ENG 3PX3 - Engineering Economics

Net Value Functions + Design Project Intro

Net Value

Net Value Function and Unit Conversion

Engineering Economics and Net Value

 \rightarrow Applying economic concepts can help us to make rigorous and quantitative decisions

→Engineering economics aims to determine the <u>Net Value</u> of a project/design/decision
→Net value [of doing a project compared to not doing it] is:
Net Value = [Value of the Project's Benefits] - [Cost of Producing the Project]

 \rightarrow In simple terms:

Net Value = *Benefits* - *Costs*

Engineering Economics and Net Value

 \rightarrow It's important to be clear:

- What the net value is *relative to* (e.g., relative to another option, to doing nothing, etc.)
- Whose net value we're considering (e.g., from who's perspective?.):

 \rightarrow Net value may be calculated differently depending on the perspective: $Client's Net Value = (Benefits - Costs)_{Client} = Benefits_{Client} - Sale Price$ $Producer's Net Value = (Benefits - Costs)_{Producer} = Sale Price - Cost_{Producer}$

4

Engineering Economics and Net Value

 \rightarrow Both the producer and client are happy if:

*Benefits*_{client} > *Sale Price* > *Cost*_{producer}

→Therefore, there's the most room to be happy if the system net value is maximized:

 $System Net Value = Benefits_{client} - Cost_{producer}$

McMast

Accounting Example: Speedboats

→A company makes and sells speedboats. The company's profit function may look something like this, depending on who performed the analysis:

Profit = *Revenues* - *Costs*

Profit = Sales Revenue - Labour Costs - Materials Costs - Factory Production Costs

(Notice that this is a *profit* function as this is an *accounting* example, not quite Net Value)

Accounting Example: Speedboats

- →Based on the given information alone, we would choose alternative C as it has the maximum profit
- \rightarrow But what else should we consider?
 - What if Option C is *riskier* than the other two?
 - What if Option C has a greater *polluting impact* than A or B?
 - What if Option C creates social inequities?

	Alterative A	Alterative B	Alterative C
Sales Revenue	\$1,000,000	\$2,000,000	\$5,000,000
Labour Costs	\$500,000	\$1,200,000	\$3,000,000
Materials Costs	\$200,000	\$400,000	\$1,000,000
Factory Prod. Costs	\$100,000	\$300,000	\$500,000
Profit	\$200,000	\$100,000	\$500,000

Accounting Example: Speedboats

 \rightarrow This table is *accounting*; Revenue in, costs out.

- →*Economics* has broader scope and incorporates values of non-financial aspects
- →Economics gives you tools to make *quantitative* comparisons between alternatives that consider these additional factors

McMaste

Net Value Functions

 \rightarrow We combine all factors into a single expression called a <u>Net Value Function</u> (NVF) \rightarrow For example:

NVF = *Benefit of solution* – *Cost of space* – *Cost of time* – *Cost of labour* – *...*

→Throughout this course, we will learn how to integrate factors into a NVF to fully encapsulate the given scenario. This includes concepts such as:

- Cost of Space
- Cost of Time
- Environmental Impacts
- Ethical Considerations
- Time Value of Money

9

Net Value Functions

 \rightarrow When developing a net value function, you will need information such as:

- Estimates & assumptions (more used in 3PX3)
- Answers from the client & research (more used in reality)
- Engineering technical analysis (e.g., determining how heat transfer relates to flow rate).
- →Example: Client: "I hate cleaning my blender after blending tomatoes. Can you engineer me a solution to that?"
 - Need more info!
 - How long does it take you?
 - How much do you hate it compared spending money and/or time doing "neutral" things?
 - What's the cost to you of having someone else there? ...

Unit Matching and Unit Conversion

 \rightarrow When developing a net value function, every item may not be in the same unit

• E.g. time vs money, "intangible" benefits, comfort, entertainment value, convenience etc.

→We need to "match" or "convert" these units to a common unit so that we can compare each item

Unit Matching and Unit Conversion

 \rightarrow Example: Someone offers you 5 apples for 3 oranges, should you take the 5 apples?

Net Value = *Benefits* - *Costs* = 5 apples - 3 oranges = ???

 \rightarrow Converting apples and oranges to the same unit (\$)

- Price of apples = 3.89/kg. Mass of apples = 100 g each \rightarrow 3.89/apple
- Price of oranges = 1.75/lb. Weight or orange = 8 oz each \rightarrow 0.875/orange

Net Value = *Benefits* - *Costs* = 5 apples - 3 oranges = \$1.945 - \$2.625 = -\$0.68

NO!

Unit Matching and Unit Conversion

\rightarrow But is that the whole story? Not really

- 1. The benefits to you are not necessarily equal to the price
- 2. We are omitting the cost of time in our net value (i.e., time out of your day to go shopping)
- Quantity-dependent value you may find less benefit in increasing the number of apples you have from 98 to 99 than when you increased it from 0 to 1 (i.e., the "marginal value" you get from your 99th apple is less than from your 1st apple).

 \rightarrow We will explore this concept as well as net value functions and their applications further in the next lecture!

Design Project

Course Project - Winter Semester, 2024

Design Project in 3PX3

- ightarrowThroughout this semester, you will be working in a team to assess the economic
 - viability of a hypothetical engineering project that you develop
- →Unlike previous Design Projects, you will consider large scale economic impacts and ways to optimize your design choices to improve feasibility
- \rightarrow In your Design Studio groups, you will apply the engineering economics tools from lectures in this simulated engineering design project

Project Management Expectations in 3PX3

 \rightarrow You'll need project management skills and techniques for the entire design project

- \rightarrow As a team you are required to:
 - Track your progress (on the course) with a Gantt chart
 - Organize and document all meetings, including design choices and assumptions
 - Split roles and responsibilities equally amongst team members

 \rightarrow For your [hypothetical] design, you are required to:

- Create a WBS for the tasks needed to bring the product/service to market
- Detail design lifecycles and required resources

Design Project in 3PX3

 \rightarrow Mark breakdown:

 \rightarrow Group of 4 (with a minimum of 2 different engineering streams) will choose a

specific problem to address through a designed solution and economic analysis

Design Project Component Weight **Progress Check-Ins/Participation** 9% 18% Simple Report Draft 4% Final 10% Interview 4% 28% **Complex Report** Draft 5% Final 15% Interview 8% 5% **Design Project Self-Reflections** Inter-Group Discussions 2% Self-Reflection 3%

17 McMaster

Design Project in 3PX3 – Important Dates

Week	Submission	Date
2	Enroll in groups	Night of DS
3	Progress Check-In	During DS
4	Progress Check-In	During DS
5	Progress Check-In, Draft of Simple Report due	Night of DS
6	Inter-group Discussions	During DS
7	Reading week	
8	Progress Check-In, Simple Report due	During DS, Night of DS
9	Team interviews	During DS
10	Progress Check-In, Draft of Complex Report due	During DS, Night of DS
11	Inter-group Discussions	During DS
12	Progress Check-In, Complex Report due, Self-Reflection Due	During DS, night of DS, one day after DS
13	Team final interviews	During DS

McMaster

Lecture 1 – Participation Quiz

Lecture Participation Quizzes

Participation Quizzes Instructions

 \rightarrow The template for all in-class participations quizzes is on <u>Avenue \rightarrow Content \rightarrow 4-Resources</u>

→ 3PX3 Quiz Template

 \rightarrow Each quiz consists of the following sections:

- 1. In-class
- 2. (Optional) Before the next class
- 3. Reflection
- 4. Score

→The template contains detailed instructions. Submit the quiz during the In-class time to the Lecture Participation Quizzes dropbox under Assignments. If you do not finish all required sections during lecture, include these sections in your *next* quiz submission.

20