
1/8

Sorting
SFWRENG 2CO3: Data Structures and Algorithms

Jelle Hellings

Department of Computing and Software
McMaster University

Winter 2024

2/8

A final sort algorithm: HeapSort

MergeSort Worst-case Θ (N log2(N)) runtime complexity.
But also: Θ (N) memory usage, high constants.

QuickSort Expected Θ (N log2(N)) runtime complexity.
But also: Θ (log2(N)) memory usage, finicky pivot choices,
worst-case Θ

(
N2) .

Next: HeapSort
Worst-case Θ (N log2(N)) runtime complexity and Θ (1) memory usage!

2/8

A final sort algorithm: HeapSort

MergeSort Worst-case Θ (N log2(N)) runtime complexity.
But also: Θ (N) memory usage, high constants.

QuickSort Expected Θ (N log2(N)) runtime complexity.
But also: Θ (log2(N)) memory usage, finicky pivot choices,
worst-case Θ

(
N2) .

Next: HeapSort
Worst-case Θ (N log2(N)) runtime complexity and Θ (1) memory usage!

3/8

HeapSort: High-level overview
Algorithm SelectionLikeSort(L):
Input: List L[0 . . .N) of N values.

1: Restructure L so that it is easy to find the maximum

2: for pos := N to 2 do
3: Find the position p of the

maximum value in L[0 . . . pos).
4: Exchange L[pos − 1] and L[p].

Comparisons:
N∑︁

pos=2

pos = Θ
(
N2) .

Max-heaps
A max-heap H is a collection of values

Add(H, v) add value v to a max-heap H;

← in Θ (log2(|H |)).

DelMax(H) removes the maximum value w ∈ H and return w .

← in Θ (log2(|H |)).

Size(H) returns the number of values in H.

We can store a max-heap of |H | values in an array of |H | values.

3/8

HeapSort: High-level overview
Algorithm HeapSort(L):
Input: List L[0 . . .N) of N values.
1: Restructure L so that it is easy to find the maximum.
2: for pos := N to 2 do
3: Use structure to find the maximum and

efficiently remove the maximum.
4: Place the maximum at L[pos − 1].

Comparisons:
N∑︁

pos=2

pos = Θ
(
N2) .

Max-heaps
A max-heap H is a collection of values

Add(H, v) add value v to a max-heap H;

← in Θ (log2(|H |)).

DelMax(H) removes the maximum value w ∈ H and return w .

← in Θ (log2(|H |)).

Size(H) returns the number of values in H.

We can store a max-heap of |H | values in an array of |H | values.

3/8

HeapSort: High-level overview
Algorithm HeapSort(L):
Input: List L[0 . . .N) of N values.
1: Restructure L so that it is easy to find the maximum ← a binary max-heap.
2: for pos := N to 2 do
3: Use structure to find the maximum and

efficiently remove the maximum.
4: Place the maximum at L[pos − 1].

Comparisons:
N∑︁

pos=2

pos = Θ
(
N2) .

Max-heaps
A max-heap H is a collection of values

Add(H, v) add value v to a max-heap H;

← in Θ (log2(|H |)).

DelMax(H) removes the maximum value w ∈ H and return w .

← in Θ (log2(|H |)).

Size(H) returns the number of values in H.

We can store a max-heap of |H | values in an array of |H | values.

3/8

HeapSort: High-level overview
Algorithm HeapSort(L):
Input: List L[0 . . .N) of N values.
1: Restructure L so that it is easy to find the maximum ← a binary max-heap.
2: for pos := N to 2 do
3: Use structure to find the maximum and

efficiently remove the maximum.
4: Place the maximum at L[pos − 1].

Comparisons:
N∑︁

pos=2

pos = Θ
(
N2) .

Max-heaps
A max-heap H is a collection of values

Add(H, v) add value v to a max-heap H; ← in Θ (log2(|H |)).
DelMax(H) removes the maximum value w ∈ H and return w . ← in Θ (log2(|H |)).

Size(H) returns the number of values in H.

We can store a max-heap of |H | values in an array of |H | values.

3/8

HeapSort: High-level overview
Algorithm HeapSort(L):
Input: List L[0 . . .N) of N values.
1: Restructure L so that it is easy to find the maximum ← a binary max-heap.
2: for pos := N to 2 do
3: Use structure to find the maximum and

efficiently remove the maximum.
4: Place the maximum at L[pos − 1].

Comparisons:
N∑︁

pos=2

pos = Θ
(
N2) .

Max-heaps
A max-heap H is a collection of values

Add(H, v) add value v to a max-heap H; ← in Θ (log2(|H |)).
DelMax(H) removes the maximum value w ∈ H and return w . ← in Θ (log2(|H |)).

Size(H) returns the number of values in H.

We can store a max-heap of |H | values in an array of |H | values.

3/8

HeapSort: High-level overview
Algorithm HeapSort(L):
Input: List L[0 . . .N) of N values.
1: Restructure L so that it is easy to find the maximum. ≈ N Adds→ Θ (N log2(N)).
2: for pos := N to 2 do
3: Use structure to find the maximum and

efficiently remove the maximum. ≈ N DelMaxs→ Θ (N log2(N)).
4: Place the maximum at L[pos − 1].

Comparisons:
N∑︁

pos=2

pos = Θ
(
N2) .

Max-heaps
A max-heap H is a collection of values

Add(H, v) add value v to a max-heap H; ← in Θ (log2(|H |)).
DelMax(H) removes the maximum value w ∈ H and return w . ← in Θ (log2(|H |)).

Size(H) returns the number of values in H.

We can store a max-heap of |H | values in an array of |H | values.

4/8

The binary max-heap data structure

A binary max-heap is a binary tree in which each node n has a key k (n) such that:

▶ the tree is nearly complete.
Or: the tree is filled from top-to-bottom, left-to-right.

▶ the tree satisfies the heap property : if node n has child c, then k (n) ≥ k (c).
Or: the key in each node is larger-or-equal to the keys in the children of n.

n

12

11 8

9 10 5 6

2 4 7 1 3

11

v = 12

w = 3

v = 11
n

n

n n

n

n

4/8

The binary max-heap data structure

A binary max-heap is a binary tree in which each node n has a key k (n) such that:
▶ the tree is nearly complete.

Or: the tree is filled from top-to-bottom, left-to-right.

▶ the tree satisfies the heap property : if node n has child c, then k (n) ≥ k (c).
Or: the key in each node is larger-or-equal to the keys in the children of n.

n

12

11 8

9 10 5 6

2 4 7 1 3

11

v = 12

w = 3

v = 11
n

n

n n

n

n

4/8

The binary max-heap data structure

A binary max-heap is a binary tree in which each node n has a key k (n) such that:
▶ the tree is nearly complete.

Or: the tree is filled from top-to-bottom, left-to-right.
▶ the tree satisfies the heap property : if node n has child c, then k (n) ≥ k (c).

Or: the key in each node is larger-or-equal to the keys in the children of n.

n

12

11 8

9 10 5 6

2 4 7 1 3

11

v = 12

w = 3

v = 11
n

n

n n

n

n

4/8

The binary max-heap data structure

n

12

11 8

9 10 5 6

2 4 7 1 3

11

v = 12

w = 3

v = 11
n

n

n n

n

n

The maximum is straightforward to find: root of the tree.

4/8

The binary max-heap data structure

n

12

11 8

9 10 5 6

2 4 7 1 3

11

v = 12

w = 3

v = 11
n

n

n n

n

n

Algorithm DelMax(H) (high-level overview):

1: Let v be the value at the root n of H.
2: Let w be the last value in H.
3: Remove the last node in H and set k (n) := w .
4: Sink n to a valid position (reestablish the heap property).
5: return v .

4/8

The binary max-heap data structure

n
12

11 8

9 10 5 6

2 4 7 1 3

11

v = 12

w = 3
v = 11

n

n

n n

n

n

Algorithm DelMax(H) (high-level overview):
1: Let v be the value at the root n of H.

2: Let w be the last value in H.
3: Remove the last node in H and set k (n) := w .
4: Sink n to a valid position (reestablish the heap property).

5: return v .

4/8

The binary max-heap data structure

n
12

11 8

9 10 5 6

2 4 7 1 3

11

v = 12
w = 3

v = 11
n

n

n n

n

n

Algorithm DelMax(H) (high-level overview):
1: Let v be the value at the root n of H.
2: Let w be the last value in H.

3: Remove the last node in H and set k (n) := w .
4: Sink n to a valid position (reestablish the heap property).

5: return v .

4/8

The binary max-heap data structure

n
3

11 8

9 10 5 6

2 4 7 1

3 11

v = 12
w = 3

v = 11
n

n

n n

n

n

Algorithm DelMax(H) (high-level overview):
1: Let v be the value at the root n of H.
2: Let w be the last value in H.
3: Remove the last node in H and set k (n) := w .

4: Sink n to a valid position (reestablish the heap property).

5: return v .

4/8

The binary max-heap data structure

n
3

11 8

9 10 5 6

2 4 7 1

3 11

v = 12
w = 3

v = 11
n

n

n n

n

n

Algorithm DelMax(H) (high-level overview):
1: Let v be the value at the root n of H.
2: Let w be the last value in H.
3: Remove the last node in H and set k (n) := w .
4: Sink n to a valid position (reestablish the heap property).
5: return v .

4/8

The binary max-heap data structure

n

11

3 8

9 10 5 6

2 4 7 1

3 11

v = 12
w = 3

v = 11

n

n

n n

n

n

Algorithm DelMax(H) (high-level overview):
1: Let v be the value at the root n of H.
2: Let w be the last value in H.
3: Remove the last node in H and set k (n) := w .
4: Sink n to a valid position (reestablish the heap property).
5: return v .

4/8

The binary max-heap data structure

n

11

10 8

9 3 5 6

2 4 7 1

3 11

v = 12
w = 3

v = 11
n

n

n n

n

n

Algorithm DelMax(H) (high-level overview):
1: Let v be the value at the root n of H.
2: Let w be the last value in H.
3: Remove the last node in H and set k (n) := w .
4: Sink n to a valid position (reestablish the heap property).
5: return v .

4/8

The binary max-heap data structure

n

11

10 8

9 7 5 6

2 4 3 1

3 11

v = 12
w = 3

v = 11
n

n

n

n

n

n

Algorithm DelMax(H) (high-level overview):
1: Let v be the value at the root n of H.
2: Let w be the last value in H.
3: Remove the last node in H and set k (n) := w .
4: Sink n to a valid position (reestablish the heap property).
5: return v .

4/8

The binary max-heap data structure

n

12

11 8

9 10 5 6

2 4 7 1 3

11

v = 12
w = 3

v = 11

n

n

n n

n

n

Algorithm Add(H, v) (high-level overview):

1: Add a node n to the end of H with k (n) := v .
2: Swim n upward to a valid position (reestablish the heap property).

4/8

The binary max-heap data structure

n

12

11 8

9 10 5 6

2 4 7 1 3 11

v = 12
w = 3

v = 11

n

n

n

n

n

n

Algorithm Add(H, v) (high-level overview):
1: Add a node n to the end of H with k (n) := v .

2: Swim n upward to a valid position (reestablish the heap property).

4/8

The binary max-heap data structure

n

12

11 8

9 10 11 6

2 4 7 1 3 5

v = 12
w = 3

v = 11

n

n

n n

n

n

Algorithm Add(H, v) (high-level overview):
1: Add a node n to the end of H with k (n) := v .
2: Swim n upward to a valid position (reestablish the heap property).

4/8

The binary max-heap data structure

n

12

11 11

9 10 8 6

2 4 7 1 3 5

v = 12
w = 3

v = 11

n

n

n n

n

n

Algorithm Add(H, v) (high-level overview):
1: Add a node n to the end of H with k (n) := v .
2: Swim n upward to a valid position (reestablish the heap property).

4/8

The binary max-heap data structure

n

12

11 8

9 10 5 6

2 4 7 1 3

11

v = 12
w = 3
v = 11

n

n

n n

n

n

Storing a max-heap in an array

4/8

The binary max-heap data structure

n

12

11 8

9 10 5 6

2 4 7 1 3

11

v = 12
w = 3
v = 11

n

n

n n

n

n

0

1 2

3 4 5 6

7 8 9 10 11

Storing a max-heap in an array
Number the nodes from top-to-bottom, left-to-right.

Warning: The book numbers values in max-heaps starting at 1 instead of 0!

4/8

The binary max-heap data structure

n

12

11 8

9 10 5 6

2 4 7 1 3

11

v = 12
w = 3
v = 11

n

n

n n

n

n

0

1 2

3 4 5 6

7 8 9 10 11

12 11 8 9 10 5 6 2 4 7 1 3

Storing a max-heap in an array
Number the nodes from top-to-bottom, left-to-right→ positions in the array.

4/8

The binary max-heap data structure

n

12

11 8

9 10 5 6

2 4 7 1 3

11

v = 12
w = 3
v = 11

n

n

n n

n

n

0

1 2

3 4 5 6

7 8 9 10 11

12 11 8 9 10 5 6 2 4 7 1 3

If a node is at position p,

▶ then the parent is at position parent(p) = (p − 1) div 2.
▶ then the left child is at position lchild(p) = 2 · p + 1.
▶ then the right child is at position rchild(p) = 2 · p + 2.

4/8

The binary max-heap data structure

n

12

11 8

9 10 5 6

2 4 7 1 3

11

v = 12
w = 3
v = 11

n

n

n n

n

n

0

1 2

3 4 5 6

7 8 9 10 11

12 11 8 9 10 5 6 2 4 7 1 3

If a node is at position p,
▶ then the parent is at position parent(p) = (p − 1) div 2.

▶ then the left child is at position lchild(p) = 2 · p + 1.
▶ then the right child is at position rchild(p) = 2 · p + 2.

4/8

The binary max-heap data structure

n

12

11 8

9 10 5 6

2 4 7 1 3

11

v = 12
w = 3
v = 11

n

n

n n

n

n

0

1 2

3 4 5 6

7 8 9 10 11

12 11 8 9 10 5 6 2 4 7 1 3

If a node is at position p,
▶ then the parent is at position parent(p) = (p − 1) div 2.
▶ then the left child is at position lchild(p) = 2 · p + 1.

▶ then the right child is at position rchild(p) = 2 · p + 2.

4/8

The binary max-heap data structure

n

12

11 8

9 10 5 6

2 4 7 1 3

11

v = 12
w = 3
v = 11

n

n

n n

n

n

0

1 2

3 4 5 6

7 8 9 10 11

12 11 8 9 10 5 6 2 4 7 1 3

If a node is at position p,
▶ then the parent is at position parent(p) = (p − 1) div 2.
▶ then the left child is at position lchild(p) = 2 · p + 1.
▶ then the right child is at position rchild(p) = 2 · p + 2.

4/8

The binary max-heap data structure

If a node is at position p,
▶ then the parent is at position parent(p) = (p − 1) div 2.
▶ then the left child is at position lchild(p) = 2 · p + 1.
▶ then the right child is at position rchild(p) = 2 · p + 2.

Algorithm Sink(L[0 . . .N), p):
Sink L[p] to a valid position.

Algorithm Swim(L[0 . . .N), p):
Swim L[p] upward to a valid position.

4/8

The binary max-heap data structure

If a node is at position p,
▶ then the parent is at position parent(p) = (p − 1) div 2.
▶ then the left child is at position lchild(p) = 2 · p + 1.
▶ then the right child is at position rchild(p) = 2 · p + 2.

Algorithm Sink(L[0 . . .N), p):
1: while true do
2: np := p.
3: if lchild(p) < N and

L[np] < L[lchild(p)] then
4: np := lchild(p).
5: if rchild(p) < N and

L[np] < L[rchild(p)] then
6: np := rchild(p).
7: if np = p then return.
8: Exchange L[p] and L[np].
9: p := np.

Algorithm Swim(L[0 . . .N), p):
1: while p ≠ 0 and

L[p] > L[parent(p)] do
2: Exchange L[p] and L[parent(p)].
3: p := parent(p).

5/8

HeapSort: Filling in the details

Algorithm HeapSort(L):
Input: List L[0 . . .N) of N values.
1: Turn L into a max-heap.
2: for pos := N to 2 do
3: max := DelMax(L[0 . . . pos))
4: L[pos − 1] := max .

5/8

HeapSort: Filling in the details

Algorithm HeapSort(L):
Input: List L[0 . . .N) of N values.
1: Turn L into a max-heap.
2: for pos := N to 2 do
3: max := DelMax(L[0 . . . pos))
4: L[pos − 1] := max .

AlgorithmMakeHeap(L[0 . . .N)):
1: len := 1.

/* inv: L[0 . . . len is a max-heap, bf: N − len */
2: while len ≠ N do
3: Add(L[0 . . . len), L[len]).
4: len := len + 1.

N − 1 Swim operations.

5/8

HeapSort: Filling in the details

Algorithm HeapSort(L):
Input: List L[0 . . .N) of N values.
1: Turn L into a max-heap.
2: for pos := N to 2 do
3: max := DelMax(L[0 . . . pos))
4: L[pos − 1] := max .

AlgorithmMakeHeap(L[0 . . .N)):
1: len := 1.

/* inv: L[0 . . . len is a max-heap, bf: N − len */
2: while len ≠ N do
3: Add(L[0 . . . len), L[len]).
4: len := len + 1.

N − 1 Swim operations.

5/8

HeapSort: Filling in the details

A faster MakeHeap

? ? ? ? 5 ? ? ? ? 10 13 ?L :

p lc rc

Consider a position p in L such that
▶ the left child at position lchild(p) already forms a valid max-heap in L; and
▶ the right child at position rchild(p) already forms a valid max-heap in L.

Sink(L[0. . .N), p) assures that p also forms a valid max-heap in L.

Leaves always form valid max-heaps.

Positions m ≤ N with lchild(m) = m · 2 + 1 ≥ N represent the leaves in a max-heap of L

→ The last non-child in a max-heap of L values is at position
⌊
N−1
2

⌋
.

5/8

HeapSort: Filling in the details

A faster MakeHeap

? ? ? ? 5 ? ? ? ? 10 13 ?L :

p lc rc

Consider a position p in L such that
▶ the left child at position lchild(p) already forms a valid max-heap in L; and
▶ the right child at position rchild(p) already forms a valid max-heap in L.

Sink(L[0. . .N), p) assures that p also forms a valid max-heap in L.

Leaves always form valid max-heaps.

Positions m ≤ N with lchild(m) = m · 2 + 1 ≥ N represent the leaves in a max-heap of L

→ The last non-child in a max-heap of L values is at position
⌊
N−1
2

⌋
.

5/8

HeapSort: Filling in the details

A faster MakeHeap

? ? ? ? 5 ? ? ? ? 10 13 ?L :

p lc rc

Consider a position p in L such that
▶ the left child at position lchild(p) already forms a valid max-heap in L; and
▶ the right child at position rchild(p) already forms a valid max-heap in L.

Sink(L[0. . .N), p) assures that p also forms a valid max-heap in L.

Leaves always form valid max-heaps.

Positions m ≤ N with lchild(m) = m · 2 + 1 ≥ N represent the leaves in a max-heap of L

→ The last non-child in a max-heap of L values is at position
⌊
N−1
2

⌋
.

5/8

HeapSort: Filling in the details

A faster MakeHeap

? ? ? ? 13 ? ? ? ? 10 5 ?L :

p lc rc

Consider a position p in L such that
▶ the left child at position lchild(p) already forms a valid max-heap in L; and
▶ the right child at position rchild(p) already forms a valid max-heap in L.

Sink(L[0. . .N), p) assures that p also forms a valid max-heap in L.

Leaves always form valid max-heaps.

Positions m ≤ N with lchild(m) = m · 2 + 1 ≥ N represent the leaves in a max-heap of L

→ The last non-child in a max-heap of L values is at position
⌊
N−1
2

⌋
.

5/8

HeapSort: Filling in the details

A faster MakeHeap

? ? ? ? 13 ? ? ? ? 10 5 ?L :

p lc rc

Consider a position p in L such that
▶ the left child at position lchild(p) already forms a valid max-heap in L; and
▶ the right child at position rchild(p) already forms a valid max-heap in L.

Sink(L[0. . .N), p) assures that p also forms a valid max-heap in L.

Leaves always form valid max-heaps.

Positions m ≤ N with lchild(m) = m · 2 + 1 ≥ N represent the leaves in a max-heap of L

→ The last non-child in a max-heap of L values is at position
⌊
N−1
2

⌋
.

5/8

HeapSort: Filling in the details

A faster MakeHeap

? ? ? ? 13 ? ? ? ? 10 5 ?L :

p lc rc

Consider a position p in L such that
▶ the left child at position lchild(p) already forms a valid max-heap in L; and
▶ the right child at position rchild(p) already forms a valid max-heap in L.

Sink(L[0. . .N), p) assures that p also forms a valid max-heap in L.

Leaves always form valid max-heaps.

Positions m ≤ N with lchild(m) = m · 2 + 1 ≥ N represent the leaves in a max-heap of L.

→ The last non-child in a max-heap of L values is at position
⌊
N−1
2

⌋
.

5/8

HeapSort: Filling in the details

A faster MakeHeap

? ? ? ? 13 ? ? ? ? 10 5 ?L :

p lc rc

Consider a position p in L such that
▶ the left child at position lchild(p) already forms a valid max-heap in L; and
▶ the right child at position rchild(p) already forms a valid max-heap in L.

Sink(L[0. . .N), p) assures that p also forms a valid max-heap in L.

Leaves always form valid max-heaps.

Positions m ≤ N with lchild(m) = m · 2 + 1 ≥ N represent the leaves in a max-heap of L
→ The last non-child in a max-heap of L values is at position

⌊
N−1
2

⌋
.

5/8

HeapSort: Filling in the details

A faster MakeHeap

? ? ? ? 13 ? ? ? ? 10 5 ?L :

p lc rc

Algorithm FastMakeHeap(L):
1: k := N − (N div 2).
2: while k ≠ 0 do
3: Sink(L[0 . . .N), k).
4: k := k − 1.

⌊
N−1
2

⌋
Sink operations.

5/8

HeapSort: Filling in the details

A faster MakeHeap

? ? ? ? 13 ? ? ? ? 10 5 ?L :

p lc rc

Algorithm FastMakeHeap(L):
1: k := N − (N div 2).
2: while k ≠ 0 do
3: Sink(L[0 . . .N), k).
4: k := k − 1.

⌊
N−1
2

⌋
Sink operations.

6/8

Comparing HeapSort withMergeSort and QuickSort

Comparisons Changes Memory Stable

MergeSort Θ (N log2(N)) N log2(N) Θ (N) yes

QuickSort
Θ (N log2(N))
(expected)

Θ (N log2(N))
(expected)

Θ (log2(N))
(expected)

no

HeapSort Θ (N log2(N)) N log2(N) 1 no

6/8

Comparing HeapSort withMergeSort and QuickSort

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0

0.5

1

1.5
·108

Number of values n

R
un

ni
ng

ti
m
e
(µ
s)

Measured runtime complexity
(sorting a list of n random values)

MergeSort
MergeSortM=32

QuickSortf-rnd
QuickSortfml

QuickSortf-rnd,M=16

QuickSortfml,M=16

HeapSort

HeapSort jumps around in arrays: very costly!

6/8

Comparing HeapSort withMergeSort and QuickSort

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0

0.5

1

1.5
·108

Number of values n

R
un

ni
ng

ti
m
e
(µ
s)

Measured runtime complexity
(sorting a list of n random values)

MergeSort
MergeSortM=32

QuickSortf-rnd
QuickSortfml

QuickSortf-rnd,M=16

QuickSortfml,M=16

HeapSort

HeapSort jumps around in arrays: very costly!

7/8

Final notes on HeapSort

A max-heap is often referred to as a Priority Queue.

There are also min-heaps that provide fast access to minimum values.

C++ Java

Priority Queues std::priority_queue java.util.PriorityQueue

Add std::push_heap
DelMax std::pop_heap

(related)

std::make_heap
std::is_heap
std::is_heap_until
std::sort_heap

7/8

Final notes on HeapSort

A max-heap is often referred to as a Priority Queue.

There are also min-heaps that provide fast access to minimum values.

C++ Java

Priority Queues std::priority_queue java.util.PriorityQueue

Add std::push_heap
DelMax std::pop_heap

(related)

std::make_heap
std::is_heap
std::is_heap_until
std::sort_heap

8/8

IntroSort: Putting all sorts together

Algorithm IntroSort(L[start . . . end), potential):
potential is the number of values we could have sorted with perfect pivot choices.

1: if end − start ≤ M then
2: Sort L[start . . . end] using InsertionSort.
3: else if potential < 1.5 · |L| then
4: Sort L[start . . . end] using HeapSort.
5: else
6: Choose the position p ∈ [start, end) of the pivot value v := L[pos].
7: pos := Partition(L, start, end, p).
8: IntroSort(L[start . . . pos), 2 · potential).
9: IntroSort(L[pos + 1 . . . end), 2 · potential).

Algorithm IntroSort(L[0 . . .N)):
10: IntroSort(L[0 . . .N), 1).

8/8

IntroSort: Putting all sorts together

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0

0.5

1

1.5
·108

Number of values n

R
un

ni
ng

ti
m
e
(µ
s)

Measured runtime complexity
(sorting a list of n random values)

MergeSort
MergeSortM=32

QuickSortf-rnd
QuickSortfml

QuickSortf-rnd,M=16

QuickSortfml,M=16

HeapSort
IntroSortf-rnd,M=16

IntroSortfml,M=16

