Fundamentals SFWRENG 2CO3: Data Structures and Algorithms

Jelle Hellings

Department of Computing and Software McMaster University

Winter 2024

LINEARSEARCH(L, v, o) can read all of array L: *potentially-high cost*.

Can we do better?

LINEARSEARCH(*L*, *v*, *o*) can read all of array *L*: *potentially-high cost*.

Can we do better? *No*: We do not know anything about *L* to help us! \longrightarrow we have to look at all elements in *L*. LINEARSEARCH(L, v, o) can read all of array L: potentially-high cost.

Can we do better? *No*: We do not know anything about *L* to help us! \longrightarrow we have to look at all elements in *L*.

Maybe: If we know more about *L*.

An example of a list

Consider a list *enrolled* with schema

enrolled(dept, code, sid, date)

that models a list of all students enrolled for a course.

What if... We add enrollment data to *the end of the list*.

Question: What do we know about enrolled?

An example of a list

Consider a list enrolled with schema

enrolled(dept, code, sid, date)

that models a list of all students enrolled for a course.

What if... We add enrollment data to *the end of the list*.

Question: What do we know about enrolled? \rightarrow enrolled is *ordered* on *date*!

Conclusion of comparing *L*[*i*] and *v*?

Conclusion of comparing *L*[*i*] and *v*?

L[i] < v As the list L is ordered, every value in L[0, i] is smaller than v. $\longrightarrow v \in L$ if and only if $v \in L[i + 1, |L|)$.

Conclusion of comparing *L*[*i*] and *v*?

- L[i] < v As the list L is ordered, every value in L[0, i] is smaller than v. $\longrightarrow v \in L$ if and only if $v \in L[i + 1, |L|)$.
- L[i] > v As the list L is ordered, every value in L[i, |L|) is larger than v. $\longrightarrow v \in L$ if and only if $v \in L[0, i)$.

Conclusion of comparing L[i] and v?

- L[i] < v As the list L is ordered, every value in L[0, i] is smaller than v. $\longrightarrow v \in L$ if and only if $v \in L[i + 1, |L|)$.
- L[i] > v As the list L is ordered, every value in L[i, |L|) is larger than v. $\longrightarrow v \in L$ if and only if $v \in L[0, i)$.

L[i] = v We found v!

Conclusion of comparing L[i] and v?

- L[i] < v As the list L is ordered, every value in L[0, i] is smaller than v. $\longrightarrow v \in L$ if and only if $v \in L[i + 1, |L|)$.
- L[i] > v As the list L is ordered, every value in L[i, |L|) is larger than v. $\longrightarrow v \in L$ if and only if $v \in L[0, i)$.

L[i] = v We found v!

One comparison can remove a large portion of the array.

Conclusion of comparing *L*[*i*] and *v*?

- L[i] < v As the list L is ordered, every value in L[0, i] is smaller than v. $\longrightarrow v \in L$ if and only if $v \in L[i + 1, |L|)$.
- L[i] > v As the list L is ordered, every value in L[i, |L|) is larger than v. $\longrightarrow v \in L$ if and only if $v \in L[0, i)$.

L[i] = v We found v!

One comparison can remove a large portion of the array.

Binary Search: Maximize potential by comparing v with the middle of L.

The recursive Binary Search algorithm

Algorithm LowerBoundRec(L, v, begin, end):

Input: *L* is an ordered *array*, *v* a value, and $0 \le begin \le end \le |L|$.

- 1: if begin = end then
- 2: return begin.

3: **else**

- 4: $mid := (begin + end) \operatorname{div} 2.$
- 5: **if** *L*[*mid*] < *v* **then**
- 6: **return** LowerBoundRec(L, v, mid + 1, end).
- 7: **else** $/* L[mid] \ge v */$
- 8: **return** LowerBoundRec(*L*, *v*, *begin*, *mid*).

Result: return the first offset r, $begin \le r < end$, with L[r] = v or, if no such offset exists, r = end.

- Is LowerBoundRec correct?
- What is the runtime and memory complexity of LOWERBOUNDREC?

Algorithm LowerBoundRec(*L*, *v*, *begin*, *end*):

- 1: **if** begin = end **then**
- 2: return begin.
- 3: **else**
- 4: $mid := (begin + end) \operatorname{div} 2.$
- 5: **if** *L*[*mid*] < *v* **then**
- 6: **return** LowerBoundRec(L, v, mid + 1, end).
- 7: **else** $/* L[mid] \ge v */$
- 8: **return** LowerBoundRec(*L*, *v*, *begin*, *mid*).

Recursion is repetition \longrightarrow induction.

Algorithm LowerBoundRec(*L*, *v*, *begin*, *end*):

- 1: if begin = end then
- 2: return begin.
- 3: **else**
- 4: $mid := (begin + end) \operatorname{div} 2.$
- 5: **if** L[mid] < v **then**
- 6: **return** LowerBoundRec(L, v, mid + 1, end).
- 7: **else** $/* L[mid] \ge v */$
- 8: **return** LowerBoundRec(*L*, *v*, *begin*, *mid*).

Recursion is repetition \longrightarrow induction.

Algorithm LowerBoundRec(*L*, *v*, *begin*, *end*):

- 1: **if** begin = end **then**
- 2: return begin.

3: **else**

- 4: $mid := (begin + end) \operatorname{div} 2.$
- 5: **if** L[mid] < v **then**
- 6: **return** LowerBoundRec(L, v, mid + 1, end).
- 7: **else** $/* L[mid] \ge v */$
- 8: **return** LowerBoundRec(*L*, *v*, *begin*, *mid*).

Induction Hypothesis

```
Recursion is repetition \rightarrow induction.
Algorithm LowerBoundRec(L, v, begin, end):
 1: if begin = end then
                                                        Base case:
Inspecting end – begin = 0 elements.
      return begin.
 2:
 3: else
      mid := (begin + end) div 2.
 4:
      if L[mid] < v then
 5:
                                                        Recursive case:
         return LowerBoundRec(L, v, mid + 1, end).
 6:
                                                        Inspecting end - begin > 0 elements.
     else /* L[mid] \ge v */
 7:
         return LowerBoundRec(L, v, begin, mid).
 8:
```

Induction Hypothesis

```
Recursion is repetition \longrightarrow induction.
```

Algorithm LowerBoundRec(*L*, *v*, *begin*, *end*):

- 1: **if** begin = end **then**
- 2: return begin.

 $begin \le mid < end$

- 3: **else**
- 4: $mid := (begin + end) \operatorname{div} 2.4$
- 5: **if** *L*[*mid*] < *v* **then**
- 6: **return** LowerBoundRec(L, v, mid + 1, end).
- 7: **else** $/* L[mid] \ge v */$
- 8: **return** LowerBoundRec(*L*, *v*, *begin*, *mid*).

Induction Hypothesis

Recursion is repetition \longrightarrow induction.

Algorithm LowerBoundRec(*L*, *v*, *begin*, *end*):

- 1: if begin = end then
- 2: return begin.

 $begin \le mid < end$

- 3: **else**
- 4: $mid := (begin + end) \operatorname{div} 2.4$
- 5: **if** *L*[*mid*] < *v* **then**
- 6: return LowerBoundRec(L, v, mid + 1, end).
- 7: **else** $/* L[mid] \ge v */$
- 8: **return** LowerBoundRec(*L*, *v*, *begin*, *mid*).

Induction Hypothesis

Induction Hypothesis

Induction Hypothesis

Recursion is repetition \longrightarrow induction.

Algorithm LowerBoundRec(*L*, *v*, *begin*, *end*):

- 1: **if** begin = end **then**
- 2: return begin.

3: **else**

- 4: $mid := (begin + end) \operatorname{div} 2.$
- 5: **if** L[mid] < v **then**
- 6: **return** LowerBoundRec(L, v, mid + 1, end).
- 7: **else** /* $L[mid] \ge v */$
- 8: **return** LowerBoundRec(*L*, *v*, *begin*, *mid*).

Termination Bound function: *end – begin*.

Algorithm LowerBoundRec(*L*, *v*, *begin*, *end*):

- 1: **if** begin = end **then**
- 2: return begin.
- 3: **else**
- 4: $mid := (begin + end) \operatorname{div} 2.$
- 5: **if** *L*[*mid*] < *v* **then**
- 6: **return** LOWERBOUNDREC(L, v, mid + 1, end).
- 7: **else** $/* L[mid] \ge v */$
- 8: **return** LowerBoundRec(*L*, *v*, *begin*, *mid*).

Complexity of LowerBoundRec with n = end - begin

$$T(n) =$$

Algorithm LowerBoundRec(*L*, *v*, *begin*, *end*):

- 1: if begin = end then
- 2: return begin.
- 3: **else**
- 4: $mid := (begin + end) \operatorname{div} 2.$
- 5: **if** *L*[*mid*] < *v* **then**
- 6: **return** LowerBoundRec(L, v, mid + 1, end).
- 7: **else** /* $L[mid] \ge v */$
- 8: **return** LowerBoundRec(*L*, *v*, *begin*, *mid*).

Complexity of LOWERBOUNDREC with n = end - begin

$$T(n) = \begin{cases} 1 & \text{if } n = 0; \end{cases}$$

Algorithm LowerBoundRec(*L*, *v*, *begin*, *end*): 1: **if** begin = end **then** Base case: 1 operation. return begin. 2: 3: **else** mid := (begin + end) div 2.4: **if** *L*[*mid*] < *v* **then** 5: Recursive case: return LowerBoundRec(L, v, mid + 1, end). 6: 1 operation and 1 recursive call. else /* $L[mid] \ge v */$ 7: return LowerBoundRec(L, v, begin, mid). 8:

Complexity of LOWERBOUNDREC with n = end - begin

$$T(n) = \begin{cases} 1 & \text{if } n = 0; \\ 1 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1 & \text{if } n \ge 1. \end{cases}$$

Algorithm LowerBoundRec(*L*, *v*, *begin*, *end*):

- 1: **if** begin = end **then**
- 2: return begin.
- 3: **else**
- 4: $mid := (begin + end) \operatorname{div} 2.$
- 5: **if** *L*[*mid*] < *v* **then**
- 6: **return** LOWERBOUNDREC(L, v, mid + 1, end).
- 7: **else** $/* L[mid] \ge v */$
- 8: **return** LowerBoundRec(*L*, *v*, *begin*, *mid*).

Complexity of LOWERBOUNDREC with n = end - begin

$$T(n) = 1 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1.$$

Complexity of LOWERBOUNDREC with n = end - begin (assume: $n = 2^{x}$)

$$T(n) = 1 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1.$$

work = 1

 $n = 2^x \cdot$

Complexity of LOWERBOUNDREC with n = end - begin (assume: $n = 2^{x}$)

$$T(n) = 1 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1.$$

work = 1

$$n = 2^{x}$$
 work = 1
 $\frac{n}{2} = 2^{x-1}$

Complexity of LOWERBOUNDREC with n = end - begin (assume: $n = 2^{x}$)

$$T(n) = 1 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1.$$

work =
$$1$$

$$n = 2^{x}$$
 work = 1

$$\frac{n}{2} = 2^{x-1}$$
 work = 1

$$\frac{n}{4} = 2^{x-2}$$

Complexity of LOWERBOUNDREC with n = end - begin (assume: $n = 2^{x}$)

$$T(n) = 1 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1.$$

work = 1

$$n = 2^{x}$$
work = 1
$$\frac{n}{2} = 2^{x-1}$$
work = 1
$$\frac{n}{4} = 2^{x-2}$$
work = 1
$$1 = 2^{x-x}$$

Complexity of LOWERBOUNDREC with n = end - begin (assume: $n = 2^{x}$)

$$T(n) = 1 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1.$$

work
$$=$$

$$n = 2^{x}$$
work = 1
$$\frac{n}{2} = 2^{x-1}$$
work = 1
$$\frac{n}{4} = 2^{x-2}$$
work = 1
$$1 = 2^{x-x}$$
work = 1
$$0$$

Complexity of LOWERBOUNDREC with n = end - begin (assume: $n = 2^{x}$)

$$T(n) = 1 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1.$$

2 levels
$$\begin{cases} work = 1 \\ n = 2^{x} \\ \frac{n}{2} = 2^{x-1} \\ \frac{n}{4} = 2^{x-2} \\ work = 1 \\ 1 = 2^{x-x} \\ work = 1 \\ 0 \end{cases}$$

 $x + 2 = \log_2(n) + 2$ levels

Complexity of LOWERBOUNDREC with n = end - begin (assume: $n = 2^{x}$)

$$T(n) = 1 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1 = \Theta(\log_2(n)).$$

$$x + 2 = \log_2(n) + 2$$
 levels

work = 1

$$n = 2^{x}$$
work = 1

$$\frac{n}{2} = 2^{x-1}$$
work = 1

$$\frac{n}{4} = 2^{x-2}$$
work = 1

$$1 = 2^{x-x}$$
work = 1
0

Each function call cost memory! (e.g., to store local variables).

The recursive Binary Search algorithm

Algorithm LowerBoundRec(*L*, *v*, *begin*, *end*):

Input: *L* is an ordered *array*, *v* a value, and $0 \le begin \le end \le |L|$.

- 1: if begin = end then
- 2: return begin.

3: **else**

- 4: $mid := (begin + end) \operatorname{div} 2.$
- 5: **if** *L*[*mid*] < *v* **then**
- 6: **return** LowerBoundRec(L, v, mid + 1, end).
- 7: **else** $/* L[mid] \ge v */$
- 8: **return** LowerBoundRec(*L*, *v*, *begin*, *mid*).

Result: return the first offset r, $begin \le r < end$, with L[r] = v or, if no such offset exists, r = end.

Theorem

LOWERBOUNDREC is correct and has a runtime and memory complexity of $\Theta(\log_2(|L|))$.

The non-recursive Binary Search algorithm

Algorithm LowerBound(*L*, *v*, *begin*, *end*):

Input: *L* is an ordered *array*, *v* a value, and $0 \le begin \le end \le |L|$.

- 1: while begin \neq end do
- 2: $mid := (begin + end) \operatorname{div} 2.$
- 3: **if** *L*[*mid*] < *v* **then**
- 4: begin := mid + 1.
- 5: **else**
- end := mid.
- 7: return begin.

Result: return the first offset *r*, $begin \le r < end$, with L[r] = v or,

if no such offset exists, r = end.

The non-recursive Binary Search algorithm

Algorithm LowerBound(*L*, *v*, *begin*, *end*):

Input: *L* is an ordered *array*, *v* a value, and $0 \le begin \le end \le |L|$.

- 1: while begin \neq end do
- 2: $mid := (begin + end) \operatorname{div} 2.$
- 3: **if** *L*[*mid*] < *v* **then**
- 4: begin := mid + 1.
- 5: **else**
- end := mid.
- 7: return begin.

Result: return the first offset r, $begin \le r < end$, with L[r] = v or, if no such offset exists, r = end.

Theorem

LOWERBOUND is correct, has a runtime complexity of $\Theta(\log_2(|L|))$, and a memory complexity of $\Theta(1)$.

Comparing the complexity of searching

Theoretical complexity

Comparing the complexity of searching

Measured runtime (100 values)

Comparing the complexity of searching

Problem Let L be a list and [v, w] be a range query with $v \le w$. The solution of the range query problem for L and [v, w] is the list of all values $e \in L$ with $v \le e \le w$.

Example

Consider a list *enrolled* with schema enrolled(*dept*, *code*, *sid*, *date*).

Query: All students enrolled in 2023

Range query on *enrolled* with [(', ', -1, 2023), (', ', -1, 2024)].

Problem Let L be a list and [v, w] be a range query with $v \le w$. The solution of the range query problem for L and [v, w] is the list of all values $e \in L$ with $v \le e \le w$.

Example

Consider a list *enrolled* with schema enrolled(*dept*, *code*, *sid*, *date*).

Query: All students enrolled in 2023

Range query on *enrolled* with [(', ', -1, 2023), (', ', -1, 2024)].

We add enrollment data to the end of the list \longrightarrow enrolled is ordered on date!

Problem

Let L be a list and [v, w] be a range query with $v \le w$. The solution of the range query problem for L and [v, w] is the list of all values $e \in L$ with $v \le e \le w$.

Algorithm RANGEQUERY*L*, [*v*, *w*]:

Input: *L* is an ordered *array*, *v*, *w* are values, and $v \le w$.

- 1: i := LowerBound(L, v, 0, |L|).
- 2: j := i.
- 3: while $j \leq |L|$ and also $L[j] \leq w$ do
- 4: j := j + 1.
- 5: **return** *L*[*i*, *j*).

Result: return the list L[m, n), $0 \le m \le n \le |L|$, such that

L[m, n) is the list of all values $e \in L$ with $v \leq e \leq w$.

Problem

Let L be a list and [v, w] be a range query with $v \le w$. The solution of the range query problem for L and [v, w] is the list of all values $e \in L$ with $v \le e \le w$.

Algorithm RANGEQUERY*L*, [*v*, *w*]:

Input: *L* is an ordered *array*, *v*, *w* are values, and $v \le w$.

- 1: i := LowerBound(L, v, 0, |L|).
- 2: j := i.
- 3: while $j \leq |L|$ and also $L[j] \leq w$ do
- 4: j := j + 1.
- 5: **return** *L*[*i*, *j*).

Result: return the list L[m, n), $0 \le m \le n \le |L|$, such that

L[m, n) is the list of all values $e \in L$ with $v \leq e \leq w$.

Theorem

RANGEQUERY is correct and has worst case runtime complexity $\Theta(|L|)$.

Problem

Let L be a list and [v, w] be a range query with $v \le w$. The solution of the range query problem for L and [v, w] is the list of all values $e \in L$ with $v \le e \le w$.

Algorithm RangeQueryL, [v, w]:

Input: *L* is an ordered *array*, *v*, *w* are values, and $v \le w$.

- 1: i := LowerBound(L, v, 0, |L|).
- 2: j := i.
- 3: while $j \leq |L|$ and also $L[j] \leq w$ do
- 4: j := j + 1.
- 5: **return** *L*[*i*, *j*).

Result: return the list L[m, n), $0 \le m \le n \le |L|$, such that

L[m, n) is the list of all values $e \in L$ with $v \leq e \leq w$.

Theorem

RANGEQUERY is correct and has all case runtime complexity $\Theta(\log_2(|L|) + |result|)$.

Problem

Let L be list of values of unknown length and assume we have a function INSPECT(L, i) that returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

Problem

Let L be list of values of unknown length and assume we have a function INSPECT(L, i) that returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

Example

'apple'	'pear'	'orange'
---------	--------	----------

INSPECT(L, 0) = trueINSPECT(L, 1) = trueINSPECT(L, 2) = trueINSPECT(L, 3) = false.

Problem

Let L be list of values of unknown length and assume we have a function INSPECT(L, i) that returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

Solving the list-length problem We have ordered list $0, 1, \ldots$ of possible values for |L|.

Conclusion of INSPECT(L, i)?

Problem

Let L be list of values of unknown length and assume we have a function INSPECT(L, i) that returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

```
Solving the list-length problem
We have ordered list 0, 1, \ldots of possible values for |L|.
```

```
Conclusion of INSPECT(L, i)?
```

INSPECT(L, i) = true |L| > i (list L has more than i values).

INSPECT(L, i) = false $|L| \le i$ (list L has at-most i values).

Problem

Let L be list of values of unknown length and assume we have a function INSPECT(L, i) that returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

```
Solving the list-length problem
We have ordered list 0, 1, \ldots of possible values for |L|.
```

```
Conclusion of INSPECT(L, i)?
```

INSPECT(L, i) = true |L| > i (list L has more than i values).

INSPECT(L, i) = false $|L| \le i$ (list L has at-most i values).

Issue: no upper bound on the ordered list 0, 1, . . . of possible values for |L|

Problem

Let L be list of values of unknown length and assume we have a function INSPECT(L, i) that returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

Issue: no upper bound on the ordered list 0, 1, . . . of possible values for |L|Guess repeatedly with exponentially-growing guesses.

Algorithm LISTLENGTHUB(*L*):

Input: *L* is an *array* of unknown length.

- 1: *n* := 1.
- 2: while INSPECT(L, n) do
- 3: $n := 2 \cdot n$.
- 4: **return** *n*.

Result: return $N, |L| \le N = 1$ or $|L| \le N < 2|L|$.

Problem

Let L be list of values of unknown length and assume we have a function INSPECT(L, i) that returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

Algorithm LBLISTLENGTH(L, N) with N := LISTLENGTHUB(L):

- 1: *begin*, *end* := 0, N.
- 2: while begin \neq end do
- 3: mid := (begin + end) div 2.
- 4: **if** INSPECT(*L*, *mid*) **then**
- 5: begin := mid + 1.
- 6: else
- 7: end := mid.
- 8: return begin.

Result: return the length |L| of array *L*.

Definition

A join of two lists *L* and *M* results in a list *A* in which each list value is computed from a combination of values $u \in L$ and $v \in M$ according to some *join condition*.

Example (Return pairs (p, r) of product name p and related category r)

proc	lucts	catego	ories
name	category	category	related
Apple	Fruit	Fruit	Food
Bok choy	Vegetable	Fruit	Produce
Canelé	Pastry	Pastry	Food
Donut	Pastry	Vegetable	Food
		Vegetable	Produce

Definition

A join of two lists *L* and *M* results in a list *A* in which each list value is computed from a combination of values $u \in L$ and $v \in M$ according to some *join condition*.

proc	lucts	categ	ories	Join R	esult
name	category	category	related	name	related
Apple	Fruit	Fruit	Food	Apple	Food
Bok choy	Vegetable	Fruit	Produce	Apple	Produce
Canelé	Pastry	Pastry	Food	Bok choy	Food
Donut	Pastry	Vegetable	Food	Bok choy	Produce
		Vegetable	Produce	Canelé	Food
				Donut	Food

Example (Return pairs (p, r) of product name p and related category r)

Algorithm NESTEDLOOPPC(products, categories):

Input: relations products(*name*, *category*) and categories(*category*, *related*).

- 1: *output* := \emptyset .
- 2: **for** $(p.n, p.c) \in$ products **do**
- 3: **for** $(c.c, c.r) \in$ categories **do**
- 4: **if** p.c = c.c **then**
- 5: add (p.n, c.r) to *output*.

Result: return $\{(p.n, p.c) \mid ((p.n, p.c) \in \text{products}) \land ((c.c, c.r) \in \text{categories})\}.$

Algorithm NESTEDLOOPPC(products, categories):

Input: relations products(*name*, *category*) and categories(*category*, *related*).

- 1: output := \emptyset .
- 2: **for** $(p.n, p.c) \in$ products **do**
- for $(c.c, c.r) \in$ categories do 3:
- 4:

 $\Theta(|categories|).$

if p.c = c.c then add (p.n, c.r) to output. 5:

Result: return $\{(p.n, p.c) \mid ((p.n, p.c) \in \text{products}) \land ((c.c, c.r) \in \text{categories})\}$.

Algorithm NESTEDLOOPPC(products, categories):

Input: relations products(*name*, *category*) and categories(*category*, *related*).

- 1: output := \emptyset .
- 2: **for** $(p.n, p.c) \in$ products **do**
- $\begin{cases} \text{for } (p.n, p.c) \in \text{products do} \\ \text{for } (c.c, c.r) \in \text{categories do} \\ \text{if } p.c = c.c \text{ then} \\ \text{add } (p.n, c.r) \text{ to output.} \end{cases} \Theta(|categories|).$ 3:
- 4:

5:

Result: return $\{(p.n, p.c) \mid ((p.n, p.c) \in \text{products}) \land ((c.c, c.r) \in \text{categories})\}.$

Theorem

The NESTEDLOOPPC algorithm is correct and has a runtime complexity of $\Theta(|product| \cdot |categories|).$

Algorithm NESTEDBINARYPC(products, categories): **Input:** relations products(*name*, *category*) and categories(*category*, *related*),

relation categories ordered.

- 1: $output := \emptyset$.
- 2: **for** $(p.n, p.c) \in$ products **do**
- 3: *i* := LowerBound(categories, (*p.c*, ''), 0, |categories|).
- 4: **while** *i* < |categories| **and also** categories[*i*].*category* = *p*.*c* **do**
- 5: add (*p.n*, categories[*i*].*related*) to *output*.
- 6: i := i + 1.

Result: return $\{(p.n, p.c) \mid ((p.n, p.c) \in \text{products}) \land ((c.c, c.r) \in \text{categories})\}.$

Theorem

The NESTEDBINARYPC algorithm is correct and has a runtime complexity of $\Theta(|product| \cdot \log_2(|categories|) + |result|).$

CONTAINS, LINEARSEARCH, and LOWERBOUND in practice

Algorithm	C++	Java
Contains	<pre>std::ranges::contains</pre>	<i>collection</i> .contains ^a
LinearSearch LinearPredSearch	<pre>std::find std::find_if</pre>	<pre>collection.indexOf^a java.util.stream::filter^b</pre>
LowerBound	<pre>std::lower_bound std::upper_bound^d</pre>	java.util.Arrays:: ^c binarySearch
Related libraries	<algorithm>, <ranges></ranges></algorithm>	java.util.Arrays, java.util.ArrayList,

^{*a*}Here, *collection* is a standard Java data collection such as java.util.ArrayList.

^bUsing the stream library supported by standard Java data collections.

^cDoes not guarantee to return the offset of the *first* occurrence of a value.

^dReturns the offset of the first element in the list that is strictly larger than the searched-for value.