Sorting SFWRENG 2CO3: Data Structures and Algorithms

Jelle Hellings

Department of Computing and Software McMaster University

Winter 2024

A final sort algorithm: HeapSort

MERGESORT Worst-case $\Theta(N \log_2(N))$ runtime complexity. But also: $\Theta(N)$ memory usage, high constants.

QUICKSORT Expected $\Theta (N \log_2(N))$ runtime complexity. But also: $\Theta\left(\log_2(N)\right)$ memory usage, finicky pivot choices, worst-case $\Theta\left(N^{2}\right)$.

A final sort algorithm: HeapSort

MERGESORT Worst-case $\Theta(N \log_2(N))$ runtime complexity. But also: $\Theta(N)$ memory usage, high constants.

QUICKSORT Expected $\Theta (N \log_2(N))$ runtime complexity. But also: $\Theta\left(\log_2(N)\right)$ memory usage, finicky pivot choices, worst-case $\Theta\left(N^{2}\right)$.

Next: HeapSort Worst-case $\Theta\left(N\log_{2}(N)\right)$ runtime complexity and $\Theta\left(1\right)$ memory usage!

Algorithm SELECTIONLIKESORT (L) : **Input:** List $L[0...N)$ of N values.

- 2: for $pos := N$ to 2 do
- 3: Find the position p of the maximum value in $L[0 \dots pos]$.
- 4: Exchange $L[pos-1]$ and $L[p]$.

$$
\left\{\text{Comparisons: } \sum_{pos=2}^{N} pos = \Theta \left(N^{2}\right).
$$

Algorithm $HEAPSort(L)$:

- **Input:** List $L[0...N)$ of N values.
	- 1: Restructure L so that it is easy to find the *maximum*.
	- 2: for $pos := N$ to 2 do
	- 3: Use structure to find the maximum and efficiently remove the maximum.
	- 4: Place the *maximum* at $L[pos 1]$.

Algorithm $HEAPSort(L)$: **Input:** List $L[0...N)$ of N values.

- 1: Restructure L so that it is easy to find the maximum \leftarrow a binary max-heap.
- 2: for $pos := N$ to 2 do
- 3: Use structure to find the maximum and efficiently remove the maximum.
- 4: Place the *maximum* at $L[pos 1]$.

Max-heaps A max-heap H is a collection of values ADD(H, v) add value v to a max-heap H; DELMAX(H) removes the maximum value $w \in H$ and return w. $Size(H)$ returns the number of values in H.

Algorithm $HEAPSort(L)$:

- **Input:** List $L[0...N)$ of N values.
	- 1: Restructure L so that it is easy to find the maximum \leftarrow a binary max-heap.
	- 2: for $pos := N$ to 2 do
	- 3: Use structure to find the maximum and efficiently remove the maximum.
	- 4: Place the *maximum* at $L[pos 1]$.

Max-heaps A max-heap H is a collection of values ADD(H, v) add value v to a max-heap H; \leftarrow in Θ (log₂(|H|)). DELMAX(H) removes the maximum value $w \in H$ and return w. \leftarrow in Θ (log₂(|H|)). $Size(H)$ returns the number of values in H.

Algorithm $HEAPSort(L)$:

- **Input:** List $L[0...N)$ of N values.
	- 1: Restructure L so that it is easy to find the maximum \leftarrow a binary max-heap.
	- 2: for $pos := N$ to 2 do
	- 3: Use structure to find the maximum and efficiently remove the maximum.
	- 4: Place the *maximum* at $L[pos 1]$.

Max-heaps A max-heap H is a collection of values ADD(H, v) add value v to a max-heap H; \leftarrow in Θ (log₂(|H|)). DELMAX(H) removes the maximum value $w \in H$ and return w. \leftarrow in Θ (log₂(|H|)). $Size(H)$ returns the number of values in H. We can store a max-heap of |H| values in an array of $|H|$ values.

Algorithm $HEAPSort(L)$: **Input:** List $L[0...N)$ of N values.

- 1: Restructure L so that it is easy to find the *maximum*.
- 2: for $pos := N$ to 2 do
- 3: Use structure to find the maximum and efficiently remove the *maximum*.
- 4: Place the *maximum* at $L[pos 1]$.

 $\approx N$ ADDs $\rightarrow \Theta$ (N $log_2(N)$).

 $\approx N$ DELMAXS $\rightarrow \Theta(N \log_2(N)).$

Max-heaps A max-heap H is a collection of values ADD(H, v) add value v to a max-heap H; \leftarrow in Θ (log₂(|H|)). DELMAX(H) removes the maximum value $w \in H$ and return w. \leftarrow in Θ (log₂(|H|)). $Size(H)$ returns the number of values in H. We can store a max-heap of |H| values in an array of $|H|$ values.

A binary max-heap is a *binary tree* in which each node *n* has a key $k(n)$ such that:

A binary max-heap is a *binary tree* in which each node *n* has a key $k(n)$ such that:

 \blacktriangleright the tree is *nearly complete*.

Or: the tree is filled from top-to-bottom, left-to-right.

A binary max-heap is a *binary tree* in which each node *n* has a key $k(n)$ such that:

 \blacktriangleright the tree is *nearly complete.*

Or: the tree is filled from top-to-bottom, left-to-right.

► the tree satisfies the *heap property*: if node *n* has child *c*, then $k(n) \geq k(c)$. Or: the key in each node is larger-or-equal to the keys in the children of n.

The maximum is straightforward to find: root of the tree.

Algorithm $DeLMax(H)$ (high-level overview): 1: Let v be the value at the root n of H .

5: return V .

Algorithm $DeLMax(H)$ (high-level overview):

- 1: Let v be the value at the root n of H .
- 2: Let w be the last value in H .

5: return V .

Algorithm $DeLMAX(H)$ (high-level overview):

- 1: Let v be the value at the root *n* of *H*.
- 2: Let w be the last value in H .
- 3: Remove the last node in H and set $k(n) := w$.

5: return V .

- 1: Let v be the value at the root *n* of *H*.
- 2: Let w be the last value in H .
- 3: Remove the last node in H and set $k(n) = w$.
- 4: Sink n to a valid position (reestablish the heap property).
- 5: return V .

- 1: Let v be the value at the root *n* of *H*.
- 2: Let w be the last value in H .
- 3: Remove the last node in H and set $k(n) = w$.
- 4: Sink n to a valid position (reestablish the heap property).
- 5: return V .

- 1: Let v be the value at the root *n* of *H*.
- 2: Let w be the last value in H .
- 3: Remove the last node in H and set $k(n) = w$.
- 4: Sink n to a valid position (reestablish the heap property).
- 5: return v.

- 1: Let v be the value at the root *n* of *H*.
- 2: Let w be the last value in H .
- 3: Remove the last node in H and set $k(n) = w$.
- 4: Sink n to a valid position (reestablish the heap property).
- 5: return v.

Algorithm $\text{ADD}(H, v)$ (high-level overview):

Algorithm $ADD(H, v)$ (high-level overview): 1: Add a node *n* to the end of *H* with $k(n) = v$.

Algorithm $\text{ADD}(H, v)$ (high-level overview):

- 1: Add a node *n* to the end of *H* with $k(n) = v$.
- 2: Swim n upward to a valid position (reestablish the heap property).

Algorithm $\text{ADD}(H, v)$ (high-level overview):

- 1: Add a node *n* to the end of *H* with $k(n) = v$.
- 2: Swim n upward to a valid position (reestablish the heap property).

Storing a max-heap in an array

Storing a max-heap in an array

Number the nodes from top-to-bottom, left-to-right.

Warning: The book numbers values in max-heaps starting at 1 instead of 0!

Storing a max-heap in an array

Number the nodes from top-to-bottom, left-to-right \rightarrow positions in the array.

If a node is at position p ,

If a node is at position p ,

► then the parent is at position parent(p) = (p – 1) div 2.

If a node is at position p ,

- **►** then the parent is at position parent(p) = $(p 1)$ div 2.
- \triangleright then the left child is at position lchild(p) = 2 · p + 1.

If a node is at position p ,

- **►** then the parent is at position parent(p) = (p 1) div 2.
- \triangleright then the left child is at position $\text{child}(p) = 2 \cdot p + 1$.
- \triangleright then the right child is at position rchild(p) = 2 · p + 2.

If a node is at position p ,

- \triangleright then the parent is at position parent(p) = (p 1) div 2.
- \triangleright then the left child is at position lchild(p) = 2 · p + 1.
- \triangleright then the right child is at position rchild(p) = 2 · p + 2.

Algorithm $SINK(L[0...N), p)$: Sink $L[p]$ to a valid position.

Algorithm $SwIM(L[0...N), p)$: Swim $L[p]$ upward to a valid position.

If a node is at position p ,

- \triangleright then the parent is at position parent(p) = (p − 1) div 2.
- \triangleright then the left child is at position lchild(p) = 2 · p + 1.
- \triangleright then the right child is at position rchild(p) = 2 · p + 2.

Algorithm $SINK(L[0...N), p)$:

- 1: while true do
- 2: $np := p$.
- 3: if $\text{child}(p) < N$ and

 $L[np] < L[|child(p)]$ then

- 4: $np := \text{lchild}(p)$.
- 5: if $rchild(p) < N$ and $L[np] < L[rchild(p)]$ then
- 6: $np = \text{rchild}(p)$.
- 7: if $np = p$ then return.
- 8: Exchange $L[p]$ and $L[np]$.

9: $p := np$.

Algorithm $SWM(L[0...N), p)$: 1: while $p \neq 0$ and $L[p] > L[parent(p)]$ do 2: Exchange $L[p]$ and $L[parent(p)]$. 3: $p = parent(p)$.

Algorithm $HEAPSort(L)$:

Input: List $L[0...N)$ of N values.

- 1: Turn L into a max-heap.
- 2: for $pos := N$ to 2 do
- 3: $max := \text{DELMAX}(L[0...pos))$
- 4: $L[pos 1] := max.$

Algorithm HEAPSORT(L):

Input: List $L[0...N)$ of N values.

- 1: Turn L into a max-heap.
- 2: for $pos := N$ to 2 do
- 3: $max := \text{DELMAX}(L[0...pos))$
- 4: $L[pos - 1] := max.$

Algorithm MAKEHEAP(L[0...N)):

- 1: $len = 1$.
	- $\frac{1}{\ast}$ inv: $L[0...len]$ is a max-heap, bf: $N len \times l$
- 2: while $len \neq N$ do
- 3: ADD($L[0...len]$, $L[len]$).
- 4: $len := len + 1$.

Algorithm $HEAPSort(L)$:

Input: List $L[0...N)$ of N values.

- 1: Turn L into a max-heap.
- 2: for $pos := N$ to 2 do
- 3: $max := \text{DELMAX}(L[0...pos))$
- 4: $L[pos 1] := max.$

Algorithm M AKEHEAP($L[0...N)$):

1: $len := 1$. /* inv: $L[0...]$ len is a max-heap, bf: $N - len \times l$ 2: while $len \neq N$ do 3: $\text{ADD}(L[0 \dots len), L[len]).$ 4: $len := len + 1$. $\left\{\n \begin{array}{l}\n N-1 \text{ S} \text{WIM operations.}\n \end{array}\n\right\}$

A faster MakeHeap

L : ? ? ? ? 5 ? ? ? ? 10 13 ?

- \triangleright the left child at position lchild(p) already forms a valid max-heap in L; and
- \triangleright the right child at position rchild(p) already forms a valid max-heap in L.

A faster MakeHeap

- \triangleright the left child at position lchild(p) already forms a valid max-heap in L; and
- \triangleright the right child at position rchild(p) already forms a valid max-heap in L.

A faster MakeHeap

- \triangleright the left child at position lchild(p) already forms a valid max-heap in L; and
- \triangleright the right child at position rchild(p) already forms a valid max-heap in L. SINK(L[0...N), p) assures that p also forms a valid max-heap in L.

A faster MakeHeap

- \triangleright the left child at position lchild(p) already forms a valid max-heap in L; and
- \triangleright the right child at position rchild(p) already forms a valid max-heap in L. SINK(L[0...N), p) assures that p also forms a valid max-heap in L.

A faster MakeHeap

Consider a position p in L such that

- \triangleright the left child at position lchild(p) already forms a valid max-heap in L; and
- \triangleright the right child at position rchild(p) already forms a valid max-heap in L. SINK(L[0...N), p) assures that p also forms a valid max-heap in L.

Leaves always form valid max-heaps.

A faster MakeHeap

Consider a position p in L such that

- \triangleright the left child at position lchild(p) already forms a valid max-heap in L; and
- \triangleright the right child at position rchild(p) already forms a valid max-heap in L. SINK(L[0...N), p) assures that p also forms a valid max-heap in L.

Leaves always form valid max-heaps.

Positions $m \le N$ with $\text{child}(m) = m \cdot 2 + 1 \ge N$ represent the leaves in a max-heap of L.

A faster MakeHeap

Consider a position p in L such that

- \triangleright the left child at position lchild(p) already forms a valid max-heap in L; and
- \triangleright the right child at position rchild(p) already forms a valid max-heap in L. SINK(L[0...N), p) assures that p also forms a valid max-heap in L.

Leaves always form valid max-heaps.

Positions $m \le N$ with $\text{child}(m) = m \cdot 2 + 1 \ge N$ represent the leaves in a max-heap of L \rightarrow The last non-child in a max-heap of L values is at position $\left|\frac{N-1}{2}\right|$ $\frac{(-1)}{2}$.

A faster MakeHeap

Algorithm FastMakeHeap(L):

- 1: $k := N (N \text{ div } 2)$.
- 2: while $k \neq 0$ do
- 3: $SINK(L[0...N), k)$.
- 4: $k := k 1$.

A faster MakeHeap

Algorithm FastMakeHeap(L):

- 1: $k := N (N \operatorname{div} 2)$.
- 2: while $k \neq 0$ do
- 3: $SINK(L[0...N), k)$.
- 4: $k := k 1$.

 $\frac{N-1}{2}$ $\frac{(-1)}{2}$ SINK operations.

Comparing HeapSort with MergeSort and QuickSort

Comparing HeapSort with MergeSort and QuickSort

Comparing HeapSort with MergeSort and QuickSort

Final notes on HeapSort

A max-heap is often referred to as a Priority Queue.

There are also min-heaps that provide fast access to minimum values.

Final notes on HeapSort

A max-heap is often referred to as a Priority Queue.

There are also min-heaps that provide fast access to minimum values.

IntroSort: Putting all sorts together

Algorithm IntroSort(L[start . . . end), potential):

potential is the number of values we could have sorted with perfect pivot choices.

- 1: if end start $\leq M$ then
- 2: Sort $L[start...end]$ using INSERTIONSORT.
- 3: else if potential $< 1.5 \cdot |L|$ then
- 4: Sort $L[start...end]$ using HEAPSORT.

5: else

- 6: Choose the position $p \in [start, end)$ of the pivot value $v = L[pos]$.
- 7: $pos = \text{PARTITION}(L, start, end, p)$.
- 8: INTROSORT $(L[start...pos], 2 \cdot potential)$.
- 9: INTROSORT $(L[pos + 1...end), 2 \cdot potential)$.

Algorithm $INTROSort(L[0...N))$: 10: INTROSORT $(L[0...N), 1)$.

IntroSort: Putting all sorts together

