Graphs SFWRENG 2CO3: Data Structures and Algorithms

Jelle Hellings

Department of Computing and Software McMaster University

Winter 2024

A graph consists of *nodes* and *edges*:

Nodes denote pieces of information;

Edges denote relationships between these pieces.

Given a graph data set, one can often *derive* other information or relationships.

A graph consists of *nodes* and *edges*:

Nodes denote pieces of information;

Edges denote relationships between these pieces.

Given a graph data set, one can often *derive* other information or relationships.

Many variations

- Nodes and edges can have *labels*;
- Nodes and edges can carry weights; and
- Edges can be *directed* or *undirected*.

A graph consists of *nodes* and *edges*:

Nodes denote pieces of information;

Edges denote relationships between these pieces.

Given a graph data set, one can often *derive* other information or relationships.

Many variations

- Nodes and edges can have *labels*;
- Nodes and edges can carry weights; and
- Edges can be *directed* or *undirected*.

Most data sources can be modeled as graphs, e.g., "Big Data".

A graph consists of *nodes* and *edges*:

Nodes denote pieces of information;

Edges denote relationships between these pieces.

Given a graph data set, one can often *derive* other information or relationships.

Many variations

- Nodes and edges can have *labels*;
- Nodes and edges can carry weights; and
- Edges can be *directed* or *undirected*.

Most data sources can be modeled as graphs, e.g., "Big Data". Standard graph algorithms can be used to solve many *different* problems.

Source: Hellings et al., 2021.

Source: Hellings et al., 2021.

Nodes People. Edges Relationships between them.

Source: Hellings et al., 2021.

Nodes People.

Edges Relationships between them.

We can derive GrandParentOf, AncestorOf,

Source: Hellings et al., 2021.

Nodes People.

Edges Relationships between them.

We can derive GrandParentOf, AncestorOf,

How can one contact someone else via a friend-of-a-friend?

Source: Hellings et al., 2021.

Nodes People.

Edges Relationships between them.

We can derive GrandParentOf, AncestorOf,

How can one contact someone else via a friend-of-a-friend? \rightarrow A shortest path!

Example: Class hierarchy (trees)

Source: Hellings et al., 2020.

Example: Class hierarchy (trees)

Source: Hellings et al., 2020.

Nodes Names (classes, methods). Edges Membership (subclass, method).

Example: Class hierarchy (trees)

Source: Hellings et al., 2020.

Nodes Names (classes, methods).

Edges Membership (subclass, method).

Question: does LinkedList have a method toString()?

Source: *Classical geographer* at Wikimedia Commons.

Source: *Classical geographer* at Wikimedia Commons.

Nodes Train stations. Edges Rail connections.

Source: *Classical geographer* at Wikimedia Commons.

Nodes Train stations. Edges Rail connections. Weights Maximum speed.

Source: *Classical geographer* at Wikimedia Commons.

Nodes Train stations. Edges Rail connections. Weights Maximum speed.

The shortest path problem Which route should a train take to connect stations *A* and *B* (with minimal travel time)?

Source: *On-Time : Reporting Carrier On-Time Performance* at Bureau of Transportation Statistics.

OP_CARRIER	TAIL_NUM	ORIGIN	DEST	DEP_TIME	ARR_DELAY	DISTANCE
DL	N102DN	ATL	ORD	1329	-4.00	606.00
UA	N12754	BOS	EWR	1501	-14.00	200.00
AA	N103NN	SFO	JFK	554	-12.00	2586.00
WN	N935WN	SFO	DEN	1313	6.00	967.00

Source: *On-Time : Reporting Carrier On-Time Performance* at Bureau of Transportation Statistics.

OP_CARRIER	TAIL_NUM	ORIGIN	DEST	DEP_TIME	ARR_DELAY	DISTANCE
DL	N102DN	ATL	ORD	1329	-4.00	606.00
UA	N12754	BOS	EWR	1501	-14.00	200.00
AA	N103NN	SFO	JFK	554	-12.00	2586.00
WN	N935WN	SFO	DEN	1313	6.00	967.00

Nodes Air ports. Edges Flights.

Source: *On-Time : Reporting Carrier On-Time Performance* at Bureau of Transportation Statistics.

OP_CARRIER	TAIL_NUM	ORIGIN	DEST	DEP_TIME	ARR_DELAY	DISTANCE
DL	N102DN	ATL	ORD	1329	-4.00	606.00
UA	N12754	BOS	EWR	1501	-14.00	200.00
AA	N103NN	SFO	JFK	554	-12.00	2586.00
WN	N935WN	SFO	DEN	1313	6.00	967.00

Nodes Air ports. Edges Flights. Weights Several: flight delay, distance, flight duration,

Source: *On-Time : Reporting Carrier On-Time Performance* at Bureau of Transportation Statistics.

OP_CARRIER	TAIL_NUM	ORIGIN	DEST	DEP_TIME	ARR_DELAY	DISTANCE
DL	N102DN	ATL	ORD	1329	-4.00	606.00
UA	N12754	BOS	EWR	1501	-14.00	200.00
AA	N103NN	SFO	JFK	554	-12.00	2586.00
WN	N935WN	SFO	DEN	1313	6.00	967.00

Nodes Air ports.

Edges Flights.

Weights Several: flight delay, distance, flight duration, Which airports can I reach starting at X in at-most N stops? Which airports can I reach starting at X in 7 hours of travel time?

Source: *On-Time : Reporting Carrier On-Time Performance* at Bureau of Transportation Statistics.

OP_CARRIER	TAIL_NUM	ORIGIN	DEST	DEP_TIME	ARR_DELAY	DISTANCE
DL	N102DN	ATL	ORD	1329	-4.00	606.00
UA	N12754	BOS	EWR	1501	-14.00	200.00
AA	N103NN	SFO	JFK	554	-12.00	2586.00
WN	N935WN	SFO	DEN	1313	6.00	967.00

Nodes Air ports.

Edges Flights.

Weights Several: flight delay, distance, flight duration, Which airports can I reach starting at X in at-most N stops? Which airports can I reach starting at X in 7 hours of travel time?

This data has a time component: a *temporal graph*.

Nodes Steps of recipe. Edges Dependencies between steps. Weights Duration of each step.

7/28

Nodes Steps of recipe. Edges Dependencies between steps. Weights Duration of each step. Which tasks can I do concurrently? How fast can a group bake a pie?

Nodes Steps of recipe.

Edges Dependencies between steps.

Weights Duration of each step.

Which tasks can I do concurrently?

How fast can a group bake a pie? \rightarrow A *longest* path problem

(that we can turn into a *shortest* path problem).

Let *D* be some dataset and let *P* be some *computational problem*.

• One can often translate (part of) *D* to some graph representation *G*.

- One can often translate (part of) *D* to some graph representation *G*.
- ▶ Next, one can translate problem *P* to a *graph problem S*.

- One can often translate (part of) *D* to some graph representation *G*.
- ▶ Next, one can translate problem *P* to a *graph problem S*.
- On *G*, we can run some *standard graph algorithm* to *solve S*.

- One can often translate (part of) *D* to some graph representation *G*.
- ▶ Next, one can translate problem *P* to a *graph problem S*.
- On *G*, we can run some *standard graph algorithm* to *solve S*.
- The solution for *S* can be translated to a solution for problem *P*.

Let *D* be some dataset and let *P* be some *computational problem*.

- One can often translate (part of) *D* to some graph representation *G*.
- ▶ Next, one can translate problem *P* to a *graph problem S*.
- On *G*, we can run some *standard graph algorithm* to *solve S*.
- ▶ The solution for *S* can be translated to a solution for problem *P*.

Often, one can do these steps *implicitly*.

Let *D* be some dataset and let *P* be some *computational problem*.

- One can often translate (part of) *D* to some graph representation *G*.
- ▶ Next, one can translate problem *P* to a *graph problem S*.
- On *G*, we can run some *standard graph algorithm* to *solve S*.
- ► The solution for *S* can be translated to a solution for problem *P*. Often, one can do these steps *implicitly*.

We will see examples of this in the lectures and assignments!

Selected topics on graphs

- ► Formalization.
- Data structures to represent graphs.
- Traversing graphs: Reachability, finding cycles, shortest paths (without weights), topological sort,
- Minimum spanning trees.
- Finding shortest-paths (with weights).

Undirected graphs

Definition An *undirected graph* is a pair (N, \mathcal{E}) with

- ► *N* a set of *nodes* (or *vertices*); and
- ► *E* a collection of *undirected edges* that consist of *node pairs*.

Undirected graphs

Definition An *undirected graph* is a pair (N, \mathcal{E}) with

- ► *N* a set of *nodes* (or *vertices*); and
- ► \mathcal{E} a collection of *undirected edges* that consist of *node pairs*. Undirected: if $(v, w) \in \mathcal{E}$, then also $(w, v) \in \mathcal{E}$!
- ► *N* a set of *nodes* (or *vertices*); and
- E a collection of *undirected edges* that consist of *node pairs*.
 Typically: at-most one edge between nodes: E is a set with E ⊆ N × N.

- ► *N* a set of *nodes* (or *vertices*); and
- E ⊆ N × N a set of *undirected edges* that consist of *node pairs*.
 Typically: at-most one edge between nodes: E is a set with E ⊆ N × N.

- ► *N* a set of *nodes* (or *vertices*); and
- $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ a set of *undirected edges* that consist of *node pairs*.

- ► *N* a set of *nodes* (or *vertices*); and
- $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ a set of *undirected edges* that consist of *node pairs*.

- ► *N* a set of *nodes* (or *vertices*); and
- $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ a set of *undirected edges* that consist of *node pairs*.

Definition An *undirected graph* is a pair (N, \mathcal{E}) with

- ► *N* a set of *nodes* (or *vertices*); and
- $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ a set of *undirected edges* that consist of *node pairs*.

Nodes have unique identities, e.g., they are assigned unique numbers.

Definition

An *undirected graph* is a pair (N, \mathcal{E}) with

- ► *N* a set of *nodes* (or *vertices*); and
- $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ a set of *undirected edges* that consist of *node pairs*.

A *path* is a sequence of nodes and edges connecting two nodes. Example: $n_3e_{30}n_0e_{09}n_9e_{95}n_5e_{56}n_6$.

Definition

An *undirected graph* is a pair (N, \mathcal{E}) with

- ► *N* a set of *nodes* (or *vertices*); and
- $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ a set of *undirected edges* that consist of *node pairs*.

A *path* is a sequence of nodes and edges connecting two nodes. Example: $n_3 n_0 n_9 n_5 n_6$ (at-most one edge per node pair).

Definition

An *undirected graph* is a pair (N, \mathcal{E}) with

- ► *N* a set of *nodes* (or *vertices*); and
- $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ a set of *undirected edges* that consist of *node pairs*.

Two nodes are *connected* if there is a path between them.

Connected component: maximal subgraph in which all node pairs are connected.

Definition

An *undirected graph* is a pair (N, \mathcal{E}) with

- ► *N* a set of *nodes* (or *vertices*); and
- $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ a set of *undirected edges* that consist of *node pairs*.

A graph is *connected* if all node pairs are connected. This graph is *not* connected: there are three disconnected components!

Definition

An *undirected graph* is a pair (N, \mathcal{E}) with

- ► *N* a set of *nodes* (or *vertices*); and
- $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ a set of *undirected edges* that consist of *node pairs*.

In a *weighted undirected graph*, each edge has a weight. Typically modeled via a *weight function weight*, e.g., *weight* : $\mathcal{E} \to \mathbb{N}$.

Definition

An *undirected graph* is a pair (N, \mathcal{E}) with

- ► *N* a set of *nodes* (or *vertices*); and
- $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ a set of *undirected edges* that consist of *node pairs*.

We can have edges from nodes to themselves: self-loops. (we will mostly ignore self-loops).

- ► *N* a set of *nodes* (or *vertices*); and
- $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ a set of *undirected edges* that consist of *node pairs*.

- ► *N* a set of *nodes* (or *vertices*); and
- $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ a set of *undirected edges* that consist of *node pairs*.

Definition

A *directed graph* is a pair $(\mathcal{N}, \mathcal{E})$ with

- ► *N* a set of *nodes* (or *vertices*); and
- $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ a set of *edges* that consist of *node pairs*.

Definition

A *directed graph* is a pair $(\mathcal{N}, \mathcal{E})$ with

- ► *N* a set of *nodes* (or *vertices*); and
- $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ a set of *edges* that consist of *node pairs*.

A *path* is a sequence of nodes and edges connecting two nodes. Example: $n_5 e_{56} n_6 e_{69} n_9 e_{90} n_0 e_{07} n_7$.

Definition

A *directed graph* is a pair $(\mathcal{N}, \mathcal{E})$ with

- ► *N* a set of *nodes* (or *vertices*); and
- $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ a set of *edges* that consist of *node pairs*.

A *path* is a sequence of nodes and edges connecting two nodes. Example: $n_5 n_6 n_9 n_0 n_7$ (at-most one edge per node pair).

Definition

A *directed graph* is a pair $(\mathcal{N}, \mathcal{E})$ with

- ► *N* a set of *nodes* (or *vertices*); and
- $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ a set of *edges* that consist of *node pairs*.

A *path* is a sequence of nodes and edges connecting two nodes. $n_3n_0n_9n_5n_6$ does not follow direction $\rightarrow not$ a path!

Definition

A *directed graph* is a pair $(\mathcal{N}, \mathcal{E})$ with

- ► *N* a set of *nodes* (or *vertices*); and
- $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ a set of *edges* that consist of *node pairs*.

A *cycle* is a path with at-least one edge from a node to itself. Example: the cycles $n_0 n_7$ and $n_7 n_0$.

Definition

A *directed graph* is a pair $(\mathcal{N}, \mathcal{E})$ with

- ► *N* a set of *nodes* (or *vertices*); and
- $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ a set of *edges* that consist of *node pairs*.

Two nodes are *strongly connected* if there is a path between them.

Strongly ... component: maximal subgraph in which all node pairs are strongly connected.

Definition

A *directed graph* is a pair $(\mathcal{N}, \mathcal{E})$ with

- ► *N* a set of *nodes* (or *vertices*); and
- $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ a set of *edges* that consist of *node pairs*.

A graph is *strongly connected* if all node pairs are strongly connected. This graph is *not* strongly connected: e.g., no paths toward n_4 .

Definition

A *directed graph* is a pair $(\mathcal{N}, \mathcal{E})$ with

- ► *N* a set of *nodes* (or *vertices*); and
- $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ a set of *edges* that consist of *node pairs*.

In a *weighted directed graph*, each edge has a weight. Typically modeled via a *weight function weight*, e.g., *weight* : $\mathcal{E} \to \mathbb{N}$.

Definition

- A *directed graph* is a pair $(\mathcal{N}, \mathcal{E})$ with
 - ► *N* a set of *nodes* (or *vertices*); and
 - $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ a set of *edges* that consist of *node pairs*.

We can have edges from nodes to themselves: self-loops. (we will mostly ignore self-loops).

Consider a directed or undirected graph, possibly with a weight function.

Consider a directed or undirected graph, possibly with a weight function.

- Adding and removing nodes?
- Adding and removing edges?

Consider a directed or undirected graph, possibly with a weight function.

- Adding and removing nodes?
- Adding and removing edges?
- Check whether an edge exists between a node pair?

Consider a directed or undirected graph, possibly with a weight function.

- Adding and removing nodes?
- Adding and removing edges?
- Check whether an edge exists between a node pair?
- Iterate over all (incoming and outgoing) edges of a node?

Consider a directed or undirected graph, possibly with a weight function.

- Adding and removing nodes?
- Adding and removing edges?
- Check whether an edge exists between a node pair?
- Iterate over all (incoming and outgoing) edges of a node?
- Given an edge, check or change the weight?

Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be a directed graph.

Assume each node $n \in N$ has a unique identifier id(n) with $0 \le id(n) < |N|$.

Matrix representation

Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be a directed graph.

Assume each node $n \in N$ has a unique identifier id(n) with $0 \le id(n) < |N|$.

Matrix representation

Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be a directed graph.

Assume each node $n \in N$ has a unique identifier id(n) with $0 \le id(n) < |N|$.

Matrix representation

Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be a directed graph.

Assume each node $n \in N$ has a unique identifier id(n) with $0 \le id(n) < |N|$.

Matrix representation

	0	1	2	3	4	5	6	7	8	9
0	*	*	*	7	*	*	*	13	*	*
1	*	*	*	*	*	*	*	*	*	*
2	*	*	*	*	*	*	*	2	*	*
3	*	*	11	*	*	*	*	*	*	*
4	*	*	*	*	1	*	*	*	*	*
5	*	*	*	*	*	*	7	*	*	9
6	*	*	*	*	*	*	*	*	*	3
7	5	*	*	*	*	*	*	*	*	*
8	*	12	*	*	*	*	*	*	*	*
9	1	*	*	*	*	*	*	*	*	*

- Adding and removing nodes?
- ► Adding and removing edges (*n*, *m*)?
- Check whether an edge (n, m) exists?
- Iterate over all incoming edges of node n?
- Iterate over all outgoing edges of node n?
- Check or change the weight of (n, m)?

	0	1	2	3	4	5	6	7	8	9
0	*	*	*	7	*	*	*	13	*	*
1	*	*	*	*	*	*	*	*	*	*
2	*	*	*	*	*	*	*	2	*	*
3	*	*	11	*	*	*	*	*	*	*
4	*	*	*	*	1	*	*	*	*	*
5	*	*	*	*	*	*	7	*	*	9
6	*	*	*	*	*	*	*	*	*	3
7	5	*	*	*	*	*	*	*	*	*
8	*	12	*	*	*	*	*	*	*	*
9	1	*	*	*	*	*	*	*	*	*

- Adding and removing nodes?
- Adding and removing edges (*n*, *m*)?
- Check whether an edge (n, m) exists?
- Iterate over all incoming edges of node n?
- Iterate over all outgoing edges of node n?
- Check or change the weight of (n, m)?

 $\rightarrow \Theta(1)$ $\rightarrow \Theta(1)$

 $\rightarrow \Theta(1)$

	0	1	2	3	4	5	6	7	8	9
0	*	*	*	7	*	*	*	13	*	*
1	*	*	*	*	*	*	*	*	*	*
2	*	*	*	*	*	*	*	2	*	*
3	*	*	11	*	*	*	*	*	*	*
4	*	*	*	*	1	*	*	*	*	*
5	*	*	*	*	*	*	7	*	*	9
6	*	*	*	*	*	*	*	*	*	3
7	5	*	*	*	*	*	*	*	*	*
8	*	12	*	*	*	*	*	*	*	*
9	1	*	*	*	*	*	*	*	*	*

- Adding and removing nodes?
- ► Adding and removing edges (*n*, *m*)?
- Check whether an edge (n, m) exists?
- Iterate over all incoming edges of node n?
- Iterate over all outgoing edges of node n?
- Check or change the weight of (n, m)?

- $\rightarrow \Theta(|\mathcal{N}|^2) \text{ (copy to new matrix).}$ $\rightarrow \Theta(1)$
- $\rightarrow \Theta(1)$
- $\rightarrow \Theta\left(|\mathcal{N}|\right)$ (scan a column)
- $\rightarrow \Theta(|\mathcal{N}|) \text{ (scan a row)}$ $\rightarrow \Theta(1)$

The adjacency list representation

Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be a directed graph.

Assume each node $n \in N$ has a unique identifier id(n) with $0 \le id(n) < |N|$.

Adjacency list representation

Let A[0...|N|) be an array of *bags*.

For every edge $(m, n) \in \mathcal{E}$, Add (m, n) to the bag A[id(m)].
Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be a directed graph.

Assume each node $n \in N$ has a unique identifier id(n) with $0 \le id(n) < |N|$.

Adjacency list representation

Let $A[0...|\mathcal{N}|)$ be an array of *bags*.

For every edge $(m, n) \in \mathcal{E}$, Add (m, n) to the bag A[id(m)].

- The standard adjacency list stores outgoing edges. If needed, one can also store incoming edges or both.
- ► A[i] is a *bag*, e.g., linked list, dynamic array, search tree, hash table,
- A can be a *dynamic array* to support adding nodes efficiently.
- A can be a *dictionary* mapping nodes onto their adjacency lists.
 Useful when nodes do not have identifiers, not all nodes have edges,

Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be a directed graph.

Assume each node $n \in N$ has a unique identifier id(n) with $0 \le id(n) < |N|$.

Adjacency list representation Let A[0...|N|) be an array of *bags*. For every edge $(m, n) \in \mathcal{E}$, Add (m, n) to the bag A[id(m)].

Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be a directed graph.

Assume each node $n \in N$ has a unique identifier id(n) with $0 \le id(n) < |N|$.

Adjacency list representation Let A[0...|N|) be an array of *bags*. For every edge $(m, n) \in \mathcal{E}$, Add (m, n) to the bag A[id(m)].

0	$[(n_0, n_3), (n_0, n_7)]$
1	[]
2	$[(n_2, n_7)]$
3	$[(n_3, n_2)]$
4	$[(n_4, n_4)]$
5	$[(n_5, n_6), (n_5, n_9)]$
6	$[(n_6, n_9)]$
7	$[(n_7, n_0)]$
8	$[(n_8, n_1)]$
9	$[(n_9, n_0)]$

Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be a directed graph.

Assume each node $n \in N$ has a unique identifier id(n) with $0 \le id(n) < |N|$.

Adjacency list representation Let A[0...|N|) be an array of *bags*. For every edge $(m, n) \in \mathcal{E}$, Add (m, n) to the bag A[id(m)].

- Adding and removing nodes?
- Adding and removing edges (n, m)?
- Check whether an edge (n, m) exists?
- Iterate over all *incoming* edges of node n?
- Iterate over all *outgoing* edges of node n?
- Check or change the weight of (n, m)?

- Adding and removing nodes?
- Adding and removing edges (n, m)?
- Check whether an edge (n, m) exists?
- Iterate over all *incoming* edges of node n?
- Iterate over all *outgoing* edges of node n?
- Check or change the weight of (n, m)?

 $[(n_0, n_3): 7, (n_0, n_7): 13]$ 1 П 2 $[(n_2, n_7): 2]$ 3 $[(n_3, n_2): 11]$ 4 $[(n_4, n_4) : 1]$ 5 $[(n_5, n_6): 7, (n_5, n_9): 9]$ $[(n_6, n_9): 3]$ 6 $[(n_7, n_0): 5]$ 7 $[(n_8, n_1) : 12]$ 8 $[(n_9, n_0): 1]$ 9

 $\rightarrow \Theta(1)$

- Adding and removing nodes?
- Adding and removing edges (n, m)?
- Check whether an edge (n, m) exists?
- Iterate over all *incoming* edges of node n?
- Iterate over all *outgoing* edges of node n?
- Check or change the weight of (n, m)?

- $\rightarrow \Theta(|\mathcal{N}|)$ (copy array).
- $\rightarrow \Theta(|\mathcal{N}|)$ (adding to bag).
- $\rightarrow \Theta\left(|\mathcal{N}|\right)$ (searching bag)
- $\rightarrow \Theta\left(|\mathcal{E}|\right)$ (scan all bags)
- $\rightarrow \Theta\left(|\mathcal{N}|\right)$ (scan a bag)
- $\rightarrow \Theta(1)$

 $[(n_0, n_3): 7, (n_0, n_7): 13]$ $[(n_2, n_7): 2]$ 2 $[(n_3, n_2) : 11]$ 3 4 $[(n_4, n_4): 1]$ 5 $[(n_5, n_6): 7, (n_5, n_9): 9]$ $[(n_6, n_9): 3]$ 6 $[(n_7, n_0): 5]$ $[(n_8, n_1) : 12]$ 8 $[(n_9, n_0): 1]$ 9

Let $out(n) = \{(n, m) \in \mathcal{E}\}$ be all *outgoing* edges of node *n*.

- Adding and removing nodes?
- Adding and removing edges (n, m)?
- Check whether an edge (n, m) exists?
- Iterate over all *incoming* edges of node *n*?
- Iterate over all *outgoing* edges of node n?
- Check or change the weight of (n, m)?

- $\rightarrow \Theta(|\mathcal{N}|)$ (copy array).
- $\rightarrow \Theta(|\mathsf{out}(n)|)$ (adding to bag).
- $\rightarrow \Theta(|\mathsf{out}(n)|)$ (searching bag)
- $\rightarrow \Theta\left(|\mathcal{E}|\right) \text{(scan all bags)}$
- $\rightarrow \Theta(|\mathsf{out}(n)|) \text{ (scan a bag)}$
- $\rightarrow \Theta(1)$

Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be a directed graph. Dense graph graph \mathcal{G} is *dense* if $|\mathcal{E}| = \Theta(|\mathcal{N}|^2)$. Sparse graph graph \mathcal{G} is *spase* if $|\mathcal{E}| = \Theta(|\mathcal{N}|)$.

Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be a directed graph. Dense graph graph \mathcal{G} is *dense* if $|\mathcal{E}| = \Theta(|\mathcal{N}|^2)$. Sparse graph graph \mathcal{G} is *spase* if $|\mathcal{E}| = \Theta(|\mathcal{N}|)$.

 \rightarrow most node pairs are edges!

 \rightarrow most node pairs are *not* edges!

	Matrix		Adjacency List	
	Sparse	Dense	Sparse	Dense
Memory usage	$\Theta\left(\mathcal{N} ^2 ight)$		$\Theta\left(\mathcal{N} + \mathcal{E} ight)$	
Adding nodes	$\Theta\left(\mathcal{N} ^2 ight)$		$\Theta\left(\mathcal{N} ight)$	
Adding edge (<i>n</i> , <i>m</i>)	$\Theta(1)$		$\Theta(out(n))$	
Checking edge (<i>n</i> , <i>m</i>)	$\Theta(1)$		$\Theta(out(n))$	
Incoming edges of <i>n</i>	$\Theta\left(\mathcal{N} ight)$		$\Theta\left(\mathcal{S} ight)$	
Outgoing edges of <i>n</i>	$\Theta\left(\mathcal{N} ight)$		$\Theta(out(n))$	
Weight of edge (<i>n</i> , <i>m</i>)	$\Theta(1)$		$\Theta\left(\left out(\mathit{n})\right \right)$	

Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be a directed graph. Dense graph graph \mathcal{G} is *dense* if $|\mathcal{E}| = \Theta(|\mathcal{N}|^2)$. Sparse graph graph \mathcal{G} is *spase* if $|\mathcal{E}| = \Theta(|\mathcal{N}|)$.

 \rightarrow most node pairs are edges!

 \rightarrow most node pairs are *not* edges!

	Matrix		Adjacency List	
	Sparse	Dense	Sparse	Dense
Memory usage	$\Theta\left(\mathcal{N} ^2 ight)$	$\Theta\left(\mathcal{N} ^2 ight)$	$\Theta\left(\mathcal{N} + \mathcal{E} \right)$	$\Theta\left(\mathcal{N} ^2 ight)$
Adding nodes	$\Theta\left(\mathcal{N} ^2 ight)$	$\Theta\left(\mathcal{N} ^2 ight)$	$\Theta\left(\mathcal{N} ight)$	$\Theta\left(\mathcal{N} ^2 ight)$
Adding edge (<i>n</i> , <i>m</i>)	$\Theta(1)$	$\Theta(1)$	$\Theta(out(n))$	$\Theta(out(n))$
Checking edge (<i>n</i> , <i>m</i>)	$\Theta(1)$	$\Theta(1)$	$\Theta(out(n))$	$\Theta(out(n))$
Incoming edges of <i>n</i>	$\Theta\left(\left \mathcal{N} ight ight)$	$\Theta\left(\mathcal{N} ight)$	$\Theta\left(\mathcal{S} ight)$	$\Theta\left(\mathcal{N} ^2 ight)$
Outgoing edges of <i>n</i>	$\Theta\left(\mathcal{N} ight)$	$\Theta\left(\mathcal{N} ight)$	$\Theta(out(n))$	$\Theta(out(n))$
Weight of edge (<i>n</i> , <i>m</i>)	$\Theta(1)$	$\Theta(1)$	$\Theta\left(\left out(\mathit{n})\right \right)$	$\Theta\left(\left out(\mathit{n})\right \right)$

Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be a directed graph. Dense graph graph \mathcal{G} is *dense* if $|\mathcal{E}| = \Theta(|\mathcal{N}|^2)$. Sparse graph graph \mathcal{G} is *spase* if $|\mathcal{E}| = \Theta(|\mathcal{N}|)$.

Which representation is the best?

- Sparse graphs?
- ► Dense graphs?
- Small graphs of at-most 16 nodes?

- \rightarrow most node pairs are edges!
- \rightarrow most node pairs are *not* edges!

Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be a directed graph. Dense graph graph \mathcal{G} is *dense* if $|\mathcal{E}| = \Theta(|\mathcal{N}|^2)$. Sparse graph graph \mathcal{G} is *spase* if $|\mathcal{E}| = \Theta(|\mathcal{N}|)$.

Which representation is the best?

- Sparse graphs?
- Dense graphs?
- Small graphs of at-most 16 nodes?

 \rightarrow most node pairs are edges!

 \rightarrow most node pairs are *not* edges!

- \rightarrow usually adjacency list.
- \rightarrow usually matrix.
- \rightarrow likely matrix.

Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be a directed graph. Dense graph graph \mathcal{G} is *dense* if $|\mathcal{E}| = \Theta(|\mathcal{N}|^2)$. Sparse graph graph \mathcal{G} is *spase* if $|\mathcal{E}| = \Theta(|\mathcal{N}|)$.

Which representation is the best?

- Sparse graphs?
- Dense graphs?
- Small graphs of at-most 16 nodes?

Depends a lot on the type of operations.

 \rightarrow most node pairs are edges!

 \rightarrow most node pairs are *not* edges!

- \rightarrow usually adjacency list.
- \rightarrow usually matrix.
- \rightarrow likely matrix.

E.g., graph operations in terms of *matrices* are easier to implement on GPUs.

Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be a directed graph. Dense graph graph \mathcal{G} is *dense* if $|\mathcal{E}| = \Theta(|\mathcal{N}|^2)$. Sparse graph graph \mathcal{G} is *spase* if $|\mathcal{E}| = \Theta(|\mathcal{N}|)$.

Which representation is the best?

- Sparse graphs?
- Dense graphs?
- Small graphs of at-most 16 nodes?

Depends a lot on the type of operations.

E.g., graph operations in terms of *matrices* are easier to implement on GPUs.

Many alternatives exist

. . . .

- Simply storing the set of *edges* (e.g., as a *relational table* in a database);
- Compressed matrices for GPU operations on sparse graphs (e.g., in machine learning);

 \rightarrow most node pairs are edges!

 \rightarrow most node pairs are *not* edges!

- \rightarrow usually adjacency list.
- \rightarrow usually matrix.
- \rightarrow likely matrix.

Traversing undirected graphs: Depth-first

Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** \neg *marked*[*m*] **then**
- 3: marked[m] := true.
- 4: DFS-R(\mathcal{G} , marked, m).

Algorithm DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(\mathcal{G} , marked, s).

Traversing undirected graphs: Depth-first

Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** \neg *marked*[*m*] **then**
- 3: marked[m] := true.
- 4: DFS-R(\mathcal{G} , marked, m).

Algorithm DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(\mathcal{G} , marked, s).

Traversing undirected graphs: Depth-first

Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** \neg *marked*[*m*] **then**
- 3: marked[m] := true.
- 4: DFS-R(\mathcal{G} , marked, m).

Algorithm DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(\mathcal{G} , marked, s).

	<i>n</i> 0	false
	<i>n</i> ₁	false
	<i>n</i> ₂	false
	<i>n</i> ₃	true
1	<i>n</i> ₄	false
d =	n 5	false
	<i>n</i> ₆	false
	n 7	false
	<i>n</i> ₈	false
	n 9	false

marke

Traversing undirected graphs: Depth-first Called with $n = n_3$.

Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** \neg *marked* [*m*] **then**
- 3: marked[m] := true.
- 4: DFS-R(\mathcal{G} , marked, m).

Algorithm DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(\mathcal{G} , marked, s).

	0	
	<i>n</i> ₁	false
	<i>n</i> ₂	false
	n 3	true
markad -	n_4	false
markea –	n_5	false
	<i>n</i> ₆	false
	n 7	false
	n_8	false
	n 9	false

 n_{0}

false

Traversing undirected graphs: Depth-first Called with $n = n_3$.

Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** \neg *marked* [*m*] **then**
- 3: marked[m] := true.
- 4: DFS-R(\mathcal{G} , marked, m).

Algorithm DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(\mathcal{G} , marked, s).

	110	Tarse
	<i>n</i> ₁	false
	<i>n</i> ₂	true
	n 3	true
markad -	<i>n</i> ₄	false
тагкеа =	n_5	false
	<i>n</i> ₆	false
	n_7	false
	n_8	false
	n 9	false

falco

Traversing undirected graphs: Depth-first Called with $n = n_3$, n_2 .

Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- if ¬marked[m] then 2:
- marked[m] := true.3:
- DFS-R(G, marked, m). 4:

Algorithm DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(G, marked, s).

	n_0	false
	<i>n</i> ₁	false
	<i>n</i> ₂	true
	n 3	true
markad -	<i>n</i> ₄	false
тагкеа =	n_5	false
	<i>n</i> ₆	false
	n 7	false
	n_8	false
	n 9	false
		L

Traversing undirected graphs: Depth-first Called with $n = n_3$, n_2 .

Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** \neg *marked* [*m*] **then**
- 3: marked[m] := true.
- 4: DFS-R(\mathcal{G} , marked, m).

Algorithm DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(\mathcal{G} , marked, s).

	0	
	<i>n</i> ₁	false
	<i>n</i> ₂	true
	n 3	true
markad -	<i>n</i> ₄	false
narkea =	n_5	false
	<i>n</i> ₆	false
	n 7	true
	n_8	false
	n 9	false

 n_{0}

false

Traversing undirected graphs: Depth-first Called with $n = n_3$, n_2 , n_7 .

Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** \neg *marked*[*m*] **then**
- 3: marked[m] := true.
- 4: DFS-R(\mathcal{G} , marked, m).

Algorithm DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(\mathcal{G} , marked, s).

	n_1	false
	<i>n</i> ₂	true
	<i>n</i> 3	true
markad -	n_4	false
narkea =	n_5	false
	n 6	false
	n_7	true
	n_8	false
	n 9	false
		L

n

Traversing undirected graphs: Depth-first Called with $n = n_3$, n_2 , n_7 .

Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** \neg *marked*[*m*] **then**
- 3: *marked*[*m*] := true.
- 4: DFS-R(\mathcal{G} , marked, m).

Algorithm DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(\mathcal{G} , marked, s).

	<i>n</i> ₁	false
	<i>n</i> ₂	true
	n 3	true
marked -	<i>n</i> ₄	false
тагкеа =	n_5	false
	<i>n</i> ₆	false
	n 7	true
	n_8	false
	n 9	false

n

Traversing undirected graphs: Depth-first	
Called with $n = n_3, n_2, n_7, n_0$.	
Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$):	
1: for all $(n, m) \in \mathcal{E}$ do	
2: if \neg <i>marked</i> [<i>m</i>] then	
3: $marked[m] := true.$	
4: DFS-R(\mathcal{G} , marked, m).	
Algorithm DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(\mathcal{G} , marked, s).	21
n_6 n_9 n_4 n_7 n_6 n_7 n_7 n_8 n_3 n_2	

	<i>n</i> ₁	false
	<i>n</i> ₂	true
	n 3	true
marked -	<i>n</i> ₄	false
пагкеа =	n_5	false
	<i>n</i> ₆	false
	n 7	true
	n_8	false
	n 9	false

n₀ true

Traversing undirected graphs: Depth-first	
Called with $n = n_3, n_2, n_7, n_0$.	
Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$):	
1: for all $(n, m) \in \mathcal{E}$ do	
2: if \neg marked[m] then	
3: $marked[m] := true.$	
4: DFS-R(\mathcal{G} , marked, m).	
Algorithm DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(\mathcal{G} , marked, s).	narko
n_{0} n_{1} n_{0} n_{1} n_{1} n_{1} n_{2} n_{2}	

	n_0	true
	<i>n</i> ₁	false
	<i>n</i> ₂	true
	n 3	true
arked -	n_4	false
arked =	n_5	false
	<i>n</i> ₆	false
	n 7	true
	n_8	false
	n 9	true

Traversing undirected graphs: Depth-first Called with $n = n_3, n_2, n_7, n_0, n_9$. Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$): 1: for all $(n, m) \in \mathcal{E}$ do if ¬*marked*[*m*] then 2: marked[m] := true.3: DFS-R(G, marked, m). 4: **Algorithm** DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(G, marked, s). Tn₄ n_1 n_5 n_0

	<i>n</i> ₁	false
	<i>n</i> ₂	true
	n 3	true
marked -	<i>n</i> ₄	false
markea =	n_5	false
	<i>n</i> ₆	false
	n 7	true
	<i>n</i> ₈	false
	n 9	true

n

Traversing undirected graphs: Depth-first Called with $n = n_3, n_2, n_7, n_0, n_9$. Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$): 1: for all $(n, m) \in \mathcal{E}$ do if ¬marked[m] then 2: marked[m] := true.3: DFS-R(G, marked, m). 4: **Algorithm** DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(G, marked, s). In₄ n_1 n n_0

	0	0.0.0
	<i>n</i> ₁	false
	<i>n</i> ₂	true
	n 3	true
marked -	<i>n</i> ₄	false
тагкеа =	n_5	true
	<i>n</i> ₆	false
	n 7	true
	n_8	false
	n 9	true
		•

n

Traversing undirected graphs: Depth-first Called with $n = n_3, n_2, n_7, n_0, n_9, n_5$. Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$): 1: for all $(n, m) \in \mathcal{E}$ do if ¬*marked*[*m*] then 2: marked[m] := true.3: DFS-R(G, marked, m). 4: **Algorithm** DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(G, marked, s). In₄ n_1

 n_0

	•	
	<i>n</i> ₁	false
	<i>n</i> ₂	true
	<i>n</i> ₃	true
markad -	n_4	false
такей –	n_5	true
	n ₆	false
	n 7	true
	<i>n</i> ₈	false
	n 9	true

 n_{0}

Traversing undirected graphs: Depth-first Called with $n = n_3, n_2, n_7, n_0, n_9, n_5$. Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$): 1: for all $(n, m) \in \mathcal{E}$ do if ¬marked[m] then 2: marked[m] := true.3: 4: DFS-R(G, marked, m). **Algorithm** DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(G, marked, s). ľn₄ no n_1 n_5 n_0

 n_8

Traversing undirected graphs: Depth-first Called with $n = n_3, n_2, n_7, n_0, n_9, n_5, n_6$. Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$): 1: for all $(n, m) \in \mathcal{E}$ do if ¬*marked*[*m*] then 2: marked[m] := true.3: DFS-R(G, marked, m). 4: **Algorithm** DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): m 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(G, marked, s). In₄ n_1 n_0

	<i>n</i> ₁	false
	<i>n</i> ₂	true
	n 3	true
arkad -	<i>n</i> ₄	false
агкеа =	n_5	true
	<i>n</i> ₆	true
	n 7	true
	n_8	false
	n 9	true

n

Traversing undirected graphs: Depth-first Called with $n = n_3, n_2, n_7, n_0, n_9, n_5, n_6$. Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$): 1: for all $(n, m) \in \mathcal{E}$ do if ¬*marked*[*m*] then 2: marked[m] := true.3: DFS-R(G, marked, m). 4: **Algorithm** DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): ma 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(G, marked, s). In₄ n_1 n_0

	0	
	<i>n</i> ₁	false
	<i>n</i> ₂	true
	n 3	true
rked =	<i>n</i> ₄	false
	n_5	true
	<i>n</i> ₆	true
	n 7	true
	<i>n</i> ₈	false
	n 9	true

 n_{0}

Traversing undirected graphs: Depth-first Called with $n = n_3, n_2, n_7, n_0, n_9, n_5$. Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$): 1: for all $(n, m) \in \mathcal{E}$ do if ¬*marked*[*m*] then 2: marked[m] := true.3: DFS-R(G, marked, m). 4: **Algorithm** DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(G, marked, s). In₄ n_1 n_0

	<i>n</i> ₁	false
	<i>n</i> ₂	true
	n 3	true
marked -	<i>n</i> ₄	false
markea =	n_5	true
	<i>n</i> ₆	true
	n_7	true
	n_8	false
	n 9	true
		ι

n

Traversing undirected graphs: Depth-first Called with $n = n_3, n_2, n_7, n_0, n_9$. Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$): 1: for all $(n, m) \in \mathcal{E}$ do if ¬*marked*[*m*] then 2: marked[m] := true.3: DFS-R(G, marked, m). 4: **Algorithm** DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(G, marked, s). Tn₄ n_1 n n_0

	n_1	false
	n_2	true
	<i>n</i> 3	true
arkad -	n_4	false
arkea =	n_5	true
	<i>n</i> ₆	true
	n_7	true
	n_8	false
	n 9	true
		·

n

n

Traversing undirected graphs: Depth-first	
Called with $n = n_3, n_2, n_7, n_0$.	
Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$):	
1: for all $(n, m) \in \mathcal{E}$ do	
2: if \neg marked[m] then	
3: $marked[m] := true.$	
4: DFS-R(\mathcal{G} , marked, m).	
Algorithm DepthFirstR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$):	markad
5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }.	тагкеа
6: DFS-R(\mathcal{G} , marked, s).	

	n_0	true
	<i>n</i> ₁	false
	<i>n</i> ₂	true
	n 3	true
arked =	n_4	false
	n_5	true
	n 6	true
	n 7	true
	n_8	false
	n 9	true

Traversing undirected graphs: Depth-first Called with $n = n_3, n_2, n_7, n_0, n_4$. Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$): 1: for all $(n, m) \in \mathcal{E}$ do if ¬*marked*[*m*] then 2: marked[m] := true.3: DFS-R(G, marked, m). 4: **Algorithm** DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): mar 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(G, marked, s). In₄ n_1

	n_0	true
	<i>n</i> ₁	false
	<i>n</i> ₂	true
	<i>n</i> ₃	true
-kod –	<i>n</i> ₄	true
keu –	n_5	true
	<i>n</i> ₆	true
	n_7	true
	n_8	false
	n 9	true
Traversing undirected graphs: Depth-first Called with $n = n_3, n_2, n_7, n_0, n_4$. Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$): 1: for all $(n, m) \in \mathcal{E}$ do if ¬*marked*[*m*] then 2: marked[m] := true.3: DFS-R(G, marked, m). 4: **Algorithm** DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(G, marked, s). n_{A} n_1 n_0

rked =	<i>n</i> ₁	false
	n_2	true
	n_3	true
	n_4	true
	n_5	true
	$d = \frac{n_1}{n_2} \\ n_3 \\ n_4 \\ n_5 \\ n_6 \\ n_7 \\ n_8 \\ n_9 \\ n_9$	true
	n_7	true
	n_8	false
	n 9	true

ma

n

true

Traversing undirected graphs: Depth-first		
Called with $n = n_3, n_2, n_7, n_0$.		
Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$): 1: for all $(n, m) \in \mathcal{E}$ do		
2: if \neg marked[m] then		n_0
3: $marked[m] := true.$		n_1
4: DFS-R(\mathcal{G} , marked, m).		n_2
		n_3
Algorithm DepthFirstR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$):		n_4
5: marked := $\{n \mapsto (n \neq s) \mid n \in \mathcal{N}\}.$	тагкеа =	n_5
6: DFS-R(<i>G</i> , <i>marked</i> , <i>s</i>).		<i>n</i> ₆
		n 7
n_6 n_9 n_4		<i>n</i> ₈
n_5 n_1 n_0 n_7		n 9
n ₈ n ₃ n ₂		

true false true true true true true true false true

Traversing undirected graphs: Depth-first Called with $n = n_3, n_2, n_7$.

Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- if ¬marked[m] then 2: n marked[m] := true.false 3: n_1 DFS-R(G, marked, m). 4: 5 **Algorithm** DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): mar
 - 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(G, marked, s).

	"2	cruc
ked =	n 3	true
	n_4	true
	n_5	true
	<i>n</i> ₆	true
	n_7	true
	n_8	false
	n 9	true

true

truc

Traversing undirected graphs: Depth-first Called with $n = n_3$, n_2 .

Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: if \neg marked[m] then 3: marked[m] := true. 4: DFS-R(\mathcal{G} , marked, m). Algorithm DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): n₄

5: marked :=
$$\{n \mapsto (n \neq s) \mid n \in N\}$$
.
6: DFS-R(\mathcal{G} , marked, s).

marked =	n_2	true
	n 3	true
	<i>n</i> ₄	true
	n_5	true
	n 6	true
	n 7	true
	n_8	false
	n 9	true

true

false

Traversing undirected graphs: Depth-first Called with $n = n_3$.

Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: if \neg marked[m] then 3: marked[m] := true. 4: DFS-R(\mathcal{G} , marked, m). Algorithm DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): marked = n_4
 - 5: marked := $\{n \mapsto (n \neq s) \mid n \in \mathcal{N}\}$. 6: DFS-R(\mathcal{G} , marked, s).

arked =	n_2	true
	<i>n</i> ₃	true
	<i>n</i> ₄	true
	n_5	true
	<i>n</i> ₆	true
	<i>n</i> ₇	true
	<i>n</i> ₈	false
	n 9	true
		`

true

false

Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$): 1: for all $(n, m) \in \mathcal{E}$ do if ¬*marked*[*m*] then 2: true n marked[m] := true.false 3: n_1 DFS-R(G, marked, m). 4: **Algorithm** DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): ma 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(G, marked, s).

arked =	n_2	true
	n 3	true
	<i>n</i> ₄	true
	n_5	true
	<i>n</i> ₆	true
	n_7	true
	n_8	false
	n 9	true

What can we learn from this depth-first search?

What can we learn from this depth-first search?

• We found all nodes to which n_3 is *connected* (nodes one can reach from n_3).

What can we learn from this depth-first search?

- We found all nodes to which n_3 is *connected* (nodes one can reach from n_3).
- ► *G* is *not* a connected graph.

What can we learn from this depth-first search?

- We found all nodes to which n_3 is *connected* (nodes one can reach from n_3).
- ► *G* is *not* a connected graph.
- ► The order of recursive calls was:

$$n = n_3, n_2, n_7, n_0, \begin{cases} n_9, n_5, n_6; \\ n_4. \end{cases}$$

This order provides a path from n_3 to *every* node it is connected to!

Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** \neg *marked* [*m*] **then**
- 3: marked[m] := true.
- 4: DFS-R(\mathcal{G} , marked, m).

Algorithm DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(\mathcal{G} , marked, s).

Complexity

Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** \neg *marked* [*m*] **then**
- 3: marked[m] := true.
- 4: DFS-R(\mathcal{G} , marked, m).

Algorithm DEPTHFIRSTR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$): 5: marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }. 6: DFS-R(\mathcal{G} , marked, s).

Complexity

- We need |N| memory for *marked* and the at-most |N| recursive calls.
- We inspect each node once and traverse each edge once: Θ (|N| + |E|) (if we use the adjacency list representation).

Problem

Given an undirected graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$.

Provide an algorithm that can find all connected components in \mathcal{G} .

Problem Given an undirected graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$. Provide an algorithm that can find all connected components in \mathcal{G} .

Solution

Remark: DEPTHFIRSTR(\mathcal{G} , n) will find all nodes in the connected component of n.

.

Problem Given an undirected graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$. Provide an algorithm that can find all connected components in \mathcal{G} .

Solution

Remark: DEPTHFIRSTR(\mathcal{G} , n) will find all nodes in the connected component of n.

Algorithm DFS-CC-R(\mathcal{G} , cc, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** *cc*[*m*] = *unmarked* **then**
- 3: cc[m] := cc[n].
- 4: DFS-CC-R(\mathcal{G} , cc, m).

Algorithm Components($\mathcal{G}, s \in \mathcal{N}$):

- 5: $cc := \{n \mapsto unmarked\}.$
- 6: for all $n \in \mathcal{N}$ do
- 7: **if** cc[n] = unmarked **then**
- 8: cc[n] := n.
- 9: DFS-CC-R(\mathcal{G} , cc, n).

Problem Given an undirected graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$. Provide an algorithm that can find all connected components in \mathcal{G} .

Solution

Remark: DEPTHFIRSTR(G, n) will find all nodes in the connected component of n.

Algorithm DFS-CC-R(\mathcal{G} , cc, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** *cc*[*m*] = *unmarked* **then**
- 3: cc[m] := cc[n].
- 4: DFS-CC-R(\mathcal{G} , cc, m).

Algorithm Components($\mathcal{G}, s \in \mathcal{N}$):

- 5: $cc := \{n \mapsto unmarked\}.$
- 6: for all $n \in \mathcal{N}$ do
- 7: **if** cc[n] = unmarked **then**
- 8: cc[n] := n.
- 9: DFS-CC-R(\mathcal{G} , cc, n).

We inspect each node once and traverse each edge once: $\Theta(|\mathcal{N}| + |\mathcal{E}|)$.

Problem

Given an undirected graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ in which:

- ► the nodes *N* represent competitors;
- the edges \mathcal{E} represent rivalries.

Can we divide the nodes into two teams such that no rivals are in the same team?

Problem

Given an undirected graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ in which:

- ► the nodes *N* represent competitors;
- the edges \mathcal{E} represent rivalries.

Can we divide the nodes into two teams such that no rivals are in the same team?

Definition

Graph G is *bipartite* if we can partition the nodes in two sets such that no two nodes in the same set share an edge.

Problem

Given an undirected graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ in which:

- ► the nodes *N* represent competitors;
- the edges \mathcal{E} represent rivalries.

Can we divide the nodes into two teams such that no rivals are in the same team?

Definition

Graph G is *bipartite* if we can partition the nodes in two sets such that no two nodes in the same set share an edge.

The two-colorability problem

Given an undirected graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$. Find a coloring of the nodes \mathcal{N} (if possible) using two colors such that nodes $(n, m) \in \mathcal{E}$ have different colors.

The two-colorability problem

Given an undirected graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$. Find a coloring of the nodes \mathcal{N} (if possible) using two colors such that nodes $(n, m) \in \mathcal{E}$ have different colors.

Algorithm DFS-TC-R(\mathcal{G} , colors, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** colors[m] = 0 **then**
- 3: colors[m] := -colors[n].
- 4: DFS-TC-R(\mathcal{G} , colors, m).
- 5: **else if** colors[m] = colors[n] **then**
- 6: This graph is *not* bipartite.

- 7: colors := $\{n \mapsto 0 \mid n \in \mathcal{N}\}$.
- 8: for all $n \in \mathcal{N}$ do
- 9: **if** colors[n] = 0 **then**
- 10: colors[n] := 1.
- 11: DFS-TC-R(\mathcal{G} , colors, n).

Algorithm DFS-TC-R(\mathcal{G} , colors, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** colors[m] = 0 **then**
- 3: colors[m] := -colors[n].
- 4: DFS-TC-R(\mathcal{G} , colors, m).
- 5: **else if** colors[m] = colors[n] **then**
- 6: This graph is *not* bipartite.

- 7: colors := $\{n \mapsto 0 \mid n \in \mathcal{N}\}$.
- 8: for all $n \in \mathcal{N}$ do
- 9: **if** colors[n] = 0 **then**
- 10: colors[n] := 1.

11: DFS-TC-R(
$$\mathcal{G}$$
, colors, n).

Algorithm DFS-TC-R(\mathcal{G} , colors, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** colors[m] = 0 **then**
- 3: colors[m] := -colors[n].
- 4: DFS-TC-R(\mathcal{G} , colors, m).
- 5: **else if** colors[m] = colors[n] **then**
- 6: This graph is *not* bipartite.

- 7: colors := $\{n \mapsto 0 \mid n \in \mathcal{N}\}$.
- 8: for all $n \in \mathcal{N}$ do
- 9: **if** colors[n] = 0 **then**
- 10: colors[n] := 1.

11: DFS-TC-R(
$$\mathcal{G}$$
, colors, n).

Algorithm DFS-TC-R(\mathcal{G} , colors, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** colors[m] = 0 **then**
- 3: colors[m] := -colors[n].
- 4: DFS-TC-R(\mathcal{G} , colors, m).
- 5: **else if** colors[m] = colors[n] **then**
- 6: This graph is *not* bipartite.

- 7: colors := $\{n \mapsto 0 \mid n \in \mathcal{N}\}$.
- 8: for all $n \in \mathcal{N}$ do
- 9: **if** colors[n] = 0 **then**
- 10: colors[n] := 1.

11: DFS-TC-R(
$$\mathcal{G}$$
, colors, n).

Algorithm DFS-TC-R(\mathcal{G} , colors, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** colors[m] = 0 **then**
- 3: colors[m] := -colors[n].
- 4: DFS-TC-R(\mathcal{G} , colors, m).
- 5: **else if** colors[m] = colors[n] **then**
- 6: This graph is *not* bipartite.

- 7: colors := $\{n \mapsto 0 \mid n \in \mathcal{N}\}$.
- 8: for all $n \in \mathcal{N}$ do
- 9: **if** colors[n] = 0 **then**
- 10: colors[n] := 1.

11: DFS-TC-R(
$$\mathcal{G}$$
, colors, n).

Algorithm DFS-TC-R(\mathcal{G} , colors, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** colors[m] = 0 **then**
- 3: colors[m] := -colors[n].
- 4: DFS-TC-R(\mathcal{G} , colors, m).
- 5: **else if** colors[m] = colors[n] **then**
- 6: This graph is *not* bipartite.

- 7: colors := $\{n \mapsto 0 \mid n \in \mathcal{N}\}$.
- 8: for all $n \in \mathcal{N}$ do
- 9: **if** colors[n] = 0 **then**
- 10: colors[n] := 1.

11: DFS-TC-R(
$$\mathcal{G}$$
, colors, n).

Algorithm DFS-TC-R(\mathcal{G} , colors, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** colors[m] = 0 **then**
- 3: colors[m] := -colors[n].
- 4: DFS-TC-R(\mathcal{G} , colors, m).
- 5: **else if** colors[m] = colors[n] **then**
- 6: This graph is *not* bipartite.

- 7: colors := $\{n \mapsto 0 \mid n \in \mathcal{N}\}$.
- 8: for all $n \in \mathcal{N}$ do
- 9: **if** colors[n] = 0 **then**
- 10: colors[n] := 1.

11: DFS-TC-R(
$$\mathcal{G}$$
, colors, n).

Algorithm DFS-TC-R(\mathcal{G} , colors, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** colors[m] = 0 **then**
- 3: colors[m] := -colors[n].
- 4: DFS-TC-R(\mathcal{G} , colors, m).
- 5: **else if** colors[m] = colors[n] **then**
- 6: This graph is *not* bipartite.

- 7: colors := $\{n \mapsto 0 \mid n \in \mathcal{N}\}$.
- 8: for all $n \in \mathcal{N}$ do
- 9: **if** colors[n] = 0 **then**
- 10: colors[n] := 1.

11: DFS-TC-R(
$$\mathcal{G}$$
, colors, n).

Algorithm DFS-TC-R(\mathcal{G} , colors, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** colors[m] = 0 **then**
- 3: colors[m] := -colors[n].
- 4: DFS-TC-R(\mathcal{G} , colors, m).
- 5: **else if** colors[m] = colors[n] **then**
- 6: This graph is *not* bipartite.

- 7: colors := $\{n \mapsto 0 \mid n \in \mathcal{N}\}$.
- 8: for all $n \in \mathcal{N}$ do
- 9: **if** colors[n] = 0 **then**
- 10: colors[n] := 1.

11: DFS-TC-R(
$$\mathcal{G}$$
, colors, n).

Algorithm DFS-TC-R(\mathcal{G} , colors, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** colors[m] = 0 **then**
- 3: colors[m] := -colors[n].
- 4: DFS-TC-R(\mathcal{G} , colors, m).
- 5: **else if** colors[m] = colors[n] **then**
- 6: This graph is *not* bipartite.

- 7: colors := $\{n \mapsto 0 \mid n \in \mathcal{N}\}$.
- 8: for all $n \in \mathcal{N}$ do
- 9: **if** colors[n] = 0 **then**
- 10: colors[n] := 1.

11: DFS-TC-R(
$$\mathcal{G}$$
, colors, n).

Algorithm DFS-TC-R(\mathcal{G} , colors, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** colors[m] = 0 **then**
- 3: colors[m] := -colors[n].
- 4: DFS-TC-R(\mathcal{G} , colors, m).
- 5: **else if** colors[m] = colors[n] **then**
- 6: This graph is *not* bipartite.

- 7: colors := $\{n \mapsto 0 \mid n \in \mathcal{N}\}$.
- 8: for all $n \in \mathcal{N}$ do
- 9: **if** colors[n] = 0 **then**
- 10: colors[n] := 1.
- 11: DFS-TC-R(\mathcal{G} , colors, n).

Algorithm DFS-TC-R(\mathcal{G} , colors, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** colors[m] = 0 **then**
- 3: colors[m] := -colors[n].
- 4: DFS-TC-R(\mathcal{G} , colors, m).
- 5: **else if** colors[m] = colors[n] **then**
- 6: This graph is *not* bipartite.

Algorithm $TwoColors(\mathcal{G})$:

- 7: colors := $\{n \mapsto 0 \mid n \in \mathcal{N}\}$.
- 8: for all $n \in \mathcal{N}$ do
- 9: **if** colors[n] = 0 **then**
- 10: colors[n] := 1.
- 11: DFS-TC-R(\mathcal{G} , colors, n).

We inspect each node once and traverse each edge once: $\Theta(|\mathcal{N}| + |\mathcal{E}|)$.

Algorithm $BFS(\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N})$:

- 1: marked := $\{n \mapsto (n \neq s) \mid n \in \mathcal{N}\}.$
- 2: Q := a queue holding only *s*.
- 3: while $\neg Empty(Q)$ do
- 4: n := DEQUEUE(Q).
- 5: **for all** $(n, m) \in \mathcal{E}$ **do**
- 6: **if** \neg *marked*[*m*] **then**
- 7: marked[m] := true.
- 8: ENQUEUE(S, m).

Algorithm $BFS(\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N})$:

- 1: marked := $\{n \mapsto (n \neq s) \mid n \in \mathcal{N}\}.$
- 2: Q := a queue holding only *s*.
- 3: while $\neg Empty(Q)$ do
- 4: n := DEQUEUE(Q).
- 5: **for all** $(n, m) \in \mathcal{E}$ **do**
- 6: **if** \neg *marked*[*m*] **then**
- 7: marked[m] := true.
- 8: ENQUEUE(S, m).

Alg	gorithm BFS($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$):		
1:	marked := { $n \mapsto (n \neq s) \mid n \in \mathcal{N}$ }.		
2:	<i>Q</i> := a queue holding only <i>s</i> .	<i>n</i> ₀	false
3:	while $\neg EMPTY(Q)$ do	<i>n</i> ₁	false
4:	n := Dequeue(Q).	<i>n</i> ₂	false
5:	for all $(n, m) \in \mathcal{E}$ do	<i>n</i> ₃	true
6:	if ¬marked[m] then	marked $= n_4$	false
7:	marked[m] := true.	n_{1}	false
8:	Enqueue(S,m).	<i>n</i> ₆	false
	• • •	n ₇	false

false

false

 n_8

n9

Traversing undirected graphs: Breadth-first $Q : [n_3]$.

- Algorithm BFS($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$):
 - 1: marked := $\{n \mapsto (n \neq s) \mid n \in \mathcal{N}\}.$
 - 2: Q := a queue holding only *s*.
 - 3: while $\neg Empty(Q)$ do
 - 4: n := DEQUEUE(Q).
 - 5: for all $(n, m) \in \mathcal{E}$ do
 - 6: **if** \neg *marked*[*m*] **then**
 - 7: marked[m] := true.
 - 8: ENQUEUE(S, m).

marked =	n_0	false
	<i>n</i> ₁	false
	<i>n</i> ₂	false
	n 3	true
	<i>n</i> ₄	false
	n_5	false
	<i>n</i> ₆	false
	n_7	false
	n_8	false
	n 9	false

Traversing undirected graphs: Breadth-first			
$Q : [n_0, n_2], n = n_3.$			
Algorithm BFS($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$):			
1: marked := $\{n \mapsto (n \neq s) \mid n \in \mathcal{N}\}$.			
2: $Q := a$ queue holding only s.		n_0	true
3: while $\neg EMPTY(Q)$ do		<i>n</i> ₁	false
4: $n := \text{DEQUEUE}(Q)$.		<i>n</i> ₂	true
5: for all $(n, m) \in \mathcal{E}$ do		<i>n</i> ₃	true
6: if \neg <i>marked</i> [<i>m</i>] then	marked -	<i>n</i> ₄	false
7: $marked[m] := true.$	markeu –	<i>n</i> 5	false
8: $ENQUEUE(S, m)$.		<i>n</i> ₆	false
• •		<i>n</i> ₇	false
n_6 n_9 n_4		<i>n</i> ₈	false
		n 9	false
n_5 n_1 n_0			

 \bullet_{n_8}

n₃

 n_2
raversing undirected graphs: Breadth-first		
$Q: [n_2, n_7, n_4, n_9], n = n_0.$		
Algorithm $BFS(\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N})$:		
1: marked := $\{n \mapsto (n \neq s) \mid n \in \mathcal{N}\}.$		
2: $Q := a$ queue holding only s.	n_0	true
3: while $\neg EMPTY(Q)$ do	<i>n</i> ₁	false
4: $n := \text{DEQUEUE}(Q)$.	<i>n</i> ₂	true
5: for all $(n, m) \in \mathcal{E}$ do	<i>n</i> ₃	true
6: if \neg marked[m] then	$n_4 - n_4$	true
7: $marked[m] := true.$	n_5	false
8: $ENQUEUE(S, m)$.	<i>n</i> ₆	false
• •	<i>n</i> ₇	true
	<i>n</i> ₈	false
	n 9	true
n_5 n_1 n_0		
n_8 n_3 n_2		

Fraversing undirected graphs: Breadth-first			
$Q: [n_7, n_4, n_9], n = n_2.$			
Algorithm BFS($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$):			
1: marked := $\{n \mapsto (n \neq s) \mid n \in \mathcal{N}\}$.			
2: $Q := a$ queue holding only s.	ı	n_0	true
3: while $\neg EMPTY(Q)$ do	ı	n_1	false
4: $n := \text{DEQUEUE}(Q)$.	ı	n_2	true
5: for all $(n, m) \in \mathcal{E}$ do		n_3	true
6: if \neg <i>marked</i> [<i>m</i>] then	marked - 1	n_4	true
7: $marked[m] := true.$	narkea = 1	n_5	false
8: $ENQUEUE(S, m)$.		n_6	false
• •		n_7	true
n_6 n_9 n_4 r	n_8	false	
	ı	n 9	true
n_5 n_1 n_0			

 n_8

*n*₃

-

Fraversing undirected graphs: Breadth-first			
$Q: [n_4, n_9], n = n_7.$			
Algorithm BFS($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$):			
1: marked := $\{n \mapsto (n \neq s) \mid n \in \mathcal{N}\}.$			
2: $Q := a$ queue holding only s.		n_0	true
3: while $\neg EMPTY(Q)$ do		<i>n</i> ₁	false
4: n := DEQUEUE(Q).		<i>n</i> ₂	true
5: for all $(n, m) \in \mathcal{E}$ do	<i>n</i> ₃	true	
6: if ¬ <i>marked</i> [<i>m</i>] then	6: if \neg marked[m] then	<i>n</i> ₄	true
7: $marked[m] := true.$	тагкеа =	n 5	false
8: $ENQUEUE(S, m)$.		<i>n</i> ₆	false
• •		<i>n</i> ₇	true
n_6 n_9 n_4		<i>n</i> 8	false
		n 9	true
n_5 n_1 n_0			
n_8 n_3 n_2			

-

Traversing undirected graphs: Breadth-first		
$Q: [n_9], n = n_4.$		
Algorithm BFS($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$):		
1: marked := $\{n \mapsto (n \neq s) \mid n \in \mathcal{N}\}.$		
2: $Q := a$ queue holding only s.	n_0	true
3: while $\neg EMPTY(Q)$ do	<i>n</i> ₁	false
4: $n := \text{DEQUEUE}(Q)$.	<i>n</i> ₂	true
5: for all $(n, m) \in \mathcal{E}$ do	<i>n</i> ₃	true
6: if \neg <i>marked</i> [<i>m</i>] then	marked $- \frac{n_4}{n_4}$	true
7: $marked[m] := true.$	n_5	false
8: $ENQUEUE(S, m)$.	<i>n</i> ₆	false
• • ••	<i>n</i> ₇	true
n_6 n_9 n_4	n ₈	false

 n_5 n_1 n_0

 n_8

Dn7

true

n9

Frave	rsing undirected graphs: Breadth-first			
Q : [n_6, n_5], $n = n_9$.			
Alg	prithm BFS($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$):			
1: 1	$marked := \{ n \mapsto (n \neq s) \mid n \in \mathcal{N} \}.$			
2:	Q := a queue holding only <i>s</i> .		n_0	true
3:	while $\neg EMPTY(Q)$ do		<i>n</i> ₁	false
4:	4: $n := \text{DEQUEUE}(Q).$ n 5:for all $(n, m) \in \mathcal{E}$ do n 6:if \neg marked $[m]$ then m and n	<i>n</i> ₂	true	
5:		<i>n</i> 3	true	
6:		<i>n</i> 4	true	
7:	marked[m] := true.	markeu –	<i>n</i> 5	true
8:	Enqueue(S,m).	(\overline{S}, m) . n_{θ}	<i>n</i> ₆	true
	• • •		<i>n</i> ₇	true
	n_6 n_9 n_4		<i>n</i> ₈	false
		n 9	true	
	n_5 n_1 n_0 n_2 n_3 n_2			

-

Traversing undirected graphs: Breadth-first		
$Q: [n_5], n = n_6.$		
Algorithm BFS($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$):		
1: marked := $\{n \mapsto (n \neq s) \mid n \in \mathcal{N}\}.$		
2: $Q := a$ queue holding only s.	n_0	true
3: while $\neg EMPTY(Q)$ do	<i>n</i> ₁	false
4: $n := \text{DEQUEUE}(Q)$.	n_2	true
5: for all $(n, m) \in \mathcal{E}$ do	n 3	true
6: if \neg marked[m] then marked =	n_4	true
7: $marked[m] := true.$	n_5	true
8: $ENQUEUE(S, m)$.	<i>n</i> ₆	true
n n	n_7	true
n_6 n_9 n_4	n_8	false

true

 n_{9}

Traversing undirected graphs: Breadth-first		
$Q:[], n = n_5.$		
Algorithm BFS($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$):		
1: marked := $\{n \mapsto (n \neq s) \mid n \in \mathcal{N}\}.$		
2: $Q := a$ queue holding only s.	n_0	true
3: while $\neg \text{Empty}(Q)$ do	n_1	false
4: $n := \text{DEQUEUE}(Q)$.	<i>n</i> ₂	true
5: for all $(n, m) \in \mathcal{E}$ do	<i>n</i> ₃	true
6: if \neg marked[m] then marked =	n_4	true
7: $marked[m] := true.$	n_5	true
8: $ENQUEUE(S, m)$.	<i>n</i> ₆	true
• • r	n_7	true
n_6 n_9 n_4	n_8	false

true

n9

What can we learn from this breadth-first search?

What can we learn from this breadth-first search?

• We found all nodes to which n_3 is *connected* (nodes one can reach from n_3).

What can we learn from this breadth-first search?

- We found all nodes to which n_3 is *connected* (nodes one can reach from n_3).
- ► *G* is *not* a connected graph.

What can we learn from this breadth-first search?

- We found all nodes to which n_3 is *connected* (nodes one can reach from n_3).
- ► *G* is *not* a connected graph.

Breadth-first search is *similar* to depth-first search!

Complexity

- We need $|\mathcal{N}|$ memory for *marked*.
- We inspect each node once and traverse each edge once: Θ (|N| + |E|) (if we use the adjacency list representation).

Problem

Given an undirected graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ without weight and node $s \in \mathcal{N}$, find a shortest path from node *s* to all nodes *s* can reach.

Problem

Given an undirected graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ without weight and node $s \in \mathcal{N}$, find a shortest path from node *s* to all nodes *s* can reach.

Observe

Breadth-first search visits nodes on increasing distance to *s*. First: all nodes at distance 1, then all nodes at distance 2,

Problem

Given an undirected graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ without weight and node $s \in \mathcal{N}$, find a shortest path from node *s* to all nodes *s* can reach.

- 1: *distance* := { $n \mapsto \infty \mid n \in \mathcal{N}$ }.
- 2: distance[s] := 0.
- 3: Q := a queue holding only *s*.
- 4: while $\neg \text{Empty}(Q)$ do
- 5: n := DEQUEUE(Q).
- 6: for all $(n, m) \in \mathcal{E}$ do
- 7: **if** $distance[m] = \infty$ **then**
- 8: distance[m] := distance[n] + 1.
- 9: ENQUEUE(Q, m).

- 1: distance := $\{n \mapsto \infty \mid n \in \mathcal{N}\}.$
- 2: distance[s] := 0.
- 3: Q := a queue holding only s.
- 4: while $\neg \text{Empty}(Q)$ do
- 5: n := DEQUEUE(Q).
- 6: for all $(n, m) \in \mathcal{E}$ do
- 7: **if** $distance[m] = \infty$ **then**
- 8: distance[m] := distance[n] + 1.
- 9: ENQUEUE(Q, m).

- 1: distance := $\{n \mapsto \infty \mid n \in \mathcal{N}\}.$
- 2: distance[s] := 0.
- 3: Q := a queue holding only s.
- 4: while $\neg \text{Empty}(Q)$ do
- 5: n := DEQUEUE(Q).
- 6: for all $(n, m) \in \mathcal{E}$ do
- 7: **if** $distance[m] = \infty$ **then**
- 8: distance[m] := distance[n] + 1.
- 9: ENQUEUE(Q, m).

- 1: distance := { $n \mapsto \infty \mid n \in \mathcal{N}$ }.
- 2: distance[s] := 0.
- 3: Q := a queue holding only s.
- 4: while $\neg \text{Empty}(Q)$ do
- 5: n := DEQUEUE(Q).
- 6: for all $(n, m) \in \mathcal{E}$ do
- 7: **if** $distance[m] = \infty$ **then**
- 8: distance[m] := distance[n] + 1.
- 9: ENQUEUE(Q, m).

- 1: distance := { $n \mapsto \infty \mid n \in \mathcal{N}$ }.
- 2: distance[s] := 0.
- 3: Q := a queue holding only s.
- 4: while $\neg \text{Empty}(Q)$ do
- 5: n := DEQUEUE(Q).
- 6: for all $(n, m) \in \mathcal{E}$ do
- 7: **if** $distance[m] = \infty$ **then**
- 8: distance[m] := distance[n] + 1.
- 9: ENQUEUE(Q, m).

- 1: distance := { $n \mapsto \infty \mid n \in \mathcal{N}$ }.
- 2: distance[s] := 0.
- 3: Q := a queue holding only s.
- 4: while $\neg \text{Empty}(Q)$ do
- 5: n := DEQUEUE(Q).
- 6: for all $(n, m) \in \mathcal{E}$ do
- 7: **if** $distance[m] = \infty$ **then**
- 8: distance[m] := distance[n] + 1. include(n, m) in the shortest path.
- 9: ENQUEUE(Q, m).

Algorithm BFS-SSSP($\mathcal{G}, s \in \mathcal{N}$):

- 1: distance := $\{n \mapsto \infty \mid n \in \mathcal{N}\}.$
- 2: distance[s] := 0.
- 3: Q := a queue holding only *s*.
- 4: while $\neg \text{Empty}(Q)$ do
- 5: n := DEQUEUE(Q).
- 6: for all $(n, m) \in \mathcal{E}$ do
- 7: **if** $distance[m] = \infty$ **then**
- 8: distance[m] := distance[n] + 1. include(n, m) in the shortest path.
- 9: ENQUEUE(Q, m).

We inspect each node once and traverse each edge once: $\Theta(|\mathcal{N}| + |\mathcal{E}|)$.

Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** \neg *marked*[*m*] **then**
- 3: marked[m] := true.
- 4: DFS-R(\mathcal{G} , marked, m).

Algorithm DepthFirstR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$):

5: marked := {
$$n \mapsto (n \neq s) \mid n \in \mathcal{N}$$
}.

6: DFS-R(\mathcal{G} , marked, s).

Same algorithm as for *undirected* graphs.

Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** \neg *marked*[*m*] **then**
- 3: marked[m] := true.
- 4: DFS-R(\mathcal{G} , marked, m).

Algorithm DepthFirstR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$):

5: marked := {
$$n \mapsto (n \neq s) \mid n \in \mathcal{N}$$
}.

Same algorithm as for *undirected* graphs.

Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** \neg *marked*[*m*] **then**
- 3: marked[m] := true.
- 4: DFS-R(\mathcal{G} , marked, m).

Algorithm DepthFirstR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$):

5: marked := {
$$n \mapsto (n \neq s) \mid n \in \mathcal{N}$$
}.

Same algorithm as for *undirected* graphs.

Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** \neg *marked*[*m*] **then**
- 3: marked[m] := true.
- 4: DFS-R(\mathcal{G} , marked, m).

Algorithm DepthFirstR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$):

5: marked := {
$$n \mapsto (n \neq s) \mid n \in \mathcal{N}$$
}.

Same algorithm as for *undirected* graphs.

Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** \neg *marked*[*m*] **then**
- 3: marked[m] := true.
- 4: DFS-R(\mathcal{G} , marked, m).

Algorithm DepthFirstR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$):

5: marked := {
$$n \mapsto (n \neq s) \mid n \in \mathcal{N}$$
}.

Same algorithm as for *undirected* graphs.

Algorithm DFS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** \neg *marked*[*m*] **then**
- 3: marked[m] := true.
- 4: DFS-R(\mathcal{G} , marked, m).

Algorithm DepthFirstR($\mathcal{G} = (\mathcal{N}, \mathcal{E}), s \in \mathcal{N}$):

5: marked := {
$$n \mapsto (n \neq s) \mid n \in \mathcal{N}$$
}.

What can we learn from this depth-first search?

What can we learn from this depth-first search?

• We found all nodes to which n_3 is *strongly connected* (nodes one can reach from n_3).

What can we learn from this depth-first search?

- We found all nodes to which n_3 is *strongly connected* (nodes one can reach from n_3).
- ► The order of recursive calls was:

$$n=n_3, n_0, \begin{cases} n_7;\\ n_4. \end{cases}$$

This order provides a path from n_3 to *every* node it is strongly connected to!

What can we learn from this depth-first search?

- We found all nodes to which n_3 is *strongly connected* (nodes one can reach from n_3).
- The order of recursive calls was:

$$n=n_3, n_0, \begin{cases} n_7;\\ n_4. \end{cases}$$

This order provides a path from n_3 to *every* node it is strongly connected to!

Depth-first search does *not* tell us whether a graph is strongly connected!

- 1: marked := $\{n \mapsto (n \neq s) \mid n \in \mathcal{N}\}.$
- 2: Q := a queue holding only *s*.
- 3: while $\neg \text{Empty}(Q)$ do
- 4: n := DEQUEUE(Q).
- 5: **for all** $(n, m) \in \mathcal{E}$ **do**
- 6: **if** \neg *marked*[*m*] **then**
- 7: marked[m] := true.
- 8: ENQUEUE(S, m).

Same algorithm as for *undirected* graphs.

- 1: marked := $\{n \mapsto (n \neq s) \mid n \in \mathcal{N}\}.$
- 2: Q := a queue holding only *s*.
- 3: while $\neg Empty(Q)$ do
- 4: n := DEQUEUE(Q).
- 5: **for all** $(n, m) \in \mathcal{E}$ **do**
- 6: **if** \neg *marked*[*m*] **then**
- 7: marked[m] := true.
- 8: ENQUEUE(S, m).

Same algorithm as for *undirected* graphs.

- 1: marked := $\{n \mapsto (n \neq s) \mid n \in \mathcal{N}\}.$
- 2: Q := a queue holding only *s*.
- 3: while $\neg Empty(Q)$ do
- 4: n := DEQUEUE(Q).
- 5: **for all** $(n, m) \in \mathcal{E}$ **do**
- 6: **if** \neg *marked*[*m*] **then**
- 7: marked[m] := true.
- 8: ENQUEUE(S, m).

Same algorithm as for *undirected* graphs.

- 1: marked := $\{n \mapsto (n \neq s) \mid n \in \mathcal{N}\}.$
- 2: Q := a queue holding only *s*.
- 3: while $\neg Empty(Q)$ do
- 4: n := DEQUEUE(Q).
- 5: **for all** $(n, m) \in \mathcal{E}$ **do**
- 6: **if** \neg *marked*[*m*] **then**
- 7: marked[m] := true.
- 8: ENQUEUE(S, m).

Same algorithm as for *undirected* graphs.

- 1: marked := $\{n \mapsto (n \neq s) \mid n \in \mathcal{N}\}.$
- 2: Q := a queue holding only *s*.
- 3: while $\neg Empty(Q)$ do
- 4: n := DEQUEUE(Q).
- 5: **for all** $(n, m) \in \mathcal{E}$ **do**
- 6: **if** \neg *marked*[*m*] **then**
- 7: marked[m] := true.
- 8: ENQUEUE(S, m).

Traversing directed graphs: Breadth-first

What can we learn from this breadth-first search?

Traversing directed graphs: Breadth-first

What can we learn from this breadth-first search?

• We found all nodes to which n_3 is *strongly connected* (nodes one can reach from n_3).

Traversing directed graphs: Breadth-first

What can we learn from this breadth-first search?

- We found all nodes to which n_3 is *strongly connected* (nodes one can reach from n_3).
- We can also easily find shortest directed paths node n_3 can reach.

Problem

We can only satisfy the schedule if the graph of dependencies is *acyclic*: *Acylcic graph*: there are *no* directed cycles.

Problem

We can only satisfy the schedule if the graph of dependencies is *acyclic*: *Acylcic graph*: there are *no* directed cycles.

There is no path with at-least one edge from a node *n* to itself.

Find a *directed* cycle: a path from a node to itself Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$.

Find a *directed* cycle: a path from a node to itself Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$.

Find a *directed* cycle: a path from a node to itself Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$.

Assume node *m* is the fist node visited during depth-first search with a path to itself.

• The traversal started at node *s* and we visited the path $sn_1 \dots n_i m$ to reach *m*.

Find a *directed* cycle: a path from a node to itself Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$.

- The traversal started at node *s* and we visited the path $sn_1 \dots n_i m$ to reach *m*.
- *m* cannot reach any of $sn_1 \dots n_i$: *m* is the *first* node on a cycle.

Find a *directed* cycle: a path from a node to itself Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$.

- The traversal started at node *s* and we visited the path $sn_1 \dots n_i m$ to reach *m*.
- *m* cannot reach any of $sn_1 \dots n_i$: *m* is the *first* node on a cycle.
- From *m*, we will visit a path $mn'_1 \dots n'_j w$ to some node *w* such that node *w* has an edge to node *n*. *Why*?

Find a *directed* cycle: a path from a node to itself Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$.

- The traversal started at node *s* and we visited the path $sn_1 \dots n_i m$ to reach *m*.
- *m* cannot reach any of $sn_1 \dots n_i$: *m* is the *first* node on a cycle.
- From *m*, we will visit a path $mn'_1 \dots n'_j w$ to some node *w* such that node *w* has an edge to node *n*. *Why*?
 - Node *m* can reach itself as *it is on a cycle*. Hence, if we *started* at node *m*, we will eventually find node *m*.

Find a *directed* cycle: a path from a node to itself Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$.

- The traversal started at node *s* and we visited the path $sn_1 \dots n_i m$ to reach *m*.
- *m* cannot reach any of $sn_1 \dots n_i$: *m* is the *first* node on a cycle.
- From *m*, we will visit a path $mn'_1 \dots n'_j w$ to some node *w* such that node *w* has an edge to node *n*. Why?
 - Node m can reach itself as it is on a cycle. Hence, if we started at node m, we will eventually find node m.
 - We could have started at a node s ≠ m, however. But: the nodes sn₁...n_i are not part of a cycle. Hence, m cannot reach them!

Find a *directed* cycle: a path from a node to itself Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$.

Assume node *m* is the fist node visited during depth-first search with a path to itself.

- The traversal started at node *s* and we visited the path $sn_1 \dots n_i m$ to reach *m*.
- *m* cannot reach any of $sn_1 \dots n_i$: *m* is the *first* node on a cycle.
- From *m*, we will visit a path $mn'_1 \dots n'_j w$ to some node *w* such that node *w* has an edge to node *n*. Why?
 - Node m can reach itself as it is on a cycle. Hence, if we started at node m, we will eventually find node m.
 - We could have started at a node s ≠ m, however. But: the nodes sn₁...n_i are not part of a cycle. Hence, m cannot reach them!

Conclusion. Depth-first search can find cycles:

We simply have to detect nodes that reach themselves!

Find a *directed* cycle: a path from a node to itself Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$.

Algorithm DFS-C-R(\mathcal{G} , marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** marked [m] = unmarked **then**
- 3: marked[m] := inspecting.
- 4: DFS-C-R(\mathcal{G} , marked, m).
- 5: **else if** marked [m] = inspecting **then**
- 6: Found a path that contains a cycle.
- 7: marked[m] := inspected.

- 8: marked := $\{n \mapsto unmarked \mid n \in \mathcal{N}\}$.
- 9: for all $n \in \mathcal{N}$ do
- 10: **if** marked[n] = unmarked **then**
- 11: marked[n] := inspecting.

12: DFS-C-R(
$$\mathcal{G}$$
, marked, n).

Find a *directed* cycle: a path from a node to itself Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$.

Algorithm DFS-C-R(\mathcal{G} , marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** marked [m] = unmarked **then**
- 3: *marked*[*m*] := *inspecting*.
- 4: DFS-C-R(\mathcal{G} , marked, m).
- 5: **else if** *marked*[*m*] = *inspecting* **then**
- 6: Found a path that contains a cycle.
- 7: marked[m] := inspected.

- 8: marked := $\{n \mapsto unmarked \mid n \in \mathcal{N}\}.$
- 9: for all $n \in \mathcal{N}$ do
- 10: **if** marked[n] = unmarked **then**
- 11: marked[n] := inspecting.

12: DFS-C-R(
$$\mathcal{G}$$
, marked, n).

Find a *directed* cycle: a path from a node to itself Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$. Called with $n = n_3$.

Algorithm DFS-C-R(\mathcal{G} , marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** marked [m] = unmarked **then**
- 3: marked[m] := inspecting.
- 4: DFS-C-R(\mathcal{G} , marked, m).
- 5: **else if** *marked*[*m*] = *inspecting* **then**
- 6: Found a path that contains a cycle.
- 7: *marked*[*m*] := *inspected*.

- 8: marked := $\{n \mapsto unmarked \mid n \in \mathcal{N}\}.$
- 9: for all $n \in \mathcal{N}$ do
- 10: **if** marked[n] = unmarked **then**
- 11: marked[n] := inspecting.

12: DFS-C-R(
$$\mathcal{G}$$
, marked, n).

Find a *directed* cycle: a path from a node to itself Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$. Called with $n = n_3, n_0$.

- **Algorithm** DFS-C-R(\mathcal{G} , marked, $n \in \mathcal{N}$):
 - 1: for all $(n, m) \in \mathcal{E}$ do
 - 2: **if** marked [m] = unmarked **then**
 - 3: marked[m] := inspecting.
 - 4: DFS-C-R(\mathcal{G} , marked, m).
 - 5: **else if** marked[m] = inspecting **then**
 - 6: Found a path that contains a cycle.
 - 7: *marked*[*m*] := *inspected*.

Algorithm DFS-CYCLE(G):

- 8: marked := { $n \mapsto unmarked \mid n \in \mathcal{N}$ }.
- 9: for all $n \in \mathcal{N}$ do
- 10: **if** marked[n] = unmarked **then**
- 11: marked[n] := inspecting.

12: DFS-C-R(
$$\mathcal{G}$$
, marked, n).

Find a *directed* cycle: a path from a node to itself Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$. Called with $n = n_3, n_0, n_4$.

Algorithm DFS-C-R(\mathcal{G} , marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** marked [m] = unmarked **then**
- 3: marked[m] := inspecting.
- 4: DFS-C-R(\mathcal{G} , marked, m).
- 5: **else if** *marked*[*m*] = *inspecting* **then**
- 6: Found a path that contains a cycle.
- 7: *marked*[*m*] := *inspected*.

Algorithm DFS-CYCLE(G):

- 8: marked := $\{n \mapsto unmarked \mid n \in \mathcal{N}\}.$
- 9: for all $n \in \mathcal{N}$ do
- 10: **if** marked[n] = unmarked **then**
- 11: marked[n] := inspecting.

12: DFS-C-R(
$$\mathcal{G}$$
, marked, n).

Find a *directed* cycle: a path from a node to itself Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$. Called with $n = n_3, n_0, n_7$.

Algorithm DFS-C-R(\mathcal{G} , marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** marked [m] = unmarked **then**
- 3: marked[m] := inspecting.
- 4: DFS-C-R(\mathcal{G} , marked, m).
- 5: **else if** *marked*[*m*] = *inspecting* **then**
- 6: Found a path that contains a cycle.
- 7: *marked*[*m*] := *inspected*.

- 8: marked := $\{n \mapsto unmarked \mid n \in \mathcal{N}\}$.
- 9: for all $n \in \mathcal{N}$ do
- 10: **if** marked[n] = unmarked **then**
- 11: marked[n] := inspecting.

12: DFS-C-R(
$$\mathcal{G}$$
, marked, n).

Find a *directed* cycle: a path from a node to itself Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$. Called with $n = n_3, n_0, n_7$.

Algorithm DFS-C-R(\mathcal{G} , marked, $n \in \mathcal{N}$):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** marked [m] = unmarked **then**
- 3: *marked*[*m*] := *inspecting*.
- 4: DFS-C-R(\mathcal{G} , marked, m).
- 5: **else if** *marked*[*m*] = *inspecting* **then**
- 6: Found a path that contains a cycle.
- 7: *marked*[*m*] := *inspected*.

Algorithm DFS-CYCLE(G):

- 8: marked := { $n \mapsto unmarked \mid n \in \mathcal{N}$ }.
- 9: for all $n \in \mathcal{N}$ do
- 10: **if** marked[n] = unmarked **then**
- 11: marked[n] := inspecting.

12: DFS-C-R(
$$\mathcal{G}$$
, marked, n).

Problem

To schedule the tasks, we need to order tasks based on their dependencies.

knead dough (10 min)

Problem

To schedule the tasks, we need to order tasks based on their dependencies.

Topological order: an order on nodes such that, for every directed edge (m, n), m is ordered before n.

bake pie (45 min)

Problem

To schedule the tasks, we need to order tasks based on their dependencies.

Topological order: an order on nodes such that, for every directed edge (m, n), m is ordered before n.

We *cannot* have a topological order if the graph is cyclic.

Determine a *topological order*

Depth-first search seems related: if we reach node n after inspecting m, then m should definitely come before n in the order.

Consider first starting depth-first search at n_2 , and then starting at n_0 .

Determine a *topological order*

Depth-first search seems related: if we reach node n after inspecting m, then m should definitely come before n in the order.

Consider first starting depth-first search at n_2 , and then starting at n_0 .

We inspect the nodes in the order: n_2 .

Determine a *topological order*

Depth-first search seems related: if we reach node n after inspecting m, then m should definitely come before n in the order.

Consider first starting depth-first search at n_2 , and then starting at n_0 .

We inspect the nodes in the order: n_2 , n_3 .

Determine a *topological order*

Depth-first search seems related: if we reach node n after inspecting m, then m should definitely come before n in the order.

Consider first starting depth-first search at n_2 , and then starting at n_0 .

We inspect the nodes in the order: n_2 , n_3 , n_4 .

Determine a *topological order*

Depth-first search seems related: if we reach node n after inspecting m, then m should definitely come before n in the order.

Consider first starting depth-first search at n_2 , and then starting at n_0 .

We inspect the nodes in the order: n_2 , n_3 , n_4 , n_0 .

Determine a *topological order*

Depth-first search seems related: if we reach node n after inspecting m, then m should definitely come before n in the order.

Consider first starting depth-first search at n_2 , and then starting at n_0 .

We inspect the nodes in the order: n_2 , n_3 , n_4 , n_0 , n_1 .

Determine a *topological order*

Depth-first search seems related: if we reach node n after inspecting m, then m should definitely come before n in the order.

Consider first starting depth-first search at n_2 , and then starting at n_0 .

We inspect the nodes in the order: n_2 , n_3 , n_4 , n_0 , n_1 .

Determine a *topological order*

Depth-first search seems related: if we reach node n after inspecting m, then m should definitely come before n in the order.

Consider first starting depth-first search at n_2 , and then starting at n_0 .

We inspect the nodes in the order: n_2 , n_3 , n_4 , n_0 , n_1 .

Determine a *topological order*

Depth-first search seems related: if we reach node n after inspecting m, then m should definitely come before n in the order.

Consider first starting depth-first search at n_2 , and then starting at n_0 .

We inspect the nodes in the order: n_2 , n_3 , n_4 , n_0 , n_1 .

Determine a *topological order*

Depth-first search seems related: if we reach node n after inspecting m, then m should definitely come before n in the order.

Consider first starting depth-first search at n_2 , and then starting at n_0 .

We inspect the nodes in the order: n_2 , n_3 , n_4 , n_0 , n_1 .

Determine a topological order

Depth-first search seems related: if we reach node n after inspecting m, then m should definitely come before n in the order.

Consider first starting depth-first search at n_2 , and then starting at n_0 .

We inspect the nodes in the order: n_2 , n_3 , n_4 , n_0 , n_1 .

We annotate depth-first search to collect ordering information: When we *finish* inspecting a node, we add it to the *front* of our order.

We finish inspecting the nodes in the order n_4 .
Determine a topological order

Depth-first search seems related: if we reach node n after inspecting m, then m should definitely come before n in the order.

Consider first starting depth-first search at n_2 , and then starting at n_0 .

We inspect the nodes in the order: n_2 , n_3 , n_4 , n_0 , n_1 .

We annotate depth-first search to collect ordering information: When we *finish* inspecting a node, we add it to the *front* of our order.

We finish inspecting the nodes in the order n_4 , n_3 .

Determine a topological order

Depth-first search seems related: if we reach node n after inspecting m, then m should definitely come before n in the order.

Consider first starting depth-first search at n_2 , and then starting at n_0 .

We inspect the nodes in the order: n_2 , n_3 , n_4 , n_0 , n_1 .

We annotate depth-first search to collect ordering information: When we *finish* inspecting a node, we add it to the *front* of our order.

We finish inspecting the nodes in the order n_4 , n_3 , n_2 .

Determine a topological order

Depth-first search seems related: if we reach node n after inspecting m, then m should definitely come before n in the order.

Consider first starting depth-first search at n_2 , and then starting at n_0 .

We inspect the nodes in the order: n_2 , n_3 , n_4 , n_0 , n_1 .

We annotate depth-first search to collect ordering information: When we *finish* inspecting a node, we add it to the *front* of our order.

We finish inspecting the nodes in the order n_4 , n_3 , n_2 .

Determine a topological order

Depth-first search seems related: if we reach node n after inspecting m, then m should definitely come before n in the order.

Consider first starting depth-first search at n_2 , and then starting at n_0 .

We inspect the nodes in the order: n_2 , n_3 , n_4 , n_0 , n_1 .

We annotate depth-first search to collect ordering information: When we *finish* inspecting a node, we add it to the *front* of our order.

We finish inspecting the nodes in the order n_4 , n_3 , n_2 .

Determine a topological order

Depth-first search seems related: if we reach node n after inspecting m, then m should definitely come before n in the order.

Consider first starting depth-first search at n_2 , and then starting at n_0 .

We inspect the nodes in the order: n_2 , n_3 , n_4 , n_0 , n_1 .

We annotate depth-first search to collect ordering information: When we *finish* inspecting a node, we add it to the *front* of our order.

We finish inspecting the nodes in the order n_4 , n_3 , n_2 , n_1 .

Determine a *topological order*

Depth-first search seems related: if we reach node n after inspecting m, then m should definitely come before n in the order.

Consider first starting depth-first search at n_2 , and then starting at n_0 .

We inspect the nodes in the order: n_2 , n_3 , n_4 , n_0 , n_1 .

We annotate depth-first search to collect ordering information: When we *finish* inspecting a node, we add it to the *front* of our order.

We finish inspecting the nodes in the order n_4 , n_3 , n_2 , n_1 , n_0 .

Determine a *topological order*

Depth-first search seems related: if we reach node n after inspecting m, then m should definitely come before n in the order.

Consider first starting depth-first search at n_2 , and then starting at n_0 .

We inspect the nodes in the order: n_2 , n_3 , n_4 , n_0 , n_1 .

We annotate depth-first search to collect ordering information: When we *finish* inspecting a node, we add it to the *front* of our order.

We finish inspecting the nodes in the order n_4 , n_3 , n_2 , n_1 , n_0 . This ordering is in reverse: we added to the *back* in this example.

Determine a topological order

Depth-first search seems related: if we reach node n after inspecting m, then m should definitely come before n in the order.

Consider first starting depth-first search at n_2 , and then starting at n_0 .

We inspect the nodes in the order: n_2 , n_3 , n_4 , n_0 , n_1 .

We annotate depth-first search to collect ordering information: When we *finish* inspecting a node, we add it to the *front* of our order.

We finish inspecting the nodes in the order n_4 , n_3 , n_2 , n_1 , n_0 . This ordering is in reverse: we added to the *back* in this example.

We need to prove that this is correct!

We annotate depth-first search to collect ordering information: When we *finish* inspecting a node, we add it to the *front* of our order.

Theorem

Let $(m, n) \in \mathcal{E}$ be an edge in an acyclic graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$. Any depth-first search on \mathcal{G} will finish inspecting n before m (hence, m is placed before n in our order).

We annotate depth-first search to collect ordering information: When we *finish* inspecting a node, we add it to the *front* of our order.

Theorem Let $(m, n) \in \mathcal{E}$ be an edge in an acyclic graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$. Any depth-first search on \mathcal{G} will finish inspecting n before m.

Proof. We consider two cases:

- ▶ When we run depth-first search for m, n is already marked.
- When we run depth-first search for m, n is not yet marked.

We annotate depth-first search to collect ordering information: When we *finish* inspecting a node, we add it to the *front* of our order.

Theorem Let $(m, n) \in \mathcal{E}$ be an edge in an acyclic graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$. Any depth-first search on \mathcal{G} will finish inspecting n before m.

Proof. We consider two cases:

- When we run depth-first search for m, n is already marked.
 Graph is acylcic: n cannot reach m, hence we finished inspecting n already.
- When we run depth-first search for m, n is not yet marked.

We annotate depth-first search to collect ordering information: When we *finish* inspecting a node, we add it to the *front* of our order.

Theorem Let $(m, n) \in \mathcal{E}$ be an edge in an acyclic graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$. Any depth-first search on \mathcal{G} will finish inspecting n before m.

Proof. We consider two cases:

- When we run depth-first search for m, n is already marked.
 Graph is acylcic: n cannot reach m, hence we finished inspecting n already.
- When we run depth-first search for m, n is not yet marked.
 We find n while inspecting m, hence we finished inspecting n before m.

Algorithm DFS-TS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$, order):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** \neg *marked*[*m*] **then**
- 3: marked[m] := true.
- 4: DFS-TS-R(\mathcal{G} , marked, m, order).
- 5: Add *n* to the front of *order*.

Algorithm TopologicalSort($\mathcal{G} = (\mathcal{N}, \mathcal{E})$):

- 6: marked, order := $\{n \mapsto \text{false} \mid n \in \mathcal{N}\}, []$.
- 7: for all $n \in \mathcal{N}$ do
- 8: **if** \neg *marked*[*n*] **then**
- 9: marked[n] := true.
- 10: DFS-TS-R(\mathcal{G} , marked, n, order).

11: **return** order.

Algorithm DFS-TS-R($\mathcal{G} = (\mathcal{N}, \mathcal{E})$, marked, $n \in \mathcal{N}$, order):

- 1: for all $(n, m) \in \mathcal{E}$ do
- 2: **if** \neg *marked*[*m*] **then**
- 3: marked[m] := true.
- 4: DFS-TS-R(\mathcal{G} , marked, m, order).
- 5: Add *n* to the front of *order*.

Algorithm TopologicalSort($\mathcal{G} = (\mathcal{N}, \mathcal{E})$):

- 6: marked, order := $\{n \mapsto \text{false} \mid n \in \mathcal{N}\}, [].$
- 7: for all $n \in \mathcal{N}$ do
- 8: **if** \neg *marked*[*n*] **then**
- 9: marked[n] := true.
- 10: DFS-TS-R(\mathcal{G} , marked, n, order).

11: **return** order.

We can easily integrate a cycle-detection step into TOPOLOGICALSORT.

Problem: Reverse reachability

Consider a directed graph $G = (N, \mathcal{E})$ and node *s*. *Depth-first search* can find all nodes reachable from node *s*.

Problem: Reverse reachability

Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ and node *s*. *Depth-first search* can find all nodes reachable from node *s*.

Problem: Reverse reachability

How to find all nodes that can reach node s?

E.g., in a one-way communication network: which participants can communicate messages to *s*?

Problem: Reverse reachability

Consider a directed graph $G = (N, \mathcal{E})$ and node *s*. *Depth-first search* can find all nodes reachable from node *s*.

Problem: Reverse reachability

How to find all nodes that can reach node s?

E.g., in a one-way communication network: which participants can communicate messages to *s*?

Solution

Reverse all edges in \mathcal{G} and perform depth-first search on the resulting graph. Hence, DepthFirstR(\mathcal{G}' , s) with $\mathcal{G}' = (\mathcal{N}, \{(n, m) \mid (m, n) \in \mathcal{E}\}).$

Problem

Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ in which

- the nodes N represent network devices; and
- the edges \mathcal{E} are network connections.

Can all network devices communicate with all other network devices?

Problem

Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ in which

- the nodes N represent network devices; and
- the edges \mathcal{E} are network connections.

Can all network devices communicate with all other network devices?

Problem

Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$.

A graph is *strongly connected* if all node pairs are strongly connected.

Problem Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$. A graph is *strongly connected* if all node pairs are strongly connected.

Observations

There must be a directed path between all pairs of nodes.

Problem Consider a directed graph $\mathcal{G} = (N, \mathcal{E})$. A graph is *strongly connected* if all node pairs are strongly connected.

Observations

There must be a directed path between all pairs of nodes.

Now consider an arbitrary node $s \in \mathcal{N}$.

- 1. All nodes must have a path to node *s*.
- 2. Node *s* must have a path to all nodes.

Problem Consider a directed graph $\mathcal{G} = (N, \mathcal{E})$. A graph is *strongly connected* if all node pairs are strongly connected.

Observations

There must be a directed path between all pairs of nodes.

Now consider an arbitrary node $s \in \mathcal{N}$.

- 1. All nodes must have a path to node *s*.
- 2. Node *s* must have a path to all nodes.

We can route all paths proving "strongly connected" via node s.

Problem Consider a directed graph $\mathcal{G} = (N, \mathcal{E})$. A graph is *strongly connected* if all node pairs are strongly connected.

Observations

There must be a directed path between all pairs of nodes.

Now consider an arbitrary node $s \in \mathcal{N}$.

- 1. All nodes must have a path to node *s*.
- 2. Node *s* must have a path to all nodes.

- \rightarrow Use reverse reachability.
- \rightarrow Use *reachability*.

We can route all paths proving "strongly connected" via node s.

Solution Use *reverse reachability* and *reachability*. Both can be done via depth-first search.

Problem

Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ in which

- the nodes N represent social media accounts; and
- the edges \mathcal{E} are interactions between accounts.

We want to find subcommunities (and echo chambers) by looking groups of accounts that all have direct-or-indirect interactions with each other.

Problem

Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ in which

- the nodes N represent social media accounts; and
- the edges \mathcal{E} are interactions between accounts.

We want to find subcommunities (and echo chambers) by looking groups of accounts that all have direct-or-indirect interactions with each other.

Problem Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$. Find all *strongly connected components*.

Observations

For each $n \in N$, let scc(n) be all nodes in the strongly connected component of n.

Consider the graph $\mathcal{G}_{SCC} = (\mathcal{N}_{SCC}, \mathcal{E}_{SCC})$ obtained by *merging* the strongly connected components in \mathcal{G} :

$$\blacktriangleright \mathcal{N}_{SCC} = \{ scc(n) \mid n \in \mathcal{N} \};\$$

►
$$\mathcal{E}_{SCC} = \{(scc(m), scc(n)) \mid (m, n) \in \mathcal{E}\}$$

Observations

For each $n \in N$, let scc(n) be all nodes in the strongly connected component of n.

Consider the graph $\mathcal{G}_{SCC} = (\mathcal{N}_{SCC}, \mathcal{E}_{SCC})$ obtained by *merging* the strongly connected components in \mathcal{G} :

$$\blacktriangleright \mathcal{N}_{SCC} = \{ scc(n) \mid n \in \mathcal{N} \};\$$

►
$$\mathcal{E}_{\text{SCC}} = \{(\text{scc}(m), \text{scc}(n)) \mid (m, n) \in \mathcal{E}\}$$

Observations

For each $n \in N$, let scc(n) be all nodes in the strongly connected component of n.

Consider the graph $\mathcal{G}_{SCC} = (\mathcal{N}_{SCC}, \mathcal{E}_{SCC})$ obtained by *merging* the strongly connected components in \mathcal{G} :

$$\blacktriangleright \mathcal{N}_{SCC} = \{ scc(n) \mid n \in \mathcal{N} \};\$$

►
$$\mathcal{E}_{\text{SCC}} = \{(\text{scc}(m), \text{scc}(n)) \mid (m, n) \in \mathcal{E}\}$$

Observations

For each $n \in N$, let scc(n) be all nodes in the strongly connected component of n.

Consider the graph $\mathcal{G}_{SCC} = (\mathcal{N}_{SCC}, \mathcal{E}_{SCC})$ obtained by *merging* the strongly connected components in \mathcal{G} :

- $\blacktriangleright \mathcal{N}_{SCC} = \{ scc(n) \mid n \in \mathcal{N} \};\$
- ► $\mathcal{E}_{SCC} = \{(scc(m), scc(n)) \mid (m, n) \in \mathcal{E}\}.$

The resulting graph \mathcal{G}_{SCC} is *acyclic*.

Observations

For each $n \in N$, let scc(n) be all nodes in the strongly connected component of n.

Consider the graph $\mathcal{G}_{SCC} = (\mathcal{N}_{SCC}, \mathcal{E}_{SCC})$ obtained by *merging* the strongly connected components in \mathcal{G} :

 $\blacktriangleright \mathcal{N}_{SCC} = \{ scc(n) \mid n \in \mathcal{N} \};\$

$$\blacktriangleright \mathcal{E}_{SCC} = \{(scc(m), scc(n)) \mid (m, n) \in \mathcal{E}\}.$$

The resulting graph \mathcal{G}_{SCC} is *acyclic*.

Question: What would a *topological sort* of \mathcal{G} produce?

Observations

For each $n \in N$, let scc(n) be all nodes in the strongly connected component of n.

Consider the graph $\mathcal{G}_{SCC} = (\mathcal{N}_{SCC}, \mathcal{E}_{SCC})$ obtained by *merging* the strongly connected components in \mathcal{G} :

- $\blacktriangleright \mathcal{N}_{SCC} = \{ scc(n) \mid n \in \mathcal{N} \};\$
- ► $\mathcal{E}_{SCC} = \{(scc(m), scc(n)) \mid (m, n) \in \mathcal{E}\}.$

The resulting graph \mathcal{G}_{SCC} is *acyclic*.

Question: What would a *topological sort* of \mathcal{G} produce? A node order consistent with a topological sort of \mathcal{G}_{scc} : the strongly connected components stick together.

Observations

For each $n \in N$, let scc(n) be all nodes in the strongly connected component of n.

Consider the graph $\mathcal{G}_{SCC} = (\mathcal{N}_{SCC}, \mathcal{E}_{SCC})$ obtained by *merging* the strongly connected components in \mathcal{G} :

 $\blacktriangleright \mathcal{N}_{SCC} = \{ scc(n) \mid n \in \mathcal{N} \};\$

►
$$\mathcal{E}_{SCC} = \{(scc(m), scc(n)) \mid (m, n) \in \mathcal{E}\}$$

The resulting graph \mathcal{G}_{SCC} is *acyclic*.

Question: What would a *topological sort* of \mathcal{G} produce? A node order consistent with a topological sort of \mathcal{G}_{scc} : the strongly connected components stick together.

We just do not know where one strongly connected component ends and the next begins.

Algorithm StronglyConnectedComponent($\mathcal{G} = (\mathcal{N}, \mathcal{E})$):

- 5: Let $n_0, \ldots, n_{|\mathcal{N}|}$ be a topological sort of \mathcal{N} .
- 6: marked := $\{n \mapsto \text{false} \mid n \in \mathcal{N}\}$.
- 7: for i := 0 upto $|\mathcal{N}|$ do
- 8: **if** \neg *marked*[n_i] **then**

9: DFS-R((N, ({(n, m) | (m, n) $\in \mathcal{E}$ })), marked, n_i) (reverse reachability).

Algorithm StronglyConnectedComponent($\mathcal{G} = (\mathcal{N}, \mathcal{E})$):

- 5: Let $n_0, \ldots, n_{|\mathcal{N}|}$ be a topological sort of \mathcal{N} .
- 6: marked := $\{n \mapsto \text{false} \mid n \in \mathcal{N}\}$.
- 7: for i := 0 upto $|\mathcal{N}|$ do
- 8: **if** \neg *marked*[n_i] **then**

 n_i is the start of a strongly connected component.

9: DFS-R((N, ({(n, m) | (m, n) $\in \mathcal{E}$ })), marked, n_i) (reverse reachability).

Algorithm StronglyConnectedComponent($\mathcal{G} = (\mathcal{N}, \mathcal{E})$):

- 5: Let $n_0, \ldots, n_{|\mathcal{N}|}$ be a topological sort of \mathcal{N} .
- 6: marked := $\{n \mapsto \text{false} \mid n \in \mathcal{N}\}$.
- 7: for i := 0 upto $|\mathcal{N}|$ do
- 8: **if** \neg *marked*[n_i] **then**

 n_i is the start of a strongly connected component. Find all nodes not-yet-visited that can *reach* node n_i .

9: DFS-R((N, ({(n, m) | (m, n) $\in \mathcal{E}$ })), marked, n_i) (reverse reachability).

Algorithm StronglyConnectedComponent($\mathcal{G} = (\mathcal{N}, \mathcal{E})$):

- 5: Let $n_0, \ldots, n_{|\mathcal{N}|}$ be a topological sort of \mathcal{N} .
- 6: marked := $\{n \mapsto \text{false} \mid n \in \mathcal{N}\}$.
- 7: for i := 0 upto $|\mathcal{N}|$ do
- 8: **if** \neg *marked*[n_i] **then**

 n_i is the start of a strongly connected component. Find all nodes not-yet-visited that can *reach* node n_i .

9: DFS-R((N, ({(n, m) | (m, n) $\in \mathcal{E}$ })), marked, n_i) (reverse reachability).

A node that can reach n_i comes before n_i in the topological sort *unless* it is part of the same strongly connected component!
Problem: Subcommunities

Algorithm StronglyConnectedComponent($\mathcal{G} = (\mathcal{N}, \mathcal{E})$):

- 5: Let $n_0, \ldots, n_{|\mathcal{N}|}$ be a topological sort of \mathcal{N} .
- 6: marked := $\{n \mapsto \text{false} \mid n \in \mathcal{N}\}$.
- 7: for i := 0 upto $|\mathcal{N}|$ do
- 8: **if** \neg *marked*[n_i] **then**

 n_i is the start of a strongly connected component. Find all nodes not-yet-visited that can *reach* node n_i .

9: DFS-R((N, ({(n, m) | (m, n) $\in \mathcal{E}$ })), marked, n_i) (reverse reachability).

A node that can reach n_i comes before n_i in the topological sort *unless* it is part of the same strongly connected component!

The book presents a variation of the above: they perform a reverse-topological sort instead of performing reverse reachability.

Problem: Indirect flight connections Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ in which

- ▶ the nodes *N* represent airports; and
- the edges \mathcal{E} are flights between airports.

Construct the edge relation that relates airports m to n if one can fly from m to n (via zero-or-more stops):

 $\{(m, n) \mid \text{there is a sequence of flights connecting } m \text{ to } n\}.$

Problem: Indirect flight connections Consider a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ in which

- the nodes N represent airports; and
- the edges \mathcal{E} are flights between airports.

Construct the edge relation that relates airports m to n if one can fly from m to n (via zero-or-more stops):

 $\{(m, n) \mid \text{there is a sequence of flights connecting } m \text{ to } n\}.$

Definition

The *transitive closure* of a graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ is the graph $\mathcal{G}_{tc} = (\mathcal{N}, \mathcal{E}_{tc})$ with

 $\mathcal{E}_{tc} = \{(m, n) \mid \text{there is a path from } m \text{ to } n \text{ in } \mathcal{G}\}.$

Definition The *transitive closure* of a graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ is the graph $\mathcal{G}_{tc} = (\mathcal{N}, \mathcal{E}_{tc})$ with

 $\mathcal{E}_{tc} = \{(m, n) \mid \text{there is a path from } m \text{ to } n \text{ in } \mathcal{G}\}.$

Solution

 $\mathcal{E}_{tc} = \{(m, n) \mid \mathsf{DEPTHFIRSTR}(\mathcal{G}, m) \text{ visits node } n\}.$

Definition The *transitive closure* of a graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ is the graph $\mathcal{G}_{tc} = (\mathcal{N}, \mathcal{E}_{tc})$ with

 $\mathcal{E}_{tc} = \{(m, n) \mid \text{there is a path from } m \text{ to } n \text{ in } \mathcal{G}\}.$

Solution

$$\mathcal{E}_{tc} = \{(m, n) \mid \mathsf{DEPTHFIRSTR}(\mathcal{G}, m) \text{ visits node } n\}.$$

Complexity

- Runtime complexity is $\Theta(|\mathcal{N}|(|\mathcal{N}| + |\mathcal{E}|))$: we run $|\mathcal{N}|$ depth-first searches.
- Memory complexity is $\Theta(|\mathcal{N}| + |\mathcal{E}_{tc}|)$: $|\mathcal{E}_{tc}|$ is likely to be $\Theta(|\mathcal{N}|^2)$.

Definition The *transitive closure* of a graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ is the graph $\mathcal{G}_{tc} = (\mathcal{N}, \mathcal{E}_{tc})$ with

 $\mathcal{E}_{tc} = \{(m, n) \mid \text{there is a path from } m \text{ to } n \text{ in } \mathcal{G}\}.$

Solution

$$\mathcal{E}_{tc} = \{(m, n) \mid \mathsf{DepthFirstR}(\mathcal{G}, m) \text{ visits node } n\}.$$

Complexity

- Runtime complexity is $\Theta(|\mathcal{N}|(|\mathcal{N}| + |\mathcal{E}|))$: we run $|\mathcal{N}|$ depth-first searches.
- Memory complexity is $\Theta(|\mathcal{N}| + |\mathcal{E}_{tc}|)$: $|\mathcal{E}_{tc}|$ is likely to be $\Theta(|\mathcal{N}|^2)$.
- Can we do significantly better? Huge open research question!