Fundamentals SFWRENG 2CO3: Data Structures and Algorithms

Jelle Hellings

Department of Computing and Software McMaster University

Winter 2024

Engineering is the application of science and mathematics to solve practical problems.

Engineering is the application of science and mathematics to solve practical problems.

Software engineering requires

- a deep understanding of what software (programs) do;
- mastery of a toolbox of *fundamental tools* to tackle programming challenges;
- capability to *analyze* software in depth.

Engineering is the application of science and mathematics to solve practical problems.

Software engineering requires

- a deep understanding of what software (programs) do;
- mastery of a toolbox of *fundamental tools* to tackle programming challenges;
- capability to *analyze* software in depth.

This course introduces the analysis of software by studying and analyzing fundamental tools.

Engineering is the application of science and mathematics to solve practical problems.

Software engineering requires

- a deep understanding of what software (programs) do;
- mastery of a toolbox of *fundamental tools* to tackle programming challenges;
- capability to *analyze* software in depth.

This course introduces the analysis of software by studying and analyzing fundamental tools.

- Analysis of algorithms and data structures: *correctness* and *complexity*.
- Common design strategies for algorithms and data structures.
- A useful toolbox of standard fundamental algorithms and data structures.
- Graph representations and fundamental graph algorithms.

Engineering is the application of science and mathematics to solve practical problems.

Software engineering requires

- a deep understanding of what software (programs) do;
- mastery of a toolbox of *fundamental tools* to tackle programming challenges;
- capability to *analyze* software in depth.

This course introduces the analysis of software by studying and analyzing fundamental tools.

- Analysis of algorithms and data structures: *correctness* and *complexity*.
- Common design strategies for algorithms and data structures.
- A useful toolbox of standard fundamental algorithms and data structures.
- Graph representations and fundamental graph algorithms.

This course is not about learning how to program (basic programming is prior knowledge).

Algorithms and data structures

The basic building blocks of any problem that can be solved by a computer program.

Algorithms and data structures

The basic building blocks of any problem that can be solved by a computer program.

Definition (Algorithm)

Procedures for solving problems that are suited for computer implementation.

Algorithms and data structures

The basic building blocks of any problem that can be solved by a computer program.

Definition (Algorithm)

Procedures for solving problems that are suited for computer implementation.

An algorithm takes one-or-more values as input and produces an output via a *well-defined computational procedure*. The basic building blocks of any problem that can be solved by a computer program.

Definition (Algorithm)

Procedures for solving problems that are suited for computer implementation.

An algorithm takes one-or-more values as input and produces an output via a *well-defined computational procedure*.

Definition (Data structure)

Scheme to store and organize data in order to facilitate *efficient* access and modification.

We all have our own favorites.

We all have our own favorites.

For the study of data structures and algorithms: Choice of programming language does *not really* matter (mostly).

We all have our own favorites.

For the study of data structures and algorithms: Choice of programming language does *not really* matter (mostly).

For *optimal* implementations, we sometimes need a lower-level toolbox. E.g., references or pointers when implementing data structures.

We all have our own favorites.

For the study of data structures and algorithms: Choice of programming language does *not really* matter (mostly).

For *optimal* implementations, we sometimes need a lower-level toolbox. E.g., references or pointers when implementing data structures.

Many programming languages suffice, e.g.,

- the book has many examples in Java;
- ► I will provide some examples in C++.

Feel free to experiment in your programming language of choice.

A simple algorithm: Contains

Problem Given a list L and value v, return $v \in L$.

Problem Given a list L and value v, return $v \in L$.

```
Algorithm CONTAINS(L, v):
```

- 1: *i*, *r* := 0, false.
- 2: while $i \neq |L|$ do
- 3: **if** L[i] = v **then**
- 4: r := true.
- 5: i := i + 1.
- 6: else
- 7: i := i + 1.
- 8: **return** *r*.

Problem Given a list L and value v, return $v \in L$.

```
Algorithm CONTAINS(L, v):
```

- 1: *i*, *r* := 0, false.
- 2: while $i \neq |L|$ do
- 3: **if** L[i] = v **then**
- 4: r := true.
- 5: i := i + 1.
- 6: else
- 7: i := i + 1.
- 8: **return** *r*.

Is CONTAINS correct?

Problem Given a list L and value v, return $v \in L$.

```
Algorithm CONTAINS(L, v):
```

- 1: *i*, *r* := 0, false.
- 2: while $i \neq |L|$ do
- 3: **if** L[i] = v **then**
- 4: r := true.
- 5: i := i + 1.
- 6: else
- 7: i := i + 1.

8: **return** *r*.

Result: return true if $v \in L$ and false otherwise.

Is Contains correct?

Problem Given a list L and value v, return $v \in L$.

Algorithm CONTAINS(*L*, *v*):

Input: *L* is an *array*, *v* a value.

- 1: i, r := 0, false.
- 2: while $i \neq |L|$ do
- 3: **if** L[i] = v **then**
- 4: r := true.
- 5: i := i + 1.
- 6: **else**
- 7: i := i + 1.

8: **return** *r*.

Result: return true if $v \in L$ and false otherwise.

Is CONTAINS correct?

Problem Given a list L and value v, return $v \in L$.

Algorithm EVILCONTAINS(*L*, *v*):

Input: *L* is an *array*, *v* a value.

- 1: L := [].
- 2: return false.

Result: return true if $v \in L$ and false otherwise.

```
Is EVILCONTAINS correct?
```

Problem Given a list L and value v, return $v \in L$.

Algorithm CONTAINS(*L*, *v*): 1: *i*, *r* := 0, false.

- 2: while $i \neq |L|$ do 3: if L[i] = v then 4: r := true.
- 5: i := i + 1.
- 6: else
- 7: i := i + 1.

8: **return** *r*.

Problem Given a list L and value v, return $v \in L$.

Algorithm CONTAINS(*L*, *v*):

1: i, r := 0, false.
 /* L is an array, v a value, i = 0, and r = false. */

- 2: while $i \neq |L|$ do
- 3: **if** L[i] = v **then**
- 4: r := true.
- 5: i := i + 1.

```
6: else
```

```
7: i := i + 1.
```

/* *r* is true if $v \in L$ and false otherwise. */

```
8: return r.
```

Problem Given a list L and value v, return $v \in L$.

```
Algorithm CONTAINS(L, v):
```

- 1: *i*, *r* := 0, false.
 - /* *L* is an *array*, *v* a value, *i* = 0, and *r* = false. */

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

- 2: while $i \neq |L|$ do
- 3: **if** L[i] = v **then**
- 4: r := true.
- 5: i := i + 1.
- 6: else

```
7: i := i + 1.
```

/* r is true if $v \in L$ and false otherwise. */

```
8: return r.
```

Prove the invariant holds

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

Prove the invariant holds

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

Proof by induction

Prove the invariant holds

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

Proof by induction

Base case Prove invariant holds before the loop.

Hypothesis The invariant holds after the *j*-th, j < m, repetition of the loop.

Step Assume invariant holds when we start the *m*-th repetition of the loop. Prove invariant holds again when we reach the end of the *m*-th repetition.

```
Prove the invariant holds
```

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

Base case: Prove invariant holds before the loop

```
Input: L is an array, v a value.
```

1: *i*, *r* := 0, false.

```
/* L is an array, v a value, i = 0, and r = false. */
```

```
2: while ....
```

```
Prove the invariant holds
```

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

Base case: Prove invariant holds before the loop

```
Input: L is an array, v a value.
```

```
1: i, r := 0, false.
```

```
/* L is an array, v a value, i = 0, and r = false. */
```

```
2: while ....
```

Argument

1. L[0, i) with i = 0 is L[0, 0).

```
Prove the invariant holds
```

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

Base case: Prove invariant holds before the loop

```
Input: L is an array, v a value.
```

```
1: i, r := 0, false.
```

```
/* L is an array, v a value, i = 0, and r = false. */
```

```
2: while ....
```

- 1. L[0, i) with i = 0 is L[0, 0).
- 2. L[0,0) is empty, hence $v \notin L[0,0)$.

```
Prove the invariant holds
```

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

Base case: Prove invariant holds before the loop

```
Input: L is an array, v a value.
```

1: *i*, *r* := 0, false.

```
/* L is an array, v a value, i = 0, and r = false. */
```

2: while

- 1. L[0, i) with i = 0 is L[0, 0).
- 2. L[0,0) is empty, hence $v \notin L[0,0)$.
- 3. Hence, r = false must hold (which is the case).

Prove the invariant holds /* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r =true, $v \notin L[0, i)$ implies r = false. */

Step: Prove invariant holds again when we reach the end of the *m*-th repetition.

2: while $i \neq |L|$ do

/* Invariant and $i \neq |L|$. */

- 3: **if** L[i] = v **then**
- 4: r := true.
- 5: i := i + 1.
- 6: else
- 7: i := i + 1.

/* Invariant. */

Prove the invariant holds /* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r =true, $v \notin L[0, i)$ implies r = false. */

Step: Prove invariant holds again when we reach the end of the *m*-th repetition.

2: while $i \neq |L|$ do

/* Invariant and $i \neq |L|$. */

- 3: **if** L[i] = v **then**
- 4: r := true.
- 5: i := i + 1.
- 6: else
- 7: i := i + 1.

/* Invariant. */

Prove the invariant holds /* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r =true, $v \notin L[0, i)$ implies r = false. */

Step: Prove invariant holds again when we reach the end of the *m*-th repetition.

2: while $i \neq |L|$ do

/* Invariant and $i \neq |L|$. */

- 3: **if** L[i] = v **then**
- 4: r := true.
- 5: i := i + 1.
- 6: **else**
- 7: i := i + 1.

/* Invariant. */

Argument If-statement: Case distinction.

```
Prove the invariant holds (t \text{ inv} 0 < i < |l|) \times C I[0, i) implies t = t \tau u_0 \times d
```

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

```
Case distinction: If case (L[i] = v \text{ holds}).
```

```
3: if L[i] = v then
```

```
/* Invariant, i \neq |L|, and L[i] = v */
```

- 4: r := true.
- 5: i := i + 1.

/* Invariant. */

Argument

After Line 5: prove that Invariant holds for the *updated* values r_{new} , i_{new} of r and i.

```
Prove the invariant holds
```

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

```
Case distinction: If case (L[i] = v \text{ holds}).
```

```
3: if L[i] = v then
```

/* Invariant, $i \neq |L|$, and L[i] = v */

- 4: r := true.
- 5: i := i + 1.

/* Invariant. */

Argument

After Line 5: prove that Invariant holds for the *updated* values r_{new} , i_{new} of r and i.

```
1. L[i] = v, hence, v \in L[0, i].
```

```
Prove the invariant holds
```

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

```
Case distinction: If case (L[i] = v \text{ holds}).
```

```
3: if L[i] = v then
```

```
/* Invariant, i \neq |L|, and L[i] = v */
```

- 4: r := true.
- 5: i := i + 1.

/* Invariant. */

Argument

After Line 5: prove that Invariant holds for the *updated* values r_{new} , i_{new} of r and i.

- 1. L[i] = v, hence, $v \in L[0, i]$.
- 2. $i_{new} = i + 1$, hence, $v \in L[0, i_{new})$.

```
Prove the invariant holds
```

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

```
Case distinction: If case (L[i] = v \text{ holds}).
```

```
3: if L[i] = v then
```

```
/* Invariant, i \neq |L|, and L[i] = v */
```

- 4: r := true.
- 5: i := i + 1.

/* Invariant. */

Argument

After Line 5: prove that Invariant holds for the *updated* values r_{new} , i_{new} of r and i.

- 1. L[i] = v, hence, $v \in L[0, i]$.
- 2. $i_{new} = i + 1$, hence, $v \in L[0, i_{new})$.
- 3. Hence, $r_{new} = true must hold (which is the case)$.

```
Prove the invariant holds

/* \text{ inv: } 0 \le i \le |L|, v \in L[0, i) \text{ implies } r = \text{true}, v \notin L[0, i) \text{ implies } r = \text{false. } */

Case distinction: If case (L[i] = v \text{ holds}).

3: if L[i] = v then

/* \text{ Invariant}, i \ne |L|, \text{ and } L[i] = v */
```

- 4: r := true.
- 5: i := i + 1.

/* Invariant. */

Argument

After Line 5: prove that Invariant holds for the *updated* values r_{new} , i_{new} of r and i.

```
Prove the invariant holds /* \text{ inv: } 0 \le i \le |L|, v \in L[0, i) \text{ implies } r = \text{true}, v \notin L[0, i) \text{ implies } r = \text{false. } */
```

```
Case distinction: If case (L[i] = v \text{ holds}).
```

```
3: if L[i] = v then
/* Invariant, i \neq |L|, and L[i] = v */
```

- 4: r := true.
- 5: i := i + 1.

Argument

After Line 5: prove that Invariant holds for the *updated* values r_{new} , i_{new} of r and i.

- 1. $0 \le i \le |L|$ and $i \ne |L|$ implies $0 \le i < |L|$.
- 2. $i_{new} = i + 1$, hence, $0 < i_{new} \le |L|$.
- 3. $0 < i_{\text{new}} \le |L|$ implies $0 \le i_{\text{new}} \le |L|$.

```
Prove the invariant holds
```

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

```
Case distinction: Else case (L[i] \neq v \text{ holds}).
```

```
6: if L[i] = v then ... else
/* Invariant, i ≠ |L|, and L[i] ≠ v */
7: i := i + 1.
/* Invariant, */
```

Argument

```
Prove the invariant holds
```

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

```
Case distinction: Else case (L[i] \neq v \text{ holds}).
```

```
6: if L[i] = v then ... else
/* Invariant, i ≠ |L|, and L[i] ≠ v */
7: i := i + 1.
/* Invariant. */
```

Argument

After Line 7: prove that Invariant holds for the *updated* value i_{new} of *i*.

1. Assume r = true. Hence, $v \in L[0, i)$ by the invariant.

```
Prove the invariant holds
```

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

```
Case distinction: Else case (L[i] \neq v \text{ holds}).
```

```
6: if L[i] = v then ... else
/* Invariant, i ≠ |L|, and L[i] ≠ v */
7: i := i + 1.
/* Invariant. */
```

Argument

- 1. Assume r = true. Hence, $v \in L[0, i)$ by the invariant.
- 2. $i_{new} = i + 1$, hence, $v \in L[0, i_{new})$.

```
Prove the invariant holds
```

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

```
Case distinction: Else case (L[i] \neq v \text{ holds}).
```

```
6: if L[i] = v then ... else
/* Invariant, i ≠ |L|, and L[i] ≠ v */
7: i := i + 1.
/* Invariant. */
```

Argument

- 1. Assume r = true. Hence, $v \in L[0, i)$ by the invariant.
- 2. $i_{new} = i + 1$, hence, $v \in L[0, i_{new})$.
- 3. Hence, r = true must hold (which is the case).

```
Prove the invariant holds
```

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

```
Case distinction: Else case (L[i] \neq v \text{ holds}).
```

```
6: if L[i] = v then ... else
/* Invariant, i ≠ |L|, and L[i] ≠ v */
7: i := i + 1.
/* Invariant. */
```

Argument

- 1. Assume r = false. Hence, $v \notin L[0, i)$ by the invariant.
- 2. $i_{\text{new}} = i + 1$ and $L[i] \neq v$, hence, $v \notin L[0, i_{\text{new}})$.
- 3. Hence, r = false must hold (which is the case).

We have proven the invariant holds $/* \text{ inv: } 0 \le i \le |L|, v \in L[0, i) \text{ implies } r = \text{true}, v \notin L[0, i) \text{ implies } r = \text{false. } */$ 6: while $i \ne |L|$ do ... end while

/* Invariant and $\neg(i \neq |L|)$. */

/* r is true if $v \in L$ and false otherwise. */

7: **return** *r*.

We have proven the invariant holds

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

6: while $i \neq |L|$ do ... end while

/* Invariant and $\neg(i \neq |L|)$. */

/* r is true if $v \in L$ and false otherwise. */

7: **return** *r*.

Are we done?

► Assuming /* Invariant and $\neg(i \neq |L|)$ */, Do we have /* r is true if $v \in L$ and false otherwise */?

We have proven the invariant holds

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

6: while $i \neq |L|$ do ... end while

/* Invariant and $\neg(i \neq |L|)$. */

/* r is true if $v \in L$ and false otherwise. */

7: **return** *r*.

Are we done?

Assuming /* Invariant and ¬(i ≠ |L|) */, Do we have /* r is true if v ∈ L and false otherwise */?

Argument

We have proven the invariant holds

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

6: while $i \neq |L|$ do ... end while

/* Invariant and $\neg(i \neq |L|)$. */

/* r is true if $v \in L$ and false otherwise. */

7: **return** *r*.

Are we done?

Assuming /* Invariant and ¬(i ≠ |L|) */, Do we have /* r is true if v ∈ L and false otherwise */?

Argument

1. $\neg(i \neq |L|)$ implies i = |L|.

We have proven the invariant holds

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

6: while $i \neq |L|$ do ... end while

/* Invariant and $\neg(i \neq |L|)$. */

/* r is true if $v \in L$ and false otherwise. */

7: **return** *r*.

Are we done?

```
Assuming /* Invariant and ¬(i ≠ |L|) */,
Do we have /* r is true if v ∈ L and false otherwise */?
```

Argument

- 1. \neg ($i \neq |L|$) implies i = |L|.
- 2. L[0, i) with i = |L| is equivalent to L.

We have proven the invariant holds

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

6: while $i \neq |L|$ do ... end while

/* Invariant and $\neg(i \neq |L|)$. */

/* r is true if $v \in L$ and false otherwise. */

7: **return** *r*.

Are we done?

```
► Assuming /* Invariant and \neg(i \neq |L|) */,
Do we have /* r is true if v \in L and false otherwise */?
```

Argument

- 1. $\neg(i \neq |L|)$ implies i = |L|.
- 2. L[0, i) with i = |L| is equivalent to L.
- 3. Hence, $v \in L$ implies r = true, $v \notin L$ implies r = false.

We have proven the invariant holds

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

6: while $i \neq |L|$ do ... end while

/* Invariant and $\neg(i \neq |L|)$. */

/* r is true if $v \in L$ and false otherwise. */

7: **return** *r*.

- ► Assuming /* Invariant and $\neg(i \neq |L|)$ */, Do we have /* r is true if $v \in L$ and false otherwise */? \longrightarrow Yes!
- Do we reach the end of the loop?

- Do we reach the end of the loop?
- 2: i, r := 0, false. 3: while $i \neq |L|$ do 4: if L[i] = v then 5: r := true. 6: i := i + 1.
- 7: **else**
- 8: i := i + 1.

- Do we reach the end of the loop? \longrightarrow *Yes*-obviously *i* will only be 0, ..., |L|.
- 2: *i*, *r* := 0, false. 3: while $i \neq |L|$ do 4: if L[i] = v then 5: *r* := true. 6: i := i + 1. 7: else
- 8: i := i + 1.

Are we done?

- Do we reach the end of the loop? \longrightarrow *Yes*—*obviously i will only be* 0, ..., |*L*|.
- 2: *i*, *r* := 0, false.
- 3: while $i \neq |L|$ do
- 4: **if** L[i] = v **then**
- 5: r := true.
- 6: i := i + 1.
- 7: else
- 8: i := i + 1.

Formal argument: prove a bound function

Define a *bound function* f on the state of the algorithm such that the output of f:

- ▶ is a *natural number* (0, 1, 2, . . .).
- strictly decreases after each iteration of the loop body.

Are we done?

- Do we reach the end of the loop? \longrightarrow *Yes*-obviously *i* will only be 0, ..., |L|.
- 2: *i*, *r* := 0, false.
- 3: while $i \neq |L|$ do /* bound function: |L| i */
- 4: **if** L[i] = v then
- 5: r := true.
- 6: i := i + 1.
- 7: else
- 8: i := i + 1.

Formal argument: prove a bound function

Define a *bound function* f on the state of the algorithm such that the output of f:

- ▶ is a *natural number* (0, 1, 2, . . .).
- strictly decreases after each iteration of the loop body.

Are we done?

- Do we reach the end of the loop? \longrightarrow Yes—obviously i will only be $0, \ldots, |L|$.
- 2: i, r := 0, false. $\leftarrow |L| i \text{ starts at } |L|, |L| \ge 0$.3: while $i \ne |L|$ do /* bound function: |L| i */ $\leftarrow |L| i \text{ stops at } 0$.4: if L[i] = v then $\leftarrow |L| i \text{ stops at } 0$.5: r := true. $\leftarrow |L| i \text{ strictly decreases.}$ 6: i := i + 1. $\leftarrow |L| i \text{ strictly decreases.}$ 7: else $\leftarrow |L| i \text{ strictly decreases.}$

Formal argument: prove a bound function Define a *bound function* f on the state of the algorithm such that the output of f:

- ▶ is a *natural number* (0, 1, 2, . . .).
- strictly decreases after each iteration of the loop body.

Summary

- Define a *pre-condition*: What restrictions do we require on the input?
- Define a *post-condition*: What should the output be?
- Prove that *running the program* turns the pre-condition into the post-condition.

Summary

- Define a *pre-condition*: What restrictions do we require on the input?
- Define a *post-condition*: What should the output be?
- Prove that *running the program* turns the pre-condition into the post-condition.

Hard parts: loops \rightarrow invariants (induction proofs) and bound functions.

Hard parts: loops \rightarrow invariants (induction proofs) and bound functions.

On finding invariants

Most induction proofs are *easy* if you have the correct *induction hypothesis*. Finding the induction hypothesis (invariant) is the *hard part* \rightarrow trial and error.

Hard parts: loops \rightarrow invariants (induction proofs) and bound functions.

On finding invariants

Most induction proofs are *easy* if you have the correct *induction hypothesis*. Finding the induction hypothesis (invariant) is the *hard part* \rightarrow trial and error.

Take inspiration from what should hold after the loop and what is changed during the loop.

Example: CONTAINS

/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies $r = \text{true}, v \notin L[0, i)$ implies r = false. */

3: while $i \neq |L| \dots$ end while

/* *r* is true if $v \in L$ and false otherwise. */

Hard parts: loops \rightarrow invariants (induction proofs) and bound functions.

On finding invariants

Most induction proofs are *easy* if you have the correct *induction hypothesis*. Finding the induction hypothesis (invariant) is the *hard part* \rightarrow trial and error.

Take inspiration from what should hold after the loop and what is changed during the loop.

Example: CONTAINS

/* inv: 0 ≤ i ≤ |L|, $v \in L[0, i)$ implies $r = \text{true}, v \notin L[0, i)$ implies r = false. */

3: while $i \neq |L| \dots$ end while

/* *r* is true if $v \in L$ and false otherwise. */

Hard parts: loops \rightarrow invariants (induction proofs) and bound functions.

On finding invariants

Most induction proofs are *easy* if you have the correct *induction hypothesis*. Finding the induction hypothesis (invariant) is the *hard part* \rightarrow trial and error.

Take inspiration from what should hold after the loop and what is changed during the loop.

Example: CONTAINS

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

3: while $i \neq |L| \dots$ end while

/* *r* is true if $v \in L$ and false otherwise. */

A simple algorithm: CONTAINS

Problem Given a list L and value v, return $v \in L$.

```
Algorithm CONTAINS(L, v):

1: i, r := 0, false.

2: while i \neq |L| do

3: if L[i] = v then

4: r := true.

5: i := i + 1.

6: else

7: i := i + 1.

8: return r.
```

What is the complexity of Contains?

Interested in *scalability*: How do the costs of CONTAINS *increase* when increasing |L|?

What is the complexity of CONTAINS ? Interested in *scalability*: How do the costs of CONTAINS *increase* when increasing |L|?

Algorithm CONTAINS(*L*, *v*): 1: *i*, *r* := 0, false. 2: while $i \neq |L|$ do 3: if L[i] = v then 4: r := true. 5: i := i + 1. 6: else 7: i := i + 1. 8: return *r*.

We need a *scientific model* of the work done by Contains

What is the complexity of CONTAINS ? Interested in *scalability*: How do the costs of CONTAINS *increase* when increasing |L|?

Algorithm CONTAINS(*L*, *v*): 1: i, r := 0, false. \leftarrow 2 instruction(s). 2: while $i \neq |L|$ do \leftarrow 2 instruction(s). if L[i] = v then \leftarrow 3 instruction(s). 3: \leftarrow 1 instruction(s). r := true.4: \leftarrow 2 instruction(s). 5: i := i + 1else 6: i := i + 1. \leftarrow 2 instruction(s). 7: \leftarrow 1 instruction(s). 8: return r.

We need a scientific model of the work done by CONTAINS

Intermezzo: The complexity of CONTAINS

What is the complexity of CONTAINS if $v \notin L$? Interested in *scalability*: How do the costs of CONTAINS *increase* when increasing |L|?

Algorithm CONTAINS(*L*, *v*): 1: i, r := 0, false. \leftarrow 2 instruction(s). 2: while $i \neq |L|$ do \leftarrow 2 instruction(s). if L[i] = v then \leftarrow 3 instruction(s). 3: \leftarrow 1 instruction(s). r := true.4: 5: i := i + 1 \leftarrow 2 instruction(s). else 6: i := i + 1. 7:

8: return r.

 \leftarrow 2 instruction(s). \leftarrow 1 instruction(s).

We need a *scientific model* of the work done by CONTAINS

What is the complexity of CONTAINS if $v \notin L$? Interested in *scalability*: How do the costs of CONTAINS *increase* when increasing |L|?

Algorithm Contains(L, v):		
1: $i, r := 0$, false.	\leftarrow 2 instruction(s).	
2: while $i \neq L $ do	\leftarrow 2 instruction(s).	$\left.\right\} L + 1 times.$
3: if $L[i] = v$ then	\leftarrow 3 instruction(s).	
4: $r := true.$	$ \longleftarrow 1 instruction(s). \\ \leftarrow 2 instruction(s). $	
5: $i := i + 1$.	\leftarrow 2 instruction(s).	$\rangle L $ times.
6: else		
7: $i := i + 1$.	$ \leftarrow 2 instruction(s). \\ \leftarrow 1 instruction(s). $	
8: return <i>r</i> .	\leftarrow 1 instruction(s).	,

We need a scientific model of the work done by CONTAINS

What is the complexity of CONTAINS if $v \notin L$? Interested in *scalability*: How do the costs of CONTAINS *increase* when increasing |L|?

Algorithm Contains(L, v):		
1: $i, r := 0, false.$	\leftarrow 2 instruction(s).	
2: while $i \neq L $ do	\leftarrow 2 instruction(s).	$\left.\right\} L + 1 times.$
3: if $L[i] = v$ then	\leftarrow 3 instruction(s).	
4: $r := true.$	\leftarrow 1 instruction(s).	
5: $i := i + 1$.	\leftarrow 2 instruction(s).	$\rangle L $ times.
6: else		
7: $i := i + 1$.	$ \leftarrow 2 instruction(s). \\ \leftarrow 1 instruction(s). $	
8: return <i>r</i> .	\leftarrow 1 instruction(s).	/

We need a *scientific model* of the work done by CONTAINS NumInstrOnlyElse(N) = 5 + 7N with N = |L|.

What is the complexity of CONTAINS ? Interested in *scalability*: How do the costs of CONTAINS *increase* when increasing |L|?

Algorithm CONTAINS(L, v):1: i, r := 0, false. $\leftarrow 2 ins$ 2: while $i \neq |L|$ do $\leftarrow 2 ins$ 3: if L[i] = v then $\leftarrow 3 ins$ 4: r := true. $\leftarrow 1 ins$ 5: i := i + 1. $\leftarrow 2 ins$ 6: else= i + 1.7: i := i + 1. $\leftarrow 2 ins$

8: **return** *r*.

 $\begin{array}{l} \leftarrow 2 \ instruction(s). \\ \leftarrow 2 \ instruction(s). \\ \leftarrow 3 \ instruction(s). \\ \leftarrow 1 \ instruction(s). \\ \leftarrow 2 \ instruction(s). \end{array} \right\} m \ times.$

 $\leftarrow 2 instruction(s). \\ \leftarrow 1 instruction(s).$

We need a *scientific model* of the work done by CONTAINS NumInstr(N) = 5 + 7N + m with N = |L|.

What is the complexity of CONTAINS if $v \notin L$? Interested in *scalability*: How do the costs of CONTAINS *increase* when increasing |L|?

We need a *scientific model* of the work done by CONTAINS NumInstrOnlyElse(N) = 5 + 7N with N = |L|.

A scientific model allows predictions Assume: Contains with a list L, |L| = 1000, takes $12 \mu s$. Predict: How long does Contains take with a list of 2000 values?

What is the complexity of CONTAINS if $v \notin L$? Interested in *scalability*: How do the costs of CONTAINS *increase* when increasing |L|?

We need a *scientific model* of the work done by CONTAINS NumInstrOnlyElse(N) = 5 + 7N with N = |L|.

A *scientific model* allows predictions

Assume: CONTAINS with a list L, |L| = 1000, takes $12 \mu s$. Predict: How long does CONTAINS take with a list of 2000 values?

Argument

- 1. NumInstrOnlyElse(1000) = 7005 instructions \rightarrow 12 µs.
- 2. NumInstrOnlyElse(2000) = $14\,005$ instructions \longrightarrow

$$\frac{14005}{7005} \cdot 12\,\mu s \approx 2 \cdot 12\,\mu s = 24\,\mu s.$$

What is the complexity of CONTAINS if $v \notin L$? Interested in *scalability*: How do the costs of CONTAINS *increase* when increasing |L|?

We need a *scientific model* of the work done by CONTAINS NumInstrOnlyElse(N) = 5 + 7N with N = |L|.

A scientific model allows predictions Assume: Contains with a list L, |L| = 1000, takes $12 \,\mu s$. Predict: How long does Contains take with a list of 2000 values? $\longrightarrow 24 \,\mu s$.

What is the complexity of CONTAINS if $v \notin L$? Interested in *scalability*: How do the costs of CONTAINS *increase* when increasing |L|?

We need a *scientific model* of the work done by CONTAINS NumInstrOnlyElse(N) = 5 + 7N with N = |L|.

A scientific model allows predictions Assume: Contains with a list L, |L| = 1000, takes $12 \,\mu$ s. Predict: How long does Contains take with a list of 2000 values? $\longrightarrow 24 \,\mu$ s.

Useful models are simple and make correct predictions

- Are our predictions correct?
- ► Is our model simple?

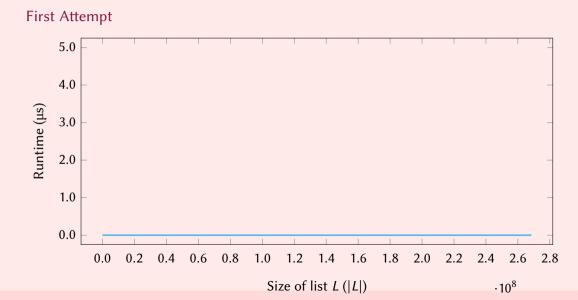
What is the complexity of CONTAINS if $v \notin L$? Interested in *scalability*: How do the costs of CONTAINS *increase* when increasing |L|?

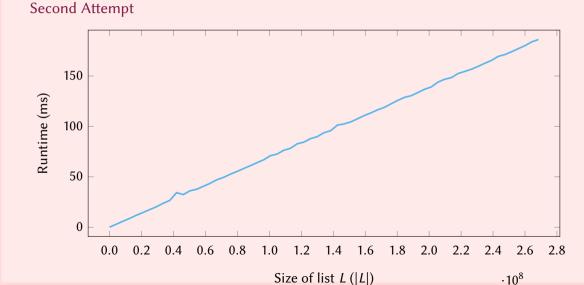
We need a *scientific model* of the work done by CONTAINS NumInstrOnlyElse(N) = 5 + 7N with N = |L|.

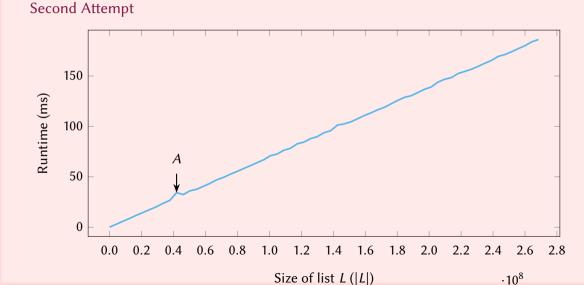
A scientific model allows predictions Assume: Contains with a list L, |L| = 1000, takes $12 \,\mu$ s. Predict: How long does Contains take with a list of 2000 values? $\longrightarrow 24 \,\mu$ s.

Useful models are simple and make correct predictions

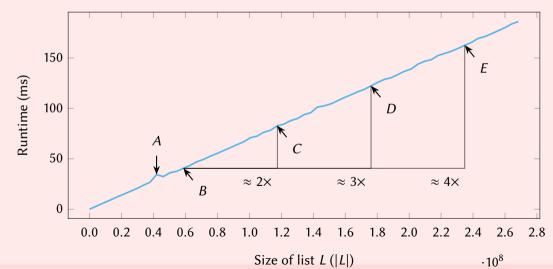
- ► Are our predictions correct? → Lets implement CONTAINS and measure.
- ► Is our model simple?







10/15



What is the complexity of CONTAINS if $v \notin L$? Interested in *scalability*: How do the costs of CONTAINS *increase* when increasing |L|?

We need a *scientific model* of the work done by CONTAINS NumInstrOnlyElse(N) = 5 + 7N with N = |L|.

A scientific model allows predictions Assume: Contains with a list L, |L| = 1000, takes $12 \,\mu s$. Predict: How long does Contains take with a list of 2000 values? $\longrightarrow 24 \,\mu s$.

Useful models are simple and make correct predictions

- ► Are our predictions correct? → Yes.
- ▶ Is our model simple? \longrightarrow *No: Runtime*(*N*) = *N predicts the same!*

What is the complexity of CONTAINS if $v \notin L$? Interested in *scalability*: How do the costs of CONTAINS *increase* when increasing |L|?

We need a *scientific model* of the work done by CONTAINS NumInstrOnlyElse(N) = 5 + 7N with N = |L|.

A scientific model allows predictions Assume: Contains with a list L, |L| = 1000, takes $12 \,\mu$ s. Predict: How long does Contains take with a list of 2000 values? $\longrightarrow 24 \,\mu$ s.

Useful models are simple and make correct predictions

- ► Are our predictions correct? → Yes.

A simple algorithm: CONTAINS

Problem Given a list L and value v, return $v \in L$.

Algorithm CONTAINS(*L*, *v*): 1: *i*, *r* := 0, false. 2: while $i \neq |L|$ do 3: if L[i] = v then 4: r := true. 5: i := i + 1. 6: else 7: i := i + 1. 8: return *r*.

Theorem

CONTAINS is correct, its runtime complexity is modelled by ContainsRuntime(|L|) = |L|, and its memory complexity is modelled by ContainsMemory(|L|) = 1.

Say we have two algorithms for the contains problem

- Contains with C.Runtime(|L|) = |L|.
- ALTC with AltCRuntime(|L|) = $|L|^2$.

Which one is *faster*?

Can we conclude that CONTAINS is always fastest, ALTC is slowest?

Say we have two algorithms for the contains problem

- CONTAINS with C.Runtime(|L|) = |L|.
- ALTC with AltCRuntime(|L|) = $|L|^2$.

Which one is *faster*?

Input size	1000
Runtime Contains Runtime AltC	12 μs 3 μs
Speed up of ALTC	3 μ3 4×

Say we have two algorithms for the contains problem

- CONTAINS with C.Runtime(|L|) = |L|.
- ALTC with AltCRuntime(|L|) = $|L|^2$.

Which one is *faster*?

Input size	1000	2000
Runtime Contains Runtime AltC	12 μs 3 μs	24 μs 12 μs
Speed up of ALTC	4×	2×

Argument

► C.Runtime(2000) = 2000 = 2 · 1000 = 2 · C.Runtime(1000).

• AltCRuntime(2000) = $2000^2 = 2^2 \cdot 1000^2 = 2^2 \cdot AltCRuntime(1000)$.

Say we have two algorithms for the contains problem

- Contains with C.Runtime(|L|) = |L|.
- ALTC with AltCRuntime(|L|) = $|L|^2$.

Which one is *faster*?

Input size	1000	2000	4000	
Runtime Contains Runtime AltC	12 μs 3 μs	24 μs 12 μs	48 μs 48 μs	
Speed up of ALTC	$4 \times$	2×	1×	

Argument

► C.Runtime(4000) = 4000 = 4 · 1000 = 4 · C.Runtime(1000).

• AltCRuntime(4000) = $4000^2 = 4^2 \cdot 1000^2 = 4^2 \cdot \text{AltCRuntime}(1000)$.

Say we have two algorithms for the contains problem

- Contains with C.Runtime(|L|) = |L|.
- ALTC with AltCRuntime(|L|) = $|L|^2$.

Which one is *faster*?

Input size	1000	2000	4000	8000	
Runtime Contains Runtime AltC	12 μs 3 μs	24 μs 12 μs	48 μs 48 μs	96 μs 192 μs	
Speed up of ALTC	$4 \times$	$2\times$	1×	0.5 imes	

Argument

► C.Runtime(8000) = 8000 = 8 · 1000 = 8 · C.Runtime(1000).

• AltCRuntime(8000) = $8000^2 = 8^2 \cdot 1000^2 = 8^2 \cdot \text{AltCRuntime}(1000)$.

Say we have two algorithms for the contains problem

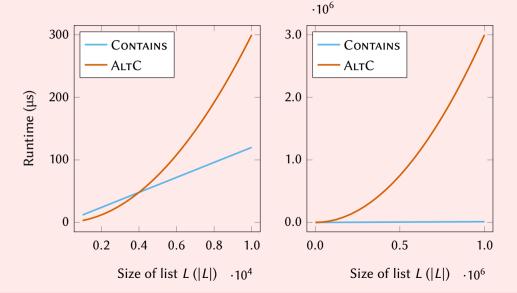
- Contains with C.Runtime(|L|) = |L|.
- ALTC with AltCRuntime(|L|) = $|L|^2$.

Which one is *faster*?

Input size	1000	2000	4000	8000	1 000 000
Runtime Contains Runtime AltC	12 μs 3 μs	24 μs 12 μs		96 μs 192 μs	12 s 3000 s
Speed up of ALTC	$4 \times$	$2\times$	1×	0.5 imes	$0.004 \times$

Argument

- ► C.Runtime(1000000) = 1000000 = 1000 · 1000 = 1000 · C.Runtime(1000).
- AltCRuntime(1000000) = 1000000^2 = $1000^2 \cdot 1000^2$ = $1000^2 \cdot AltCRuntime(1000)$.



Say we have two algorithms for the contains problem

- CONTAINS with C.Runtime(|L|) = |L|.
- ALTC with AltCRuntime(|L|) = $|L|^2$.

Which one is *faster*?

Can we conclude that CONTAINS is always fastest, ALTC is slowest? $\longrightarrow No!$

Say we have two algorithms for the contains problem

- CONTAINS with C.Runtime(|L|) = |L|.
- ALTC with AltCRuntime(|L|) = $|L|^2$.

Which one is *faster*?

Can we conclude that CONTAINS is always fastest, ALTC is slowest? $\longrightarrow No!$

Our models are simplifications!

Exact performance influenced by details of the compiler, memory, CPU architecture,

Say we have two algorithms for the contains problem

- CONTAINS with C.Runtime(|L|) = |L|.
- ALTC with AltCRuntime(|L|) = $|L|^2$.

Which one is *faster*?

Can we conclude that CONTAINS is always fastest, ALTC is slowest? $\longrightarrow No!$

Our models are simplifications!

Exact performance influenced by details of the compiler, memory, CPU architecture,

Are our models meaningless?

Say we have two algorithms for the contains problem

- CONTAINS with C.Runtime(|L|) = |L|.
- ALTC with AltCRuntime(|L|) = $|L|^2$.

Which one is *faster*?

Can we conclude that CONTAINS is always fastest, ALTC is slowest? $\longrightarrow No!$

Our models are simplifications!

Exact performance influenced by details of the compiler, memory, CPU architecture,

Are our models meaningless?

No: our comparisons shows differences in growth rates: |L| versus $|L|^2 \longrightarrow$ for large-enough inputs, ALTC should always be *much slower* than CONTAINS.

Say we have two algorithms for the contains problem

- CONTAINS with C.Runtime(|L|) = |L|.
- ALTC with AltCRuntime(|L|) = $|L|^2$.

Which one is *faster*?

Can we conclude that CONTAINS is always fastest, ALTC is slowest? $\longrightarrow No!$

Our models are simplifications!

Exact performance influenced by details of the compiler, memory, CPU architecture,

Remember: We are interested in *scalability* of algorithms For large-enough inputs, CONTAINS will always be much faster than ALTC *because* the order of growth of C.Runtime is *lower* than the order of growth of AltCRuntime.

Remember: We are interested in *scalability* of algorithms For large-enough inputs, CONTAINS will always be much faster than ALTC *because* the order of growth of C.Runtime is *lower* than the order of growth of AltCRuntime.

Runtime complexi	ty (size of input: <i>N</i>)	Which is faster?
Algorithm 1	Algorithm 2	(for large-enough N)
5 + 7 <i>N</i>	3 <i>N</i> + 100	
5 + 7 <i>N</i>	$100 \log_2(N) + 2$	
5 + 7 <i>N</i>	N(N-1)/2	
5 + 7N	$1000 N^{\frac{1}{2}} - 120$	
$2N^3 + 1000$	$2^{N} - 1$	

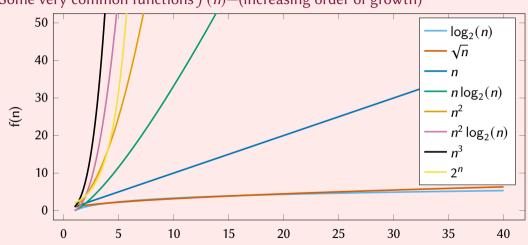
Remember: We are interested in *scalability* of algorithms For large-enough inputs, CONTAINS will always be much faster than ALTC *because* the order of growth of C.Runtime is *lower* than the order of growth of AltCRuntime.

Runtime complexity (size of input: <i>N</i>) ALGORITHM 1 ALGORITHM 2		Which is faster? (for large-enough <i>N</i>)
5 + 7 <i>N</i>	3N + 100	Similar
5 + 7 <i>N</i>	$100 \log_2(N) + 2$	Algorithm 2
5 + 7 <i>N</i>	N(N-1)/2	Algorithm 1
5 + 7 <i>N</i>	$1000N^{\frac{1}{2}} - 120$	Algorithm 2
$2N^3 + 1000$	$2^{N} - 1$	Algorithm 1

Remember: We are interested in *scalability* of algorithms For large-enough inputs, CONTAINS will always be much faster than ALTC *because* the order of growth of C.Runtime is *lower* than the order of growth of AltCRuntime.

Runtime complexi	ty (size of input: N)	Which is faster?
Algorithm 1	Algorithm 2	(for large-enough N)
N	Ν	Similar
Ν	$\ln(N)$	Algorithm 2
Ν	N^2	Algorithm 1
Ν	\sqrt{N}	Algorithm 2
N^3	2 ^{<i>N</i>}	Algorithm 1

Simpler models are easier to compare!



Definition (informal)

Let f and g be functions of size of input n:

- f(n) = O(g(n)) denotes f "scales better" than g(n). The order of growth of f is *upper bounded* by g: any increase in the runtime predicted by f as a consequence of increasing n is *at-most* the increase predicted by g(n).
- 2. f(n) = Ω(g(n)) denotes f "scales worse" than g(n).
 The order of growth of f is *lower bounded* by g: any increase in the runtime predicted by f as a consequence of increasing n is *at-least* the increase predicted by g(n).
- 3. f(n) = Θ(g(n)) denotes f "scales the same" as g(n).
 The order of growth of f is *equivalent* to g: any increase in the runtime predicted by f as a consequence of increasing n is *equivalent to* the increase predicted by g(n). In this case, we also say that f(n) is *strictly bounded by* g(n).

The book uses the notation $f(n) \sim (g(n))$ instead of $f(n) = \Theta(g(n))$.

Definition (formal) Let f and g be functions of size of input n: 1. f(n) = O(g(n)) if there exists constants $n_0, c > 0$ such that

 $0 \leq f(n) \leq c \cdot g(n)$ for all $n \geq n_0$.

2. $f(n) = \Omega(g(n))$ if there exists constants $n_0, c > 0$ such that,

 $0 \leq c \cdot g(n) \leq f(n)$ for all $n \geq n_0$.

3. $f(n) = \Theta(g(n))$ if there exists constants n_0 , c_{lb} , $c_{ub} > 0$ such that,

 $0 \le c_{\text{lb}} \cdot g(n) \le f(n) \le c_{\text{ub}} \cdot g(n)$ for all $n \ge n_0$.

Definition (formal) Let f and g be functions of size of input n: 1. f(n) = O(g(n)) if there exists constants $n_0, c > 0$ such that

(n) = O(g(n)) if there exists constants $n_0, c > 0$ such that

 $0 \leq f(n) \leq c \cdot g(n)$ for all $n \geq n_0$.

Constants n_0 ? c?

Definition (formal) Let f and g be functions of size of input n: 1. f(n) = O(g(n)) if there exists constants $n_0, c > 0$ such that

 $0 \leq f(n) \leq c \cdot g(n)$ for all $n \geq n_0$.

Constants *n*₀? *c*?

• Constant n_0 allows us to only look at large inputs (larger than n_0). Example, $n^2 > n$ only when inputs are large enough!

Definition (formal) Let f and g be functions of size of input n:

1. f(n) = O(g(n)) if there exists constants $n_0, c > 0$ such that

 $0 \leq f(n) \leq c \cdot g(n)$ for all $n \geq n_0$.

Constants n_0 ? c?

- Constant n_0 allows us to only look at large inputs (larger than n_0). Example, $n^2 > n$ only when inputs are large enough!
- Constant c hides "irrelevant details".
 Example, 3 + 7 · n and n model the same behavior!

Definition (formal) Let f and g be functions of size of input n: 1. f(n) = O(g(n)) if there exists constants $n_0, c > 0$ such that

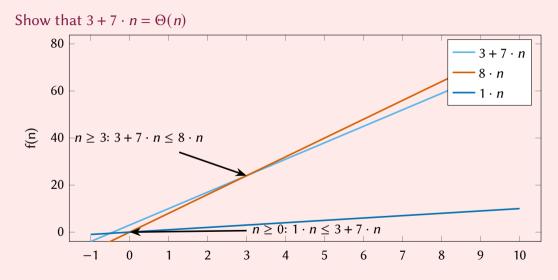
 $0 \leq f(n) \leq c \cdot g(n)$ for all $n \geq n_0$.

Show that $3 + 7 \cdot n = O(n)$

▶ $3 + 7 \cdot n = O(n)$. Choose $n_0 = 3$ and c = 8. The statement

for all $n \ge 3$, $0 \le 3 + 7 \cdot n \le 8 \cdot n$

is true, completing the proof.



Theorem

- The runtime complexity of CONTAINS is $\Theta(|L|)$.
- The memory complexity of Contains is $\Theta(1)$.

How to compare the order of growth of functions?

How to compare the order of growth of functions?

Limits: A mathematical power tool Let f and g be functions of n with non-negative ranges. If

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \text{ is defined and is } \begin{cases} \infty & \text{then } f(n) = \Omega(g(n)); \\ c, \text{ with } c > 0 \text{ a constant} & \text{then } f(n) = \Theta(g(n)); \\ 0 & \text{then } f(n) = O(g(n)). \end{cases}$$

How to compare the order of growth of functions?

Limits: A mathematical power tool Let f and g be functions of n with non-negative ranges. If

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \text{ is defined and is } \begin{cases} \infty & \text{then } f(n) = \Omega(g(n)); \\ c, \text{ with } c > 0 \text{ a constant} & \text{then } f(n) = \Theta(g(n)); \\ 0 & \text{then } f(n) = O(g(n)). \end{cases}$$

Example

$$\lim_{n \to \infty} \frac{c \cdot f(n)}{f(n)} = c \cdot \left(\lim_{n \to \infty} \frac{f(n)}{f(n)} \right) = c$$

Limits: A mathematical power tool Let f and g be functions of n with non-negative ranges. If

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \text{ is defined and is } \begin{cases} \infty & \text{then } f(n) = \Omega(g(n)); \\ c, \text{ with } c > 0 \text{ a constant} & \text{then } f(n) = \Theta(g(n)); \\ 0 & \text{then } f(n) = O(g(n)). \end{cases}$$

$$\lim_{n \to \infty} \frac{c \cdot f(n)}{f(n)} = c \cdot \left(\lim_{n \to \infty} \frac{f(n)}{f(n)} \right) = c \qquad \longrightarrow c \cdot f(n) = \Theta(f(n))$$

Limits: A mathematical power tool Let f and g be functions of n with non-negative ranges. If

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \text{ is defined and is } \begin{cases} \infty & \text{then } f(n) = \Omega(g(n)); \\ c, \text{ with } c > 0 \text{ a constant} & \text{then } f(n) = \Theta(g(n)); \\ 0 & \text{then } f(n) = O(g(n)). \end{cases}$$

$$\lim_{n \to \infty} \frac{c \cdot f(n)}{f(n)} = c \cdot \left(\lim_{n \to \infty} \frac{f(n)}{f(n)}\right) = c \qquad \longrightarrow c \cdot f(n) = \Theta(f(n))$$
$$\lim_{n \to \infty} \frac{n^c}{n^{c+d}} = \lim_{n \to \infty} \frac{1}{n^d} = 0 \qquad \longrightarrow n^c = O(n^{c+d})$$

Limits: A mathematical power tool Let f and g be functions of n with non-negative ranges. If

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \text{ is defined and is } \begin{cases} \infty & \text{then } f(n) = \Omega(g(n)); \\ c, \text{ with } c > 0 \text{ a constant} & \text{then } f(n) = \Theta(g(n)); \\ 0 & \text{then } f(n) = O(g(n)). \end{cases}$$

$$\lim_{n \to \infty} \frac{c \cdot f(n)}{f(n)} = c \cdot \left(\lim_{n \to \infty} \frac{f(n)}{f(n)}\right) = c \qquad \longrightarrow c \cdot f(n) = \Theta(f(n))$$
$$\lim_{n \to \infty} \frac{n^c}{n^{c+d}} = \lim_{n \to \infty} \frac{1}{n^d} = 0 \qquad \longrightarrow n^c = O(n^{c+d})$$
$$\lim_{n \to \infty} \frac{n^c}{d^n} = 0 \qquad \longrightarrow n^c = O(d^n)$$

Example (See Example 3.26 in the course notes for details)

$$\log_{a}(n) = \frac{\log_{b}(n)}{\log_{b}(a)} = \frac{1}{\log_{b}(a)} \cdot \log_{b}(n) \qquad \longrightarrow \qquad \log_{a}(n) = \Theta(\log_{b}(n))$$

$$\lim_{n \to \infty} \frac{\log_{2}(n)^{c}}{n^{d}} = 0 \qquad \longrightarrow \qquad \log_{2}(n)^{c} = O(n^{d})$$

$$\lim_{n \to \infty} \frac{d^{n/u}}{c^{n/v}} = 0 \text{ (if } c \ge d \ge 1, u \ge v \ge 1) \qquad \longrightarrow \qquad d^{n/u} = O(c^{n/v})$$

$$\lim_{n \to \infty} \frac{c_{1}n^{d_{1}} + \dots + c_{m}n^{d_{m}}}{n^{d_{i}}} = c_{i} (d_{i} = \max(d_{1}, \dots, d_{m})) \qquad \longrightarrow \qquad c_{1}n^{d_{1}} + \dots + c_{m}n^{d_{m}} = \Theta(n^{d_{i}})$$

$$\lim_{n \to \infty} \frac{f(n) + g(n)}{g(n)} = 1 \text{ (if } f(n) = O(g(n))) \qquad \longrightarrow \qquad f(n) + g(n) = \Theta(g(n))$$

$$\lim_{n \to \infty} \frac{h(n) \cdot f(n)}{h(n) \cdot g(n)} = 0 \text{ (if } f(n) = O(g(n))) \qquad \longrightarrow \qquad h(n) \cdot f(n) = O(h(n) \cdot g(n))$$

Is CONTAINS a good algorithm?

Contains is correct and has a runtime complexity of $\Theta(|L|) \longrightarrow$ Sounds good to me!

Is CONTAINS a good algorithm?

Contains is correct and has a runtime complexity of $\Theta(|L|) \longrightarrow$ Sounds good to me!

Critique: Contains is too specialized \longrightarrow .

We cannot use CONTAINS for anything else than the contains problem!

- Searching in only *part* of the list?
- Finding where *v* is in the list?

Critique: Contains is too specialized \longrightarrow .

We cannot use CONTAINS for anything else than the contains problem!

```
Algorithm LINEARSEARCH(L, v, o):

Input: L is an array, v a value, 0 \le o \le |L|.

1: r := o.

/* invariant: "o \le r \le |L| and v \notin L[o, r)", bound function: |L| - r */

2: while r \ne |L| and also L[r] \ne v do

3: r := r + 1.

4: return r.

Result: return the first offset r, o \le r < |L|, with L[r] = v or,

if no such offset exists, r = |L|.
```

Critique: Contains is too specialized \longrightarrow .

We cannot use CONTAINS for anything else than the contains problem!

```
Algorithm LINEARSEARCH(L, v, o):
Input: L is an array, v a value, 0 \le o \le |L|.
  1: r := 0.
    /* invariant: "o \le r \le |L| and v \notin L[o, r)", bound function: |L| - r */
 2: while r \neq |L| and also L[r] \neq v do
  3: r := r + 1.
  4: return r.
Result: return the first offset r, o \le r < |L|, with L[r] = v or,
         if no such offset exists, r = |L|.
```

```
Algorithm LSContains(L, v):
```

1: **return** LinearSearch $(L, v, 0) \neq |L|$.

```
Algorithm LINEARSEARCH(L, v, o):

Input: L is an array, v a value, 0 \le o \le |L|.

1: r := o.

/* invariant: "o \le r \le |L| and v \notin L[o, r)", bound function: |L| - r */

2: while r \ne |L| and also L[r] \ne v do

3: r := r + 1.

4: return r.

Result: return the first offset r, o \le r < |L|, with L[r] = v or,

if no such offset exists, r = |L|.
```

What is the runtime complexity of LINEARSEARCH?

```
Algorithm LINEARSEARCH(L, v, o):
Input: L is an array, v a value, 0 \le o \le |L|.
 1: r := 0.
    /* invariant: "o \le r \le |L| and v \notin L[o, r)", bound function: |L| - r */
 2: while r \neq |L| and also L[r] \neq v do
     r := r + 1
 3:
 4: return r.
Result: return the first offset r, o \le r < |L|, with L[r] = v or,
         if no such offset exists, r = |L|.
```

What is the runtime complexity of LINEARSEARCH?

▶ With respect to worst case inputs ($v \notin L$): $\Theta(|L|)$.

```
Algorithm LINEARSEARCH(L, v, o):
Input: L is an array, v a value, 0 \le o \le |L|.
 1: r := 0.
    /* invariant: "o \le r \le |L| and v \notin L[o, r)", bound function: |L| - r */
 2: while r \neq |L| and also L[r] \neq v do
     r := r + 1
 3:
 4: return r.
Result: return the first offset r, o \le r < |L|, with L[r] = v or,
         if no such offset exists, r = |L|.
```

What is the runtime complexity of LINEARSEARCH?

- With respect to worst case inputs $(v \notin L)$: $\Theta(|L|)$.
- With respect to best case inputs (v = L[o]): $\Theta(1)$.

```
Algorithm LINEARSEARCH(L, v, o):
Input: L is an array, v a value, 0 \le o \le |L|.
 1: r := 0.
    /* invariant: "o \le r \le |L| and v \notin L[o, r)", bound function: |L| - r */
 2: while r \neq |L| and also L[r] \neq v do
     r := r + 1
 3:
 4: return r.
Result: return the first offset r, o \le r < |L|, with L[r] = v or,
         if no such offset exists, r = |L|.
```

What is the runtime complexity of LINEARSEARCH?

- With respect to worst case inputs ($v \notin L$): $\Theta(|L|)$.
- With respect to best case inputs (v = L[o]): $\Theta(1)$.

Problem: Modeling runtime complexity in terms of only the input limits us!

```
Algorithm LINEARSEARCH(L, v, o):
Input: L is an array, v a value, 0 \le o \le |L|.
 1: r := 0.
    /* invariant: "o \le r \le |L| and v \notin L[o, r)", bound function: |L| - r */
 2: while r \neq |L| and also L[r] \neq v do
    r := r + 1.
 3:
 4: return r.
Result: return the first offset r, o \le r < |L|, with L[r] = v or,
         if no such offset exists, r = |L|.
```

What is the runtime complexity of LINEARSEARCH? *Problem*: Modeling runtime complexity in terms of *only the input* limits us!

Assume: L[i] = v and *i* is the *first* offset after *o* equivalent to *v*. The runtime complexity of LINEARSEARCH is $\Theta(i - o)$.

```
Algorithm LINEARSEARCH(L, v, o):
Input: L is an array, v a value, 0 \le o \le |L|.
 1: r := 0.
    /* invariant: "o \le r \le |L| and v \notin L[o, r)", bound function: |L| - r */
 2: while r \neq |L| and also L[r] \neq v do
    r := r + 1.
 3:
 4: return r.
Result: return the first offset r, o \le r < |L|, with L[r] = v or,
         if no such offset exists, r = |L|.
```

What is the runtime complexity of LINEARSEARCH? *Problem*: Modeling runtime complexity in terms of *only the input* limits us!

Assume: L[i] = v and *i* is the *first* offset after *o* equivalent to *v*. The runtime complexity of LINEARSEARCH is $\Theta(i - o)$ with i = LINEARSEARCH(L, v, o).