Sorting
SFWRENG 2CO3: Data Structures and Algorithms

Jelle Hellings

Department of Computing and Software
McMaster University

McMaster

+ B

University B8

Winter 2024

Using MERGE-like algorithms

Consider the following variant of MERGE.

Algorithm MEeRGE(Lq, Ly):

Input: L; and L, are ordered lists of distinct values.

1: output := 0.

2: 01,0 :=0,0.

3: while i; < |L{] or i, < |L,| do

4. if (i1 < |L1| and i, < |L;]) and also L{[i1] = L,[i;] then
5:

6 i =ih+1,h+1.

7. elseif iy = |L,| or else (i; < |L;| and also L{[i1] < Ly[i»]) then
8

9 hi=n+1

10: else Lqi[i1] > L[i3]

11:

12: I =i+ 1.

13: return output. /* return L%/

Using MERGE-like algorithms

Consider the following variant of MERGE.

Algorithm MEeRGE(Lq, Ly):

Input: L; and L, are ordered lists of distinct values.

: output = 0.

: i1, iz :=0,0.

: while i; < |L1| or i, < |L,]| do

if (i1 < |L7| and i, < |L;]) and also L{[i;] = L,[i;] then

il i=h+1,h+1.

else if i) = |L,| or else (i; < |L;]| and also L{[i1] < Ly[i»]) then
Add-LlHto-output.
h=n+1

10: else Li[ii] > L[i3]

11: Add-L 1 te-output.

12: I =i+ 1.

13: return output. /* return L%/

1
2
3
4
5:
6
7
8
9

Using MERGE-like algorithms

Consider the following variant of MERGE.

Algorithm MEeRGE(Lq, Ly):
Input: L; and L, are ordered lists of distinct values.
1: output := 0.
2: 01,0 :=0,0.
3: while i; < |L{] or i, < |L,| do
4. if (i1 < |L1| and i, < |L;]) and also L{[i1] = L,[i;] then
5: Add-Ltto-eutput.
6: i =h+T1i+1.
7. elseif iy = |L,| or else (i; < |L;| and also L{[i1] < Ly[i»]) then
8
9

h=hn+1
10: else Lqi[i1] > L[i3]
11: Add-L 1 te-output.
12: I =i+ 1.
13: return output. /* return L%/

Using MERGE-like algorithms

Consider the following variant of MERGE.

Algorithm MEeRGE(Lq, Ly):
Input: L; and L, are ordered lists of distinct values.
1: output := 0.
2: 01,0 :=0,0.
3: while i; < |L{] or i, < |L,| do
4. if (i1 < |L1| and i, < |L;]) and also L{[i1] = L,[i;] then
5: Add-Ltto-eutput.
6: i =h+T1i+1.
7. elseif iy = |L,| or else (i; < |L;| and also L{[i1] < Ly[i»]) then
8
9

Add-H-te-output.
h=n+1

10: else Li[ii] > L[i3]

11:

12: I =i+ 1.

13: return output. /* return L%/

Using MERGE-like algorithms

Consider the following variant of MERGE.

Algorithm MEeRGE(Lq, Ly):
Input: L; and L, are ordered lists of distinct values.
1: output := 0.
2: 01,0 :=0,0.
3: while i; < |L{] or i, < |L,| do
4. if (i1 < |L1| and i, < |L;]) and also L{[i1] = L,[i;] then
5: Add-Ltto-eutput.
6: i =h+T1i+1.
7. elseif iy = |L,| or else (i; < |L;| and also L{[i1] < Ly[i»]) then
8
9

h=hn+1
10: else Lqi[i1] > L[i3]
11:
12: I =i+ 1.

13: return output. /* return L%/

Using MERGE-like algorithms

Consider relations enrolled(c, student) and teaches(c, faculty), ordered on course course.

Problem
Compute all pairs (student, faculty) such that faculty is a teacher of student.

Solutions
> A nested-loop join: ©(|enrolled| - |teaches]).
» Using binary search: ©(|enrolled| - log,(|teaches|) + |result]).

Can we do better?

Using MERGE-like algorithms

Consider relations enrolled(c, student) and teaches(c, faculty), ordered on course course.

Algorithm ETMERGE]JoiN(enrolled, teaches):

1: output := 0.

2: Iy, 1 :=0,0.

3: while iy < |enrolled| and i, < |teaches| do

4. if enrolled[i;].c = teaches[i;].c then

5 A potential join output!

6: Need to find all enrolled students for course enrolled[/1].c.
7 Need to find all teaching faculty for course teaches[/i].c.
8

9: else if enrolled[/;].c < teaches[i,].c then

10: h=i+1

11: else enrolled[i;].c < teaches[i].c

12: =+ 1.

13: return output. /* return pairs (s, f) such that f is a teacher of s. */

Using MERGE-like algorithms

Consider relations enrolled(c, student) and teaches(c, faculty), ordered on course course.

Algorithm ETMERGE]JoiN(enrolled, teaches):
1: output := 0.
2: Iy, 1 :=0,0.
3: while iy < |enrolled| and i, < |teaches| do
4. if enrolled[i;].c = teaches[i;].c then
5 Jj1 := first j with either j = |enrolled| or else enrolled[].c # enrolled[/;].c.
6: Jo := first j with either j = |teaches| or else teaches[j].c # teaches[i].c.
7 Add all (s, f) with (cy,s) € enrolled[iy, j1) and (ca, f) € teaches|iy, j») to output.
8 i, 2 7= J1, Jo-
9: else if enrolled[/;].c < teaches[i,].c then

10: h=nh+1
11: else enrolled[i;].c < teaches[i].c
12: I =+ 1.

13: return output. /* return pairs (s, f) such that f is a teacher of s. */

Using MERGE-like algorithms

Consider relations enrolled(c, student) and teaches(c, faculty), ordered on course course.

Algorithm ETMERGE]JoiN(enrolled, teaches):
1: output := 0.
2: Iy, 1 :=0,0.
3: while iy < |enrolled| and i, < |teaches| do
4. if enrolled[i;].c = teaches[i;].c then
5 Jj1 := first j with either j = |enrolled| or else enrolled[].c # enrolled[/;].c.
6: Jo := first j with either j = |teaches| or else teaches[j].c # teaches[i].c.
7: Add all (s, f) with (cy,s) € enrolled[iy, j1) and (ca, f) € teaches|iy, j») to output.
8 i, i 1= Ja, fo-

Complexity
> The merge-part visits every value in enrolled and teaches once.

» The join-part only visits those pairs of values necessary for the result.

Hence, the complexity is ©(|enrolled| + |teaches| + |result|).

Using MERGE-like algorithms

Consider relations enrolled(c, student) and teaches(c, faculty), ordered on course course.

Problem
Compute all pairs (student, faculty) such that faculty is a teacher of student.

Solutions
> A nested-loop join: ©(|enrolled| - |teaches]).
» Using binary search: ©(|enrolled| - log,(|teaches|) + |result]).

> Using merge join: O(|enrolled| + |teaches| + |result|).

Stable sorting
Consider a list enrolled of enrollment data with schema
enrolled(dept, code, sid, date).
If we add enrollment data to the end of the list, then enrolled is always sorted on date.

Problem
Group enrolled on (dept, code) and within each group sort enrollments on date.

Stable sorting
Consider a list enrolled of enrollment data with schema
enrolled(dept, code, sid, date).
If we add enrollment data to the end of the list, then enrolled is always sorted on date.

Problem
Group enrolled on (dept, code) and within each group sort enrollments on date.

Brute-force solution: Lexicographical sorting on (dept, code, date)
Let (di, c1, 51, t1), (o, €2, S0,) € enrolled. We use the comparison

(dh, c1, 51, 1) before (da, ¢z, 55, 1) if (dy < dp) V ((dy = dp) A (c1 < @)V
((di=d) A=) At < B)).

Stable sorting
Consider a list enrolled of enrollment data with schema
enrolled(dept, code, sid, date).
If we add enrollment data to the end of the list, then enrolled is always sorted on date.

Problem
Group enrolled on (dept, code) and within each group sort enrollments on date.

Brute-force solution: Lexicographical sorting on (dept, code, date)
Let (di, c1, 51, t1), (o, €2, S0,) € enrolled. We use the comparison

(dh, c1, 51, 1) before (da, ¢z, 55, 1) if (dy < dp) V ((dy = dp) A (c1 < @)V
((di=d) A=) At < B)).

Downside: During sorting, we end up throwing away the existing ordering on date,
and then we rebuild that order from scratch!

Stable sorting

Consider a list enrolled of enrollment data with schema
enrolled(dept, code, sid, date).

If we add enrollment data to the end of the list, then enrolled is always sorted on date.

Problem
Group enrolled on (dept, code) and within each group sort enrollments on date.

Better solution: Use a stable sort algorithm
A stable sort algorithm maintains the relative order of “equal values”.

Let (di, c1, 51, £1), (db, €2, S0,) € enrolled. If we sort enrolled using a stable sort algorithm
using the comparison

(dh, 1, 51, 11) before (da, ¢z, 55, 1) if (dy < dy) V ((di = dy) A (1 < ©2))

then within each (dept, code)-group, enrollments remain ordered on date for free!

Stable sorting

Definition
Let L be a list that is already ordered with respect to some attributes aj, . . ., a,.
Consider a sort step S that re-orders L based on other attributes by, . . ., by,

We say that the sort step S is stable if, for every value r; € L and r, € L such that ry
originally came before r; and r; and r, agreee on attributes by, . .., by, the resulting
re-ordered list will still have r; come before ry.

Stable sorting

Definition
Let L be a list that is already ordered with respect to some attributes aj, . . ., a,.
Consider a sort step S that re-orders L based on other attributes by, . . ., by,

We say that the sort step S is stable if, for every value r; € L and r, € L such that ry
originally came before r; and r; and r, agreee on attributes by, . .., by, the resulting
re-ordered list will still have r; come before ry.

Question: Have we already seen stable sort algorithms?
Yes: SELECTIONSORT, INSERTIONSORT, and MERGESORT.

Note: even minor changes to these algorithms will make them non-stable!
(e.g., changing < into <).

Intermezzo: Recurrence trees

In a recurrence tree

nodes labeled N represent a function call with “input size N”;

the children of a node represent recursive calls;

per node, we can determine the work within that call (besides recursion);
per depth, we can determine the total work for that depth;

by summing over all depths: the total complexity.

v

vyvvyyvyy

Intermezzo: Recurrence trees

In a recurrence tree

nodes labeled N represent a function call with “input size N”;

the children of a node represent recursive calls;

per node, we can determine the work within that call (besides recursion);
per depth, we can determine the total work for that depth;

by summing over all depths: the total complexity.

v

vyvvyyvyy

We already saw two examples: LowERBOUNDREC and MERGESORTR.

Intermezzo: Recurrence trees

Example: the Fibonacci numbers

Fib(N) = 1 if N=1or N=2;
: ~fib(N=1)+fib(N=2) if N> 2.

Intermezzo: Recurrence trees
1 ifN=1orN=2;
fib(N) =4 . f o
fib(N — 1) + fib(N —2) if N> 2.
Prove that fib(N) < 2V
Simplication: fib(i —2) < fib(i — 1). Number Cost Total
N 1=20 1 1-1=1

Intermezzo: Recurrence trees
1 if N=1orN=2;
fib(N) =4 . f o
fib(N — 1) + fib(N —2) if N> 2.

Prove that fib(N) < 2V
Simplication: fib(i —2) < fib(i — 1). Number Cost

N =2 1
/ \
N-1 N—-

2

Total

=1

Intermezzo: Recurrence trees

Fib(N) = 1 ifN=1orN=2;
: ~\fib(N=1) +fib(N=2) if N> 2.

Prove that fib(N) < 2V
Simplication: fib(i —2) < fib(i — 1). Number Cost

N =2 1
N_1/ \

Total

=1

Intermezzo: Recurrence trees

1 if N=TorN=2;
fib(N) =1 _ . A
fib(N — 1) + fib(N —2) if N> 2.
Prove that fib(N) < 2V
Simplication: fib(i —2) < fib(i — 1). Number Cost Total
/ N \
N-1 N-

1=20 1 1-1=1

1 D= 1 2-1=2

Intermezzo: Recurrence trees

) 1 ifN=1orN=2;
fib(N) =+ , .
fib(N — 1) + fib(N —2) if N> 2.
Prove that fib(N) < 2V
Simplication: fib(i —2) < fib(i — 1). Number Cost
/N\ 1=20 1
N-1 N-1 2=2! 1
£\ Y

Intermezzo: Recurrence trees

1 ifN=1 N=2;
fib(N) =1 . | o
fib(N — 1) + fib(N —2) if N> 2.
Prove that fib(N) < 2V
Simplication: fib(i — 2) < fib(i — 1). Number Cost Total
/ N \ 1=20 1 1-1=1
N-1 N-1 2 =21 1 2.1=2
¥\ ¥\
N-2 N-2 N-2 N-2 4 =22 1 4.1=4
¥ N ¥ N ¥ ¥ N

Intermezzo: Recurrence trees

1 if N=1orN=2;
fib(N) =1 . f o
fib(N — 1) + fib(N —2) if N> 2.
Prove that fib(N) < 2V
Simplication: fib(i —2) < fib(i —1). Number
/ N \ 1= 20
N-1 N-1 D=3
¥ A ¥\
N-2 N-2 N-2 N-2 4 =22
[[¥ N ¥ N
N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3 8 =23
2',‘

Total

Intermezzo: Recurrence trees
o)_{ ifN=1Tor N=2
fib(N — 1) + fib(N —2) if N> 2.
Prove that fib(N) < 2V

Slmpllcatlon fib(i —2) < fib(i — 1). Number Cost

/\

—1 A= 2 1
x \ # 2
N-2 N-2 N-2 N-2 4=2 1
N =14 ¥y N ¥y N ¥ N ¥y N
N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3 8 =23 1
2/ 1

Total

Intermezzo: Recurrence trees
fib()—{

Prove that fib(N) < 2V
Slmpllcatlon fib(i —2) < fib(i —1).

/\

N =14

fib(N = 1) + fib(N — 2)

ifN=1orN=2;
if N > 2.

Number

1=2°

Total

Intermezzo: Recurrence trees
fib()—{

Prove that fib(N) < 2V
Slmpllcatlon fib(i —2) < fib(i —1).

/\

N =14

fib(N = 1) + fib(N — 2)

ifN=1orN=2;
if N > 2.

Number

1=2°

Total

Intermezzo: Recurrence trees

fib()—{

fib(N = 1) + fib(N — 2)
Prove that 2[%1 < fib(N)
Slmpllcatlon fib(i — 1) >ﬁb(l— 2).
=2
A‘ \ F A
N-4 N—4 N-4 N—4
1414 (] (] F N ¥ N
2 N-6 N-6 N-6 N-6 N-6 N-6 N-6 N—-6
1 01:2 1.0r 2
\

ifN=1orN=2;

if N> 2.

Number

Cost Total

Intermezzo: Recurrence trees

Example: the Fibonacci numbers

fib(N)={1‘ ‘ ?fN:1orN:2;
fib(N = 1) + fib(N —2) if N> 2.

Via recurrence trees, we have proven that:

2121 < fib(N) < 2.

Intermezzo: The Master Theorem

Let T(N) be a recurrence of the form

T(N) = constant if base case;
~ar (%) +f(N) if recursive case,

with a > 1, b > 1, and we can read % also as [%] or L%J

Intermezzo: The Master Theorem

Let T(N) be a recurrence of the form

T(N) = constant if base case;
~at (%) +f(N) if recursive case,

with a > 1, b > 1, and we can read % also as [%] or L%J We have the following

1. if F(N) = O(N'°8:(a=€)) with € > 0, then T(N) = O(N'&:(2)),

2. if f(N) = O(N'98:(@ |ogk(N)) with k > 0, then T(N) = O(N'98(2) |ogh*T(N)).

3. if f(N) = Q(N'°&:(@+)) with € > 0 and af (%’) < ¢f (N) for a ¢ < 1 (for large N),
then T(N) = ©(f(N)).

Intermezzo: The Master Theorem

Let T(N) be a recurrence of the form

T(N) = constant if base case;
~at (%) +f(N) if recursive case,

with a > 1, b > 1, and we can read % also as [%] or L%J We have the following

1. if F(N) = O(N'°8:(a=€)) with € > 0, then T(N) = O(N'&:(2)),

2. if f(N) = O(N'98:(@ |ogk(N)) with k > 0, then T(N) = O(N'98(2) |ogh*T(N)).

3. if f(N) = Q(N'°&:(@+)) with € > 0 and af (%’) < ¢f (N) for a ¢ < 1 (for large N),
then T(N) = ©(f(N)).

Someone else has already proved this—so we can reuse the result!

Intermezzo: The Master Theorem

Let T(N) be a recurrence of the form

T(N) = constant if base case;
~at (%) +f(N) if recursive case,

with a > 1, b > 1, and we can read % also as [%] or L%J We have the following

1. if F(N) = O(N'°8:(a=€)) with € > 0, then T(N) = O(N'&:(2)),

2. if f(N) = O(N'98:(@ |ogk(N)) with k > 0, then T(N) = O(N'98(2) |ogh*T(N)).

3. if f(N) = Q(N'°&:(@+)) with € > 0 and af (%’) < ¢f (N) for a ¢ < 1 (for large N),
then T(N) = ©(f(N)).

Example: Runtime complexity of LowERBOUNDREC

T(N) = 4 ifN=1;
| T(E)+8 N>

Intermezzo: The Master Theorem

Let T(N) be a recurrence of the form

T(N) = constant if base case;
~at (%) +f(N) if recursive case,

with a > 1, b > 1, and we can read % also as [%] or L%J We have the following

1. if F(N) = O(N'°8:(a=€)) with € > 0, then T(N) = O(N'&:(2)),

2. if f(N) = O(N'98:(@ |ogk(N)) with k > 0, then T(N) = O(N'98(2) |ogh*T(N)).

3. if f(N) = Q(N'°&:(@+)) with € > 0 and af (%’) < ¢f (N) for a ¢ < 1 (for large N),
then T(N) = ©(f(N)).

Example: Runtime complexity of LowERBOUNDREC

4 if N=1,
T(N) = " Wehavea=1,b=2,f(N)=8=0(1) = Nog:(1)
V) {T(§)+8 if N> 1. FN))

Intermezzo: The Master Theorem

Let T(N) be a recurrence of the form

T(N) = constant if base case;
~at (%) +f(N) if recursive case,

with a > 1, b > 1, and we can read % also as [%] or L%J We have the following

1. if F(N) = O(N'°8:(a=€)) with € > 0, then T(N) = O(N'&:(2)),

2. if f(N) = O(N'98:(@ |ogk(N)) with k > 0, then T(N) = O(N'98(2) |ogh*T(N)).

3. if f(N) = Q(N'°&:(@+)) with € > 0 and af (%’) < ¢f (N) for a ¢ < 1 (for large N),
then T(N) = ©(f(N)).

Example: Runtime complexity of LowERBOUNDREC

4 if N=1,
T(N) = " Wehavea=1,b=2,f(N)=8=0(1) = Nog:(1)
V) {T(§)+8 if N> 1. FN))

Case 2 yields: T(N) = O(N'"°82(1) |og! (N)) = log(N).

Intermezzo: The Master Theorem

Let T(N) be a recurrence of the form

T(N) = constant if base case;
~at (%) +f(N) if recursive case,

with a > 1, b > 1, and we can read % also as [%] or L%J We have the following

1. if F(N) = O(N'°8:(a=€)) with € > 0, then T(N) = O(N'&:(2)),

2. if f(N) = O(N'98:(@ |ogk(N)) with k > 0, then T(N) = O(N'98(2) |ogh*T(N)).

3. if f(N) = Q(N'°&:(@+)) with € > 0 and af (%’) < ¢f (N) for a ¢ < 1 (for large N),
then T(N) = ©(f(N)).

Example: Runtime complexity of MERGESORTR

- ifN=T;
(N) = T(A)+T(A) +N ifN> 1.

Intermezzo: The Master Theorem

Let T(N) be a recurrence of the form

T(N) = constant if base case;
~at (%) +f(N) if recursive case,

with a > 1, b > 1, and we can read % also as [%] or L%J We have the following

1. if F(N) = O(N'°8:(a=€)) with € > 0, then T(N) = O(N'&:(2)),

2. if f(N) = O(N'98:(@ |ogk(N)) with k > 0, then T(N) = O(N'98(2) |ogh*T(N)).

3. if f(N) = Q(N'°&:(@+)) with € > 0 and af (%’) < ¢f (N) for a ¢ < 1 (for large N),
then T(N) = ©(f(N)).

Example: Runtime complexity of MERGESORTR

if N=1;

i =2,b= =N= _ Nlog(2)
T {T([%J)”(f%])w ns g Wehavea=25=2 fi(N)= N = B(N) = NS,

Intermezzo: The Master Theorem

Let T(N) be a recurrence of the form

T(N) = constant if base case;
~at (%) +f(N) if recursive case,

with a > 1, b > 1, and we can read % also as [%] or L%J We have the following

1. if F(N) = O(N'°8:(a=€)) with € > 0, then T(N) = O(N'&:(2)),
2. if f(N) = O(N'98:(@ |ogk(N)) with k > 0, then T(N) = O(N'98(2) |ogh*T(N)).
3. if f(N) = Q(N'°&:(@+)) with € > 0 and af (%’) < ¢f (N) for a ¢ < 1 (for large N),
then T(N) = O(F(N)).
Example: Runtime complexity of MERGESORTR

- ifN=T;
(N) = T(A)+T(A) +N ifN> 1.

Case 2 yields: T(N) = O(N'82(2) |og' (N)) = ©(N log(N)).

We have a=2, b= 2, f(N) = N = O(N) = N'°&(2),

Intermezzo: The Master Theorem

Let T(N) be a recurrence of the form

T(N) = constant if base case;
~at (%) +f(N) if recursive case,

with a > 1, b > 1, and we can read % also as [%] or L%J We have the following

1. if F(N) = O(N'°8:(a=€)) with € > 0, then T(N) = O(N'&:(2)),

2. if f(N) = O(N'98:(@ |ogk(N)) with k > 0, then T(N) = O(N'98(2) |ogh*T(N)).

3. if f(N) = Q(N'°&:(@+)) with € > 0 and af (%’) < ¢f (N) for a ¢ < 1 (for large N),
then T(N) = ©(f(N)).

A third example

T(N) = if N=1;
T () +N N>

Intermezzo: The Master Theorem

Let T(N) be a recurrence of the form

T(N) = constant if base case;
~at (%) +f(N) if recursive case,

with a > 1, b > 1, and we can read % also as [%] or L%J We have the following

1. if F(N) = O(N'°8:(a=€)) with € > 0, then T(N) = O(N'&:(2)),

2. if f(N) = O(N'98:(@ |ogk(N)) with k > 0, then T(N) = O(N'98(2) |ogh*T(N)).

3. if f(N) = Q(N'°&:(@+)) with € > 0 and af (%’) < ¢f (N) for a ¢ < 1 (for large N),
then T(N) = ©(f(N)).

A third example

if N=1;

T(N) = We h —7.b=4,f(N)=N = ON'°&()-¢
) {7T([%’J)+N iN>T1 FN)

Intermezzo: The Master Theorem

Let T(N) be a recurrence of the form

T(N) = constant if base case;
~at (%) +f(N) if recursive case,

with a > 1, b > 1, and we can read % also as [%] or L%J We have the following

1. if F(N) = O(N'°8:(a=€)) with € > 0, then T(N) = O(N'&:(2)),
2. if f(N) = O(N'98:(@ |ogk(N)) with k > 0, then T(N) = O(N'98(2) |ogh*T(N)).
3. if f(N) = Q(N'°&:(@+)) with € > 0 and af (%’) < ¢f (N) for a ¢ < 1 (for large N),
then T(N) = O(F(N)).
A third example

T(N) = if N=1;
T () +N N>

Case 1yields: T(N) = @(Nlog4(7)) ~ @(N140367...),

We have a=7, b= 4, f(N) = N = ON'98:(7)=¢,

Intermezzo: The Master Theorem

Let T(N) be a recurrence of the form

T(N) = constant if base case;
~at (%) +f(N) if recursive case,

with a > 1, b > 1, and we can read % also as [%] or L%J We have the following

1. if F(N) = O(N'°8:(a=€)) with € > 0, then T(N) = O(N'&:(2)),

2. if f(N) = O(N'98:(@ |ogk(N)) with k > 0, then T(N) = O(N'98(2) |ogh*T(N)).

3. if f(N) = Q(N'°&:(@+)) with € > 0 and af (%’) < ¢f (N) for a ¢ < 1 (for large N),
then T(N) = ©(f(N)).

A fourth example

T(N) = if N=1;
T (X)) + N N>

Intermezzo: The Master Theorem

Let T(N) be a recurrence of the form

T(N) = constant if base case;
~at (%) +f(N) if recursive case,

with a > 1, b > 1, and we can read % also as [%] or L%J We have the following

1. if F(N) = O(N'°8:(a=€)) with € > 0, then T(N) = O(N'&:(2)),

2. if f(N) = O(N'98:(@ |ogk(N)) with k > 0, then T(N) = O(N'98(2) |ogh*T(N)).

3. if f(N) = Q(N'°&:(@+)) with € > 0 and af (%’) < ¢f (N) for a ¢ < 1 (for large N),
then T(N) = ©(f(N)).

A fourth example

if N=1;

T(N) = We have a=2, b=2, f(N) = N3 = QN'082(2)+€,
& {zr([%])+N3 if N> 1. S0

Intermezzo: The Master Theorem

Let T(N) be a recurrence of the form

T(N) = constant if base case;
~at (%) +f(N) if recursive case,

with a > 1, b > 1, and we can read % also as [%] or L%J We have the following

1. if F(N) = O(N'°8:(a=€)) with € > 0, then T(N) = O(N'&:(2)),
2. if f(N) = O(N'98:(@ |ogk(N)) with k > 0, then T(N) = O(N'98(2) |ogh*T(N)).
3. if f(N) = Q(N'°&:(@+)) with € > 0 and af (%’) < ¢f (N) for a ¢ < 1 (for large N),
then T(N) = O(F(N)).
A fourth example

T(N) = if N=1;
T (X)) + N N>

Case 3 yields: T(N) = O(N3).

We have a=2, b= 2, f(N) = N> = QN'°82(2)+¢,

Intermezzo: The Master Theorem

Let T(N) be a recurrence of the form

T(N) = constant if base case;
~at (%) +f(N) if recursive case,

with a > 1, b > 1, and we can read % also as [%] or L%J We have the following

1. if F(N) = O(N'°8:(a=€)) with € > 0, then T(N) = O(N'&:(2)),

2. if f(N) = O(N'98:(@ |ogk(N)) with k > 0, then T(N) = O(N'98(2) |ogh*T(N)).

3. if f(N) = Q(N'°&:(@+)) with € > 0 and af (%’) < ¢f (N) for a ¢ < 1 (for large N),
then T(N) = ©(f(N)).

Feel free to use the Master Theorem, we will provide a copy during the final exam.

Can we do better than MERGESORT?

Can we do better than MERGESORT?

Algorithm CouNTSORT(L[0...N)):
Input: Each value in L is either 0 or 1.
1: county :=0
2: for all v € L do Count number of 0’s
3 if v=0 then
4 county := county + 1.
5: for i := 0 to county — 1 do Write the counted number of 0’s
6: L[] :=0.
7: for i := county to N — 1 do Write the remaining 1’s
8 L[] :=1.

Can we do better than MERGESORT?

Algorithm CouNTSORT(L[0...N)):
Input: Each value in L is either 0 or 1.
1: county :=0
2: for all v € L do Count number of 0’s
3 if v=0 then
4 county := county + 1.
5: for i := 0 to county — 1 do Write the counted number of 0’s
6: L[] :=0.
7: for i := county to N — 1 do Write the remaining 1’s
8 L[] :=1.

Complexity: Linear (©(N) comparisons, ©(N) changes)

Can we do better than MERGESORT?

Algorithm CouNTSORT(L[0...N)):
Input: Each value in L is either 0 or 1.
1: county :=0
2: for all v € L do Count number of 0’s
3 if v=0 then
4 county := county + 1.
5: for i := 0 to county — 1 do Write the counted number of 0’s
6: L[] :=0.
7: for i := county to N — 1 do Write the remaining 1’s
8 L[] :=1.

Complexity: Linear (©(N) comparisons, ©(N) changes)

CouNTSoRT does not solve general-purpose sorting!

A lower bound for general-purpose sorting

Assume: We have a list L[0... N) of N distinct values

Algorithm A

sorted(L)

A lower bound for general-purpose sorting

Assume: We have a list L[0...N) of N distinct values

Algorithm A

sorted(L)

When is Algorithm A general-purpose?

A lower bound for general-purpose sorting

Assume: We have a list L[0...N) of N distinct values

Algorithm A

sorted(L)

When is Algorithm A general-purpose?
» A uses comparisons to determine sorted order;

» A does not require assumptions on the value distribution in L.

A lower bound for general-purpose sorting

Assume: We have a list L[0...N) of N distinct values

Algorithm A

sorted(L)

What do we know about general-purpose Algorithm A?
Consider lists Ly = [1,3,2,4] and L, = [1,2,3,4].

A lower bound for general-purpose sorting

Assume: We have a list L[0...N) of N distinct values

Algorithm A

sorted(L)

What do we know about general-purpose Algorithm A?
Consider lists Ly = [1,3,2,4] and L, = [1,2,3,4].

> Algorithm A must perform different operations to order L; and L,.

A lower bound for general-purpose sorting

Assume: We have a list L[0...N) of N distinct values

Algorithm A

sorted(L)

What do we know about general-purpose Algorithm A?
Consider lists Ly = [1,3,2,4] and L, = [1,2,3,4].

> Algorithm A must perform different operations to order L; and L,.

> Algorithm A uses comparisons to decide which operations to perform.

A lower bound for general-purpose sorting

Assume: We have a list L[0...N) of N distinct values

Algorithm A

sorted(L)

What do we know about general-purpose Algorithm A?
Consider lists Ly = [1,3,2,4] and L, = [1,2,3,4].

> Algorithm A must perform different operations to order L; and L,.
> Algorithm A uses comparisons to decide which operations to perform.

There must be a distinguishing comparison after which A behaves differently.

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0. .., N) with values 1,..., N in an unknown order.

S: All possible lists L that are
treated the same by Algorithm A up till this point

C: L[i] < L[j]
All lists in S for All lists in S for

which C did not hold which C did hold

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0. .., N) with values 1,..., N in an unknown order.

S: All possible lists L that are
treated the same by Algorithm A up till this point

C: L[i] < L[j]
All lists in S for All lists in S for

which C did not hold which C did hold

We can build a comparison tree 7 for Algorithm A that starts with all possible L

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0. .., N) with values 1,..., N in an unknown order.

S: All possible lists L that are
treated the same by Algorithm A up till this point

C: L[i] < L[j]
All lists in S for All lists in S for

which C did not hold which C did hold

We can build a comparison tree 7~ for Algorithm A that starts with all possible L.
> in 7, each leaf of 7 must represent one list;

» in 7, there must be a leaf for every possible list L.

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0. .., N) with values 1,..., N in an unknown order.

S: All possible lists L that are
treated the same by Algorithm A up till this point

C: L[i] < L[j]
All lists in S for All lists in S for

which C did not hold which C did hold

We can build a comparison tree 7 for Algorithm A that starts with all possible L:
> in 7, each leaf of 7 must represent one list;
» in 7, there must be a leaf for every possible list L.

Otherwise not all distinct lists L are processed in a different way.

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0..., N) with values 1,..., N in an unknown order.

Consider a path 7 in 7 from root to a leaf for a specific list L’

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0..., N) with values 1,..., N in an unknown order.

Consider a path 7 in 7 from root to a leaf for a specific list L’

> This path = specifies all distinguishing comparisons made by Algorithm A to sort L’.

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0. .., N) with values 1,..., N in an unknown order.

Consider a path 7 in 7 from root to a leaf for a specific list L’
> This path = specifies all distinguishing comparisons made by Algorithm A to sort L’.

» The length of path « is a lower bound for the complexity to sort L’!

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0. .., N) with values 1,..., N in an unknown order.

Consider a path 7 in 7 from root to a leaf for a specific list L’
> This path = specifies all distinguishing comparisons made by Algorithm A to sort L’.

» The length of path « is a lower bound for the complexity to sort L’!

What is the worst-case length of path 7z?
The lengths of paths in 7 depend on the height of T,

— which depends on the number of leaves in 7.

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0..., N) with values 1,..., N in an unknown order.

The number of leaves in 7~

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0. .., N) with values 1,..., N in an unknown order.

The number of leaves in 7~

How many distinct lists of length N exist with values 1,..., N in an unknown order?

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0. .., N) with values 1,..., N in an unknown order.

The number of leaves in 7~
How many distinct lists of length N exist with values 1,..., N in an unknown order?

» N possible values for the first value,
» N — 1 possible values for the second value,
> ..
>

1 possible value for the last value.

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0. .., N) with values 1,..., N in an unknown order.

The number of leaves in 7~
How many distinct lists of length N exist with values 1,..., N in an unknown order?

» N possible values for the first value,
» N — 1 possible values for the second value,
> ..
» 1 possible value for the last value.
N
l_[i = N! leaves (all possible permutations).

i=1

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0. .., N) with values 1,..., N in an unknown order.

Consider a path 7 in 7 from root to a leaf for a specific list L’
> This path = specifies all distinguishing comparisons made by Algorithm A to sort L’.

» The length of path « is a lower bound for the complexity to sort L’!

What is the worst-case length of path 7z?
The lengths of paths in 7 depend on the height of T,

— which depends on the number of leaves N! in 7.

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0. .., N) with values 1,..., N in an unknown order.

The minimal height of a tree 7~ with N! leaves
Consider a node n from which we can reach M leaves.
How do we make the distance from n to all its leaves minimal?

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0. .., N) with values 1,..., N in an unknown order.

The minimal height of a tree 7~ with N! leaves
Consider a node n from which we can reach M leaves.
How do we make the distance from n to all its leaves minimal?

The left and right child of n each can reach %" leaves:
— minimize the size of the tree rooted at both children.

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0. .., N) with values 1,..., N in an unknown order.

The minimal height of a tree 7~ with N! leaves

N! leaves
M/ \M
2 2
¥\ ¥\
N N N N
1 1 4 4
[[[[

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0. .., N) with values 1,..., N in an unknown order.

The minimal height of a tree 7~ with N! leaves
(

N! leaves
M/ \M
2 2
¥\ ¥\
N N N N
1 1 4 4
[[[[

g4 M M M oM oM o wom

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0. .., N) with values 1,..., N in an unknown order.

The minimal height of a tree 7~ with N! leaves
We have to find a lower bound on log,(N!).

log,(N!) = log,(N-(N—=1)----- 1)

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0. .., N) with values 1,..., N in an unknown order.

The minimal height of a tree 7~ with N! leaves
We have to find a lower bound on log,(N!).

log,(N!) = log,(N-(N=1)----- 1)
= log,(N) + log,(N —1) + - - - + log, (1)

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0. .., N) with values 1,..., N in an unknown order.

The minimal height of a tree 7~ with N! leaves
We have to find a lower bound on log,(N!).

log,(N!) = log,(N-(N=1)----- 1)
= log,(N) + log,(N —1) + - - - + log, (1)
> log,(N) +log,(N—=1) +--- + Iogz([%/])

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0. .., N) with values 1,..., N in an unknown order.

The minimal height of a tree 7~ with N! leaves
We have to find a lower bound on log,(N!).

log,(N!) = log,(N-(N=1)----- 1)
= log,(N) + log,(N —1) + - - - + log, (1)
log,(N) + log,(N = 1) +--- + Iogz([%/])

3 logy ()

\%

\

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0. .., N) with values 1,..., N in an unknown order.

The minimal height of a tree 7~ with N! leaves
We have to find a lower bound on log,(N!).

log,(N!) = logy(N-(N=1) -+ 1)

= log,(N) + log,(N = 1) + - - - + log,(1)
log,(N) + logy(N = 1) + -+ - + log, ([¥])
Slogy (%)

3 (logy(N) = 1)

vV v

A lower bound for general-purpose sorting

We can represent a distinguishing comparison via a comparison tree node
Consider sorting lists L[0. .., N) with values 1,..., N in an unknown order.

The minimal height of a tree 7~ with N! leaves
We have to find a lower bound on log,(N!).

log,(N!) = logy(N-(N=1) -+ 1)
= log,(N) + log,(N = 1) + - - - + log,(1)

log,(N) + logy(N = 1) + -+ - + log, ([¥])

Slogy(§)

%(|og2(N) -1)

Nlog,(N) - & = ©(Nlog,(N)).

v v

A lower bound for general-purpose sorting

Assume: We have a list L[0... N) of N distinct values

Algorithm A

sorted(L)

If Algorithm A is general-purpose, then A will perform
at-least ©(N log,(N)) comparisons for some inputs of N values.

A lower bound for general-purpose sorting

Assume: We have a list L[0...N) of N distinct values

Algorithm A

sorted(L)

If Algorithm A is general-purpose, then A will perform
at-least ©(N log,(N)) comparisons for some inputs of N values.

If Algorithm A performs less comparisons for some inputs,
then A will perform more comparisons for other inputs.

A lower bound for general-purpose sorting

Assume: We have a list L[0... N) of N distinct values

Algorithm A

sorted(L)

General-purpose sorting algorithms such as MERGESORT are optimal:
their worst-case complexity matches the lower bound of ©(N log,(N)).

A potentially-faster sort: QuICKSORT

Can we improve upon the optimal MERGESORT algorithm?

A potentially-faster sort: QuickSoRrT

Can we improve upon the optimal MERGESORT algorithm?
> Reduce massive ©(N) memory consumption?

> Reduce constants: MERGE performs many operations on several lists.

A potentially-faster sort: QuickSoRrT

Divide-and-conquer

Divide Turn problem into smaller subproblems.

Conquer Solve the smaller subproblems using recursion.

Combine Combine the subproblem solutions into a final solution.

A potentially-faster sort: QuickSoRrT

Divide-and-conquer
Divide Turn problem into smaller subproblems.

Divide the list into small and large values.

Conquer Solve the smaller subproblems using recursion.

Combine Combine the subproblem solutions into a final solution.

A potentially-faster sort: QuICKSORT

Divide-and-conquer
Divide Turn problem into smaller subproblems.
Divide the list into small and large values.

Conquer Solve the smaller subproblems using recursion.
Sort the small values and large values separately.

Combine Combine the subproblem solutions into a final solution.

A potentially-faster sort: QuICKSORT

Divide-and-conquer
Divide Turn problem into smaller subproblems.
Divide the list into small and large values.

Conquer Solve the smaller subproblems using recursion.
Sort the small values and large values separately.

Combine Combine the subproblem solutions into a final solution.
The list is sorted if the small values and large values are sorted.

A potentially-faster sort: QuICKSORT

Divide-and-conquer
Divide Turn problem into smaller subproblems.
Divide the list into small and large values.

Conquer Solve the smaller subproblems using recursion.
Sort the small values and large values separately.

Combine Combine the subproblem solutions into a final solution.
The list is sorted if the small values and large values are sorted.

Dividing a list into small and large values sounds easier than MERGE!

QuickSorT: High-level overview

Algorithm QuickSorT(L[start ... end)):
1: if end — start > 1 then

QuickSorT: High-level overview

Algorithm QuickSorT(L[start ... end)):
1: if end — start > 1 then
2. Choose the position € [start, end) of the pivot value = := L[pos].

QuickSorT: High-level overview

Algorithm QuickSorT(L[start ... end)):

1: if end — start > 1 then
2. Choose the position € [start, end) of the pivot value = := L[pos].

3: L[start ... end) such that
» all values smaller-or-equal to = come first;
» followed by the have the value ;
» followed by all other values (that are larger than).

QuickSorT: High-level overview

Algorithm QuickSorT(L[start ... end)):

1: if end — start > 1 then
2. Choose the position € [start, end) of the pivot value = := L[pos].

3: L[start ... end) such that
» all values smaller-or-equal to = come first;
» followed by the have the value ;
» followed by all other values (that are larger than).

4: Let pos be the position of = after

pos

QuickSorT: High-level overview

Algorithm QuickSorT(L[start ... end)):
1: if end — start > 1 then
2. Choose the position € [start, end) of the pivot value = := L[pos].
3: L[start ... end) such that
> all values smaller-or-equal to = come first;
» followed by the have the value ;
» followed by all other values (that are larger than).
4. Let pos be the position of = after

: QuickSoRrT(pos)).
6: QUICKSORT(L[pos+ 1...end)).

312 6|5
A

pos

e — e
QuickSoRrT(pos)) QuICcKSORT(L[pos+1...end))

QuickSorT: High-level overview

Algorithm QuickSorT(L[start ... end)):
1: if end — start > 1 then
2. Choose the position € [start, end) of the pivot value = := L[pos].
3: L[start ... end) such that
> all values smaller-or-equal to = come first;
» followed by the have the value ;
» followed by all other values (that are larger than).
4. Let pos be the position of = after

: QuickSoRrT(pos)).
6: QUICKSORT(L[pos+ 1...end)).

1123 5|6
A

pos

—_— N
QuickSoRrT(pos)) QuICcKSORT(L[pos+1...end))

Proof of correctness: QUICKSORT(L[start . .. end)) sorts

Proof of correctness: QUICKSORT(L[start . .. end)) sorts

Base case QUICKSORT sorts 0 < end — start < 1 values.

Proof of correctness: QUICKSORT(L[start . .. end)) sorts

Base case QUICKSORT sorts 0 < end — start < 1 values.

Induction hypothesis QuICKSORT sorts 0 < end — start < n values correctly.

Proof of correctness: QUICKSORT(L[start . .. end)) sorts

Base case QUICKSORT sorts 0 < end — start < 1 values.
Induction hypothesis QuICKSORT sorts 0 < end — start < n values correctly.

Induction step Consider QuickSoRrT with 2 < end — start = n values.

start end

Proof of correctness: QUICKSORT(L[start . .. end)) sorts

Base case QUICKSORT sorts 0 < end — start < 1 values.
Induction hypothesis QuICKSORT sorts 0 < end — start < n values correctly.

Induction step Consider QuickSoRrT with 2 < end — start = n values.

start end

l L with =~ € L[start...end)

Assumption: is correct

Proof of correctness: QUICKSORT(L[start . .. end)) sorts

Base case QUICKSORT sorts 0 < end — start < 1 values.

Induction hypothesis QuICKSORT sorts 0 < end — start < n values correctly.

Induction step Consider QuickSoRrT with 2 < end — start = n values.

start end

L with =~ € L[start...end)
pos

Assumption:

| sv | | > v |

is correct

Proof of correctness: QUICKSORT(L[start . .. end)) sorts

Base case QUICKSORT sorts 0 < end — start < 1 values.

Induction hypothesis QuICKSORT sorts 0 < end — start < n values correctly.

Induction step Consider QuickSoRrT with 2 < end — start = n values.

start end

L with =~ € L[start...end)
pos

Assumption:

v
| sv | | > v |
v QUICKSORT(pos)) v QUICKSORT(L[pos + 1... end))

is correct

Proof of correctness: QUICKSORT(L[start . .. end)) sorts

Base case QUICKSORT sorts 0 < end — start < 1 values.
Induction hypothesis QuICKSORT sorts 0 < end — start < n values correctly.

Induction step Consider QuickSoRrT with 2 < end — start = n values.

start end

L with =~ € L[start...end) . .
oS Assumption: Is correct
Y P
| sv | | > v |
v QUICKSORT(pos)) v QUICKSORT(L[pos + 1... end))
IH pos IH pos < end

Y \ 4

| > v, sorted |

Assumption: Partition is correct

Algorithm PARTITION(L, start, end, p):

Assumption: Partition is correct

Algorithm PARTITION(L, start, end, p):
1: Exchange L[start] and L[p].

Assumption: Partition is correct

Algorithm PARTITION(L, start, end, p):
1: Exchange L[start] and L[p].
2, I, j = L[start], start, start + 1.
Values in L[start + 1...i+ 1) are smaller-or-equal to
Values in L[i+ 1...j) are larger than

Assumption: Partition is correct

Algorithm PARTITION(L, start, end, p):
1: Exchange L[start] and L[p].
2, I, j = L[start], start, start + 1.
Values in are smaller-or-equal to
Values in L[i+ 1...j) are larger than

8: Exchange L[i] and L[start].
9: return .

Assumption: is correct

Algorithm PARTITION(L, start, end, p):

1: Exchange L[start] and L[p].

2: ., I, j:= L[start], start, start + 1.
Values in are smaller-or-equal to
Values in L[i+ 1...j) are larger than
while j # end do

if L[j] < then
=i+
Exchange L[i] and L[/].

Jji=j+1
Exchange L[/] and L[start].
return .

Y R F YL e @

Assumption: is correct

Algorithm PARTITION(L, start, end, p):

1:
2:

Y R F YL e @

Exchange L[start] and L[p].
, I, j := L[start], start, start + 1.
Values in are smaller-or-equal to
Values in L[i+ 1...j) are larger than
while j # end do
if L[j] < then
=i+
Exchange L[i] and L[/].
Jji=j+1

Exchange L[/] and L[start].
return /.

Assumption: is correct

Algorithm PARTITION(L, start, end, p):

1:
2:

Y R F YL e @

, I, j := L[start], start, start + 1.
Values in are smaller-or-equal to
Values in L[i+ 1...j) are larger than
while j # end do
if L[j] < then
=i+
Exchange L[i] and L[/].
Jji=j+1

Exchange L[/] and L[start].
return /.

Assumption: is correct

Algorithm PARTITION(L, start, end, p):
1: Exchange L[start] and L[p].
28
Values in are smaller-or-equal to .
Values in L[i+ 1...j) are larger than
while j # end do
if L[j] < then
=i+
Exchange L[i] and L[/].
Jji=j+1 v

Exchange L[/] and L[start].
return /.

Y R F YL e @

Assumption: is correct

Algorithm PARTITION(L, start, end, p):

1:
2:

Y R F YL e @

Exchange L[start] and L[p].
, I, j := L[start], start, start + 1.
Values in are smaller-or-equal to
Values in L[i+ 1...j) are larger than
while j # end do
if L[j] < then
=i+
Exchange L[i] and L[/].

Exchange L[/] and L[start].
return /.

Assumption: is correct

Algorithm PARTITION(L, start, end, p):

1:
2:

Y R F YL e @

Exchange L[start] and L[p].
, I, j := L[start], start, start + 1.
Values in are smaller-or-equal to
Values in L[i+ 1...j) are larger than
while j # end do
if L[j] < then

Exchange L[/] and L[start].
return /.

Assumption: is correct

Algorithm PARTITION(L, start, end, p):

1:
2:

Y R F YL e @

Exchange L[start] and L[p].
, I, j := L[start], start, start + 1.
Values in are smaller-or-equal to
Values in L[i+ 1...j) are larger than
while j # end do
if L[j] < then
=i+
Exchange L[i] and L[/].

Exchange L[/] and L[start].
return /.

Assumption: is correct

Algorithm PARTITION(L, start, end, p):

1:
2:

Y R F YL e @

Exchange L[start] and L[p].
, I, j := L[start], start, start + 1.
Values in are smaller-or-equal to
Values in L[i+ 1...j) are larger than
while j # end do
if L[j] < then

Exchange L[/] and L[start].
return /.

Assumption: is correct

Algorithm PARTITION(L, start, end, p):

1:
2:

Y R F YL e @

Exchange L[start] and L[p].
, I, j := L[start], start, start + 1.
Values in are smaller-or-equal to
Values in L[i+ 1...j) are larger than
while j # end do
if L[j] < then

Exchange L[/] and L[start].
return /.

Assumption: is correct

Algorithm PARTITION(L, start, end, p):

1:
2:

Y R F YL e @

Exchange L[start] and L[p].
, I, j := L[start], start, start + 1.
Values in are smaller-or-equal to
Values in L[i+ 1...j) are larger than
while j # end do
if L[j] < then
=i+
Exchange L[i] and L[/].

return |.

Assumption: is correct

Algorithm PARTITION(L, start, end, p):

1:
2:

Y R F YL e @

Exchange L[start] and L[p].
, I, j := L[start], start, start + 1.
Values in are smaller-or-equal to
Values in L[i+ 1...j) are larger than
while j # end do
if L[j] < then
=i+
Exchange L[i] and L[/].

Exchange L[/] and L[start].
return

QuickSoRT: A complete example

We did not specify yet how to choose a pivot value!

4 |6 |5 |32 1 719

QuickSoRT: A complete example

We did not specify yet how to choose a pivot value — random choices for now.

6 | 5| 3| 2 1 719 8

QuickSoRT: A complete example

We did not specify yet how to choose a pivot value — random choices for now.

1 3 12|45 |6 |7]|9]8

QuickSoRT: A complete example

We did not specify yet how to choose a pivot value — random choices for now.

214|516 |7|9]38

1 3
QuickSoRT() /
3 2

QuickSoRT: A complete example

We did not specify yet how to choose a pivot value — random choices for now.

214|516 |7|9]38

1 3
QuickSoRT() /
3 2

QuickSoRT: A complete example

We did not specify yet how to choose a pivot value — random choices for now.

214|516 |7|9]38

1 3
QuickSoRT() /
3 2

QuickSoRT: A complete example

We did not specify yet how to choose a pivot value — random choices for now.

1 3 2 4 5 6 7 9 8
QuickSoRT() /

3 2
\ QuickSoRrT(L[1...3))
3 2

QuickSoRT: A complete example

We did not specify yet how to choose a pivot value — random choices for now.

214|516 |7|9]38

1 3
QuickSoRT() /
3 2

\ QuickSoRrT(L[1...3))
2

QuickSoRT: A complete example

We did not specify yet how to choose a pivot value — random choices for now.

1 2 3 4 5 6 7 9 8
QuickSoRT() /

2 3
\ QuickSoRrT(L[1...3))
2 3

QuickSoRT: A complete example

We did not specify yet how to choose a pivot value — random choices for now.

2 |1 3|4 |5 |6 |7]|9]8

]
QuickSoRT() /
2

3

\ QuickSoRrT(L[1...3))

3

2
QuICKSORT() /
2

QuickSoRT: A complete example

We did not specify yet how to choose a pivot value — random choices for now.

1 2 |1 3|4 |5 |6 |7]|9]8

\QUICKSORT(LM. ..9)
5 6 719 8

QuickSoRT: A complete example

We did not specify yet how to choose a pivot value — random choices for now.

1 2 |1 3|4 |5 |6 |7]|9]8

\QUICKSORT(LM. ..9)
6 719 8

QuickSoRT: A complete example

We did not specify yet how to choose a pivot value — random choices for now.

1 2 |1 3|4 |5 |6 |7]|9]8

\QUICKSORT(LM. ..9)
5 6 719 8

QuickSoRT: A complete example

We did not specify yet how to choose a pivot value — random choices for now.

1 2 |1 3|4 |5 |6 |7]|9]8

\QUICKSORT(LM. ..9)
5 6 719 8

QuickSOoRT(L[5...9))

6 [7|9 | 8

QuickSoRT: A complete example

We did not specify yet how to choose a pivot value — random choices for now.

1 2 |1 3|4 |5 |6 |7]|9]8

\QUICKSORT(LM. ..9)
5 6 719 8

QuickSOoRT(L[5...9))

6 9 | 8

QuickSoRT: A complete example

We did not specify yet how to choose a pivot value — random choices for now.

1 2 |1 3|4 |5 |6 |7]|9]8

\QUICKSORT(LM. ..9)
5 6 719 8

QuickSOoRT(L[5...9))

6 | 7|98

QuickSoRT: A complete example

We did not specify yet how to choose a pivot value — random choices for now.

1 2 |1 3|4 |5 |6 |7]|9]8

\QUICKSORT(LM. ..9)
5 6 7 9 8

QuickSOoRT(L[5...9))

6 7 9 8
QuICKSORT() J

QuickSoRT: A complete example

We did not specify yet how to choose a pivot value — random choices for now.

1 2 3 4 5 6 7 9 8
\QUICKSORT(LM. ..9)
5 6 719 8

QuickSOoRT(L[5...9))

9

8

QuICKSORT(L[7...9))

8

QuickSoRT: A complete example

We did not specify yet how to choose a pivot value — random choices for now.

1 2 3 4 5 6 7 9 8
\QUICKSORT(LM. ..9)
5 6 719 8

QuickSOoRT(L[5...9))

9

8

QuICKSORT(L[7. ..

9))

QuickSoRT: A complete example

We did not specify yet how to choose a pivot value — random choices for now.

1 2 3 4 5 6 7 8 9
\QUICKSORT(LM. ..9)
5 6 7 8 | 9

QuickSOoRT(L[5...9))

8

9

QuICKSORT(L[7...9))

9

QuickSoRT: A complete example

We did not specify yet how to choose a pivot value — random choices for now.

1 2 3 4 5 6 7 8 9
\QUICKSORT(LM. ..9)
5 6 7 8 | 9

QuickSOoRT(L[5...9))

8

9

QuICKSORT(L[7...9))

9

9

\ QuICKSORT(L[8. ..

9)

QuickSoRT: A complete example

We did not specify yet how to choose a pivot value — random choices for now.

1 2 |1 3|4 |5 |6 |7]|8]09

The complexity of QuickSoRrT

The complexity of QuickSoRT

The complexity of QuickSorT depends on the chosen pivot values.

The complexity of QuickSoRT

Example: Pivots are always smaller than all other values

T(N) = 1 if N <1;
B ifN > 1.

The complexity of QuickSoRT
Example: Pivots are always smaller than all other values

if N <1;
T(N) = .
TIN-1D)+N ifN>1.

The complexity of QuickSoRT
Example: Pivots are always smaller than all other values

if N <1;
T(N) =
TIN=-1)+N ifN>1.

Number Cost Total

N 1 N N

The complexity of QuickSoRT
Example: Pivots are always smaller than all other values

if N <1;
T(N) =
TIN=-1)+N ifN>1.

Number Cost Total

N 1 N N

N-1 1 N-1 N-1

The complexity of QuickSoRT
Example: Pivots are always smaller than all other values

if N <1;
T(N) =
TIN=-1)+N ifN>1.

Number Cost Total
N 1 N N
\/
N-1 1 N-1 N-1
\

The complexity of QuickSoRT
Example: Pivots are always smaller than all other values

if N <1;
T(N) =
TIN=-1)+N ifN>1.

Number Cost Total
N 1 N N
\/
N-1 1 N-1 N-1
A
N-2 1 N-2 N-2

The complexity of QuickSoRT
Example: Pivots are always smaller than all other values

if N <1;
T(N) =
TIN=-1)+N ifN>1.

Number Cost Total
N 1 N N
\/
N-1 1 N-1 N-1
A
N-2 1 N-2 N-2

The complexity of QuickSoRT
Example: Pivots are always smaller than all other values

if N <1;
T(N) =
TIN=-1)+N ifN>1.

Number Cost Total
N 1 N N
\/
N-1 1 N-1 N-1
A
N-2 1 N-2 N-2

N
0=

N(N+1)

= O(N?).

The complexity of QuickSoRT

Example: Pivots are “in the middle” of all values

T(N) = 1 if N <1,
B if N> 1.

The complexity of QuickSoRT
Example: Pivots are “in the middle” of all values

T(N) = if N<1;
C 2T AN N>

The complexity of QuickSoRT
Example: Pivots are “in the middle” of all values
if N <1,

T(N) = {zT(LgJ) +N N> 1.

We have seen this one before: T(N) = @(N log,(N)).

The complexity of QuickSoRT

The complexity of QuickSorT depends a lot on the chosen pivot values.

The complexity of QuickSoRT

The complexity of QuickSorT depends a lot on the chosen pivot values.

Randomized QuickSoRrT: Choose pivot values fully at random
We cannot provide an exact complexity for Randomized QuickSORT:
Executions on the same list can have vastly different random choices (and complexities).

The complexity of QuickSoRT

The complexity of QuickSorT depends a lot on the chosen pivot values.

Randomized QuickSoRrT: Choose pivot values fully at random
We cannot provide an exact complexity for Randomized QuickSORT:
Executions on the same list can have vastly different random choices (and complexities).

Expected-case analysis: an analysis in terms of the distribution of random choices.

The complexity of QuickSoRT

The complexity of QuickSorT depends a lot on the chosen pivot values.

Randomized QuickSoRrT: Choose pivot values fully at random
We cannot provide an exact complexity for Randomized QuickSORT:
Executions on the same list can have vastly different random choices (and complexities).

Expected-case analysis: an analysis in terms of the distribution of random choices.

Expected-case analysis is not average-case analysis!
Average-case analysis: an analysis in terms of the distribution of inputs.

The complexity of QuickSoRT

The complexity of QuickSorT depends a lot on the chosen pivot values.

Randomized QuickSoRrT: Choose pivot values fully at random
We cannot provide an exact complexity for Randomized QuickSORT:
Executions on the same list can have vastly different random choices (and complexities).

Expected-case analysis: an analysis in terms of the distribution of random choices.
Any random choice in Randomized QuickSoRT is equally likely:
1 ifN<T;
= % Ai(T(i) +T(N=(i+1))

i=0

+N if N> 1.

With some mathematical tricks, we can show that T(N) = @(N log,(N)).

The complexity of QuickSoRT
The complexity of QuickSorT depends a lot on the chosen pivot values.

We will later develop a QuUICKSORT variant that always has a ©(N log,(N)) complexity,
this independent of how pivot values are chosen.

The performance of QuickSoRrT

Running time (us)

0.5

Measured runtime complexity

108 (sorting a list of n random values)
I I I I I I
MERGESORT
MERGESORT p=3
[! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

The performance of QuickSoRrT

Measured runtime complexity

10° (sorting a list of n random values)
T T T T T T
MERGESORT

2 MERGESORT p=32
\2/_ QUICKSORTnd
< 15|
£
2 10
IS
=
>
& 05|

0p \ \ ! ! ! ! ! ! !

The performance of QuickSoRrT

Measured runtime complexity

10° (sorting a list of n random values)
T T T T T T
MERGESORT

2 MERGESORT p=32
\2/_ QUICKSORTnd
< 15|
£
2 10
IS
=
>
& 05|

0p \ \ ! ! ! ! ! ! !

The performance of QuickSoRrT

Measured runtime complexity

108 (sorting a list of n random values)
I I I I I I
MERGESORT
MERGESORT p=3
\"’% 1+ |—— QUICKSORT{.rnd
()
£
=
o0
£
c 05
=
>
&
0 [

0.9

The performance of QuickSoRrT

Running time (us)

0.5

-108

(sorting a list of n random values)

Measured runtime complexity

MERGESORT
MERGESORT p=3
QUICKSORT{.ind

QUICKSORTf

0.4

0.5

0.6

0.7

0.8

0.9

The performance of QuickSoRrT

Measured runtime complexity
108 (sorting a list of n random values)

MERGESORT

MERGESORT p=3

—~
= I —
7 1 QUICKSORT{.ind
E QUICKSORTf
fn === QUICKSORTfrnd M=16
=
E el QUICKSORTfmI M=16
=
>
x
0 |

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The performance of QuickSoRrT

Measured runtime complexity

107 (sorting a list of n ordered values)
5 I I ‘ ‘ ‘ ‘
MERGESORT
Al MERGESORT =37
\g/_ —— QUICKSORTf.tnd
2 3| QUICKSORT
fn ==~ QUICKSORT{.1ndM=16
g 21 QUICKSORTfmI M=16
=
&
‘I [
0 | ! | | \ \ ‘ ‘ : ‘

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Further comparing MERGESORT and QUICKSORT

Comparisons Changes Memory

MEeRGESORT O(N log,(N)) Nlog,(N) O(N)
©(Nlogy(N)) ©(Nlogy(N)) O(logy(N))

QUuICKSORT (expected) (expected) (expected)

Further comparing MERGESORT and QUICKSORT

QuICKSORT is not stable
Consider a L list of pairs (name, age) that is already sorted on age:

L = [(Alicia, 12), (Dafni, 20), (Celeste, 27), (Dafni, 35), (Alicia, 56), (Celeste, 80)].

Further comparing MERGESORT and QUICKSORT

QuICKSORT is not stable
Consider a L list of pairs (name, age) that is already sorted on age:

L = [(Alicia, 12), (Dafni, 20), (Celeste, 27), (Dafni, 35), (Alicia, 56), (Celeste, 80)].

> QuickSorT(L[0,6)) on names only will not maintain ordering on age:

[(Alicia, 56), (Alicia, 12), (Celeste, 27), (Celeste, 80), (Dafni, 35), (Dafni, 20)].

Further comparing MERGESORT and QUICKSORT

QuICKSORT is not stable
Consider a L list of pairs (name, age) that is already sorted on age:

L = [(Alicia, 12), (Dafni, 20), (Celeste, 27), (Dafni, 35), (Alicia, 56), (Celeste, 80)].

> QuickSorT(L[0,6)) on names only will not maintain ordering on age:
[(Alicia, 56), (Alicia, 12), (Celeste, 27), (Celeste, 80), (Dafni, 35), (Dafni, 20)].

> MERGESORT(L[0, 6)) on names only will always maintain pre-existing ordering (for
values that are “identical”):

[(Alicia, 12), (Alicia, 56), (Celeste, 27), (Celeste, 80), (Dafni, 20), (Dafni, 35)].

Further comparing MERGESORT and QUICKSORT

QuICKSORT is not stable
Consider a L list of pairs (name, age) that is already sorted on age:

L = [(Alicia, 12), (Dafni, 20), (Celeste, 27), (Dafni, 35), (Alicia, 56), (Celeste, 80)].
> QuickSorT(L[0,6)) on names only will not maintain ordering on age:
[(Alicia, 56), (Alicia, 12), (Celeste, 27), (Celeste, 80), (Dafni, 35), (Dafni, 20)].

> MERGESORT(L[0, 6)) on names only will always maintain pre-existing ordering (for
values that are “identical”):

[(Alicia, 12), (Alicia, 56), (Celeste, 27), (Celeste, 80), (Dafni, 20), (Dafni, 35)].

We say that MERGESORT is stable.

Using PARTITION: Order statistics

Problem
Given a list L[start ... end) and k, start < k < end,
return the k-th smallest value in L[start ... end).

Using PARTITION: Order statistics

Problem
Given a list L[start ... end) and k, start < k < end,
return the k-th smallest value in L[start ... end).

Algorithm SeLecT(L, start, end, k):

1: Choose the position = € [start, end) of the pivot value = := L[pos].
2: pos := PARTITION(L, start, end, p).
3: if pos = k then
4. return L[pos].

5: else if pos > k then

6 return pos

7: else

8 return SeLecT(L, pos, end, k).

Using PARTITION: Order statistics

Problem
Given a list L[start ... end) and k, start < k < end,
return the k-th smallest value in L[start ... end).

Algorithm SeLecT(L, start, end, k):

1: Choose the position = € [start, end) of the pivot value = := L[pos].
2: pos := PARTITION(L, start, end, p).
3: if pos = k then
4. return L[pos].

5: else if pos > k then

6 return pos

7: else

8 return SeLecT(L, pos, end, k).

Essentially a “half” QuickSoRrT that only sorts those values that could be the k-th.

Using PARTITION: Order statistics

Problem
Given a list L[start ... end) and k, start < k < end,
return the k-th smallest value in L[start ... end).

Algorithm SeLecT(L, start, end, k):

12
: pos := PARTITION(L, start, end, p).
. if pos = k then

2
3
4
5:
6
7
8

Choose the position € [start, end) of the pivot value

return L[pos].
else if pos > k then
return pos

: else

return SeLecT(L, pos, end, k).

Randomized SELECT: O(N) (expected).

= L[pos].

Using PARTITION: Order statistics

SELECT(L, 0, 9, 6): We want the k = 6-th smallest value.

416 |5 |3 |21 719

Using PARTITION: Order statistics

SELECT(L, 0, 9, 6): We want the k = 6-th smallest value.

416 |5 |3 |21 719

Using PARTITION: Order statistics

SELECT(L, 0, 9, 6): We want the k = 6-th smallest value.

1 324|516 |79

Using PARTITION: Order statistics

SELECT(L, 0, 9, 6): We want the k = 6-th smallest value.

1

3

2

4

5

6

4,9,6)

7 9 8
\ SELECT(L,
6 7 9

8

Using PARTITION: Order statistics

SELECT(L, 0, 9, 6): We want the k = 6-th smallest value.

1

3

2

4

5

6

4,9,6)

7 9 8
\ SELECT(L,
6 7 9

8

Using PARTITION: Order statistics

SELECT(L, 0, 9, 6): We want the k = 6-th smallest value.

1

3

2

4

5

6

4,9,6)

7 9 8
\ SELECT(L,
6 7 9

8

Using PARTITION: Order statistics

SELECT(L, 0, 9, 6): We want the k = 6-th smallest value.

1 312 |4|5]6

7 9 8
\ SELECT(L, 4,9, 6)
6 7 9

8

SELECT(L, 5,9, 6)

6 | 7|9 |8

Using PARTITION: Order statistics

SELECT(L, 0, 9, 6): We want the k = 6-th smallest value.

1 312 |4|5]6

7 9 8
\ SELECT(L, 4,9, 6)
6 7 9

8

SELECT(L, 5,9, 6)

6 9 | 8

Using PARTITION: Order statistics

SELECT(L, 0, 9, 6): We want the k = 6-th smallest value.

1 312 |4|5]6

7 9 8
\ SELECT(L, 4,9, 6)
6 7 9

8

SELECT(L, 5,9, 6)

6 | 7|98

Using PARTITION: Order statistics

SELECT(L, 0, 9, 6): We want the k = 6-th smallest value.

1 312 |4|5]6

7 9 8
\ SELECT(L, 4,9, 6)
6 7 9

8

SELECT(L, 5,9, 6)

6 | 7|98

Final notes on QuUICKSORT

C++ Java

QuickSORT std::sort java.util.Arrays.sort (non-Objects)

PARTITION std::partition

(related) std::stable_partition

