
1/28

Graphs

SFWRENG 2CO3: Data Structures and Algorithms

Jelle Hellings

Department of Computing and Software

McMaster University

Winter 2024

2/28

The graph data model

A graph consists of nodes and edges:

Nodes denote pieces of information;

Edges denote relationships between these pieces.

Given a graph data set, one can often derive other information or relationships.

Many variations

▶ Nodes and edges can have labels;
▶ Nodes and edges can carry weights; and
▶ Edges can be directed or undirected .

Most data sources can be modeled as graphs, e.g., “Big Data”.

Standard graph algorithms can be used to solve many different problems.

2/28

The graph data model

A graph consists of nodes and edges:

Nodes denote pieces of information;

Edges denote relationships between these pieces.

Given a graph data set, one can often derive other information or relationships.

Many variations

▶ Nodes and edges can have labels;
▶ Nodes and edges can carry weights; and
▶ Edges can be directed or undirected .

Most data sources can be modeled as graphs, e.g., “Big Data”.

Standard graph algorithms can be used to solve many different problems.

2/28

The graph data model

A graph consists of nodes and edges:

Nodes denote pieces of information;

Edges denote relationships between these pieces.

Given a graph data set, one can often derive other information or relationships.

Many variations

▶ Nodes and edges can have labels;
▶ Nodes and edges can carry weights; and
▶ Edges can be directed or undirected .

Most data sources can be modeled as graphs, e.g., “Big Data”.

Standard graph algorithms can be used to solve many different problems.

2/28

The graph data model

A graph consists of nodes and edges:

Nodes denote pieces of information;

Edges denote relationships between these pieces.

Given a graph data set, one can often derive other information or relationships.

Many variations

▶ Nodes and edges can have labels;
▶ Nodes and edges can carry weights; and
▶ Edges can be directed or undirected .

Most data sources can be modeled as graphs, e.g., “Big Data”.

Standard graph algorithms can be used to solve many different problems.

3/28

Example: Social networks

Source: Hellings et al., 2021.

Alice Bob

Carol
ParentOf ParentOf

Dan

ParentOf

Faythe

ParentOf

Grace

ParentOf

PeggyFriendOf FriendOf

Victor

FriendOf

Wendy

FriendOf

Nodes People.

Edges Relationships between them.

We can derive GrandParentOf , AncestorOf ,

How can one contact someone else via a friend-of-a-friend?

→ A shortest path!

https://doi.org/10.1093/comjnl/bxaa031

3/28

Example: Social networks

Source: Hellings et al., 2021.

Alice Bob

Carol
ParentOf ParentOf

Dan

ParentOf

Faythe

ParentOf

Grace

ParentOf

PeggyFriendOf FriendOf

Victor

FriendOf

Wendy

FriendOf

Nodes People.

Edges Relationships between them.

We can derive GrandParentOf , AncestorOf ,

How can one contact someone else via a friend-of-a-friend?

→ A shortest path!

https://doi.org/10.1093/comjnl/bxaa031

3/28

Example: Social networks

Source: Hellings et al., 2021.

Alice Bob

Carol
ParentOf ParentOf

Dan

ParentOf

Faythe

ParentOf

Grace

ParentOf

PeggyFriendOf FriendOf

Victor

FriendOf

Wendy

FriendOf

Nodes People.

Edges Relationships between them.

We can derive GrandParentOf , AncestorOf ,

How can one contact someone else via a friend-of-a-friend?

→ A shortest path!

https://doi.org/10.1093/comjnl/bxaa031

3/28

Example: Social networks

Source: Hellings et al., 2021.

Alice Bob

Carol
ParentOf ParentOf

Dan

ParentOf

Faythe

ParentOf

Grace

ParentOf

PeggyFriendOf FriendOf

Victor

FriendOf

Wendy

FriendOf

Nodes People.

Edges Relationships between them.

We can derive GrandParentOf , AncestorOf ,

How can one contact someone else via a friend-of-a-friend?

→ A shortest path!

https://doi.org/10.1093/comjnl/bxaa031

3/28

Example: Social networks

Source: Hellings et al., 2021.

Alice Bob

Carol
ParentOf ParentOf

Dan

ParentOf

Faythe

ParentOf

Grace

ParentOf

PeggyFriendOf FriendOf

Victor

FriendOf

Wendy

FriendOf

Nodes People.

Edges Relationships between them.

We can derive GrandParentOf , AncestorOf ,

How can one contact someone else via a friend-of-a-friend? → A shortest path!

https://doi.org/10.1093/comjnl/bxaa031

4/28

Example: Class hierarchy (trees)

Source: Hellings et al., 2020.

Object

toString()

method

AbstractList

subclass

size()

method

ArrayList

subclass

LinkedList

subclass

addFront(element)

method

Nodes Names (classes, methods).

Edges Membership (subclass, method).

Question: does LinkedList have a method toString()?

https://doi.org/10.1016/j.is.2019.101467

4/28

Example: Class hierarchy (trees)

Source: Hellings et al., 2020.

Object

toString()

method

AbstractList

subclass

size()

method

ArrayList

subclass

LinkedList

subclass

addFront(element)

method

Nodes Names (classes, methods).

Edges Membership (subclass, method).

Question: does LinkedList have a method toString()?

https://doi.org/10.1016/j.is.2019.101467

4/28

Example: Class hierarchy (trees)

Source: Hellings et al., 2020.

Object

toString()

method

AbstractList

subclass

size()

method

ArrayList

subclass

LinkedList

subclass

addFront(element)

method

Nodes Names (classes, methods).

Edges Membership (subclass, method).

Question: does LinkedList have a method toString()?

https://doi.org/10.1016/j.is.2019.101467

5/28

Example: Rail Network

Source: Classical geographer at
Wikimedia Commons.

Nodes Train stations.

Edges Rail connections.

Weights Maximum speed.

The shortest path problem

Which route should a train take to

connect stations A and B (with

minimal travel time)?

under construction

160 km/h

140 km/h

130 km/h

120/125 km/h

100 km/h

80 km/h

Leeuwarden

Groningen

Zwolle

electrified

non-electrified

Hoorn

Alkmaar

Haarlem

Leiden

Den Haag

Rotterdam

Roosendaal

Breda

Dordrecht

Eindhoven

Den Bosch

Utrecht

Gouda

Venlo

Maastricht

Schiphol

Amster-

dam

Hilversum

A’foort

Nijmegen

Arnhem

Zutphen

Deventer

Almelo

Hengelo

300 km/h

two or more tracks

single track

freight only

freight only (90 km/h) freight only (70 km/h)

freight only (50 km/h)

Enschede

Heerlen

https://commons.wikimedia.org/wiki/File:Baanvaksnelheden.svg
https://commons.wikimedia.org/wiki/File:Baanvaksnelheden.svg

5/28

Example: Rail Network

Source: Classical geographer at
Wikimedia Commons.

Nodes Train stations.

Edges Rail connections.

Weights Maximum speed.

The shortest path problem

Which route should a train take to

connect stations A and B (with

minimal travel time)?

under construction

160 km/h

140 km/h

130 km/h

120/125 km/h

100 km/h

80 km/h

Leeuwarden

Groningen

Zwolle

electrified

non-electrified

Hoorn

Alkmaar

Haarlem

Leiden

Den Haag

Rotterdam

Roosendaal

Breda

Dordrecht

Eindhoven

Den Bosch

Utrecht

Gouda

Venlo

Maastricht

Schiphol

Amster-

dam

Hilversum

A’foort

Nijmegen

Arnhem

Zutphen

Deventer

Almelo

Hengelo

300 km/h

two or more tracks

single track

freight only

freight only (90 km/h) freight only (70 km/h)

freight only (50 km/h)

Enschede

Heerlen

https://commons.wikimedia.org/wiki/File:Baanvaksnelheden.svg
https://commons.wikimedia.org/wiki/File:Baanvaksnelheden.svg

5/28

Example: Rail Network

Source: Classical geographer at
Wikimedia Commons.

Nodes Train stations.

Edges Rail connections.

Weights Maximum speed.

The shortest path problem

Which route should a train take to

connect stations A and B (with

minimal travel time)?

under construction

160 km/h

140 km/h

130 km/h

120/125 km/h

100 km/h

80 km/h

Leeuwarden

Groningen

Zwolle

electrified

non-electrified

Hoorn

Alkmaar

Haarlem

Leiden

Den Haag

Rotterdam

Roosendaal

Breda

Dordrecht

Eindhoven

Den Bosch

Utrecht

Gouda

Venlo

Maastricht

Schiphol

Amster-

dam

Hilversum

A’foort

Nijmegen

Arnhem

Zutphen

Deventer

Almelo

Hengelo

300 km/h

two or more tracks

single track

freight only

freight only (90 km/h) freight only (70 km/h)

freight only (50 km/h)

Enschede

Heerlen

https://commons.wikimedia.org/wiki/File:Baanvaksnelheden.svg
https://commons.wikimedia.org/wiki/File:Baanvaksnelheden.svg

5/28

Example: Rail Network

Source: Classical geographer at
Wikimedia Commons.

Nodes Train stations.

Edges Rail connections.

Weights Maximum speed.

The shortest path problem

Which route should a train take to

connect stations A and B (with

minimal travel time)?

under construction

160 km/h

140 km/h

130 km/h

120/125 km/h

100 km/h

80 km/h

Leeuwarden

Groningen

Zwolle

electrified

non-electrified

Hoorn

Alkmaar

Haarlem

Leiden

Den Haag

Rotterdam

Roosendaal

Breda

Dordrecht

Eindhoven

Den Bosch

Utrecht

Gouda

Venlo

Maastricht

Schiphol

Amster-

dam

Hilversum

A’foort

Nijmegen

Arnhem

Zutphen

Deventer

Almelo

Hengelo

300 km/h

two or more tracks

single track

freight only

freight only (90 km/h) freight only (70 km/h)

freight only (50 km/h)

Enschede

Heerlen

https://commons.wikimedia.org/wiki/File:Baanvaksnelheden.svg
https://commons.wikimedia.org/wiki/File:Baanvaksnelheden.svg

6/28

Example: Air traffic data

Source: On-Time : Reporting Carrier On-Time Performance at
Bureau of Transportation Statistics.

OP_CARRIER TAIL_NUM ORIGIN DEST DEP_TIME ARR_DELAY DISTANCE

DL N102DN ATL ORD 1329 -4.00 606.00

UA N12754 BOS EWR 1501 -14.00 200.00

AA N103NN SFO JFK 554 -12.00 2586.00

WN N935WN SFO DEN 1313 6.00 967.00

Nodes Air ports.

Edges Flights.

Weights Several: flight delay, distance, flight duration,

Which airports can I reach starting at X in at-most N stops?

Which airports can I reach starting at X in 7 hours of travel time?

This data has a time component: a temporal graph.

https://www.transtats.bts.gov/DL_SelectFields.aspx?gnoyr_VQ=FGJ&QO_fu146_anzr=b0-gvzr
https://www.transtats.bts.gov/DL_SelectFields.aspx?gnoyr_VQ=FGJ&QO_fu146_anzr=b0-gvzr

6/28

Example: Air traffic data

Source: On-Time : Reporting Carrier On-Time Performance at
Bureau of Transportation Statistics.

OP_CARRIER TAIL_NUM ORIGIN DEST DEP_TIME ARR_DELAY DISTANCE

DL N102DN ATL ORD 1329 -4.00 606.00

UA N12754 BOS EWR 1501 -14.00 200.00

AA N103NN SFO JFK 554 -12.00 2586.00

WN N935WN SFO DEN 1313 6.00 967.00

Nodes Air ports.

Edges Flights.

Weights Several: flight delay, distance, flight duration,

Which airports can I reach starting at X in at-most N stops?

Which airports can I reach starting at X in 7 hours of travel time?

This data has a time component: a temporal graph.

https://www.transtats.bts.gov/DL_SelectFields.aspx?gnoyr_VQ=FGJ&QO_fu146_anzr=b0-gvzr
https://www.transtats.bts.gov/DL_SelectFields.aspx?gnoyr_VQ=FGJ&QO_fu146_anzr=b0-gvzr

6/28

Example: Air traffic data

Source: On-Time : Reporting Carrier On-Time Performance at
Bureau of Transportation Statistics.

OP_CARRIER TAIL_NUM ORIGIN DEST DEP_TIME ARR_DELAY DISTANCE

DL N102DN ATL ORD 1329 -4.00 606.00

UA N12754 BOS EWR 1501 -14.00 200.00

AA N103NN SFO JFK 554 -12.00 2586.00

WN N935WN SFO DEN 1313 6.00 967.00

Nodes Air ports.

Edges Flights.

Weights Several: flight delay, distance, flight duration,

Which airports can I reach starting at X in at-most N stops?

Which airports can I reach starting at X in 7 hours of travel time?

This data has a time component: a temporal graph.

https://www.transtats.bts.gov/DL_SelectFields.aspx?gnoyr_VQ=FGJ&QO_fu146_anzr=b0-gvzr
https://www.transtats.bts.gov/DL_SelectFields.aspx?gnoyr_VQ=FGJ&QO_fu146_anzr=b0-gvzr

6/28

Example: Air traffic data

Source: On-Time : Reporting Carrier On-Time Performance at
Bureau of Transportation Statistics.

OP_CARRIER TAIL_NUM ORIGIN DEST DEP_TIME ARR_DELAY DISTANCE

DL N102DN ATL ORD 1329 -4.00 606.00

UA N12754 BOS EWR 1501 -14.00 200.00

AA N103NN SFO JFK 554 -12.00 2586.00

WN N935WN SFO DEN 1313 6.00 967.00

Nodes Air ports.

Edges Flights.

Weights Several: flight delay, distance, flight duration,

Which airports can I reach starting at X in at-most N stops?

Which airports can I reach starting at X in 7 hours of travel time?

This data has a time component: a temporal graph.

https://www.transtats.bts.gov/DL_SelectFields.aspx?gnoyr_VQ=FGJ&QO_fu146_anzr=b0-gvzr
https://www.transtats.bts.gov/DL_SelectFields.aspx?gnoyr_VQ=FGJ&QO_fu146_anzr=b0-gvzr

6/28

Example: Air traffic data

Source: On-Time : Reporting Carrier On-Time Performance at
Bureau of Transportation Statistics.

OP_CARRIER TAIL_NUM ORIGIN DEST DEP_TIME ARR_DELAY DISTANCE

DL N102DN ATL ORD 1329 -4.00 606.00

UA N12754 BOS EWR 1501 -14.00 200.00

AA N103NN SFO JFK 554 -12.00 2586.00

WN N935WN SFO DEN 1313 6.00 967.00

Nodes Air ports.

Edges Flights.

Weights Several: flight delay, distance, flight duration,

Which airports can I reach starting at X in at-most N stops?

Which airports can I reach starting at X in 7 hours of travel time?

This data has a time component: a temporal graph.

https://www.transtats.bts.gov/DL_SelectFields.aspx?gnoyr_VQ=FGJ&QO_fu146_anzr=b0-gvzr
https://www.transtats.bts.gov/DL_SelectFields.aspx?gnoyr_VQ=FGJ&QO_fu146_anzr=b0-gvzr

7/28

Example: Schedules with dependencies (DAGs)

weigh ingredients (5 min)

peel apples (10 min) cut apples (3 min)

knead dough (10 min)

fill pie form (5 min)

bake pie (45 min)

Nodes Steps of recipe.

Edges Dependencies between steps.

Weights Duration of each step.

Which tasks can I do concurrently?

How fast can a group bake a pie?

→ A longest path problem

(that we can turn into a shortest path problem).

7/28

Example: Schedules with dependencies (DAGs)

weigh ingredients (5 min)

peel apples (10 min) cut apples (3 min)

knead dough (10 min)

fill pie form (5 min)

bake pie (45 min)

Nodes Steps of recipe.

Edges Dependencies between steps.

Weights Duration of each step.

Which tasks can I do concurrently?

How fast can a group bake a pie?

→ A longest path problem

(that we can turn into a shortest path problem).

7/28

Example: Schedules with dependencies (DAGs)

weigh ingredients (5 min)

peel apples (10 min) cut apples (3 min)

knead dough (10 min)

fill pie form (5 min)

bake pie (45 min)

Nodes Steps of recipe.

Edges Dependencies between steps.

Weights Duration of each step.

Which tasks can I do concurrently?

How fast can a group bake a pie?

→ A longest path problem

(that we can turn into a shortest path problem).

7/28

Example: Schedules with dependencies (DAGs)

weigh ingredients (5 min)

peel apples (10 min) cut apples (3 min)

knead dough (10 min)

fill pie form (5 min)

bake pie (45 min)

Nodes Steps of recipe.

Edges Dependencies between steps.

Weights Duration of each step.

Which tasks can I do concurrently?

How fast can a group bake a pie? → A longest path problem

(that we can turn into a shortest path problem).

8/28

Rational for graphs and graph algorithms

Let D be some dataset and let P be some computational problem.

▶ One can often translate (part of) D to some graph representation G.
▶ Next, one can translate problem P to a graph problem S.
▶ On G, we can run some standard graph algorithm to solve S.
▶ The solution for S can be translated to a solution for problem P .

Often, one can do these steps implicitly .

We will see examples of this in the lectures and assignments!

8/28

Rational for graphs and graph algorithms

Let D be some dataset and let P be some computational problem.

▶ One can often translate (part of) D to some graph representation G.

▶ Next, one can translate problem P to a graph problem S.
▶ On G, we can run some standard graph algorithm to solve S.
▶ The solution for S can be translated to a solution for problem P .

Often, one can do these steps implicitly .

We will see examples of this in the lectures and assignments!

8/28

Rational for graphs and graph algorithms

Let D be some dataset and let P be some computational problem.

▶ One can often translate (part of) D to some graph representation G.
▶ Next, one can translate problem P to a graph problem S.

▶ On G, we can run some standard graph algorithm to solve S.
▶ The solution for S can be translated to a solution for problem P .

Often, one can do these steps implicitly .

We will see examples of this in the lectures and assignments!

8/28

Rational for graphs and graph algorithms

Let D be some dataset and let P be some computational problem.

▶ One can often translate (part of) D to some graph representation G.
▶ Next, one can translate problem P to a graph problem S.
▶ On G, we can run some standard graph algorithm to solve S.

▶ The solution for S can be translated to a solution for problem P .

Often, one can do these steps implicitly .

We will see examples of this in the lectures and assignments!

8/28

Rational for graphs and graph algorithms

Let D be some dataset and let P be some computational problem.

▶ One can often translate (part of) D to some graph representation G.
▶ Next, one can translate problem P to a graph problem S.
▶ On G, we can run some standard graph algorithm to solve S.
▶ The solution for S can be translated to a solution for problem P .

Often, one can do these steps implicitly .

We will see examples of this in the lectures and assignments!

8/28

Rational for graphs and graph algorithms

Let D be some dataset and let P be some computational problem.

▶ One can often translate (part of) D to some graph representation G.
▶ Next, one can translate problem P to a graph problem S.
▶ On G, we can run some standard graph algorithm to solve S.
▶ The solution for S can be translated to a solution for problem P .

Often, one can do these steps implicitly .

We will see examples of this in the lectures and assignments!

8/28

Rational for graphs and graph algorithms

Let D be some dataset and let P be some computational problem.

▶ One can often translate (part of) D to some graph representation G.
▶ Next, one can translate problem P to a graph problem S.
▶ On G, we can run some standard graph algorithm to solve S.
▶ The solution for S can be translated to a solution for problem P .

Often, one can do these steps implicitly .

We will see examples of this in the lectures and assignments!

9/28

Selected topics on graphs

▶ Formalization.

▶ Data structures to represent graphs.

▶ Traversing graphs:

Reachability, finding cycles, shortest paths (without weights), topological sort,

▶ Minimum spanning trees.

▶ Finding shortest-paths (with weights).

10/28

Undirected graphs

Definition

An undirected graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E a collection of undirected edges that consist of node pairs.

a node

an edge

n0 n7

n2n3

n9 n5

n6

n1n8n4

The same graph?

Yes

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

10/28

Undirected graphs

Definition

An undirected graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E a collection of undirected edges that consist of node pairs.

Undirected: if (v,w) ∈ E, then also (w, v) ∈ E!

a node

an edge

n0 n7

n2n3

n9 n5

n6

n1n8n4

The same graph?

Yes

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

10/28

Undirected graphs

Definition

An undirected graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E a collection of undirected edges that consist of node pairs.

Typically: at-most one edge between nodes: E is a set with E ⊆ N ×N .

a node

an edge

n0 n7

n2n3

n9 n5

n6

n1n8n4

The same graph?

Yes

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

10/28

Undirected graphs

Definition

An undirected graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E ⊆ N ×N a set of undirected edges that consist of node pairs.

Typically: at-most one edge between nodes: E is a set with E ⊆ N ×N .

a node

an edge

n0 n7

n2n3

n9 n5

n6

n1n8n4

The same graph?

Yes

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

10/28

Undirected graphs

Definition

An undirected graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E ⊆ N ×N a set of undirected edges that consist of node pairs.

a node

an edge

n0 n7

n2n3

n9 n5

n6

n1n8n4

The same graph?

Yes

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

10/28

Undirected graphs

Definition

An undirected graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E ⊆ N ×N a set of undirected edges that consist of node pairs.

a node

an edge

n0 n7

n2n3

n9 n5

n6

n1n8n4

The same graph?

Yes

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

10/28

Undirected graphs

Definition

An undirected graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E ⊆ N ×N a set of undirected edges that consist of node pairs.

a node

an edge

n0 n7

n2n3

n9 n5

n6

n1n8n4

The same graph?

Yes

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

10/28

Undirected graphs

Definition

An undirected graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E ⊆ N ×N a set of undirected edges that consist of node pairs.

Nodes have unique identities, e.g., they are assigned unique numbers.

a node

an edge

n0 n7

n2n3

n9 n5

n6

n1n8n4

The same graph?

Yes

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

10/28

Undirected graphs

Definition

An undirected graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E ⊆ N ×N a set of undirected edges that consist of node pairs.

A path is a sequence of nodes and edges connecting two nodes.

Example: n3e30n0e09n9e95n5e56n6.

e
3
0

e 09
e95 e 5

6

a node

an edge

n0 n7

n2n3

n9 n5

n6

n1n8n4

The same graph?

Yes

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

10/28

Undirected graphs

Definition

An undirected graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E ⊆ N ×N a set of undirected edges that consist of node pairs.

A path is a sequence of nodes and edges connecting two nodes.

Example: n3n0n9n5n6 (at-most one edge per node pair).

a node

an edge

n0 n7

n2n3

n9 n5

n6

n1n8n4

The same graph?

Yes

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

10/28

Undirected graphs

Definition

An undirected graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E ⊆ N ×N a set of undirected edges that consist of node pairs.

Two nodes are connected if there is a path between them.

Connected component: maximal subgraph in which all node pairs are connected.

a node

an edge

n0 n7

n2n3

n9 n5

n6

n1n8n4

The same graph?

Yes

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

10/28

Undirected graphs

Definition

An undirected graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E ⊆ N ×N a set of undirected edges that consist of node pairs.

A graph is connected if all node pairs are connected.

This graph is not connected: there are three disconnected components!

a node

an edge

n0 n7

n2n3

n9 n5

n6

n1n8n4

The same graph?

Yes

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

10/28

Undirected graphs

Definition

An undirected graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E ⊆ N ×N a set of undirected edges that consist of node pairs.

In a weighted undirected graph, each edge has a weight.

Typically modeled via a weight function weight, e.g., weight : E → N.

3

9

11

2

1
2

7

12

9

7

a node

an edge

n0 n7

n2n3

n9 n5

n6

n1n8n4

The same graph?

Yes

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

10/28

Undirected graphs

Definition

An undirected graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E ⊆ N ×N a set of undirected edges that consist of node pairs.

We can have edges from nodes to themselves: self-loops.

(we will mostly ignore self-loops).

a node

an edge

n0 n7

n2n3

n9 n5

n6

n1n8n4

The same graph?

Yes

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

10/28

Undirected graphs

Definition

An undirected graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E ⊆ N ×N a set of undirected edges that consist of node pairs.

a node

an edge

n0 n7

n2n3

n9 n5

n6

n1n8n4

The same graph?

Yes

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

10/28

Undirected graphs

Definition

An undirected graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E ⊆ N ×N a set of undirected edges that consist of node pairs.

a node

an edge

n0 n7

n2n3

n9 n5

n6

n1n8n4

The same graph?

Yes

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

11/28

Directed graphs

Definition

A directed graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E ⊆ N ×N a set of edges that consist of node pairs.

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

11/28

Directed graphs

Definition

A directed graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E ⊆ N ×N a set of edges that consist of node pairs.

A path is a sequence of nodes and edges connecting two nodes.

Example: n5e56n6e69n9e90n0e07n7.

e07
e90e69

e 56

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

11/28

Directed graphs

Definition

A directed graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E ⊆ N ×N a set of edges that consist of node pairs.

A path is a sequence of nodes and edges connecting two nodes.

Example: n5n6n9n0n7 (at-most one edge per node pair).

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

11/28

Directed graphs

Definition

A directed graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E ⊆ N ×N a set of edges that consist of node pairs.

A path is a sequence of nodes and edges connecting two nodes.

n3n0n9n5n6 does not follow direction→ not a path!

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

11/28

Directed graphs

Definition

A directed graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E ⊆ N ×N a set of edges that consist of node pairs.

A cycle is a path with at-least one edge from a node to itself.

Example: the cycles n0n7 and n7n0.

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

11/28

Directed graphs

Definition

A directed graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E ⊆ N ×N a set of edges that consist of node pairs.

Two nodes are strongly connected if there is a path between them.

Strongly . . . component: maximal subgraph in which all node pairs are strongly connected.

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

11/28

Directed graphs

Definition

A directed graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E ⊆ N ×N a set of edges that consist of node pairs.

A graph is strongly connected if all node pairs are strongly connected.

This graph is not strongly connected: e.g., no paths toward n4.

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

11/28

Directed graphs

Definition

A directed graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E ⊆ N ×N a set of edges that consist of node pairs.

In a weighted directed graph, each edge has a weight.

Typically modeled via a weight function weight, e.g., weight : E → N.

13

5

2

11

7

1

9

3

7
1
2

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

11/28

Directed graphs

Definition

A directed graph is a pair (N , E) with
▶ N a set of nodes (or vertices); and
▶ E ⊆ N ×N a set of edges that consist of node pairs.

We can have edges from nodes to themselves: self-loops.

(we will mostly ignore self-loops).

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

12/28

Implementing graphs

Consider a directed or undirected graph,

possibly with a weight function.

Which basic operations do we want?

▶ Adding and removing nodes?

▶ Adding and removing edges?

▶ Check whether an edge exists between a node pair?

▶ Iterate over all (incoming and outgoing) edges of a node?

▶ Given an edge, check or change the weight?

12/28

Implementing graphs

Consider a directed or undirected graph,

possibly with a weight function.

Which basic operations do we want?

▶ Adding and removing nodes?

▶ Adding and removing edges?

▶ Check whether an edge exists between a node pair?

▶ Iterate over all (incoming and outgoing) edges of a node?

▶ Given an edge, check or change the weight?

12/28

Implementing graphs

Consider a directed or undirected graph,

possibly with a weight function.

Which basic operations do we want?

▶ Adding and removing nodes?

▶ Adding and removing edges?

▶ Check whether an edge exists between a node pair?

▶ Iterate over all (incoming and outgoing) edges of a node?

▶ Given an edge, check or change the weight?

12/28

Implementing graphs

Consider a directed or undirected graph,

possibly with a weight function.

Which basic operations do we want?

▶ Adding and removing nodes?

▶ Adding and removing edges?

▶ Check whether an edge exists between a node pair?

▶ Iterate over all (incoming and outgoing) edges of a node?

▶ Given an edge, check or change the weight?

12/28

Implementing graphs

Consider a directed or undirected graph,

possibly with a weight function.

Which basic operations do we want?

▶ Adding and removing nodes?

▶ Adding and removing edges?

▶ Check whether an edge exists between a node pair?

▶ Iterate over all (incoming and outgoing) edges of a node?

▶ Given an edge, check or change the weight?

13/28

The matrix representation

Let G = (N , E) be a directed graph.

Assume each node n ∈ N has a unique identifier id(n) with 0 ≤ id(n) < |N |.
Matrix representation

Let M be a |N | × |N |-matrix (M is a two-dimensional array).
For every pair of nodes (m, n), set M[id(m), id(n)] := (m, n) ∈ E.

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

0 1 2 3 4 5 6 7 8 9

0 * * * 7 * * * 13 * *
1 * * * * * * * * * *
2 * * * * * * * 2 * *
3 * * 11 * * * * * * *
4 * * * * 1 * * * * *
5 * * * * * * 7 * * 9

6 * * * * * * * * * 3

7 5 * * * * * * * * *
8 * 12 * * * * * * * *
9 1 * * * * * * * * *

13/28

The matrix representation

Let G = (N , E) be a directed graph.

Assume each node n ∈ N has a unique identifier id(n) with 0 ≤ id(n) < |N |.
Matrix representation

Let M be a |N | × |N |-matrix (M is a two-dimensional array).
For every pair of nodes (m, n), set M[id(m), id(n)] := (m, n) ∈ E.

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

0 1 2 3 4 5 6 7 8 9

0 * * * 7 * * * 13 * *
1 * * * * * * * * * *
2 * * * * * * * 2 * *
3 * * 11 * * * * * * *
4 * * * * 1 * * * * *
5 * * * * * * 7 * * 9

6 * * * * * * * * * 3

7 5 * * * * * * * * *
8 * 12 * * * * * * * *
9 1 * * * * * * * * *

13/28

The matrix representation

Let G = (N , E) be a directed graph.

Assume each node n ∈ N has a unique identifier id(n) with 0 ≤ id(n) < |N |.
Matrix representation

Let M be a |N | × |N |-matrix (M is a two-dimensional array).
For every pair of nodes (m, n), set M[id(m), id(n)] := (m, n) ∈ E.

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

0 1 2 3 4 5 6 7 8 9

0 0 0 0 1 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 1 0 0
3 0 0 1 0 0 0 0 0 0 0
4 0 0 0 0 1 0 0 0 0 0
5 0 0 0 0 0 0 1 0 0 1
6 0 0 0 0 0 0 0 0 0 1
7 1 0 0 0 0 0 0 0 0 0
8 0 1 0 0 0 0 0 0 0 0
9 1 0 0 0 0 0 0 0 0 0

13/28

The matrix representation

Let G = (N , E) be a directed graph.

Assume each node n ∈ N has a unique identifier id(n) with 0 ≤ id(n) < |N |.
Matrix representation

Let M be a |N | × |N |-matrix (M is a two-dimensional array).
For every pair of nodes (m, n), set M[id(m), id(n)] := (m, n) ∈ E.

13

5

2

11

7

1

9

3

7

1
2

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

1

0 1 2 3 4 5 6 7 8 9

0 * * * 7 * * * 13 * *
1 * * * * * * * * * *
2 * * * * * * * 2 * *
3 * * 11 * * * * * * *
4 * * * * 1 * * * * *
5 * * * * * * 7 * * 9

6 * * * * * * * * * 3

7 5 * * * * * * * * *
8 * 12 * * * * * * * *
9 1 * * * * * * * * *

13/28

The matrix representation

13

5

2

11

7

1

9

3

7

1
2

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

1

0 1 2 3 4 5 6 7 8 9

0 * * * 7 * * * 13 * *
1 * * * * * * * * * *
2 * * * * * * * 2 * *
3 * * 11 * * * * * * *
4 * * * * 1 * * * * *
5 * * * * * * 7 * * 9

6 * * * * * * * * * 3

7 5 * * * * * * * * *
8 * 12 * * * * * * * *
9 1 * * * * * * * * *

▶ Adding and removing nodes?

→ Θ
(
|N |2

)
(copy to new matrix).

▶ Adding and removing edges (n,m)?

→ Θ (1)

▶ Check whether an edge (n,m) exists?

→ Θ (1)

▶ Iterate over all incoming edges of node n?

→ Θ (|N |) (scan a column)

▶ Iterate over all outgoing edges of node n?

→ Θ (|N |) (scan a row)

▶ Check or change the weight of (n,m)?

→ Θ (1)

13/28

The matrix representation

13

5

2

11

7

1

9

3

7

1
2

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

1

0 1 2 3 4 5 6 7 8 9

0 * * * 7 * * * 13 * *
1 * * * * * * * * * *
2 * * * * * * * 2 * *
3 * * 11 * * * * * * *
4 * * * * 1 * * * * *
5 * * * * * * 7 * * 9

6 * * * * * * * * * 3

7 5 * * * * * * * * *
8 * 12 * * * * * * * *
9 1 * * * * * * * * *

▶ Adding and removing nodes?

→ Θ
(
|N |2

)
(copy to new matrix).

▶ Adding and removing edges (n,m)? → Θ (1)
▶ Check whether an edge (n,m) exists? → Θ (1)
▶ Iterate over all incoming edges of node n?

→ Θ (|N |) (scan a column)

▶ Iterate over all outgoing edges of node n?

→ Θ (|N |) (scan a row)

▶ Check or change the weight of (n,m)? → Θ (1)

13/28

The matrix representation

13

5

2

11

7

1

9

3

7

1
2

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

1

0 1 2 3 4 5 6 7 8 9

0 * * * 7 * * * 13 * *
1 * * * * * * * * * *
2 * * * * * * * 2 * *
3 * * 11 * * * * * * *
4 * * * * 1 * * * * *
5 * * * * * * 7 * * 9

6 * * * * * * * * * 3

7 5 * * * * * * * * *
8 * 12 * * * * * * * *
9 1 * * * * * * * * *

▶ Adding and removing nodes? → Θ
(
|N |2

)
(copy to new matrix).

▶ Adding and removing edges (n,m)? → Θ (1)
▶ Check whether an edge (n,m) exists? → Θ (1)
▶ Iterate over all incoming edges of node n? → Θ (|N |) (scan a column)

▶ Iterate over all outgoing edges of node n? → Θ (|N |) (scan a row)

▶ Check or change the weight of (n,m)? → Θ (1)

14/28

The adjacency list representation

Let G = (N , E) be a directed graph.

Assume each node n ∈ N has a unique identifier id(n) with 0 ≤ id(n) < |N |.
Adjacency list representation

Let A[0 . . . |N |) be an array of bags.
For every edge (m, n) ∈ E, Add (m, n) to the bag A[id(m)].

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

0 [(n0, n3), (n0, n7)]
1 []
2 [(n2, n7)]
3 [(n3, n2)]
4 [(n4, n4)]
5 [(n5, n6), (n5, n9)]
6 [(n6, n9)]
7 [(n7, n0)]
8 [(n8, n1)]
9 [(n9, n0)]

14/28

The adjacency list representation

Let G = (N , E) be a directed graph.

Assume each node n ∈ N has a unique identifier id(n) with 0 ≤ id(n) < |N |.
Adjacency list representation

Let A[0 . . . |N |) be an array of bags.
For every edge (m, n) ∈ E, Add (m, n) to the bag A[id(m)].

▶ The standard adjacency list stores outgoing edges.

If needed, one can also store incoming edges or both.
▶ A[i] is a bag, e.g., linked list, dynamic array, search tree, hash table,

▶ A can be a dynamic array to support adding nodes efficiently.

▶ A can be a dictionary mapping nodes onto their adjacency lists.

Useful when nodes do not have identifiers, not all nodes have edges,

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

0 [(n0, n3), (n0, n7)]
1 []
2 [(n2, n7)]
3 [(n3, n2)]
4 [(n4, n4)]
5 [(n5, n6), (n5, n9)]
6 [(n6, n9)]
7 [(n7, n0)]
8 [(n8, n1)]
9 [(n9, n0)]

14/28

The adjacency list representation

Let G = (N , E) be a directed graph.

Assume each node n ∈ N has a unique identifier id(n) with 0 ≤ id(n) < |N |.
Adjacency list representation

Let A[0 . . . |N |) be an array of bags.
For every edge (m, n) ∈ E, Add (m, n) to the bag A[id(m)].

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

0 [(n0, n3), (n0, n7)]
1 []
2 [(n2, n7)]
3 [(n3, n2)]
4 [(n4, n4)]
5 [(n5, n6), (n5, n9)]
6 [(n6, n9)]
7 [(n7, n0)]
8 [(n8, n1)]
9 [(n9, n0)]

14/28

The adjacency list representation

Let G = (N , E) be a directed graph.

Assume each node n ∈ N has a unique identifier id(n) with 0 ≤ id(n) < |N |.
Adjacency list representation

Let A[0 . . . |N |) be an array of bags.
For every edge (m, n) ∈ E, Add (m, n) to the bag A[id(m)].

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

0 [(n0, n3), (n0, n7)]
1 []
2 [(n2, n7)]
3 [(n3, n2)]
4 [(n4, n4)]
5 [(n5, n6), (n5, n9)]
6 [(n6, n9)]
7 [(n7, n0)]
8 [(n8, n1)]
9 [(n9, n0)]

14/28

The adjacency list representation

Let G = (N , E) be a directed graph.

Assume each node n ∈ N has a unique identifier id(n) with 0 ≤ id(n) < |N |.
Adjacency list representation

Let A[0 . . . |N |) be an array of bags.
For every edge (m, n) ∈ E, Add (m, n) to the bag A[id(m)].

13

5

2

11

7

1

9

3

7

1
2

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

1

0 [(n0, n3) : 7, (n0, n7) : 13]
1 []
2 [(n2, n7) : 2]
3 [(n3, n2) : 11]
4 [(n4, n4) : 1]
5 [(n5, n6) : 7, (n5, n9) : 9]
6 [(n6, n9) : 3]
7 [(n7, n0) : 5]
8 [(n8, n1) : 12]
9 [(n9, n0) : 1]

14/28

The adjacency list representation

13

5

2

11

7

1

9

3

7

1
2

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

1

0 [(n0, n3) : 7, (n0, n7) : 13]
1 []
2 [(n2, n7) : 2]
3 [(n3, n2) : 11]
4 [(n4, n4) : 1]
5 [(n5, n6) : 7, (n5, n9) : 9]
6 [(n6, n9) : 3]
7 [(n7, n0) : 5]
8 [(n8, n1) : 12]
9 [(n9, n0) : 1]

Let out(n) = {(n,m) ∈ E} be all outgoing edges of node n.

▶ Adding and removing nodes?

→ Θ (|N |) (copy array).

▶ Adding and removing edges (n,m)?

→ Θ (|N |) (adding to bag).

▶ Check whether an edge (n,m) exists?

→ Θ (|N |) (searching bag)

▶ Iterate over all incoming edges of node n?

→ Θ (|E |) (scan all bags)

▶ Iterate over all outgoing edges of node n?

→ Θ (|N |) (scan a bag)

▶ Check or change the weight of (n,m)?

→ Θ (1)

14/28

The adjacency list representation

13

5

2

11

7

1

9

3

7

1
2

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

1

0 [(n0, n3) : 7, (n0, n7) : 13]
1 []
2 [(n2, n7) : 2]
3 [(n3, n2) : 11]
4 [(n4, n4) : 1]
5 [(n5, n6) : 7, (n5, n9) : 9]
6 [(n6, n9) : 3]
7 [(n7, n0) : 5]
8 [(n8, n1) : 12]
9 [(n9, n0) : 1]

Let out(n) = {(n,m) ∈ E} be all outgoing edges of node n.

▶ Adding and removing nodes?

→ Θ (|N |) (copy array).

▶ Adding and removing edges (n,m)?

→ Θ (|N |) (adding to bag).

▶ Check whether an edge (n,m) exists?

→ Θ (|N |) (searching bag)

▶ Iterate over all incoming edges of node n?

→ Θ (|E |) (scan all bags)

▶ Iterate over all outgoing edges of node n?

→ Θ (|N |) (scan a bag)

▶ Check or change the weight of (n,m)? → Θ (1)

14/28

The adjacency list representation

13

5

2

11

7

1

9

3

7

1
2

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

1

0 [(n0, n3) : 7, (n0, n7) : 13]
1 []
2 [(n2, n7) : 2]
3 [(n3, n2) : 11]
4 [(n4, n4) : 1]
5 [(n5, n6) : 7, (n5, n9) : 9]
6 [(n6, n9) : 3]
7 [(n7, n0) : 5]
8 [(n8, n1) : 12]
9 [(n9, n0) : 1]

Let out(n) = {(n,m) ∈ E} be all outgoing edges of node n.

▶ Adding and removing nodes? → Θ (|N |) (copy array).

▶ Adding and removing edges (n,m)? → Θ (|N |) (adding to bag).
▶ Check whether an edge (n,m) exists? → Θ (|N |) (searching bag)
▶ Iterate over all incoming edges of node n? → Θ (|E |) (scan all bags)

▶ Iterate over all outgoing edges of node n? → Θ (|N |) (scan a bag)

▶ Check or change the weight of (n,m)? → Θ (1)

14/28

The adjacency list representation

13

5

2

11

7

1

9

3

7

1
2

n0
n7

n2
n3

n9

n5

n6
n1

n8

n4

1

0 [(n0, n3) : 7, (n0, n7) : 13]
1 []
2 [(n2, n7) : 2]
3 [(n3, n2) : 11]
4 [(n4, n4) : 1]
5 [(n5, n6) : 7, (n5, n9) : 9]
6 [(n6, n9) : 3]
7 [(n7, n0) : 5]
8 [(n8, n1) : 12]
9 [(n9, n0) : 1]

Let out(n) = {(n,m) ∈ E} be all outgoing edges of node n.
▶ Adding and removing nodes? → Θ (|N |) (copy array).

▶ Adding and removing edges (n,m)? → Θ (|out(n) |) (adding to bag).
▶ Check whether an edge (n,m) exists? → Θ (|out(n) |) (searching bag)
▶ Iterate over all incoming edges of node n? → Θ (|E |) (scan all bags)

▶ Iterate over all outgoing edges of node n? → Θ (|out(n) |) (scan a bag)

▶ Check or change the weight of (n,m)? → Θ (1)

15/28

A comparison of representations

Let G = (N , E) be a directed graph.

Dense graph graph G is dense if |E | = Θ
(
|N |2

)
.

Sparse graph graph G is spase if |E | = Θ (|N |).

15/28

A comparison of representations

Let G = (N , E) be a directed graph.

Dense graph graph G is dense if |E | = Θ
(
|N |2

)
. → most node pairs are edges!

Sparse graph graph G is spase if |E | = Θ (|N |). → most node pairs are not edges!

Matrix Adjacency List

Sparse Dense Sparse Dense

Memory usage Θ
(
|N |2

)

Θ
(
|N |2

)

Θ (|N | + |E|)

Θ
(
|N |2

)

Adding nodes Θ
(
|N |2

)

Θ
(
|N |2

)

Θ (|N |)

Θ
(
|N |2

)

Adding edge (n,m) Θ (1)

Θ (1)

Θ (|out(n) |)

Θ (|out(n) |)

Checking edge (n,m) Θ (1)

Θ (1)

Θ (|out(n) |)

Θ (|out(n) |)

Incoming edges of n Θ (|N |)

Θ (|N |)

Θ (|E |)

Θ
(
|N |2

)

Outgoing edges of n Θ (|N |)

Θ (|N |)

Θ (|out(n) |)

Θ (|out(n) |)

Weight of edge (n,m) Θ (1)

Θ (1)

Θ (|out(n) |)

Θ (|out(n) |)

15/28

A comparison of representations

Let G = (N , E) be a directed graph.

Dense graph graph G is dense if |E | = Θ
(
|N |2

)
. → most node pairs are edges!

Sparse graph graph G is spase if |E | = Θ (|N |). → most node pairs are not edges!

Matrix Adjacency List

Sparse Dense Sparse Dense

Memory usage Θ
(
|N |2

)
Θ
(
|N |2

)
Θ (|N | + |E|) Θ

(
|N |2

)
Adding nodes Θ

(
|N |2

)
Θ
(
|N |2

)
Θ (|N |) Θ

(
|N |2

)
Adding edge (n,m) Θ (1) Θ (1) Θ (|out(n) |) Θ (|out(n) |)
Checking edge (n,m) Θ (1) Θ (1) Θ (|out(n) |) Θ (|out(n) |)
Incoming edges of n Θ (|N |) Θ (|N |) Θ (|E |) Θ

(
|N |2

)
Outgoing edges of n Θ (|N |) Θ (|N |) Θ (|out(n) |) Θ (|out(n) |)
Weight of edge (n,m) Θ (1) Θ (1) Θ (|out(n) |) Θ (|out(n) |)

15/28

A comparison of representations

Let G = (N , E) be a directed graph.

Dense graph graph G is dense if |E | = Θ
(
|N |2

)
. → most node pairs are edges!

Sparse graph graph G is spase if |E | = Θ (|N |). → most node pairs are not edges!

Which representation is the best?

▶ Sparse graphs?

→ usually adjacency list.

▶ Dense graphs?

→ usually matrix.

▶ Small graphs of at-most 16 nodes?

→ likely matrix.

Depends a lot on the type of operations.

E.g., graph operations in terms of matrices are easier to implement on GPUs.

15/28

A comparison of representations

Let G = (N , E) be a directed graph.

Dense graph graph G is dense if |E | = Θ
(
|N |2

)
. → most node pairs are edges!

Sparse graph graph G is spase if |E | = Θ (|N |). → most node pairs are not edges!

Which representation is the best?

▶ Sparse graphs? → usually adjacency list.

▶ Dense graphs? → usually matrix.

▶ Small graphs of at-most 16 nodes? → likely matrix.

Depends a lot on the type of operations.

E.g., graph operations in terms of matrices are easier to implement on GPUs.

15/28

A comparison of representations

Let G = (N , E) be a directed graph.

Dense graph graph G is dense if |E | = Θ
(
|N |2

)
. → most node pairs are edges!

Sparse graph graph G is spase if |E | = Θ (|N |). → most node pairs are not edges!

Which representation is the best?

▶ Sparse graphs? → usually adjacency list.

▶ Dense graphs? → usually matrix.

▶ Small graphs of at-most 16 nodes? → likely matrix.

Depends a lot on the type of operations.

E.g., graph operations in terms of matrices are easier to implement on GPUs.

15/28

A comparison of representations

Let G = (N , E) be a directed graph.

Dense graph graph G is dense if |E | = Θ
(
|N |2

)
. → most node pairs are edges!

Sparse graph graph G is spase if |E | = Θ (|N |). → most node pairs are not edges!

Which representation is the best?

▶ Sparse graphs? → usually adjacency list.

▶ Dense graphs? → usually matrix.

▶ Small graphs of at-most 16 nodes? → likely matrix.

Depends a lot on the type of operations.

E.g., graph operations in terms of matrices are easier to implement on GPUs.

Many alternatives exist

▶ Simply storing the set of edges (e.g., as a relational table in a database);

▶ Compressed matrices for GPU operations on sparse graphs (e.g., in machine learning);

▶

16/28

Traversing undirected graphs: Depth-first

Called with n = n3.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 false
n1 false
n2 false
n3 true
n4 false
n5 false
n6 false
n7 false
n8 false
n9 false

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 false
n1 false
n2 false
n3 true
n4 false
n5 false
n6 false
n7 false
n8 false
n9 false

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 false
n1 false
n2 false
n3 true
n4 false
n5 false
n6 false
n7 false
n8 false
n9 false

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 false
n1 false
n2 false
n3 true
n4 false
n5 false
n6 false
n7 false
n8 false
n9 false

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 false
n1 false
n2 true
n3 true
n4 false
n5 false
n6 false
n7 false
n8 false
n9 false

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3, n2.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 false
n1 false
n2 true
n3 true
n4 false
n5 false
n6 false
n7 false
n8 false
n9 false

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3, n2.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 false
n1 false
n2 true
n3 true
n4 false
n5 false
n6 false
n7 true
n8 false
n9 false

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3, n2, n7.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 false
n1 false
n2 true
n3 true
n4 false
n5 false
n6 false
n7 true
n8 false
n9 false

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3, n2, n7.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 true
n1 false
n2 true
n3 true
n4 false
n5 false
n6 false
n7 true
n8 false
n9 false

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3, n2, n7, n0.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 true
n1 false
n2 true
n3 true
n4 false
n5 false
n6 false
n7 true
n8 false
n9 false

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3, n2, n7, n0.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 true
n1 false
n2 true
n3 true
n4 false
n5 false
n6 false
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3, n2, n7, n0, n9.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 true
n1 false
n2 true
n3 true
n4 false
n5 false
n6 false
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3, n2, n7, n0, n9.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 true
n1 false
n2 true
n3 true
n4 false
n5 true
n6 false
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3, n2, n7, n0, n9, n5.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 true
n1 false
n2 true
n3 true
n4 false
n5 true
n6 false
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3, n2, n7, n0, n9, n5.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 true
n1 false
n2 true
n3 true
n4 false
n5 true
n6 true
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3, n2, n7, n0, n9, n5, n6.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 true
n1 false
n2 true
n3 true
n4 false
n5 true
n6 true
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3, n2, n7, n0, n9, n5, n6.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 true
n1 false
n2 true
n3 true
n4 false
n5 true
n6 true
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3, n2, n7, n0, n9, n5.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 true
n1 false
n2 true
n3 true
n4 false
n5 true
n6 true
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3, n2, n7, n0, n9.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 true
n1 false
n2 true
n3 true
n4 false
n5 true
n6 true
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3, n2, n7, n0.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 true
n1 false
n2 true
n3 true
n4 false
n5 true
n6 true
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3, n2, n7, n0, n4.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 true
n1 false
n2 true
n3 true
n4 true
n5 true
n6 true
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3, n2, n7, n0, n4.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 true
n1 false
n2 true
n3 true
n4 true
n5 true
n6 true
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3, n2, n7, n0.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 true
n1 false
n2 true
n3 true
n4 true
n5 true
n6 true
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3, n2, n7.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 true
n1 false
n2 true
n3 true
n4 true
n5 true
n6 true
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3, n2.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 true
n1 false
n2 true
n3 true
n4 true
n5 true
n6 true
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 true
n1 false
n2 true
n3 true
n4 true
n5 true
n6 true
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

Called with n = n3.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 true
n1 false
n2 true
n3 true
n4 true
n5 true
n6 true
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

16/28

Traversing undirected graphs: Depth-first

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

What can we learn from this depth-first search?

▶ We found all nodes to which n3 is connected (nodes one can reach from n3).
▶ G is not a connected graph.

▶ The order of recursive calls was:

n = n3, n2, n7, n0,

{
n9, n5, n6;

n4.

This order provides a path from n3 to every node it is connected to!

16/28

Traversing undirected graphs: Depth-first

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

What can we learn from this depth-first search?

▶ We found all nodes to which n3 is connected (nodes one can reach from n3).

▶ G is not a connected graph.

▶ The order of recursive calls was:

n = n3, n2, n7, n0,

{
n9, n5, n6;

n4.

This order provides a path from n3 to every node it is connected to!

16/28

Traversing undirected graphs: Depth-first

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

What can we learn from this depth-first search?

▶ We found all nodes to which n3 is connected (nodes one can reach from n3).
▶ G is not a connected graph.

▶ The order of recursive calls was:

n = n3, n2, n7, n0,

{
n9, n5, n6;

n4.

This order provides a path from n3 to every node it is connected to!

16/28

Traversing undirected graphs: Depth-first

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

What can we learn from this depth-first search?

▶ We found all nodes to which n3 is connected (nodes one can reach from n3).
▶ G is not a connected graph.

▶ The order of recursive calls was:

n = n3, n2, n7, n0,

{
n9, n5, n6;

n4.

This order provides a path from n3 to every node it is connected to!

16/28

Traversing undirected graphs: Depth-first

Called with n = n3.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 true
n1 false
n2 true
n3 true
n4 true
n5 true
n6 true
n7 true
n8 false
n9 true

Complexity

▶ We need |N | memory for marked and the at-most |N | recursive calls.
▶ We inspect each node once and traverse each edge once: Θ (|N | + |E|)

(if we use the adjacency list representation).

16/28

Traversing undirected graphs: Depth-first

Called with n = n3.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

marked =

n0 true
n1 false
n2 true
n3 true
n4 true
n5 true
n6 true
n7 true
n8 false
n9 true

Complexity

▶ We need |N | memory for marked and the at-most |N | recursive calls.
▶ We inspect each node once and traverse each edge once: Θ (|N | + |E|)

(if we use the adjacency list representation).

17/28

Problem: Connected components

Problem

Given an undirected graph G = (N , E).
Provide an algorithm that can find all connected components in G.

Solution

Remark: DepthFirstR(G, n) will find all nodes in the connected component of n.

Algorithm DFS-CC-R(G, cc, n ∈ N):
1: for all (n,m) ∈ E do
2: if cc [m] = unmarked then
3: cc [m] := cc [n].
4: DFS-CC-R(G, cc, m).

Algorithm Components(G, s ∈ N):
5: cc := {n ↦→ unmarked}.
6: for all n ∈ N do
7: if cc [n] = unmarked then
8: cc [n] := n.
9: DFS-CC-R(G, cc, n)

.

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

17/28

Problem: Connected components

Problem

Given an undirected graph G = (N , E).
Provide an algorithm that can find all connected components in G.

Solution

Remark: DepthFirstR(G, n) will find all nodes in the connected component of n.

Algorithm DFS-CC-R(G, cc, n ∈ N):
1: for all (n,m) ∈ E do
2: if cc [m] = unmarked then
3: cc [m] := cc [n].
4: DFS-CC-R(G, cc, m).

Algorithm Components(G, s ∈ N):
5: cc := {n ↦→ unmarked}.
6: for all n ∈ N do
7: if cc [n] = unmarked then
8: cc [n] := n.
9: DFS-CC-R(G, cc, n)

.

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

17/28

Problem: Connected components

Problem

Given an undirected graph G = (N , E).
Provide an algorithm that can find all connected components in G.

Solution

Remark: DepthFirstR(G, n) will find all nodes in the connected component of n.

Algorithm DFS-CC-R(G, cc, n ∈ N):
1: for all (n,m) ∈ E do
2: if cc [m] = unmarked then
3: cc [m] := cc [n].
4: DFS-CC-R(G, cc, m).

Algorithm Components(G, s ∈ N):
5: cc := {n ↦→ unmarked}.
6: for all n ∈ N do
7: if cc [n] = unmarked then
8: cc [n] := n.
9: DFS-CC-R(G, cc, n).

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

17/28

Problem: Connected components

Problem

Given an undirected graph G = (N , E).
Provide an algorithm that can find all connected components in G.

Solution

Remark: DepthFirstR(G, n) will find all nodes in the connected component of n.

Algorithm DFS-CC-R(G, cc, n ∈ N):
1: for all (n,m) ∈ E do
2: if cc [m] = unmarked then
3: cc [m] := cc [n].
4: DFS-CC-R(G, cc, m).

Algorithm Components(G, s ∈ N):
5: cc := {n ↦→ unmarked}.
6: for all n ∈ N do
7: if cc [n] = unmarked then
8: cc [n] := n.
9: DFS-CC-R(G, cc, n).

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

18/28

Problem: Two-colorability

Problem

Given an undirected graph G = (N , E) in which:

▶ the nodes N represent competitors;

▶ the edges E represent rivalries.

Can we divide the nodes into two teams such that no rivals are in the same team?

Definition

Graph G is bipartite if we can partition the nodes in two sets such that no two nodes in

the same set share an edge.

18/28

Problem: Two-colorability

Problem

Given an undirected graph G = (N , E) in which:

▶ the nodes N represent competitors;

▶ the edges E represent rivalries.

Can we divide the nodes into two teams such that no rivals are in the same team?

Definition

Graph G is bipartite if we can partition the nodes in two sets such that no two nodes in

the same set share an edge.

18/28

Problem: Two-colorability

Problem

Given an undirected graph G = (N , E) in which:

▶ the nodes N represent competitors;

▶ the edges E represent rivalries.

Can we divide the nodes into two teams such that no rivals are in the same team?

Definition

Graph G is bipartite if we can partition the nodes in two sets such that no two nodes in

the same set share an edge.

The two-colorability problem

Given an undirected graph G = (N , E). Find a coloring of the nodes N (if possible) using

two colors such that nodes (n,m) ∈ E have different colors.

18/28

Problem: Two-colorability

The two-colorability problem

Given an undirected graph G = (N , E). Find a coloring of the nodes N (if possible) using

two colors such that nodes (n,m) ∈ E have different colors.

Algorithm DFS-TC-R(G, colors, n ∈ N):
1: for all (n,m) ∈ E do
2: if colors[m] = 0 then
3: colors[m] := −colors[n].
4: DFS-TC-R(G, colors, m).

5: else if colors[m] = colors[n] then
6: This graph is not bipartite.

Algorithm TwoColors(G):
7: colors := {n ↦→ 0 | n ∈ N}.
8: for all n ∈ N do
9: if colors[n] = 0 then
10: colors[n] := 1.

11: DFS-TC-R(G, colors, n).

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

18/28

Problem: Two-colorability

Algorithm DFS-TC-R(G, colors, n ∈ N):
1: for all (n,m) ∈ E do
2: if colors[m] = 0 then
3: colors[m] := −colors[n].
4: DFS-TC-R(G, colors, m).

5: else if colors[m] = colors[n] then
6: This graph is not bipartite.

Algorithm TwoColors(G):
7: colors := {n ↦→ 0 | n ∈ N}.
8: for all n ∈ N do
9: if colors[n] = 0 then
10: colors[n] := 1.

11: DFS-TC-R(G, colors, n).

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

18/28

Problem: Two-colorability

Algorithm DFS-TC-R(G, colors, n ∈ N):
1: for all (n,m) ∈ E do
2: if colors[m] = 0 then
3: colors[m] := −colors[n].
4: DFS-TC-R(G, colors, m).

5: else if colors[m] = colors[n] then
6: This graph is not bipartite.

Algorithm TwoColors(G):
7: colors := {n ↦→ 0 | n ∈ N}.
8: for all n ∈ N do
9: if colors[n] = 0 then
10: colors[n] := 1.

11: DFS-TC-R(G, colors, n).

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

18/28

Problem: Two-colorability

Algorithm DFS-TC-R(G, colors, n ∈ N):
1: for all (n,m) ∈ E do
2: if colors[m] = 0 then
3: colors[m] := −colors[n].
4: DFS-TC-R(G, colors, m).

5: else if colors[m] = colors[n] then
6: This graph is not bipartite.

Algorithm TwoColors(G):
7: colors := {n ↦→ 0 | n ∈ N}.
8: for all n ∈ N do
9: if colors[n] = 0 then
10: colors[n] := 1.

11: DFS-TC-R(G, colors, n).

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

18/28

Problem: Two-colorability

Algorithm DFS-TC-R(G, colors, n ∈ N):
1: for all (n,m) ∈ E do
2: if colors[m] = 0 then
3: colors[m] := −colors[n].
4: DFS-TC-R(G, colors, m).

5: else if colors[m] = colors[n] then
6: This graph is not bipartite.

Algorithm TwoColors(G):
7: colors := {n ↦→ 0 | n ∈ N}.
8: for all n ∈ N do
9: if colors[n] = 0 then
10: colors[n] := 1.

11: DFS-TC-R(G, colors, n).

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

18/28

Problem: Two-colorability

Algorithm DFS-TC-R(G, colors, n ∈ N):
1: for all (n,m) ∈ E do
2: if colors[m] = 0 then
3: colors[m] := −colors[n].
4: DFS-TC-R(G, colors, m).

5: else if colors[m] = colors[n] then
6: This graph is not bipartite.

Algorithm TwoColors(G):
7: colors := {n ↦→ 0 | n ∈ N}.
8: for all n ∈ N do
9: if colors[n] = 0 then
10: colors[n] := 1.

11: DFS-TC-R(G, colors, n).

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

18/28

Problem: Two-colorability

Algorithm DFS-TC-R(G, colors, n ∈ N):
1: for all (n,m) ∈ E do
2: if colors[m] = 0 then
3: colors[m] := −colors[n].
4: DFS-TC-R(G, colors, m).

5: else if colors[m] = colors[n] then
6: This graph is not bipartite.

Algorithm TwoColors(G):
7: colors := {n ↦→ 0 | n ∈ N}.
8: for all n ∈ N do
9: if colors[n] = 0 then
10: colors[n] := 1.

11: DFS-TC-R(G, colors, n).

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

18/28

Problem: Two-colorability

Algorithm DFS-TC-R(G, colors, n ∈ N):
1: for all (n,m) ∈ E do
2: if colors[m] = 0 then
3: colors[m] := −colors[n].
4: DFS-TC-R(G, colors, m).

5: else if colors[m] = colors[n] then
6: This graph is not bipartite.

Algorithm TwoColors(G):
7: colors := {n ↦→ 0 | n ∈ N}.
8: for all n ∈ N do
9: if colors[n] = 0 then
10: colors[n] := 1.

11: DFS-TC-R(G, colors, n).

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

18/28

Problem: Two-colorability

Algorithm DFS-TC-R(G, colors, n ∈ N):
1: for all (n,m) ∈ E do
2: if colors[m] = 0 then
3: colors[m] := −colors[n].
4: DFS-TC-R(G, colors, m).

5: else if colors[m] = colors[n] then
6: This graph is not bipartite.

Algorithm TwoColors(G):
7: colors := {n ↦→ 0 | n ∈ N}.
8: for all n ∈ N do
9: if colors[n] = 0 then
10: colors[n] := 1.

11: DFS-TC-R(G, colors, n).

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

18/28

Problem: Two-colorability

Algorithm DFS-TC-R(G, colors, n ∈ N):
1: for all (n,m) ∈ E do
2: if colors[m] = 0 then
3: colors[m] := −colors[n].
4: DFS-TC-R(G, colors, m).

5: else if colors[m] = colors[n] then
6: This graph is not bipartite.

Algorithm TwoColors(G):
7: colors := {n ↦→ 0 | n ∈ N}.
8: for all n ∈ N do
9: if colors[n] = 0 then
10: colors[n] := 1.

11: DFS-TC-R(G, colors, n).

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

18/28

Problem: Two-colorability

Algorithm DFS-TC-R(G, colors, n ∈ N):
1: for all (n,m) ∈ E do
2: if colors[m] = 0 then
3: colors[m] := −colors[n].
4: DFS-TC-R(G, colors, m).

5: else if colors[m] = colors[n] then
6: This graph is not bipartite.

Algorithm TwoColors(G):
7: colors := {n ↦→ 0 | n ∈ N}.
8: for all n ∈ N do
9: if colors[n] = 0 then
10: colors[n] := 1.

11: DFS-TC-R(G, colors, n).

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

18/28

Problem: Two-colorability

Algorithm DFS-TC-R(G, colors, n ∈ N):
1: for all (n,m) ∈ E do
2: if colors[m] = 0 then
3: colors[m] := −colors[n].
4: DFS-TC-R(G, colors, m).

5: else if colors[m] = colors[n] then
6: This graph is not bipartite.

Algorithm TwoColors(G):
7: colors := {n ↦→ 0 | n ∈ N}.
8: for all n ∈ N do
9: if colors[n] = 0 then
10: colors[n] := 1.

11: DFS-TC-R(G, colors, n).

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

19/28

Traversing undirected graphs: Breadth-first

Q : [].

Algorithm BFS(G = (N , E), s ∈ N):
1: marked := {n ↦→ (n ≠ s) | n ∈ N}.
2: Q := a queue holding only s.
3: while ¬Empty(Q) do
4: n := Dequeue(Q).
5: for all (n,m) ∈ E do
6: if ¬marked [m] then
7: marked [m] := true.
8: Enqueue(S,m).

marked =

n0 false
n1 false
n2 false
n3 true
n4 false
n5 false
n6 false
n7 false
n8 false
n9 false

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

19/28

Traversing undirected graphs: Breadth-first

Q : [].

Algorithm BFS(G = (N , E), s ∈ N):
1: marked := {n ↦→ (n ≠ s) | n ∈ N}.
2: Q := a queue holding only s.
3: while ¬Empty(Q) do
4: n := Dequeue(Q).
5: for all (n,m) ∈ E do
6: if ¬marked [m] then
7: marked [m] := true.
8: Enqueue(S,m).

marked =

n0 false
n1 false
n2 false
n3 true
n4 false
n5 false
n6 false
n7 false
n8 false
n9 false

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

19/28

Traversing undirected graphs: Breadth-first

Q : [].

Algorithm BFS(G = (N , E), s ∈ N):
1: marked := {n ↦→ (n ≠ s) | n ∈ N}.
2: Q := a queue holding only s.
3: while ¬Empty(Q) do
4: n := Dequeue(Q).
5: for all (n,m) ∈ E do
6: if ¬marked [m] then
7: marked [m] := true.
8: Enqueue(S,m).

marked =

n0 false
n1 false
n2 false
n3 true
n4 false
n5 false
n6 false
n7 false
n8 false
n9 false

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

19/28

Traversing undirected graphs: Breadth-first

Q : [n3].

Algorithm BFS(G = (N , E), s ∈ N):
1: marked := {n ↦→ (n ≠ s) | n ∈ N}.
2: Q := a queue holding only s.
3: while ¬Empty(Q) do
4: n := Dequeue(Q).
5: for all (n,m) ∈ E do
6: if ¬marked [m] then
7: marked [m] := true.
8: Enqueue(S,m).

marked =

n0 false
n1 false
n2 false
n3 true
n4 false
n5 false
n6 false
n7 false
n8 false
n9 false

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

19/28

Traversing undirected graphs: Breadth-first

Q : [n0, n2], n = n3.

Algorithm BFS(G = (N , E), s ∈ N):
1: marked := {n ↦→ (n ≠ s) | n ∈ N}.
2: Q := a queue holding only s.
3: while ¬Empty(Q) do
4: n := Dequeue(Q).
5: for all (n,m) ∈ E do
6: if ¬marked [m] then
7: marked [m] := true.
8: Enqueue(S,m).

marked =

n0 true
n1 false
n2 true
n3 true
n4 false
n5 false
n6 false
n7 false
n8 false
n9 false

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

19/28

Traversing undirected graphs: Breadth-first

Q : [n2, n7, n4, n9], n = n0.

Algorithm BFS(G = (N , E), s ∈ N):
1: marked := {n ↦→ (n ≠ s) | n ∈ N}.
2: Q := a queue holding only s.
3: while ¬Empty(Q) do
4: n := Dequeue(Q).
5: for all (n,m) ∈ E do
6: if ¬marked [m] then
7: marked [m] := true.
8: Enqueue(S,m).

marked =

n0 true
n1 false
n2 true
n3 true
n4 true
n5 false
n6 false
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

19/28

Traversing undirected graphs: Breadth-first

Q : [n7, n4, n9], n = n2.

Algorithm BFS(G = (N , E), s ∈ N):
1: marked := {n ↦→ (n ≠ s) | n ∈ N}.
2: Q := a queue holding only s.
3: while ¬Empty(Q) do
4: n := Dequeue(Q).
5: for all (n,m) ∈ E do
6: if ¬marked [m] then
7: marked [m] := true.
8: Enqueue(S,m).

marked =

n0 true
n1 false
n2 true
n3 true
n4 true
n5 false
n6 false
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

19/28

Traversing undirected graphs: Breadth-first

Q : [n4, n9], n = n7.

Algorithm BFS(G = (N , E), s ∈ N):
1: marked := {n ↦→ (n ≠ s) | n ∈ N}.
2: Q := a queue holding only s.
3: while ¬Empty(Q) do
4: n := Dequeue(Q).
5: for all (n,m) ∈ E do
6: if ¬marked [m] then
7: marked [m] := true.
8: Enqueue(S,m).

marked =

n0 true
n1 false
n2 true
n3 true
n4 true
n5 false
n6 false
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

19/28

Traversing undirected graphs: Breadth-first

Q : [n9], n = n4.

Algorithm BFS(G = (N , E), s ∈ N):
1: marked := {n ↦→ (n ≠ s) | n ∈ N}.
2: Q := a queue holding only s.
3: while ¬Empty(Q) do
4: n := Dequeue(Q).
5: for all (n,m) ∈ E do
6: if ¬marked [m] then
7: marked [m] := true.
8: Enqueue(S,m).

marked =

n0 true
n1 false
n2 true
n3 true
n4 true
n5 false
n6 false
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

19/28

Traversing undirected graphs: Breadth-first

Q : [n6, n5], n = n9.

Algorithm BFS(G = (N , E), s ∈ N):
1: marked := {n ↦→ (n ≠ s) | n ∈ N}.
2: Q := a queue holding only s.
3: while ¬Empty(Q) do
4: n := Dequeue(Q).
5: for all (n,m) ∈ E do
6: if ¬marked [m] then
7: marked [m] := true.
8: Enqueue(S,m).

marked =

n0 true
n1 false
n2 true
n3 true
n4 true
n5 true
n6 true
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

19/28

Traversing undirected graphs: Breadth-first

Q : [n5], n = n6.

Algorithm BFS(G = (N , E), s ∈ N):
1: marked := {n ↦→ (n ≠ s) | n ∈ N}.
2: Q := a queue holding only s.
3: while ¬Empty(Q) do
4: n := Dequeue(Q).
5: for all (n,m) ∈ E do
6: if ¬marked [m] then
7: marked [m] := true.
8: Enqueue(S,m).

marked =

n0 true
n1 false
n2 true
n3 true
n4 true
n5 true
n6 true
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

19/28

Traversing undirected graphs: Breadth-first

Q : [], n = n5.

Algorithm BFS(G = (N , E), s ∈ N):
1: marked := {n ↦→ (n ≠ s) | n ∈ N}.
2: Q := a queue holding only s.
3: while ¬Empty(Q) do
4: n := Dequeue(Q).
5: for all (n,m) ∈ E do
6: if ¬marked [m] then
7: marked [m] := true.
8: Enqueue(S,m).

marked =

n0 true
n1 false
n2 true
n3 true
n4 true
n5 true
n6 true
n7 true
n8 false
n9 true

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

19/28

Traversing undirected graphs: Breadth-first

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

What can we learn from this breadth-first search?

▶ We found all nodes to which n3 is connected (nodes one can reach from n3).
▶ G is not a connected graph.

Breadth-first search is similar to depth-first search!

19/28

Traversing undirected graphs: Breadth-first

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

What can we learn from this breadth-first search?

▶ We found all nodes to which n3 is connected (nodes one can reach from n3).

▶ G is not a connected graph.

Breadth-first search is similar to depth-first search!

19/28

Traversing undirected graphs: Breadth-first

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

What can we learn from this breadth-first search?

▶ We found all nodes to which n3 is connected (nodes one can reach from n3).
▶ G is not a connected graph.

Breadth-first search is similar to depth-first search!

19/28

Traversing undirected graphs: Breadth-first

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

What can we learn from this breadth-first search?

▶ We found all nodes to which n3 is connected (nodes one can reach from n3).
▶ G is not a connected graph.

Breadth-first search is similar to depth-first search!

19/28

Traversing undirected graphs: Breadth-first

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

Complexity

▶ We need |N | memory for marked .
▶ We inspect each node once and traverse each edge once: Θ (|N | + |E|)

(if we use the adjacency list representation).

20/28

Problem: Single-source shortest path

Problem

Given an undirected graph G = (N , E) without weight and node s ∈ N ,

find a shortest path from node s to all nodes s can reach.

Algorithm BFS-SSSP(G, s ∈ N):
1: distance := {n ↦→ ∞ | n ∈ N}.
2: distance[s] := 0.

3: Q := a queue holding only s.
4: while ¬Empty(Q) do
5: n := Dequeue(Q).
6: for all (n,m) ∈ E do
7: if distance[m] = ∞ then
8: distance[m] := distance[n] + 1.

include (n,m) in the shortest path.

9: Enqueue(Q,m).

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

20/28

Problem: Single-source shortest path

Problem

Given an undirected graph G = (N , E) without weight and node s ∈ N ,

find a shortest path from node s to all nodes s can reach.

Observe

Breadth-first search visits nodes on increasing distance to s.
First: all nodes at distance 1, then all nodes at distance 2,

Algorithm BFS-SSSP(G, s ∈ N):
1: distance := {n ↦→ ∞ | n ∈ N}.
2: distance[s] := 0.

3: Q := a queue holding only s.
4: while ¬Empty(Q) do
5: n := Dequeue(Q).
6: for all (n,m) ∈ E do
7: if distance[m] = ∞ then
8: distance[m] := distance[n] + 1.

include (n,m) in the shortest path.

9: Enqueue(Q,m).

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

20/28

Problem: Single-source shortest path

Problem

Given an undirected graph G = (N , E) without weight and node s ∈ N ,

find a shortest path from node s to all nodes s can reach.

Algorithm BFS-SSSP(G, s ∈ N):
1: distance := {n ↦→ ∞ | n ∈ N}.
2: distance[s] := 0.

3: Q := a queue holding only s.
4: while ¬Empty(Q) do
5: n := Dequeue(Q).
6: for all (n,m) ∈ E do
7: if distance[m] = ∞ then
8: distance[m] := distance[n] + 1.

include (n,m) in the shortest path.

9: Enqueue(Q,m).

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

20/28

Problem: Single-source shortest path

Algorithm BFS-SSSP(G, s ∈ N):
1: distance := {n ↦→ ∞ | n ∈ N}.
2: distance[s] := 0.

3: Q := a queue holding only s.
4: while ¬Empty(Q) do
5: n := Dequeue(Q).
6: for all (n,m) ∈ E do
7: if distance[m] = ∞ then
8: distance[m] := distance[n] + 1.

include (n,m) in the shortest path.

9: Enqueue(Q,m).

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

20/28

Problem: Single-source shortest path

Algorithm BFS-SSSP(G, s ∈ N):
1: distance := {n ↦→ ∞ | n ∈ N}.
2: distance[s] := 0.

3: Q := a queue holding only s.
4: while ¬Empty(Q) do
5: n := Dequeue(Q).
6: for all (n,m) ∈ E do
7: if distance[m] = ∞ then
8: distance[m] := distance[n] + 1.

include (n,m) in the shortest path.

9: Enqueue(Q,m).

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

20/28

Problem: Single-source shortest path

Algorithm BFS-SSSP(G, s ∈ N):
1: distance := {n ↦→ ∞ | n ∈ N}.
2: distance[s] := 0.

3: Q := a queue holding only s.
4: while ¬Empty(Q) do
5: n := Dequeue(Q).
6: for all (n,m) ∈ E do
7: if distance[m] = ∞ then
8: distance[m] := distance[n] + 1.

include (n,m) in the shortest path.

9: Enqueue(Q,m).

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

20/28

Problem: Single-source shortest path

Algorithm BFS-SSSP(G, s ∈ N):
1: distance := {n ↦→ ∞ | n ∈ N}.
2: distance[s] := 0.

3: Q := a queue holding only s.
4: while ¬Empty(Q) do
5: n := Dequeue(Q).
6: for all (n,m) ∈ E do
7: if distance[m] = ∞ then
8: distance[m] := distance[n] + 1.

include (n,m) in the shortest path.

9: Enqueue(Q,m).

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

20/28

Problem: Single-source shortest path

Algorithm BFS-SSSP(G, s ∈ N):
1: distance := {n ↦→ ∞ | n ∈ N}.
2: distance[s] := 0.

3: Q := a queue holding only s.
4: while ¬Empty(Q) do
5: n := Dequeue(Q).
6: for all (n,m) ∈ E do
7: if distance[m] = ∞ then
8: distance[m] := distance[n] + 1. include (n,m) in the shortest path.
9: Enqueue(Q,m).

n0
n7

n2
n3

n9

n5

n6

n1

n8

n4

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

20/28

Problem: Single-source shortest path

Algorithm BFS-SSSP(G, s ∈ N):
1: distance := {n ↦→ ∞ | n ∈ N}.
2: distance[s] := 0.

3: Q := a queue holding only s.
4: while ¬Empty(Q) do
5: n := Dequeue(Q).
6: for all (n,m) ∈ E do
7: if distance[m] = ∞ then
8: distance[m] := distance[n] + 1. include (n,m) in the shortest path.
9: Enqueue(Q,m).

We inspect each node once and traverse each edge once: Θ (|N | + |E|).

21/28

Traversing directed graphs: Depth-first

Same algorithm as for undirected graphs.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

21/28

Traversing directed graphs: Depth-first

Same algorithm as for undirected graphs.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

21/28

Traversing directed graphs: Depth-first

Same algorithm as for undirected graphs.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

21/28

Traversing directed graphs: Depth-first

Same algorithm as for undirected graphs.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

21/28

Traversing directed graphs: Depth-first

Same algorithm as for undirected graphs.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

21/28

Traversing directed graphs: Depth-first

Same algorithm as for undirected graphs.

Algorithm DFS-R(G = (N , E), marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-R(G, marked , m).

Algorithm DepthFirstR(G = (N , E), s ∈ N):
5: marked := {n ↦→ (n ≠ s) | n ∈ N}.
6: DFS-R(G, marked , s).

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

21/28

Traversing directed graphs: Depth-first

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

What can we learn from this depth-first search?

▶ We found all nodes to which n3 is strongly connected (nodes one can reach from n3).
▶ The order of recursive calls was:

n = n3, n0,

{
n7;

n4.

This order provides a path from n3 to every node it is strongly connected to!

▶ Depth-first search does not tell us whether a graph is strongly connected!

21/28

Traversing directed graphs: Depth-first

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

What can we learn from this depth-first search?

▶ We found all nodes to which n3 is strongly connected (nodes one can reach from n3).

▶ The order of recursive calls was:

n = n3, n0,

{
n7;

n4.

This order provides a path from n3 to every node it is strongly connected to!

▶ Depth-first search does not tell us whether a graph is strongly connected!

21/28

Traversing directed graphs: Depth-first

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

What can we learn from this depth-first search?

▶ We found all nodes to which n3 is strongly connected (nodes one can reach from n3).
▶ The order of recursive calls was:

n = n3, n0,

{
n7;

n4.

This order provides a path from n3 to every node it is strongly connected to!

▶ Depth-first search does not tell us whether a graph is strongly connected!

21/28

Traversing directed graphs: Depth-first

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

What can we learn from this depth-first search?

▶ We found all nodes to which n3 is strongly connected (nodes one can reach from n3).
▶ The order of recursive calls was:

n = n3, n0,

{
n7;

n4.

This order provides a path from n3 to every node it is strongly connected to!

▶ Depth-first search does not tell us whether a graph is strongly connected!

22/28

Traversing directed graphs: Breadth-first

Same algorithm as for undirected graphs.

Algorithm BFS(G = (N , E), s ∈ N):
1: marked := {n ↦→ (n ≠ s) | n ∈ N}.
2: Q := a queue holding only s.
3: while ¬Empty(Q) do
4: n := Dequeue(Q).
5: for all (n,m) ∈ E do
6: if ¬marked [m] then
7: marked [m] := true.
8: Enqueue(S,m).

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

22/28

Traversing directed graphs: Breadth-first

Same algorithm as for undirected graphs.

Algorithm BFS(G = (N , E), s ∈ N):
1: marked := {n ↦→ (n ≠ s) | n ∈ N}.
2: Q := a queue holding only s.
3: while ¬Empty(Q) do
4: n := Dequeue(Q).
5: for all (n,m) ∈ E do
6: if ¬marked [m] then
7: marked [m] := true.
8: Enqueue(S,m).

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

22/28

Traversing directed graphs: Breadth-first

Same algorithm as for undirected graphs.

Algorithm BFS(G = (N , E), s ∈ N):
1: marked := {n ↦→ (n ≠ s) | n ∈ N}.
2: Q := a queue holding only s.
3: while ¬Empty(Q) do
4: n := Dequeue(Q).
5: for all (n,m) ∈ E do
6: if ¬marked [m] then
7: marked [m] := true.
8: Enqueue(S,m).

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

22/28

Traversing directed graphs: Breadth-first

Same algorithm as for undirected graphs.

Algorithm BFS(G = (N , E), s ∈ N):
1: marked := {n ↦→ (n ≠ s) | n ∈ N}.
2: Q := a queue holding only s.
3: while ¬Empty(Q) do
4: n := Dequeue(Q).
5: for all (n,m) ∈ E do
6: if ¬marked [m] then
7: marked [m] := true.
8: Enqueue(S,m).

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

22/28

Traversing directed graphs: Breadth-first

Same algorithm as for undirected graphs.

Algorithm BFS(G = (N , E), s ∈ N):
1: marked := {n ↦→ (n ≠ s) | n ∈ N}.
2: Q := a queue holding only s.
3: while ¬Empty(Q) do
4: n := Dequeue(Q).
5: for all (n,m) ∈ E do
6: if ¬marked [m] then
7: marked [m] := true.
8: Enqueue(S,m).

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

22/28

Traversing directed graphs: Breadth-first

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

What can we learn from this breadth-first search?

▶ We found all nodes to which n3 is strongly connected (nodes one can reach from n3).
▶ We can also easily find shortest directed paths node n3 can reach.

22/28

Traversing directed graphs: Breadth-first

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

What can we learn from this breadth-first search?

▶ We found all nodes to which n3 is strongly connected (nodes one can reach from n3).

▶ We can also easily find shortest directed paths node n3 can reach.

22/28

Traversing directed graphs: Breadth-first

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

What can we learn from this breadth-first search?

▶ We found all nodes to which n3 is strongly connected (nodes one can reach from n3).
▶ We can also easily find shortest directed paths node n3 can reach.

23/28

Problem: Cyclic dependencies

weigh ingredients (5 min)

peel apples (10 min) cut apples (3 min)

knead dough (10 min)

fill pie form (5 min)

bake pie (45 min)

Problem

We can only satisfy the schedule if the graph of dependencies is acyclic:
Acylcic graph: there are no directed cycles.

There is no path with at-least one edge from a node n to itself.

23/28

Problem: Cyclic dependencies

weigh ingredients (5 min)

peel apples (10 min) cut apples (3 min)

knead dough (10 min)

fill pie form (5 min)

bake pie (45 min)

Problem

We can only satisfy the schedule if the graph of dependencies is acyclic:
Acylcic graph: there are no directed cycles.

There is no path with at-least one edge from a node n to itself.

23/28

Problem: Cyclic dependencies

weigh ingredients (5 min)

peel apples (10 min) cut apples (3 min)

knead dough (10 min)

fill pie form (5 min)

bake pie (45 min)

Problem

We can only satisfy the schedule if the graph of dependencies is acyclic:
Acylcic graph: there are no directed cycles.

There is no path with at-least one edge from a node n to itself.

23/28

Problem: Cyclic dependencies

Find a directed cycle: a path from a node to itself

Consider a directed graph G = (N , E).

Assume node m is the fist node visited during depth-first search with a path to itself.

▶ The traversal started at node s and we visited the path sn1 . . . nim to reach m.

▶ m cannot reach any of sn1 . . . ni : m is the first node on a cycle.

▶ From m, we will visit a path mn′
1
. . . n′jw to some node w

such that node w has an edge to node n. Why?

▶ Node m can reach itself as it is on a cycle.
Hence, if we started at node m, we will eventually find node m.

▶ We could have started at a node s ≠ m, however.

But: the nodes sn1 . . . ni are not part of a cycle. Hence, m cannot reach them!

Conclusion. Depth-first search can find cycles:

We simply have to detect nodes that reach themselves!

23/28

Problem: Cyclic dependencies

Find a directed cycle: a path from a node to itself

Consider a directed graph G = (N , E).
Assume node m is the fist node visited during depth-first search with a path to itself.

▶ The traversal started at node s and we visited the path sn1 . . . nim to reach m.

▶ m cannot reach any of sn1 . . . ni : m is the first node on a cycle.

▶ From m, we will visit a path mn′
1
. . . n′jw to some node w

such that node w has an edge to node n. Why?

▶ Node m can reach itself as it is on a cycle.
Hence, if we started at node m, we will eventually find node m.

▶ We could have started at a node s ≠ m, however.

But: the nodes sn1 . . . ni are not part of a cycle. Hence, m cannot reach them!

Conclusion. Depth-first search can find cycles:

We simply have to detect nodes that reach themselves!

23/28

Problem: Cyclic dependencies

Find a directed cycle: a path from a node to itself

Consider a directed graph G = (N , E).
Assume node m is the fist node visited during depth-first search with a path to itself.

▶ The traversal started at node s and we visited the path sn1 . . . nim to reach m.

▶ m cannot reach any of sn1 . . . ni : m is the first node on a cycle.

▶ From m, we will visit a path mn′
1
. . . n′jw to some node w

such that node w has an edge to node n. Why?

▶ Node m can reach itself as it is on a cycle.
Hence, if we started at node m, we will eventually find node m.

▶ We could have started at a node s ≠ m, however.

But: the nodes sn1 . . . ni are not part of a cycle. Hence, m cannot reach them!

Conclusion. Depth-first search can find cycles:

We simply have to detect nodes that reach themselves!

23/28

Problem: Cyclic dependencies

Find a directed cycle: a path from a node to itself

Consider a directed graph G = (N , E).
Assume node m is the fist node visited during depth-first search with a path to itself.

▶ The traversal started at node s and we visited the path sn1 . . . nim to reach m.

▶ m cannot reach any of sn1 . . . ni : m is the first node on a cycle.

▶ From m, we will visit a path mn′
1
. . . n′jw to some node w

such that node w has an edge to node n. Why?

▶ Node m can reach itself as it is on a cycle.
Hence, if we started at node m, we will eventually find node m.

▶ We could have started at a node s ≠ m, however.

But: the nodes sn1 . . . ni are not part of a cycle. Hence, m cannot reach them!

Conclusion. Depth-first search can find cycles:

We simply have to detect nodes that reach themselves!

23/28

Problem: Cyclic dependencies

Find a directed cycle: a path from a node to itself

Consider a directed graph G = (N , E).
Assume node m is the fist node visited during depth-first search with a path to itself.

▶ The traversal started at node s and we visited the path sn1 . . . nim to reach m.

▶ m cannot reach any of sn1 . . . ni : m is the first node on a cycle.

▶ From m, we will visit a path mn′
1
. . . n′jw to some node w

such that node w has an edge to node n. Why?

▶ Node m can reach itself as it is on a cycle.
Hence, if we started at node m, we will eventually find node m.

▶ We could have started at a node s ≠ m, however.

But: the nodes sn1 . . . ni are not part of a cycle. Hence, m cannot reach them!

Conclusion. Depth-first search can find cycles:

We simply have to detect nodes that reach themselves!

23/28

Problem: Cyclic dependencies

Find a directed cycle: a path from a node to itself

Consider a directed graph G = (N , E).
Assume node m is the fist node visited during depth-first search with a path to itself.

▶ The traversal started at node s and we visited the path sn1 . . . nim to reach m.

▶ m cannot reach any of sn1 . . . ni : m is the first node on a cycle.

▶ From m, we will visit a path mn′
1
. . . n′jw to some node w

such that node w has an edge to node n. Why?
▶ Node m can reach itself as it is on a cycle.

Hence, if we started at node m, we will eventually find node m.

▶ We could have started at a node s ≠ m, however.

But: the nodes sn1 . . . ni are not part of a cycle. Hence, m cannot reach them!

Conclusion. Depth-first search can find cycles:

We simply have to detect nodes that reach themselves!

23/28

Problem: Cyclic dependencies

Find a directed cycle: a path from a node to itself

Consider a directed graph G = (N , E).
Assume node m is the fist node visited during depth-first search with a path to itself.

▶ The traversal started at node s and we visited the path sn1 . . . nim to reach m.

▶ m cannot reach any of sn1 . . . ni : m is the first node on a cycle.

▶ From m, we will visit a path mn′
1
. . . n′jw to some node w

such that node w has an edge to node n. Why?
▶ Node m can reach itself as it is on a cycle.

Hence, if we started at node m, we will eventually find node m.

▶ We could have started at a node s ≠ m, however.

But: the nodes sn1 . . . ni are not part of a cycle. Hence, m cannot reach them!

Conclusion. Depth-first search can find cycles:

We simply have to detect nodes that reach themselves!

23/28

Problem: Cyclic dependencies

Find a directed cycle: a path from a node to itself

Consider a directed graph G = (N , E).
Assume node m is the fist node visited during depth-first search with a path to itself.

▶ The traversal started at node s and we visited the path sn1 . . . nim to reach m.

▶ m cannot reach any of sn1 . . . ni : m is the first node on a cycle.

▶ From m, we will visit a path mn′
1
. . . n′jw to some node w

such that node w has an edge to node n. Why?
▶ Node m can reach itself as it is on a cycle.

Hence, if we started at node m, we will eventually find node m.

▶ We could have started at a node s ≠ m, however.

But: the nodes sn1 . . . ni are not part of a cycle. Hence, m cannot reach them!

Conclusion. Depth-first search can find cycles:

We simply have to detect nodes that reach themselves!

23/28

Problem: Cyclic dependencies

Find a directed cycle: a path from a node to itself

Consider a directed graph G = (N , E).

Called with n = n3.

Algorithm DFS-C-R(G, marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if marked [m] = unmarked then
3: marked [m] := inspecting.
4: DFS-C-R(G, marked , m).

5: else if marked [m] = inspecting then
6: Found a path that contains a cycle.

7: marked [m] := inspected.

Algorithm DFS-Cycle(G):
8: marked := {n ↦→ unmarked | n ∈ N}.
9: for all n ∈ N do
10: if marked [n] = unmarked then
11: marked [n] := inspecting.
12: DFS-C-R(G, marked , n).

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

23/28

Problem: Cyclic dependencies

Find a directed cycle: a path from a node to itself

Consider a directed graph G = (N , E).

Called with n = n3.

Algorithm DFS-C-R(G, marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if marked [m] = unmarked then
3: marked [m] := inspecting.
4: DFS-C-R(G, marked , m).

5: else if marked [m] = inspecting then
6: Found a path that contains a cycle.

7: marked [m] := inspected.

Algorithm DFS-Cycle(G):
8: marked := {n ↦→ unmarked | n ∈ N}.
9: for all n ∈ N do
10: if marked [n] = unmarked then
11: marked [n] := inspecting.
12: DFS-C-R(G, marked , n).

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

23/28

Problem: Cyclic dependencies

Find a directed cycle: a path from a node to itself

Consider a directed graph G = (N , E).
Called with n = n3.

Algorithm DFS-C-R(G, marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if marked [m] = unmarked then
3: marked [m] := inspecting.
4: DFS-C-R(G, marked , m).

5: else if marked [m] = inspecting then
6: Found a path that contains a cycle.

7: marked [m] := inspected.

Algorithm DFS-Cycle(G):
8: marked := {n ↦→ unmarked | n ∈ N}.
9: for all n ∈ N do
10: if marked [n] = unmarked then
11: marked [n] := inspecting.
12: DFS-C-R(G, marked , n).

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

23/28

Problem: Cyclic dependencies

Find a directed cycle: a path from a node to itself

Consider a directed graph G = (N , E).
Called with n = n3, n0.

Algorithm DFS-C-R(G, marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if marked [m] = unmarked then
3: marked [m] := inspecting.
4: DFS-C-R(G, marked , m).

5: else if marked [m] = inspecting then
6: Found a path that contains a cycle.

7: marked [m] := inspected.

Algorithm DFS-Cycle(G):
8: marked := {n ↦→ unmarked | n ∈ N}.
9: for all n ∈ N do
10: if marked [n] = unmarked then
11: marked [n] := inspecting.
12: DFS-C-R(G, marked , n).

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

23/28

Problem: Cyclic dependencies

Find a directed cycle: a path from a node to itself

Consider a directed graph G = (N , E).
Called with n = n3, n0, n4.

Algorithm DFS-C-R(G, marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if marked [m] = unmarked then
3: marked [m] := inspecting.
4: DFS-C-R(G, marked , m).

5: else if marked [m] = inspecting then
6: Found a path that contains a cycle.

7: marked [m] := inspected.

Algorithm DFS-Cycle(G):
8: marked := {n ↦→ unmarked | n ∈ N}.
9: for all n ∈ N do
10: if marked [n] = unmarked then
11: marked [n] := inspecting.
12: DFS-C-R(G, marked , n).

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

23/28

Problem: Cyclic dependencies

Find a directed cycle: a path from a node to itself

Consider a directed graph G = (N , E).
Called with n = n3, n0, n7.

Algorithm DFS-C-R(G, marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if marked [m] = unmarked then
3: marked [m] := inspecting.
4: DFS-C-R(G, marked , m).

5: else if marked [m] = inspecting then
6: Found a path that contains a cycle.

7: marked [m] := inspected.

Algorithm DFS-Cycle(G):
8: marked := {n ↦→ unmarked | n ∈ N}.
9: for all n ∈ N do
10: if marked [n] = unmarked then
11: marked [n] := inspecting.
12: DFS-C-R(G, marked , n).

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

23/28

Problem: Cyclic dependencies

Find a directed cycle: a path from a node to itself

Consider a directed graph G = (N , E).
Called with n = n3, n0, n7.

Algorithm DFS-C-R(G, marked , n ∈ N):
1: for all (n,m) ∈ E do
2: if marked [m] = unmarked then
3: marked [m] := inspecting.
4: DFS-C-R(G, marked , m).

5: else if marked [m] = inspecting then
6: Found a path that contains a cycle.

7: marked [m] := inspected.

Algorithm DFS-Cycle(G):
8: marked := {n ↦→ unmarked | n ∈ N}.
9: for all n ∈ N do
10: if marked [n] = unmarked then
11: marked [n] := inspecting.
12: DFS-C-R(G, marked , n).

n0 n7

n2
n3

n9

n5

n6

n1

n8

n4

24/28

Problem: Ordering tasks

weigh ingredients (5 min)

peel apples (10 min) cut apples (3 min)

knead dough (10 min)

fill pie form (5 min)

bake pie (45 min)

Problem

To schedule the tasks, we need to order tasks based on their dependencies.

Topological order : an order on nodes such that,

for every directed edge (m, n), m is ordered before n.

We cannot have a topological order if the graph is cyclic.

24/28

Problem: Ordering tasks

weigh ingredients (5 min)

peel apples (10 min) cut apples (3 min)

knead dough (10 min)

fill pie form (5 min)

bake pie (45 min)

Problem

To schedule the tasks, we need to order tasks based on their dependencies.

Topological order : an order on nodes such that,

for every directed edge (m, n), m is ordered before n.

We cannot have a topological order if the graph is cyclic.

24/28

Problem: Ordering tasks

weigh ingredients (5 min)

peel apples (10 min) cut apples (3 min)

knead dough (10 min)

fill pie form (5 min)

bake pie (45 min)

Problem

To schedule the tasks, we need to order tasks based on their dependencies.

Topological order : an order on nodes such that,

for every directed edge (m, n), m is ordered before n.

We cannot have a topological order if the graph is cyclic.

24/28

Problem: Ordering tasks

weigh ingredients (5 min)

peel apples (10 min) cut apples (3 min)

knead dough (10 min)

fill pie form (5 min)

bake pie (45 min)

Problem

To schedule the tasks, we need to order tasks based on their dependencies.

Topological order : an order on nodes such that,

for every directed edge (m, n), m is ordered before n.

We cannot have a topological order if the graph is cyclic.

24/28

Problem: Ordering tasks

Determine a topological order
Depth-first search seems related: if we reach node n after inspecting m,

then m should definitely come before n in the order.

Consider first starting depth-first search at n2, and then starting at n0.

n0 n1 n2 n3 n4

We inspect the nodes in the order: n2.

We annotate depth-first search to collect ordering information:

When we finish inspecting a node, we add it to the front of our order.

We finish inspecting the nodes in the order n4.
This ordering is in reverse: we added to the back in this example.

We need to prove that this is correct!

24/28

Problem: Ordering tasks

Determine a topological order
Depth-first search seems related: if we reach node n after inspecting m,

then m should definitely come before n in the order.

Consider first starting depth-first search at n2, and then starting at n0.

n0 n1 n2 n3 n4

We inspect the nodes in the order: n2.

We annotate depth-first search to collect ordering information:

When we finish inspecting a node, we add it to the front of our order.

We finish inspecting the nodes in the order n4.
This ordering is in reverse: we added to the back in this example.

We need to prove that this is correct!

24/28

Problem: Ordering tasks

Determine a topological order
Depth-first search seems related: if we reach node n after inspecting m,

then m should definitely come before n in the order.

Consider first starting depth-first search at n2, and then starting at n0.

n0 n1 n2 n3 n4

We inspect the nodes in the order: n2, n3.

We annotate depth-first search to collect ordering information:

When we finish inspecting a node, we add it to the front of our order.

We finish inspecting the nodes in the order n4.
This ordering is in reverse: we added to the back in this example.

We need to prove that this is correct!

24/28

Problem: Ordering tasks

Determine a topological order
Depth-first search seems related: if we reach node n after inspecting m,

then m should definitely come before n in the order.

Consider first starting depth-first search at n2, and then starting at n0.

n0 n1 n2 n3 n4

We inspect the nodes in the order: n2, n3, n4.

We annotate depth-first search to collect ordering information:

When we finish inspecting a node, we add it to the front of our order.

We finish inspecting the nodes in the order n4.
This ordering is in reverse: we added to the back in this example.

We need to prove that this is correct!

24/28

Problem: Ordering tasks

Determine a topological order
Depth-first search seems related: if we reach node n after inspecting m,

then m should definitely come before n in the order.

Consider first starting depth-first search at n2, and then starting at n0.

n0 n1 n2 n3 n4

We inspect the nodes in the order: n2, n3, n4, n0.

We annotate depth-first search to collect ordering information:

When we finish inspecting a node, we add it to the front of our order.

We finish inspecting the nodes in the order n4.
This ordering is in reverse: we added to the back in this example.

We need to prove that this is correct!

24/28

Problem: Ordering tasks

Determine a topological order
Depth-first search seems related: if we reach node n after inspecting m,

then m should definitely come before n in the order.

Consider first starting depth-first search at n2, and then starting at n0.

n0 n1 n2 n3 n4

We inspect the nodes in the order: n2, n3, n4, n0, n1.

We annotate depth-first search to collect ordering information:

When we finish inspecting a node, we add it to the front of our order.

We finish inspecting the nodes in the order n4.
This ordering is in reverse: we added to the back in this example.

We need to prove that this is correct!

24/28

Problem: Ordering tasks

Determine a topological order
Depth-first search seems related: if we reach node n after inspecting m,

then m should definitely come before n in the order.

Consider first starting depth-first search at n2, and then starting at n0.

n0 n1 n2 n3 n4

We inspect the nodes in the order: n2, n3, n4, n0, n1.

We annotate depth-first search to collect ordering information:

When we finish inspecting a node, we add it to the front of our order.

We finish inspecting the nodes in the order n4.
This ordering is in reverse: we added to the back in this example.

We need to prove that this is correct!

24/28

Problem: Ordering tasks

Determine a topological order
Depth-first search seems related: if we reach node n after inspecting m,

then m should definitely come before n in the order.

Consider first starting depth-first search at n2, and then starting at n0.

n0 n1 n2 n3 n4

We inspect the nodes in the order: n2, n3, n4, n0, n1.

We annotate depth-first search to collect ordering information:

When we finish inspecting a node, we add it to the front of our order.

We finish inspecting the nodes in the order n4.
This ordering is in reverse: we added to the back in this example.

We need to prove that this is correct!

24/28

Problem: Ordering tasks

Determine a topological order
Depth-first search seems related: if we reach node n after inspecting m,

then m should definitely come before n in the order.

Consider first starting depth-first search at n2, and then starting at n0.

n0 n1 n2 n3 n4

We inspect the nodes in the order: n2, n3, n4, n0, n1.

We annotate depth-first search to collect ordering information:

When we finish inspecting a node, we add it to the front of our order.

We finish inspecting the nodes in the order n4.
This ordering is in reverse: we added to the back in this example.

We need to prove that this is correct!

24/28

Problem: Ordering tasks

Determine a topological order
Depth-first search seems related: if we reach node n after inspecting m,

then m should definitely come before n in the order.

Consider first starting depth-first search at n2, and then starting at n0.

n0 n1 n2 n3 n4

We inspect the nodes in the order: n2, n3, n4, n0, n1.

We annotate depth-first search to collect ordering information:

When we finish inspecting a node, we add it to the front of our order.

We finish inspecting the nodes in the order n4.
This ordering is in reverse: we added to the back in this example.

We need to prove that this is correct!

24/28

Problem: Ordering tasks

Determine a topological order
Depth-first search seems related: if we reach node n after inspecting m,

then m should definitely come before n in the order.

Consider first starting depth-first search at n2, and then starting at n0.

n0 n1 n2 n3 n4

We inspect the nodes in the order: n2, n3, n4, n0, n1.

We annotate depth-first search to collect ordering information:

When we finish inspecting a node, we add it to the front of our order.

We finish inspecting the nodes in the order n4.

This ordering is in reverse: we added to the back in this example.

We need to prove that this is correct!

24/28

Problem: Ordering tasks

Determine a topological order
Depth-first search seems related: if we reach node n after inspecting m,

then m should definitely come before n in the order.

Consider first starting depth-first search at n2, and then starting at n0.

n0 n1 n2 n3 n4

We inspect the nodes in the order: n2, n3, n4, n0, n1.

We annotate depth-first search to collect ordering information:

When we finish inspecting a node, we add it to the front of our order.

We finish inspecting the nodes in the order n4, n3.

This ordering is in reverse: we added to the back in this example.

We need to prove that this is correct!

24/28

Problem: Ordering tasks

Determine a topological order
Depth-first search seems related: if we reach node n after inspecting m,

then m should definitely come before n in the order.

Consider first starting depth-first search at n2, and then starting at n0.

n0 n1 n2 n3 n4

We inspect the nodes in the order: n2, n3, n4, n0, n1.

We annotate depth-first search to collect ordering information:

When we finish inspecting a node, we add it to the front of our order.

We finish inspecting the nodes in the order n4, n3, n2.

This ordering is in reverse: we added to the back in this example.

We need to prove that this is correct!

24/28

Problem: Ordering tasks

Determine a topological order
Depth-first search seems related: if we reach node n after inspecting m,

then m should definitely come before n in the order.

Consider first starting depth-first search at n2, and then starting at n0.

n0 n1 n2 n3 n4

We inspect the nodes in the order: n2, n3, n4, n0, n1.

We annotate depth-first search to collect ordering information:

When we finish inspecting a node, we add it to the front of our order.

We finish inspecting the nodes in the order n4, n3, n2.

This ordering is in reverse: we added to the back in this example.

We need to prove that this is correct!

24/28

Problem: Ordering tasks

Determine a topological order
Depth-first search seems related: if we reach node n after inspecting m,

then m should definitely come before n in the order.

Consider first starting depth-first search at n2, and then starting at n0.

n0 n1 n2 n3 n4

We inspect the nodes in the order: n2, n3, n4, n0, n1.

We annotate depth-first search to collect ordering information:

When we finish inspecting a node, we add it to the front of our order.

We finish inspecting the nodes in the order n4, n3, n2.

This ordering is in reverse: we added to the back in this example.

We need to prove that this is correct!

24/28

Problem: Ordering tasks

Determine a topological order
Depth-first search seems related: if we reach node n after inspecting m,

then m should definitely come before n in the order.

Consider first starting depth-first search at n2, and then starting at n0.

n0 n1 n2 n3 n4

We inspect the nodes in the order: n2, n3, n4, n0, n1.

We annotate depth-first search to collect ordering information:

When we finish inspecting a node, we add it to the front of our order.

We finish inspecting the nodes in the order n4, n3, n2, n1.

This ordering is in reverse: we added to the back in this example.

We need to prove that this is correct!

24/28

Problem: Ordering tasks

Determine a topological order
Depth-first search seems related: if we reach node n after inspecting m,

then m should definitely come before n in the order.

Consider first starting depth-first search at n2, and then starting at n0.

n0 n1 n2 n3 n4

We inspect the nodes in the order: n2, n3, n4, n0, n1.

We annotate depth-first search to collect ordering information:

When we finish inspecting a node, we add it to the front of our order.

We finish inspecting the nodes in the order n4, n3, n2, n1, n0.

This ordering is in reverse: we added to the back in this example.

We need to prove that this is correct!

24/28

Problem: Ordering tasks

Determine a topological order
Depth-first search seems related: if we reach node n after inspecting m,

then m should definitely come before n in the order.

Consider first starting depth-first search at n2, and then starting at n0.

n0 n1 n2 n3 n4

We inspect the nodes in the order: n2, n3, n4, n0, n1.

We annotate depth-first search to collect ordering information:

When we finish inspecting a node, we add it to the front of our order.

We finish inspecting the nodes in the order n4, n3, n2, n1, n0.
This ordering is in reverse: we added to the back in this example.

We need to prove that this is correct!

24/28

Problem: Ordering tasks

Determine a topological order
Depth-first search seems related: if we reach node n after inspecting m,

then m should definitely come before n in the order.

Consider first starting depth-first search at n2, and then starting at n0.

n0 n1 n2 n3 n4

We inspect the nodes in the order: n2, n3, n4, n0, n1.

We annotate depth-first search to collect ordering information:

When we finish inspecting a node, we add it to the front of our order.

We finish inspecting the nodes in the order n4, n3, n2, n1, n0.
This ordering is in reverse: we added to the back in this example.

We need to prove that this is correct!

24/28

Problem: Ordering tasks

Determine a topological order

n0 n1 n2 n3 n4

We annotate depth-first search to collect ordering information:

When we finish inspecting a node, we add it to the front of our order.

Theorem

Let (m, n) ∈ E be an edge in an acyclic graph G = (N , E).
Any depth-first search on G will finish inspecting n before m
(hence, m is placed before n in our order).

Proof. We consider two cases:

▶ When we run depth-first search for m, n is already marked .

Graph is acylcic: n cannot reach m, hence we finished inspecting n already.

▶ When we run depth-first search for m, n is not yet marked .

We find n while inspecting m, hence we finished inspecting n before m.

24/28

Problem: Ordering tasks

Determine a topological order

n0 n1 n2 n3 n4

We annotate depth-first search to collect ordering information:

When we finish inspecting a node, we add it to the front of our order.

Theorem

Let (m, n) ∈ E be an edge in an acyclic graph G = (N , E).
Any depth-first search on G will finish inspecting n before m.

Proof. We consider two cases:

▶ When we run depth-first search for m, n is already marked .

Graph is acylcic: n cannot reach m, hence we finished inspecting n already.

▶ When we run depth-first search for m, n is not yet marked .

We find n while inspecting m, hence we finished inspecting n before m.

24/28

Problem: Ordering tasks

Determine a topological order

n0 n1 n2 n3 n4

We annotate depth-first search to collect ordering information:

When we finish inspecting a node, we add it to the front of our order.

Theorem

Let (m, n) ∈ E be an edge in an acyclic graph G = (N , E).
Any depth-first search on G will finish inspecting n before m.

Proof. We consider two cases:

▶ When we run depth-first search for m, n is already marked .
Graph is acylcic: n cannot reach m, hence we finished inspecting n already.

▶ When we run depth-first search for m, n is not yet marked .

We find n while inspecting m, hence we finished inspecting n before m.

24/28

Problem: Ordering tasks

Determine a topological order

n0 n1 n2 n3 n4

We annotate depth-first search to collect ordering information:

When we finish inspecting a node, we add it to the front of our order.

Theorem

Let (m, n) ∈ E be an edge in an acyclic graph G = (N , E).
Any depth-first search on G will finish inspecting n before m.

Proof. We consider two cases:

▶ When we run depth-first search for m, n is already marked .
Graph is acylcic: n cannot reach m, hence we finished inspecting n already.

▶ When we run depth-first search for m, n is not yet marked .
We find n while inspecting m, hence we finished inspecting n before m.

24/28

Problem: Ordering tasks

Algorithm DFS-TS-R(G = (N , E), marked , n ∈ N , order):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-TS-R(G, marked , m, order).
5: Add n to the front of order .

Algorithm TopologicalSort(G = (N , E)):
6: marked, order := {n ↦→ false | n ∈ N}, [].
7: for all n ∈ N do
8: if ¬marked [n] then
9: marked [n] := true.
10: DFS-TS-R(G, marked , n, order).
11: return order .

We can easily integrate a cycle-detection step into TopologicalSort.

24/28

Problem: Ordering tasks

Algorithm DFS-TS-R(G = (N , E), marked , n ∈ N , order):
1: for all (n,m) ∈ E do
2: if ¬marked [m] then
3: marked [m] := true.
4: DFS-TS-R(G, marked , m, order).
5: Add n to the front of order .

Algorithm TopologicalSort(G = (N , E)):
6: marked, order := {n ↦→ false | n ∈ N}, [].
7: for all n ∈ N do
8: if ¬marked [n] then
9: marked [n] := true.
10: DFS-TS-R(G, marked , n, order).
11: return order .

We can easily integrate a cycle-detection step into TopologicalSort.

25/28

Problem: Reverse reachability

Consider a directed graph G = (N , E) and node s.
Depth-first search can find all nodes reachable from node s.

Problem: Reverse reachability

How to find all nodes that can reach node s?
E.g., in a one-way communication network:

which participants can communicate messages to s?

Solution

Reverse all edges in G and perform depth-first search on the resulting graph.

Hence, DepthFirstR(G′
, s) with G′ = (N , {(n,m) | (m, n) ∈ E}).

25/28

Problem: Reverse reachability

Consider a directed graph G = (N , E) and node s.
Depth-first search can find all nodes reachable from node s.

Problem: Reverse reachability

How to find all nodes that can reach node s?
E.g., in a one-way communication network:

which participants can communicate messages to s?

Solution

Reverse all edges in G and perform depth-first search on the resulting graph.

Hence, DepthFirstR(G′
, s) with G′ = (N , {(n,m) | (m, n) ∈ E}).

25/28

Problem: Reverse reachability

Consider a directed graph G = (N , E) and node s.
Depth-first search can find all nodes reachable from node s.

Problem: Reverse reachability

How to find all nodes that can reach node s?
E.g., in a one-way communication network:

which participants can communicate messages to s?

Solution

Reverse all edges in G and perform depth-first search on the resulting graph.

Hence, DepthFirstR(G′
, s) with G′ = (N , {(n,m) | (m, n) ∈ E}).

26/28

Problem: Healthy network

Problem

Consider a directed graph G = (N , E) in which

▶ the nodes N represent network devices; and

▶ the edges E are network connections.

Can all network devices communicate with all other network devices?

Problem

Consider a directed graph G = (N , E).
A graph is strongly connected if all node pairs are strongly connected.

Observations

There must be a directed path between all pairs of nodes.

Now consider an arbitrary node s ∈ N .

1. All nodes must have a path to node s.

→ Use reverse reachability .

2. Node s must have a path to all nodes.

→ Use reachability .

We can route all paths proving “strongly connected” via node s.

Solution

Use reverse reachability and reachability .
Both can be done via depth-first search.

26/28

Problem: Healthy network

Problem

Consider a directed graph G = (N , E) in which

▶ the nodes N represent network devices; and

▶ the edges E are network connections.

Can all network devices communicate with all other network devices?

Problem

Consider a directed graph G = (N , E).
A graph is strongly connected if all node pairs are strongly connected.

Observations

There must be a directed path between all pairs of nodes.

Now consider an arbitrary node s ∈ N .

1. All nodes must have a path to node s.

→ Use reverse reachability .

2. Node s must have a path to all nodes.

→ Use reachability .

We can route all paths proving “strongly connected” via node s.

Solution

Use reverse reachability and reachability .
Both can be done via depth-first search.

26/28

Problem: Healthy network

Problem

Consider a directed graph G = (N , E).
A graph is strongly connected if all node pairs are strongly connected.

Observations

There must be a directed path between all pairs of nodes.

Now consider an arbitrary node s ∈ N .

1. All nodes must have a path to node s.

→ Use reverse reachability .

2. Node s must have a path to all nodes.

→ Use reachability .

We can route all paths proving “strongly connected” via node s.

Solution

Use reverse reachability and reachability .
Both can be done via depth-first search.

26/28

Problem: Healthy network

Problem

Consider a directed graph G = (N , E).
A graph is strongly connected if all node pairs are strongly connected.

Observations

There must be a directed path between all pairs of nodes.

Now consider an arbitrary node s ∈ N .

1. All nodes must have a path to node s.

→ Use reverse reachability .

2. Node s must have a path to all nodes.

→ Use reachability .

We can route all paths proving “strongly connected” via node s.

Solution

Use reverse reachability and reachability .
Both can be done via depth-first search.

26/28

Problem: Healthy network

Problem

Consider a directed graph G = (N , E).
A graph is strongly connected if all node pairs are strongly connected.

Observations

There must be a directed path between all pairs of nodes.

Now consider an arbitrary node s ∈ N .

1. All nodes must have a path to node s.

→ Use reverse reachability .

2. Node s must have a path to all nodes.

→ Use reachability .

We can route all paths proving “strongly connected” via node s.

Solution

Use reverse reachability and reachability .
Both can be done via depth-first search.

26/28

Problem: Healthy network

Problem

Consider a directed graph G = (N , E).
A graph is strongly connected if all node pairs are strongly connected.

Observations

There must be a directed path between all pairs of nodes.

Now consider an arbitrary node s ∈ N .

1. All nodes must have a path to node s. → Use reverse reachability .

2. Node s must have a path to all nodes. → Use reachability .

We can route all paths proving “strongly connected” via node s.

Solution

Use reverse reachability and reachability .
Both can be done via depth-first search.

27/28

Problem: Subcommunities

Problem

Consider a directed graph G = (N , E) in which

▶ the nodes N represent social media accounts; and

▶ the edges E are interactions between accounts.

We want to find subcommunities (and echo chambers) by looking groups of accounts that

all have direct-or-indirect interactions with each other.

Problem

Consider a directed graph G = (N , E).
Find all strongly connected components.

27/28

Problem: Subcommunities

Problem

Consider a directed graph G = (N , E) in which

▶ the nodes N represent social media accounts; and

▶ the edges E are interactions between accounts.

We want to find subcommunities (and echo chambers) by looking groups of accounts that

all have direct-or-indirect interactions with each other.

Problem

Consider a directed graph G = (N , E).
Find all strongly connected components.

27/28

Problem: Subcommunities

Observations

For each n ∈ N , let scc(n) be all nodes in the strongly connected component of n.

Consider the graph GSCC = (NSCC, ESCC) obtained by merging
the strongly connected components in G:
▶ NSCC = {scc(n) | n ∈ N};
▶ ESCC = {(scc(m), scc(n)) | (m, n) ∈ E}.

The resulting graph GSCC is acyclic.

n0 n7

{n0, n7}

n2
n3

n9

n5

n6

{n5, n6, n9}

n1

n8

n4

Question: What would a topological sort of G produce?

A node order consistent with a topological sort of Gscc:

the strongly connected components stick together.

We just do not know where one strongly connected component ends and the next begins.

27/28

Problem: Subcommunities

Observations

For each n ∈ N , let scc(n) be all nodes in the strongly connected component of n.

Consider the graph GSCC = (NSCC, ESCC) obtained by merging
the strongly connected components in G:
▶ NSCC = {scc(n) | n ∈ N};
▶ ESCC = {(scc(m), scc(n)) | (m, n) ∈ E}.

The resulting graph GSCC is acyclic.

n0 n7

{n0, n7}

n2
n3

n9

n5

n6

{n5, n6, n9}

n1

n8

n4

Question: What would a topological sort of G produce?

A node order consistent with a topological sort of Gscc:

the strongly connected components stick together.

We just do not know where one strongly connected component ends and the next begins.

27/28

Problem: Subcommunities

Observations

For each n ∈ N , let scc(n) be all nodes in the strongly connected component of n.

Consider the graph GSCC = (NSCC, ESCC) obtained by merging
the strongly connected components in G:
▶ NSCC = {scc(n) | n ∈ N};
▶ ESCC = {(scc(m), scc(n)) | (m, n) ∈ E}.

The resulting graph GSCC is acyclic.

n0 n7

{n0, n7}

n2
n3

n9n5n6

{n5, n6, n9}

n1

n8

n4

Question: What would a topological sort of G produce?

A node order consistent with a topological sort of Gscc:

the strongly connected components stick together.

We just do not know where one strongly connected component ends and the next begins.

27/28

Problem: Subcommunities

Observations

For each n ∈ N , let scc(n) be all nodes in the strongly connected component of n.

Consider the graph GSCC = (NSCC, ESCC) obtained by merging
the strongly connected components in G:
▶ NSCC = {scc(n) | n ∈ N};
▶ ESCC = {(scc(m), scc(n)) | (m, n) ∈ E}.

The resulting graph GSCC is acyclic.

n0 n7

{n0, n7}

n2
n3

n9n5n6

{n5, n6, n9}

n1

n8

n4

Question: What would a topological sort of G produce?

A node order consistent with a topological sort of Gscc:

the strongly connected components stick together.

We just do not know where one strongly connected component ends and the next begins.

27/28

Problem: Subcommunities

Observations

For each n ∈ N , let scc(n) be all nodes in the strongly connected component of n.

Consider the graph GSCC = (NSCC, ESCC) obtained by merging
the strongly connected components in G:
▶ NSCC = {scc(n) | n ∈ N};
▶ ESCC = {(scc(m), scc(n)) | (m, n) ∈ E}.

The resulting graph GSCC is acyclic.

Question: What would a topological sort of G produce?

A node order consistent with a topological sort of Gscc:

the strongly connected components stick together.

We just do not know where one strongly connected component ends and the next begins.

27/28

Problem: Subcommunities

Observations

For each n ∈ N , let scc(n) be all nodes in the strongly connected component of n.

Consider the graph GSCC = (NSCC, ESCC) obtained by merging
the strongly connected components in G:
▶ NSCC = {scc(n) | n ∈ N};
▶ ESCC = {(scc(m), scc(n)) | (m, n) ∈ E}.

The resulting graph GSCC is acyclic.

Question: What would a topological sort of G produce?

A node order consistent with a topological sort of Gscc:

the strongly connected components stick together.

We just do not know where one strongly connected component ends and the next begins.

27/28

Problem: Subcommunities

Observations

For each n ∈ N , let scc(n) be all nodes in the strongly connected component of n.

Consider the graph GSCC = (NSCC, ESCC) obtained by merging
the strongly connected components in G:
▶ NSCC = {scc(n) | n ∈ N};
▶ ESCC = {(scc(m), scc(n)) | (m, n) ∈ E}.

The resulting graph GSCC is acyclic.

Question: What would a topological sort of G produce?

A node order consistent with a topological sort of Gscc:

the strongly connected components stick together.

We just do not know where one strongly connected component ends and the next begins.

27/28

Problem: Subcommunities

Algorithm StronglyConnectedComponent(G = (N , E)):
5: Let n0, . . . , n |N | be a topological sort of N .

6: marked := {n ↦→ false | n ∈ N}.
7: for i := 0 upto |N | do
8: if ¬marked [ni] then

ni is the start of a strongly connected component.

Find all nodes not-yet-visited that can reach node ni .

9: DFS-R((N , ({(n,m) | (m, n) ∈ E})), marked , ni) (reverse reachability).

A node that can reach ni comes before ni in the topological sort

unless it is part of the same strongly connected component!

The book presents a variation of the above:

they perform a reverse-topological sort instead of performing reverse reachability.

27/28

Problem: Subcommunities

Algorithm StronglyConnectedComponent(G = (N , E)):
5: Let n0, . . . , n |N | be a topological sort of N .

6: marked := {n ↦→ false | n ∈ N}.
7: for i := 0 upto |N | do
8: if ¬marked [ni] then

ni is the start of a strongly connected component.

Find all nodes not-yet-visited that can reach node ni .

9: DFS-R((N , ({(n,m) | (m, n) ∈ E})), marked , ni) (reverse reachability).

A node that can reach ni comes before ni in the topological sort

unless it is part of the same strongly connected component!

The book presents a variation of the above:

they perform a reverse-topological sort instead of performing reverse reachability.

27/28

Problem: Subcommunities

Algorithm StronglyConnectedComponent(G = (N , E)):
5: Let n0, . . . , n |N | be a topological sort of N .

6: marked := {n ↦→ false | n ∈ N}.
7: for i := 0 upto |N | do
8: if ¬marked [ni] then

ni is the start of a strongly connected component.

Find all nodes not-yet-visited that can reach node ni .
9: DFS-R((N , ({(n,m) | (m, n) ∈ E})), marked , ni) (reverse reachability).

A node that can reach ni comes before ni in the topological sort

unless it is part of the same strongly connected component!

The book presents a variation of the above:

they perform a reverse-topological sort instead of performing reverse reachability.

27/28

Problem: Subcommunities

Algorithm StronglyConnectedComponent(G = (N , E)):
5: Let n0, . . . , n |N | be a topological sort of N .

6: marked := {n ↦→ false | n ∈ N}.
7: for i := 0 upto |N | do
8: if ¬marked [ni] then

ni is the start of a strongly connected component.

Find all nodes not-yet-visited that can reach node ni .
9: DFS-R((N , ({(n,m) | (m, n) ∈ E})), marked , ni) (reverse reachability).

A node that can reach ni comes before ni in the topological sort

unless it is part of the same strongly connected component!

The book presents a variation of the above:

they perform a reverse-topological sort instead of performing reverse reachability.

27/28

Problem: Subcommunities

Algorithm StronglyConnectedComponent(G = (N , E)):
5: Let n0, . . . , n |N | be a topological sort of N .

6: marked := {n ↦→ false | n ∈ N}.
7: for i := 0 upto |N | do
8: if ¬marked [ni] then

ni is the start of a strongly connected component.

Find all nodes not-yet-visited that can reach node ni .
9: DFS-R((N , ({(n,m) | (m, n) ∈ E})), marked , ni) (reverse reachability).

A node that can reach ni comes before ni in the topological sort

unless it is part of the same strongly connected component!

The book presents a variation of the above:

they perform a reverse-topological sort instead of performing reverse reachability.

28/28

Problem: Indirect flight connections

Problem: Indirect flight connections

Consider a directed graph G = (N , E) in which

▶ the nodes N represent airports; and

▶ the edges E are flights between airports.

Construct the edge relation that relates airports m to n if one can fly from m to n
(via zero-or-more stops):

{(m, n) | there is a sequence of flights connecting m to n}.

Definition

The transitive closure of a graph G = (N , E) is the graph Gtc = (N , Etc) with

Etc = {(m, n) | there is a path from m to n in G}.

Solution

Etc = {(m, n) | DepthFirstR(G, m) visits node n}.

Complexity

▶ Runtime complexity is Θ (|N |(|N | + |E|)): we run |N | depth-first searches.
▶ Memory complexity is Θ (|N | + |Etc |): |Etc | is likely to be Θ

(
|N |2

)
.

Can we do significantly better? Huge open research question!

28/28

Problem: Indirect flight connections

Problem: Indirect flight connections

Consider a directed graph G = (N , E) in which

▶ the nodes N represent airports; and

▶ the edges E are flights between airports.

Construct the edge relation that relates airports m to n if one can fly from m to n
(via zero-or-more stops):

{(m, n) | there is a sequence of flights connecting m to n}.

Definition

The transitive closure of a graph G = (N , E) is the graph Gtc = (N , Etc) with

Etc = {(m, n) | there is a path from m to n in G}.

Solution

Etc = {(m, n) | DepthFirstR(G, m) visits node n}.

Complexity

▶ Runtime complexity is Θ (|N |(|N | + |E|)): we run |N | depth-first searches.
▶ Memory complexity is Θ (|N | + |Etc |): |Etc | is likely to be Θ

(
|N |2

)
.

Can we do significantly better? Huge open research question!

28/28

Problem: Indirect flight connections

Definition

The transitive closure of a graph G = (N , E) is the graph Gtc = (N , Etc) with

Etc = {(m, n) | there is a path from m to n in G}.

Solution

Etc = {(m, n) | DepthFirstR(G, m) visits node n}.

Complexity

▶ Runtime complexity is Θ (|N |(|N | + |E|)): we run |N | depth-first searches.
▶ Memory complexity is Θ (|N | + |Etc |): |Etc | is likely to be Θ

(
|N |2

)
.

Can we do significantly better? Huge open research question!

28/28

Problem: Indirect flight connections

Definition

The transitive closure of a graph G = (N , E) is the graph Gtc = (N , Etc) with

Etc = {(m, n) | there is a path from m to n in G}.

Solution

Etc = {(m, n) | DepthFirstR(G, m) visits node n}.

Complexity

▶ Runtime complexity is Θ (|N |(|N | + |E|)): we run |N | depth-first searches.
▶ Memory complexity is Θ (|N | + |Etc |): |Etc | is likely to be Θ

(
|N |2

)
.

Can we do significantly better? Huge open research question!

28/28

Problem: Indirect flight connections

Definition

The transitive closure of a graph G = (N , E) is the graph Gtc = (N , Etc) with

Etc = {(m, n) | there is a path from m to n in G}.

Solution

Etc = {(m, n) | DepthFirstR(G, m) visits node n}.

Complexity

▶ Runtime complexity is Θ (|N |(|N | + |E|)): we run |N | depth-first searches.
▶ Memory complexity is Θ (|N | + |Etc |): |Etc | is likely to be Θ

(
|N |2

)
.

Can we do significantly better? Huge open research question!

