
Assignment 4

SFWRENG 2CO3: Data Structures and Algorithms–Winter 2024

Deadline: February 11, 2024

Department of Computing and Software

McMaster University

Please read the Course Outline for the general policies related to assignments.

Plagiarism is a serious academic offense and will be handled accordingly.

All suspicions will be reported to the Office of Academic Integrity
(in accordance with the Academic Integrity Policy).

This assignment is an individual assignment: do not submit work of others. All parts of your submission

must be your own work and be based on your own ideas and conclusions. Only discuss or share any parts of

your submissions with your TA or instructor. You are responsible for protecting your work: you are strongly

advised to password-protect and lock your electronic devices (e.g., laptop) and to not share your logins with

partners or friends!

If you submit work, then you are certifying that you are aware of the Plagiarism and Academic Dishonesty
policy of this course outlined in this section, that you are aware of the Academic Integrity Policy, and that

you have completed the submitted work entirely yourself. Furthermore, by submitting work, you agree to

automated and manual plagiarism checking of all submitted work.

Late submission policy. Late submissions will receive a late penalty of 20% on the score per day late (with

a five hour grace period on the first day, e.g., to deal with technical issues) and submissions five days (or

more) past the due date are not accepted. In case of technical issues while submitting, contact the instructor

before the deadline.

Problem 1. Typically, we assume that basic operations on natural numbers (e.g., adding or multiplying two

natural numbers together) are performed in constant time. In practice, this assumption is correct whenever
we restrict ourselves to natural numbers with some maximum size (e.g., 64 bit natural numbers, for which

basic operations are supported directly by modern processors). Applications such as cryptography often

work with huge natural numbers, however (e.g., 4048 bit values, which can hold a maximum of ≈ 3.7 · 101218).
Hence, for these applications we can no longer assume that operations on natural numbers are in constant
time: these applications require the development of efficient algorithms even for basic operations on natural

numbers.

Consider two 𝑛-digit natural numbers 𝐴 = 𝑎1 . . . 𝑎𝑛 and 𝐵 = 𝑏1 . . . 𝑏𝑛 written in base 10: the digits

𝑎1, . . . , 𝑎𝑛 and 𝑏1, . . . , 𝑏𝑛 each have a value in 0, . . . , 9. For example, if 𝑛 = 4, then we could have 𝐴 = 3456

and 𝐵 = 9870, in which case 𝑎1 = 3, 𝑎2 = 4, 𝑎3 = 5, 𝑎4 = 6 and 𝑏1 = 9, 𝑏2 = 8, 𝑏3 = 7, 𝑏4 = 0.

P1.1. Write an algorithm Add(𝐴, 𝐵) that computes 𝐴 + 𝐵 in Θ(𝑛).
Argue why your algorithm is correct and why the runtime complexity is Θ(𝑛).

P1.2. Consider the typical pen-and-paper multiplication algorithm outlined in the below figure to compute

𝐴 × 𝐵:

1

https://secretariat.mcmaster.ca/app/uploads/Academic-Integrity-Policy-1-1.pdf
https://secretariat.mcmaster.ca/app/uploads/Academic-Integrity-Policy-1-1.pdf

3456

× 9870

0 (compute 3456 · 0 · 100)
241920 (compute 3456 · 7 · 101)
2764800 (compute 3456 · 8 · 102)

+ 31104000 (compute 3456 · 9 · 103)
34110720 (compute 0 + 241920 + 2764800 + 31104000).

What is the runtime complexity of this algorithm in terms of the number of digits in 𝐴 and 𝐵?

P1.3. Let 𝐶 be an 𝑛-digit number with 𝑛 = 2𝑚. Hence, 𝐶 = 𝐶high · 10𝑚 +𝐶low with 𝐶high the first𝑚 digits of

𝐶 and 𝐶low the remaining𝑚 digits of 𝐶 . For example, if 𝑛 = 4, 𝐴 = 3456, and 𝐵 = 9870 then𝑚 = 2 and

𝐴 = 𝐴high · 10𝑚 +𝐴low, 𝐴high = 34, 𝐴low = 56;

𝐵 = 𝐵high · 10𝑚 + 𝐵low, 𝐵high = 98, 𝐵low = 70.

Using the breakdown of a number into their high-part and low-part, Professor Breaksdown notices

the following:

𝐴 × 𝐵 = (𝐴high · 10𝑚 +𝐴low) × (𝐵high · 10𝑚 + 𝐵low)
= 𝐴high × 𝐵high · 102𝑚 +𝐴high × 𝐵low · 10𝑚 +𝐴low × 𝐵high · 10𝑚 +𝐴low × 𝐵low

= 𝐴high × 𝐵high · 102𝑚 +
(
𝐴high × 𝐵low +𝐴low × 𝐵high

)
· 10𝑚 +𝐴low × 𝐵low .

Hence, Professor Breaksdown produces the following recursive algorithm to compute𝐴×𝐵:
Algorithm BreaksdownMultiply(𝐴, 𝐵) :

Input: 𝐴 and 𝐵 have 𝑛 = 2𝑚 digits.

1: if 𝑛 = 1 then

2: return 𝑎1 × 𝑏1.

3: else

4: hh := BreaksdownMultiply(𝐴high, 𝐵high).
5: hl := BreaksdownMultiply(𝐴high, 𝐵low).
6: lh := BreaksdownMultiply(𝐴low, 𝐵high).
7: ll := BreaksdownMultiply(𝐴low, 𝐵low).
8: return hh · 102𝑚 + (hl + lh) · 10𝑚 + ll.
9: end if

Result: return 𝐴 × 𝐵.

Prove that the algorithm BreaksdownMultiply is correct.

P1.4. Give a recurrence 𝑇 (𝑛) for the runtime complexity of BreaksdownMultiply. Explain each term in

your recurrence 𝑇 (𝑛).
Draw a recurrence tree for 𝑇 (𝑛) and use this recurrence tree to solve the recurrence 𝑇 (𝑛) by proving

that 𝑇 (𝑛) = Θ(𝑓 (𝑛)) for some function 𝑓 of 𝑛.

What is the runtime complexity of BreaksdownMultiply? Do you expect BreaksdownMultiply to

be faster than the earlier pen-and-paper multiplication algorithm?

Hint: Feel free to assume that 𝑛 is a power-of-two. Feel free to assume that we can add two 𝑣-digit

numbers inΘ(𝑣) (e.g., usingAdd) and that we can multiply a 𝑣-digit number with 10
𝑤
inΘ(𝑣 +𝑤).

2

P1.5. Professor Smartmaths does not like that BreaksdownMultiply performs four multiplications via

recursion. With some puzzling, Professor Smartmaths makes the following observation:

(𝐴high +𝐴low) × (𝐵high + 𝐵low) = 𝐴high × 𝐵high +𝐴high × 𝐵low +𝐴low × 𝐵high +𝐴low × 𝐵low .

Hence, by rearranging terms, Professor Smartmaths concludes

𝐴high × 𝐵low +𝐴low × 𝐵high = (𝐴high +𝐴low) × (𝐵high + 𝐵low) −𝐴high × 𝐵high −𝐴low × 𝐵low .

Based on the above, Professor Smartmaths concludes:

𝐴 × 𝐵 = (𝐴high · 10𝑚 +𝐴low) × (𝐵high · 10𝑚 + 𝐵low)
= 𝐴high × 𝐵high · 102𝑚 +𝐴high × 𝐵low · 10𝑚 +𝐴low × 𝐵high · 10𝑚 +𝐴low × 𝐵low

= 𝐴high × 𝐵high · 102𝑚 +
(
𝐴high × 𝐵low +𝐴low × 𝐵high

)
· 10𝑚 +𝐴low × 𝐵low

= 𝐴high × 𝐵high · 102𝑚 +
((
(𝐴high +𝐴low) × (𝐵high + 𝐵low)

)
−

(𝐴high × 𝐵high) − (𝐴low × 𝐵low)
)
· 10𝑚 +𝐴low × 𝐵low .

Note that in final rewritten equation for 𝐴 × 𝐵 above, we only require the computation of three
multiplication terms: namely 𝐴high × 𝐵high, 𝐴low × 𝐵low, and (𝐴high +𝐴low) × (𝐵high + 𝐵low).
Use the observation of Professor Smartmaths to construct a recursive multiplication algorithm Smart-

mathsMultiply that only performs three recursive multiplications. Argue why your Smartmaths-

Multiply algorithm is correct.

P1.6. Give a recurrence 𝑇 (𝑛) for the runtime complexity of your SmartmathsMultiply algorithm. Explain

each term in your recurrence 𝑇 (𝑛).
Solve the recurrence 𝑇 (𝑛) by proving that 𝑇 (𝑛) = Θ(𝑓 (𝑛)) for some function 𝑓 of 𝑛. You can use any

method you feel comfortable with.

What is the runtime complexity of SmartmathsMultiply? Do you expect SmartmathsMultiply to

be faster than the earlier multiplication algorithms?

Hint: Feel free to assume that we can add two 𝑣-digit numbers in Θ(𝑣) (e.g., using Add), that we can
subtract two 𝑣-digit numbers in Θ(𝑣), and that we can multiply a 𝑣-digit number with 10

𝑤
in

Θ(𝑣 +𝑤).

Assignment Details

Write a report in which you solve each of the above problems. Your submission:

1. must start with your name, student number, and MacID;

2. must be a PDF file;

3. must have clearly labeled solutions to each of the stated problems;

4. must be clearly presented;

5. must not be hand-written: prepare your report in LATEX or in a word processor such as Microsoft Word

(that can print or export to PDF).

Submissions that do not follow the above requirements will get a grade of zero.

Grading

Each problem counts equally toward the final grade of this assignment.

3

