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Collection types

A collection type is an data type used to manage a collection of values.

Typically an abstract data type: the implementation is hidden from the user.

Collection types are implemented via data structures.
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Collection types: Bag

A bag B is a collection to which values can be added, but not removed:

Add(B, v) add value v to a bag B;

Empty(B) return true if bag B holds no values;

Size(B) returns the number of values in B.

In addition, one can iterate over the values currently in bag B.

Remark
Note that Empty can be implemented via Size.
Not all data structures provide an efficient Size, however!
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Collection types: Stack

Stack: collection to which values can be added to the top, removed from the top.

Push(S, v) add value v to the top of stack S;
Pop(S) remove (and return) the value on top of stack S;

Empty(S) return true if stack S holds no values;
Size(S) returns the number of values in S.

Stacks are sometimes referred to as first-in-last-out (FILO) queues.
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Stacks are used everywhere: e.g., function calls are implemented via stacks.
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Using stacks to evaluate expressions in postfix notation

Postfix notation is a notation in which operators follow their operands.

Example

▶ “1 2 +” is equivalent to 1 + 2.
▶ “1 2 3 + -” is equivalent to 1 − (2 + 3).
▶ “1 2 + 3 -” is equivalent to (1 + 2) − 3.
▶ “1 2 3 + 4 5 · - /” is equivalent to 1/((2 + 3) − (4 · 5)).

Expressions in postfix notation are very easy to evaluate using a stack.
“1 2 3 + 4 5 · - /” is equivalent to 1/((2 + 3) − (4 · 5)).

Algorithm EvaluatePN(e):
Input: e is in postfix notation.
1: S := an empty stack.
2: for each term t ∈ e do
3: if t is a value then
4: Push(S, t).
5: else t is an operation ⊕
6: v2 := pop(S); v1 := pop(S).
7: Push(S, v1 ⊕ v2).
8: return pop(S).
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Dijkstra’s Two-Stack Algorithm (book) evaluates expressions in infix (normal) notation:
this by building a postfix notation and simultaneously applying EvaluatePN.
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Collection types: Queue

Queue: collection to which values can be added to the top and removed from the bottom.

Enqueue(Q, v) add value v to the top of queue Q;
Dequeue(Q) remove (and return) the value at the bottom of queue Q;

Empty(Q) return true if queue Q holds no values;
Size(Q) returns the number of values in Q.

Queues are sometimes referred to as first-in-first-out (FIFO) queues.
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Queues are used used everywhere: e.g., communication buffers
(for network packages, for tasks exchanged between producer-consumer threads, . . . ).
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Data structures: Fixed-size ring buffers

Ring Buffer : a data structure that can hold up-to-N values.
entries[0 . . .N) An array that can hold N values.

start The position in entries of the first value in the buffer.
length The current number of values in the buffer.

The values start at position start and wrap-around at the end of entries.
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Algorithm PushBack(R, v):
Input: R is a non-full ring buffer (R.length ≠ N).
1: if R.start + R.length < N then
2: R.entries[R.start + R.length] := v .
3: elseWrap-around the end of the list
4: R.entries[R.start + R.length − N] := v .
5: R.length := R.length + 1.
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entries[0 . . . 8):

Algorithm PushFront(R, v):
Input: R is a non-full ring buffer (R.length ≠ N).
1: if R.start > 0 then
2: R.start := R.start − 1.
3: elseWrap-around the begin of the list
4: R.start := N − 1.
5: R.entries[R.start], R.length := v, R.length + 1.

PushFront(R, w1);
PushFront(R, w2);
PushFront(R, w3);
PushFront(R, w4).
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Ring Buffer : a data structure that can hold up-to-N values.
entries[0 . . .N) An array that can hold N values.

start The position in entries of the first value in the buffer.
length The current number of values in the buffer.

The values start at position start and wrap-around at the end of entries.

Removing elements from the front or the back is similar:
PopFront(R) undoes PushFront.
PopBack(R) undoes PushBack.
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PopFront(R) undoes PushFront.
PopBack(R) undoes PushBack.

▶ Provides all stack operations in Θ(1).
▶ Provides all queue operations in Θ(1).
▶ Support random access efficiently.
▶ Can be used to implement a double-ended queue.

▶ Drawback: can hold at-most N values.
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Singly linked lists

Linked Lists: a data structure that can hold a sequence of values, each stored in a list node.
first Pointer to the first list node.
last Pointer to the last list node (optional, for adding values to the end).
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Each value in a linked list is held by a list node:
item The value held by the list node.
next A pointer to the next list node in the linked list, if any.
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last = @9ACD

Algorithm PushFront(L, v):
Input: L is a linked list.
1: Create new list node n for value v .
2: n.next := L.first .
3: L.first := pointer to n.
4: if L.last = @null then List L was empty
5: L.last := pointer to n.
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Linked Lists: a data structure that can hold a sequence of values, each stored in a list node.
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Singly linked lists

Linked Lists: a data structure that can hold a sequence of values, each stored in a list node.
first Pointer to the first list node.
last Pointer to the last list node (optional, for adding values to the end).

Each value in a linked list is held by a list node:
item The value held by the list node.
next A pointer to the next list node in the linked list, if any.

Removing elements from the front or after a given node is similar:
PopFront(L) undoes PushFront.

RemoveNode(L, w) undoes AppendNode (removes a node after node w).
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Singly linked lists

Linked Lists: a data structure that can hold a sequence of values, each stored in a list node.
first Pointer to the first list node.
last Pointer to the last list node (optional, for adding values to the end).

Each value in a linked list is held by a list node:
item The value held by the list node.
next A pointer to the next list node in the linked list, if any.

Removing elements from the front or after a given node is similar:
PopFront(L) undoes PushFront.

RemoveNode(L, w) undoes AppendNode (removes a node after node w).

Make sure to free the memory associated with nodes.
In C++: use either std::unique_ptr or std::shared_ptr to free nodes for you.
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Singly linked lists

Linked Lists: a data structure that can hold a sequence of values, each stored in a list node.
first Pointer to the first list node.
last Pointer to the last list node (optional, for adding values to the end).

Each value in a linked list is held by a list node:
item The value held by the list node.
next A pointer to the next list node in the linked list, if any.

Removing elements from the front or after a given node is similar:
PopFront(L) undoes PushFront.

RemoveNode(L, w) undoes AppendNode (removes a node after node w).

▶ Provides stack modifications in Θ(1) (add and remove to front, last unnecessary).
▶ Provides queue modifications in Θ(1) (add to last , remove from front).
▶ If an Θ(1) Size(L) is needed, then maintain an explicit counter.

▶ Drawback: Low performance due to pointer-chasing, memory overhead of list nodes.
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Doubly linked lists

Linked Lists: a data structure that can hold a sequence of values, each stored in a list node.
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first = @123A last = @9ACD
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Doubly linked lists

Linked Lists: a data structure that can hold a sequence of values, each stored in a list node.
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▶ Doubly-linked lists provide flexible iteration and modifications of the list:
you can easily remove a given doubly linked list node n or visit the node preceding n.

▶ Doubly-linked lists can be used to implement a double-ended queue.
▶ Drawback: Low performance due to pointer-chasing, memory overhead of list nodes.
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Dynamic arrays

Dynamic Array : a data structure that can hold an array of values that is resizes upon need.
reserved Current internal reserved size for the array of values.
entries An array that can hold up-to-reserved values.
length The current number of values in the array, length ≤ reserved .
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Dynamic arrays

Dynamic Array : a data structure that can hold an array of values that is resizes upon need.

v1 v2

length = 2

entries:

reserved = 4

v1 v2 w1 w2 w3

length = 5

entries: v1 v2 w1 w2 w3 w4

length = 6

entries:

Algorithm PushBack(D, v):
Input: D is a dynamic array.
1: if D.reserved = D.length then
2: InternalResize(D).
3: D.entries[D.length] := v .
4: D.length := D.length + 1.

Algorithm InternalResize(D):
1: n := max(2 · D.reserved, 1).
2: Create new array a that can hold n values.
3: for pos := 0 to D.length do copy D.entries to a
4: a[pos] := D.entries[pos].
5: Free the memory for array D.entries.
6: D.reserved,D.entries := n, a.

PushBack(D, w1); PushBack(D, w2); PushBack(D, w3); PushBack(D, w4).
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Dynamic arrays

Dynamic Array : a data structure that can hold an array of values that is resizes upon need.
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length = 3

entries:

reserved = 4

v1 v2 w1 w2 w3

length = 5

entries: v1 v2 w1 w2 w3 w4

length = 6

entries:

Algorithm PushBack(D, v):
Input: D is a dynamic array.
1: if D.reserved = D.length then
2: InternalResize(D).
3: D.entries[D.length] := v .
4: D.length := D.length + 1.

Algorithm InternalResize(D):
1: n := max(2 · D.reserved, 1).
2: Create new array a that can hold n values.
3: for pos := 0 to D.length do copy D.entries to a
4: a[pos] := D.entries[pos].
5: Free the memory for array D.entries.
6: D.reserved,D.entries := n, a.

PushBack(D, w1); PushBack(D, w2); PushBack(D, w3); PushBack(D, w4).
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Dynamic arrays

Dynamic Array : a data structure that can hold an array of values that is resizes upon need.
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entries:

reserved = 4
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length = 5

entries: v1 v2 w1 w2 w3 w4

length = 6

entries:

Algorithm PushBack(D, v):
Input: D is a dynamic array.
1: if D.reserved = D.length then
2: InternalResize(D).
3: D.entries[D.length] := v .
4: D.length := D.length + 1.

Algorithm InternalResize(D):
1: n := max(2 · D.reserved, 1).
2: Create new array a that can hold n values.
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Intermezzo: Complexity of PushBack

Consider an empty dynamic array D with D.reserved = 1,
and a sequence of M, M > 0, PushBack operations.
▶ Cost of PushBack: some base cost b plus the cost of InternalResize.
▶ PushBack(D, v) only calls InternalResize(D) when D.length ∈ {1, 2, 4, 8, 16, . . . }.
▶ A call to InternalResize(D) with D.length = i costs c · i + d with c, d constants.
▶ Total costs of all InternalResize calls:

▶ Amortized complexity of M PushBacks:

bM + c(2M − 1) + d (log2(M) + 1)
M

< b + 2c + d = Θ(1).
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The above analysis can be generalized to include other operations, e.g., PopBack.

To support PopBack efficiently: do not shrink too soon:
either never shrink or shrink if requested or when 4 · D.length < D.reserved .
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Dynamic arrays
Dynamic Array : a data structure that can hold an array of values that is resizes upon need.

Removing elements from the the back is similar:
PopBack(D) undoes PushBack (typically without shrinking).

Arbitrary inserts at position i, i ≠ D.length, is costly:
Requires one to copy over by one position all values at-or-after position i.

What about the complexity?
PushBack(D, v) is either Θ(1) or Θ(D.reserved) (if InternalResize is called).

Can we provide a better analysis?

Amortized complexity of PushBack: Θ(1).
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Dynamic arrays
Dynamic Array : a data structure that can hold an array of values that is resizes upon need.

Removing elements from the the back is similar:
PopBack(D) undoes PushBack (typically without shrinking).

Arbitrary inserts at position i, i ≠ D.length, is costly:
Requires one to copy over by one position all values at-or-after position i.

▶ Provides stack modifications in amortized Θ(1).
▶ Queue modifications in Θ(D.length).
▶ Support random access efficiently.

▶ Drawback: sometimes expensive resizes, no efficient queue operations.
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A summary of elementary containers

Supports ADT Random
Data structure Queue Stack Dequeue Access Memory Usage

Ring Buffer Θ(1) Θ(1) Θ(1) Θ(1) Always NT
Singly linked list Θ(1) Θ(1) T + P +M per value
Doubly linked list Θ(1) Θ(1) Θ(1) T + 2P +M per value

Dynamic array
Θ(1)

(amortized)
Θ(1) ≤ M + 2T

≤ 2M + 3T (during resize)

T is the size of a value, P is the size of a pointer, M is the overhead per memory allocation.
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Comparing common containers
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Elementary containers in practice

Data Collection or Structure C++ Java

Ring Buffer java.util.ArrayDeque

Singly Linked List std::forward_list
Doubly Linked List std::list java.util.LinkedList

Dynamic Array std::vector java.util.ArrayList

Other std::deque

Stack std::stack Use ArrayDeque or ArrayList
Queue std::queue Use ArrayDeque

Java provides java.util.Vector and Stack and Queue on top of Vector. These
are ancient and their usage is not recommended . Use ArrayList or ArrayDeque instead!


