (do complex things to optimize how much of a step you take based on things like how quickly the gradient is changing)

GRG Nonlinear (Solver Option #2)

→GRG methods can normally only find a *local optimal solution*

- Based on the starting point of the decision variables, it can get stuck at a local optimum
 - The multistart option can increase the chance of finding a global optimal solution
- \rightarrow Solver will iterate until either:
 - The maximum number of iterations (ran out of tries) is met
 - The step size is smaller than the defined tolerance (got as close as we asked)

 \rightarrow Consider the following nonlinear model:

$\max_{x_1,x_2}\phi$	=	$x_2\cos(2x_1) + x_1\sin(x_2)$
	s.t.	
<i>x</i> ₁ , <i>x</i> ₂	\leq	10
<i>x</i> ₁ , <i>x</i> ₂	2	1

\rightarrow We can express the model in Excel as:

	А	В	С	D	E	F
1	Decision V	ariables				
2		X1=	1			
3		X2=	1			
4						
5	Objective I	Function				
6	Y=		0.425324	"=C3*COS	(2*C2)+C2*	SIN(C3)"
7						
8	Constraint	S				
9	X1	1	<=	10		
10	X1	1	>=	1		
11	X2	1	<=	10		
12	X2	1	>=	1		
13						

 \rightarrow We will run the model with the following three starting values:

- $x_1, x_2 = (1,1)$
- $x_1, x_2 = (5,5)$
- $x_1, x_2 = (9,9)$

 \rightarrow Notice how we get different results with each trial run:

	А	В	С	D	E	F
1	Decision V	Variables				
2		X1=	1			
3		X2=	1.141593			
4						
5	Objective	Function				
6		Y=	0.434227	' =C3*COS	(2*C2)+C2*	SIN(C3)"
7						
8	Constrain	ts				
9	X1	1	<=	10		
10	X1	1	>=	1		
11	X2	1.141593	<=	10		
12	X2	1.141593	>=	1		
4.5						

	А	В	С	D	E	F
1	Decision \	/ariables				
2		X1=	6.314007			
3		X2=	8.01272			
4						
5	Objective	Function				
6		Y=	14.23213	'=C3*COS	(2*C2)+C2*	'SIN(C3)"
7						
8	Constrain	ts				
9	X1	6.314007	<=	10		
10	X1	6.314007	>=	1		
11	X2	8.01272	<=	10		
12	X2	8.01272	>=	1		

	А	В	С	D	Е	F
1	Decision V	/ariables				
2		X1=	9.456031			
3		X2=	7.959724			
4						
5	Objective	Function				
6		Y=	17.34739	" C3*COS	(2*C2)+C2*	'SIN(C3)"
7	•					
8	Constrain	ts				
9	X1	9.456031	<=	10		
10	X1	9.456031	>=	1		
11	X2	7.959724	<=	10		
12	X2	7.959724	>=	1		

 \rightarrow Our initial guesses (1,1), (5,5), (9,9) each resulted in a different local maxima!

Evolutionary (Solver Option #3)

 \rightarrow Discontinuous and non-smooth nonlinear models should use the evolutionary solver

- e.g., if the function is non-smooth or discontinuous (so may not always have a gradient)
- e.g., if you have multiple local optima points that could confuse the GRG.

Evolutionary (Solver Option #3)

 \rightarrow The Evolutionary Solver:

- uses random sampling to generate a population of trial solutions
- refines where to generate the next generation of samples based on 'fitness' of the trial solutions
- Keeps going until the current solution stops getting better
- Relies on randomness, so each run may result in different answers or speeds
- More *robust* than GRG (i.e., less easily fooled and less sensitive to initial conditions depending on the objective), but typically *slower* than GRG (takes more iterations) when the function is well behaved.

Example:

 $\Rightarrow \text{Consider the following NVF with 3 independent decision variables, D, L, and V:}$ $NV = \$532(1 - cV') - \frac{\$3L'D'^2}{V'} - \$32\frac{L' - 0.25\sqrt{L'}}{D'^4V'^2}$

where each variable is unitless and defined relative to a starting or default value, i.e., $D' \equiv \frac{D}{2 \text{ mm}}, L' \equiv \frac{L}{30 \text{ cm}}, \text{ and } V' \equiv \frac{V}{5 \text{ V}}$

and these relative variables are allowed the following ranges: $D' \in (0.05,8), L' \in (0.1,10), V' \in (0.2,4)$, (and c = 0.02 is a parameter).

Which solver is best for this?

Example:

 $\Rightarrow \text{Consider the following NVF with 3 independent decision variables, D, L, and V:}$ $NV = \$532(1 - cV') - \frac{\$3L'D'^2}{V'} - \$32\frac{L' - 0.25\sqrt{L'}}{D'^4V'^2}$

 \rightarrow This objective function is *nonlinear* in these variables (it isn't just a linear combination of them, $c_1D + c_2L + c_3V$)

• This means that Simplex LP won't work

 \rightarrow But it is well behaved in the allowed range of variables (no discontinuities)

• → GRG nonlinear is *likely* best, but if there are multiple local extrema it could be tricked and we'll need to use GRG with multistart or evolutionary.

→Consider the following NVF in terms with 3 independent decision variables to choose from, *D*, *L*, and *V*: $NV = \$532(1 - cV') - \frac{\$3L'D'^2}{V'} - \$32\frac{L' - 0.25\sqrt{L'}}{D'^4V'^2}$

• Setup and solved with GRG \rightarrow

H	2	~) : (×	$\checkmark f_x$	=532*(1-E2	32*(1-E2*B4)-3*B3*B2^2/B4-32*(B3-0.25*SQRT(B3))/B2^4/B4^2						
	А	В	С	D	Е	F	G	Н	I.		
1	Variable			Parameter			Objective				
2	D'	1.520797		с	0.02		NVF	525.2756			
3	Ľ	0.1									
4	V'	0.361139									
5											
6											
7											
8	Constraint	S									
9	D'	0.05	<=	1.520797	<=	8					
10	Ľ	0.1	<=	0.1	<=	10					
11	V'	0.2	<=	0.361139	<=	4					

→Consider the following NVF in terms with 3 independent decision variables to choose from, *D*, *L*, and *V*: $NV = \$532(1 - cV') - \frac{\$3L'D'^2}{V'} - \$32\frac{L' - 0.25\sqrt{L'}}{D'^4V'^2}$

- Setup and solved with GRG \rightarrow

How can we find out how sensitive the optimum (inputs and NV) is to parameters (like c) if we can't use Simplex LP and get a sensitivity report?

3	Ľ	0.1						
4	V	0.361139						
5								
6								
7								
8	Constraints							
9	D'	0.05	<=	1.520797	<=	8		
10	Ľ	0.1	<=	0.1	<=	10		
11	V	0.2	<=	0.361139	<=	4		

\rightarrow Redo the optimization at a different parameter value

Н	2	~) : (X	$\checkmark f_x$	=532*(1-E2	2*B4)-3*B3*	B2^2/B4-	32*(B3- <mark>0</mark> .2	5*SQRT(B3))/	(Н	2	_ ∨] (×	$\checkmark f_x$	=532*(1-E2	2*B4)-3*B3 [,]	B2^2/B4-3	82*(B3-0.2	5*SQRT(B3)
	А	В	С	D	E	F	G	Н			А	В	С	D	E	F	G	Н
1	Variable			Parameter	r		Objective		_	1	Variable			Paramete	r		Objective	
2	D'	1.520797		с	0.02		NVF	525.2756		2	D'	1.531181		с	0.022		NVF	524.8992
3	Ľ	0.1								3	Ľ	0.1						
4	V'	0.361139							\rightarrow	4	V	0.346685						
5										5								
6										6								
7										7								
8	Constrain	ts								8	Constrain	nts						
9	D'	0.05	<=	1.520797	<=	8				9	D'	0.05	<=	1.531181	<=	8		
10		0.1		0.1	<=	10				10	Ľ	0.1	<=	0.1	<=	10		
11		0.2		0.361139	<=	4				11	V	0.2	<=	0.346685	<=	4		
										10								

Increase parameter, c, by 10% and redo the optimization

22 McMaste

\rightarrow Redo the optimization at a different parameter value

H	2	~) : [X	$\checkmark f$	x =532*(1	-E2*B4)-3*B	3*B2^2/B4-	32*(B3-0.2	.5*SQRT(B3))/	(H	2	✓ ! ×	$\sqrt{f_x}$	=532*(1-E2	2*B4)-3*B3*	B2^2/B4-3	82*(B3-0.2	5*SQRT(B3)
	А	В	С	D	E	F	G	Н			А	В	С	D	E	F	G	Н
1	Variable			Parame	ter		Objective		_	1	Variable		-	Paramete	r		Objective	
2	D'	1.520797		с	0.0	2	NVF	525.2756		2	D'	1.531181		с	0.022		NVF	524.8992
3		0.1								3	Ľ	0.1						
4	V'	0.361139							\rightarrow	4	V	0.346685						
5										5								
6										6								
7										7								
8	Constrain	ts								8	Constrain	nts						
9	D'	0.05	<=	1.5207	97 <=	8	3			9	D'	0.05	<=	1.531181	<=	8		
10		0.1).1 <=	10				10	Ľ	0.1	<=	0.1	<=	10		
11		0.2		0.3611		4				11	V	0.2	<=	0.346685	<=	4		
										10								

New optimum values for decision variables

\rightarrow Redo the optimization at a different parameter value

Н	2	~) : [X	$\checkmark f_x$	=532*(1-E2	2*B4)-3*B3*	B2^2/B4-	32*(B3-0.2	5*SQRT(B3))/	/	Η	2	~) : (×	$\checkmark f_x$	=532*(1-E2	2*B4)-3*B3*	B2^2/B4-3	82*(B3-0.2	5*SQRT(B3))
	А	В	С	D	E	F	G	Н			А	В	С	D	E	F	G	Н
1	Variable			Paramete	r		Objective		-	1	Variable			Paramete	r		Objective	
2	D'	1.520797		с	0.02		NVF	525.2756		2	D'	1.531181		с	0.022		NVF	524.8992
3	Ľ	0.1								3	Ľ	0.1						
4	V	0.361139								4	V	0.346685						
5										5								
6										6								
7										7								
8	Constraint	ts								8	Constrain	ts						
9	D'	0.05	<=	1.520797	<=	8	•			9	D'	0.05	<=	1.531181	<=	8		
10	Ľ	0.1	<=	0.1	<=	10)			10	Ľ	0.1	<=	0.1	<=	10		
11	V	0.2	<=	0.361139	<=	4				11	V	0.2	<=	0.346685	<=	4		
										10								

New optimal value for objective function

24 McMaster

\rightarrow Redo the optimization at a different parameter value

2		· J	=532*(1-E2*B4)-3*B3*B2^2/B4-32*(B3-0.25*SQRT(B3))/										=532*(1-E2*B4)-3*B3*B2^2/B4-32*(B3-0.25*SQRT(B3))						
А	В	С	D	E	F	G	Н			А	В	С	D	E	F	G	H		
Variable			Parameter			Objective			1	Variable			Parameter			Objective			
D'	1.520797		С	0.02		NVF	525.2756		2	D'	1.531181		С	0.022		NVF	524.8992		
Ľ	0.1								3	Ľ	0.1								
V	0.361139							\rightarrow	4	V'	0.346685								
		$\frac{\partial N}{\partial N}$	V _{@op}	$\frac{dt}{dt} \approx$	ΔN	V _{@op}	$\frac{dt}{dt} = \frac{dt}{dt}$	524.			- 52		756	= -1	188	.2			
sim	nilarly,	$\frac{\partial N}{\partial N}$	$\frac{V_{@op}}{\partial c}$	$\frac{dt}{dt} \approx$		$V_{@op}$ Δc	$\frac{dt}{dt} = \frac{dt}{dt}$	524.			-52 2-0.		756	= -1	188	.2			
sim		<u>∂N</u>	дс <u>д</u>	—∼ D′ —≈		Δc	1.53	118	0. 1	.022 — 1.	2 - 0.	02	756 	_	188	.2			
sim		<u>∂N</u>	дс <u>д</u>	~~		Δc	1.53		0. 1	.022 — 1.	2 - 0.	02		_	188	.2			

→Spider plot has optimum's change for % increase & decrease of parameter (not slope directly)

Dealing with non-numeric decision variables

 \rightarrow Recall the NVF for nanoRIMS we worked with in Lecture 6 (to make spider & tornado plots):

$$NV = \frac{\$896}{\text{week}} - \left(C_{ingred} + C_{space} + C_{time} + C_{device}\right)$$

$$NV = \frac{\$896}{\text{week}} - \left(\frac{\$5}{100 \text{ mL}} \times q_{ingred} + \frac{\$12.5}{\text{hr}} \times \frac{1}{8} \times t_{FumeHood} + \frac{\$15}{\text{hr}} \times t_{GradStudent} + C_{device} + \frac{\$10}{52} \times \frac{\rho \dot{\mathcal{V}} \left(\frac{32 \dot{\mathcal{V}}}{\pi D^4} \left(\frac{\dot{\mathcal{V}}}{\pi} + 12 \nu L\right) + g \Delta z\right)}{10 \text{ mW}} + \$1.1875 \frac{\pi D^2}{\text{cm}^2}\right)$$

Is it possible to use a solver with "non-numeric" decision variables???

e.g., suppose we believe we can add a self-correction system to nanoRIMS for a cost increase of \$400/yr reducing Grad Student time required by 1 hr/wk. How could we modify the function to consider this non-numeric decision variable (add self-correction system or don't)?

Dealing with non-nun

Note that with evolutionary the lower & upper bounds need to be specified with direct references (B11:B12) and not indirect ones (G11:G12)

Warning – takes a long time!

	9			i si g si i si											
	А	В	С	D	E	F	G	Н	I	J		К	L	M	N
1	Tech Analysis Parameters:			nanoRIMS											
2	pi	3.14		Objective:											
	V (flow rate)	5.83E-06	m3/s	NV (rel to Purchasing)	\$652.71	/week	=B26-SUMPRODUCT	(B17:B20),E17:E20)-B2	1-R22					
	ρ	1000	kg/m3							Solv	er Par	ameters			
5	v (kinematic visc)	1.00E-06	m2/s	Constraints	LB		var		UB						
6	g	9.81	m/s2	D	1.00E-03	<=	3.53E-03	<=	1.00E-02		Set Of	ojective:			\$E\$3
7		0.2	m	Self-Correction	0	<=	1.00E+00	<=	1						
8	L	3.00E-01	m								To:	🔘 <u>M</u> ax	c	◯ Mi <u>n</u>	O <u>V</u> alue Of:
9															
10	Direct Input Decision Variab	les:									-	anging Varial	ole Cells:		
11	D	3.53E-03	m								\$8\$11	:\$B\$12			
12	Self-correction	1	Whether t	o add \$400/yr and reduce GS t	ime by 1 hr	/week					Subjec	t to the Con	straints:		
13												:\$B\$12 <= \$			
14	Indirect Decision Variables a	and more p	arameters	8:							\$B\$12	: = integer	*		
15	W	1.97E+00	W								\$E\$6:5	\$E\$7 <= \$B\$	11:\$B\$12		
16					per week r	needed									
17	Ingredients	\$5	/100 mL	=5	2	100 mL									
18	Fume Hood Time	\$1.56	/hr	=12.5/8	98	hr	=14*7								
19	Device	\$1,000	/yr	=600+IF(B12=1,400,0)	0.019231		=1/52								
20	Grad Student Time	\$15	/hr	=15	1.5	hr	=2.5-IF(B12=1,1,0)								
21	Cost pump	\$38	/wk	=B15/0.01*10/52											
22	Cost tube uncertainty	\$0	/wk	=1.1875*B2*B11^2*100^2							M	a <u>k</u> e Unconstr	rained Vari	ables Non-N	egative
23											_	a Solving	Evolut	ionary	
24	Purchasir	ng									Metho	od:			
25	Cost	\$112	/25 mL								Solvi	ng Method			
26	Total Cost	\$896	/week								Color	ng Method		nine fan Cali	