
1/22

Graphs

SFWRENG 2CO3: Data Structures and Algorithms

Jelle Hellings

Department of Computing and Software

McMaster University

Winter 2024

2/22

Undirected trees

Definition

Let G = (N , E) be an undirected graph.

The graph G is an undirected tree if:

▶ the graph is connected

(every pair of nodes is connected by a path);

▶ the graph has |E | = |N | − 1:

(removing any one edge will make the graph unconnected).

Tree Tree Not a tree Not a tree

(not connected) (cyclic, too many edges)

2/22

Undirected trees

Definition

Let G = (N , E) be an undirected graph.

The graph G is an undirected tree if:

▶ the graph is connected

(every pair of nodes is connected by a path);

▶ the graph has |E | = |N | − 1:

(removing any one edge will make the graph unconnected).

Tree

Tree Not a tree Not a tree

(not connected) (cyclic, too many edges)

2/22

Undirected trees

Definition

Let G = (N , E) be an undirected graph.

The graph G is an undirected tree if:

▶ the graph is connected

(every pair of nodes is connected by a path);

▶ the graph has |E | = |N | − 1:

(removing any one edge will make the graph unconnected).

Tree Tree

Not a tree Not a tree

(not connected) (cyclic, too many edges)

2/22

Undirected trees

Definition

Let G = (N , E) be an undirected graph.

The graph G is an undirected tree if:

▶ the graph is connected

(every pair of nodes is connected by a path);

▶ the graph has |E | = |N | − 1:

(removing any one edge will make the graph unconnected).

Tree Tree Not a tree

Not a tree

(not connected)

(cyclic, too many edges)

2/22

Undirected trees

Definition

Let G = (N , E) be an undirected graph.

The graph G is an undirected tree if:

▶ the graph is connected

(every pair of nodes is connected by a path);

▶ the graph has |E | = |N | − 1:

(removing any one edge will make the graph unconnected).

Tree Tree Not a tree Not a tree

(not connected) (cyclic, too many edges)

3/22

Spanning trees

Definition

Let G = (N , E) be a connected undirected graph.

A spanning tree of G is a subgraph T = (N , E′) such that

▶ T is a tree; and

▶ E′ ⊆ E.

Informal: keep sufficient edges from G to keep G connected.

3/22

Spanning trees

Definition

Let G = (N , E) be a connected undirected graph.

A spanning tree of G is a subgraph T = (N , E′) such that

▶ T is a tree; and

▶ E′ ⊆ E.

Informal: keep sufficient edges from G to keep G connected.

3/22

Spanning trees

Definition

Let G = (N , E) be a connected undirected graph.

A spanning tree of G is a subgraph T = (N , E′) such that

▶ T is a tree; and

▶ E′ ⊆ E.

Informal: keep sufficient edges from G to keep G connected.

3/22

Spanning trees

Definition

Let G = (N , E) be a connected undirected graph.

A spanning tree of G is a subgraph T = (N , E′) such that

▶ T is a tree; and

▶ E′ ⊆ E.

Informal: keep sufficient edges from G to keep G connected.

3/22

Spanning trees

Definition

Let G = (N , E) be a connected undirected graph.

A spanning tree of G is a subgraph T = (N , E′) such that

▶ T is a tree; and

▶ E′ ⊆ E.

Informal: keep sufficient edges from G to keep G connected.

4/22

Minimum spanning trees

Definition

Let G = (N , E) be a connected weighted undirected graph with weight function weight.

A minimum spanning tree of G is a subgraph T = (N , E′) such that

▶ T is a spanning tree;

▶ the sum of edge weights

∑
e∈E′ weight(e) is minimal

(not larger than the sum of edge weights of any other spanning tree of G).

Informal: lowest-cost tree that connects all of G.

12

7

5

9

118

4

3

2

4

1

7

13

Not minimal!Minimal!

4/22

Minimum spanning trees

Definition

Let G = (N , E) be a connected weighted undirected graph with weight function weight.

A minimum spanning tree of G is a subgraph T = (N , E′) such that

▶ T is a spanning tree;

▶ the sum of edge weights

∑
e∈E′ weight(e) is minimal

(not larger than the sum of edge weights of any other spanning tree of G).

Informal: lowest-cost tree that connects all of G.

12

7

5

9

118

4

3

2

4

1

7

13

Not minimal!Minimal!

4/22

Minimum spanning trees

Definition

Let G = (N , E) be a connected weighted undirected graph with weight function weight.

A minimum spanning tree of G is a subgraph T = (N , E′) such that

▶ T is a spanning tree;

▶ the sum of edge weights

∑
e∈E′ weight(e) is minimal

(not larger than the sum of edge weights of any other spanning tree of G).

Informal: lowest-cost tree that connects all of G.

12

7

5

9

118

4

3

2

4

1

7

13

Not minimal!Minimal!

4/22

Minimum spanning trees

Definition

Let G = (N , E) be a connected weighted undirected graph with weight function weight.

A minimum spanning tree of G is a subgraph T = (N , E′) such that

▶ T is a spanning tree;

▶ the sum of edge weights

∑
e∈E′ weight(e) is minimal

(not larger than the sum of edge weights of any other spanning tree of G).

Informal: lowest-cost tree that connects all of G.

12

7

5

9

118

4

3

2

4

1

7

13

Not minimal!Minimal!

4/22

Minimum spanning trees

Definition

Let G = (N , E) be a connected weighted undirected graph with weight function weight.

A minimum spanning tree of G is a subgraph T = (N , E′) such that

▶ T is a spanning tree;

▶ the sum of edge weights

∑
e∈E′ weight(e) is minimal

(not larger than the sum of edge weights of any other spanning tree of G).

Informal: lowest-cost tree that connects all of G.

12

7

5

9

118

4

3

2

4

1

7

13

Not minimal!

Minimal!

4/22

Minimum spanning trees

Definition

Let G = (N , E) be a connected weighted undirected graph with weight function weight.

A minimum spanning tree of G is a subgraph T = (N , E′) such that

▶ T is a spanning tree;

▶ the sum of edge weights

∑
e∈E′ weight(e) is minimal

(not larger than the sum of edge weights of any other spanning tree of G).

Informal: lowest-cost tree that connects all of G.

12

7

5

9

118

4

3

2

4

1

7

13

Not minimal!Minimal!

4/22

Minimum spanning trees

Definition

Let G = (N , E) be a connected weighted undirected graph with weight function weight.

A minimum spanning tree of G is a subgraph T = (N , E′) such that

▶ T is a spanning tree;

▶ the sum of edge weights

∑
e∈E′ weight(e) is minimal

(not larger than the sum of edge weights of any other spanning tree of G).

Informal: lowest-cost tree that connects all of G.

12

7

5

9

118

4

3

2

4

1

7

13

Not minimal!

Minimal!

4/22

Minimum spanning trees

Definition

Let G = (N , E) be a connected weighted undirected graph with weight function weight.

A minimum spanning tree of G is a subgraph T = (N , E′) such that

▶ T is a spanning tree;

▶ the sum of edge weights

∑
e∈E′ weight(e) is minimal

(not larger than the sum of edge weights of any other spanning tree of G).

Informal: lowest-cost tree that connects all of G.

12

7

5

9

118

4

3

2

4

1

7

13

Not minimal!Minimal!

4/22

Minimum spanning trees

Definition

Let G = (N , E) be a connected weighted undirected graph with weight function weight.

A minimum spanning tree of G is a subgraph T = (N , E′) such that

▶ T is a spanning tree;

▶ the sum of edge weights

∑
e∈E′ weight(e) is minimal

(not larger than the sum of edge weights of any other spanning tree of G).

Informal: lowest-cost tree that connects all of G.

12

7

5

9

118

4

3

2

4

1

7

13

Not minimal!

Minimal!

4/22

Minimum spanning trees

Definition

Let G = (N , E) be a connected weighted undirected graph with weight function weight.

A minimum spanning tree of G is a subgraph T = (N , E′) such that

▶ T is a spanning tree;

▶ the sum of edge weights

∑
e∈E′ weight(e) is minimal

(not larger than the sum of edge weights of any other spanning tree of G).

Informal: lowest-cost tree that connects all of G.

12

7

0

9

118

4

3

2

4

1

7

13

Not minimal!

Minimal!

4/22

Minimum spanning trees

Definition

Let G = (N , E) be a connected weighted undirected graph with weight function weight.

A minimum spanning tree of G is a subgraph T = (N , E′) such that

▶ T is a spanning tree;

▶ the sum of edge weights

∑
e∈E′ weight(e) is minimal

(not larger than the sum of edge weights of any other spanning tree of G).

Informal: lowest-cost tree that connects all of G.

12

7

0

9

118

4

3

2

4

1

7

-3

Not minimal!

Minimal!

5/22

A minimum spanning tree algorithm

AlgorithmMST-HighLevel(G = (N , E), weight):
1: E := ∅.
2: while (N , E) is not a spanning tree do
3: Find an edge (m, n) ∈ E such that E ∪ {(m, n)} is

a subset of the edges of a minimum spanning tree of G.
4: E := E ∪ {(m, n)}.
5: return E .

How to find such edges (m, n)?

Consider a cut (S, S \ N) such that no edge in E is a crossing edge.

We can pick any light edge for cut (S, S \ N).

5/22

A minimum spanning tree algorithm

AlgorithmMST-HighLevel(G = (N , E), weight):
1: E := ∅.
2: while (N , E) is not a spanning tree do
3: Find an edge (m, n) ∈ E such that E ∪ {(m, n)} is

a subset of the edges of a minimum spanning tree of G.
4: E := E ∪ {(m, n)}.
5: return E .

How to find such edges (m, n)?

Consider a cut (S, S \ N) such that no edge in E is a crossing edge.

We can pick any light edge for cut (S, S \ N).

5/22

A minimum spanning tree algorithm

AlgorithmMST-HighLevel(G = (N , E), weight):
1: E := ∅.
2: while (N , E) is not a spanning tree do
3: Find an edge (m, n) ∈ E such that E ∪ {(m, n)} is

a subset of the edges of a minimum spanning tree of G.
4: E := E ∪ {(m, n)}.
5: return E .

How to find such edges (m, n)?
We need some properties of minimum spanning trees.

Consider a cut (S, S \ N) such that

no edge in E is a crossing edge.

We can pick any light edge for cut (S, S \ N).

5/22

A minimum spanning tree algorithm

Definition

Consider an undirected graph G = (N , E).

▶ A cut is a partition of N into two sets S and N \ S.
▶ A crossing edge for a cut is an edge that connects a node in S with a node in N \ S.
▶ A light edge for a cut is a crossing edge with minimal weight.

12

7

5

9

118

4

3

2

4

1

7

13

5/22

A minimum spanning tree algorithm

Definition

Consider an undirected graph G = (N , E).
▶ A cut is a partition of N into two sets S and N \ S.

▶ A crossing edge for a cut is an edge that connects a node in S with a node in N \ S.
▶ A light edge for a cut is a crossing edge with minimal weight.

12

7

5

9

118

4

3

2

4

1

7

13

5/22

A minimum spanning tree algorithm

Definition

Consider an undirected graph G = (N , E).
▶ A cut is a partition of N into two sets S and N \ S.
▶ A crossing edge for a cut is an edge that connects a node in S with a node in N \ S.

▶ A light edge for a cut is a crossing edge with minimal weight.

12

7

5

9

118

4

3

2

4

1

7

13

5/22

A minimum spanning tree algorithm

Definition

Consider an undirected graph G = (N , E).
▶ A cut is a partition of N into two sets S and N \ S.
▶ A crossing edge for a cut is an edge that connects a node in S with a node in N \ S.
▶ A light edge for a cut is a crossing edge with minimal weight.

12

7

5

9

118

4

3

2

4

1

7

13

5/22

A minimum spanning tree algorithm

Definition

Consider an undirected graph G = (N , E).
▶ A cut is a partition of N into two sets S and N \ S.
▶ A crossing edge for a cut is an edge that connects a node in S with a node in N \ S.
▶ A light edge for a cut is a crossing edge with minimal weight.

Theorem

Any minimum spanning tree of G holds a light edge for any cut (S,N \ S).

Proof

Assume a minimum spanning tree T of G that does not hold a light edge for (S,N \ S).

S N \ S

17

(not a light edge)m n

12

(light edge)

v

w

5/22

A minimum spanning tree algorithm

Theorem

Any minimum spanning tree of G holds a light edge for any cut (S,N \ S).

Proof

Assume a minimum spanning tree T of G that does not hold a light edge for (S,N \ S).

S N \ S

17

(not a light edge)m n

12

(light edge)

v

w

5/22

A minimum spanning tree algorithm

Theorem

Any minimum spanning tree of G holds a light edge for any cut (S,N \ S).

Proof

Assume a minimum spanning tree T of G that does not hold a light edge for (S,N \ S).
▶ T must have a non-light edge connecting a node m ∈ S with a node n ∈ (N \ S).

S N \ S

17

(not a light edge)m n

12

(light edge)

v

w

5/22

A minimum spanning tree algorithm

Theorem

Any minimum spanning tree of G holds a light edge for any cut (S,N \ S).

Proof

Assume a minimum spanning tree T of G that does not hold a light edge for (S,N \ S).
▶ T must have a non-light edge connecting a node m ∈ S with a node n ∈ (N \ S).
▶ There must exist a light edge (v,w) for cut (S,N \ S) (not an edge of T).

S N \ S

17

(not a light edge)m n

12

(light edge)

v

w

5/22

A minimum spanning tree algorithm

Theorem

Any minimum spanning tree of G holds a light edge for any cut (S,N \ S).

Proof

Assume a minimum spanning tree T of G that does not hold a light edge for (S,N \ S).
▶ Now consider the graph T ′

obtained from T by removing (m, n) and adding (v,w).

S N \ S

17

(not a light edge)m n

12

(light edge)

v

w

5/22

A minimum spanning tree algorithm

Theorem

Any minimum spanning tree of G holds a light edge for any cut (S,N \ S).

Proof

Assume a minimum spanning tree T of G that does not hold a light edge for (S,N \ S).
▶ Now consider the graph T ′

obtained from T by removing (m, n) and adding (v,w).
▶ Claim: the sum of edge weights of T ′

is lower than the sum of edge weights of T .

S N \ S

17

(not a light edge)m n

12

(light edge)

v

w

5/22

A minimum spanning tree algorithm

Theorem

Any minimum spanning tree of G holds a light edge for any cut (S,N \ S).

Proof

Assume a minimum spanning tree T of G that does not hold a light edge for (S,N \ S).
▶ Now consider the graph T ′

obtained from T by removing (m, n) and adding (v,w).
▶ Claim: T ′

is connected and, hence, a tree.

S N \ S

17

(not a light edge)m n

12

(light edge)

v

w

5/22

A minimum spanning tree algorithm

Theorem

Any minimum spanning tree of G holds a light edge for any cut (S,N \ S).

Proof

Assume a minimum spanning tree T of G that does not hold a light edge for (S,N \ S).
▶ Now consider the graph T ′

obtained from T by removing (m, n) and adding (v,w).
▶ Contradiction T cannot be a minimum spanning tree!

S N \ S

17

(not a light edge)m n

12

(light edge)

v

w

5/22

A minimum spanning tree algorithm

AlgorithmMST-HighLevel(G = (N , E), weight):
1: E := ∅.
2: while (N , E) is not a spanning tree do
3: Find an edge (m, n) ∈ E such that E ∪ {(m, n)} is

a subset of the edges of a minimum spanning tree of G.
4: E := E ∪ {(m, n)}.
5: return E .

How to find such edges (m, n)?

Consider a cut (S, S \ N) such that no edge in E is a crossing edge.

We can pick any light edge for cut (S, S \ N).

5/22

A minimum spanning tree algorithm

AlgorithmMST-HighLevel(G = (N , E), weight):
1: E := ∅.
2: while (N , E) is not a spanning tree do
3: Find an edge (m, n) ∈ E such that E ∪ {(m, n)} is

a subset of the edges of a minimum spanning tree of G.
4: E := E ∪ {(m, n)}.
5: return E .

How to find such edges (m, n)?
Consider a cut (S, S \ N) such that no edge in E is a crossing edge.

We can pick any light edge for cut (S, S \ N).

6/22

Kruskal’s Algorithm

AlgorithmMST-HighLevel(G = (N , E), weight):
1: E := ∅.
2: while (N , E) is not a spanning tree do
3: Find an edge (m, n) ∈ E such that E ∪ {(m, n)} is

a subset of the edges of a minimum spanning tree of G.
4: E := E ∪ {(m, n)}.
5: return E .

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

6/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

12

7

5

9

118

4

3

2

4

1

7

13

6/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

12

7

5

9

118

4

3

2

4

1

7

13

6/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

12

7

5

9

118

4

3

2

4

1

7

13

6/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

12

7

5

9

118

4

3

2

4

1

7

13

6/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

12

7

5

9

118

4

3

2

4

1

7

13

6/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

12

7

5

9

118

4

3

2

4

1

7

13

6/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

12

7

5

9

118

4

3

2

4

1

7

13

6/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

12

7

5

9

118

4

3

2

4

1

7

13

6/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

12

7

5

9

118

4

3

2

4

1

7

13

6/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

12

7

5

9

118

4

3

2

4

1

7

13

6/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

12

7

5

9

118

4

3

2

4

1

7

13

6/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

12

7

5

9

118

4

3

2

4

1

7

13

6/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

12

7

5

9

118

4

3

2

4

1

7

13

6/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

12

7

5

9

118

4

3

2

4

1

7

13

6/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

How to find edges (m, n) ∈ E?

▶ Sort all edges on increasing edge weight.

→ Θ (|E | log(|E |)).

▶ Maintain a dynamic connectivity data structure D

that represents the connected components in (N , E).

→

▶ For each edge (m, n) in sorted order:

check whether they are connected via D.

→

Complexity .

6/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

How to find edges (m, n) ∈ E?
▶ Sort all edges on increasing edge weight.

→ Θ (|E | log(|E |)).
▶ Maintain a dynamic connectivity data structure D

that represents the connected components in (N , E).

→

▶ For each edge (m, n) in sorted order:

check whether they are connected via D.

→

Complexity .

6/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

How to find edges (m, n) ∈ E?
▶ Sort all edges on increasing edge weight.

→ Θ (|E | log(|E |)).

▶ Maintain a dynamic connectivity data structure D

that represents the connected components in (N , E).

→
▶ For each edge (m, n) in sorted order:

check whether they are connected via D.

→

Complexity .

6/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

How to find edges (m, n) ∈ E?
▶ Sort all edges on increasing edge weight.

→ Θ (|E | log(|E |)).

▶ Maintain a dynamic connectivity data structure D

that represents the connected components in (N , E).

→

▶ For each edge (m, n) in sorted order:

check whether they are connected via D.

→
Complexity .

6/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

How to find edges (m, n) ∈ E?
▶ Sort all edges on increasing edge weight.

→ Θ (|E | log(|E |)).

▶ Maintain a dynamic connectivity data structure D

that represents the connected components in (N , E).

→

▶ For each edge (m, n) in sorted order:

check whether they are connected via D.

→

Complexity .

6/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

How to find edges (m, n) ∈ E?
▶ Sort all edges on increasing edge weight.

→ Θ (|E | log(|E |)).

▶ Maintain a dynamic connectivity data structure D

that represents the connected components in (N , E).

→

▶ For each edge (m, n) in sorted order:

check whether they are connected via D.

→

Complexity . We need a dynamic connectivity data structure!

6/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

How to find edges (m, n) ∈ E?
▶ Sort all edges on increasing edge weight. → Θ (|E | log(|E |)).
▶ Maintain a dynamic connectivity data structure D

that represents the connected components in (N , E). → ?

▶ For each edge (m, n) in sorted order:

check whether they are connected via D. → ?

Complexity . We need a dynamic connectivity data structure!

7/22

Dynamic connectivity

Definition

Given a list of pairs (p, q) that imply that p and q are connected , we can classify values

based on whether they are connected with each other (possibly via other values).

A B C

D

E

F

G

H IJ

(A,B) (B,C) (C,D)
(C, E) (D,B) (F ,G)
(F ,H) (G,H) (G, I)
(H, I) (I, F) (J,A) (J,D)

7/22

Dynamic connectivity

Definition

Given a list of pairs (p, q) that imply that p and q are connected , we can classify values

based on whether they are connected with each other (possibly via other values).

A B C

D

E

F

G

H IJ

(A,B) (B,C) (C,D)
(C, E) (D,B) (F ,G)
(F ,H) (G,H) (G, I)
(H, I) (I, F) (J,A) (J,D)

Values can represents computers connected via networks.

7/22

Dynamic connectivity

Definition

Given a list of pairs (p, q) that imply that p and q are connected , we can classify values

based on whether they are connected with each other (possibly via other values).

A B C

D

E

F

G

H IJ

(A,B) (B,C) (C,D)
(C, E) (D,B) (F ,G)
(F ,H) (G,H) (G, I)
(H, I) (I, F) (J,A) (J,D)

Values can represents computers connected via networks.

7/22

Dynamic connectivity

Definition

Given a list of pairs (p, q) that imply that p and q are connected , we can classify values

based on whether they are connected with each other (possibly via other values).

A B C

D

E

F

G

H IJ

(A,B) (B,C) (C,D)
(C, E) (D,B) (F ,G)
(F ,H) (G,H) (G, I)
(H, I) (I, F) (J,A) (J,D)

Dynamic connectivity problem

Given a list of connections L and a new connection (p, q),
determine whether adding (p, q) to L changes the classifications.

7/22

Dynamic connectivity

Definition

Given a list of pairs (p, q) that imply that p and q are connected , we can classify values

based on whether they are connected with each other (possibly via other values).

A B C

D

E

F

G

H IJ

(A,B) (B,C) (C,D)
(C, E) (D,B) (F ,G)
(F ,H) (G,H) (G, I)
(H, I) (I, F) (J,A) (J,D)

Adding (D, E).

Dynamic connectivity problem

Given a list of connections L and a new connection (p, q),
determine whether adding (p, q) to L changes the classifications.

7/22

Dynamic connectivity

Definition

Given a list of pairs (p, q) that imply that p and q are connected , we can classify values

based on whether they are connected with each other (possibly via other values).

A B C

D

E

F

G

H IJ

(A,B) (B,C) (C,D)
(C, E) (D,B) (F ,G)
(F ,H) (G,H) (G, I)
(H, I) (I, F) (J,A) (J,D)

Adding (J,H).

Dynamic connectivity problem

Given a list of connections L and a new connection (p, q),
determine whether adding (p, q) to L changes the classifications.

7/22

Dynamic connectivity

Definition

Given a list of pairs (p, q) that imply that p and q are connected , we can classify values

based on whether they are connected with each other (possibly via other values).

A B C

D

E

F

G

H IJ

(A,B) (B,C) (C,D)
(C, E) (D,B) (F ,G)
(F ,H) (G,H) (G, I)
(H, I) (I, F) (J,A) (J,D)

Process a list of connections L

Start with an empty result R.

Add pair (p, q) ∈ L to R if that changes the classifications in R.

7/22

Dynamic connectivity

Definition

Given a list of pairs (p, q) that imply that p and q are connected , we can classify values

based on whether they are connected with each other (possibly via other values).

A B C

D

E

F

G

H IJ

(A,B) (B,C) (C,D)
(C, E) (D,B) (F ,G)
(F ,H) (G,H) (G, I)
(H, I) (I, F) (J,A) (J,D)

Process a list of connections L

Start with an empty result R.

Add pair (p, q) ∈ L to R if that changes the classifications in R.

8/22

Dynamic connectivity: A first attempt

We need both data structures and algorithms:

data structures to represent the classification we have;

algorithms to check whether adding a connection changes the classification;

algorithms to update the classification by adding a connection.

8/22

Dynamic connectivity: A first attempt

We need both data structures and algorithms:

data structures to represent the classification we have;

algorithms to check whether adding a connection changes the classification;

algorithms to update the classification by adding a connection.

A B C

D

E

F

G

H IJ

V V V V V W W W W VA:

8/22

Dynamic connectivity: A first attempt

We need both data structures and algorithms:

data structures to represent the classification we have;

algorithms to check whether adding a connection changes the classification;

algorithms to update the classification by adding a connection.

0 1 2

3

4

5

6

7 89

V V V V V W W W W VA:

Simplification: assume N values, each a unique integer in the range 0, . . . ,N − 1.

8/22

Dynamic connectivity: A first attempt

0 1 2

3

4

5

6

7 89

V V V V V W W W W VA:

Simplification: assume N values, each a unique integer in the range 0, . . . ,N − 1.

The simple representation

Create an array A[0 . . .N) such that A[i] is the class identifier of value i.
We can efficiently check in Θ (1) whether pair (p, q) are already connected: S [p] = S [q].

8/22

Dynamic connectivity: A first attempt

0 1 2

3

4

5

6

7 89

V V V V V W W W W VA:

Simplification: assume N values, each a unique integer in the range 0, . . . ,N − 1.

The simple representation

Create an array A[0 . . .N) such that A[i] is the class identifier of value i.
We can efficiently check in Θ (1) whether pair (p, q) are already connected: S [p] = S [q].

Updating the simple representation

Given a new (p, q), change all entries in A with value A[p] to value A[q] in Θ (N).

8/22

Dynamic connectivity: A first attempt

0 1 2

3

4

5

6

7 89

V V V V V W W W W VA:

Simplification: assume N values, each a unique integer in the range 0, . . . ,N − 1.

The simple representation

Create an array A[0 . . .N) such that A[i] is the class identifier of value i.
We can efficiently check in Θ (1) whether pair (p, q) are already connected: S [p] = S [q].

Updating the simple representation

Given a new (p, q), change all entries in A with value A[p] to value A[q] in Θ (N).

Adding (J,H).

8/22

Dynamic connectivity: A first attempt

0 1 2

3

4

5

6

7 89

V V V V V W W W W VA:

Simplification: assume N values, each a unique integer in the range 0, . . . ,N − 1.

The simple representation

Create an array A[0 . . .N) such that A[i] is the class identifier of value i.
We can efficiently check in Θ (1) whether pair (p, q) are already connected: S [p] = S [q].

Updating the simple representation

Given a new (p, q), change all entries in A with value A[p] to value A[q] in Θ (N).

Adding (9, 7).

8/22

Dynamic connectivity: A first attempt

0 1 2

3

4

5

6

7 89

V V V V V W W W W VA:

Simplification: assume N values, each a unique integer in the range 0, . . . ,N − 1.

The simple representation

Create an array A[0 . . .N) such that A[i] is the class identifier of value i.
We can efficiently check in Θ (1) whether pair (p, q) are already connected: S [p] = S [q].

Updating the simple representation

Given a new (p, q), change all entries in A with value A[p] to value A[q] in Θ (N).

Adding (9, 7).

8/22

Dynamic connectivity: A first attempt

0 1 2

3

4

5

6

7 89

W W W W W W W W W WA:

Simplification: assume N values, each a unique integer in the range 0, . . . ,N − 1.

The simple representation

Create an array A[0 . . .N) such that A[i] is the class identifier of value i.
We can efficiently check in Θ (1) whether pair (p, q) are already connected: S [p] = S [q].

Updating the simple representation

Given a new (p, q), change all entries in A with value A[p] to value A[q] in Θ (N).

Adding (9, 7).

8/22

Dynamic connectivity: A first attempt

We need both data structures and algorithms:

data structures to represent the classification we have;

algorithms to check whether adding a connection changes the classification;

algorithms to update the classification by adding a connection.

The simple representation

Create an array A[0 . . .N) such that A[i] is the class identifier of value i.
Check whether adding a connection changes the classification: Θ (1);
Update the classification by adding a connection: Θ (N).

8/22

Dynamic connectivity: A first attempt

We need both data structures and algorithms:

data structures to represent the classification we have;

algorithms to check whether adding a connection changes the classification;

algorithms to update the classification by adding a connection.

The simple representation

Create an array A[0 . . .N) such that A[i] is the class identifier of value i.
Check whether adding a connection changes the classification: Θ (1);
Update the classification by adding a connection: Θ (N).

Process a list of connections L: at-least N
2
if all values end up in the same class!

8/22

Dynamic connectivity: A first attempt

We need both data structures and algorithms:

data structures to represent the classification we have;

algorithms to check whether adding a connection changes the classification;

algorithms to update the classification by adding a connection.

The simple representation

Create an array A[0 . . .N) such that A[i] is the class identifier of value i.
Check whether adding a connection changes the classification: Θ (1);
Update the classification by adding a connection: Θ (N).

Process a list of connections L: at-least N
2
if all values end up in the same class!

Faster minimization?

The simple representation is optimized for checking classifications, not updating them.

We need another representation!

9/22

Dynamic connectivity: A second attempt

We want to optimize for updating: no updating of an entire array.

0 1 2

3

4

5

6

7 89

3 2 9 4 4 6 7 7 6 43 2 9 4 4 6 7 2 6 4F :

Representation visualization

0

1

2

3

4

5

6

7

8

9

9/22

Dynamic connectivity: A second attempt

We want to optimize for updating: no updating of an entire array.

0 1 2

3

4

5

6

7 89

3 2 9 4 4 6 7 7 6 43 2 9 4 4 6 7 2 6 4F :

Representation visualization

0

1

2

3

4

5

6

7

8

9

The forest representation

Create an array S [0 . . .N) such that S [i] either
▶ holds the value i indicating that i is the tree root for the class containing i;

▶ holds the value j ≠ i indicating that j is a tree parent for the class containing i.

We need to find roots fast : costs of checking and updating depends on it!

Finding the root of p: depends on the distance toward the root (the depth of p):

worst-case Θ (N).

9/22

Dynamic connectivity: A second attempt

We want to optimize for updating: no updating of an entire array.

0 1 2

3

4

5

6

7 89

3 2 9 4 4 6 7 7 6 4

3 2 9 4 4 6 7 2 6 4

F :

Representation visualization

0

1

2

3

4

5

6

7

8

9

The forest representation

Create an array S [0 . . .N) such that S [i] either
▶ holds the value i indicating that i is the tree root for the class containing i;

▶ holds the value j ≠ i indicating that j is a tree parent for the class containing i.

We need to find roots fast : costs of checking and updating depends on it!

Finding the root of p: depends on the distance toward the root (the depth of p):

worst-case Θ (N).

9/22

Dynamic connectivity: A second attempt

We want to optimize for updating: no updating of an entire array.

0 1 2

3

4

5

6

7 89

3 2 9 4 4 6 7 7 6 4

3 2 9 4 4 6 7 2 6 4

F :

Representation visualization

0

1

2

3

4

5

6

7

8

9

The forest representation

Create an array S [0 . . .N) such that S [i] either
▶ holds the value i indicating that i is the tree root for the class containing i;

▶ holds the value j ≠ i indicating that j is a tree parent for the class containing i.

We need to find roots fast : costs of checking and updating depends on it!

Finding the root of p: depends on the distance toward the root (the depth of p):

worst-case Θ (N).

9/22

Dynamic connectivity: A second attempt

We want to optimize for updating: no updating of an entire array.

0 1 2

3

4

5

6

7 89

3 2 9 4 4 6 7 7 6 4

3 2 9 4 4 6 7 2 6 4

F :

Representation visualization

0

1

2

3

4

5

6

7

8

9

The forest representation

Check whether adding a connection (p, q) changes the classification:
compare the roots for the trees holding p and q.

We need to find roots fast : costs of checking and updating depends on it!

Finding the root of p: depends on the distance toward the root (the depth of p):

worst-case Θ (N).

9/22

Dynamic connectivity: A second attempt

We want to optimize for updating: no updating of an entire array.

0 1 2

3

4

5

6

7 89

3 2 9 4 4 6 7 7 6 4

3 2 9 4 4 6 7 2 6 4

F :

Representation visualization

0

1

2

3

4

5

6

7

8

9

Check (5, 2).

The forest representation

Check whether adding a connection (p, q) changes the classification:
compare the roots for the trees holding p and q.

We need to find roots fast : costs of checking and updating depends on it!

Finding the root of p: depends on the distance toward the root (the depth of p):

worst-case Θ (N).

9/22

Dynamic connectivity: A second attempt

We want to optimize for updating: no updating of an entire array.

0 1 2

3

4

5

6

7 89

3 2 9 4 4 6 7 7 6 4

3 2 9 4 4 6 7 2 6 4

F :

Representation visualization

0

1

2

3

4

5

6

7

8

9

The forest representation

Update the classification by adding a connection (p, q):
change the root of the tree holding q so that it points to p.

We need to find roots fast : costs of checking and updating depends on it!

Finding the root of p: depends on the distance toward the root (the depth of p):

worst-case Θ (N).

9/22

Dynamic connectivity: A second attempt

We want to optimize for updating: no updating of an entire array.

0 1 2

3

4

5

6

7 89

3 2 9 4 4 6 7 7 6 4

3 2 9 4 4 6 7 2 6 4F :

Representation visualization

0

1

2

3

4

5

6

7

8

9

Adding (5, 2).

The forest representation

Update the classification by adding a connection (p, q):
change the root of the tree holding q so that it points to p.

We need to find roots fast : costs of checking and updating depends on it!

Finding the root of p: depends on the distance toward the root (the depth of p):

worst-case Θ (N).

9/22

Dynamic connectivity: A second attempt

We want to optimize for updating: no updating of an entire array.

0 1 2

3

4

5

6

7 89

3 2 9 4 4 6 7 7 6 43 2 9 4 4 6 7 2 6 4F :

Representation visualization

0

1

2

3

4

5

6

7

8

9

The forest representation

We need to find roots fast : costs of checking and updating depends on it!

Finding the root of p: depends on the distance toward the root (the depth of p):

worst-case Θ (N).

9/22

Dynamic connectivity: A second attempt

We want to optimize for updating: no updating of an entire array.

0 1 2

3

4

5

6

7 89

3 2 9 4 4 6 7 7 6 43 2 9 4 4 6 7 2 6 4F :

Representation visualization

0

1

2

3

4

5

6

7

8

9

The forest representation

We need to find roots fast : costs of checking and updating depends on it!

Finding the root of p: depends on the distance toward the root (the depth of p):

worst-case Θ (N).

9/22

Dynamic connectivity: A second attempt

The forest representation

We need to find roots fast : costs of checking and updating depends on it!

Finding the root of p: depends on the distance toward the root (the depth of p):

worst-case Θ (N).

Problem: Can we guarantee low distances to roots?

Idea: Keep the tree height low when adding a connection (p, q).

:

▶ find the roots of the trees holding p and q;

▶ make the tree root of the smallest tree point to the other root.

9/22

Dynamic connectivity: A second attempt

The forest representation

We need to find roots fast : costs of checking and updating depends on it!

Finding the root of p: depends on the distance toward the root (the depth of p):

worst-case Θ (N).

Problem: Can we guarantee low distances to roots?

Idea: Keep the tree height low when adding a connection (p, q):
▶ find the roots of the trees holding p and q;

▶ make the tree root of the smallest tree point to the other root.

9/22

Dynamic connectivity: A second attempt

The forest representation

We need to find roots fast : costs of checking and updating depends on it!

Finding the root of p: depends on the distance toward the root (the depth of p):

worst-case Θ (N).

Problem: Can we guarantee low distances to roots?

Idea: Keep the tree height low when adding a connection (p, q):
▶ find the roots of the trees holding p and q;

▶ make the tree root of the smallest tree point to the other root.

We need to maintain tree size for roots: an extra array.

9/22

Dynamic connectivity: A second attempt

0 1 2

3

4

5

6

7 89

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1

F :

S:

Representation visualization

0

1 2 3 4

5 6 7 8 9

Problem: Can we guarantee low distances to roots?

Consider Adding (0, 1), (1, 2), (2, 3), (2, 4), (3, 1), (5, 6), (5, 7), (6, 7),
(6, 8), (7, 8), (8, 5), (9, 0), (9, 3), (5, 2).

9/22

Dynamic connectivity: A second attempt

0 1 2

3

4

5

6

7 89

0 0 2 3 4 5 6 7 8 9

2 1 1 1 1 1 1 1 1 1

F :

S:

Representation visualization

0

1

2 3 4

5 6 7 8 9

Problem: Can we guarantee low distances to roots?

Consider Adding (0, 1), (1, 2), (2, 3), (2, 4), (3, 1), (5, 6), (5, 7), (6, 7),
(6, 8), (7, 8), (8, 5), (9, 0), (9, 3), (5, 2).

9/22

Dynamic connectivity: A second attempt

0 1 2

3

4

5

6

7 89

0 0 0 3 4 5 6 7 8 9

3 1 1 1 1 1 1 1 1 1

F :

S:

Representation visualization

0

1 2

3 4

5 6 7 8 9

Problem: Can we guarantee low distances to roots?

Consider Adding (0, 1), (1, 2), (2, 3), (2, 4), (3, 1), (5, 6), (5, 7), (6, 7),
(6, 8), (7, 8), (8, 5), (9, 0), (9, 3), (5, 2).

9/22

Dynamic connectivity: A second attempt

0 1 2

3

4

5

6

7 89

0 0 0 0 4 5 6 7 8 9

4 1 1 1 1 1 1 1 1 1

F :

S:

Representation visualization

0

1 2 3

4

5 6 7 8 9

Problem: Can we guarantee low distances to roots?

Consider Adding (0, 1), (1, 2), (2, 3), (2, 4), (3, 1), (5, 6), (5, 7), (6, 7),
(6, 8), (7, 8), (8, 5), (9, 0), (9, 3), (5, 2).

9/22

Dynamic connectivity: A second attempt

0 1 2

3

4

5

6

7 89

0 0 0 0 0 5 6 7 8 9

5 1 1 1 1 1 1 1 1 1

F :

S:

Representation visualization

0

1 2 3 4

5 6 7 8 9

Problem: Can we guarantee low distances to roots?

Consider Adding (0, 1), (1, 2), (2, 3), (2, 4), (3, 1), (5, 6), (5, 7), (6, 7),
(6, 8), (7, 8), (8, 5), (9, 0), (9, 3), (5, 2).

9/22

Dynamic connectivity: A second attempt

0 1 2

3

4

5

6

7 89

5 1 1 1 1 1 1 1 1 1

0 0 0 0 0 5 6 7 8 9F :

S:

Representation visualization

0

1 2 3 4

5 6 7 8 9

Problem: Can we guarantee low distances to roots?

Consider Adding (0, 1), (1, 2), (2, 3), (2, 4), (3, 1), (5, 6), (5, 7), (6, 7),
(6, 8), (7, 8), (8, 5), (9, 0), (9, 3), (5, 2).

9/22

Dynamic connectivity: A second attempt

0 1 2

3

4

5

6

7 89

0 0 0 0 0 5 5 7 8 9

5 1 1 1 1 2 1 1 1 1

F :

S:

Representation visualization

0

1 2 3 4

5

6

7 8 9

Problem: Can we guarantee low distances to roots?

Consider Adding (0, 1), (1, 2), (2, 3), (2, 4), (3, 1), (5, 6), (5, 7), (6, 7),
(6, 8), (7, 8), (8, 5), (9, 0), (9, 3), (5, 2).

9/22

Dynamic connectivity: A second attempt

0 1 2

3

4

5

6

7 89

5 1 1 1 1 3 1 1 1 1

0 0 0 0 0 5 5 5 8 9F :

S:

Representation visualization

0

1 2 3 4

5

6 7

8 9

Problem: Can we guarantee low distances to roots?

Consider Adding (0, 1), (1, 2), (2, 3), (2, 4), (3, 1), (5, 6), (5, 7), (6, 7),
(6, 8), (7, 8), (8, 5), (9, 0), (9, 3), (5, 2).

9/22

Dynamic connectivity: A second attempt

0 1 2

3

4

5

6

7 89

0 0 0 0 0 5 5 5 8 9

5 1 1 1 1 3 1 1 1 1

F :

S:

Representation visualization

0

1 2 3 4

5

6 7

8 9

Problem: Can we guarantee low distances to roots?

Consider Adding (0, 1), (1, 2), (2, 3), (2, 4), (3, 1), (5, 6), (5, 7), (6, 7),
(6, 8), (7, 8), (8, 5), (9, 0), (9, 3), (5, 2).

9/22

Dynamic connectivity: A second attempt

0 1 2

3

4

5

6

7 89

0 0 0 0 0 5 5 5 5 90 0 0 0 0 5 5 5 5 9

5 1 1 1 1 4 1 1 1 1

F :

S:

Representation visualization

0

1 2 3 4

5

6 7 8

9

Problem: Can we guarantee low distances to roots?

Consider Adding (0, 1), (1, 2), (2, 3), (2, 4), (3, 1), (5, 6), (5, 7), (6, 7),
(6, 8), (7, 8), (8, 5), (9, 0), (9, 3), (5, 2).

9/22

Dynamic connectivity: A second attempt

0 1 2

3

4

5

6

7 89

0 0 0 0 0 5 5 5 5 9

5 1 1 1 1 4 1 1 1 1

F :

S:

Representation visualization

0

1 2 3 4

5

6 7 8

9

Problem: Can we guarantee low distances to roots?

Consider Adding (0, 1), (1, 2), (2, 3), (2, 4), (3, 1), (5, 6), (5, 7), (6, 7),
(6, 8), (7, 8), (8, 5), (9, 0), (9, 3), (5, 2).

9/22

Dynamic connectivity: A second attempt

0 1 2

3

4

5

6

7 89

0 0 0 0 0 5 5 5 5 9

5 1 1 1 1 4 1 1 1 1

F :

S:

Representation visualization

0

1 2 3 4

5

6 7 8

9

Problem: Can we guarantee low distances to roots?

Consider Adding (0, 1), (1, 2), (2, 3), (2, 4), (3, 1), (5, 6), (5, 7), (6, 7),
(6, 8), (7, 8), (8, 5), (9, 0), (9, 3), (5, 2).

9/22

Dynamic connectivity: A second attempt

0 1 2

3

4

5

6

7 89

0 0 0 0 0 5 5 5 5 0

6 1 1 1 1 4 1 1 1 1

F :

S:

Representation visualization

0

1 2 3 4

5

6 7 8 9

Problem: Can we guarantee low distances to roots?

Consider Adding (0, 1), (1, 2), (2, 3), (2, 4), (3, 1), (5, 6), (5, 7), (6, 7),
(6, 8), (7, 8), (8, 5), (9, 0), (9, 3), (5, 2).

9/22

Dynamic connectivity: A second attempt

0 1 2

3

4

5

6

7 89

6 1 1 1 1 4 1 1 1 1

0 0 0 0 0 5 5 5 5 0F :

S:

Representation visualization

0

1 2 3 4

5

6 7 8 9

Problem: Can we guarantee low distances to roots?

Consider Adding (0, 1), (1, 2), (2, 3), (2, 4), (3, 1), (5, 6), (5, 7), (6, 7),
(6, 8), (7, 8), (8, 5), (9, 0), (9, 3), (5, 2).

9/22

Dynamic connectivity: A second attempt

0 1 2

3

4

5

6

7 89

10 1 1 1 1 4 1 1 1 1

0 0 0 0 0 0 5 5 5 0F :

S:

Representation visualization

0

1 2 3 4

5

6 7 8 9

Problem: Can we guarantee low distances to roots?

Consider Adding (0, 1), (1, 2), (2, 3), (2, 4), (3, 1), (5, 6), (5, 7), (6, 7),
(6, 8), (7, 8), (8, 5), (9, 0), (9, 3), (5, 2).

9/22

Dynamic connectivity: A second attempt

Problem: Can we guarantee low distances to roots?

Idea: Keep the tree height low when adding a connection (p, q):
▶ find the roots of the trees holding p and q;

▶ make the tree root of the smallest tree point to the other root.

How big do trees grow via this method?

9/22

Dynamic connectivity: A second attempt

Problem: Can we guarantee low distances to roots?

Idea: Keep the tree height low when adding a connection (p, q):
▶ find the roots of the trees holding p and q;

▶ make the tree root of the smallest tree point to the other root.

How big do trees grow via this method?

Theorem

The height of a tree T of size |T | built in the above way is height(T) ≤ log
2
(|T |).

9/22

Dynamic connectivity: A second attempt

Problem: Can we guarantee low distances to roots?

Idea: Keep the tree height low when adding a connection (p, q):
▶ find the roots of the trees holding p and q;

▶ make the tree root of the smallest tree point to the other root.

How big do trees grow via this method?

Theorem

The height of a tree T of size |T | built in the above way is height(T) ≤ log
2
(|T |).

Proof

By induction on the size of tree T .

Base case Trees T of size |T | = 1 consists only of a root: height(T) = log
2
(1) = 0.

Step Consider combining two trees T1 and T2 into tree T of size |T1 | + |T2 | = i.

▶ Assume |T1 | ≤ |T2 |: add the root of T1 as a child to the root of T2.

▶ Distance to root increases by one for all nodes in T1.

▶ By IH, height(T1) ≤ log
2
(|T1 |) and height(T2) ≤ log

2
(|T2 |).

9/22

Dynamic connectivity: A second attempt

Theorem

The height of a tree T of size |T | built in the above way is height(T) ≤ log
2
(|T |).

Proof

Induction Hypothesis: height(T) ≤ log
2
(|T |) for all trees with |T | < i.

Base case Trees T of size |T | = 1 consists only of a root: height(T) = log
2
(1) = 0.

Step Consider combining two trees T1 and T2 into tree T of size |T1 | + |T2 | = i.

▶ Assume |T1 | ≤ |T2 |: add the root of T1 as a child to the root of T2.

▶ Distance to root increases by one for all nodes in T1.

▶ By IH, height(T1) ≤ log
2
(|T1 |) and height(T2) ≤ log

2
(|T2 |).

9/22

Dynamic connectivity: A second attempt

Theorem

The height of a tree T of size |T | built in the above way is height(T) ≤ log
2
(|T |).

Proof

Induction Hypothesis: height(T) ≤ log
2
(|T |) for all trees with |T | < i.

Base case Trees T of size |T | = 1 consists only of a root: height(T) = log
2
(1) = 0.

Step Consider combining two trees T1 and T2 into tree T of size |T1 | + |T2 | = i.

▶ Assume |T1 | ≤ |T2 |: add the root of T1 as a child to the root of T2.

▶ Distance to root increases by one for all nodes in T1.

▶ By IH, height(T1) ≤ log
2
(|T1 |) and height(T2) ≤ log

2
(|T2 |).

9/22

Dynamic connectivity: A second attempt

Theorem

The height of a tree T of size |T | built in the above way is height(T) ≤ log
2
(|T |).

Proof

Induction Hypothesis: height(T) ≤ log
2
(|T |) for all trees with |T | < i.

Base case Trees T of size |T | = 1 consists only of a root: height(T) = log
2
(1) = 0.

Step Consider combining two trees T1 and T2 into tree T of size |T1 | + |T2 | = i.

▶ Assume |T1 | ≤ |T2 |: add the root of T1 as a child to the root of T2.

▶ Distance to root increases by one for all nodes in T1.

▶ By IH, height(T1) ≤ log
2
(|T1 |) and height(T2) ≤ log

2
(|T2 |).

9/22

Dynamic connectivity: A second attempt

Theorem

The height of a tree T of size |T | built in the above way is height(T) ≤ log
2
(|T |).

Proof

Induction Hypothesis: height(T) ≤ log
2
(|T |) for all trees with |T | < i.

Base case Trees T of size |T | = 1 consists only of a root: height(T) = log
2
(1) = 0.

Step Consider combining two trees T1 and T2 into tree T of size |T1 | + |T2 | = i.

▶ Assume |T1 | ≤ |T2 |: add the root of T1 as a child to the root of T2.

▶ Distance to root increases by one for all nodes in T1.

▶ By IH, height(T1) ≤ log
2
(|T1 |) and height(T2) ≤ log

2
(|T2 |).

9/22

Dynamic connectivity: A second attempt

Theorem

The height of a tree T of size |T | built in the above way is height(T) ≤ log
2
(|T |).

Proof

Induction Hypothesis: height(T) ≤ log
2
(|T |) for all trees with |T | < i.

Base case Trees T of size |T | = 1 consists only of a root: height(T) = log
2
(1) = 0.

Step Consider combining two trees T1 and T2 into tree T of size |T1 | + |T2 | = i.

▶ Assume |T1 | ≤ |T2 |: add the root of T1 as a child to the root of T2.

▶ Distance to root increases by one for all nodes in T1.

▶ By IH, height(T1) ≤ log
2
(|T1 |) and height(T2) ≤ log

2
(|T2 |).

height(T) = max(height(T1) + 1, height(T2)) .

9/22

Dynamic connectivity: A second attempt

Theorem

The height of a tree T of size |T | built in the above way is height(T) ≤ log
2
(|T |).

Proof

Induction Hypothesis: height(T) ≤ log
2
(|T |) for all trees with |T | < i.

Base case Trees T of size |T | = 1 consists only of a root: height(T) = log
2
(1) = 0.

Step Consider combining two trees T1 and T2 into tree T of size |T1 | + |T2 | = i.

▶ Assume |T1 | ≤ |T2 |: add the root of T1 as a child to the root of T2.

▶ Distance to root increases by one for all nodes in T1.

▶ By IH, height(T1) ≤ log
2
(|T1 |) and height(T2) ≤ log

2
(|T2 |).

height(T) ≤ max(log
2
(|T1 |) + 1, log

2
(|T2 |)).

9/22

Dynamic connectivity: A second attempt

Theorem

The height of a tree T of size |T | built in the above way is height(T) ≤ log
2
(|T |).

Proof

Induction Hypothesis: height(T) ≤ log
2
(|T |) for all trees with |T | < i.

Base case Trees T of size |T | = 1 consists only of a root: height(T) = log
2
(1) = 0.

Step Consider combining two trees T1 and T2 into tree T of size |T1 | + |T2 | = i.

▶ Assume |T1 | ≤ |T2 |: add the root of T1 as a child to the root of T2.

▶ Distance to root increases by one for all nodes in T1.

▶ By IH, height(T1) ≤ log
2
(|T1 |) and height(T2) ≤ log

2
(|T2 |).

height(T) ≤ max(log
2
(|T1 |) + 1, log

2
(|T2 |)).

Case log
2
(|T1 |) + 1 ≤ log

2
(|T2 |) height(T) = log

2
(|T2 |).

9/22

Dynamic connectivity: A second attempt

Theorem

The height of a tree T of size |T | built in the above way is height(T) ≤ log
2
(|T |).

Proof

Induction Hypothesis: height(T) ≤ log
2
(|T |) for all trees with |T | < i.

Base case Trees T of size |T | = 1 consists only of a root: height(T) = log
2
(1) = 0.

Step Consider combining two trees T1 and T2 into tree T of size |T1 | + |T2 | = i.

▶ Assume |T1 | ≤ |T2 |: add the root of T1 as a child to the root of T2.

▶ Distance to root increases by one for all nodes in T1.

▶ By IH, height(T1) ≤ log
2
(|T1 |) and height(T2) ≤ log

2
(|T2 |).

height(T) ≤ max(log
2
(|T1 |) + 1, log

2
(|T2 |)).

Case log
2
(|T1 |) + 1 ≤ log

2
(|T2 |) height(T) = log

2
(|T2 |) < log

2
(|T |).

9/22

Dynamic connectivity: A second attempt

Theorem

The height of a tree T of size |T | built in the above way is height(T) ≤ log
2
(|T |).

Proof

Induction Hypothesis: height(T) ≤ log
2
(|T |) for all trees with |T | < i.

Base case Trees T of size |T | = 1 consists only of a root: height(T) = log
2
(1) = 0.

Step Consider combining two trees T1 and T2 into tree T of size |T1 | + |T2 | = i.

▶ Assume |T1 | ≤ |T2 |: add the root of T1 as a child to the root of T2.

▶ Distance to root increases by one for all nodes in T1.

▶ By IH, height(T1) ≤ log
2
(|T1 |) and height(T2) ≤ log

2
(|T2 |).

height(T) ≤ max(log
2
(|T1 |) + 1, log

2
(|T2 |)).

Case log
2
(|T1 |) + 1 > log

2
(|T2 |) height(T) = log

2
(|T1 |) + 1.

9/22

Dynamic connectivity: A second attempt

Theorem

The height of a tree T of size |T | built in the above way is height(T) ≤ log
2
(|T |).

Proof

Induction Hypothesis: height(T) ≤ log
2
(|T |) for all trees with |T | < i.

Base case Trees T of size |T | = 1 consists only of a root: height(T) = log
2
(1) = 0.

Step Consider combining two trees T1 and T2 into tree T of size |T1 | + |T2 | = i.

▶ Assume |T1 | ≤ |T2 |: add the root of T1 as a child to the root of T2.

▶ Distance to root increases by one for all nodes in T1.

▶ By IH, height(T1) ≤ log
2
(|T1 |) and height(T2) ≤ log

2
(|T2 |).

height(T) ≤ max(log
2
(|T1 |) + 1, log

2
(|T2 |)).

Case log
2
(|T1 |) + 1 > log

2
(|T2 |) height(T) = log

2
(|T1 |) + 1 = log

2
(2|T1 |).

9/22

Dynamic connectivity: A second attempt

Theorem

The height of a tree T of size |T | built in the above way is height(T) ≤ log
2
(|T |).

Proof

Induction Hypothesis: height(T) ≤ log
2
(|T |) for all trees with |T | < i.

Base case Trees T of size |T | = 1 consists only of a root: height(T) = log
2
(1) = 0.

Step Consider combining two trees T1 and T2 into tree T of size |T1 | + |T2 | = i.

▶ Assume |T1 | ≤ |T2 |: add the root of T1 as a child to the root of T2.

▶ Distance to root increases by one for all nodes in T1.

▶ By IH, height(T1) ≤ log
2
(|T1 |) and height(T2) ≤ log

2
(|T2 |).

height(T) ≤ max(log
2
(|T1 |) + 1, log

2
(|T2 |)).

Case log
2
(|T1 |) + 1 > log

2
(|T2 |) height(T) = log

2
(2|T1 |) ≤ log

2
(|T1 | + |T2 |).

9/22

Dynamic connectivity: A second attempt

Theorem

The height of a tree T of size |T | built in the above way is height(T) ≤ log
2
(|T |).

Proof

Induction Hypothesis: height(T) ≤ log
2
(|T |) for all trees with |T | < i.

Base case Trees T of size |T | = 1 consists only of a root: height(T) = log
2
(1) = 0.

Step Consider combining two trees T1 and T2 into tree T of size |T1 | + |T2 | = i.

▶ Assume |T1 | ≤ |T2 |: add the root of T1 as a child to the root of T2.

▶ Distance to root increases by one for all nodes in T1.

▶ By IH, height(T1) ≤ log
2
(|T1 |) and height(T2) ≤ log

2
(|T2 |).

height(T) ≤ max(log
2
(|T1 |) + 1, log

2
(|T2 |)).

Case log
2
(|T1 |) + 1 > log

2
(|T2 |) height(T) = log

2
(2|T1 |) ≤ log

2
(|T1 | + |T2 |) = log

2
(|T |).

9/22

Dynamic connectivity: A second attempt

Theorem

The height of a tree T of size |T | built in the above way is height(T) ≤ log
2
(|T |).

Proof

Induction Hypothesis: height(T) ≤ log
2
(|T |) for all trees with |T | < i.

Base case Trees T of size |T | = 1 consists only of a root: height(T) = log
2
(1) = 0.

Step Consider combining two trees T1 and T2 into tree T of size |T1 | + |T2 | = i.

▶ Assume |T1 | ≤ |T2 |: add the root of T1 as a child to the root of T2.

▶ Distance to root increases by one for all nodes in T1.

▶ By IH, height(T1) ≤ log
2
(|T1 |) and height(T2) ≤ log

2
(|T2 |).

height(T) ≤ max(log
2
(|T1 |) + 1, log

2
(|T2 |)) ≤ log

2
(|T |) .

9/22

Dynamic connectivity: A second attempt

Theorem

The height of a tree T of size |T | built in the above way is height(T) ≤ log
2
(|T |).

Proof

Induction Hypothesis: height(T) ≤ log
2
(|T |) for all trees with |T | < i.

Base case Trees T of size |T | = 1 consists only of a root: height(T) = log
2
(1) = 0.

Step Consider combining two trees T1 and T2 into tree T of size |T1 | + |T2 | = i.

▶ Assume |T1 | ≤ |T2 |: add the root of T1 as a child to the root of T2.

▶ Distance to root increases by one for all nodes in T1.

▶ By IH, height(T1) ≤ log
2
(|T1 |) and height(T2) ≤ log

2
(|T2 |).

height(T) ≤ max(log
2
(|T1 |) + 1, log

2
(|T2 |)) ≤ log

2
(|T |) .

▶ What if |T1 | > |T2 |?
Switch T1 and T2 arround in the above.

9/22

Dynamic connectivity: A second attempt

We want to optimize for updating: no updating of an entire array.

The forest representation

We need to find roots fast : costs of checking and updating depends on it!

Finding the root of p: depends on the distance toward the root (the depth of p):

Combining trees T by size: Θ (log
2
(|T |)).

Theorem

The height of a tree T of size |T | built in the above way is height(T) ≤ log
2
(|T |).

10/22

Dynamic connectivity: Conclusion

We briefly looked at three solutions for dynamic connectivity .

Check Update Minimize (worst case)

Simple representation Θ (1) Θ (N) Θ
(
L + N

2
)

Forest representation Θ (N) Θ (N) Θ
(
L + N

2
)

(size-based tree construction) Θ (log(N)) Θ (log(N)) Θ (L log
2
(N))

Suitable combination of data structures and algorithms: efficient dynamic connectivity!

Note: Chapter 1.5 in the book!

11/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

How to find edges (m, n) ∈ E?
▶ Sort all edges on increasing edge weight. → Θ (|E | log(|E |)).
▶ Maintain a dynamic connectivity data structure D

that represents the connected components in (N , E). → Θ (log(|N |))
▶ For each edge (m, n) in sorted order:

check whether they are connected via D. → Θ (log(|N |)) per check.
Complexity . Θ (|E | log(|E |) + |E | log(|N |)).

11/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

How to find edges (m, n) ∈ E?
▶ Sort all edges on increasing edge weight. → Θ (|E | log(|E |)).
▶ Maintain a dynamic connectivity data structure D

that represents the connected components in (N , E). → Θ (log(|N |))
▶ For each edge (m, n) in sorted order:

check whether they are connected via D. → Θ (log(|N |)) per check.
Complexity . Θ (|E | log(|E |) + |E | log(|N |)) = Θ (|E | log(|E |)).

11/22

Kruskal’s Algorithm

AlgorithmMST-Kruskal(G = (N , E), weight):
1: E := ∅.
2: while |E | ≠ |N | − 1 do
3: Find an edge (m, n) ∈ E with minimum edge weight such that

m and n are not yet connected in (N , E).
4: E := E ∪ {(m, n)}.
5: return E .

How to find edges (m, n) ∈ E?
▶ Sort all edges on increasing edge weight. → Θ (|E | log(|E |)).
▶ Maintain a dynamic connectivity data structure D

that represents the connected components in (N , E). → Θ (log(|N |))
▶ For each edge (m, n) in sorted order:

check whether they are connected via D. → Θ (log(|N |)) per check.
Complexity . Θ (|E | log(|E |) + |E | log(|N |)) = Θ (|E | log(|N |)).

12/22

Prim’s Algorithm

AlgorithmMST-HighLevel(G = (N , E), weight):
1: E := ∅.
2: while (N , E) is not a spanning tree do
3: Find an edge (m, n) ∈ E such that E ∪ {(m, n)} is

a subset of the edges of a minimum spanning tree of G.
4: E := E ∪ {(m, n)}.
5: return E .

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

12

7

5

9

r

118

4

3

2

4

1

7

13

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

12

7

5

9

r

118

4

3

2

4

1

7

13

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

12

7

5

9

r

118

4

3

2

4

1

7

13

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

12

7

5

9

r

118

4

3

2

4

1

7

13

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

12

7

5

9

r

118

4

3

2

4

1

7

13

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

12

7

5

9

r

118

4

3

2

4

1

7

13

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

12

7

5

9

r

118

4

3

2

4

1

7

13

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

12

7

5

9

r

118

4

3

2

4

1

7

13

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

12

7

5

9

r

118

4

3

2

4

1

7

13

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

12

7

5

9

r

118

4

3

2

4

1

7

13

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

How to find edges (m, n) ∈ E?

▶ For every node m ∈ M: we can consider all edges (m, n) ∈ E with n ∉ N .

▶ Alternatively : for every node n ∉ M, consider the edges (m, n) ∈ E, m ∈ M.

▶ Refine: for every node n ∉ M, consider the minimal weight edge (m, n) ∈ E, m ∈ M.

We need a data structure to quickly find these minimal-weight edges for nodes m ∉ N !

Idea: a minimum-priority queue Q that holds nodes v with priority

p(Q, v) = min{weight((m, v)) | (m, v) ∈ E,m ∈ M}.

Consider adding a node n to M. We need to update Q for every edge (n,w) ∈ E.

To find the next edge to add: remove nodes n from Q until n ∉ M.

Complexity .

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

How to find edges (m, n) ∈ E?
▶ For every node m ∈ M: we can consider all edges (m, n) ∈ E with n ∉ N .

▶ Alternatively : for every node n ∉ M, consider the edges (m, n) ∈ E, m ∈ M.

▶ Refine: for every node n ∉ M, consider the minimal weight edge (m, n) ∈ E, m ∈ M.

We need a data structure to quickly find these minimal-weight edges for nodes m ∉ N !

Idea: a minimum-priority queue Q that holds nodes v with priority

p(Q, v) = min{weight((m, v)) | (m, v) ∈ E,m ∈ M}.

Consider adding a node n to M. We need to update Q for every edge (n,w) ∈ E.

To find the next edge to add: remove nodes n from Q until n ∉ M.

Complexity .

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

How to find edges (m, n) ∈ E?
▶ For every node m ∈ M: we can consider all edges (m, n) ∈ E with n ∉ N .

▶ Alternatively : for every node n ∉ M, consider the edges (m, n) ∈ E, m ∈ M.

▶ Refine: for every node n ∉ M, consider the minimal weight edge (m, n) ∈ E, m ∈ M.

We need a data structure to quickly find these minimal-weight edges for nodes m ∉ N !

Idea: a minimum-priority queue Q that holds nodes v with priority

p(Q, v) = min{weight((m, v)) | (m, v) ∈ E,m ∈ M}.

Consider adding a node n to M. We need to update Q for every edge (n,w) ∈ E.

To find the next edge to add: remove nodes n from Q until n ∉ M.

Complexity .

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

How to find edges (m, n) ∈ E?
▶ For every node m ∈ M: we can consider all edges (m, n) ∈ E with n ∉ N .

▶ Alternatively : for every node n ∉ M, consider the edges (m, n) ∈ E, m ∈ M.

▶ Refine: for every node n ∉ M, consider the minimal weight edge (m, n) ∈ E, m ∈ M.

We need a data structure to quickly find these minimal-weight edges for nodes m ∉ N !

Idea: a minimum-priority queue Q that holds nodes v with priority

p(Q, v) = min{weight((m, v)) | (m, v) ∈ E,m ∈ M}.

Consider adding a node n to M. We need to update Q for every edge (n,w) ∈ E.

To find the next edge to add: remove nodes n from Q until n ∉ M.

Complexity .

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

How to find edges (m, n) ∈ E?
▶ For every node m ∈ M: we can consider all edges (m, n) ∈ E with n ∉ N .

▶ Alternatively : for every node n ∉ M, consider the edges (m, n) ∈ E, m ∈ M.

▶ Refine: for every node n ∉ M, consider the minimal weight edge (m, n) ∈ E, m ∈ M.

We need a data structure to quickly find these minimal-weight edges for nodes m ∉ N !

Idea: a minimum-priority queue Q that holds nodes v with priority

p(Q, v) = min{weight((m, v)) | (m, v) ∈ E,m ∈ M}.

Consider adding a node n to M. We need to update Q for every edge (n,w) ∈ E.

To find the next edge to add: remove nodes n from Q until n ∉ M.

Complexity .

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

How to find edges (m, n) ∈ E?
We need a data structure to quickly find these minimal-weight edges for nodes m ∉ N !

Idea: a minimum-priority queue Q that holds nodes v with priority

p(Q, v) = min{weight((m, v)) | (m, v) ∈ E,m ∈ M}.

Store the minimal-weight edge (m, v) as additional information with each node v .

Consider adding a node n to M. We need to update Q for every edge (n,w) ∈ E.

To find the next edge to add: remove nodes n from Q until n ∉ M.

Complexity .

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

How to find edges (m, n) ∈ E?
Idea: a minimum-priority queue Q that holds nodes v with priority

p(Q, v) = min{weight((m, v)) | (m, v) ∈ E,m ∈ M}.

Consider adding a node n to M. We need to update Q for every edge (n,w) ∈ E.

To find the next edge to add: remove nodes n from Q until n ∉ M.

Complexity .

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

How to find edges (m, n) ∈ E?
Idea: a minimum-priority queue Q that holds nodes v with priority

p(Q, v) = min{weight((m, v)) | (m, v) ∈ E,m ∈ M}.

Consider adding a node n to M. We need to update Q for every edge (n,w) ∈ E.
▶ If w ∉ Q: add w with weight weight((n,w)).

→ Θ (log(|N |)) per edge.

To find the next edge to add: remove nodes n from Q until n ∉ M.

Complexity .

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

How to find edges (m, n) ∈ E?
Idea: a minimum-priority queue Q that holds nodes v with priority

p(Q, v) = min{weight((m, v)) | (m, v) ∈ E,m ∈ M}.

Consider adding a node n to M. We need to update Q for every edge (n,w) ∈ E.
▶ If w ∉ Q: add w with weight weight((n,w)). → Θ (log(|N |)) per edge.

To find the next edge to add: remove nodes n from Q until n ∉ M.

Complexity .

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

How to find edges (m, n) ∈ E?
Idea: a minimum-priority queue Q that holds nodes v with priority

p(Q, v) = min{weight((m, v)) | (m, v) ∈ E,m ∈ M}.

Consider adding a node n to M. We need to update Q for every edge (n,w) ∈ E.
▶ If w ∈ Q and weight((n,w)) < p(Q,w): lower p(Q,w) to weight((n,w)).

To find the next edge to add: remove nodes n from Q until n ∉ M.

Complexity .

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

How to find edges (m, n) ∈ E?
Idea: a minimum-priority queue Q that holds nodes v with priority

p(Q, v) = min{weight((m, v)) | (m, v) ∈ E,m ∈ M}.

Consider adding a node n to M. We need to update Q for every edge (n,w) ∈ E.
▶ If w ∈ Q and weight((n,w)) < p(Q,w): lower p(Q,w) to weight((n,w)).

If Q is a min-heap: lowering p(Q,w) is a swim operation after we find w ∈ Q.

To find the next edge to add: remove nodes n from Q until n ∉ M.

Complexity .

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

How to find edges (m, n) ∈ E?
Idea: a minimum-priority queue Q that holds nodes v with priority

p(Q, v) = min{weight((m, v)) | (m, v) ∈ E,m ∈ M}.

Consider adding a node n to M. We need to update Q for every edge (n,w) ∈ E.
▶ If w ∈ Q and weight((n,w)) < p(Q,w): lower p(Q,w) to weight((n,w)).

If Q is a min-heap: lowering p(Q,w) is a swim operation after we find w ∈ Q.

To find w ∈ Q: keep track of the position of every node in Q via an array.

To find the next edge to add: remove nodes n from Q until n ∉ M.

Complexity .

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

How to find edges (m, n) ∈ E?
Idea: a minimum-priority queue Q that holds nodes v with priority

p(Q, v) = min{weight((m, v)) | (m, v) ∈ E,m ∈ M}.

Consider adding a node n to M. We need to update Q for every edge (n,w) ∈ E.
▶ If w ∈ Q and weight((n,w)) < p(Q,w): lower p(Q,w) to weight((n,w)).

→ Θ (log(|N |)) per edge.

To find the next edge to add: remove nodes n from Q until n ∉ M.

Complexity .

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

How to find edges (m, n) ∈ E?
Idea: a minimum-priority queue Q that holds nodes v with priority

p(Q, v) = min{weight((m, v)) | (m, v) ∈ E,m ∈ M}.

Consider adding a node n to M. We need to update Q for every edge (n,w) ∈ E.
→ Θ (log(|N |)) per edge.

To find the next edge to add: remove nodes n from Q until n ∉ M.

Complexity .

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

How to find edges (m, n) ∈ E?
Idea: a minimum-priority queue Q that holds nodes v with priority

p(Q, v) = min{weight((m, v)) | (m, v) ∈ E,m ∈ M}.

Consider adding a node n to M. We need to update Q for every edge (n,w) ∈ E.
→ Θ (log(|N |)) per edge.

To find the next edge to add: remove nodes n from Q until n ∉ M.

Complexity .

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

How to find edges (m, n) ∈ E?
Idea: a minimum-priority queue Q that holds nodes v with priority

p(Q, v) = min{weight((m, v)) | (m, v) ∈ E,m ∈ M}.

Consider adding a node n to M. We need to update Q for every edge (n,w) ∈ E.
→ Θ (log(|N |)) per edge.

To find the next edge to add: remove nodes n from Q until n ∉ M.

Complexity .

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

How to find edges (m, n) ∈ E?
Idea: a minimum-priority queue Q that holds nodes v with priority

p(Q, v) = min{weight((m, v)) | (m, v) ∈ E,m ∈ M}.

Consider adding a node n to M. We need to update Q for every edge (n,w) ∈ E.
→ Θ (log(|N |)) per edge.

To find the next edge to add: remove nodes n from Q until n ∉ M.

Complexity . Θ (|E | log(|N |)).

12/22

Prim’s Algorithm

AlgorithmMST-Prim(G = (N , E), weight):
1: E,M := ∅, r with r a node from N .

2: while M ≠ N do
3: Find the lowest-weight edge (m, n) ∈ E with m ∈ M and n ∉ M.

4: E,M := E ∪ {(m, n)},M ∪ {n}.
5: return E .

How to find edges (m, n) ∈ E?
Idea: a minimum-priority queue Q that holds nodes v with priority

p(Q, v) = min{weight((m, v)) | (m, v) ∈ E,m ∈ M}.

Consider adding a node n to M. We need to update Q for every edge (n,w) ∈ E.Fibonacci
Heap: Θ (log(|N |)) to add or remove a value, amortized Θ (1) to lower a weight.
To find the next edge to add: remove nodes n from Q until n ∉ M.

Complexity . Θ (|N | log(|N |) + |E|).

13/22

Problem: Directions

Problem

Consider a weighted directed graph G = (N , E) in which

▶ the nodes N represent road crossings;

▶ the edges E are the roads connecting these crossings; and

▶ the weights weight((m, n)) represent the cost to travel along the road (m, n)
(e.g., length of the road, duration of traveling along the road, fuel costs, . . .).

Provide the shortest route from crossing A to crossing B.

Definition

Let G = (N , E) be a directed graph with edge weights weight.

A shortest path from A ∈ N to B ∈ N is a directed path from A to B in which the sum of

edge weights is minimal (no other path from A to B has a lower sum of edge weights).

Reminder breadth-first search answers the

single-source shortest path problem on unweighted graphs.

13/22

Problem: Directions

Problem

Consider a weighted directed graph G = (N , E) in which

▶ the nodes N represent road crossings;

▶ the edges E are the roads connecting these crossings; and

▶ the weights weight((m, n)) represent the cost to travel along the road (m, n)
(e.g., length of the road, duration of traveling along the road, fuel costs, . . .).

Provide the shortest route from crossing A to crossing B.

Shortest in terms of the provided weight:

No other path from A and B should have a lower sum of edge weights.

Definition

Let G = (N , E) be a directed graph with edge weights weight.

A shortest path from A ∈ N to B ∈ N is a directed path from A to B in which the sum of

edge weights is minimal (no other path from A to B has a lower sum of edge weights).

Reminder breadth-first search answers the

single-source shortest path problem on unweighted graphs.

13/22

Problem: Directions

Problem

Consider a weighted directed graph G = (N , E) in which

▶ the nodes N represent road crossings;

▶ the edges E are the roads connecting these crossings; and

▶ the weights weight((m, n)) represent the cost to travel along the road (m, n)
(e.g., length of the road, duration of traveling along the road, fuel costs, . . .).

Provide the shortest route from crossing A to crossing B.

Definition

Let G = (N , E) be a directed graph with edge weights weight.

A shortest path from A ∈ N to B ∈ N is a directed path from A to B in which the sum of

edge weights is minimal (no other path from A to B has a lower sum of edge weights).

Reminder breadth-first search answers the

single-source shortest path problem on unweighted graphs.

13/22

Problem: Directions

Definition

Let G = (N , E) be a directed graph with edge weights weight.

A shortest path from A ∈ N to B ∈ N is a directed path from A to B in which the sum of

edge weights is minimal (no other path from A to B has a lower sum of edge weights).

12

7

5

9

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

An2n7n0B→35

An0B→20

An8n1n5B→15

An8n1n5n6B→14

Reminder breadth-first search answers the

single-source shortest path problem on unweighted graphs.

13/22

Problem: Directions

Definition

Let G = (N , E) be a directed graph with edge weights weight.

A shortest path from A ∈ N to B ∈ N is a directed path from A to B in which the sum of

edge weights is minimal (no other path from A to B has a lower sum of edge weights).

12

7

5

9

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

An2n7n0B→35

An0B→20

An8n1n5B→15

An8n1n5n6B→14

Reminder breadth-first search answers the

single-source shortest path problem on unweighted graphs.

13/22

Problem: Directions

Definition

Let G = (N , E) be a directed graph with edge weights weight.

A shortest path from A ∈ N to B ∈ N is a directed path from A to B in which the sum of

edge weights is minimal (no other path from A to B has a lower sum of edge weights).

12

7

5

9

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

An2n7n0B→35

An0B→20

An8n1n5B→15

An8n1n5n6B→14

Reminder breadth-first search answers the

single-source shortest path problem on unweighted graphs.

13/22

Problem: Directions

Definition

Let G = (N , E) be a directed graph with edge weights weight.

A shortest path from A ∈ N to B ∈ N is a directed path from A to B in which the sum of

edge weights is minimal (no other path from A to B has a lower sum of edge weights).

12

7

5

9

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

An2n7n0B→35

An0B→20

An8n1n5B→15

An8n1n5n6B→14

Reminder breadth-first search answers the

single-source shortest path problem on unweighted graphs.

13/22

Problem: Directions

Definition

Let G = (N , E) be a directed graph with edge weights weight.

A shortest path from A ∈ N to B ∈ N is a directed path from A to B in which the sum of

edge weights is minimal (no other path from A to B has a lower sum of edge weights).

12

7

5

9

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

An2n7n0B→35

An0B→20

An8n1n5B→15

An8n1n5n6B→14

Reminder breadth-first search answers the

single-source shortest path problem on unweighted graphs.

13/22

Problem: Directions

Definition

Let G = (N , E) be a directed graph with edge weights weight.

A shortest path from A ∈ N to B ∈ N is a directed path from A to B in which the sum of

edge weights is minimal (no other path from A to B has a lower sum of edge weights).

The single-source shortest path problem

Given a directed edge-weighted graph G = (N , E) and source node s ∈ N ,

find a shortest path (if any) from s to every target node t ∈ N .

The all-pairs shortest path problem

Given a directed edge-weighted graph G = (N , E) and source node s ∈ N ,

find a shortest path (if any) between every pair of source and target nodes (s, t) ∈ N × N .

Reminder breadth-first search answers the

single-source shortest path problem on unweighted graphs.

13/22

Problem: Directions

Definition

Let G = (N , E) be a directed graph with edge weights weight.

A shortest path from A ∈ N to B ∈ N is a directed path from A to B in which the sum of

edge weights is minimal (no other path from A to B has a lower sum of edge weights).

The single-source shortest path problem

Given a directed edge-weighted graph G = (N , E) and source node s ∈ N ,

find a shortest path (if any) from s to every target node t ∈ N .

The all-pairs shortest path problem

Given a directed edge-weighted graph G = (N , E) and source node s ∈ N ,

find a shortest path (if any) between every pair of source and target nodes (s, t) ∈ N × N .

Reminder breadth-first search answers the

single-source shortest path problem on unweighted graphs.

13/22

Problem: Directions

Definition

Let G = (N , E) be a directed graph with edge weights weight.

A shortest path from A ∈ N to B ∈ N is a directed path from A to B in which the sum of

edge weights is minimal (no other path from A to B has a lower sum of edge weights).

The single-source shortest path problem

Given a directed edge-weighted graph G = (N , E) and source node s ∈ N ,

find a shortest path (if any) from s to every target node t ∈ N .

The all-pairs shortest path problem

Given a directed edge-weighted graph G = (N , E) and source node s ∈ N ,

find a shortest path (if any) between every pair of source and target nodes (s, t) ∈ N × N .

Reminder breadth-first search answers the

single-source shortest path problem on unweighted graphs.

14/22

Shortest paths

What is the shortest path from A to B in this graph?

12

7

5

9

A

5

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

There are two options with total weight 14

An8n1n5n6B and An0B.

Shortest path algorithms internally choose one of these options.

14/22

Shortest paths

What is the shortest path from A to B in this graph?

12

7

5

9

A

5

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

There are two options with total weight 14

An8n1n5n6B and An0B.

Shortest path algorithms internally choose one of these options.

14/22

Shortest paths

What is the shortest path from A to B in this graph?

12

7

5

9

A

5

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

There are two options with total weight 14

An8n1n5n6B and An0B.

Shortest path algorithms internally choose one of these options.

15/22

Shortest paths and negative weights

What is the shortest path from A to B in this graph?

12

-15

5

-21

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

▶ For any path: adding steps An2n7n0A reduces the weight of that path by 19!

▶ The “shortest path” has infinite length and infinitely negative weight?

▶ Solution? Require a simple path (without repeating nodes).

Determining whether a solution of cost k exists is an NP-complete problem: no

practical algorithms known.

Solution. Either disallow negative edge weights or negative-weight cycles.

15/22

Shortest paths and negative weights

What is the shortest path from A to B in this graph?

12

-15

5

-21

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

▶ For any path: adding steps An2n7n0A reduces the weight of that path by 19!

▶ The “shortest path” has infinite length and infinitely negative weight?

▶ Solution? Require a simple path (without repeating nodes).

Determining whether a solution of cost k exists is an NP-complete problem: no

practical algorithms known.

Solution. Either disallow negative edge weights or negative-weight cycles.

15/22

Shortest paths and negative weights

What is the shortest path from A to B in this graph?

12

-15

5

-21

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

▶ For any path: adding steps An2n7n0A reduces the weight of that path by 19!

▶ The “shortest path” has infinite length and infinitely negative weight?

▶ Solution? Require a simple path (without repeating nodes).

Determining whether a solution of cost k exists is an NP-complete problem: no

practical algorithms known.

Solution. Either disallow negative edge weights or negative-weight cycles.

15/22

Shortest paths and negative weights

What is the shortest path from A to B in this graph?

12

-15

5

-21

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

▶ For any path: adding steps An2n7n0A reduces the weight of that path by 19!

▶ The “shortest path” has infinite length and infinitely negative weight?

▶ Solution? Require a simple path (without repeating nodes).

Determining whether a solution of cost k exists is an NP-complete problem: no

practical algorithms known.

Solution. Either disallow negative edge weights or negative-weight cycles.

15/22

Shortest paths and negative weights

What is the shortest path from A to B in this graph?

12

-15

5

-21

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

▶ For any path: adding steps An2n7n0A reduces the weight of that path by 19!

▶ The “shortest path” has infinite length and infinitely negative weight?

▶ Solution? Require a simple path (without repeating nodes).

Determining whether a solution of cost k exists is an NP-complete problem: no

practical algorithms known.

Solution. Either disallow negative edge weights or negative-weight cycles.

15/22

Shortest paths and negative weights

What is the shortest path from A to B in this graph?

12

-15

5

-21

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

▶ For any path: adding steps An2n7n0A reduces the weight of that path by 19!

▶ The “shortest path” has infinite length and infinitely negative weight?

▶ Solution? Require a simple path (without repeating nodes).

Determining whether a solution of cost k exists is an NP-complete problem: no

practical algorithms known.

Solution. Either disallow negative edge weights or negative-weight cycles.

16/22

Representing the shortest paths from a source node

Consider the single-source shortest paths from A

▶ We have already seen that An8n1n5n6B is the shortest path from A to B.

▶ The paths An8n1n5n6, An8n1n5, An8n1, and An8 are also shortest paths!

Can we represent all shortest paths from A without enumerating all of them?

▶ the last edge (from node n6 to node B); and

▶ the shortest path from A to node n6.

12

7

5

9

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

n0:

A 9

n1: n8

5

n2:

A 5

A: A

0

n4:

n0 22

n5: n1

7

n6: n5

10

n7:

n2 12

n8: A

1

B: n6

14

16/22

Representing the shortest paths from a source node

Consider the single-source shortest paths from A

▶ We have already seen that An8n1n5n6B is the shortest path from A to B.

▶ The paths An8n1n5n6, An8n1n5, An8n1, and An8 are also shortest paths!

Can we represent all shortest paths from A without enumerating all of them?

▶ the last edge (from node n6 to node B); and

▶ the shortest path from A to node n6.

12

7

5

9

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

n0:

A 9

n1: n8

5

n2:

A 5

A: A

0

n4:

n0 22

n5: n1

7

n6: n5

10

n7:

n2 12

n8: A

1

B: n6

14

16/22

Representing the shortest paths from a source node

Consider the single-source shortest paths from A

▶ We have already seen that An8n1n5n6B is the shortest path from A to B.

▶ The paths An8n1n5n6, An8n1n5, An8n1, and An8 are also shortest paths!

Can we represent all shortest paths from A without enumerating all of them?

▶ the last edge (from node n6 to node B); and

▶ the shortest path from A to node n6.

12

7

5

9

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

n0:

A 9

n1: n8

5

n2:

A 5

A: A

0

n4:

n0 22

n5: n1

7

n6: n5

10

n7:

n2 12

n8: A

1

B: n6

14

16/22

Representing the shortest paths from a source node

Consider the single-source shortest paths from A

▶ We have already seen that An8n1n5n6B is the shortest path from A to B.

▶ The paths An8n1n5n6, An8n1n5, An8n1, and An8 are also shortest paths!

Can we represent all shortest paths from A without enumerating all of them?

Observation: The shortest path to B consists of two parts:

▶ the last edge (from node n6 to node B); and

▶ the shortest path from A to node n6.

12

7

5

9

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

n0:

A 9

n1: n8

5

n2:

A 5

A: A

0

n4:

n0 22

n5: n1

7

n6: n5

10

n7:

n2 12

n8: A

1

B: n6

14

16/22

Representing the shortest paths from a source node

Consider the single-source shortest paths from A

▶ We have already seen that An8n1n5n6B is the shortest path from A to B.

▶ The paths An8n1n5n6, An8n1n5, An8n1, and An8 are also shortest paths!

Can we represent all shortest paths from A without enumerating all of them?

Idea: Store, for each node, the previous node on the path.

12

7

5

9

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

n0:

A 9

n1: n8

5

n2:

A 5

A: A

0

n4:

n0 22

n5: n1

7

n6: n5

10

n7:

n2 12

n8: A

1

B: n6

14

16/22

Representing the shortest paths from a source node

Consider the single-source shortest paths from A

▶ We have already seen that An8n1n5n6B is the shortest path from A to B.

▶ The paths An8n1n5n6, An8n1n5, An8n1, and An8 are also shortest paths!

Can we represent all shortest paths from A without enumerating all of them?

Idea: Store, for each node, the previous node on the path.

▶ We can use an array to store this information per node.

12

7

5

9

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

n0:

A 9

n1: n8

5

n2:

A 5

A: A

0

n4:

n0 22

n5: n1

7

n6: n5

10

n7:

n2 12

n8: A

1

B: n6

14

16/22

Representing the shortest paths from a source node

Consider the single-source shortest paths from A

▶ We have already seen that An8n1n5n6B is the shortest path from A to B.

▶ The paths An8n1n5n6, An8n1n5, An8n1, and An8 are also shortest paths!

Can we represent all shortest paths from A without enumerating all of them?

Idea: Store, for each node, the previous node on the path.

▶ We can use an array to store this information per node.

12

7

5

9

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

n0: A

9

n1: n8

5

n2: A

5

A: A

0

n4:

n0 22

n5: n1

7

n6: n5

10

n7:

n2 12

n8: A

1

B: n6

14

16/22

Representing the shortest paths from a source node

Consider the single-source shortest paths from A

▶ We have already seen that An8n1n5n6B is the shortest path from A to B.

▶ The paths An8n1n5n6, An8n1n5, An8n1, and An8 are also shortest paths!

Can we represent all shortest paths from A without enumerating all of them?

Idea: Store, for each node, the previous node on the path.

▶ We can use an array to store this information per node.

12

7

5

9

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

n0: A

9

n1: n8

5

n2: A

5

A: A

0

n4: n0

22

n5: n1

7

n6: n5

10

n7: n2

12

n8: A

1

B: n6

14

16/22

Representing the shortest paths from a source node

Consider the single-source shortest paths from A

▶ We have already seen that An8n1n5n6B is the shortest path from A to B.

▶ The paths An8n1n5n6, An8n1n5, An8n1, and An8 are also shortest paths!

Can we represent all shortest paths from A without enumerating all of them?

Idea: Store, for each node, the previous node on the path.

▶ We can use an array to store this information per node.

▶ We can also store the total weight (cost) to reach each node.

12

7

5

9

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

n0: A

9

n1: n8

5

n2: A

5

A: A 0

n4: n0

22

n5: n1

7

n6: n5

10

n7: n2

12

n8: A

1

B: n6

14

16/22

Representing the shortest paths from a source node

Consider the single-source shortest paths from A

▶ We have already seen that An8n1n5n6B is the shortest path from A to B.

▶ The paths An8n1n5n6, An8n1n5, An8n1, and An8 are also shortest paths!

Can we represent all shortest paths from A without enumerating all of them?

Idea: Store, for each node, the previous node on the path.

▶ We can use an array to store this information per node.

▶ We can also store the total weight (cost) to reach each node.

12

7

5

9

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

n0: A 9

n1: n8

5

n2: A 5

A: A 0

n4: n0

22

n5: n1

7

n6: n5

10

n7: n2

12

n8: A 1

B: n6

14

16/22

Representing the shortest paths from a source node

Consider the single-source shortest paths from A

▶ We have already seen that An8n1n5n6B is the shortest path from A to B.

▶ The paths An8n1n5n6, An8n1n5, An8n1, and An8 are also shortest paths!

Can we represent all shortest paths from A without enumerating all of them?

Idea: Store, for each node, the previous node on the path.

▶ We can use an array to store this information per node.

▶ We can also store the total weight (cost) to reach each node.

12

7

5

9

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

n0: A 9

n1: n8 5

n2: A 5

A: A 0

n4: n0 22

n5: n1

7

n6: n5

10

n7: n2 12

n8: A 1

B: n6

14

16/22

Representing the shortest paths from a source node

Consider the single-source shortest paths from A

▶ We have already seen that An8n1n5n6B is the shortest path from A to B.

▶ The paths An8n1n5n6, An8n1n5, An8n1, and An8 are also shortest paths!

Can we represent all shortest paths from A without enumerating all of them?

Idea: Store, for each node, the previous node on the path.

▶ We can use an array to store this information per node.

▶ We can also store the total weight (cost) to reach each node.

12

7

5

9

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

n0: A 9

n1: n8 5

n2: A 5

A: A 0

n4: n0 22

n5: n1 7

n6: n5

10

n7: n2 12

n8: A 1

B: n6

14

16/22

Representing the shortest paths from a source node

Consider the single-source shortest paths from A

▶ We have already seen that An8n1n5n6B is the shortest path from A to B.

▶ The paths An8n1n5n6, An8n1n5, An8n1, and An8 are also shortest paths!

Can we represent all shortest paths from A without enumerating all of them?

Idea: Store, for each node, the previous node on the path.

▶ We can use an array to store this information per node.

▶ We can also store the total weight (cost) to reach each node.

12

7

5

9

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

n0: A 9

n1: n8 5

n2: A 5

A: A 0

n4: n0 22

n5: n1 7

n6: n5 10

n7: n2 12

n8: A 1

B: n6

14

16/22

Representing the shortest paths from a source node

Consider the single-source shortest paths from A

▶ We have already seen that An8n1n5n6B is the shortest path from A to B.

▶ The paths An8n1n5n6, An8n1n5, An8n1, and An8 are also shortest paths!

Can we represent all shortest paths from A without enumerating all of them?

Idea: Store, for each node, the previous node on the path.

▶ We can use an array to store this information per node.

▶ We can also store the total weight (cost) to reach each node.

12

7

5

9

A

11

B

8

4

3

2

4

1

7

13

n0

n7

n2

n5

n6

n1

n8

n4

n0: A 9

n1: n8 5

n2: A 5

A: A 0

n4: n0 22

n5: n1 7

n6: n5 10

n7: n2 12

n8: A 1

B: n6 14

16/22

Representing the shortest paths from a source node

Consider the single-source shortest paths from A

▶ We have already seen that An8n1n5n6B is the shortest path from A to B.

▶ The paths An8n1n5n6, An8n1n5, An8n1, and An8 are also shortest paths!

Can we represent all shortest paths from A without enumerating all of them?

Idea: Store, for each node, the previous node on the path.

▶ We can use an array to store this information per node.

▶ We can also store the total weight (cost) to reach each node.

Generalization to the all-pairs shortest path problem

A |N | × |N | matrix representing one such array per node.

17/22

A single-source shortest path algorithm

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: ? ∞
n1: ? ∞
n2: ? ∞
A: ? ∞
n4: ? ∞
n5: ? ∞
n6: ? ∞
n7: ? ∞
n8: ? ∞
n9: ? ∞

17/22

A single-source shortest path algorithm

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: ? ∞
n1: ? ∞
n2: ? ∞
A: ? ∞
n4: ? ∞
n5: ? ∞
n6: ? ∞
n7: ? ∞
n8: ? ∞
n9: ? ∞

17/22

A single-source shortest path algorithm

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: ? ∞
n1: ? ∞
n2: ? ∞
A: A 0

n4: ? ∞
n5: ? ∞
n6: ? ∞
n7: ? ∞
n8: ? ∞
n9: ? ∞

17/22

A single-source shortest path algorithm

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: ? ∞
n1: ? ∞
n2: ? ∞
A: A 0

n4: ? ∞
n5: ? ∞
n6: ? ∞
n7: ? ∞
n8: ? ∞
n9: ? ∞

17/22

A single-source shortest path algorithm

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: ? ∞
n1: ? ∞
n2: A 5

A: A 0

n4: ? ∞
n5: ? ∞
n6: ? ∞
n7: ? ∞
n8: ? ∞
n9: ? ∞

17/22

A single-source shortest path algorithm

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: ? ∞
n2: A 5

A: A 0

n4: ? ∞
n5: ? ∞
n6: ? ∞
n7: ? ∞
n8: ? ∞
n9: ? ∞

17/22

A single-source shortest path algorithm

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: ? ∞
n2: A 5

A: A 0

n4: ? ∞
n5: ? ∞
n6: ? ∞
n7: ? ∞
n8: ? ∞
n9: n0 20

17/22

A single-source shortest path algorithm

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: ? ∞
n2: A 5

A: A 0

n4: ? ∞
n5: ? ∞
n6: ? ∞
n7: ? ∞
n8: A 1

n9: n0 20

17/22

A single-source shortest path algorithm

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: ? ∞
n2: A 5

A: A 0

n4: ? ∞
n5: n8 8

n6: ? ∞
n7: ? ∞
n8: A 1

n9: n0 20

17/22

A single-source shortest path algorithm

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: ? ∞
n2: A 5

A: A 0

n4: ? ∞
n5: n8 8

n6: ? ∞
n7: ? ∞
n8: A 1

n9: n5 16

17/22

A single-source shortest path algorithm

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: ? ∞
n2: A 5

A: A 0

n4: ? ∞
n5: n8 8

n6: ? ∞
n7: n0 21

n8: A 1

n9: n5 16

17/22

A single-source shortest path algorithm

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: ? ∞
n2: A 5

A: A 0

n4: ? ∞
n5: n8 8

n6: ? ∞
n7: n2 12

n8: A 1

n9: n5 16

17/22

A single-source shortest path algorithm

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: ? ∞
n2: A 5

A: A 0

n4: n0 22

n5: n8 8

n6: ? ∞
n7: n2 12

n8: A 1

n9: n5 16

17/22

A single-source shortest path algorithm

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: n8 5

n2: A 5

A: A 0

n4: n0 22

n5: n8 8

n6: ? ∞
n7: n2 12

n8: A 1

n9: n5 16

17/22

A single-source shortest path algorithm

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: n8 5

n2: A 5

A: A 0

n4: n0 22

n5: n1 7

n6: ? ∞
n7: n2 12

n8: A 1

n9: n5 16

17/22

A single-source shortest path algorithm

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: n8 5

n2: A 5

A: A 0

n4: n0 22

n5: n1 7

n6: n5 10

n7: n2 12

n8: A 1

n9: n5 16

17/22

A single-source shortest path algorithm

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: n8 5

n2: A 5

A: A 0

n4: n0 22

n5: n1 7

n6: n5 10

n7: n2 12

n8: A 1

n9: n6 14

17/22

A single-source shortest path algorithm

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: n8 5

n2: A 5

A: A 0

n4: n0 22

n5: n1 7

n6: n5 10

n7: n2 12

n8: A 1

n9: n5 16

17/22

A single-source shortest path algorithm

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

Theorem

Algorithm SSSP-HighLevel is correct.

17/22

A single-source shortest path algorithm

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

Theorem

Let cost be the cost of the paths from s represented by path.

We say that (m, n) ∈ E is eligible if cost [m] + weight((m, n)) < cost [n].
The values in cost are the costs of the shortest paths from s if no edges are eligible.

17/22

A single-source shortest path algorithm

Theorem

Let cost be the cost of the paths from s represented by path.

We say that (m, n) ∈ E is eligible if cost [m] + weight((m, n)) < cost [n].
The values in cost are the costs of the shortest paths from s if no edges are eligible.

Observation

If there is an eligible edge (m, n), then we have certainly not found all shortest paths!

17/22

A single-source shortest path algorithm

Theorem

Let cost be the cost of the paths from s represented by path.

We say that (m, n) ∈ E is eligible if cost [m] + weight((m, n)) < cost [n].
The values in cost are the costs of the shortest paths from s if no edges are eligible.

Proof

Assume no edges are eligible and that there is a shortest path sn1 . . . nit .

We have to prove cost [t] = weight((s, n1)) + weight((n1, n2)) + · · · + weight((ni, t)).

We have

cost [t] ≤ weight((s, n1)) + · · · + weight((ni−1, ni)) + weight((ni, t)).

As cost [t] is the cost of a path from s to t and sn1 . . . nit is the shortest path, we also have:

weight((s, n1)) + · · · + weight((ni−1, ni)) + weight((ni, t)) ≤ cost [t] .

17/22

A single-source shortest path algorithm

Theorem

Let cost be the cost of the paths from s represented by path.

We say that (m, n) ∈ E is eligible if cost [m] + weight((m, n)) < cost [n].
The values in cost are the costs of the shortest paths from s if no edges are eligible.

Proof

Assume no edges are eligible and that there is a shortest path sn1 . . . nit .

We have to prove cost [t] = weight((s, n1)) + weight((n1, n2)) + · · · + weight((ni, t)).
We have

cost [t] ≤ cost [ni] + weight((ni, t))

≤ cost [ni−1] + weight((ni−1, ni)) + weight((ni, t))
≤ weight((s, n1)) + · · · + weight((ni−1, ni)) + weight((ni, t)).

cost [t] ≤ weight((s, n1)) + · · · + weight((ni−1, ni)) + weight((ni, t)).

As cost [t] is the cost of a path from s to t and sn1 . . . nit is the shortest path, we also have:

weight((s, n1)) + · · · + weight((ni−1, ni)) + weight((ni, t)) ≤ cost [t] .

17/22

A single-source shortest path algorithm

Theorem

Let cost be the cost of the paths from s represented by path.

We say that (m, n) ∈ E is eligible if cost [m] + weight((m, n)) < cost [n].
The values in cost are the costs of the shortest paths from s if no edges are eligible.

Proof

Assume no edges are eligible and that there is a shortest path sn1 . . . nit .

We have to prove cost [t] = weight((s, n1)) + weight((n1, n2)) + · · · + weight((ni, t)).
We have

cost [t] ≤ cost [ni] + weight((ni, t))

≤ cost [ni−1] + weight((ni−1, ni)) + weight((ni, t))
≤ weight((s, n1)) + · · · + weight((ni−1, ni)) + weight((ni, t)).

cost [t] ≤ weight((s, n1)) + · · · + weight((ni−1, ni)) + weight((ni, t)).

As cost [t] is the cost of a path from s to t and sn1 . . . nit is the shortest path, we also have:

weight((s, n1)) + · · · + weight((ni−1, ni)) + weight((ni, t)) ≤ cost [t] .

17/22

A single-source shortest path algorithm

Theorem

Let cost be the cost of the paths from s represented by path.

We say that (m, n) ∈ E is eligible if cost [m] + weight((m, n)) < cost [n].
The values in cost are the costs of the shortest paths from s if no edges are eligible.

Proof

Assume no edges are eligible and that there is a shortest path sn1 . . . nit .

We have to prove cost [t] = weight((s, n1)) + weight((n1, n2)) + · · · + weight((ni, t)).
We have

cost [t] ≤ cost [ni] + weight((ni, t))
≤ cost [ni−1] + weight((ni−1, ni)) + weight((ni, t))

≤ weight((s, n1)) + · · · + weight((ni−1, ni)) + weight((ni, t)).

cost [t] ≤ weight((s, n1)) + · · · + weight((ni−1, ni)) + weight((ni, t)).

As cost [t] is the cost of a path from s to t and sn1 . . . nit is the shortest path, we also have:

weight((s, n1)) + · · · + weight((ni−1, ni)) + weight((ni, t)) ≤ cost [t] .

17/22

A single-source shortest path algorithm

Theorem

Let cost be the cost of the paths from s represented by path.

We say that (m, n) ∈ E is eligible if cost [m] + weight((m, n)) < cost [n].
The values in cost are the costs of the shortest paths from s if no edges are eligible.

Proof

Assume no edges are eligible and that there is a shortest path sn1 . . . nit .

We have to prove cost [t] = weight((s, n1)) + weight((n1, n2)) + · · · + weight((ni, t)).
We have

cost [t] ≤ cost [ni] + weight((ni, t))
≤ cost [ni−1] + weight((ni−1, ni)) + weight((ni, t))
≤ weight((s, n1)) + · · · + weight((ni−1, ni)) + weight((ni, t)).

cost [t] ≤ weight((s, n1)) + · · · + weight((ni−1, ni)) + weight((ni, t)).

As cost [t] is the cost of a path from s to t and sn1 . . . nit is the shortest path, we also have:

weight((s, n1)) + · · · + weight((ni−1, ni)) + weight((ni, t)) ≤ cost [t] .

17/22

A single-source shortest path algorithm

Theorem

Let cost be the cost of the paths from s represented by path.

We say that (m, n) ∈ E is eligible if cost [m] + weight((m, n)) < cost [n].
The values in cost are the costs of the shortest paths from s if no edges are eligible.

Proof

Assume no edges are eligible and that there is a shortest path sn1 . . . nit .

We have to prove cost [t] = weight((s, n1)) + weight((n1, n2)) + · · · + weight((ni, t)).
We have

cost [t] ≤ weight((s, n1)) + · · · + weight((ni−1, ni)) + weight((ni, t)).

As cost [t] is the cost of a path from s to t and sn1 . . . nit is the shortest path, we also have:

weight((s, n1)) + · · · + weight((ni−1, ni)) + weight((ni, t)) ≤ cost [t] .

17/22

A single-source shortest path algorithm

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

How to find eligible edges (m, n) ∈ E?
Efficient shortest path algorithms depend on a good method to explorer eligible edges:

e.g., we want to prevent revisiting the same edge multiple times.

18/22

Dijkstra’s shortest-path algorithm

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

Algorithm SSSP-Dijkstra(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all nodes m on increasing shortest-path distance to s do
4: for all edges (m, n) ∈ E do
5: if cost [m] + weight((m, n)) < cost [n] then
6: path[n], cost [n] := m,weight((m, n)) + cost [m].
7: return path, cost .

18/22

Dijkstra’s shortest-path algorithm

We disallow negative edge weights.

Idea

Use a priority queue to process nodes in increasing best-known distance to s.

Algorithm SSSP-Dijkstra(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all nodes m on increasing shortest-path distance to s do
4: for all edges (m, n) ∈ E do
5: if cost [m] + weight((m, n)) < cost [n] then
6: path[n], cost [n] := m,weight((m, n)) + cost [m].
7: return path, cost .

18/22

Dijkstra’s shortest-path algorithm

We disallow negative edge weights.

Idea

Use a priority queue to process nodes in increasing best-known distance to s.

Algorithm SSSP-Dijkstra(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: Q := a minimum-priority queue that holds node s with priority 0.

4: while Q ≠ ∅ do
5: Remove node m with lowest priority from Q.

6: for all edges (m, n) ∈ E do
7: if cost [m] + weight((m, n)) < cost [n] then
8: path[n], cost [n] := m,weight((m, n)) + cost [m].
9: Update n in Q such that n has priority cost [n] in Q.

10: return path, cost .

18/22

Dijkstra’s shortest-path algorithm

Q := {(A : 0)}.

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: ? ∞
n1: ? ∞
n2: ? ∞
A: A 0

n4: ? ∞
n5: ? ∞
n6: ? ∞
n7: ? ∞
n8: ? ∞
n9: ? ∞

18/22

Dijkstra’s shortest-path algorithm

Q := {(n8 : 1), (n2 : 5), (n0 : 9)}.

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: ? ∞
n2: A 5

A: A 0

n4: ? ∞
n5: ? ∞
n6: ? ∞
n7: ? ∞
n8: A 1

n9: ? ∞

18/22

Dijkstra’s shortest-path algorithm

Q := {(n1 : 5), (n2 : 5), (n5 : 8), (n0 : 9)}.

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: n8 5

n2: A 5

A: A 0

n4: ? ∞
n5: n8 8

n6: ? ∞
n7: ? ∞
n8: A 1

n9: ? ∞

18/22

Dijkstra’s shortest-path algorithm

Q := {(n2 : 5), (n5 : 7), (n0 : 9)}.

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: n8 5

n2: A 5

A: A 0

n4: ? ∞
n5: n1 7

n6: ? ∞
n7: ? ∞
n8: A 1

n9: ? ∞

18/22

Dijkstra’s shortest-path algorithm

Q := {(n5 : 7), (n0 : 9), (n7 : 12)}.

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: n8 5

n2: A 5

A: A 0

n4: ? ∞
n5: n1 7

n6: ? ∞
n7: n2 12

n8: A 1

n9: ? ∞

18/22

Dijkstra’s shortest-path algorithm

Q := {(n0 : 9), (n6 : 10), (n7 : 12), (n9 : 15)}.

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: n8 5

n2: A 5

A: A 0

n4: ? ∞
n5: n1 7

n6: n5 10

n7: n2 12

n8: A 1

n9: n5 15

18/22

Dijkstra’s shortest-path algorithm

Q := {(n6 : 10), (n7 : 12), (n9 : 15), (n4 : 22)}.

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: n8 5

n2: A 5

A: A 0

n4: n0 22

n5: n1 7

n6: n5 10

n7: n2 12

n8: A 1

n9: n5 15

18/22

Dijkstra’s shortest-path algorithm

Q := {(n7 : 12), (n9 : 14), (n4 : 22)}.

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: n8 5

n2: A 5

A: A 0

n4: n0 22

n5: n1 7

n6: n5 10

n7: n2 12

n8: A 1

n9: n6 14

18/22

Dijkstra’s shortest-path algorithm

Q := {(n9 : 15), (n4 : 22)}.

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: n8 5

n2: A 5

A: A 0

n4: n0 22

n5: n1 7

n6: n5 10

n7: n2 12

n8: A 1

n9: n6 14

18/22

Dijkstra’s shortest-path algorithm

Q := {(n4 : 22)}.

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: n8 5

n2: A 5

A: A 0

n4: n0 22

n5: n1 7

n6: n5 10

n7: n2 12

n8: A 1

n9: n6 14

18/22

Dijkstra’s shortest-path algorithm

Q := {}.

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: n8 5

n2: A 5

A: A 0

n4: n0 22

n5: n1 7

n6: n5 10

n7: n2 12

n8: A 1

n9: n6 14

18/22

Dijkstra’s shortest-path algorithm

Algorithm SSSP-Dijkstra(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: Q := a minimum-priority queue that holds node s with priority 0.

4: while Q ≠ ∅ do
5: Remove node m with lowest priority from Q.

6: for all edges (m, n) ∈ E do
7: if cost [m] + weight((m, n)) < cost [n] then
8: path[n], cost [n] := m,weight((m, n)) + cost [m].
9: Update n in Q such that n has priority cost [n] in Q.

10: return path, cost .

Complexity: Manage Q in the same way as in Prim’s Algorithm.

▶ Θ (|E | log(|N |)).
▶ Θ (|N | log(|N |) + |E|) with a Fibonacci Heap.

18/22

Dijkstra’s shortest-path algorithm

Algorithm SSSP-Dijkstra(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: Q := a minimum-priority queue that holds node s with priority 0.

4: while Q ≠ ∅ do
5: Remove node m with lowest priority from Q.

6: for all edges (m, n) ∈ E do
7: if cost [m] + weight((m, n)) < cost [n] then
8: path[n], cost [n] := m,weight((m, n)) + cost [m].
9: Update n in Q such that n has priority cost [n] in Q.

10: return path, cost .

Complexity: Manage Q in the same way as in Prim’s Algorithm.

▶ Θ (|E | log(|N |)).

▶ Θ (|N | log(|N |) + |E|) with a Fibonacci Heap.

18/22

Dijkstra’s shortest-path algorithm

Algorithm SSSP-Dijkstra(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: Q := a minimum-priority queue that holds node s with priority 0.

4: while Q ≠ ∅ do
5: Remove node m with lowest priority from Q.

6: for all edges (m, n) ∈ E do
7: if cost [m] + weight((m, n)) < cost [n] then
8: path[n], cost [n] := m,weight((m, n)) + cost [m].
9: Update n in Q such that n has priority cost [n] in Q.

10: return path, cost .

Complexity: Manage Q in the same way as in Prim’s Algorithm.

▶ Θ (|E | log(|N |)).
▶ Θ (|N | log(|N |) + |E|) with a Fibonacci Heap.

18/22

Dijkstra’s shortest-path algorithm

Algorithm SSSP-Dijkstra(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: Q := a minimum-priority queue that holds node s with priority 0.

4: while Q ≠ ∅ do
5: Remove node m with lowest priority from Q.

6: for all edges (m, n) ∈ E do
7: if cost [m] + weight((m, n)) < cost [n] then
8: path[n], cost [n] := m,weight((m, n)) + cost [m].
9: Update n in Q such that n has priority cost [n] in Q.

10: return path, cost .

Correctness

: for every node t

▶ path represents a shortest path from s to t of cost cost [t]; or
▶ there exists a node u ∈ Q with priority cost [u] such that a shortest path from s to t

goes through u and the shortest path from s to u has cost cost [u].

18/22

Dijkstra’s shortest-path algorithm

Algorithm SSSP-Dijkstra(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: Q := a minimum-priority queue that holds node s with priority 0.

4: while Q ≠ ∅ do
5: Remove node m with lowest priority from Q.

6: for all edges (m, n) ∈ E do
7: if cost [m] + weight((m, n)) < cost [n] then
8: path[n], cost [n] := m,weight((m, n)) + cost [m].
9: Update n in Q such that n has priority cost [n] in Q.

10: return path, cost .

Correctness: for every node t

▶ path represents a shortest path from s to t of cost cost [t]; or
▶ there exists a node u ∈ Q with priority cost [u] such that a shortest path from s to t

goes through u and the shortest path from s to u has cost cost [u].

19/22

Variants of the shortest-path problem

▶ The all-pairs shortest path problem:

Give a directed edge-weighted graph G = (N , E),
find a shortest path (if any) between every pair of nodes (s, t) ∈ N × N .

Solution: Run SSSP-Dijkstra for each node.

▶ The single-sink shortest path problem:

Give a directed edge-weighted graph G = (N , E) and sink t ∈ N
find a shortest path (if any) from any node s ∈ N to t .

Solution: Reverse edges in G and run SSSP-Dijkstra with source t .

▶ Shortest paths on undirected weighted graphs:

Solution: interpret each undirected edge as two directed edges.

19/22

Variants of the shortest-path problem

▶ The all-pairs shortest path problem:

Give a directed edge-weighted graph G = (N , E),
find a shortest path (if any) between every pair of nodes (s, t) ∈ N × N .

Solution: Run SSSP-Dijkstra for each node.

▶ The single-sink shortest path problem:

Give a directed edge-weighted graph G = (N , E) and sink t ∈ N
find a shortest path (if any) from any node s ∈ N to t .

Solution: Reverse edges in G and run SSSP-Dijkstra with source t .

▶ Shortest paths on undirected weighted graphs:

Solution: interpret each undirected edge as two directed edges.

19/22

Variants of the shortest-path problem

Problem: The source-sink shortest path problem

Give a directed edge-weighted graph G = (N , E) and source and target nodes s, t ∈ N ,

find a shortest path (if any) from s to t .

▶ We can run SSSP-Dijkstra to find the path from s to t ,

and stop as soon as we remove t from the queue Q.

▶ Downside: before removing t from Q, SSSP-Dijkstra might consider many edges that

go into the “wrong direction” (away from t).

▶ Sometimes we can estimate the minimum cost of a shortest path between two nodes.

For example: straight-line distance between two points on a map.

▶ Optimization: use these estimates to guide the choice of eligible edges.

Such a strategy leads to the A* search algorithm.

19/22

Variants of the shortest-path problem

Problem: The source-sink shortest path problem

Give a directed edge-weighted graph G = (N , E) and source and target nodes s, t ∈ N ,

find a shortest path (if any) from s to t .

▶ We can run SSSP-Dijkstra to find the path from s to t ,

and stop as soon as we remove t from the queue Q.

▶ Downside: before removing t from Q, SSSP-Dijkstra might consider many edges that

go into the “wrong direction” (away from t).

▶ Sometimes we can estimate the minimum cost of a shortest path between two nodes.

For example: straight-line distance between two points on a map.

▶ Optimization: use these estimates to guide the choice of eligible edges.

Such a strategy leads to the A* search algorithm.

19/22

Variants of the shortest-path problem

Problem: The source-sink shortest path problem

Give a directed edge-weighted graph G = (N , E) and source and target nodes s, t ∈ N ,

find a shortest path (if any) from s to t .

▶ We can run SSSP-Dijkstra to find the path from s to t ,

and stop as soon as we remove t from the queue Q.

▶ Downside: before removing t from Q, SSSP-Dijkstra might consider many edges that

go into the “wrong direction” (away from t).

▶ Sometimes we can estimate the minimum cost of a shortest path between two nodes.

For example: straight-line distance between two points on a map.

▶ Optimization: use these estimates to guide the choice of eligible edges.

Such a strategy leads to the A* search algorithm.

19/22

Variants of the shortest-path problem

Problem: The source-sink shortest path problem

Give a directed edge-weighted graph G = (N , E) and source and target nodes s, t ∈ N ,

find a shortest path (if any) from s to t .

▶ We can run SSSP-Dijkstra to find the path from s to t ,

and stop as soon as we remove t from the queue Q.

▶ Downside: before removing t from Q, SSSP-Dijkstra might consider many edges that

go into the “wrong direction” (away from t).

▶ Sometimes we can estimate the minimum cost of a shortest path between two nodes.

For example: straight-line distance between two points on a map.

▶ Optimization: use these estimates to guide the choice of eligible edges.

Such a strategy leads to the A* search algorithm.

19/22

Variants of the shortest-path problem

Problem: The source-sink shortest path problem

Give a directed edge-weighted graph G = (N , E) and source and target nodes s, t ∈ N ,

find a shortest path (if any) from s to t .

▶ We can run SSSP-Dijkstra to find the path from s to t ,

and stop as soon as we remove t from the queue Q.

▶ Downside: before removing t from Q, SSSP-Dijkstra might consider many edges that

go into the “wrong direction” (away from t).

▶ Sometimes we can estimate the minimum cost of a shortest path between two nodes.

For example: straight-line distance between two points on a map.

▶ Optimization: use these estimates to guide the choice of eligible edges.

Such a strategy leads to the A* search algorithm.

19/22

Variants of the shortest-path problem

Problem: The source-sink shortest path problem

Give a directed edge-weighted graph G = (N , E) and source and target nodes s, t ∈ N ,

find a shortest path (if any) from s to t .

▶ We can run SSSP-Dijkstra to find the path from s to t ,

and stop as soon as we remove t from the queue Q.

▶ Downside: before removing t from Q, SSSP-Dijkstra might consider many edges that

go into the “wrong direction” (away from t).

▶ Sometimes we can estimate the minimum cost of a shortest path between two nodes.

For example: straight-line distance between two points on a map.

▶ Optimization: use these estimates to guide the choice of eligible edges.

Such a strategy leads to the A* search algorithm.

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

Idea: process nodes in topological order

We process node n after determining the shortest path from s to m for all (m, n) ∈ E.

20/22

Shortest and longest paths in directed acyclic graphs

Idea: process nodes in topological order

We process node n after determining the shortest path from s to m for all (m, n) ∈ E.

Algorithm SSSP-DAG(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all n ∈ N in topological order (and that follow s) do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-DAG(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all n ∈ N in topological order (and that follow s) do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0 ? ∞
n1 ? ∞
n2 ? ∞
A A 0

n4 ? ∞
n5 ? ∞
n6 ? ∞
n7 ? ∞
n8 ? ∞
n9 ? ∞

Topological order: n4, n6,A, n1, n8, n2, n7, n5, n9, n0.

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-DAG(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all n ∈ N in topological order (and that follow s) do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0 ? ∞
n1 ? ∞
n2 ? ∞
A A 0

n4 ? ∞
n5 ? ∞
n6 ? ∞
n7 ? ∞
n8 ? ∞
n9 ? ∞

Topological order: n4, n6,A, n1, n8, n2, n7, n5, n9, n0.

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-DAG(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all n ∈ N in topological order (and that follow s) do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0 ? ∞
n1 ? ∞
n2 ? ∞
A A 0

n4 ? ∞
n5 ? ∞
n6 ? ∞
n7 ? ∞
n8 A 1

n9 ? ∞
Topological order: n4, n6,A, n1, n8, n2, n7, n5, n9, n0.

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-DAG(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all n ∈ N in topological order (and that follow s) do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0 ? ∞
n1 ? ∞
n2 A 5

A A 0

n4 ? ∞
n5 ? ∞
n6 ? ∞
n7 ? ∞
n8 A 1

n9 ? ∞
Topological order: n4, n6,A, n1, n8, n2, n7, n5, n9, n0.

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-DAG(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all n ∈ N in topological order (and that follow s) do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0 ? ∞
n1 ? ∞
n2 A 5

A A 0

n4 ? ∞
n5 ? ∞
n6 ? ∞
n7 n2 12

n8 A 1

n9 ? ∞
Topological order: n4, n6,A, n1, n8, n2, n7, n5, n9, n0.

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-DAG(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all n ∈ N in topological order (and that follow s) do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0 ? ∞
n1 ? ∞
n2 A 5

A A 0

n4 ? ∞
n5 n8 8

n6 ? ∞
n7 n2 12

n8 A 1

n9 ? ∞
Topological order: n4, n6,A, n1, n8, n2, n7, n5, n9, n0.

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-DAG(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all n ∈ N in topological order (and that follow s) do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0 ? ∞
n1 ? ∞
n2 A 5

A A 0

n4 ? ∞
n5 n8 8

n6 ? ∞
n7 n2 12

n8 A 1

n9 n5 16

Topological order: n4, n6,A, n1, n8, n2, n7, n5, n9, n0.

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-DAG(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all n ∈ N in topological order (and that follow s) do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

12

7

5

9

A

118

4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0 A 9

n1 ? ∞
n2 A 5

A A 0

n4 ? ∞
n5 n8 8

n6 ? ∞
n7 n2 12

n8 A 1

n9 n5 16

Topological order: n4, n6,A, n1, n8, n2, n7, n5, n9, n0.

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-DAG(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all n ∈ N in topological order (and that follow s) do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

Complexity

▶ Θ (|N |) to initialize path and cost .

▶ Θ (|N | + |E|) for topological sort.
▶ Θ (|N | + |E|) for visiting each node and edge in topological order.

Total: Θ (|N | + |E|).

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-DAG(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all n ∈ N in topological order (and that follow s) do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

Complexity

▶ Θ (|N |) to initialize path and cost .

▶ Θ (|N | + |E|) for topological sort.
▶ Θ (|N | + |E|) for visiting each node and edge in topological order.

Total: Θ (|N | + |E|).

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-DAG(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all n ∈ N in topological order (and that follow s) do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

We observe that this method has no issues with negative weights.

Longest paths in a directed acyclic graph?

For every edge (m, n) ∈ E, replace weights weight((m, n)) by −weight((m, n)) and
then compute the shortest paths with respect to these negated weights.

→ The longest path becomes the path with the most negative cost.

The longest path

in Θ (|N | + |E|).

This only works for directed acyclic graphs:

Determining whether a longest path without node repetition of cost k exists in a graph is

an NP-complete problem: no practical algorithms known to solve this problem!

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-DAG(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all n ∈ N in topological order (and that follow s) do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

We observe that this method has no issues with negative weights.

Longest paths in a directed acyclic graph?

For every edge (m, n) ∈ E, replace weights weight((m, n)) by −weight((m, n)) and
then compute the shortest paths with respect to these negated weights.

→ The longest path becomes the path with the most negative cost.

The longest path

in Θ (|N | + |E|).

This only works for directed acyclic graphs:

Determining whether a longest path without node repetition of cost k exists in a graph is

an NP-complete problem: no practical algorithms known to solve this problem!

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-DAG(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all n ∈ N in topological order (and that follow s) do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

-12

-7

-5

-9

A

-11-8

-4

-3

-2

-4

-1

-7

-13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0 ? ∞
n1 ? ∞
n2 ? ∞
A A 0

n4 ? ∞
n5 ? ∞
n6 ? ∞
n7 ? ∞
n8 ? ∞
n9 ? ∞

Topological order: n4, n6,A, n1, n8, n2, n7, n5, n9, n0.

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-DAG(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all n ∈ N in topological order (and that follow s) do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

-12

-7

-5

-9

A

-11-8

-4

-3

-2

-4

-1

-7

-13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0 ? ∞
n1 ? ∞
n2 ? ∞
A A 0

n4 ? ∞
n5 ? ∞
n6 ? ∞
n7 ? ∞
n8 ? ∞
n9 ? ∞

Topological order: n4, n6,A, n1, n8, n2, n7, n5, n9, n0.

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-DAG(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all n ∈ N in topological order (and that follow s) do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

-12

-7

-5

-9

A

-11-8

-4

-3

-2

-4

-1

-7

-13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0 ? ∞
n1 ? ∞
n2 ? ∞
A A 0

n4 ? ∞
n5 ? ∞
n6 ? ∞
n7 ? ∞
n8 A −1
n9 ? ∞

Topological order: n4, n6,A, n1, n8, n2, n7, n5, n9, n0.

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-DAG(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all n ∈ N in topological order (and that follow s) do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

-12

-7

-5

-9

A

-11-8

-4

-3

-2

-4

-1

-7

-13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0 ? ∞
n1 ? ∞
n2 A −5
A A 0

n4 ? ∞
n5 ? ∞
n6 ? ∞
n7 ? ∞
n8 A −1
n9 ? ∞

Topological order: n4, n6,A, n1, n8, n2, n7, n5, n9, n0.

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-DAG(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all n ∈ N in topological order (and that follow s) do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

-12

-7

-5

-9

A

-11-8

-4

-3

-2

-4

-1

-7

-13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0 ? ∞
n1 ? ∞
n2 A −5
A A 0

n4 ? ∞
n5 ? ∞
n6 ? ∞
n7 n2 −12
n8 A −1
n9 ? ∞

Topological order: n4, n6,A, n1, n8, n2, n7, n5, n9, n0.

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-DAG(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all n ∈ N in topological order (and that follow s) do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

-12

-7

-5

-9

A

-11-8

-4

-3

-2

-4

-1

-7

-13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0 ? ∞
n1 ? ∞
n2 A −5
A A 0

n4 ? ∞
n5 n8 −8
n6 ? ∞
n7 n2 −12
n8 A −1
n9 ? ∞

Topological order: n4, n6,A, n1, n8, n2, n7, n5, n9, n0.

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-DAG(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all n ∈ N in topological order (and that follow s) do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

-12

-7

-5

-9

A

-11-8

-4

-3

-2

-4

-1

-7

-13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0 ? ∞
n1 ? ∞
n2 A −5
A A 0

n4 ? ∞
n5 n8 −8
n6 ? ∞
n7 n2 −12
n8 A −1
n9 n5 −16

Topological order: n4, n6,A, n1, n8, n2, n7, n5, n9, n0.

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-DAG(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all n ∈ N in topological order (and that follow s) do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

-12

-7

-5

-9

A

-11-8

-4

-3

-2

-4

-1

-7

-13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0 n9 −27
n1 ? ∞
n2 A −5
A A 0

n4 ? ∞
n5 n8 −8
n6 ? ∞
n7 n2 −12
n8 A −1
n9 n5 −16

Topological order: n4, n6,A, n1, n8, n2, n7, n5, n9, n0.

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-DAG(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all n ∈ N in topological order (and that follow s) do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

We observe that this method has no issues with negative weights.

Longest paths in a directed acyclic graph?

The longest path in Θ (|N | + |E|).

This only works for directed acyclic graphs:

Determining whether a longest path without node repetition of cost k exists in a graph is

an NP-complete problem: no practical algorithms known to solve this problem!

20/22

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-DAG(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for all n ∈ N in topological order (and that follow s) do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

We observe that this method has no issues with negative weights.

Longest paths in a directed acyclic graph?

The longest path in Θ (|N | + |E|).

This only works for directed acyclic graphs:

Determining whether a longest path without node repetition of cost k exists in a graph is

an NP-complete problem: no practical algorithms known to solve this problem!

21/22

Shortest paths and negative weights

▶ SSSP-Dijkstra requires non-negative weights.

▶ SSSP-DAG requires a directed acyclic graph.

Problem

Given a directed edge-weighted graph G = (N , E) and source node s ∈ N .

For every target node t ∈ N ,

▶ either detect that there is a negative-cost cycle on a path from s to t ; or

▶ find a shortest path (if any) from s to t .

▶ We cannot “simply” eliminate negative weights by adding a sufficiently-positive

number: this will distort path lengths of paths consisting of many edges.

▶ We cannot “simply” fix SSSP-Dijkstra: SSSP-Dijkstra requires that nodes can be

processed on increasing shortest-path distance from s.

21/22

Shortest paths and negative weights

▶ SSSP-Dijkstra requires non-negative weights.

▶ SSSP-DAG requires a directed acyclic graph.

Problem

Given a directed edge-weighted graph G = (N , E) and source node s ∈ N .

For every target node t ∈ N ,

▶ either detect that there is a negative-cost cycle on a path from s to t ; or

▶ find a shortest path (if any) from s to t .

▶ We cannot “simply” eliminate negative weights by adding a sufficiently-positive

number: this will distort path lengths of paths consisting of many edges.

▶ We cannot “simply” fix SSSP-Dijkstra: SSSP-Dijkstra requires that nodes can be

processed on increasing shortest-path distance from s.

21/22

Shortest paths and negative weights

▶ SSSP-Dijkstra requires non-negative weights.

▶ SSSP-DAG requires a directed acyclic graph.

Problem

Given a directed edge-weighted graph G = (N , E) and source node s ∈ N .

For every target node t ∈ N ,

▶ either detect that there is a negative-cost cycle on a path from s to t ; or

▶ find a shortest path (if any) from s to t .

▶ We cannot “simply” eliminate negative weights by adding a sufficiently-positive

number: this will distort path lengths of paths consisting of many edges.

▶ We cannot “simply” fix SSSP-Dijkstra: SSSP-Dijkstra requires that nodes can be

processed on increasing shortest-path distance from s.

21/22

Shortest paths and negative weights

Algorithm SSSP-HighLevel(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: while (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
4: path[n], cost [n] := m,weight((m, n)) + cost [m].
5: return path, cost .

Algorithm SSSP-Bellman-Ford(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for i := 1 upto |N | − 1 do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: return path, cost .

21/22

Shortest paths and negative weights

Algorithm SSSP-Bellman-Ford(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for i := 1 upto |N | − 1 do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: if there is an eligible edge then
7: Found a negative-cost cycle.

8: return path, cost .

21/22

Shortest paths and negative weights

Algorithm SSSP-Bellman-Ford(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for i := 1 upto |N | − 1 do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: if there is an eligible edge then
7: Found a negative-cost cycle.

8: return path, cost .

Theorem

Algorithm SSSP-Bellman-Ford is correct.

Proof

Invariant : If there is a shortest path sn1 . . . ni−1 of i − 1 edges,

then cost and path represent a shortest path from s to ni−1.

21/22

Shortest paths and negative weights

Algorithm SSSP-Bellman-Ford(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for i := 1 upto |N | − 1 do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: if there is an eligible edge then
7: Found a negative-cost cycle.

8: return path, cost .

Theorem

Algorithm SSSP-Bellman-Ford is correct.

Proof

Invariant : If there is a shortest path sn1 . . . ni−1 of i − 1 edges,

then cost and path represent a shortest path from s to ni−1.

21/22

Shortest paths and negative weights

i := .

12

7

5

9

A

11-8

-4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: ? ∞
n1: ? ∞
n2: ? ∞
A: A 0

n4: ? ∞
n5: ? ∞
n6: ? ∞
n7: ? ∞
n8: ? ∞
n9: ? ∞

As there are eligible edges: there exists a negative-cost cycle.

21/22

Shortest paths and negative weights

i := 1.

12

7

5

9

A

11-8

-4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: ? ∞
n2: A 5

A: A 0

n4: ? ∞
n5: ? ∞
n6: ? ∞
n7: ? ∞
n8: A 1

n9: ? ∞

As there are eligible edges: there exists a negative-cost cycle.

21/22

Shortest paths and negative weights

i := 2.

12

7

5

9

A

11-8

-4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: n8 5

n2: A 5

A: A 0

n4: n0 22

n5: n8 8

n6: ? ∞
n7: n2 12

n8: A 1

n9: n0 20

As there are eligible edges: there exists a negative-cost cycle.

21/22

Shortest paths and negative weights

i := 3.

12

7

5

9

A

11-8

-4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: n8 5

n2: A 5

A: A 0

n4: n0 22

n5: n1 7

n6: n5 10

n7: n2 12

n8: A 1

n9: n0 20

As there are eligible edges: there exists a negative-cost cycle.

21/22

Shortest paths and negative weights

i := 4.

12

7

5

9

A

11-8

-4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: n8 5

n2: A 5

A: A 0

n4: n0 22

n5: n9 -2

n6: n5 1

n7: n2 12

n8: A 1

n9: n6 6

As there are eligible edges: there exists a negative-cost cycle.

21/22

Shortest paths and negative weights

i := 5, . . . , 9.

12

7

5

9

A

11-8

-4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: n8 5

n2: A 5

A: A 0

n4: n0 22

n5: n9 . . .

n6: n5 . . .

n7: n2 12

n8: A 1

n9: n6 . . .

As there are eligible edges: there exists a negative-cost cycle.

21/22

Shortest paths and negative weights

i := .

12

7

5

9

A

11-8

-4

3

2

4

1

7

13

n0

n7

n2

n9

n5

n6

n1

n8

n4

n0: A 9

n1: n8 5

n2: A 5

A: A 0

n4: n0 22

n5: n9 . . .

n6: n5 . . .

n7: n2 12

n8: A 1

n9: n6 . . .

As there are eligible edges: there exists a negative-cost cycle.

21/22

Shortest paths and negative weights

Algorithm SSSP-Bellman-Ford(G = (N , E), weight, s ∈ N):
1: path, cost := [n ↦→ ? | n ∈ N], [n ↦→ ∞ | n ∈ N].
2: path[s], cost [s] := s, 0.

3: for i := 1 upto |N | − 1 do
4: for all (m, n) ∈ E with cost [m] + weight((m, n)) < cost [n] do
5: path[n], cost [n] := m,weight((m, n)) + cost [m].
6: if there is an eligible edge then
7: Found a negative-cost cycle.

8: return path, cost .

Complexity: Θ (|N ||E |).

22/22

Example: Arbitrage

Consider a currency exchange where one can exchange

some currencies X for currency Y at exchange rate r (X ,Y).
For example r (CAD, EUR) = 0.68.

EUR CAD

0.68

USD

1
.3
8

1
.0
8

CHF

1.11

0
.9
9

100EUR→ 99CHF

→ 109.89USD

→ 151.64CAD

→ 103.12EUR

The arbitrage problem

Is there a sequence of currencies C1, . . . ,Cn,C1 such that exchanging X units of C1 for C2,

exchanging C2 for C3, . . . , exchanging Cn−1 for Cn, and exchanging Cn back to Y units of

C1 yields a profit (Y > X).

22/22

Example: Arbitrage

Consider a currency exchange where one can exchange

some currencies X for currency Y at exchange rate r (X ,Y).
For example r (CAD, EUR) = 0.68.

EUR CAD

0.68

USD

1
.3
8

1
.0
8

CHF

1.11

0
.9
9

100EUR→ 99CHF

→ 109.89USD

→ 151.64CAD

→ 103.12EUR

The arbitrage problem

Is there a sequence of currencies C1, . . . ,Cn,C1 such that exchanging X units of C1 for C2,

exchanging C2 for C3, . . . , exchanging Cn−1 for Cn, and exchanging Cn back to Y units of

C1 yields a profit (Y > X).

22/22

Example: Arbitrage

Consider a currency exchange where one can exchange

some currencies X for currency Y at exchange rate r (X ,Y).
For example r (CAD, EUR) = 0.68.

EUR CAD

0.68

USD

1
.3
8

1
.0
8

CHF

1.11

0
.9
9

100EUR

→ 99CHF

→ 109.89USD

→ 151.64CAD

→ 103.12EUR

The arbitrage problem

Is there a sequence of currencies C1, . . . ,Cn,C1 such that exchanging X units of C1 for C2,

exchanging C2 for C3, . . . , exchanging Cn−1 for Cn, and exchanging Cn back to Y units of

C1 yields a profit (Y > X).

22/22

Example: Arbitrage

Consider a currency exchange where one can exchange

some currencies X for currency Y at exchange rate r (X ,Y).
For example r (CAD, EUR) = 0.68.

EUR CAD

0.68

USD

1
.3
8

1
.0
8

CHF

1.11

0
.9
9

100EUR→ 99CHF

→ 109.89USD

→ 151.64CAD

→ 103.12EUR

The arbitrage problem

Is there a sequence of currencies C1, . . . ,Cn,C1 such that exchanging X units of C1 for C2,

exchanging C2 for C3, . . . , exchanging Cn−1 for Cn, and exchanging Cn back to Y units of

C1 yields a profit (Y > X).

22/22

Example: Arbitrage

Consider a currency exchange where one can exchange

some currencies X for currency Y at exchange rate r (X ,Y).
For example r (CAD, EUR) = 0.68.

EUR CAD

0.68

USD

1
.3
8

1
.0
8

CHF

1.11

0
.9
9

100EUR→ 99CHF

→ 109.89USD

→ 151.64CAD

→ 103.12EUR

The arbitrage problem

Is there a sequence of currencies C1, . . . ,Cn,C1 such that exchanging X units of C1 for C2,

exchanging C2 for C3, . . . , exchanging Cn−1 for Cn, and exchanging Cn back to Y units of

C1 yields a profit (Y > X).

22/22

Example: Arbitrage

Consider a currency exchange where one can exchange

some currencies X for currency Y at exchange rate r (X ,Y).
For example r (CAD, EUR) = 0.68.

EUR CAD

0.68

USD

1
.3
8

1
.0
8

CHF

1.11

0
.9
9

100EUR→ 99CHF

→ 109.89USD

→ 151.64CAD

→ 103.12EUR

The arbitrage problem

Is there a sequence of currencies C1, . . . ,Cn,C1 such that exchanging X units of C1 for C2,

exchanging C2 for C3, . . . , exchanging Cn−1 for Cn, and exchanging Cn back to Y units of

C1 yields a profit (Y > X).

22/22

Example: Arbitrage

Consider a currency exchange where one can exchange

some currencies X for currency Y at exchange rate r (X ,Y).
For example r (CAD, EUR) = 0.68.

EUR CAD

0.68

USD

1
.3
8

1
.0
8

CHF

1.11

0
.9
9

100EUR→ 99CHF

→ 109.89USD

→ 151.64CAD

→ 103.12EUR

The arbitrage problem

Is there a sequence of currencies C1, . . . ,Cn,C1 such that exchanging X units of C1 for C2,

exchanging C2 for C3, . . . , exchanging Cn−1 for Cn, and exchanging Cn back to Y units of

C1 yields a profit (Y > X).

22/22

Example: Arbitrage

The arbitrage problem

Is there a sequence of currencies C1, . . . ,Cn,C1 such that exchanging X units of C1 for C2,

exchanging C2 for C3, . . . , exchanging Cn−1 for Cn, and exchanging Cn back to Y units of

C1 yields a profit (Y > X).

Find a cycle C1, . . . ,Cn,C1 such that

r (C1,C2) × r (C2,C3) × · · · × r (Cn,C1) > 1 and is as large as possible.

22/22

Example: Arbitrage

The arbitrage problem

Is there a sequence of currencies C1, . . . ,Cn,C1 such that exchanging X units of C1 for C2,

exchanging C2 for C3, . . . , exchanging Cn−1 for Cn, and exchanging Cn back to Y units of

C1 yields a profit (Y > X).

Find a cycle C1, . . . ,Cn,C1 such that

log(r (C1,C2)) + log(r (C2,C3)) + · · · + log(r (Cn,C1)) > log(1)
and is as large as possible.

22/22

Example: Arbitrage

The arbitrage problem

Is there a sequence of currencies C1, . . . ,Cn,C1 such that exchanging X units of C1 for C2,

exchanging C2 for C3, . . . , exchanging Cn−1 for Cn, and exchanging Cn back to Y units of

C1 yields a profit (Y > X).

Find a cycle C1, . . . ,Cn,C1 such that

log(r (C1,C2)) + log(r (C2,C3)) + · · · + log(r (Cn,C1)) > 0

and is as large as possible.

22/22

Example: Arbitrage

The arbitrage problem

Is there a sequence of currencies C1, . . . ,Cn,C1 such that exchanging X units of C1 for C2,

exchanging C2 for C3, . . . , exchanging Cn−1 for Cn, and exchanging Cn back to Y units of

C1 yields a profit (Y > X).

Find a cycle C1, . . . ,Cn,C1 such that

(− log(r (C1,C2))) + (− log(r (C2,C3))) + · · · + (− log(r (Cn,C1))) < 0

and is as small as possible.

22/22

Example: Arbitrage

The arbitrage problem

Is there a sequence of currencies C1, . . . ,Cn,C1 such that exchanging X units of C1 for C2,

exchanging C2 for C3, . . . , exchanging Cn−1 for Cn, and exchanging Cn back to Y units of

C1 yields a profit (Y > X).

Find a cycle C1, . . . ,Cn,C1 such that

(− log(r (C1,C2))) + (− log(r (C2,C3))) + · · · + (− log(r (Cn,C1))) < 0

and is as small as possible.

Solution

Use SSSP-Bellman-Ford with weight((m, n)) = − log(r (m, n)) and find a negative cycle!

