
1/14

Fundamentals

SFWRENG 2CO3: Data Structures and Algorithms

Jelle Hellings

Department of Computing and Software

McMaster University

Winter 2024

2/14

Problem: What if we search often?

LinearSearch(L, v , o) can read all of array L: potentially-high cost .

Can we do better?

No: We do not know anything about L to help us!

−→ we have to look at all elements in L.

Maybe: If we know more about L.

2/14

Problem: What if we search often?

LinearSearch(L, v , o) can read all of array L: potentially-high cost .

Can we do better?

No: We do not know anything about L to help us!

−→ we have to look at all elements in L.

Maybe: If we know more about L.

2/14

Problem: What if we search often?

LinearSearch(L, v , o) can read all of array L: potentially-high cost .

Can we do better?

No: We do not know anything about L to help us!

−→ we have to look at all elements in L.

Maybe: If we know more about L.

3/14

An example of a list

Consider a list enrolled with schema

enrolled(dept, code, sid, date)

that models a list of all students enrolled for a course.

What if. . .

We add enrollment data to the end of the list .

Question: What do we know about enrolled?

−→ enrolled is ordered on date!

3/14

An example of a list

Consider a list enrolled with schema

enrolled(dept, code, sid, date)

that models a list of all students enrolled for a course.

What if. . .

We add enrollment data to the end of the list .

Question: What do we know about enrolled? −→ enrolled is ordered on date!

4/14

Searching in an ordered list

3 14 16 18 30 37 44 49 66 76 84 90

v

Conclusion of comparing L[i] and v?

L[i] < v As the list L is ordered, every value in L[0, i] is smaller than v .

−→ v ∈ L if and only if v ∈ L[i + 1, |L|).
L[i] > v As the list L is ordered, every value in L[i, |L|) is larger than v .

−→ v ∈ L if and only if v ∈ L[0, i).
L[i] = v We found v !

One comparison can remove a large portion of the array.

Binary Search: Maximize potential by comparing v with the middle of L.

4/14

Searching in an ordered list

3 14 16 18 30 37 44 49 66 76 84 90

v

Conclusion of comparing L[i] and v?

L[i] < v As the list L is ordered, every value in L[0, i] is smaller than v .

−→ v ∈ L if and only if v ∈ L[i + 1, |L|).

L[i] > v As the list L is ordered, every value in L[i, |L|) is larger than v .

−→ v ∈ L if and only if v ∈ L[0, i).
L[i] = v We found v !

One comparison can remove a large portion of the array.

Binary Search: Maximize potential by comparing v with the middle of L.

4/14

Searching in an ordered list

3 14 16 18 30 37 44 49 66 76 84 90

v

Conclusion of comparing L[i] and v?

L[i] < v As the list L is ordered, every value in L[0, i] is smaller than v .

−→ v ∈ L if and only if v ∈ L[i + 1, |L|).
L[i] > v As the list L is ordered, every value in L[i, |L|) is larger than v .

−→ v ∈ L if and only if v ∈ L[0, i).

L[i] = v We found v !

One comparison can remove a large portion of the array.

Binary Search: Maximize potential by comparing v with the middle of L.

4/14

Searching in an ordered list

3 14 16 18 30 37 44 49 66 76 84 90

v

Conclusion of comparing L[i] and v?

L[i] < v As the list L is ordered, every value in L[0, i] is smaller than v .

−→ v ∈ L if and only if v ∈ L[i + 1, |L|).
L[i] > v As the list L is ordered, every value in L[i, |L|) is larger than v .

−→ v ∈ L if and only if v ∈ L[0, i).
L[i] = v We found v !

One comparison can remove a large portion of the array.

Binary Search: Maximize potential by comparing v with the middle of L.

4/14

Searching in an ordered list

3 14 16 18 30 37 44 49 66 76 84 90

v

Conclusion of comparing L[i] and v?

L[i] < v As the list L is ordered, every value in L[0, i] is smaller than v .

−→ v ∈ L if and only if v ∈ L[i + 1, |L|).
L[i] > v As the list L is ordered, every value in L[i, |L|) is larger than v .

−→ v ∈ L if and only if v ∈ L[0, i).
L[i] = v We found v !

One comparison can remove a large portion of the array.

Binary Search: Maximize potential by comparing v with the middle of L.

4/14

Searching in an ordered list

3 14 16 18 30 37 44 49 66 76 84 90

v

Conclusion of comparing L[i] and v?

L[i] < v As the list L is ordered, every value in L[0, i] is smaller than v .

−→ v ∈ L if and only if v ∈ L[i + 1, |L|).
L[i] > v As the list L is ordered, every value in L[i, |L|) is larger than v .

−→ v ∈ L if and only if v ∈ L[0, i).
L[i] = v We found v !

One comparison can remove a large portion of the array.

Binary Search: Maximize potential by comparing v with the middle of L.

5/14

The recursive Binary Search algorithm

Algorithm LowerBoundRec(L, v , begin, end):
Input: L is an ordered array , v a value, and 0 ≤ begin ≤ end ≤ |L|.
1: if begin = end then
2: return begin.

3: else
4: mid := (begin + end) div 2.
5: if L[mid] < v then
6: return LowerBoundRec(L, v,mid + 1, end).
7: else /* L[mid] ≥ v */
8: return LowerBoundRec(L, v, begin,mid).

Result: return the first offset r , begin ≤ r < end , with L[r] = v or,

if no such offset exists, r = end .

▶ Is LowerBoundRec correct?

▶ What is the runtime and memory complexity of LowerBoundRec?

6/14

Correctness of LowerBoundRec

Recursion is repetition −→ induction.

Algorithm LowerBoundRec(L, v , begin, end):
1: if begin = end then
2: return begin.

3: else
4: mid := (begin + end) div 2.
5: if L[mid] < v then
6: return LowerBoundRec(L, v,mid + 1, end).
7: else /* L[mid] ≥ v */
8: return LowerBoundRec(L, v, begin,mid).

6/14

Correctness of LowerBoundRec

Recursion is repetition −→ induction.

Algorithm LowerBoundRec(L, v , begin, end):
1: if begin = end then
2: return begin.

3: else
4: mid := (begin + end) div 2.
5: if L[mid] < v then
6: return LowerBoundRec(L, v,mid + 1, end).
7: else /* L[mid] ≥ v */
8: return LowerBoundRec(L, v, begin,mid).

6/14

Correctness of LowerBoundRec

Recursion is repetition −→ induction.

Algorithm LowerBoundRec(L, v , begin, end):
1: if begin = end then
2: return begin.

3: else
4: mid := (begin + end) div 2.
5: if L[mid] < v then
6: return LowerBoundRec(L, v,mid + 1, end).
7: else /* L[mid] ≥ v */
8: return LowerBoundRec(L, v, begin,mid).

Induction Hypothesis

For any L
′
, v

′
, and 0 ≤ begin

′ ≤ end
′ ≤ |L′ | with 0 ≤ end

′ − begin
′ < m,

LowerBoundRec(L
′
, v

′
, begin

′
, end

′
) returns the correct result.

6/14

Correctness of LowerBoundRec

Recursion is repetition −→ induction.

Algorithm LowerBoundRec(L, v , begin, end):
1: if begin = end then
2: return begin.

3: else
4: mid := (begin + end) div 2.
5: if L[mid] < v then
6: return LowerBoundRec(L, v,mid + 1, end).
7: else /* L[mid] ≥ v */
8: return LowerBoundRec(L, v, begin,mid).

Induction Hypothesis

For any L
′
, v

′
, and 0 ≤ begin

′ ≤ end
′ ≤ |L′ | with 0 ≤ end

′ − begin
′ < m,

LowerBoundRec(L
′
, v

′
, begin

′
, end

′
) returns the correct result.

Base case:

Inspecting end − begin = 0 elements.

Recursive case:

Inspecting end − begin > 0 elements.

6/14

Correctness of LowerBoundRec

Recursion is repetition −→ induction.

Algorithm LowerBoundRec(L, v , begin, end):
1: if begin = end then
2: return begin.

3: else
4: mid := (begin + end) div 2.
5: if L[mid] < v then
6: return LowerBoundRec(L, v,mid + 1, end).
7: else /* L[mid] ≥ v */
8: return LowerBoundRec(L, v, begin,mid).

Induction Hypothesis

For any L
′
, v

′
, and 0 ≤ begin

′ ≤ end
′ ≤ |L′ | with 0 ≤ end

′ − begin
′ < m,

LowerBoundRec(L
′
, v

′
, begin

′
, end

′
) returns the correct result.

begin ≤ mid < end

6/14

Correctness of LowerBoundRec

Recursion is repetition −→ induction.

Algorithm LowerBoundRec(L, v , begin, end):
1: if begin = end then
2: return begin.

3: else
4: mid := (begin + end) div 2.
5: if L[mid] < v then
6: return LowerBoundRec(L, v,mid + 1, end).
7: else /* L[mid] ≥ v */
8: return LowerBoundRec(L, v, begin,mid).

Induction Hypothesis

For any L
′
, v

′
, and 0 ≤ begin

′ ≤ end
′ ≤ |L′ | with 0 ≤ end

′ − begin
′ < m,

LowerBoundRec(L
′
, v

′
, begin

′
, end

′
) returns the correct result.

begin ≤ mid < end

Induction Hypothesis

Induction Hypothesis

6/14

Correctness of LowerBoundRec

Recursion is repetition −→ induction.

Algorithm LowerBoundRec(L, v , begin, end):
1: if begin = end then
2: return begin.

3: else
4: mid := (begin + end) div 2.
5: if L[mid] < v then
6: return LowerBoundRec(L, v,mid + 1, end).
7: else /* L[mid] ≥ v */
8: return LowerBoundRec(L, v, begin,mid).

Termination

Bound function: end − begin.

7/14

Intermezzo: Runtime complexity of LowerBoundRec

Algorithm LowerBoundRec(L, v , begin, end):
1: if begin = end then
2: return begin.

3: else
4: mid := (begin + end) div 2.
5: if L[mid] < v then
6: return LowerBoundRec(L, v,mid + 1, end).
7: else /* L[mid] ≥ v */
8: return LowerBoundRec(L, v, begin,mid).

Complexity of LowerBoundRec with n = end − begin

T (n) =

{
1 if n = 0;

1 · T
(⌊

n

2

⌋)
+ 1 if n ≥ 1.

7/14

Intermezzo: Runtime complexity of LowerBoundRec

Algorithm LowerBoundRec(L, v , begin, end):
1: if begin = end then
2: return begin.

3: else
4: mid := (begin + end) div 2.
5: if L[mid] < v then
6: return LowerBoundRec(L, v,mid + 1, end).
7: else /* L[mid] ≥ v */
8: return LowerBoundRec(L, v, begin,mid).

Complexity of LowerBoundRec with n = end − begin

T (n) =
{
1 if n = 0;

1 · T
(⌊

n

2

⌋)
+ 1 if n ≥ 1.

Base case:

1 operation.

7/14

Intermezzo: Runtime complexity of LowerBoundRec

Algorithm LowerBoundRec(L, v , begin, end):
1: if begin = end then
2: return begin.

3: else
4: mid := (begin + end) div 2.
5: if L[mid] < v then
6: return LowerBoundRec(L, v,mid + 1, end).
7: else /* L[mid] ≥ v */
8: return LowerBoundRec(L, v, begin,mid).

Complexity of LowerBoundRec with n = end − begin

T (n) =
{
1 if n = 0;

1 · T
(⌊

n

2

⌋)
+ 1 if n ≥ 1.

Base case:

1 operation.

Recursive case:

1 operation and 1 recursive call.

7/14

Intermezzo: Runtime complexity of LowerBoundRec

Algorithm LowerBoundRec(L, v , begin, end):
1: if begin = end then
2: return begin.

3: else
4: mid := (begin + end) div 2.
5: if L[mid] < v then
6: return LowerBoundRec(L, v,mid + 1, end).
7: else /* L[mid] ≥ v */
8: return LowerBoundRec(L, v, begin,mid).

Complexity of LowerBoundRec with n = end − begin

T (n) = 1 · T
(⌊
n

2

⌋)
+ 1.

7/14

Intermezzo: Runtime complexity of LowerBoundRec

Complexity of LowerBoundRec with n = end − begin (assume: n = 2
x
)

T (n) = 1 · T
(⌊
n

2

⌋)
+ 1.

n = 2
x

work = 1

n

2
= 2

x−1
work = 1

n

4
= 2

x−2
work = 1

1 = 2
x−x

work = 1

0

work = 1

x + 2 = log
2
(n) + 2 levels

Each function call cost memory!

(e.g., to store local variables).

7/14

Intermezzo: Runtime complexity of LowerBoundRec

Complexity of LowerBoundRec with n = end − begin (assume: n = 2
x
)

T (n) = 1 · T
(⌊
n

2

⌋)
+ 1.

n = 2
x

work = 1

n

2
= 2

x−1
work = 1

n

4
= 2

x−2
work = 1

1 = 2
x−x

work = 1

0

work = 1

x + 2 = log
2
(n) + 2 levels

Each function call cost memory!

(e.g., to store local variables).

7/14

Intermezzo: Runtime complexity of LowerBoundRec

Complexity of LowerBoundRec with n = end − begin (assume: n = 2
x
)

T (n) = 1 · T
(⌊
n

2

⌋)
+ 1.

n = 2
x

work = 1

n

2
= 2

x−1
work = 1

n

4
= 2

x−2
work = 1

1 = 2
x−x

work = 1

0

work = 1

x + 2 = log
2
(n) + 2 levels

Each function call cost memory!

(e.g., to store local variables).

7/14

Intermezzo: Runtime complexity of LowerBoundRec

Complexity of LowerBoundRec with n = end − begin (assume: n = 2
x
)

T (n) = 1 · T
(⌊
n

2

⌋)
+ 1.

n = 2
x

work = 1

n

2
= 2

x−1
work = 1

n

4
= 2

x−2
work = 1

1 = 2
x−x

work = 1

0

work = 1

x + 2 = log
2
(n) + 2 levels

Each function call cost memory!

(e.g., to store local variables).

7/14

Intermezzo: Runtime complexity of LowerBoundRec

Complexity of LowerBoundRec with n = end − begin (assume: n = 2
x
)

T (n) = 1 · T
(⌊
n

2

⌋)
+ 1.

n = 2
x

work = 1

n

2
= 2

x−1
work = 1

n

4
= 2

x−2
work = 1

1 = 2
x−x

work = 1

0

work = 1

x + 2 = log
2
(n) + 2 levels

Each function call cost memory!

(e.g., to store local variables).

7/14

Intermezzo: Runtime complexity of LowerBoundRec

Complexity of LowerBoundRec with n = end − begin (assume: n = 2
x
)

T (n) = 1 · T
(⌊
n

2

⌋)
+ 1.

n = 2
x

work = 1

n

2
= 2

x−1
work = 1

n

4
= 2

x−2
work = 1

1 = 2
x−x

work = 1

0

work = 1

x + 2 = log
2
(n) + 2 levels

Each function call cost memory!

(e.g., to store local variables).

7/14

Intermezzo: Runtime complexity of LowerBoundRec

Complexity of LowerBoundRec with n = end − begin (assume: n = 2
x
)

T (n) = 1 · T
(⌊
n

2

⌋)
+ 1 = Θ(log

2
(n)) .

n = 2
x

work = 1

n

2
= 2

x−1
work = 1

n

4
= 2

x−2
work = 1

1 = 2
x−x

work = 1

0

work = 1

x + 2 = log
2
(n) + 2 levels

Each function call cost memory!

(e.g., to store local variables).

8/14

The recursive Binary Search algorithm

Algorithm LowerBoundRec(L, v , begin, end):
Input: L is an ordered array , v a value, and 0 ≤ begin ≤ end ≤ |L|.
1: if begin = end then
2: return begin.

3: else
4: mid := (begin + end) div 2.
5: if L[mid] < v then
6: return LowerBoundRec(L, v,mid + 1, end).
7: else /* L[mid] ≥ v */
8: return LowerBoundRec(L, v, begin,mid).

Result: return the first offset r , begin ≤ r < end , with L[r] = v or,

if no such offset exists, r = end .

Theorem

LowerBoundRec is correct and has a runtime and memory complexity of Θ(log
2
(|L|)).

9/14

The non-recursive Binary Search algorithm

Algorithm LowerBound(L, v , begin, end):
Input: L is an ordered array , v a value, and 0 ≤ begin ≤ end ≤ |L|.
1: while begin ≠ end do
2: mid := (begin + end) div 2.
3: if L[mid] < v then
4: begin := mid + 1.

5: else
6: end := mid .

7: return begin.

Result: return the first offset r , begin ≤ r < end , with L[r] = v or,

if no such offset exists, r = end .

Theorem

LowerBound is correct, has a runtime complexity of Θ(log
2
(|L|)), and a memory complexity

of Θ(1).

9/14

The non-recursive Binary Search algorithm

Algorithm LowerBound(L, v , begin, end):
Input: L is an ordered array , v a value, and 0 ≤ begin ≤ end ≤ |L|.
1: while begin ≠ end do
2: mid := (begin + end) div 2.
3: if L[mid] < v then
4: begin := mid + 1.

5: else
6: end := mid .

7: return begin.

Result: return the first offset r , begin ≤ r < end , with L[r] = v or,

if no such offset exists, r = end .

Theorem

LowerBound is correct, has a runtime complexity of Θ(log
2
(|L|)), and a memory complexity

of Θ(1).

10/14

Comparing the complexity of searching

10
0

10
1

10
2

10
3

10
1

10
2

10
3

Size of list L

O
p
e
r
a
t
i
o
n
s

Theoretical complexity

LinearSearch

LowerBoundRec

LowerBound

10/14

Comparing the complexity of searching

10
0

10
1

10
2

10
3

10
1

10
2

10
3

Size of list L

O
p
e
r
a
t
i
o
n
s

Theoretical complexity

LinearSearch

LowerBoundRec

LowerBound

10
0

10
3

10
6

10
2

10
4

10
6

10
8

10
10

Size of list L
R
u
n
n
i
n
g
t
i
m
e
(
n
s
)

Measured runtime (100 values)

LinearSearch

LowerBoundRec

LowerBound

10/14

Comparing the complexity of searching

10
0

10
3

10
6

10
2

10
4

10
6

10
8

10
10

Size of list L

R
u
n
n
i
n
g
t
i
m
e
(
n
s
)

Measured runtime (100 values)

LinearSearch

LowerBoundRec

LowerBound

0 50 100 150

0

2,000

4,000

6,000

Size of list L
R
u
n
n
i
n
g
t
i
m
e
(
n
s
)

Measured runtime (100 values)

LinearSearch

LowerBoundRec

LowerBound

11/14

Using Binary Search as a building block

Problem

Let L be a list and [v,w] be a range query with v ≤ w. The solution of the range query

problem for L and [v,w] is the list of all values e ∈ L with v ≤ e ≤ w.

Example

Consider a list enrolled with schema enrolled(dept, code, sid, date).

Query: All students enrolled in 2023

Range query on enrolled with [(‘’, ‘’,−1, 2023), (‘’, ‘’,−1, 2024)] .

We add enrollment data to the end of the list −→ enrolled is ordered on date!

11/14

Using Binary Search as a building block

Problem

Let L be a list and [v,w] be a range query with v ≤ w. The solution of the range query

problem for L and [v,w] is the list of all values e ∈ L with v ≤ e ≤ w.

Example

Consider a list enrolled with schema enrolled(dept, code, sid, date).

Query: All students enrolled in 2023

Range query on enrolled with [(‘’, ‘’,−1, 2023), (‘’, ‘’,−1, 2024)] .

We add enrollment data to the end of the list −→ enrolled is ordered on date!

11/14

Using Binary Search as a building block

Problem

Let L be a list and [v,w] be a range query with v ≤ w. The solution of the range query

problem for L and [v,w] is the list of all values e ∈ L with v ≤ e ≤ w.

Algorithm RangeQueryL, [v,w]:
Input: L is an ordered array , v,w are values, and v ≤ w .

1: i := LowerBound(L, v, 0, |L|).
2: j := i.

3: while j ≤ |L| and also L[j] ≤ w do
4: j := j + 1.

5: return L[i, j).
Result: return the list L[m, n), 0 ≤ m ≤ n ≤ |L|, such that

L[m, n) is the list of all values e ∈ L with v ≤ e ≤ w .

11/14

Using Binary Search as a building block

Problem

Let L be a list and [v,w] be a range query with v ≤ w. The solution of the range query

problem for L and [v,w] is the list of all values e ∈ L with v ≤ e ≤ w.

Algorithm RangeQueryL, [v,w]:
Input: L is an ordered array , v,w are values, and v ≤ w .

1: i := LowerBound(L, v, 0, |L|).
2: j := i.

3: while j ≤ |L| and also L[j] ≤ w do
4: j := j + 1.

5: return L[i, j).
Result: return the list L[m, n), 0 ≤ m ≤ n ≤ |L|, such that

L[m, n) is the list of all values e ∈ L with v ≤ e ≤ w .

Theorem

RangeQuery is correct and has worst case runtime complexity Θ(|L|).

11/14

Using Binary Search as a building block

Problem

Let L be a list and [v,w] be a range query with v ≤ w. The solution of the range query

problem for L and [v,w] is the list of all values e ∈ L with v ≤ e ≤ w.

Algorithm RangeQueryL, [v,w]:
Input: L is an ordered array , v,w are values, and v ≤ w .

1: i := LowerBound(L, v, 0, |L|).
2: j := i.

3: while j ≤ |L| and also L[j] ≤ w do
4: j := j + 1.

5: return L[i, j).
Result: return the list L[m, n), 0 ≤ m ≤ n ≤ |L|, such that

L[m, n) is the list of all values e ∈ L with v ≤ e ≤ w .

Theorem

RangeQuery is correct and has all case runtime complexity Θ(log
2
(|L|) + |result |).

12/14

Using the idea of Binary Search

Problem

Let L be list of values of unknown length and assume we have a function Inspect(L, i) that

returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

12/14

Using the idea of Binary Search

Problem

Let L be list of values of unknown length and assume we have a function Inspect(L, i) that

returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

Example

‘apple’ ‘pear’ ‘orange’

Inspect(L, 0) = true Inspect(L, 1) = true

Inspect(L, 2) = true Inspect(L, 3) = false.

12/14

Using the idea of Binary Search

Problem

Let L be list of values of unknown length and assume we have a function Inspect(L, i) that

returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

Solving the list-length problem

We have ordered list 0, 1, . . . of possible values for |L|.

Conclusion of Inspect(L, i)?

Inspect(L, i) = true |L| > i (list L has more than i values).

Inspect(L, i) = false |L| ≤ i (list L has at-most i values).

12/14

Using the idea of Binary Search

Problem

Let L be list of values of unknown length and assume we have a function Inspect(L, i) that

returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

Solving the list-length problem

We have ordered list 0, 1, . . . of possible values for |L|.

Conclusion of Inspect(L, i)?
Inspect(L, i) = true |L| > i (list L has more than i values).

Inspect(L, i) = false |L| ≤ i (list L has at-most i values).

12/14

Using the idea of Binary Search

Problem

Let L be list of values of unknown length and assume we have a function Inspect(L, i) that

returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

Solving the list-length problem

We have ordered list 0, 1, . . . of possible values for |L|.

Conclusion of Inspect(L, i)?
Inspect(L, i) = true |L| > i (list L has more than i values).

Inspect(L, i) = false |L| ≤ i (list L has at-most i values).

Issue: no upper bound on the ordered list 0, 1, . . . of possible values for |L|

Guess repeatedly with exponentially-growing guesses.

Algorithm ListLengthUB(L):
Input: L is an array of unknown length.

1: n := 1.

2: while Inspect(L, n) do
3: n := 2 · n.
4: return n.

Result: return N , |L| ≤ N = 1 or |L| ≤ N < 2|L|.

12/14

Using the idea of Binary Search

Problem

Let L be list of values of unknown length and assume we have a function Inspect(L, i) that

returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

Issue: no upper bound on the ordered list 0, 1, . . . of possible values for |L|
Guess repeatedly with exponentially-growing guesses.

Algorithm ListLengthUB(L):
Input: L is an array of unknown length.

1: n := 1.

2: while Inspect(L, n) do
3: n := 2 · n.
4: return n.

Result: return N , |L| ≤ N = 1 or |L| ≤ N < 2|L|.

12/14

Using the idea of Binary Search

Problem

Let L be list of values of unknown length and assume we have a function Inspect(L, i) that

returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

Algorithm LBListLength(L, N) with N := ListLengthUB(L):
1: begin, end := 0,N .

2: while begin ≠ end do
3: mid := (begin + end) div 2.
4: if Inspect(L,mid) then
5: begin := mid + 1.

6: else
7: end := mid .

8: return begin.

Result: return the length |L| of array L.

13/14

Optimizing joins using range queries

Definition

A join of two lists L and M results in a list A in which each list value is computed from a

combination of values u ∈ L and v ∈ M according to some join condition.

Example (Return pairs (p, r) of product name p and related category r)

products

name category

Apple Fruit

Bok choy Vegetable

Canelé Pastry

Donut Pastry

categories

category related

Fruit Food

Fruit Produce

Pastry Food

Vegetable Food

Vegetable Produce

Join Result

name related

Apple Food

Apple Produce

Bok choy Food

Bok choy Produce

Canelé Food

Donut Food

13/14

Optimizing joins using range queries

Definition

A join of two lists L and M results in a list A in which each list value is computed from a

combination of values u ∈ L and v ∈ M according to some join condition.

Example (Return pairs (p, r) of product name p and related category r)

products

name category

Apple Fruit

Bok choy Vegetable

Canelé Pastry

Donut Pastry

categories

category related

Fruit Food

Fruit Produce

Pastry Food

Vegetable Food

Vegetable Produce

Join Result

name related

Apple Food

Apple Produce

Bok choy Food

Bok choy Produce

Canelé Food

Donut Food

13/14

Optimizing joins using range queries

Algorithm NestedLoopPC(products, categories):
Input: relations products(name, category) and categories(category, related).
1: output := ∅.
2: for (p.n, p.c) ∈ products do
3: for (c.c, c.r) ∈ categories do
4: if p.c = c.c then
5: add (p.n, c.r) to output .

Result: return {(p.n, p.c) | ((p.n, p.c) ∈ products) ∧ ((c.c, c.r) ∈ categories)}.

Theorem

The NestedLoopPC algorithm is correct and has a runtime complexity of

Θ(|product | · |categories |).

13/14

Optimizing joins using range queries

Algorithm NestedLoopPC(products, categories):
Input: relations products(name, category) and categories(category, related).
1: output := ∅.
2: for (p.n, p.c) ∈ products do
3: for (c.c, c.r) ∈ categories do
4: if p.c = c.c then
5: add (p.n, c.r) to output .

Result: return {(p.n, p.c) | ((p.n, p.c) ∈ products) ∧ ((c.c, c.r) ∈ categories)}.

Theorem

The NestedLoopPC algorithm is correct and has a runtime complexity of

Θ(|product | · |categories |).

Θ(|categories|).

13/14

Optimizing joins using range queries

Algorithm NestedLoopPC(products, categories):
Input: relations products(name, category) and categories(category, related).
1: output := ∅.
2: for (p.n, p.c) ∈ products do
3: for (c.c, c.r) ∈ categories do
4: if p.c = c.c then
5: add (p.n, c.r) to output .

Result: return {(p.n, p.c) | ((p.n, p.c) ∈ products) ∧ ((c.c, c.r) ∈ categories)}.

Theorem

The NestedLoopPC algorithm is correct and has a runtime complexity of

Θ(|product | · |categories |).

Θ(|categories|). |products| times.

13/14

Optimizing joins using range queries

Algorithm NestedBinaryPC(products, categories):
Input: relations products(name, category) and categories(category, related),

relation categories ordered.

1: output := ∅.
2: for (p.n, p.c) ∈ products do
3: i := LowerBound(categories, (p.c, ‘’), 0, |categories|).
4: while i < |categories| and also categories[i] .category = p.c do
5: add (p.n, categories[i] .related) to output .
6: i := i + 1.

Result: return {(p.n, p.c) | ((p.n, p.c) ∈ products) ∧ ((c.c, c.r) ∈ categories)}.

Theorem

The NestedBinaryPC algorithm is correct and has a runtime complexity of

Θ(|product | · log
2
(|categories |) + |result |).

14/14

Contains, LinearSearch, and LowerBound in practice

Algorithm C++ Java

Contains std::ranges::contains collection.containsa

LinearSearch std::find collection.indexOfa

LinearPredSearch std::find_if java.util.stream::filterb

LowerBound std::lower_bound java.util.Arrays::c

std::upper_boundd binarySearch

Related libraries <algorithm>, java.util.Arrays,
<ranges> java.util.ArrayList, . . .

a
Here, collection is a standard Java data collection such as java.util.ArrayList.

b
Using the stream library supported by standard Java data collections.

c
Does not guarantee to return the offset of the first occurrence of a value.

d
Returns the offset of the first element in the list that is strictly larger than the searched-for value.

