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Using Merge-like algorithms
Consider the following variant of Merge.

AlgorithmMerge(L1, L2):
Input: L1 and L2 are ordered lists of distinct values.
1: output := ∅.
2: i1, i2 := 0, 0.
3: while i1 < |L1 | or i2 < |L2 | do
4: if (i1 < |L1 | and i2 < |L2 |) and also L1 [i1] = L2 [i2] then
5: Add L1 [i1] to output .
6: i1, i2 := i1 + 1, i2 + 1.
7: else if i2 = |L2 | or else (i1 < |L1 | and also L1 [i1] < L2 [i2]) then
8: Add L1 [i1] to output .
9: i1 := i1 + 1.
10: else L1 [i1] > L2 [i2]
11: Add L2 [i2] to output .
12: i2 := i2 + 1.
13: return output . /* return L1 ∪ L2. */
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Using Merge-like algorithms
Consider the following variant of Merge.

AlgorithmMerge(L1, L2):
Input: L1 and L2 are ordered lists of distinct values.
1: output := ∅.
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2/17

Using Merge-like algorithms
Consider relations enrolled(c, student) and teaches(c, faculty), ordered on course course.

Problem
Compute all pairs (student, faculty) such that faculty is a teacher of student .

Solutions
▶ A nested-loop join: Θ( |enrolled| · |teaches|).
▶ Using binary search: Θ( |enrolled| · log2( |teaches|) + |result |).

Can we do better?
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Using Merge-like algorithms
Consider relations enrolled(c, student) and teaches(c, faculty), ordered on course course.

Algorithm ETMergeJoin(enrolled , teaches):
1: output := ∅.
2: i1, i2 := 0, 0.
3: while i1 < |enrolled | and i2 < |teaches | do
4: if enrolled[i1] .c = teaches[i2] .c then
5: A potential join output!
6: Need to find all enrolled students for course enrolled[i1] .c.
7: Need to find all teaching faculty for course teaches[i2] .c.
8:

9: else if enrolled[i1] .c < teaches[i2] .c then
10: i1 := i1 + 1.
11: else enrolled[i1] .c < teaches[i2] .c
12: i2 := i2 + 1.
13: return output . /* return pairs (s, f ) such that f is a teacher of s. */
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2: i1, i2 := 0, 0.
3: while i1 < |enrolled | and i2 < |teaches | do
4: if enrolled[i1] .c = teaches[i2] .c then
5: j1 := first j with either j = |enrolled| or else enrolled[j] .c ≠ enrolled[i1] .c.
6: j2 := first j with either j = |teaches| or else teaches[j] .c ≠ teaches[i2] .c.
7: Add all (s, f ) with (c1, s) ∈ enrolled[i1, j1) and (c2, f ) ∈ teaches[i2, j2) to output .
8: i1, i2 := j1, j2.
9: else if enrolled[i1] .c < teaches[i2] .c then
10: i1 := i1 + 1.
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12: i2 := i2 + 1.
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2/17

Using Merge-like algorithms
Consider relations enrolled(c, student) and teaches(c, faculty), ordered on course course.

Algorithm ETMergeJoin(enrolled , teaches):
1: output := ∅.
2: i1, i2 := 0, 0.
3: while i1 < |enrolled | and i2 < |teaches | do
4: if enrolled[i1] .c = teaches[i2] .c then
5: j1 := first j with either j = |enrolled| or else enrolled[j] .c ≠ enrolled[i1] .c.
6: j2 := first j with either j = |teaches| or else teaches[j] .c ≠ teaches[i2] .c.
7: Add all (s, f ) with (c1, s) ∈ enrolled[i1, j1) and (c2, f ) ∈ teaches[i2, j2) to output .
8: i1, i2 := j1, j2.

Complexity
▶ The merge-part visits every value in enrolled and teaches once.
▶ The join-part only visits those pairs of values necessary for the result.

Hence, the complexity is Θ( |enrolled | + |teaches | + |result |).
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Using Merge-like algorithms
Consider relations enrolled(c, student) and teaches(c, faculty), ordered on course course.

Problem
Compute all pairs (student, faculty) such that faculty is a teacher of student .

Solutions
▶ A nested-loop join: Θ( |enrolled| · |teaches|).
▶ Using binary search: Θ( |enrolled| · log2( |teaches|) + |result |).
▶ Using merge join: Θ( |enrolled | + |teaches | + |result |).
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Stable sorting

Consider a list enrolled of enrollment data with schema

enrolled(dept, code, sid, date) .
If we add enrollment data to the end of the list , then enrolled is always sorted on date.

Problem
Group enrolled on (dept, code) and within each group sort enrollments on date.
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Consider a list enrolled of enrollment data with schema

enrolled(dept, code, sid, date) .
If we add enrollment data to the end of the list , then enrolled is always sorted on date.

Problem
Group enrolled on (dept, code) and within each group sort enrollments on date.

Brute-force solution: Lexicographical sorting on (dept, code, date)
Let (d1, c1, s1, t1), (d2, c2, s2, t2) ∈ enrolled. We use the comparison

(d1, c1, s1, t1) before (d2, c2, s2, t2) if (d1 < d2) ∨ ((d1 = d2) ∧ (c1 < c2))∨
((d1 = d2) ∧ (c1 = c2) ∧ (t1 < t2)) .

Downside: During sorting, we end up throwing away the existing ordering on date,
and then we rebuild that order from scratch!
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Stable sorting

Consider a list enrolled of enrollment data with schema

enrolled(dept, code, sid, date) .
If we add enrollment data to the end of the list , then enrolled is always sorted on date.

Problem
Group enrolled on (dept, code) and within each group sort enrollments on date.

Better solution: Use a stable sort algorithm
A stable sort algorithm maintains the relative order of “equal values”.

Let (d1, c1, s1, t1), (d2, c2, s2, t2) ∈ enrolled. If we sort enrolled using a stable sort algorithm
using the comparison

(d1, c1, s1, t1) before (d2, c2, s2, t2) if (d1 < d2) ∨ ((d1 = d2) ∧ (c1 < c2))

then within each (dept, code)-group, enrollments remain ordered on date for free!
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Stable sorting

Definition
Let L be a list that is already ordered with respect to some attributes a1, . . . , an.
Consider a sort step S that re-orders L based on other attributes b1, . . . , bm.

We say that the sort step S is stable if, for every value r1 ∈ L and r2 ∈ L such that r1
originally came before r2 and r1 and r2 agreee on attributes b1, . . . , bm, the resulting
re-ordered list will still have r1 come before r2.
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Stable sorting

Definition
Let L be a list that is already ordered with respect to some attributes a1, . . . , an.
Consider a sort step S that re-orders L based on other attributes b1, . . . , bm.

We say that the sort step S is stable if, for every value r1 ∈ L and r2 ∈ L such that r1
originally came before r2 and r1 and r2 agreee on attributes b1, . . . , bm, the resulting
re-ordered list will still have r1 come before r2.

Question: Have we already seen stable sort algorithms?
Yes: SelectionSort, InsertionSort, and MergeSort.

Note: even minor changes to these algorithms will make them non-stable!
(e.g., changing < into ≤).
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Intermezzo: Recurrence trees

In a recurrence tree
▶ nodes labeled N represent a function call with “input size N”;
▶ the children of a node represent recursive calls;
▶ per node, we can determine the work within that call (besides recursion);
▶ per depth, we can determine the total work for that depth;
▶ by summing over all depths: the total complexity.
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Intermezzo: Recurrence trees

In a recurrence tree
▶ nodes labeled N represent a function call with “input size N”;
▶ the children of a node represent recursive calls;
▶ per node, we can determine the work within that call (besides recursion);
▶ per depth, we can determine the total work for that depth;
▶ by summing over all depths: the total complexity.

We already saw two examples: LowerBoundRec andMergeSortR.
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Intermezzo: Recurrence trees

Example: the Fibonacci numbers

fib(N) =
{
1 if N = 1 or N = 2;

fib(N − 1) + fib(N − 2) if N > 2.
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Intermezzo: Recurrence trees

fib(N) =
{
1 if N = 1 or N = 2;

fib(N − 1) + fib(N − 2) if N > 2.

Prove that fib(N) ≤ 2N

Simplication: fib(i − 2) ≤ fib(i − 1).
N

Number Cost Total

1 = 20 1 1 · 1 = 1

N−1 N−2N−1 2 = 21 1 2 · 1 = 2

N−2 N−2 N−2 N−2 4 = 22 1 4 · 1 = 4

N−3 N−3 N−3 N−3 N−3 N−3 N−3 N−3 8 = 23 1 8 · 1 = 8
...

...
...

2i 1 2i · 1 = 2i
...

...
...

2

. .
. .
. .
. .
.

2
. . . . . . . . .

N − 1

+∑N−2
i=0 2i

= 2N−1 − 1
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Intermezzo: Recurrence trees

fib(N) =
{
1 if N = 1 or N = 2;

fib(N − 1) + fib(N − 2) if N > 2.

Prove that 2⌈N
2 ⌉ ≤ fib(N)

Simplication: fib(i − 1) ≥ fib(i − 2).
N

Number Cost Total

1 = 20 1 1 · 1 = 1

N−2 N−2 2 = 21 1 2 · 1 = 2

N−4 N−4 N−4 N−4 4 = 22 1 4 · 1 = 4

N−6 N−6 N−6 N−6 N−6 N−6 N−6 N−6 8 = 23 1 8 · 1 = 8
...

...
...

2i 1 2i · 1 = 2i
...

...
...

1 or 2

. .
. .
. .
. .
.

1 or 2
. . . . . . . . .

⌈
N
2

⌉

+∑⌈ N
2 ⌉

i=0 2i = 2⌈ N
2 ⌉+1 − 1
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Intermezzo: Recurrence trees

Example: the Fibonacci numbers

fib(N) =
{
1 if N = 1 or N = 2;

fib(N − 1) + fib(N − 2) if N > 2.

Via recurrence trees, we have proven that:

2⌈ N
2 ⌉ ≤ fib(N) ≤ 2N .
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Intermezzo: The Master Theorem

Let T (N) be a recurrence of the form

T (N) =
{
constant if base case;

aT
(N
b

)
+ f (N) if recursive case,

with a ≥ 1, b > 1, and we can read N
b also as

⌈
N
b

⌉
or

⌊
N
b

⌋
.

We have the following

1. if f (N) = O(N logb (a−𝜖 ) ) with 𝜖 > 0, then T (N) = Θ(N logb (a) ).
2. if f (N) = Θ(N logb (a) logk (N)) with k ≥ 0, then T (N) = Θ(N logb (a) logk+1(N)).
3. if f (N) = Ω(N logb (a+𝜖 ) ) with 𝜖 > 0 and af

(N
b

)
≤ cf (N) for a c < 1 (for large N),

then T (N) = Θ(f (N)).
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Let T (N) be a recurrence of the form
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b
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N
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3. if f (N) = Ω(N logb (a+𝜖 ) ) with 𝜖 > 0 and af

(N
b

)
≤ cf (N) for a c < 1 (for large N),

then T (N) = Θ(f (N)).

Someone else has already proved this—so we can reuse the result!
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Case 1 yields: T (N) = Θ(N log4 (7) ) ≈ Θ(N1.40367...).
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Can we do better thanMergeSort?

Algorithm CountSort(L[0 . . .N)):
Input: Each value in L is either 0 or 1.
1: count0 := 0
2: for all v ∈ L do Count number of 0’s
3: if v = 0 then
4: count0 := count0 + 1.
5: for i := 0 to count0 − 1 doWrite the counted number of 0’s
6: L[i] := 0.
7: for i := count0 to N − 1 do Write the remaining 1’s
8: L[i] := 1.

Complexity: Linear (Θ(N) comparisons, Θ(N) changes)

CountSort does not solve general-purpose sorting!
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▶ Algorithm A uses comparisons to decide which operations to perform.
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A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0 . . . ,N) with values 1, . . . ,N in an unknown order .

C: L[i] < L[j]

S: All possible lists L that are
treated the same by Algorithm A up till this point

All lists in S for
which C did not hold

All lists in S for
which C did hold
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▶ in T , each leaf of T must represent one list;
▶ in T , there must be a leaf for every possible list L.
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Consider a path 𝜋 in T from root to a leaf for a specific list L′

▶ This path 𝜋 specifies all distinguishing comparisons made by Algorithm A to sort L′.
▶ The length of path 𝜋 is a lower bound for the complexity to sort L′!

What is the worst-case length of path 𝜋?
The lengths of paths in T depend on the height of T ,

→ which depends on the number of leaves in T .
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A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0 . . . ,N) with values 1, . . . ,N in an unknown order .

The number of leaves in T

How many distinct lists of length N exist with values 1, . . . ,N in an unknown order?
▶ N possible values for the first value,
▶ N − 1 possible values for the second value,
▶ . . .
▶ 1 possible value for the last value.

N∏
i=1

i = N! leaves (all possible permutations).



7/17

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0 . . . ,N) with values 1, . . . ,N in an unknown order .

The number of leaves in T
How many distinct lists of length N exist with values 1, . . . ,N in an unknown order?

▶ N possible values for the first value,
▶ N − 1 possible values for the second value,
▶ . . .
▶ 1 possible value for the last value.

N∏
i=1

i = N! leaves (all possible permutations).



7/17

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0 . . . ,N) with values 1, . . . ,N in an unknown order .

The number of leaves in T
How many distinct lists of length N exist with values 1, . . . ,N in an unknown order?
▶ N possible values for the first value,
▶ N − 1 possible values for the second value,
▶ . . .
▶ 1 possible value for the last value.

N∏
i=1

i = N! leaves (all possible permutations).



7/17

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0 . . . ,N) with values 1, . . . ,N in an unknown order .

The number of leaves in T
How many distinct lists of length N exist with values 1, . . . ,N in an unknown order?
▶ N possible values for the first value,
▶ N − 1 possible values for the second value,
▶ . . .
▶ 1 possible value for the last value.

N∏
i=1

i = N! leaves (all possible permutations).



7/17

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0 . . . ,N) with values 1, . . . ,N in an unknown order .

Consider a path 𝜋 in T from root to a leaf for a specific list L′

▶ This path 𝜋 specifies all distinguishing comparisons made by Algorithm A to sort L′.
▶ The length of path 𝜋 is a lower bound for the complexity to sort L′!

What is the worst-case length of path 𝜋?
The lengths of paths in T depend on the height of T ,

→ which depends on the number of leaves N! in T .
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The left and right child of n each can reach M
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We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0 . . . ,N) with values 1, . . . ,N in an unknown order .

The minimal height of a tree T with N! leaves
We have to find a lower bound on log2(N!).

log2(N!) = log2(N · (N − 1) · · · · · 1)

= log2(N) + log2(N − 1) + · · · + log2(1)
≥ log2(N) + log2(N − 1) + · · · + log2(
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N
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= N
2 (log2(N) − 1)

= N
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N
2 = Θ(N log2(N)) .
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A lower bound for general-purpose sorting

Assume: We have a list L[0 . . .N) of N distinct values

Algorithm A

L sorted(L)

If Algorithm A is general-purpose, then A will perform
at-least Θ(N log2(N)) comparisons for some inputs of N values.
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Assume: We have a list L[0 . . .N) of N distinct values

Algorithm A

L sorted(L)

If Algorithm A is general-purpose, then A will perform
at-least Θ(N log2(N)) comparisons for some inputs of N values.

If Algorithm A performs less comparisons for some inputs,
then A will perform more comparisons for other inputs.
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A lower bound for general-purpose sorting

Assume: We have a list L[0 . . .N) of N distinct values

Algorithm A

L sorted(L)

General-purpose sorting algorithms such asMergeSort are optimal:
their worst-case complexity matches the lower bound of Θ(N log2(N)).
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A potentially-faster sort: QuickSort

Can we improve upon the optimal MergeSort algorithm?

▶ Reduce massive Θ(N) memory consumption?
▶ Reduce constants: Merge performs many operations on several lists.
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A potentially-faster sort: QuickSort

Divide-and-conquer
Divide Turn problem into smaller subproblems.

Divide the list into small and large values.

Conquer Solve the smaller subproblems using recursion.

Sort the small values and large values separately.

Combine Combine the subproblem solutions into a final solution.

The list is sorted if the small values and large values are sorted.
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A potentially-faster sort: QuickSort

Divide-and-conquer
Divide Turn problem into smaller subproblems.

Divide the list into small and large values.

Conquer Solve the smaller subproblems using recursion.
Sort the small values and large values separately.

Combine Combine the subproblem solutions into a final solution.
The list is sorted if the small values and large values are sorted.

Dividing a list into small and large values sounds easier thanMerge!
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QuickSort: High-level overview

Algorithm QuickSort(L[start . . . end)):
1: if end − start > 1 then

2: Choose the position p ∈ [start, end) of the pivot value v := L[pos].
3: Partition L[start . . . end) such that

▶ all values smaller-or-equal to v come first;
▶ followed by the have the value v ;
▶ followed by all other values (that are larger than v).

4: Let pos be the position of v after Partition.
5: QuickSort(L[start . . . pos)).
6: QuickSort(L[pos + 1 . . . end)).

2 6 3 5 1 4

p

3 1 2 4 6 5

pos

1 2 3 4 5 6

QuickSort(L[start . . . pos)) QuickSort(L[pos + 1 . . . end))
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Proof of correctness: QuickSort(L[start . . . end)) sorts

Base case QuickSort sorts 0 ≤ end − start ≤ 1 values.

Induction hypothesis QuickSort sorts 0 ≤ end − start < n values correctly.

Induction step Consider QuickSort with 2 ≤ end − start = n values.

start end

Partition L with v ∈ L[start . . . end)
Assumption: Partition is correct

≤ v v > v

pos

QuickSort(L[start . . . pos)) QuickSort(L[pos + 1 . . . end))
IH IH pos < end

≤ v , sorted v > v , sorted

pos
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Assumption: Partition is correct

Algorithm Partition(L, start , end , p):

1: Exchange L[start] and L[p].
2: v, i, j := L[start], start, start + 1.

Values in L[start + 1 . . . i + 1) are smaller-or-equal to v .
Values in L[i + 1 . . . j) are larger than v .

3: while j ≠ end do
4: if L[j] ≤ v then
5: i := i + 1.
6: Exchange L[i] and L[j].
7: j := j + 1.
8: Exchange L[i] and L[start].
9: return i. 2 6 3 5 1 4

p

4 6 3 5 1 2

i j

4 6 3 5 1 2

i j

4 3 6 5 1 2

i j

4 3 6 5 1 2

i j

4 3 1 5 6 2

i j

4 3 1 2 6 5

i j

2 3 1 4 6 5

i j

v
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QuickSort: A complete example
We did not specify yet how to choose a pivot value!

→ random choices for now.
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The complexity of QuickSort

The complexity of QuickSort depends on the chosen pivot values.
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The complexity of QuickSort

Example: Pivots are always smaller than all other values

T (N) =
{
1 if N ≤ 1;

T (N − 1) + N

if N > 1.

N

Number Cost Total

1 N N

N − 1 1 N − 1 N − 1

N − 2 1 N − 2 N − 2

N − 3 1 N − 3 N − 3

1 1 1 1

N∑︁
i=1

i =
N (N + 1)

2
= Θ(N2).
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Example: Pivots are “in the middle” of all values
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2T (⌊N2 ⌋) + N

if N > 1.

We have seen this one before: T (N) = Θ(N log2(N)).
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The complexity of QuickSort

The complexity of QuickSort depends a lot on the chosen pivot values.

Randomized QuickSort: Choose pivot values fully at random
We cannot provide an exact complexity for Randomized QuickSort:
Executions on the same list can have vastly different random choices (and complexities).

Expected-case analysis: an analysis in terms of the distribution of random choices.

Any random choice in Randomized QuickSort is equally likely:

T (N) =

1 if N ≤ 1;

1
N

(
N−1∑︁
i=0

(
T (i) + T (N − (i + 1))

))
+ N if N > 1.

With some mathematical tricks, we can show that T (N) = Θ(N log2(N)).
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We cannot provide an exact complexity for Randomized QuickSort:
Executions on the same list can have vastly different random choices (and complexities).

Expected-case analysis: an analysis in terms of the distribution of random choices.
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The complexity of QuickSort

The complexity of QuickSort depends a lot on the chosen pivot values.

We will later develop a QuickSort variant that always has a Θ(N log2(N)) complexity,
this independent of how pivot values are chosen.
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Fast pseudo-random numbers perform better in practice.
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The median of the first, middle, and last value is easy to compute and often works just fine.
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QuickSort can be finetuned to use InsertionSort for blocks up-to-size M.
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A lot of lists are already (partially) sorted!
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Further comparing MergeSort and QuickSort

Comparisons Changes Memory

MergeSort Θ(N log2(N)) N log2(N) Θ(N)

QuickSort
Θ(N log2(N))
(expected)

Θ(N log2(N))
(expected)

Θ(log2(N))
(expected)
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Further comparing MergeSort and QuickSort

QuickSort is not stable
Consider a L list of pairs (name, age) that is already sorted on age:

L = [(Alicia, 12), (Dafni, 20), (Celeste, 27), (Dafni, 35), (Alicia, 56), (Celeste, 80)] .

▶ QuickSort(L[0, 6)) on names only will not maintain ordering on age:

[(Alicia, 56), (Alicia, 12), (Celeste, 27), (Celeste, 80), (Dafni, 35), (Dafni, 20)] .

▶ MergeSort(L[0, 6)) on names only will always maintain pre-existing ordering (for
values that are “identical”):

[(Alicia, 12), (Alicia, 56), (Celeste, 27), (Celeste, 80), (Dafni, 20), (Dafni, 35)] .

We say thatMergeSort is stable.
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Using Partition: Order statistics

Problem
Given a list L[start . . . end) and k, start ≤ k < end ,
return the k-th smallest value in L[start . . . end).

Algorithm Select(L, start , end , k):
1: Choose the position p ∈ [start, end) of the pivot value v := L[pos].
2: pos := Partition(L, start, end, p).
3: if pos = k then
4: return L[pos].
5: else if pos > k then
6: return Select(L, start , pos − 1, k).
7: else
8: return Select(L, pos, end , k).
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Problem
Given a list L[start . . . end) and k, start ≤ k < end ,
return the k-th smallest value in L[start . . . end).

Algorithm Select(L, start , end , k):
1: Choose the position p ∈ [start, end) of the pivot value v := L[pos].
2: pos := Partition(L, start, end, p).
3: if pos = k then
4: return L[pos].
5: else if pos > k then
6: return Select(L, start , pos − 1, k).
7: else
8: return Select(L, pos, end , k).

Essentially a “half” QuickSort that only sorts those values that could be the k-th.
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Using Partition: Order statistics

Problem
Given a list L[start . . . end) and k, start ≤ k < end ,
return the k-th smallest value in L[start . . . end).

Algorithm Select(L, start , end , k):
1: Choose the position p ∈ [start, end) of the pivot value v := L[pos].
2: pos := Partition(L, start, end, p).
3: if pos = k then
4: return L[pos].
5: else if pos > k then
6: return Select(L, start , pos − 1, k).
7: else
8: return Select(L, pos, end , k).

Randomized Select: Θ(N) (expected).
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Using Partition: Order statistics

Select(L, 0, 9, 6): We want the k = 6-th smallest value.
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Final notes on QuickSort

C++ Java

QuickSort std::sort java.util.Arrays.sort (non-Objects)

Partition std::partition

(related) std::stable_partition


