
1/15

Fundamentals
SFWRENG 2CO3: Data Structures and Algorithms

Jelle Hellings

Department of Computing and Software
McMaster University

Winter 2024

2/15

Focus of this course: From hacking to engineering
Engineering is the application of science and mathematics to solve practical problems.

Software engineering requires
▶ a deep understanding of what software (programs) do;
▶ mastery of a toolbox of fundamental tools to tackle programming challenges;
▶ capability to analyze software in depth.

This course introduces the analysis of software by studying and analyzing fundamental tools.

▶ Analysis of algorithms and data structures: correctness and complexity .
▶ Common design strategies for algorithms and data structures.
▶ A useful toolbox of standard fundamental algorithms and data structures.
▶ Graph representations and fundamental graph algorithms.

This course is not about learning how to program (basic programming is prior knowledge).

2/15

Focus of this course: From hacking to engineering
Engineering is the application of science and mathematics to solve practical problems.

Software engineering requires
▶ a deep understanding of what software (programs) do;
▶ mastery of a toolbox of fundamental tools to tackle programming challenges;
▶ capability to analyze software in depth.

This course introduces the analysis of software by studying and analyzing fundamental tools.

▶ Analysis of algorithms and data structures: correctness and complexity .
▶ Common design strategies for algorithms and data structures.
▶ A useful toolbox of standard fundamental algorithms and data structures.
▶ Graph representations and fundamental graph algorithms.

This course is not about learning how to program (basic programming is prior knowledge).

2/15

Focus of this course: From hacking to engineering
Engineering is the application of science and mathematics to solve practical problems.

Software engineering requires
▶ a deep understanding of what software (programs) do;
▶ mastery of a toolbox of fundamental tools to tackle programming challenges;
▶ capability to analyze software in depth.

This course introduces the analysis of software by studying and analyzing fundamental tools.

▶ Analysis of algorithms and data structures: correctness and complexity .
▶ Common design strategies for algorithms and data structures.
▶ A useful toolbox of standard fundamental algorithms and data structures.
▶ Graph representations and fundamental graph algorithms.

This course is not about learning how to program (basic programming is prior knowledge).

2/15

Focus of this course: From hacking to engineering
Engineering is the application of science and mathematics to solve practical problems.

Software engineering requires
▶ a deep understanding of what software (programs) do;
▶ mastery of a toolbox of fundamental tools to tackle programming challenges;
▶ capability to analyze software in depth.

This course introduces the analysis of software by studying and analyzing fundamental tools.

▶ Analysis of algorithms and data structures: correctness and complexity .
▶ Common design strategies for algorithms and data structures.
▶ A useful toolbox of standard fundamental algorithms and data structures.
▶ Graph representations and fundamental graph algorithms.

This course is not about learning how to program (basic programming is prior knowledge).

2/15

Focus of this course: From hacking to engineering
Engineering is the application of science and mathematics to solve practical problems.

Software engineering requires
▶ a deep understanding of what software (programs) do;
▶ mastery of a toolbox of fundamental tools to tackle programming challenges;
▶ capability to analyze software in depth.

This course introduces the analysis of software by studying and analyzing fundamental tools.

▶ Analysis of algorithms and data structures: correctness and complexity .
▶ Common design strategies for algorithms and data structures.
▶ A useful toolbox of standard fundamental algorithms and data structures.
▶ Graph representations and fundamental graph algorithms.

This course is not about learning how to program (basic programming is prior knowledge).

3/15

Algorithms and data structures

The basic building blocks of any problem that can be solved by a computer program.

Definition (Algorithm)
Procedures for solving problems that are suited for computer implementation.

An algorithm takes one-or-more values as input
and produces an output via a well-defined computational procedure.

Definition (Data structure)
Scheme to store and organize data in order to facilitate efficient access and modification.

3/15

Algorithms and data structures

The basic building blocks of any problem that can be solved by a computer program.

Definition (Algorithm)
Procedures for solving problems that are suited for computer implementation.

An algorithm takes one-or-more values as input
and produces an output via a well-defined computational procedure.

Definition (Data structure)
Scheme to store and organize data in order to facilitate efficient access and modification.

3/15

Algorithms and data structures

The basic building blocks of any problem that can be solved by a computer program.

Definition (Algorithm)
Procedures for solving problems that are suited for computer implementation.

An algorithm takes one-or-more values as input
and produces an output via a well-defined computational procedure.

Definition (Data structure)
Scheme to store and organize data in order to facilitate efficient access and modification.

3/15

Algorithms and data structures

The basic building blocks of any problem that can be solved by a computer program.

Definition (Algorithm)
Procedures for solving problems that are suited for computer implementation.

An algorithm takes one-or-more values as input
and produces an output via a well-defined computational procedure.

Definition (Data structure)
Scheme to store and organize data in order to facilitate efficient access and modification.

4/15

About programming languages

We all have our own favorites.

For the study of data structures and algorithms:
Choice of programming language does not really matter (mostly).

For optimal implementations, we sometimes need a lower-level toolbox.
E.g., references or pointers when implementing data structures.

Many programming languages suffice, e.g.,
▶ the book has many examples in Java;
▶ I will provide some examples in C++.

Feel free to experiment in your programming language of choice.

4/15

About programming languages

We all have our own favorites.

For the study of data structures and algorithms:
Choice of programming language does not really matter (mostly).

For optimal implementations, we sometimes need a lower-level toolbox.
E.g., references or pointers when implementing data structures.

Many programming languages suffice, e.g.,
▶ the book has many examples in Java;
▶ I will provide some examples in C++.

Feel free to experiment in your programming language of choice.

4/15

About programming languages

We all have our own favorites.

For the study of data structures and algorithms:
Choice of programming language does not really matter (mostly).

For optimal implementations, we sometimes need a lower-level toolbox.
E.g., references or pointers when implementing data structures.

Many programming languages suffice, e.g.,
▶ the book has many examples in Java;
▶ I will provide some examples in C++.

Feel free to experiment in your programming language of choice.

4/15

About programming languages

We all have our own favorites.

For the study of data structures and algorithms:
Choice of programming language does not really matter (mostly).

For optimal implementations, we sometimes need a lower-level toolbox.
E.g., references or pointers when implementing data structures.

Many programming languages suffice, e.g.,
▶ the book has many examples in Java;
▶ I will provide some examples in C++.

Feel free to experiment in your programming language of choice.

5/15

A simple algorithm: Contains

Problem
Given a list L and value v, return v ∈ L.

5/15

A simple algorithm: Contains

Problem
Given a list L and value v, return v ∈ L.

Algorithm Contains(L, v):

Input: L is an array , v a value.

1: i, r := 0, false.
2: while i ≠ |L| do
3: if L[i] = v then
4: r := true.
5: i := i + 1.
6: else
7: i := i + 1.
8: return r .

Result: return true if v ∈ L and false otherwise.

5/15

A simple algorithm: Contains

Problem
Given a list L and value v, return v ∈ L.

Algorithm Contains(L, v):

Input: L is an array , v a value.

1: i, r := 0, false.
2: while i ≠ |L| do
3: if L[i] = v then
4: r := true.
5: i := i + 1.
6: else
7: i := i + 1.
8: return r .

Result: return true if v ∈ L and false otherwise.

Is Contains correct?

5/15

A simple algorithm: Contains

Problem
Given a list L and value v, return v ∈ L.

Algorithm Contains(L, v):

Input: L is an array , v a value.

1: i, r := 0, false.
2: while i ≠ |L| do
3: if L[i] = v then
4: r := true.
5: i := i + 1.
6: else
7: i := i + 1.
8: return r .

Result: return true if v ∈ L and false otherwise.

Is Contains correct?

5/15

A simple algorithm: Contains

Problem
Given a list L and value v, return v ∈ L.

Algorithm Contains(L, v):
Input: L is an array , v a value.
1: i, r := 0, false.
2: while i ≠ |L| do
3: if L[i] = v then
4: r := true.
5: i := i + 1.
6: else
7: i := i + 1.
8: return r .

Result: return true if v ∈ L and false otherwise.

Is Contains correct?

5/15

A simple algorithm: Contains

Problem
Given a list L and value v, return v ∈ L.

Algorithm EvilContains(L, v):
Input: L is an array , v a value.
1: L := [].
2: return false.

Result: return true if v ∈ L and false otherwise.

Is EvilContains correct?

5/15

A simple algorithm: Contains

Problem
Given a list L and value v, return v ∈ L.

Algorithm Contains(L, v):
1: i, r := 0, false.

/* L is an array , v a value, i = 0, and r = false. */
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

2: while i ≠ |L| do
3: if L[i] = v then
4: r := true.
5: i := i + 1.
6: else
7: i := i + 1.

/* r is true if v ∈ L and false otherwise. */

8: return r .

5/15

A simple algorithm: Contains

Problem
Given a list L and value v, return v ∈ L.

Algorithm Contains(L, v):
1: i, r := 0, false.

/* L is an array , v a value, i = 0, and r = false. */

/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

2: while i ≠ |L| do
3: if L[i] = v then
4: r := true.
5: i := i + 1.
6: else
7: i := i + 1.

/* r is true if v ∈ L and false otherwise. */
8: return r .

5/15

A simple algorithm: Contains

Problem
Given a list L and value v, return v ∈ L.

Algorithm Contains(L, v):
1: i, r := 0, false.

/* L is an array , v a value, i = 0, and r = false. */
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

2: while i ≠ |L| do
3: if L[i] = v then
4: r := true.
5: i := i + 1.
6: else
7: i := i + 1.

/* r is true if v ∈ L and false otherwise. */
8: return r .

6/15

Intermezzo: The invariant of Contains holds

Prove the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

6/15

Intermezzo: The invariant of Contains holds

Prove the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

Proof by induction

Base case Prove invariant holds before the loop.

Hypothesis The invariant holds after the j-th, j < m, repetition of the loop.

Step Assume invariant holds when we start the m-th repetition of the loop.
Prove invariant holds again when we reach the end of the m-th repetition.

6/15

Intermezzo: The invariant of Contains holds

Prove the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

Proof by induction
Base case Prove invariant holds before the loop.

Hypothesis The invariant holds after the j-th, j < m, repetition of the loop.

Step Assume invariant holds when we start the m-th repetition of the loop.
Prove invariant holds again when we reach the end of the m-th repetition.

6/15

Intermezzo: The invariant of Contains holds

Prove the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

Base case: Prove invariant holds before the loop
Input: L is an array , v a value.
1: i, r := 0, false.

/* L is an array , v a value, i = 0, and r = false. */
2: while

Argument

1. L[0, i) with i = 0 is L[0, 0).
2. L[0, 0) is empty, hence v ∉ L[0, 0).
3. Hence, r = false must hold (which is the case).

6/15

Intermezzo: The invariant of Contains holds

Prove the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

Base case: Prove invariant holds before the loop
Input: L is an array , v a value.
1: i, r := 0, false.

/* L is an array , v a value, i = 0, and r = false. */
2: while

Argument
1. L[0, i) with i = 0 is L[0, 0).

2. L[0, 0) is empty, hence v ∉ L[0, 0).
3. Hence, r = false must hold (which is the case).

6/15

Intermezzo: The invariant of Contains holds

Prove the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

Base case: Prove invariant holds before the loop
Input: L is an array , v a value.
1: i, r := 0, false.

/* L is an array , v a value, i = 0, and r = false. */
2: while

Argument
1. L[0, i) with i = 0 is L[0, 0).
2. L[0, 0) is empty, hence v ∉ L[0, 0).

3. Hence, r = false must hold (which is the case).

6/15

Intermezzo: The invariant of Contains holds

Prove the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

Base case: Prove invariant holds before the loop
Input: L is an array , v a value.
1: i, r := 0, false.

/* L is an array , v a value, i = 0, and r = false. */
2: while

Argument
1. L[0, i) with i = 0 is L[0, 0).
2. L[0, 0) is empty, hence v ∉ L[0, 0).
3. Hence, r = false must hold (which is the case).

6/15

Intermezzo: The invariant of Contains holds

Prove the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

Step: Prove invariant holds again when we reach the end of the m-th repetition.
2: while i ≠ |L| do

/* Invariant and i ≠ |L|. */
3: if L[i] = v then
4: r := true.
5: i := i + 1.
6: else
7: i := i + 1.

/* Invariant. */

Argument

If-statement: Case distinction.

6/15

Intermezzo: The invariant of Contains holds

Prove the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

Step: Prove invariant holds again when we reach the end of the m-th repetition.
2: while i ≠ |L| do

/* Invariant and i ≠ |L|. */
3: if L[i] = v then
4: r := true.
5: i := i + 1.
6: else
7: i := i + 1.

/* Invariant. */

Argument

If-statement: Case distinction.

6/15

Intermezzo: The invariant of Contains holds

Prove the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

Step: Prove invariant holds again when we reach the end of the m-th repetition.
2: while i ≠ |L| do

/* Invariant and i ≠ |L|. */
3: if L[i] = v then
4: r := true.
5: i := i + 1.
6: else
7: i := i + 1.

/* Invariant. */

Argument
If-statement: Case distinction.

6/15

Intermezzo: The invariant of Contains holds

Prove the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

Case distinction: If case (L[i] = v holds).
3: if L[i] = v then

/* Invariant, i ≠ |L|, and L[i] = v */
4: r := true.
5: i := i + 1.

/* Invariant. */

Argument
After Line 5: prove that Invariant holds for the updated values rnew, inew of r and i.

1. L[i] = v , hence, v ∈ L[0, i].
2. inew = i + 1, hence, v ∈ L[0, inew).
3. Hence, rnew = true must hold (which is the case).

6/15

Intermezzo: The invariant of Contains holds

Prove the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

Case distinction: If case (L[i] = v holds).
3: if L[i] = v then

/* Invariant, i ≠ |L|, and L[i] = v */
4: r := true.
5: i := i + 1.

/* Invariant. */

Argument
After Line 5: prove that Invariant holds for the updated values rnew, inew of r and i.

1. L[i] = v , hence, v ∈ L[0, i].

2. inew = i + 1, hence, v ∈ L[0, inew).
3. Hence, rnew = true must hold (which is the case).

6/15

Intermezzo: The invariant of Contains holds

Prove the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

Case distinction: If case (L[i] = v holds).
3: if L[i] = v then

/* Invariant, i ≠ |L|, and L[i] = v */
4: r := true.
5: i := i + 1.

/* Invariant. */

Argument
After Line 5: prove that Invariant holds for the updated values rnew, inew of r and i.

1. L[i] = v , hence, v ∈ L[0, i].
2. inew = i + 1, hence, v ∈ L[0, inew).

3. Hence, rnew = true must hold (which is the case).

6/15

Intermezzo: The invariant of Contains holds

Prove the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

Case distinction: If case (L[i] = v holds).
3: if L[i] = v then

/* Invariant, i ≠ |L|, and L[i] = v */
4: r := true.
5: i := i + 1.

/* Invariant. */

Argument
After Line 5: prove that Invariant holds for the updated values rnew, inew of r and i.

1. L[i] = v , hence, v ∈ L[0, i].
2. inew = i + 1, hence, v ∈ L[0, inew).
3. Hence, rnew = true must hold (which is the case).

6/15

Intermezzo: The invariant of Contains holds

Prove the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

Case distinction: If case (L[i] = v holds).
3: if L[i] = v then

/* Invariant, i ≠ |L|, and L[i] = v */
4: r := true.
5: i := i + 1.

/* Invariant. */

Argument
After Line 5: prove that Invariant holds for the updated values rnew, inew of r and i.

6/15

Intermezzo: The invariant of Contains holds

Prove the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

Case distinction: If case (L[i] = v holds).
3: if L[i] = v then

/* Invariant, i ≠ |L|, and L[i] = v */
4: r := true.
5: i := i + 1.

/* Invariant. */

Argument
After Line 5: prove that Invariant holds for the updated values rnew, inew of r and i.

1. 0 ≤ i ≤ |L| and i ≠ |L| implies 0 ≤ i < |L|.
2. inew = i + 1, hence, 0 < inew ≤ |L|.
3. 0 < inew ≤ |L| implies 0 ≤ inew ≤ |L|.

6/15

Intermezzo: The invariant of Contains holds

Prove the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

Case distinction: Else case (L[i] ≠ v holds).
6: if L[i] = v then . . . else

/* Invariant, i ≠ |L|, and L[i] ≠ v */
7: i := i + 1.

/* Invariant. */

Argument
After Line 7: prove that Invariant holds for the updated value inew of i.

1. Assume r = true. Hence, v ∈ L[0, i) by the invariant.

2. inew = i + 1, hence, v ∈ L[0, inew).
3. Hence, r = true must hold (which is the case).

6/15

Intermezzo: The invariant of Contains holds

Prove the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

Case distinction: Else case (L[i] ≠ v holds).
6: if L[i] = v then . . . else

/* Invariant, i ≠ |L|, and L[i] ≠ v */
7: i := i + 1.

/* Invariant. */

Argument
After Line 7: prove that Invariant holds for the updated value inew of i.

1. Assume r = true. Hence, v ∈ L[0, i) by the invariant.

2. inew = i + 1, hence, v ∈ L[0, inew).
3. Hence, r = true must hold (which is the case).

6/15

Intermezzo: The invariant of Contains holds

Prove the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

Case distinction: Else case (L[i] ≠ v holds).
6: if L[i] = v then . . . else

/* Invariant, i ≠ |L|, and L[i] ≠ v */
7: i := i + 1.

/* Invariant. */

Argument
After Line 7: prove that Invariant holds for the updated value inew of i.

1. Assume r = true. Hence, v ∈ L[0, i) by the invariant.

2. inew = i + 1, hence, v ∈ L[0, inew).

3. Hence, r = true must hold (which is the case).

6/15

Intermezzo: The invariant of Contains holds

Prove the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

Case distinction: Else case (L[i] ≠ v holds).
6: if L[i] = v then . . . else

/* Invariant, i ≠ |L|, and L[i] ≠ v */
7: i := i + 1.

/* Invariant. */

Argument
After Line 7: prove that Invariant holds for the updated value inew of i.

1. Assume r = true. Hence, v ∈ L[0, i) by the invariant.

2. inew = i + 1, hence, v ∈ L[0, inew).
3. Hence, r = true must hold (which is the case).

6/15

Intermezzo: The invariant of Contains holds

Prove the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

Case distinction: Else case (L[i] ≠ v holds).
6: if L[i] = v then . . . else

/* Invariant, i ≠ |L|, and L[i] ≠ v */
7: i := i + 1.

/* Invariant. */

Argument
After Line 7: prove that Invariant holds for the updated value inew of i.

1. Assume r = false. Hence, v ∉ L[0, i) by the invariant.

2. inew = i + 1 and L[i] ≠ v , hence, v ∉ L[0, inew).
3. Hence, r = false must hold (which is the case).

7/15

Intermezzo: The correctness of Contains

We have proven the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

6: while i ≠ |L| do . . . end while
/* Invariant and ¬(i ≠ |L|). */
/* r is true if v ∈ L and false otherwise. */

7: return r .

Are we done?

▶ Assuming /* Invariant and ¬(i ≠ |L|) */,
Do we have /* r is true if v ∈ L and false otherwise */?

7/15

Intermezzo: The correctness of Contains

We have proven the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

6: while i ≠ |L| do . . . end while
/* Invariant and ¬(i ≠ |L|). */
/* r is true if v ∈ L and false otherwise. */

7: return r .

Are we done?
▶ Assuming /* Invariant and ¬(i ≠ |L|) */,

Do we have /* r is true if v ∈ L and false otherwise */?

7/15

Intermezzo: The correctness of Contains

We have proven the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

6: while i ≠ |L| do . . . end while
/* Invariant and ¬(i ≠ |L|). */
/* r is true if v ∈ L and false otherwise. */

7: return r .

Are we done?
▶ Assuming /* Invariant and ¬(i ≠ |L|) */,

Do we have /* r is true if v ∈ L and false otherwise */?

Argument

1. ¬(i ≠ |L|) implies i = |L|.
2. L[0, i) with i = |L| is equivalent to L.

3. Hence, v ∈ L implies r = true, v ∉ L implies r = false.

7/15

Intermezzo: The correctness of Contains

We have proven the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

6: while i ≠ |L| do . . . end while
/* Invariant and ¬(i ≠ |L|). */
/* r is true if v ∈ L and false otherwise. */

7: return r .

Are we done?
▶ Assuming /* Invariant and ¬(i ≠ |L|) */,

Do we have /* r is true if v ∈ L and false otherwise */?

Argument
1. ¬(i ≠ |L|) implies i = |L|.

2. L[0, i) with i = |L| is equivalent to L.

3. Hence, v ∈ L implies r = true, v ∉ L implies r = false.

7/15

Intermezzo: The correctness of Contains

We have proven the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

6: while i ≠ |L| do . . . end while
/* Invariant and ¬(i ≠ |L|). */
/* r is true if v ∈ L and false otherwise. */

7: return r .

Are we done?
▶ Assuming /* Invariant and ¬(i ≠ |L|) */,

Do we have /* r is true if v ∈ L and false otherwise */?

Argument
1. ¬(i ≠ |L|) implies i = |L|.
2. L[0, i) with i = |L| is equivalent to L.

3. Hence, v ∈ L implies r = true, v ∉ L implies r = false.

7/15

Intermezzo: The correctness of Contains

We have proven the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

6: while i ≠ |L| do . . . end while
/* Invariant and ¬(i ≠ |L|). */
/* r is true if v ∈ L and false otherwise. */

7: return r .

Are we done?
▶ Assuming /* Invariant and ¬(i ≠ |L|) */,

Do we have /* r is true if v ∈ L and false otherwise */?

Argument
1. ¬(i ≠ |L|) implies i = |L|.
2. L[0, i) with i = |L| is equivalent to L.

3. Hence, v ∈ L implies r = true, v ∉ L implies r = false.

7/15

Intermezzo: The correctness of Contains

We have proven the invariant holds
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

6: while i ≠ |L| do . . . end while
/* Invariant and ¬(i ≠ |L|). */
/* r is true if v ∈ L and false otherwise. */

7: return r .

Are we done?
▶ Assuming /* Invariant and ¬(i ≠ |L|) */,

Do we have /* r is true if v ∈ L and false otherwise */? −→ Yes!

▶ Do we reach the end of the loop?

−→ Yes—obviously i will only be 0, . . . , |L|.

7/15

Intermezzo: The correctness of Contains

Are we done?
▶ Do we reach the end of the loop?

−→ Yes—obviously i will only be 0, . . . , |L|.

2: i, r := 0, false.

←− |L| − i starts at |L|, |L| ≥ 0.

3: while i ≠ |L| do

/* bound function: |L| − i */ ←− |L| − i stops at 0.

4: if L[i] = v then
5: r := true.
6: i := i + 1.

←− |L| − i strictly decreases.

7: else
8: i := i + 1.

←− |L| − i strictly decreases.

Formal argument: prove a bound function
Define a bound function f on the state of the algorithm such that the output of f :
▶ is a natural number (0, 1, 2, . . .).
▶ strictly decreases after each iteration of the loop body.

7/15

Intermezzo: The correctness of Contains

Are we done?
▶ Do we reach the end of the loop? −→ Yes—obviously i will only be 0, . . . , |L|.

2: i, r := 0, false.

←− |L| − i starts at |L|, |L| ≥ 0.

3: while i ≠ |L| do

/* bound function: |L| − i */ ←− |L| − i stops at 0.

4: if L[i] = v then
5: r := true.
6: i := i + 1.

←− |L| − i strictly decreases.

7: else
8: i := i + 1.

←− |L| − i strictly decreases.

Formal argument: prove a bound function
Define a bound function f on the state of the algorithm such that the output of f :
▶ is a natural number (0, 1, 2, . . .).
▶ strictly decreases after each iteration of the loop body.

7/15

Intermezzo: The correctness of Contains

Are we done?
▶ Do we reach the end of the loop? −→ Yes—obviously i will only be 0, . . . , |L|.

2: i, r := 0, false.

←− |L| − i starts at |L|, |L| ≥ 0.

3: while i ≠ |L| do

/* bound function: |L| − i */ ←− |L| − i stops at 0.

4: if L[i] = v then
5: r := true.
6: i := i + 1.

←− |L| − i strictly decreases.

7: else
8: i := i + 1.

←− |L| − i strictly decreases.

Formal argument: prove a bound function
Define a bound function f on the state of the algorithm such that the output of f :
▶ is a natural number (0, 1, 2, . . .).
▶ strictly decreases after each iteration of the loop body.

7/15

Intermezzo: The correctness of Contains

Are we done?
▶ Do we reach the end of the loop? −→ Yes—obviously i will only be 0, . . . , |L|.

2: i, r := 0, false.

←− |L| − i starts at |L|, |L| ≥ 0.

3: while i ≠ |L| do /* bound function: |L| − i */

←− |L| − i stops at 0.

4: if L[i] = v then
5: r := true.
6: i := i + 1.

←− |L| − i strictly decreases.

7: else
8: i := i + 1.

←− |L| − i strictly decreases.

Formal argument: prove a bound function
Define a bound function f on the state of the algorithm such that the output of f :
▶ is a natural number (0, 1, 2, . . .).
▶ strictly decreases after each iteration of the loop body.

7/15

Intermezzo: The correctness of Contains

Are we done?
▶ Do we reach the end of the loop? −→ Yes—obviously i will only be 0, . . . , |L|.

2: i, r := 0, false. ←− |L| − i starts at |L|, |L| ≥ 0.
3: while i ≠ |L| do /* bound function: |L| − i */ ←− |L| − i stops at 0.
4: if L[i] = v then
5: r := true.
6: i := i + 1. ←− |L| − i strictly decreases.
7: else
8: i := i + 1. ←− |L| − i strictly decreases.

Formal argument: prove a bound function
Define a bound function f on the state of the algorithm such that the output of f :
▶ is a natural number (0, 1, 2, . . .).
▶ strictly decreases after each iteration of the loop body.

8/15

Intermezzo: How to prove correctness

Summary
▶ Define a pre-condition: What restrictions do we require on the input?
▶ Define a post-condition: What should the output be?
▶ Prove that running the program turns the pre-condition into the post-condition.

Hard parts: loops −→ invariants (induction proofs) and bound functions.

On finding invariants
Most induction proofs are easy if you have the correct induction hypothesis.
Finding the induction hypothesis (invariant) is the hard part −→ trial and error.

Take inspiration from what should hold after the loop and what is changed during the loop.

Example: Contains
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

3: while i ≠ |L| . . . end while
/* r is true if v ∈ L and false otherwise. */

8/15

Intermezzo: How to prove correctness

Summary
▶ Define a pre-condition: What restrictions do we require on the input?
▶ Define a post-condition: What should the output be?
▶ Prove that running the program turns the pre-condition into the post-condition.

Hard parts: loops −→ invariants (induction proofs) and bound functions.

On finding invariants
Most induction proofs are easy if you have the correct induction hypothesis.
Finding the induction hypothesis (invariant) is the hard part −→ trial and error.

Take inspiration from what should hold after the loop and what is changed during the loop.

Example: Contains
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

3: while i ≠ |L| . . . end while
/* r is true if v ∈ L and false otherwise. */

8/15

Intermezzo: How to prove correctness

Hard parts: loops −→ invariants (induction proofs) and bound functions.

On finding invariants
Most induction proofs are easy if you have the correct induction hypothesis.
Finding the induction hypothesis (invariant) is the hard part −→ trial and error.

Take inspiration from what should hold after the loop and what is changed during the loop.

Example: Contains
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

3: while i ≠ |L| . . . end while
/* r is true if v ∈ L and false otherwise. */

8/15

Intermezzo: How to prove correctness

Hard parts: loops −→ invariants (induction proofs) and bound functions.

On finding invariants
Most induction proofs are easy if you have the correct induction hypothesis.
Finding the induction hypothesis (invariant) is the hard part −→ trial and error.

Take inspiration from what should hold after the loop and what is changed during the loop.

Example: Contains
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

3: while i ≠ |L| . . . end while
/* r is true if v ∈ L and false otherwise. */

8/15

Intermezzo: How to prove correctness

Hard parts: loops −→ invariants (induction proofs) and bound functions.

On finding invariants
Most induction proofs are easy if you have the correct induction hypothesis.
Finding the induction hypothesis (invariant) is the hard part −→ trial and error.

Take inspiration from what should hold after the loop and what is changed during the loop.

Example: Contains
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

3: while i ≠ |L| . . . end while
/* r is true if v ∈ L and false otherwise. */

8/15

Intermezzo: How to prove correctness

Hard parts: loops −→ invariants (induction proofs) and bound functions.

On finding invariants
Most induction proofs are easy if you have the correct induction hypothesis.
Finding the induction hypothesis (invariant) is the hard part −→ trial and error.

Take inspiration from what should hold after the loop and what is changed during the loop.

Example: Contains
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */

3: while i ≠ |L| . . . end while
/* r is true if v ∈ L and false otherwise. */

9/15

A simple algorithm: Contains

Problem
Given a list L and value v, return v ∈ L.

Algorithm Contains(L, v):
1: i, r := 0, false.
2: while i ≠ |L| do
3: if L[i] = v then
4: r := true.
5: i := i + 1.
6: else
7: i := i + 1.
8: return r .

What is the complexity of Contains?
Interested in scalability : How do the costs of Contains increase when increasing |L|?

10/15

Intermezzo: The complexity of Contains

What is the complexity of Contains ?
Interested in scalability : How do the costs of Contains increase when increasing |L|?

Algorithm Contains(L, v):
1: i, r := 0, false.

←− 2 instruction(s).

2: while i ≠ |L| do

←− 2 instruction(s).

3: if L[i] = v then

←− 3 instruction(s).

4: r := true.

←− 1 instruction(s).

5: i := i + 1.

←− 2 instruction(s).

6: else
7: i := i + 1.

←− 2 instruction(s).

8: return r .

←− 1 instruction(s).

We need a scientific model of the work done by Contains

NumInstrOnlyElse(N) = 5 + 7N with N = |L|.

10/15

Intermezzo: The complexity of Contains

What is the complexity of Contains ?
Interested in scalability : How do the costs of Contains increase when increasing |L|?

Algorithm Contains(L, v):
1: i, r := 0, false. ←− 2 instruction(s).

2: while i ≠ |L| do ←− 2 instruction(s).

3: if L[i] = v then ←− 3 instruction(s).

4: r := true. ←− 1 instruction(s).

5: i := i + 1. ←− 2 instruction(s).

6: else
7: i := i + 1. ←− 2 instruction(s).

8: return r . ←− 1 instruction(s).

We need a scientific model of the work done by Contains

NumInstrOnlyElse(N) = 5 + 7N with N = |L|.

10/15

Intermezzo: The complexity of Contains

What is the complexity of Contains if v ∉ L?
Interested in scalability : How do the costs of Contains increase when increasing |L|?

Algorithm Contains(L, v):
1: i, r := 0, false. ←− 2 instruction(s).

2: while i ≠ |L| do ←− 2 instruction(s).

3: if L[i] = v then ←− 3 instruction(s).

4: r := true. ←− 1 instruction(s).

5: i := i + 1. ←− 2 instruction(s).

6: else
7: i := i + 1. ←− 2 instruction(s).

8: return r . ←− 1 instruction(s).

We need a scientific model of the work done by Contains

NumInstrOnlyElse(N) = 5 + 7N with N = |L|.

10/15

Intermezzo: The complexity of Contains

What is the complexity of Contains if v ∉ L?
Interested in scalability : How do the costs of Contains increase when increasing |L|?

Algorithm Contains(L, v):
1: i, r := 0, false. ←− 2 instruction(s).

2: while i ≠ |L| do ←− 2 instruction(s).

3: if L[i] = v then ←− 3 instruction(s).

4: r := true. ←− 1 instruction(s).

5: i := i + 1. ←− 2 instruction(s).

6: else
7: i := i + 1. ←− 2 instruction(s).

8: return r . ←− 1 instruction(s).

We need a scientific model of the work done by Contains

NumInstrOnlyElse(N) = 5 + 7N with N = |L|.

|L| + 1 times.

|L| times.

10/15

Intermezzo: The complexity of Contains

What is the complexity of Contains if v ∉ L?
Interested in scalability : How do the costs of Contains increase when increasing |L|?

Algorithm Contains(L, v):
1: i, r := 0, false. ←− 2 instruction(s).

2: while i ≠ |L| do ←− 2 instruction(s).

3: if L[i] = v then ←− 3 instruction(s).

4: r := true. ←− 1 instruction(s).

5: i := i + 1. ←− 2 instruction(s).

6: else
7: i := i + 1. ←− 2 instruction(s).

8: return r . ←− 1 instruction(s).

We need a scientific model of the work done by Contains
NumInstrOnlyElse(N) = 5 + 7N with N = |L|.

|L| + 1 times.

|L| times.

10/15

Intermezzo: The complexity of Contains

What is the complexity of Contains ?
Interested in scalability : How do the costs of Contains increase when increasing |L|?

Algorithm Contains(L, v):
1: i, r := 0, false. ←− 2 instruction(s).

2: while i ≠ |L| do ←− 2 instruction(s).

3: if L[i] = v then ←− 3 instruction(s).

4: r := true. ←− 1 instruction(s).

5: i := i + 1. ←− 2 instruction(s).

6: else
7: i := i + 1. ←− 2 instruction(s).

8: return r . ←− 1 instruction(s).

We need a scientific model of the work done by Contains
NumInstr(N) = 5 + 7N +m with N = |L|.

m times.

10/15

Intermezzo: The complexity of Contains

What is the complexity of Contains if v ∉ L?
Interested in scalability : How do the costs of Contains increase when increasing |L|?

We need a scientific model of the work done by Contains
NumInstrOnlyElse(N) = 5 + 7N with N = |L|.

A scientific model allows predictions
Assume: Contains with a list L, |L| = 1000, takes 12 µs.
Predict : How long does Contains take with a list of 2000 values?

−→ 24 µs.

10/15

Intermezzo: The complexity of Contains

What is the complexity of Contains if v ∉ L?
Interested in scalability : How do the costs of Contains increase when increasing |L|?

We need a scientific model of the work done by Contains
NumInstrOnlyElse(N) = 5 + 7N with N = |L|.

A scientific model allows predictions
Assume: Contains with a list L, |L| = 1000, takes 12 µs.
Predict : How long does Contains take with a list of 2000 values?

−→ 24 µs.

Argument
1. NumInstrOnlyElse(1000) = 7005 instructions −→ 12 µs.

2. NumInstrOnlyElse(2000) = 14 005 instructions −→

14005
7005

· 12 µs ≈ 2 · 12 µs = 24 µs.

10/15

Intermezzo: The complexity of Contains

What is the complexity of Contains if v ∉ L?
Interested in scalability : How do the costs of Contains increase when increasing |L|?

We need a scientific model of the work done by Contains
NumInstrOnlyElse(N) = 5 + 7N with N = |L|.

A scientific model allows predictions
Assume: Contains with a list L, |L| = 1000, takes 12 µs.
Predict : How long does Contains take with a list of 2000 values? −→ 24 µs.

10/15

Intermezzo: The complexity of Contains

What is the complexity of Contains if v ∉ L?
Interested in scalability : How do the costs of Contains increase when increasing |L|?

We need a scientific model of the work done by Contains
NumInstrOnlyElse(N) = 5 + 7N with N = |L|.

A scientific model allows predictions
Assume: Contains with a list L, |L| = 1000, takes 12 µs.
Predict : How long does Contains take with a list of 2000 values? −→ 24 µs.

Useful models are simple and make correct predictions
▶ Are our predictions correct?
▶ Is our model simple?

Also: Our instruction counting is mostly fiction!

10/15

Intermezzo: The complexity of Contains

What is the complexity of Contains if v ∉ L?
Interested in scalability : How do the costs of Contains increase when increasing |L|?

We need a scientific model of the work done by Contains
NumInstrOnlyElse(N) = 5 + 7N with N = |L|.

A scientific model allows predictions
Assume: Contains with a list L, |L| = 1000, takes 12 µs.
Predict : How long does Contains take with a list of 2000 values? −→ 24 µs.

Useful models are simple and make correct predictions
▶ Are our predictions correct? −→ Lets implement Contains and measure.

▶ Is our model simple?

Also: Our instruction counting is mostly fiction!

10/15

Intermezzo: The complexity of Contains

First Attempt

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

·108

0.0

1.0

2.0

3.0

4.0

5.0

Size of list L (|L|)

R
un

ti
m
e
(µ
s)

10/15

Intermezzo: The complexity of Contains

Second Attempt

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

·108

0

50

100

150

Size of list L (|L|)

R
un

ti
m
e
(m

s)

10/15

Intermezzo: The complexity of Contains

Second Attempt

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

·108

0

50

100

150

A

Size of list L (|L|)

R
un

ti
m
e
(m

s)

10/15

Intermezzo: The complexity of Contains

Second Attempt

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

·108

0

50

100

150

A

B

C

D

E

≈ 2× ≈ 3× ≈ 4×

Size of list L (|L|)

R
un

ti
m
e
(m

s)

10/15

Intermezzo: The complexity of Contains

What is the complexity of Contains if v ∉ L?
Interested in scalability : How do the costs of Contains increase when increasing |L|?

We need a scientific model of the work done by Contains
NumInstrOnlyElse(N) = 5 + 7N with N = |L|.

A scientific model allows predictions
Assume: Contains with a list L, |L| = 1000, takes 12 µs.
Predict : How long does Contains take with a list of 2000 values? −→ 24 µs.

Useful models are simple and make correct predictions
▶ Are our predictions correct? −→ Yes.

▶ Is our model simple? −→ No: Runtime(N) = N predicts the same!

Also: Our instruction counting is mostly fiction!

10/15

Intermezzo: The complexity of Contains

What is the complexity of Contains if v ∉ L?
Interested in scalability : How do the costs of Contains increase when increasing |L|?

We need a scientific model of the work done by Contains
NumInstrOnlyElse(N) = 5 + 7N with N = |L|.

A scientific model allows predictions
Assume: Contains with a list L, |L| = 1000, takes 12 µs.
Predict : How long does Contains take with a list of 2000 values? −→ 24 µs.

Useful models are simple and make correct predictions
▶ Are our predictions correct? −→ Yes.

▶ Is our model simple? −→ No: Runtime(N) = N predicts the same!

Also: Our instruction counting is mostly fiction!

11/15

A simple algorithm: Contains

Problem
Given a list L and value v, return v ∈ L.

Algorithm Contains(L, v):
1: i, r := 0, false.
2: while i ≠ |L| do
3: if L[i] = v then
4: r := true.
5: i := i + 1.
6: else
7: i := i + 1.
8: return r .

Theorem
Contains is correct, its runtime complexity is modelled by ContainsRuntime(|L|) = |L|, and
its memory complexity is modelled by ContainsMemory(|L|) = 1.

12/15

Comparing algorithm: Runtime complexity

Say we have two algorithms for the contains problem
▶ Contains with C.Runtime(|L|) = |L|.
▶ AltC with AltCRuntime(|L|) = |L|2.

Which one is faster?

Can we conclude that Contains is always fastest, AltC is slowest?

12/15

Comparing algorithm: Runtime complexity

Say we have two algorithms for the contains problem
▶ Contains with C.Runtime(|L|) = |L|.
▶ AltC with AltCRuntime(|L|) = |L|2.

Which one is faster?

Input size 1000

2000 4000 8000 1 000 000

Runtime Contains 12 µs

24 µs 48 µs 96 µs 12 s

Runtime AltC 3 µs

12 µs 48 µs 192 µs 3000 s

Speed up of AltC 4×

2× 1× 0.5× 0.004×
Argument
▶ C.Runtime() = 000 = ·1000 = ·C.Runtime(1000).
▶ AltCRuntime() = 0002 =2 ·10002 =2 ·AltCRuntime(1000).

12/15

Comparing algorithm: Runtime complexity

Say we have two algorithms for the contains problem
▶ Contains with C.Runtime(|L|) = |L|.
▶ AltC with AltCRuntime(|L|) = |L|2.

Which one is faster?

Input size 1000 2000

4000 8000 1 000 000

Runtime Contains 12 µs 24 µs

48 µs 96 µs 12 s

Runtime AltC 3 µs 12 µs

48 µs 192 µs 3000 s

Speed up of AltC 4× 2×

1× 0.5× 0.004×

Argument
▶ C.Runtime(2000) = 2000 = 2 · 1000 = 2 · C.Runtime(1000).
▶ AltCRuntime(2000) = 20002 = 22 · 10002 = 22 · AltCRuntime(1000).

12/15

Comparing algorithm: Runtime complexity

Say we have two algorithms for the contains problem
▶ Contains with C.Runtime(|L|) = |L|.
▶ AltC with AltCRuntime(|L|) = |L|2.

Which one is faster?

Input size 1000 2000 4000

8000 1 000 000

Runtime Contains 12 µs 24 µs 48 µs

96 µs 12 s

Runtime AltC 3 µs 12 µs 48 µs

192 µs 3000 s

Speed up of AltC 4× 2× 1×

0.5× 0.004×

Argument
▶ C.Runtime(4000) = 4000 = 4 · 1000 = 4 · C.Runtime(1000).
▶ AltCRuntime(4000) = 40002 = 42 · 10002 = 42 · AltCRuntime(1000).

12/15

Comparing algorithm: Runtime complexity

Say we have two algorithms for the contains problem
▶ Contains with C.Runtime(|L|) = |L|.
▶ AltC with AltCRuntime(|L|) = |L|2.

Which one is faster?

Input size 1000 2000 4000 8000

1 000 000

Runtime Contains 12 µs 24 µs 48 µs 96 µs

12 s

Runtime AltC 3 µs 12 µs 48 µs 192 µs

3000 s

Speed up of AltC 4× 2× 1× 0.5×

0.004×

Argument
▶ C.Runtime(8000) = 8000 = 8 · 1000 = 8 · C.Runtime(1000).
▶ AltCRuntime(8000) = 80002 = 82 · 10002 = 82 · AltCRuntime(1000).

12/15

Comparing algorithm: Runtime complexity

Say we have two algorithms for the contains problem
▶ Contains with C.Runtime(|L|) = |L|.
▶ AltC with AltCRuntime(|L|) = |L|2.

Which one is faster?

Input size 1000 2000 4000 8000 1 000 000

Runtime Contains 12 µs 24 µs 48 µs 96 µs 12 s
Runtime AltC 3 µs 12 µs 48 µs 192 µs 3000 s

Speed up of AltC 4× 2× 1× 0.5× 0.004×
Argument
▶ C.Runtime(1 000 000) = 1000000 = 1000 · 1000 = 1000 · C.Runtime(1000).
▶ AltCRuntime(1 000 000) = 10000002 = 10002 · 10002 = 10002 · AltCRuntime(1000).

12/15

Comparing algorithm: Runtime complexity

0.2 0.4 0.6 0.8 1.0

·104

0

100

200

300

Size of list L (|L|)

R
un

ti
m
e
(µ
s)

Contains
AltC

0.0 0.5 1.0

·106

0.0

1.0

2.0

3.0

·106

Size of list L (|L|)

Contains
AltC

12/15

Comparing algorithm: Runtime complexity

Say we have two algorithms for the contains problem
▶ Contains with C.Runtime(|L|) = |L|.
▶ AltC with AltCRuntime(|L|) = |L|2.

Which one is faster?

Can we conclude that Contains is always fastest, AltC is slowest? −→ No!

12/15

Comparing algorithm: Runtime complexity

Say we have two algorithms for the contains problem
▶ Contains with C.Runtime(|L|) = |L|.
▶ AltC with AltCRuntime(|L|) = |L|2.

Which one is faster?

Can we conclude that Contains is always fastest, AltC is slowest? −→ No!

Our models are simplifications!
Exact performance influenced by details of the compiler, memory, CPU architecture,

12/15

Comparing algorithm: Runtime complexity

Say we have two algorithms for the contains problem
▶ Contains with C.Runtime(|L|) = |L|.
▶ AltC with AltCRuntime(|L|) = |L|2.

Which one is faster?

Can we conclude that Contains is always fastest, AltC is slowest? −→ No!

Our models are simplifications!
Exact performance influenced by details of the compiler, memory, CPU architecture,

Are our models meaningless?

No: our comparisons shows differences in growth rates: |L| versus |L|2 −→
for large-enough inputs, AltC should always be much slower than Contains.

12/15

Comparing algorithm: Runtime complexity

Say we have two algorithms for the contains problem
▶ Contains with C.Runtime(|L|) = |L|.
▶ AltC with AltCRuntime(|L|) = |L|2.

Which one is faster?

Can we conclude that Contains is always fastest, AltC is slowest? −→ No!

Our models are simplifications!
Exact performance influenced by details of the compiler, memory, CPU architecture,

Are our models meaningless?
No: our comparisons shows differences in growth rates: |L| versus |L|2 −→

for large-enough inputs, AltC should always be much slower than Contains.

12/15

Comparing algorithm: Runtime complexity

Say we have two algorithms for the contains problem
▶ Contains with C.Runtime(|L|) = |L|.
▶ AltC with AltCRuntime(|L|) = |L|2.

Which one is faster?

Can we conclude that Contains is always fastest, AltC is slowest? −→ No!

Our models are simplifications!
Exact performance influenced by details of the compiler, memory, CPU architecture,

Remember: We are interested in scalability of algorithms
For large-enough inputs, Contains will always be much faster than AltC because

the order of growth of C.Runtime is lower than the order of growth of AltCRuntime.

12/15

Comparing algorithm: Runtime complexity

Remember: We are interested in scalability of algorithms
For large-enough inputs, Contains will always be much faster than AltC because

the order of growth of C.Runtime is lower than the order of growth of AltCRuntime.

Runtime complexity (size of input: N) Which is faster?
Algorithm 1 Algorithm 2 (for large-enough N)

5 + 7N 3N + 100

Similar

5 + 7N 100 log2(N) + 2

Algorithm 2

5 + 7N N (N − 1)/2

Algorithm 1

5 + 7N 1000N
1
2 − 120

Algorithm 2

2N3 + 1000 2N − 1

Algorithm 1

Simpler models are easier to compare!

12/15

Comparing algorithm: Runtime complexity

Remember: We are interested in scalability of algorithms
For large-enough inputs, Contains will always be much faster than AltC because

the order of growth of C.Runtime is lower than the order of growth of AltCRuntime.

Runtime complexity (size of input: N) Which is faster?
Algorithm 1 Algorithm 2 (for large-enough N)

5 + 7N 3N + 100 Similar
5 + 7N 100 log2(N) + 2 Algorithm 2
5 + 7N N (N − 1)/2 Algorithm 1
5 + 7N 1000N

1
2 − 120 Algorithm 2

2N3 + 1000 2N − 1 Algorithm 1

Simpler models are easier to compare!

12/15

Comparing algorithm: Runtime complexity

Remember: We are interested in scalability of algorithms
For large-enough inputs, Contains will always be much faster than AltC because

the order of growth of C.Runtime is lower than the order of growth of AltCRuntime.

Runtime complexity (size of input: N) Which is faster?
Algorithm 1 Algorithm 2 (for large-enough N)

N N Similar
N ln(N) Algorithm 2
N N

2 Algorithm 1
N

√
N Algorithm 2

N
3 2N Algorithm 1

Simpler models are easier to compare!

12/15

Comparing algorithm: Runtime complexity

Some very common functions f (n)—(increasing order of growth)

0 5 10 15 20 25 30 35 40

0

10

20

30

40

50

n

f(
n)

log2(n)√
n

n

n log2(n)
n
2

n
2 log2(n)

n
3

2n

13/15

Comparing functions: Order of growth

Definition (informal)
Let f and g be functions of size of input n:

1. f (n) = O(g(n)) denotes f “scales better” than g(n).
The order of growth of f is upper bounded by g: any increase in the runtime predicted
by f as a consequence of increasing n is at-most the increase predicted by g(n).

2. f (n) = Ω(g(n)) denotes f “scales worse” than g(n).
The order of growth of f is lower bounded by g: any increase in the runtime predicted
by f as a consequence of increasing n is at-least the increase predicted by g(n).

3. f (n) = Θ(g(n)) denotes f “scales the same” as g(n).
The order of growth of f is equivalent to g: any increase in the runtime predicted by f
as a consequence of increasing n is equivalent to the increase predicted by g(n).
In this case, we also say that f (n) is strictly bounded by g(n).

The book uses the notation f (n)∼(g(n)) instead of f (n) = Θ(g(n)).

13/15

Comparing functions: Order of growth

Definition (formal)
Let f and g be functions of size of input n:

1. f (n) = O(g(n)) if there exists constants n0, c > 0 such that

0 ≤ f (n) ≤ c · g(n) for all n ≥ n0.

2. f (n) = Ω(g(n)) if there exists constants n0, c > 0 such that,

0 ≤ c · g(n) ≤ f (n) for all n ≥ n0.

3. f (n) = Θ(g(n)) if there exists constants n0, clb, cub > 0 such that,

0 ≤ clb · g(n) ≤ f (n) ≤ cub · g(n) for all n ≥ n0.

13/15

Comparing functions: Order of growth

Definition (formal)
Let f and g be functions of size of input n:

1. f (n) = O(g(n)) if there exists constants n0, c > 0 such that

0 ≤ f (n) ≤ c · g(n) for all n ≥ n0.

Constants n0? c?

▶ Constant n0 allows us to only look at large inputs (larger than n0).
Example, n2 > n only when inputs are large enough!

▶ Constant c hides “irrelevant details”.
Example, 3 + 7 · n and n model the same behavior!

13/15

Comparing functions: Order of growth

Definition (formal)
Let f and g be functions of size of input n:

1. f (n) = O(g(n)) if there exists constants n0, c > 0 such that

0 ≤ f (n) ≤ c · g(n) for all n ≥ n0.

Constants n0? c?
▶ Constant n0 allows us to only look at large inputs (larger than n0).

Example, n2 > n only when inputs are large enough!

▶ Constant c hides “irrelevant details”.
Example, 3 + 7 · n and n model the same behavior!

13/15

Comparing functions: Order of growth

Definition (formal)
Let f and g be functions of size of input n:

1. f (n) = O(g(n)) if there exists constants n0, c > 0 such that

0 ≤ f (n) ≤ c · g(n) for all n ≥ n0.

Constants n0? c?
▶ Constant n0 allows us to only look at large inputs (larger than n0).

Example, n2 > n only when inputs are large enough!
▶ Constant c hides “irrelevant details”.

Example, 3 + 7 · n and n model the same behavior!

13/15

Comparing functions: Order of growth

Definition (formal)
Let f and g be functions of size of input n:

1. f (n) = O(g(n)) if there exists constants n0, c > 0 such that

0 ≤ f (n) ≤ c · g(n) for all n ≥ n0.

Show that 3 + 7 · n = O(n)
▶ 3 + 7 · n = O(n). Choose n0 = 3 and c = 8. The statement

for all n ≥ 3, 0 ≤ 3 + 7 · n ≤ 8 · n

is true, completing the proof.

13/15

Comparing functions: Order of growth

Show that 3 + 7 · n = Θ(n)

−1 0 1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

n ≥ 3: 3 + 7 · n ≤ 8 · n

n ≥ 0: 1 · n ≤ 3 + 7 · n

n

f(
n)

3 + 7 · n
8 · n
1 · n

13/15

Comparing functions: Order of growth

Theorem
▶ The runtime complexity of Contains is Θ(|L|)).
▶ The memory complexity of Contains is Θ(1).

14/15

How to compare the order of growth of functions?

14/15

How to compare the order of growth of functions?

Limits: A mathematical power tool
Let f and g be functions of n with non-negative ranges. If

lim
n→∞

f (n)
g(n) is defined and is

∞ then f (n) = Ω(g(n));
c, with c > 0 a constant then f (n) = Θ(g(n));
0 then f (n) = O(g(n)).

14/15

How to compare the order of growth of functions?

Limits: A mathematical power tool
Let f and g be functions of n with non-negative ranges. If

lim
n→∞

f (n)
g(n) is defined and is

∞ then f (n) = Ω(g(n));
c, with c > 0 a constant then f (n) = Θ(g(n));
0 then f (n) = O(g(n)).

Example

lim
n→∞

c · f (n)
f (n) = c ·

(
lim
n→∞

f (n)
f (n)

)
= c

−→ c · f (n) = Θ(f (n))

lim
n→∞

n
c

n
c+d = lim

n→∞
1
n
d

= 0 −→ n
c = O(nc+d)

lim
n→∞

n
c

d
n
= 0 −→ n

c = O(dn)

14/15

How to compare the order of growth of functions?

Limits: A mathematical power tool
Let f and g be functions of n with non-negative ranges. If

lim
n→∞

f (n)
g(n) is defined and is

∞ then f (n) = Ω(g(n));
c, with c > 0 a constant then f (n) = Θ(g(n));
0 then f (n) = O(g(n)).

Example

lim
n→∞

c · f (n)
f (n) = c ·

(
lim
n→∞

f (n)
f (n)

)
= c −→ c · f (n) = Θ(f (n))

lim
n→∞

n
c

n
c+d = lim

n→∞
1
n
d

= 0 −→ n
c = O(nc+d)

lim
n→∞

n
c

d
n
= 0 −→ n

c = O(dn)

14/15

How to compare the order of growth of functions?

Limits: A mathematical power tool
Let f and g be functions of n with non-negative ranges. If

lim
n→∞

f (n)
g(n) is defined and is

∞ then f (n) = Ω(g(n));
c, with c > 0 a constant then f (n) = Θ(g(n));
0 then f (n) = O(g(n)).

Example

lim
n→∞

c · f (n)
f (n) = c ·

(
lim
n→∞

f (n)
f (n)

)
= c −→ c · f (n) = Θ(f (n))

lim
n→∞

n
c

n
c+d = lim

n→∞
1
n
d

= 0 −→ n
c = O(nc+d)

lim
n→∞

n
c

d
n
= 0 −→ n

c = O(dn)

14/15

How to compare the order of growth of functions?

Limits: A mathematical power tool
Let f and g be functions of n with non-negative ranges. If

lim
n→∞

f (n)
g(n) is defined and is

∞ then f (n) = Ω(g(n));
c, with c > 0 a constant then f (n) = Θ(g(n));
0 then f (n) = O(g(n)).

Example

lim
n→∞

c · f (n)
f (n) = c ·

(
lim
n→∞

f (n)
f (n)

)
= c −→ c · f (n) = Θ(f (n))

lim
n→∞

n
c

n
c+d = lim

n→∞
1
n
d

= 0 −→ n
c = O(nc+d)

lim
n→∞

n
c

d
n
= 0 −→ n

c = O(dn)

14/15

How to compare the order of growth of functions?

Example (See Example 3.26 in the course notes for details)

log
a
(n) = log

b
(n)

log
b
(a) =

1
log

b
(a) · logb (n) −→ log

a
(n) = Θ(log

b
(n))

lim
n→∞

log2(n)c

n
d

= 0 −→ log2(n)c = O(nd)

lim
n→∞

d
n/u

c
n/v = 0 (if c ≥ d ≥ 1, u ≥ v ≥ 1) −→ d

n/u = O(cn/v)

lim
n→∞

c1n
d1 + · · · + cmndm

n
di

= ci (di = max(d1, . . . , dm)) −→ c1n
d1 + · · · + cmndm = Θ(ndi)

lim
n→∞

f (n) + g(n)
g(n) = 1 (if f (n) = O(g(n))) −→ f (n) + g(n) = Θ(g(n))

lim
n→∞

h(n) · f (n)
h(n) · g(n) = 0 (if f (n) = O(g(n))) −→ h(n) · f (n) = O(h(n) · g(n))

15/15

Reflection on Contains

Is Contains a good algorithm?
Contains is correct and has a runtime complexity of Θ(|L|) −→ Sounds good to me!

15/15

Reflection on Contains

Is Contains a good algorithm?
Contains is correct and has a runtime complexity of Θ(|L|) −→ Sounds good to me!

Critique: Contains is too specialized −→.
We cannot use Contains for anything else than the contains problem!

Example

▶ Searching in only part of the list?
▶ Finding where v is in the list?

15/15

Reflection on Contains

Critique: Contains is too specialized −→.
We cannot use Contains for anything else than the contains problem!

Algorithm LinearSearch(L, v , o):
Input: L is an array , v a value, 0 ≤ o ≤ |L|.
1: r := o.

/* invariant: “o ≤ r ≤ |L| and v ∉ L[o, r)”, bound function: |L| − r */
2: while r ≠ |L| and also L[r] ≠ v do
3: r := r + 1.
4: return r .

Result: return the first offset r , o ≤ r < |L|, with L[r] = v or,
if no such offset exists, r = |L|.

15/15

Reflection on Contains

Critique: Contains is too specialized −→.
We cannot use Contains for anything else than the contains problem!

Algorithm LinearSearch(L, v , o):
Input: L is an array , v a value, 0 ≤ o ≤ |L|.
1: r := o.

/* invariant: “o ≤ r ≤ |L| and v ∉ L[o, r)”, bound function: |L| − r */
2: while r ≠ |L| and also L[r] ≠ v do
3: r := r + 1.
4: return r .

Result: return the first offset r , o ≤ r < |L|, with L[r] = v or,
if no such offset exists, r = |L|.

Algorithm LSContains(L, v):
1: return LinearSearch(L, v, 0) ≠ |L|.

15/15

Reflection on Contains

Algorithm LinearSearch(L, v , o):
Input: L is an array , v a value, 0 ≤ o ≤ |L|.
1: r := o.

/* invariant: “o ≤ r ≤ |L| and v ∉ L[o, r)”, bound function: |L| − r */
2: while r ≠ |L| and also L[r] ≠ v do
3: r := r + 1.
4: return r .

Result: return the first offset r , o ≤ r < |L|, with L[r] = v or,
if no such offset exists, r = |L|.

What is the runtime complexity of LinearSearch?

Problem: Modeling runtime complexity in terms of only the input limits us!

15/15

Reflection on Contains

Algorithm LinearSearch(L, v , o):
Input: L is an array , v a value, 0 ≤ o ≤ |L|.
1: r := o.

/* invariant: “o ≤ r ≤ |L| and v ∉ L[o, r)”, bound function: |L| − r */
2: while r ≠ |L| and also L[r] ≠ v do
3: r := r + 1.
4: return r .

Result: return the first offset r , o ≤ r < |L|, with L[r] = v or,
if no such offset exists, r = |L|.

What is the runtime complexity of LinearSearch?
▶ With respect to worst case inputs (v ∉ L): Θ(|L|).

▶ With respect to best case inputs (v = L[o]): Θ(1).
Problem: Modeling runtime complexity in terms of only the input limits us!

15/15

Reflection on Contains

Algorithm LinearSearch(L, v , o):
Input: L is an array , v a value, 0 ≤ o ≤ |L|.
1: r := o.

/* invariant: “o ≤ r ≤ |L| and v ∉ L[o, r)”, bound function: |L| − r */
2: while r ≠ |L| and also L[r] ≠ v do
3: r := r + 1.
4: return r .

Result: return the first offset r , o ≤ r < |L|, with L[r] = v or,
if no such offset exists, r = |L|.

What is the runtime complexity of LinearSearch?
▶ With respect to worst case inputs (v ∉ L): Θ(|L|).
▶ With respect to best case inputs (v = L[o]): Θ(1).

Problem: Modeling runtime complexity in terms of only the input limits us!

15/15

Reflection on Contains

Algorithm LinearSearch(L, v , o):
Input: L is an array , v a value, 0 ≤ o ≤ |L|.
1: r := o.

/* invariant: “o ≤ r ≤ |L| and v ∉ L[o, r)”, bound function: |L| − r */
2: while r ≠ |L| and also L[r] ≠ v do
3: r := r + 1.
4: return r .

Result: return the first offset r , o ≤ r < |L|, with L[r] = v or,
if no such offset exists, r = |L|.

What is the runtime complexity of LinearSearch?
▶ With respect to worst case inputs (v ∉ L): Θ(|L|).
▶ With respect to best case inputs (v = L[o]): Θ(1).

Problem: Modeling runtime complexity in terms of only the input limits us!

15/15

Reflection on Contains

Algorithm LinearSearch(L, v , o):
Input: L is an array , v a value, 0 ≤ o ≤ |L|.
1: r := o.

/* invariant: “o ≤ r ≤ |L| and v ∉ L[o, r)”, bound function: |L| − r */
2: while r ≠ |L| and also L[r] ≠ v do
3: r := r + 1.
4: return r .

Result: return the first offset r , o ≤ r < |L|, with L[r] = v or,
if no such offset exists, r = |L|.

What is the runtime complexity of LinearSearch?
Problem: Modeling runtime complexity in terms of only the input limits us!

Assume: L[i] = v and i is the first offset after o equivalent to v .
The runtime complexity of LinearSearch is Θ(i − o).

15/15

Reflection on Contains

Algorithm LinearSearch(L, v , o):
Input: L is an array , v a value, 0 ≤ o ≤ |L|.
1: r := o.

/* invariant: “o ≤ r ≤ |L| and v ∉ L[o, r)”, bound function: |L| − r */
2: while r ≠ |L| and also L[r] ≠ v do
3: r := r + 1.
4: return r .

Result: return the first offset r , o ≤ r < |L|, with L[r] = v or,
if no such offset exists, r = |L|.

What is the runtime complexity of LinearSearch?
Problem: Modeling runtime complexity in terms of only the input limits us!

Assume: L[i] = v and i is the first offset after o equivalent to v .
The runtime complexity of LinearSearch is Θ(i − o) with i = LinearSearch(L, v, o).

