Graphs SFWRENG 2CO3: Data Structures and Algorithms

Jelle Hellings

Department of Computing and Software McMaster University

Winter 2024

Definition Let $G = (N, \mathcal{E})$ be an undirected graph. The graph G is an undirected tree if:

- \blacktriangleright the graph is connected (every pair of nodes is connected by a path);
- \triangleright the graph has $|\mathcal{E}| = |N| 1$:

Definition Let $G = (N, \mathcal{E})$ be an undirected graph. The graph G is an undirected tree if:

- \blacktriangleright the graph is connected (every pair of nodes is connected by a path);
- \triangleright the graph has $|\mathcal{E}| = |N| 1$:

Definition Let $G = (N, \mathcal{E})$ be an undirected graph. The graph G is an undirected tree if:

- \blacktriangleright the graph is connected (every pair of nodes is connected by a path);
- \triangleright the graph has $|\mathcal{E}| = |N| 1$:

Definition Let $G = (N, \mathcal{E})$ be an undirected graph. The graph G is an undirected tree if:

- \blacktriangleright the graph is connected (every pair of nodes is connected by a path);
- \triangleright the graph has $|\mathcal{E}| = |N| 1$:

Definition Let $G = (N, \mathcal{E})$ be an undirected graph. The graph G is an undirected tree if:

- \blacktriangleright the graph is connected (every pair of nodes is connected by a path);
- \triangleright the graph has $|\mathcal{E}| = |N| 1$:

Definition Let $G = (N, \mathcal{E})$ be a connected undirected graph. A spanning tree of G is a subgraph $\mathcal{T} = (\mathcal{N}, \mathcal{E}')$ such that

- \blacktriangleright τ is a tree; and
- \blacktriangleright $\mathcal{E}' \subseteq \mathcal{E}$.

Definition Let $G = (N, \mathcal{E})$ be a connected undirected graph. A spanning tree of G is a subgraph $\mathcal{T} = (\mathcal{N}, \mathcal{E}')$ such that

- \blacktriangleright T is a tree; and
- \blacktriangleright $\mathcal{E}' \subseteq \mathcal{E}$.

Definition Let $G = (N, \mathcal{E})$ be a connected undirected graph. A spanning tree of G is a subgraph $\mathcal{T} = (\mathcal{N}, \mathcal{E}')$ such that

- \blacktriangleright τ is a tree; and
- \blacktriangleright $\mathcal{E}' \subseteq \mathcal{E}$.

Definition Let $G = (N, \mathcal{E})$ be a connected undirected graph. A spanning tree of G is a subgraph $\mathcal{T} = (\mathcal{N}, \mathcal{E}')$ such that

- \blacktriangleright τ is a tree; and
- \blacktriangleright $\mathcal{E}' \subseteq \mathcal{E}$.

Definition Let $G = (N, \mathcal{E})$ be a connected undirected graph. A spanning tree of G is a subgraph $\mathcal{T} = (\mathcal{N}, \mathcal{E}')$ such that

- \blacktriangleright τ is a tree; and
- \blacktriangleright $\mathcal{E}' \subseteq \mathcal{E}$.

Definition

Let $G = (N, \mathcal{E})$ be a connected weighted undirected graph with weight function weight. A minimum spanning tree of G is a subgraph $\mathcal{T} = (N, \mathcal{E}')$ such that

- \blacktriangleright τ is a spanning tree;
- ▶ the sum of edge weights $\sum_{e \in \mathcal{E}'} weight(e)$ is minimal (not larger than the sum of edge weights of any other spanning tree of G).

Definition

Let $G = (N, \mathcal{E})$ be a connected weighted undirected graph with weight function weight. A minimum spanning tree of G is a subgraph $\mathcal{T} = (N, \mathcal{E}')$ such that

- \blacktriangleright τ is a spanning tree;
- ▶ the sum of edge weights $\sum_{e \in \mathcal{E}'} weight(e)$ is minimal (not larger than the sum of edge weights of any other spanning tree of G).

Definition

Let $G = (N, \mathcal{E})$ be a connected weighted undirected graph with weight function weight. A minimum spanning tree of G is a subgraph $\mathcal{T} = (N, \mathcal{E}')$ such that

- \blacktriangleright τ is a spanning tree;
- ▶ the sum of edge weights $\sum_{e \in \mathcal{E}'} weight(e)$ is minimal (not larger than the sum of edge weights of any other spanning tree of G).

Definition

Let $G = (N, \mathcal{E})$ be a connected weighted undirected graph with weight function weight. A minimum spanning tree of G is a subgraph $\mathcal{T} = (N, \mathcal{E}')$ such that

- \blacktriangleright τ is a spanning tree;
- ▶ the sum of edge weights $\sum_{e \in \mathcal{E}'} weight(e)$ is minimal (not larger than the sum of edge weights of any other spanning tree of G).

Definition

Let $G = (N, \mathcal{E})$ be a connected weighted undirected graph with weight function weight. A minimum spanning tree of G is a subgraph $\mathcal{T} = (N, \mathcal{E}')$ such that

- \blacktriangleright τ is a spanning tree;
- ▶ the sum of edge weights $\sum_{e \in \mathcal{E}'} weight(e)$ is minimal (not larger than the sum of edge weights of any other spanning tree of G).

Definition

Let $G = (N, \mathcal{E})$ be a connected weighted undirected graph with weight function weight. A minimum spanning tree of G is a subgraph $\mathcal{T} = (N, \mathcal{E}')$ such that

- \blacktriangleright τ is a spanning tree;
- ▶ the sum of edge weights $\sum_{e \in \mathcal{E}'} weight(e)$ is minimal (not larger than the sum of edge weights of any other spanning tree of G).

Definition

Let $G = (N, \mathcal{E})$ be a connected weighted undirected graph with weight function weight. A minimum spanning tree of G is a subgraph $\mathcal{T} = (N, \mathcal{E}')$ such that

- \blacktriangleright τ is a spanning tree;
- ▶ the sum of edge weights $\sum_{e \in \mathcal{E}'} weight(e)$ is minimal (not larger than the sum of edge weights of any other spanning tree of G).

Definition

Let $G = (N, \mathcal{E})$ be a connected weighted undirected graph with weight function weight. A minimum spanning tree of G is a subgraph $\mathcal{T} = (N, \mathcal{E}')$ such that

- \blacktriangleright τ is a spanning tree;
- ▶ the sum of edge weights $\sum_{e \in \mathcal{E}'} weight(e)$ is minimal (not larger than the sum of edge weights of any other spanning tree of G).

Definition

Let $G = (N, \mathcal{E})$ be a connected weighted undirected graph with weight function weight. A minimum spanning tree of G is a subgraph $\mathcal{T} = (N, \mathcal{E}')$ such that

- \blacktriangleright τ is a spanning tree;
- ▶ the sum of edge weights $\sum_{e \in \mathcal{E}'} weight(e)$ is minimal (not larger than the sum of edge weights of any other spanning tree of G).

Definition

Let $G = (N, \mathcal{E})$ be a connected weighted undirected graph with weight function weight. A minimum spanning tree of G is a subgraph $\mathcal{T} = (N, \mathcal{E}')$ such that

- \blacktriangleright τ is a spanning tree;
- ▶ the sum of edge weights $\sum_{e \in \mathcal{E}'} weight(e)$ is minimal (not larger than the sum of edge weights of any other spanning tree of G).

Definition

Let $G = (N, \mathcal{E})$ be a connected weighted undirected graph with weight function weight. A minimum spanning tree of G is a subgraph $\mathcal{T} = (N, \mathcal{E}')$ such that

- \blacktriangleright τ is a spanning tree;
- ▶ the sum of edge weights $\sum_{e \in \mathcal{E}'} weight(e)$ is minimal (not larger than the sum of edge weights of any other spanning tree of G).

Algorithm MST-HIGHLEVEL($G = (N, \mathcal{E})$, weight):

- 1: $F := \emptyset$
- 2: while (N, E) is not a spanning tree do
- 3: Find an edge $(m, n) \in \mathcal{E}$ such that $E \cup \{(m, n)\}\$ is a subset of the edges of a minimum spanning tree of G .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

Algorithm MST-HIGHLEVEL($G = (N, \mathcal{E})$, weight):

- 1: $F := \emptyset$
- 2: while (N, E) is not a spanning tree do
- 3: Find an edge $(m, n) \in \mathcal{E}$ such that $E \cup \{(m, n)\}\$ is a subset of the edges of a minimum spanning tree of G .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

How to find such edges (m, n) ?

Algorithm MST-HIGHLEVEL($G = (N, \mathcal{E})$, weight):

- 1: $F := \emptyset$
- 2: while (N, E) is not a spanning tree do
- 3: Find an edge $(m, n) \in \mathcal{E}$ such that $E \cup \{(m, n)\}\$ is a subset of the edges of a minimum spanning tree of G .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

How to find such edges (m, n) ?

We need some properties of minimum spanning trees.

Definition Consider an undirected graph $G = (N, \mathcal{E})$.

Definition

Consider an undirected graph $G = (N, \mathcal{E})$.

A cut is a partition of N into two sets S and $N \setminus S$.

Definition

Consider an undirected graph $G = (N, \mathcal{E})$.

- A cut is a partition of N into two sets S and $N \setminus S$.
- A crossing edge for a cut is an edge that connects a node in S with a node in $N \setminus S$.

Definition

Consider an undirected graph $G = (N, \mathcal{E})$.

- A cut is a partition of N into two sets S and $N \setminus S$.
- A crossing edge for a cut is an edge that connects a node in S with a node in $N \setminus S$.
- \triangleright A light edge for a cut is a crossing edge with minimal weight.

Definition

Consider an undirected graph $G = (N, \mathcal{E})$.

- A cut is a partition of N into two sets S and $N \setminus S$.
- A crossing edge for a cut is an edge that connects a node in S with a node in $N \setminus S$.
- \triangleright A light edge for a cut is a crossing edge with minimal weight.

Theorem

Any minimum spanning tree of G holds a light edge for any cut $(S, N \setminus S)$.

Theorem

Any minimum spanning tree of G holds a light edge for any cut $(S, N \setminus S)$.

Proof

Assume a minimum spanning tree T of G that does not hold a light edge for $(S, N \setminus S)$.

Theorem

Any minimum spanning tree of G holds a light edge for any cut $(S, N \setminus S)$.

Proof

Assume a minimum spanning tree T of G that does not hold a light edge for $(S, N \setminus S)$.

▶ T must have a non-light edge connecting a node $m \in S$ with a node $n \in (N \setminus S)$.

Theorem

Any minimum spanning tree of G holds a light edge for any cut $(S, N \setminus S)$.

Proof

Assume a minimum spanning tree T of G that does not hold a light edge for $(S, N \setminus S)$.

- ▶ T must have a *non-light edge* connecting a node $m \in S$ with a node $n \in (N \setminus S)$.
- \blacktriangleright There must exist a *light edge* (v, w) for cut $(S, N \setminus S)$ (not an edge of T).

Theorem

Any minimum spanning tree of G holds a light edge for any cut $(S, N \setminus S)$.

Proof

Assume a minimum spanning tree T of G that does not hold a light edge for $(S, N \setminus S)$.

Now consider the graph \mathcal{T}' obtained from $\mathcal T$ by removing (m, n) and adding (v, w) .

Theorem

Any minimum spanning tree of G holds a light edge for any cut $(S, N \setminus S)$.

Proof

Assume a minimum spanning tree T of G that does not hold a light edge for $(S, N \setminus S)$.

- Now consider the graph \mathcal{T}' obtained from $\mathcal T$ by removing (m, n) and adding (v, w) .
- If Claim: the sum of edge weights of \mathcal{T}' is lower than the sum of edge weights of \mathcal{T} .

Theorem

Any minimum spanning tree of G holds a light edge for any cut $(S, N \setminus S)$.

Proof

Assume a minimum spanning tree T of G that does not hold a light edge for $(S, N \setminus S)$.

- Now consider the graph \mathcal{T}' obtained from $\mathcal T$ by removing (m, n) and adding (v, w) .
- \triangleright *Claim:* \mathcal{T}' is connected and, hence, a tree.

A minimum spanning tree algorithm

Theorem

Any minimum spanning tree of G holds a light edge for any cut $(S, N \setminus S)$.

Proof

Assume a minimum spanning tree T of G that does not hold a light edge for $(S, N \setminus S)$.

- Now consider the graph \mathcal{T}' obtained from $\mathcal T$ by removing (m, n) and adding (v, w) .
- \triangleright Contradiction T cannot be a minimum spanning tree!

A minimum spanning tree algorithm

Algorithm MST-HIGHLEVEL($G = (N, \mathcal{E})$, weight):

- 1: $F := \emptyset$
- 2: while (N, E) is not a spanning tree do
- 3: Find an edge $(m, n) \in \mathcal{E}$ such that $E \cup \{(m, n)\}\$ is a subset of the edges of a minimum spanning tree of G .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

How to find such edges (m, n) ?

A minimum spanning tree algorithm

Algorithm MST-HIGHLEVEL($G = (N, \mathcal{E})$, weight):

- 1: $F := \emptyset$
- 2: while (N, E) is not a spanning tree do
- 3: Find an edge $(m, n) \in \mathcal{E}$ such that $E \cup \{(m, n)\}\$ is a subset of the edges of a minimum spanning tree of G .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

How to find such edges (m, n) ?

Consider a cut $(S, S \setminus N)$ such that no edge in E is a crossing edge.

We can pick any light edge for cut $(S, S \setminus N)$.

Algorithm MST-HIGHLEVEL($G = (N, \mathcal{E})$, weight):

- 1: $F := \emptyset$.
- 2: while (N, E) is not a spanning tree do
- 3: Find an edge $(m, n) \in \mathcal{E}$ such that $E \cup \{(m, n)\}\$ is a subset of the edges of a minimum spanning tree of G .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

- 1: $F := \emptyset$.
- 2: while $|E| ≠ |N| 1$ do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that m and n are not yet connected in (N, E) .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

- 1: $E := \emptyset$.
- 2: while $|E| \neq |N| 1$ do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that m and n are not yet connected in (N, E) .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

- 1: $E := \emptyset$.
- 2: while $|E| \neq |N| 1$ do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that m and n are not yet connected in (N, E) .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

- 1: $E := \emptyset$.
- 2: while $|E| \neq |N| 1$ do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that m and n are not yet connected in (N, E) .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

- 1: $E := \emptyset$.
- 2: while $|E| \neq |N| 1$ do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that m and n are not yet connected in (N, E) .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

- 1: $E := \emptyset$.
- 2: while $|E| \neq |N| 1$ do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that m and n are not yet connected in (N, E) .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

- 1: $E := \emptyset$.
- 2: while $|E| \neq |N| 1$ do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that m and n are not yet connected in (N, E) .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

- 1: $E := \emptyset$.
- 2: while $|E| \neq |N| 1$ do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that m and n are not yet connected in (N, E) .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

- 1: $E := \emptyset$.
- 2: while $|E| \neq |N| 1$ do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that m and n are not yet connected in (N, E) .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

- 1: $E := \emptyset$.
- 2: while $|E| \neq |N| 1$ do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that m and n are not yet connected in (N, E) .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

- 1: $E := \emptyset$.
- 2: while $|E| \neq |N| 1$ do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that m and n are not yet connected in (N, E) .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

- 1: $E := \emptyset$.
- 2: while $|E| \neq |N| 1$ do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that m and n are not yet connected in (N, E) .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

- 1: $E := \emptyset$.
- 2: while $|E| \neq |N| 1$ do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that m and n are not yet connected in (N, E) .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

- 1: $E := \emptyset$.
- 2: while $|E| ≠ |N| 1$ do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that m and n are not yet connected in (N, E) .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

- 1: $E := \emptyset$.
- 2: while $|E| ≠ |N| 1$ do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that m and n are not yet connected in (N, E) .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

Algorithm MST-KRUSKAL $(G = (N, \mathcal{E}))$, weight):

- 1: $F := \emptyset$
- 2: while $|E| \neq |N| 1$ do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that m and n are not yet connected in (N, E) .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

Algorithm MST-KRUSKAL $(G = (N, \mathcal{E}))$, weight):

- 1: $F := \emptyset$.
- 2: while $|E| \neq |N| 1$ do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that m and n are not yet connected in (N, E) .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

 \triangleright Sort all edges on increasing edge weight.

Algorithm MST-KRUSKAL $(G = (N, \mathcal{E}))$, weight):

- 1: $F := \emptyset$.
- 2: while $|E|$ ≠ $|N|$ 1 do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that m and n are not yet connected in (N, E) .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

- \triangleright Sort all edges on increasing edge weight.
- \blacktriangleright Maintain a *dynamic connectivity* data structure D that represents the connected components in (N, E) .

Algorithm MST-KRUSKAL $(G = (N, \mathcal{E}))$, weight):

- 1: $F := \emptyset$.
- 2: while $|E|$ ≠ $|N|$ 1 do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that m and n are not yet connected in (N, E) .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

- \triangleright Sort all edges on increasing edge weight.
- \blacktriangleright Maintain a *dynamic connectivity* data structure D that represents the connected components in (N, E) .
- \blacktriangleright For each edge (m, n) in sorted order: check whether they are connected via D.

Algorithm MST-KRUSKAL $(G = (N, \mathcal{E}))$, weight):

- 1: $F := \emptyset$.
- 2: while $|E|$ ≠ $|N|$ 1 do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that m and n are not yet connected in (N, E) .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

- \triangleright Sort all edges on increasing edge weight.
- \blacktriangleright Maintain a *dynamic connectivity* data structure D that represents the connected components in (N, E) .
- \blacktriangleright For each edge (m, n) in sorted order: check whether they are connected via D.

Complexity.

Algorithm MST-KRUSKAL $(G = (N, \mathcal{E}))$, weight):

- 1: $F := \emptyset$.
- 2: while $|E|$ ≠ $|N|$ 1 do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that m and n are not yet connected in (N, E) .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

- \triangleright Sort all edges on increasing edge weight.
- \blacktriangleright Maintain a *dynamic connectivity* data structure D that represents the connected components in (N, E) .
- \blacktriangleright For each edge (m, n) in sorted order: check whether they are connected via D.

Complexity. We need a dynamic connectivity data structure!

Algorithm MST-KRUSKAL $(G = (N, \mathcal{E}))$, weight):

- 1: $F := \emptyset$.
- 2: while $|E|$ ≠ $|N|$ 1 do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that m and n are not yet connected in (N, E) .
- 4: $E := E \cup \{(m, n)\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

- \triangleright Sort all edges on increasing edge weight. $\rightarrow \Theta(|\mathcal{E}| \log(|\mathcal{E}|))$.
- \blacktriangleright Maintain a *dynamic connectivity* data structure D that represents the connected components in (N, E) . \rightarrow ?
- \blacktriangleright For each edge (m, n) in sorted order: check whether they are connected via D. \rightarrow ?

Complexity. We need a dynamic connectivity data structure!

Definition

Given a list of pairs (p, q) that imply that p and q are connected, we can classify values based on whether they are connected with each other (possibly via other values).

Definition

Given a list of pairs (p, q) that imply that p and q are connected, we can classify values based on whether they are connected with each other (possibly via other values).

Values can represents computers connected via networks.

Definition

Given a list of pairs (p, q) that imply that p and q are connected, we can classify values based on whether they are connected with each other (possibly via other values).

Values can represents computers connected via networks.

Definition

Given a list of pairs (p, q) that imply that p and q are connected, we can classify values based on whether they are connected with each other (possibly via other values).

Dynamic connectivity problem

Given a list of connections L and a new connection (p, q) , determine whether adding (p, q) to L changes the classifications.

Definition

Given a list of pairs (p, q) that imply that p and q are connected, we can classify values based on whether they are connected with each other (possibly via other values).

Adding (D, E) .

Dynamic connectivity problem

Given a list of connections L and a new connection (p, q) , determine whether adding (p, q) to L changes the classifications.

Definition

Given a list of pairs (p, q) that imply that p and q are connected, we can classify values based on whether they are connected with each other (possibly via other values).

Adding (I, H) .

Dynamic connectivity problem

Given a list of connections L and a new connection (p, q) , determine whether adding (p, q) to L changes the classifications.

Definition

Given a list of pairs (p, q) that imply that p and q are connected, we can classify values based on whether they are connected with each other (possibly via other values).

Process a list of connections L Start with an empty result R. Add pair $(p, q) \in L$ to R if that changes the classifications in R.

Definition

Given a list of pairs (p, q) that imply that p and q are connected, we can classify values based on whether they are connected with each other (possibly via other values).

Process a list of connections L Start with an empty result R. Add pair $(p, q) \in L$ to R if that changes the classifications in R.

Dynamic connectivity: A first attempt

We need both data structures and algorithms: data structures to represent the classification we have; algorithms to check whether adding a connection changes the classification; algorithms to update the classification by adding a connection.

Dynamic connectivity: A first attempt

We need both data structures and algorithms:

data structures to represent the classification we have;

algorithms to check whether adding a connection changes the classification; algorithms to update the classification by adding a connection.

Dynamic connectivity: A first attempt

We need both data structures and algorithms:

data structures to represent the classification we have;

algorithms to check whether adding a connection changes the classification; algorithms to update the classification by adding a connection.

Simplification: assume N values, each a unique integer in the range $0, \ldots, N - 1$.

Simplification: assume N values, each a unique integer in the range $0, \ldots, N - 1$.

The simple representation

Create an array $A[0...N)$ such that $A[i]$ is the class identifier of value *i*. We can efficiently check in Θ (1) whether pair (p, q) are already connected: $S[p] = S[q]$.

Simplification: assume N values, each a unique integer in the range $0, \ldots, N - 1$.

The simple representation

Create an array $A[0...N)$ such that $A[i]$ is the class identifier of value *i*. We can efficiently check in Θ (1) whether pair (p, q) are already connected: $S[p] = S[q]$.

Updating the simple representation

Simplification: assume N values, each a unique integer in the range $0, \ldots, N - 1$.

The simple representation

Create an array $A[0...N)$ such that $A[i]$ is the class identifier of value *i*. We can efficiently check in Θ (1) whether pair (p, q) are already connected: $S[p] = S[q]$.

Updating the simple representation

Simplification: assume N values, each a unique integer in the range $0, \ldots, N - 1$.

The simple representation

Create an array $A[0...N)$ such that $A[i]$ is the class identifier of value *i*. We can efficiently check in Θ (1) whether pair (p, q) are already connected: $S[p] = S[q]$.

Updating the simple representation

Simplification: assume N values, each a unique integer in the range $0, \ldots, N - 1$.

The simple representation

Create an array $A[0...N)$ such that $A[i]$ is the class identifier of value *i*. We can efficiently check in Θ (1) whether pair (p, q) are already connected: $S[p] = S[q]$.

Updating the simple representation

Simplification: assume N values, each a unique integer in the range $0, \ldots, N - 1$.

The simple representation

Create an array $A[0...N)$ such that $A[i]$ is the class identifier of value *i*. We can efficiently check in Θ (1) whether pair (p, q) are already connected: $S[p] = S[q]$.

Updating the simple representation

We need both data structures and algorithms: data structures to represent the classification we have; algorithms to check whether adding a connection changes the classification; algorithms to update the classification by adding a connection.

The simple representation Create an array $A[0...N)$ such that $A[i]$ is the class identifier of value *i*. Check whether adding a connection changes the classification: $\Theta(1)$; Update the classification by adding a connection: $\Theta(N)$.

We need both data structures and algorithms: data structures to represent the classification we have; algorithms to check whether adding a connection changes the classification; algorithms to update the classification by adding a connection.

The simple representation

Create an array $A[0...N)$ such that $A[i]$ is the class identifier of value *i*.

Check whether adding a connection changes the classification: $\Theta(1)$; Update the classification by adding a connection: $\Theta(N)$.

Process a list of connections L: at-least N^2 if all values end up in the same class!

We need both data structures and algorithms: data structures to represent the classification we have; algorithms to check whether adding a connection changes the classification; algorithms to update the classification by adding a connection.

The simple representation

Create an array $A[0...N)$ such that $A[i]$ is the class identifier of value *i*.

Check whether adding a connection changes the classification: $\Theta(1)$; Update the classification by adding a connection: $\Theta(N)$.

Process a list of connections L: at-least N^2 if all values end up in the same class!

Faster minimization?

The *simple representation* is optimized for checking classifications, not updating them. We need another representation!

We want to optimize for updating: no updating of an entire array.

We want to optimize for *updating*: no updating of an entire array.

The forest representation

Create an array $S[0...N)$ such that $S[i]$ either

- \triangleright holds the value *i* indicating that *i* is the *tree root* for the class containing *i*;
- ▶ holds the value $j \neq i$ indicating that *j* is a *tree parent* for the class containing *i*.

We want to optimize for *updating*: no updating of an entire array.

The forest representation Create an array $S[0...N)$ such that $S[i]$ either

- \triangleright holds the value *i* indicating that *i* is the *tree root* for the class containing *i*;
- ▶ holds the value $j \neq i$ indicating that j is a tree parent for the class containing i.

We want to optimize for *updating*: no updating of an entire array.

Representation visualization

The forest representation Create an array $S[0...N)$ such that $S[i]$ either

- \triangleright holds the value *i* indicating that *i* is the *tree root* for the class containing *i*;
- ▶ holds the value $j \neq i$ indicating that j is a tree parent for the class containing i .

We want to optimize for updating: no updating of an entire array.

Representation visualization

The forest representation

Check whether adding a connection (p, q) changes the classification: compare the roots for the trees holding p and q .

We want to optimize for updating: no updating of an entire array.

Representation visualization

The forest representation

Check whether adding a connection (p, q) changes the classification: compare the roots for the trees holding p and q.

We want to optimize for updating: no updating of an entire array.

Representation visualization

The forest representation

Update the classification by adding a connection (p, q) : change the *root of the tree* holding q so that it points to p .

We want to optimize for updating: no updating of an entire array.

Representation visualization

The forest representation

Update the classification by adding a connection (p, q) : change the *root of the tree* holding q so that it points to p .

We want to optimize for updating: no updating of an entire array.

Representation visualization

The forest representation

We need to find roots *fast*: costs of checking and updating depends on it!

We want to optimize for updating: no updating of an entire array.

Representation visualization

The forest representation

We need to find roots *fast*: costs of checking and updating depends on it!

Finding the root of p: depends on the *distance toward the root* (the depth of p): worst-case $\Theta(N)$.

The forest representation We need to find roots *fast:* costs of checking and updating depends on it!

Finding the root of p: depends on the *distance toward the root* (the depth of p): worst-case $\Theta(N)$.

Problem: Can we guarantee low distances to roots? Idea: Keep the *tree height* low when adding a connection (p, q) .

The forest representation

We need to find roots *fast:* costs of checking and updating depends on it!

Finding the root of p: depends on the *distance toward the root* (the depth of p): worst-case $\Theta(N)$.

Problem: Can we guarantee low distances to roots? Idea: Keep the *tree height* low when adding a connection (p, q) :

- \triangleright find the roots of the trees holding p and q;
- ▶ make the tree root of the *smallest* tree point to the other root.

The forest representation

We need to find roots *fast:* costs of checking and updating depends on it!

Finding the root of p: depends on the *distance toward the root* (the depth of p): worst-case $\Theta(N)$.

Problem: Can we guarantee low distances to roots? Idea: Keep the *tree height* low when adding a connection (p, q) :

- \triangleright find the roots of the trees holding p and q;
- \blacktriangleright make the tree root of the *smallest* tree point to the other root.

We need to maintain tree size for roots: an extra array.

Problem: Can we guarantee low distances to roots? Consider Adding (0, 1), (1, 2), (2, 3), (2, 4), (3, 1), (5, 6), (5, 7), (6, 7), $(6, 8), (7, 8), (8, 5), (9, 0), (9, 3), (5, 2).$

Representation visualization

Problem: Can we guarantee low distances to roots? Consider Adding (0, 1), (1, 2), (2, 3), (2, 4), (3, 1), (5, 6), (5, 7), (6, 7), $(6, 8), (7, 8), (8, 5), (9, 0), (9, 3), (5, 2).$

Representation visualization

Representation visualization

Representation visualization

Problem: Can we guarantee low distances to roots? Consider Adding (0, 1), (1, 2), (2, 3), (2, 4), (3, 1), (5, 6), (5, 7), (6, 7), $(6, 8), (7, 8), (8, 5), (9, 0), (9, 3), (5, 2).$

Problem: Can we guarantee low distances to roots? Idea: Keep the *tree height* low when adding a connection (p, q) :

- \blacktriangleright find the roots of the trees holding p and q;
- \blacktriangleright make the tree root of the *smallest* tree point to the other root.

How big do trees grow via this method?

Problem: Can we guarantee low distances to roots? Idea: Keep the *tree height* low when adding a connection (p, q) :

- \triangleright find the roots of the trees holding p and q;
- ▶ make the tree root of the *smallest* tree point to the other root.

How big do trees grow via this method?

Theorem

The height of a tree T of size |T| built in the above way is height(T) $\leq \log_2(|T|)$.

Problem: Can we guarantee low distances to roots? Idea: Keep the *tree height* low when adding a connection (p, q) :

- \triangleright find the roots of the trees holding p and q;
- ▶ make the tree root of the *smallest* tree point to the other root.

How big do trees grow via this method?

Theorem

The height of a tree T of size |T| built in the above way is height(T) $\leq \log_2(|T|)$.

Proof

By induction on the size of tree T.

Theorem The height of a tree T of size |T| built in the above way is height(T) $\leq \log_2(|T|)$. Proof Induction Hypothesis: height(T) $\leq log_2(|T|)$ for all trees with $|T| < i$.

Theorem The height of a tree T of size |T| built in the above way is height(T) $\leq \log_2(|T|)$. Proof Induction Hypothesis: height(T) $\leq log_2(|T|)$ for all trees with $|T| < i$. Base case Trees T of size $|T| = 1$ consists only of a root: height(T) = $log_2(1) = 0$.

Theorem The height of a tree T of size |T| built in the above way is height(T) $\leq \log_2(|T|)$. Proof Induction Hypothesis: height(T) $\leq log_2(|T|)$ for all trees with $|T| < i$. Base case Trees T of size $|T| = 1$ consists only of a root: height(T) = $log_2(1) = 0$. Step Consider combining two trees T_1 and T_2 into tree T of size $|T_1| + |T_2| = i$.

Theorem The height of a tree T of size |T| built in the above way is height(T) $\leq \log_2(|T|)$. Proof Induction Hypothesis: height(T) $\leq log_2(|T|)$ for all trees with $|T| < i$. Base case Trees T of size $|T| = 1$ consists only of a root: height(T) = $log_2(1) = 0$. Step Consider combining two trees T_1 and T_2 into tree T of size $|T_1| + |T_2| = i$. ▶ Assume $|T_1| \leq |T_2|$: add the root of T_1 as a child to the root of T_2 .

Theorem The height of a tree T of size |T| built in the above way is height(T) $\leq \log_2(|T|)$. Proof Induction Hypothesis: height(T) $\leq log_2(|T|)$ for all trees with $|T| < i$. Base case Trees T of size $|T| = 1$ consists only of a root: height(T) = $log_2(1) = 0$. Step Consider combining two trees T_1 and T_2 into tree T of size $|T_1| + |T_2| = i$. ▶ Assume $|T_1| \leq |T_2|$: add the root of T_1 as a child to the root of T_2 .

 \triangleright Distance to root *increases* by one for all nodes in T_1 .

height(T) = max(height(T₁) + 1, height(T₂)).

Theorem

The height of a tree T of size |T| built in the above way is height(T) $\leq \log_2(|T|)$.

Proof

Induction Hypothesis: height(T) $\leq log_2(|T|)$ for all trees with $|T| < i$.

Base case Trees T of size $|T| = 1$ consists only of a root: height(T) = $log_2(1) = 0$.

Step Consider combining two trees T_1 and T_2 into tree T of size $|T_1| + |T_2| = i$.

- ▶ Assume $|T_1| \leq |T_2|$: add the root of T_1 as a child to the root of T_2 .
- \triangleright Distance to root *increases* by one for all nodes in T_1 .
- ▶ By IH, height(T_1) $\leq \log_2(|T_1|)$ and height(T_2) $\leq \log_2(|T_2|)$.

height(T) \leq max(log₂(|T₁|) + 1, log₂(|T₂|)).

Theorem

The height of a tree T of size |T| built in the above way is height(T) $\leq \log_2(|T|)$.

Proof

Induction Hypothesis: height(T) $\leq log_2(|T|)$ for all trees with $|T| < i$.

Base case Trees T of size $|T| = 1$ consists only of a root: height(T) = $log_2(1) = 0$.

Step Consider combining two trees T_1 and T_2 into tree T of size $|T_1| + |T_2| = i$.

- ▶ Assume $|T_1| \leq |T_2|$: add the root of T_1 as a child to the root of T_2 .
- \triangleright Distance to root *increases* by one for all nodes in T_1 .
- ▶ By IH, height(T_1) $\leq \log_2(|T_1|)$ and height(T_2) $\leq \log_2(|T_2|)$.

height(T) \leq max(log₂(|T₁|) + 1, log₂(|T₂|)).

Case $log_2(|T_1|) + 1 \le log_2(|T_2|)$ height $(T) = log_2(|T_2|)$.

Theorem

The height of a tree T of size |T| built in the above way is height(T) $\leq \log_2(|T|)$.

Proof

Induction Hypothesis: height(T) $\leq log_2(|T|)$ for all trees with $|T| < i$.

Base case Trees T of size $|T| = 1$ consists only of a root: height(T) = $log_2(1) = 0$.

Step Consider combining two trees T_1 and T_2 into tree T of size $|T_1| + |T_2| = i$.

- Assume $|T_1| \leq |T_2|$: add the root of T_1 as a child to the root of T_2 .
- \triangleright Distance to root *increases* by one for all nodes in T_1 .
- ▶ By IH, height(T_1) $\leq \log_2(|T_1|)$ and height(T_2) $\leq \log_2(|T_2|)$.

height(T) \leq max(log₂(|T₁|) + 1, log₂(|T₂|)).

Case $log_2(|T_1|) + 1 \le log_2(|T_2|)$ height $(T) = log_2(|T_2|) < log_2(|T|)$.

Theorem

The height of a tree T of size |T| built in the above way is height(T) $\leq \log_2(|T|)$.

Proof

Induction Hypothesis: height(T) $\leq log_2(|T|)$ for all trees with $|T| < i$.

Base case Trees T of size $|T| = 1$ consists only of a root: height(T) = $log_2(1) = 0$.

Step Consider combining two trees T_1 and T_2 into tree T of size $|T_1| + |T_2| = i$.

- ▶ Assume $|T_1| \leq |T_2|$: add the root of T_1 as a child to the root of T_2 .
- \triangleright Distance to root *increases* by one for all nodes in T_1 .
- ▶ By IH, height(T_1) $\leq \log_2(|T_1|)$ and height(T_2) $\leq \log_2(|T_2|)$.

height(T) \leq max(log₂(|T₁|) + 1, log₂(|T₂|)).

Case $log_2(|T_1|) + 1 > log_2(|T_2|)$ height $(T) = log_2(|T_1|) + 1$.

Theorem

The height of a tree T of size |T| built in the above way is height(T) $\leq \log_2(|T|)$.

Proof

Induction Hypothesis: height(T) $\leq log_2(|T|)$ for all trees with $|T| < i$.

Base case Trees T of size $|T| = 1$ consists only of a root: height(T) = $log_2(1) = 0$.

Step Consider combining two trees T_1 and T_2 into tree T of size $|T_1| + |T_2| = i$.

- Assume $|T_1| \leq |T_2|$: add the root of T_1 as a child to the root of T_2 .
- \triangleright Distance to root *increases* by one for all nodes in T_1 .
- ▶ By IH, height(T_1) $\leq \log_2(|T_1|)$ and height(T_2) $\leq \log_2(|T_2|)$.

height(T) \leq max(log₂(|T₁|) + 1, log₂(|T₂|)).

Case $log_2(|T_1|) + 1 > log_2(|T_2|)$ height(T) = $log_2(|T_1|) + 1 = log_2(2|T_1|)$.

Theorem

The height of a tree T of size |T| built in the above way is height(T) $\leq \log_2(|T|)$.

Proof

Induction Hypothesis: height(T) $\leq log_2(|T|)$ for all trees with $|T| < i$.

Base case Trees T of size $|T| = 1$ consists only of a root: height(T) = $log_2(1) = 0$.

Step Consider combining two trees T_1 and T_2 into tree T of size $|T_1| + |T_2| = i$.

- ▶ Assume $|T_1| \leq |T_2|$: add the root of T_1 as a child to the root of T_2 .
- \triangleright Distance to root *increases* by one for all nodes in T_1 .
- ▶ By IH, height(T_1) $\leq \log_2(|T_1|)$ and height(T_2) $\leq \log_2(|T_2|)$.

height(T) \leq max(log₂(|T₁|) + 1, log₂(|T₂|)).

Case $log_2(|T_1|) + 1 > log_2(|T_2|)$ height $(T) = log_2(2|T_1|) \le log_2(|T_1| + |T_2|)$.

Theorem

The height of a tree T of size |T| built in the above way is height(T) $\leq \log_2(|T|)$.

Proof

Induction Hypothesis: height(T) $\leq log_2(|T|)$ for all trees with $|T| < i$.

Base case Trees T of size $|T| = 1$ consists only of a root: height(T) = $log_2(1) = 0$.

Step Consider combining two trees T_1 and T_2 into tree T of size $|T_1| + |T_2| = i$.

- Assume $|T_1| \leq |T_2|$: add the root of T_1 as a child to the root of T_2 .
- \triangleright Distance to root *increases* by one for all nodes in T_1 .
- ▶ By IH, height(T_1) $\leq \log_2(|T_1|)$ and height(T_2) $\leq \log_2(|T_2|)$.

height(T) \leq max(log₂(|T₁|) + 1, log₂(|T₂|)).

Case $log_2(|T_1|) + 1 > log_2(|T_2|)$ height $(T) = log_2(2|T_1|) \le log_2(|T_1| + |T_2|) = log_2(|T|)$.

Theorem

The height of a tree T of size |T| built in the above way is height(T) $\leq \log_2(|T|)$.

Proof

Induction Hypothesis: height(T) $\leq log_2(|T|)$ for all trees with $|T| < i$.

Base case Trees T of size $|T| = 1$ consists only of a root: height(T) = $log_2(1) = 0$.

Step Consider combining two trees T_1 and T_2 into tree T of size $|T_1| + |T_2| = i$.

- ▶ Assume $|T_1| \leq |T_2|$: add the root of T_1 as a child to the root of T_2 .
- \triangleright Distance to root *increases* by one for all nodes in T_1 .
- ▶ By IH, height(T_1) $\leq \log_2(|T_1|)$ and height(T_2) $\leq \log_2(|T_2|)$.

 $height(T) \le max(log_2(|T_1|) + 1, log_2(|T_2|)) \le log_2(|T|).$

Theorem

The height of a tree T of size |T| built in the above way is height(T) $\leq \log_2(|T|)$.

Proof

Induction Hypothesis: height(T) $\leq log_2(|T|)$ for all trees with $|T| < i$.

Base case Trees T of size $|T| = 1$ consists only of a root: height(T) = $log_2(1) = 0$.

Step Consider combining two trees T_1 and T_2 into tree T of size $|T_1| + |T_2| = i$.

- ▶ Assume $|T_1| \leq |T_2|$: add the root of T_1 as a child to the root of T_2 .
- \triangleright Distance to root *increases* by one for all nodes in T_1 .
- ▶ By IH, height(T_1) $\leq \log_2(|T_1|)$ and height(T_2) $\leq \log_2(|T_2|)$.

 $height(T) \le max(log_2(|T_1|) + 1, log_2(|T_2|)) \le log_2(|T|).$

▶ What if $|T_1| > |T_2|$? Switch T_1 and T_2 arround in the above.

We want to optimize for *updating*: no updating of an entire array.

The forest representation

We need to find roots *fast*: costs of checking and updating depends on it!

Finding the root of p: depends on the *distance toward the root* (the depth of p): Combining trees T by size: $\Theta(\log_2(|T|)).$

Theorem

The height of a tree T of size |T| built in the above way is height(T) $\leq \log_2(|T|)$.

Dynamic connectivity: Conclusion

We briefly looked at three solutions for *dynamic connectivity*.

Suitable combination of data structures and algorithms: efficient dynamic connectivity!

Note: Chapter 1.5 in the book!

Kruskal's Algorithm

Algorithm MST-KRUSKAL $(G = (N, \mathcal{E}))$, weight):

- 1: $F := \emptyset$.
- 2: while $|E| \neq |N| 1$ do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that m and n are not yet connected in (N, E) .

4:
$$
E := E \cup \{(m, n)\}.
$$

5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

- \triangleright Sort all edges on increasing edge weight. $\rightarrow \Theta(|\mathcal{E}| \log(|\mathcal{E}|))$.
- \blacktriangleright Maintain a *dynamic connectivity* data structure D that represents the connected components in (N, E) . $\rightarrow \Theta$ (log(|N|))
- \blacktriangleright For each edge (m, n) in sorted order: check whether they are connected via D. $\rightarrow \Theta(\log(|N|))$ per check. Complexity. Θ ($|\mathcal{E}| \log(|\mathcal{E}|) + |\mathcal{E}| \log(|\mathcal{N}|)$).

Kruskal's Algorithm

Algorithm MST-KRUSKAL $(G = (N, \mathcal{E}))$, weight):

- 1: $F := \emptyset$.
- 2: while $|E| \neq |N| 1$ do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that *m* and *n* are not yet connected in (N, E) .

4:
$$
E := E \cup \{(m, n)\}.
$$

5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

- \triangleright Sort all edges on increasing edge weight. $\rightarrow \Theta(|\mathcal{E}| \log(|\mathcal{E}|))$.
- \blacktriangleright Maintain a *dynamic connectivity* data structure D that represents the connected components in (N, E) . $\rightarrow \Theta$ (log(|N|))
- \blacktriangleright For each edge (m, n) in sorted order: check whether they are connected via D. $\rightarrow \Theta(\log(|N|))$ per check.

Complexity. Θ ($|\mathcal{E}| \log(|\mathcal{E}|) + |\mathcal{E}| \log(|\mathcal{N}|) = \Theta(|\mathcal{E}| \log(|\mathcal{E}|)).$

Kruskal's Algorithm

Algorithm MST-KRUSKAL $(G = (N, \mathcal{E}))$, weight):

- 1: $F := \emptyset$.
- 2: while $|E| \neq |N| 1$ do
- 3: Find an edge $(m, n) \in \mathcal{E}$ with minimum edge weight such that *m* and *n* are not yet connected in (N, E) .

4:
$$
E := E \cup \{(m, n)\}.
$$

5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

- \triangleright Sort all edges on increasing edge weight. $\rightarrow \Theta(|\mathcal{E}| \log(|\mathcal{E}|))$.
- \blacktriangleright Maintain a *dynamic connectivity* data structure D that represents the connected components in (N, E) . $\rightarrow \Theta$ (log(|N|))
- \blacktriangleright For each edge (m, n) in sorted order: check whether they are connected via D. $\rightarrow \Theta(\log(|N|))$ per check.

Complexity. Θ ($|\mathcal{E}| \log(|\mathcal{E}|) + |\mathcal{E}| \log(|\mathcal{N}|) = \Theta(|\mathcal{E}| \log(|\mathcal{N}|)).$

Algorithm MST-HIGHLEVEL($G = (N, \mathcal{E})$, weight):

1: $F := \emptyset$.

2: while (N, E) is not a spanning tree do

3: Find an edge $(m, n) \in \mathcal{E}$ such that $E \cup \{(m, n)\}\$ is a subset of the edges of a minimum spanning tree of G .

4:
$$
E := E \cup \{(m, n)\}.
$$

5: return E.

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in M$ and $n \notin M$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in \mathcal{M}$ and $n \notin \mathcal{M}$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in \mathcal{M}$ and $n \notin \mathcal{M}$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in \mathcal{M}$ and $n \notin \mathcal{M}$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in \mathcal{M}$ and $n \notin \mathcal{M}$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in \mathcal{M}$ and $n \notin \mathcal{M}$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in \mathcal{M}$ and $n \notin \mathcal{M}$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in \mathcal{M}$ and $n \notin \mathcal{M}$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in \mathcal{M}$ and $n \notin \mathcal{M}$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in \mathcal{M}$ and $n \notin \mathcal{M}$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in \mathcal{M}$ and $n \notin \mathcal{M}$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

Algorithm MST-PRIM $(G = (N, \mathcal{E}))$, weight):

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in \mathcal{M}$ and $n \notin \mathcal{M}$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

Algorithm MST-PRIM $(G = (N, \mathcal{E}))$, weight):

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in \mathcal{M}$ and $n \notin \mathcal{M}$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

► For every node $m \in M$: we can consider all edges $(m, n) \in \mathcal{E}$ with $n \notin N$.
Algorithm MST-PRIM $(G = (N, \mathcal{E}))$, weight):

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in M$ and $n \notin M$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

- **►** For every node $m \in M$: we can consider all edges $(m, n) \in \mathcal{E}$ with $n \notin N$.
- Alternatively: for every node $n \notin M$, consider the edges $(m, n) \in \mathcal{E}$, $m \in M$.

Algorithm MST-PRIM $(G = (N, \mathcal{E}))$, weight):

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in M$ and $n \notin M$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

- **►** For every node $m \in M$: we can consider all edges $(m, n) \in \mathcal{E}$ with $n \notin N$.
- Alternatively: for every node $n \notin M$, consider the edges $(m, n) \in \mathcal{E}$, $m \in M$.
- ► Refine: for every node $n \notin M$, consider the minimal weight edge $(m, n) \in \mathcal{E}$, $m \in M$.

Algorithm MST-PRIM $(G = (N, \mathcal{E}))$, weight):

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in M$ and $n \notin M$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

- **►** For every node $m \in M$: we can consider all edges $(m, n) \in \mathcal{E}$ with $n \notin N$.
- Alternatively: for every node $n \notin M$, consider the edges $(m, n) \in \mathcal{E}$, $m \in M$.
- ► Refine: for every node $n \notin M$, consider the minimal weight edge $(m, n) \in \mathcal{E}$, $m \in M$.

We need a data structure to quickly find these minimal-weight edges for nodes $m \notin N!$

Algorithm MST-PRIM $(G = (N, \mathcal{E}))$, weight):

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in M$ and $n \notin M$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

We need a data structure to quickly find these minimal-weight edges for nodes $m \notin N!$

Idea: a minimum-priority queue Q that holds nodes v with priority

 $p(Q, v) = min{weight((m, v)) | (m, v) \in \mathcal{E}, m \in \mathcal{M}}.$

Store the minimal-weight edge (m, v) as additional information with each node v.

Algorithm MST-PRIM $(G = (N, \mathcal{E}))$, weight):

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in M$ and $n \notin M$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

Idea: a minimum-priority queue Q that holds nodes v with priority

$$
p(Q, v) = \min\{\text{weight}((m, v)) \mid (m, v) \in \mathcal{E}, m \in \mathcal{M}\}.
$$

Consider adding a node *n* to *M*. We need to update Q for every edge $(n, w) \in \mathcal{E}$.

Algorithm MST-PRIM $(G = (N, \mathcal{E}))$, weight):

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in M$ and $n \notin M$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

Idea: a minimum-priority queue Q that holds nodes v with priority

$$
p(Q, v) = \min\{\text{weight}((m, v)) \mid (m, v) \in \mathcal{E}, m \in \mathcal{M}\}.
$$

Consider adding a node *n* to *M*. We need to update Q for every edge $(n, w) \in \mathcal{E}$.

▶ If $w \notin Q$: add w with weight weight((n, w)).

Algorithm MST-PRIM $(G = (N, \mathcal{E}))$, weight):

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in M$ and $n \notin M$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

Idea: a minimum-priority queue Q that holds nodes v with priority

$$
p(Q, v) = \min\{\text{weight}((m, v)) \mid (m, v) \in \mathcal{E}, m \in \mathcal{M}\}.
$$

Consider adding a node *n* to *M*. We need to update Q for every edge $(n, w) \in \mathcal{E}$.

► If $w \notin Q$: add w with weight weight((n, w)). $\rightarrow \Theta(\log(|N|))$ per edge.

Algorithm MST-PRIM $(G = (N, \mathcal{E}))$, weight):

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in M$ and $n \notin M$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

Idea: a minimum-priority queue Q that holds nodes v with priority

$$
p(Q, v) = \min\{\text{weight}((m, v)) \mid (m, v) \in \mathcal{E}, m \in \mathcal{M}\}.
$$

Consider adding a node *n* to *M*. We need to update Q for every edge $(n, w) \in \mathcal{E}$.

▶ If $w \in Q$ and weight $((n, w)) < p(Q, w)$: lower $p(Q, w)$ to weight $((n, w))$.

Algorithm MST-PRIM $(G = (N, \mathcal{E}))$, weight):

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in M$ and $n \notin M$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

Idea: a minimum-priority queue Q that holds nodes v with priority

$$
p(Q, v) = \min\{\text{weight}((m, v)) \mid (m, v) \in \mathcal{E}, m \in \mathcal{M}\}.
$$

Consider adding a node *n* to *M*. We need to update Q for every edge $(n, w) \in \mathcal{E}$.

▶ If $w \in Q$ and weight $((n, w)) < p(Q, w)$: lower $p(Q, w)$ to weight $((n, w))$. If Q is a min-heap: lowering $p(Q, w)$ is a swim operation *after* we find $w \in Q$.

Algorithm MST-PRIM $(G = (N, \mathcal{E}))$, weight):

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in M$ and $n \notin M$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

Idea: a minimum-priority queue Q that holds nodes v with priority

 $p(Q, v) = min{weight((m, v)) | (m, v) \in \mathcal{E}, m \in \mathcal{M}}.$

Consider adding a node *n* to *M*. We need to update Q for every edge $(n, w) \in \mathcal{E}$.

▶ If $w \in Q$ and weight $((n, w)) < p(Q, w)$: lower $p(Q, w)$ to weight $((n, w))$. If Q is a min-heap: lowering $p(Q, w)$ is a swim operation *after* we find $w \in Q$. To find $w \in Q$: keep track of the position of every node in Q via an array.

Algorithm MST-PRIM $(G = (N, \mathcal{E}))$, weight):

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in M$ and $n \notin M$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

Idea: a minimum-priority queue Q that holds nodes v with priority

$$
p(Q, v) = \min\{\text{weight}((m, v)) \mid (m, v) \in \mathcal{E}, m \in \mathcal{M}\}.
$$

Consider adding a node *n* to *M*. We need to update Q for every edge $(n, w) \in \mathcal{E}$.

▶ If $w \in Q$ and weight $((n, w)) < p(Q, w)$: lower $p(Q, w)$ to weight $((n, w))$.

 $\rightarrow \Theta$ (log(|N|)) per edge.

Algorithm MST-PRIM $(G = (N, \mathcal{E}))$, weight):

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in M$ and $n \notin M$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

Idea: a minimum-priority queue Q that holds nodes v with priority

$$
p(Q, v) = \min\{\text{weight}((m, v)) \mid (m, v) \in \mathcal{E}, m \in \mathcal{M}\}.
$$

Consider adding a node *n* to *M*. We need to update Q for every edge $(n, w) \in \mathcal{E}$. $\rightarrow \Theta$ (log(|N|)) per edge.

Algorithm MST-PRIM $(G = (N, \mathcal{E}))$, weight):

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in M$ and $n \notin M$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

Idea: a minimum-priority queue Q that holds nodes v with priority

$$
p(Q, v) = \min\{\text{weight}((m, v)) \mid (m, v) \in \mathcal{E}, m \in \mathcal{M}\}.
$$

Consider adding a node *n* to *M*. We need to update Q for every edge $(n, w) \in \mathcal{E}$. $\rightarrow \Theta$ (log(|N|)) per edge.

To find the next edge to add: remove nodes *n* from Q until $n \notin M$.

Algorithm MST-PRIM $(G = (N, \mathcal{E}))$, weight):

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in M$ and $n \notin M$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

Idea: a minimum-priority queue Q that holds nodes v with priority

$$
p(Q, v) = \min\{\text{weight}((m, v)) \mid (m, v) \in \mathcal{E}, m \in \mathcal{M}\}.
$$

Consider adding a node *n* to *M*. We need to update Q for every edge $(n, w) \in \mathcal{E}$. $\rightarrow \Theta$ (log(|N|)) per edge.

To find the next edge to add: remove nodes *n* from Q until $n \notin M$. Complexity.

Algorithm MST-PRIM $(G = (N, \mathcal{E}))$, weight):

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in M$ and $n \notin M$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

Idea: a minimum-priority queue Q that holds nodes v with priority

$$
p(Q, v) = \min\{\text{weight}((m, v)) \mid (m, v) \in \mathcal{E}, m \in \mathcal{M}\}.
$$

Consider adding a node *n* to *M*. We need to update Q for every edge $(n, w) \in \mathcal{E}$. $\rightarrow \Theta$ (log(|N|)) per edge.

To find the next edge to add: remove nodes *n* from Q until $n \notin M$. Complexity. Θ ($|\mathcal{E}| \log(|N|)$).

Algorithm MST-PRIM $(G = (N, \mathcal{E}))$, weight):

- 1: $E, M := \emptyset$, r with r a node from N.
- 2: while $M \neq N$ do
- 3: Find the lowest-weight edge $(m, n) \in \mathcal{E}$ with $m \in M$ and $n \notin M$.
- 4: $E, M := E \cup \{(m, n)\}, M \cup \{n\}.$
- 5: return E.

How to find edges $(m, n) \in \mathcal{E}$?

Idea: a minimum-priority queue Q that holds nodes v with priority

$$
p(Q, v) = \min\{\text{weight}((m, v)) \mid (m, v) \in \mathcal{E}, m \in \mathcal{M}\}.
$$

Consider adding a node *n* to *M*. We need to update Q for every edge $(n, w) \in \mathcal{E}$. Fibonacci Heap: $\Theta(\log(|N|))$ to add or remove a value, amortized $\Theta(1)$ to lower a weight. To find the next edge to add: remove nodes *n* from Q until $n \notin M$. Complexity. $\Theta(|N| \log(|N|) + |\mathcal{E}|)$.

Problem

Consider a weighted directed graph $G = (N, \mathcal{E})$ in which

- \blacktriangleright the nodes N represent road crossings;
- \triangleright the edges ϵ are the roads connecting these crossings; and
- \blacktriangleright the weights weight((m, n)) represent the cost to travel along the road (m, n) (e.g., length of the road, duration of traveling along the road, fuel costs, \dots).

Provide the shortest route from crossing A to crossing B.

Problem

Consider a weighted directed graph $G = (N, \mathcal{E})$ in which

- \blacktriangleright the nodes N represent road crossings;
- \triangleright the edges ϵ are the roads connecting these crossings; and
- \blacktriangleright the weights weight((m, n)) represent the cost to travel along the road (m, n) (e.g., length of the road, duration of traveling along the road, fuel costs, \dots).

Provide the shortest route from crossing A to crossing B.

Shortest in terms of the provided weight:

No other path from A and B should have a *lower* sum of edge weights.

Problem

Consider a weighted directed graph $G = (N, \mathcal{E})$ in which

- \blacktriangleright the nodes N represent road crossings;
- \triangleright the edges ϵ are the roads connecting these crossings; and
- \blacktriangleright the weights weight((m, n)) represent the cost to travel along the road (m, n) (e.g., length of the road, duration of traveling along the road, fuel costs, \dots).

Provide the shortest route from crossing A to crossing B.

Definition

Let $G = (N, \mathcal{E})$ be a directed graph with edge weights weight.

Definition Let $G = (N, \mathcal{E})$ be a directed graph with edge weights weight.

Definition Let $G = (N, \mathcal{E})$ be a directed graph with edge weights weight.

Definition Let $G = (N, \mathcal{E})$ be a directed graph with edge weights weight.

Definition Let $G = (N, \mathcal{E})$ be a directed graph with edge weights weight.

A shortest path from $A \in \mathcal{N}$ to $B \in \mathcal{N}$ is a directed path from A to B in which the sum of edge weights is minimal (no other path from A to B has a lower sum of edge weights).

 $An_2n_7n_0B \rightarrow 35$ $An_0B \rightarrow 20$ $An_{8}n_{1}n_{5}B \rightarrow 15$

Definition Let $G = (N, \mathcal{E})$ be a directed graph with edge weights weight.

Definition

Let $G = (N, \mathcal{E})$ be a directed graph with edge weights weight.

A shortest path from $A \in \mathcal{N}$ to $B \in \mathcal{N}$ is a directed path from A to B in which the sum of edge weights is minimal (no other path from A to B has a lower sum of edge weights).

The single-source shortest path problem

Given a directed edge-weighted graph $G = (N, \mathcal{E})$ and source node $s \in N$, find a shortest path (if any) from s to every target node $t \in \mathcal{N}$.

Definition

Let $G = (N, \mathcal{E})$ be a directed graph with edge weights weight.

A shortest path from $A \in \mathcal{N}$ to $B \in \mathcal{N}$ is a directed path from A to B in which the sum of edge weights is minimal (no other path from A to B has a lower sum of edge weights).

The single-source shortest path problem

Given a directed edge-weighted graph $G = (N, \mathcal{E})$ and source node $s \in N$, find a shortest path (if any) from s to every target node $t \in \mathcal{N}$.

The all-pairs shortest path problem

Given a directed edge-weighted graph $G = (N, \mathcal{E})$ and source node $s \in N$, find a shortest path (if any) between every pair of source and target nodes $(s, t) \in N \times N$.

Definition

Let $G = (N, \mathcal{E})$ be a directed graph with edge weights weight.

A shortest path from $A \in \mathcal{N}$ to $B \in \mathcal{N}$ is a directed path from A to B in which the sum of edge weights is minimal (no other path from A to B has a lower sum of edge weights).

The single-source shortest path problem

Given a directed edge-weighted graph $G = (N, \mathcal{E})$ and source node $s \in N$, find a shortest path (if any) from s to every target node $t \in \mathcal{N}$.

The all-pairs shortest path problem

Given a directed edge-weighted graph $G = (N, \mathcal{E})$ and source node $s \in N$, find a shortest path (if any) between every pair of source and target nodes $(s, t) \in N \times N$.

> Reminder breadth-first search answers the single-source shortest path problem on unweighted graphs.

Shortest paths

What is the shortest path from A to B in this graph?

Shortest paths

What is the shortest path from A to B in this graph?

There are two options with total weight 14

 $An_8n_1n_5n_6B$ and An_0B .

Shortest paths

What is the shortest path from A to B in this graph?

There are two options with total weight 14

 $An_8n_1n_5n_6B$ and An_0B .

Shortest path algorithms internally choose one of these options.

What is the shortest path from A to B in this graph?

What is the shortest path from A to B in this graph?

▶ For any path: adding steps $An_2n_7n_0A$ reduces the weight of that path by 19!

What is the shortest path from A to B in this graph?

▶ For any path: adding steps $An_2n_7n_0A$ reduces the weight of that path by 19! \triangleright The "shortest path" has infinite length and infinitely negative weight?

What is the shortest path from A to B in this graph?

▶ For any path: adding steps $An_2n_7n_0A$ reduces the weight of that path by 19! \triangleright The "shortest path" has infinite length and infinitely negative weight? \triangleright Solution? Require a simple path (without repeating nodes).

What is the shortest path from A to B in this graph?

▶ For any path: adding steps $An_2n_7n_0A$ reduces the weight of that path by 19!

- \triangleright The "shortest path" has infinite length and infinitely negative weight?
- ▶ Solution? Require a simple path (without repeating nodes). Determining whether a solution of cost k exists is an NP-complete problem: no practical algorithms known.

What is the shortest path from A to B in this graph?

▶ For any path: adding steps $An_2n_7n_0A$ reduces the weight of that path by 19!

- \triangleright The "shortest path" has infinite length and infinitely negative weight?
- ▶ Solution? Require a simple path (without repeating nodes). Determining whether a solution of cost k exists is an NP-complete problem: no practical algorithms known.

Solution. Either disallow negative edge weights or negative-weight cycles.
Representing the shortest paths from a source node Consider the single-source shortest paths from A

Consider the single-source shortest paths from A

▶ We have already seen that $An_{8}n_{1}n_{5}n_{6}B$ is the shortest path from A to B.

Representing the shortest paths from a source node Consider the single-source shortest paths from A

- \triangleright We have already seen that $\frac{A_{n_8n_1n_5n_6}B}{B}$ is the shortest path from A to B.
- \blacktriangleright The paths $An_{8}n_{1}n_{5}n_{6}$, $An_{8}n_{1}n_{5}$, $An_{8}n_{1}$, and An_{8} are also shortest paths!

Can we represent all shortest paths from A without enumerating all of them?

Consider the single-source shortest paths from A

- \triangleright We have already seen that $A_{n_8n_1n_5n_6}B$ is the shortest path from A to B.
- \triangleright The paths Ansn₁n₅n₆, Ansn₁n₅, Ansn₁, and An₈ are also shortest paths!

Can we represent all shortest paths from A without enumerating all of them? Observation: The shortest path to B consists of two parts:

- \blacktriangleright the last edge (from node n_6 to node B); and
- \blacktriangleright the shortest path from A to node n_6 .

Consider the single-source shortest paths from A

- \triangleright We have already seen that $\frac{A_{n_8n_1n_5n_6}B}{B}$ is the shortest path from A to B.
- \blacktriangleright The paths $An_{8}n_{1}n_{5}n_{6}$, $An_{8}n_{1}n_{5}$, $An_{8}n_{1}$, and An_{8} are also shortest paths!

Representing the shortest paths from a source node Consider the single-source shortest paths from A

-
- \triangleright We have already seen that $A_{n_8n_1n_5n_6}B$ is the shortest path from A to B.
- \blacktriangleright The paths $An_{8}n_{1}n_{5}n_{6}$, $An_{8}n_{1}n_{5}$, $An_{8}n_{1}$, and An_{8} are also shortest paths!

Consider the single-source shortest paths from A

- \triangleright We have already seen that $A_{n_8n_1n_5n_6}B$ is the shortest path from A to B.
- \blacktriangleright The paths $An_{8}n_{1}n_{5}n_{6}$, $An_{8}n_{1}n_{5}$, $An_{8}n_{1}$, and An_{8} are also shortest paths!

Consider the single-source shortest paths from A

- \triangleright We have already seen that $A_{n_8n_1n_5n_6}B$ is the shortest path from A to B.
- \blacktriangleright The paths $An_8n_1n_5n_6$, $An_8n_1n_5$, An_8n_1 , and An_8 are also shortest paths!

Consider the single-source shortest paths from A

<u>პ</u>

 n_6^{\bullet}

- \blacktriangleright We have already seen that $An_8n_1n_5n_6B$ is the shortest path from A to B.
- \blacktriangleright The paths $An_{8}n_{1}n_{5}n_{6}$, $An_{8}n_{1}n_{5}$, $An_{8}n_{1}$, and An_{8} are also shortest paths!

- \triangleright We can use an array to store this information per node.
- \triangleright We can also store the total weight (cost) to reach each node.

Consider the single-source shortest paths from A

<u>პ</u>

 n_6^{\bullet}

- \blacktriangleright We have already seen that $An_8n_1n_5n_6B$ is the shortest path from A to B.
- \blacktriangleright The paths $An_{8}n_{1}n_{5}n_{6}$, $An_{8}n_{1}n_{5}$, $An_{8}n_{1}$, and An_{8} are also shortest paths!

Can we represent all shortest paths from A without enumerating all of them? Idea: Store, for each node, the previous node on the path.

- \triangleright We can use an array to store this information per node.
- \triangleright We can also store the total weight (cost) to reach each node. B 4

 n_5

8

7

2

4

12

5

9

13

1

11

 n_1

 n_8

A

 $n₀$

 $\sqrt{n_4}$

7

 $n₂$

 $n₇$

Consider the single-source shortest paths from A

 n_6^{\bullet}

- \blacktriangleright We have already seen that $An_8n_1n_5n_6B$ is the shortest path from A to B.
- \blacktriangleright The paths $An_{8}n_{1}n_{5}n_{6}$, $An_{8}n_{1}n_{5}$, $An_{8}n_{1}$, and An_{8} are also shortest paths!

- \triangleright We can use an array to store this information per node.
- \triangleright We can also store the total weight (cost) to reach each node.

Consider the single-source shortest paths from A

- \blacktriangleright We have already seen that $An_8n_1n_5n_6B$ is the shortest path from A to B.
- \blacktriangleright The paths $An_{8}n_{1}n_{5}n_{6}$, $An_{8}n_{1}n_{5}$, $An_{8}n_{1}$, and An_{8} are also shortest paths!

- \triangleright We can use an array to store this information per node.
- \triangleright We can also store the total weight (cost) to reach each node.

Consider the single-source shortest paths from A

<u>პ</u>

 n_6^{\bullet}

- \blacktriangleright We have already seen that $An_8n_1n_5n_6B$ is the shortest path from A to B.
- \blacktriangleright The paths $An_{8}n_{1}n_{5}n_{6}$, $An_{8}n_{1}n_{5}$, $An_{8}n_{1}$, and An_{8} are also shortest paths!

Can we represent all shortest paths from A without enumerating all of them? Idea: Store, for each node, the previous node on the path.

- \triangleright We can use an array to store this information per node.
- \triangleright We can also store the total weight (cost) to reach each node. B 4

 n_5

8

7

2

4

12

5

9

13

1

11

 n_1

 n_8

A

 $n₀$

 $\sqrt{n_4}$

7

 $n₂$

 $n₇$

Consider the single-source shortest paths from A

 n_6^{\bullet}

- \blacktriangleright We have already seen that $An_8n_1n_5n_6B$ is the shortest path from A to B.
- \blacktriangleright The paths $An_{8}n_{1}n_{5}n_{6}$, $An_{8}n_{1}n_{5}$, $An_{8}n_{1}$, and An_{8} are also shortest paths!

- \triangleright We can use an array to store this information per node.
- \triangleright We can also store the total weight (cost) to reach each node.

Consider the single-source shortest paths from A

- \triangleright We have already seen that $A_{n_8n_1n_5n_6}B$ is the shortest path from A to B.
- \triangleright The paths Ansn₁n₅n₆, Ansn₁n₅, Ansn₁, and An₈ are also shortest paths!

Can we represent all shortest paths from A without enumerating all of them? Idea: Store, for each node, the previous node on the path.

- \triangleright We can use an array to store this information per node.
- \triangleright We can also store the total weight (cost) to reach each node.

Generalization to the all-pairs shortest path problem A $|N| \times |N|$ matrix representing one such array *per* node.

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: path[n], $cost[n] := m$, weight $((m, n)) + cost[m]$.
- 5: return path,cost.

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: path[n], $cost[n] := m$, weight $((m, n)) + cost[m]$.
- 5: return path,cost.

- Algorithm SSSP-HIGHLEVEL($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):
	- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
	- 2: $path[s], cost[s] := s, 0.$
	- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
	- 4: path[n], $cost[n] := m$, weight $((m, n)) + cost[m]$.
	- 5: return path,cost.

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: path[n], $cost[n] := m$, weight $((m, n)) + cost[m]$.
- 5: return path,cost.

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: path[n], $cost[n] := m$, weight $((m, n)) + cost[m]$.
- 5: return path,cost.

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: path[n], $cost[n] := m$, weight $((m, n)) + cost[m]$.
- 5: return path,cost.

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: path[n], $cost[n] := m$, weight $((m, n)) + cost[m]$.
- 5: return path,cost.

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: path[n], $cost[n] := m$, weight $((m, n)) + cost[m]$.
- 5: return path,cost.

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: path[n], $cost[n] := m$, weight $((m, n)) + cost[m]$.
- 5: return path,cost.

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: path[n], $cost[n] := m$, weight $((m, n)) + cost[m]$.
- 5: return path,cost.

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: path[n], $cost[n] := m$, weight $((m, n)) + cost[m]$.
- 5: return path,cost.

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: path[n], $cost[n] := m$, weight $((m, n)) + cost[m]$.
- 5: return path,cost.

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: path[n], $cost[n] := m$, weight $((m, n)) + cost[m]$.
- 5: return path,cost.

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: path[n], $cost[n] := m$, weight $((m, n)) + cost[m]$.
- 5: return path,cost.

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: path[n], $cost[n] := m$, weight $((m, n)) + cost[m]$.
- 5: return path,cost.

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: path[n], $cost[n] := m$, weight $((m, n)) + cost[m]$.
- 5: return path,cost.

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: path[n], $cost[n] := m$, weight $((m, n)) + cost[m]$.
- 5: return path,cost.

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: path[n], $cost[n] := m$, weight $((m, n)) + cost[m]$.
- 5: return path,cost.

Algorithm SSSP-HighLevel($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: path[n], $cost[n] := m$, weight $((m, n)) + cost[m]$.
- 5: return path,cost.

Theorem Algorithm SSSP-HIGHLEVEL is correct.

Algorithm SSSP-HighLevel($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost = $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: $path[n], cost[n] := m, weight((m, n)) + cost[m].$
- 5: return path,cost.

Theorem

Let cost be the cost of the paths from s represented by path. We say that $(m, n) \in \mathcal{E}$ is eligible if $cost[m] + weight((m, n)) < cost[n]$. The values in cost are the costs of the shortest paths from s if no edges are eligible.

Theorem

Let cost be the cost of the paths from s represented by path. We say that $(m, n) \in \mathcal{E}$ is eligible if $cost[m] + weight((m, n)) < cost[n]$. The values in cost are the costs of the shortest paths from s if no edges are eligible.

Observation

If there is an *eligible edge* (m, n) , then we have *certainly not* found all shortest paths!
Theorem

Let cost be the cost of the paths from s represented by path. We say that $(m, n) \in \mathcal{E}$ is eligible if $cost[m] + weight((m, n)) < cost[n]$. The values in cost are the costs of the shortest paths from s if no edges are eligible.

Proof

Assume no edges are eligible and that there is a shortest path $sn_1 \ldots n_i t$.

We have to prove $cost[t] = weight((s, n_1)) + weight((n_1, n_2)) + \cdots + weight((n_i, t)).$

Theorem

Let cost be the cost of the paths from s represented by path. We say that $(m, n) \in \mathcal{E}$ is eligible if $cost[m] + weight((m, n)) < cost[n]$. The values in cost are the costs of the shortest paths from s if no edges are eligible.

Proof

Assume no edges are eligible and that there is a shortest path $sn_1 \ldots n_i t$.

We have to prove $cost[t] = weight((s, n_1)) + weight((n_1, n_2)) + \cdots + weight((n_i, t)).$ We have

 $cost[t] \leq cost[n_i] + weight((n_i, t))$

Theorem

Let cost be the cost of the paths from s represented by path. We say that $(m, n) \in \mathcal{E}$ is eligible if $cost[m] + weight((m, n)) < cost[n]$. The values in cost are the costs of the shortest paths from s if no edges are eligible.

Proof

Assume no edges are eligible and that there is a shortest path $sn_1 \ldots n_i t$.

We have to prove $cost[t] = weight((s, n_1)) + weight((n_1, n_2)) + \cdots + weight((n_i, t)).$ We have

 $cost[t] \leq cost[n_i] + weight((n_i, t))$

Theorem

Let cost be the cost of the paths from s represented by path. We say that $(m, n) \in \mathcal{E}$ is eligible if $cost[m] + weight((m, n)) < cost[n]$. The values in cost are the costs of the shortest paths from s if no edges are eligible.

Proof

Assume no edges are eligible and that there is a shortest path $sn_1 \ldots n_i t$.

We have to prove $cost[t] = weight((s, n_1)) + weight((n_1, n_2)) + \cdots + weight((n_i, t)).$ We have

```
cost[t] \leq cost[n_i] + weight((n_i, t))\leq \text{cost}[n_{i-1}] + \text{weight}((n_{i-1}, n_i)) + \text{weight}((n_i, t))
```
Theorem

Let cost be the cost of the paths from s represented by path. We say that $(m, n) \in \mathcal{E}$ is eligible if $cost[m] + weight((m, n)) < cost[n]$. The values in cost are the costs of the shortest paths from s if no edges are eligible.

Proof

Assume no edges are eligible and that there is a shortest path $sn_1 \ldots n_i t$.

We have to prove $cost[t] = weight((s, n_1)) + weight((n_1, n_2)) + \cdots + weight((n_i, t)).$ We have

```
cost[t] \leq cost[n_i] + weight((n_i, t))\leq \text{cost}[n_{i-1}] + \text{weight}((n_{i-1}, n_i)) + \text{weight}((n_i, t))\leq weight((s, n<sub>1</sub>)) + · · · + weight((n<sub>i-1</sub>, n<sub>i</sub>)) + weight((n<sub>i</sub>, t)).
```
Theorem

Let cost be the cost of the paths from s represented by path. We say that $(m, n) \in \mathcal{E}$ is eligible if $cost[m] + weight((m, n)) < cost[n]$. The values in cost are the costs of the shortest paths from s if no edges are eligible.

Proof

Assume no edges are eligible and that there is a shortest path $sn_1 \ldots n_i t$.

We have to prove $cost[t] = weight((s, n_1)) + weight((n_1, n_2)) + \cdots + weight((n_i, t)).$ We have

 $cost[t] \leq weight((s, n_1)) + \cdots + weight((n_{i-1}, n_i)) + weight((n_i, t)).$

As cost [t] is the cost of a path from s to t and $sn_1 \ldots n_i$ is the shortest path, we also have:

 $weight((s, n_1)) + \cdots + weight((n_{i-1}, n_i)) + weight((n_i, t)) ≤ cost[t].$

Algorithm SSSP-HighLevel($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: path[n], $cost[n] := m$, weight((m, n)) + cost[m].
- 5: return path,cost.

How to find eligible edges $(m, n) \in \mathcal{E}$?

Efficient shortest path algorithms depend on a good method to explorer eligible edges: e.g., we want to prevent revisiting the same edge multiple times.

Algorithm SSSP-HighLevel($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: path[n], $cost[n] := m$, weight((m, n)) + cost[m].
- 5: return path,cost.

Algorithm SSSP-DIJKSTRA $(G = (N, \mathcal{E}))$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all nodes m on increasing shortest-path distance to s do
- 4: for all edges $(m, n) \in \mathcal{E}$ do
- 5: if $cost[m] + weight((m, n)) < cost[n]$ then
- 6: $path[n], cost[n] := m, weight((m, n)) + cost[m].$
- 7: return path,cost.

We *disallow* negative edge weights.

Idea

Use a priority queue to process nodes in increasing best-known distance to s.

Algorithm SSSP-DIJKSTRA($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all nodes m on increasing shortest-path distance to s do
- 4: for all edges $(m, n) \in \mathcal{E}$ do
- 5: if $cost[m] + weight((m, n)) < cost[n]$ then
- 6: $path[n], cost[n] := m, weight((m, n)) + cost[m].$
- 7: return path,cost.

We *disallow* negative edge weights.

Idea

Use a priority queue to process nodes in increasing best-known distance to s.

Algorithm SSSP-DIJKSTRA $(G = (N, \mathcal{E}))$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: $Q := a$ minimum-priority queue that holds node s with priority 0.
- 4: while $Q \neq \emptyset$ do
- 5: Remove node m with lowest priority from Q .
- 6: for all edges $(m, n) \in \mathcal{E}$ do
- 7: if $cost[m] + weight((m, n)) < cost[n]$ then
- 8: $path[n], cost[n] := m, weight((m, n)) + cost[m].$
- 9: Update *n* in *Q* such that *n* has priority cost [*n*] in *Q*.

10: return path, cost.

Dijkstra's shortest-path algorithm $Q := \{(A: 0)\}.$

 $Q = \{(n_8 : 1), (n_2 : 5), (n_0 : 9)\}.$

 $Q = \{(n_1 : 5), (n_2 : 5), (n_5 : 8), (n_0 : 9)\}.$

 n_0 : $A \mid 9$ $n_1: \begin{array}{|c|c|} n_8 & 5 \end{array}$

 $Q = \{(n_7 : 12), (n_9 : 14), (n_4 : 22)\}.$

 $Q := \{\}.$

Algorithm SSSP-Dijkstra $(G = (N, \mathcal{E}))$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- $3: Q := a$ minimum-priority queue that holds node s with priority 0.

4: while $Q \neq \emptyset$ do

- 5: Remove node m with lowest priority from Q .
- 6: for all edges $(m, n) \in \mathcal{E}$ do
- 7: if $cost[m] + weight((m, n)) < cost[n]$ then
- 8: path[n], $cost[n] := m$, weight((m, n)) + $cost[m]$.
- 9: Update *n* in *Q* such that *n* has priority cost [*n*] in *Q*.

10: **return** *path, cost.*

Complexity: Manage Q in the same way as in Prim's Algorithm.

Algorithm SSSP-Dijkstra $(G = (N, \mathcal{E}))$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- $3: Q := a$ minimum-priority queue that holds node s with priority 0.

4: while $Q \neq \emptyset$ do

- 5: Remove node m with lowest priority from Q .
- 6: for all edges $(m, n) \in \mathcal{E}$ do
- 7: if $cost[m] + weight((m, n)) < cost[n]$ then
- 8: $path[n], cost[n] := m, weight((m, n)) + cost[m].$
- 9: Update *n* in *Q* such that *n* has priority cost [*n*] in *Q*.

10: **return** *path, cost.*

Complexity: Manage Q in the same way as in Prim's Algorithm.

 $\blacktriangleright \Theta(|\mathcal{E}| \log(|\mathcal{N}|)).$

Algorithm SSSP-Dijkstra $(G = (N, \mathcal{E}))$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- $3: Q := a$ minimum-priority queue that holds node s with priority 0.

4: while $Q \neq \emptyset$ do

- 5: Remove node m with lowest priority from Q .
- 6: for all edges $(m, n) \in \mathcal{E}$ do
- 7: if $cost[m] + weight((m, n)) < cost[n]$ then
- 8: $path[n], cost[n] := m, weight((m, n)) + cost[m].$
- 9: Update *n* in *Q* such that *n* has priority cost [*n*] in *Q*.

10: **return** *path, cost.*

Complexity: Manage Q in the same way as in Prim's Algorithm.

- $\blacktriangleright \Theta(|\mathcal{E}| \log(|\mathcal{N}|)).$
- $\triangleright \Theta(|N| \log(|N|) + |\mathcal{E}|)$ with a Fibonacci Heap.

Algorithm SSSP-Dijkstra $(G = (N, \mathcal{E}))$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- $3: Q := a$ minimum-priority queue that holds node s with priority 0.

4: while $Q \neq \emptyset$ do

- 5: Remove node m with lowest priority from Q .
- 6: for all edges $(m, n) \in \mathcal{E}$ do
- 7: if $cost[m] + weight((m, n)) < cost[n]$ then
- 8: $path[n], cost[n] := m, weight((m, n)) + cost[m].$
- 9: Update *n* in *Q* such that *n* has priority cost [*n*] in *Q*.

10: **return** *path, cost.*

Correctness

Algorithm SSSP-Dijkstra $(G = (N, \mathcal{E}))$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: $Q = a$ minimum-priority queue that holds node s with priority 0.

4: while $Q \neq \emptyset$ do

- 5: Remove node m with lowest priority from Q .
- 6: for all edges $(m, n) \in \mathcal{E}$ do
- 7: if $cost[m] + weight((m, n)) < cost[n]$ then
- 8: $path[n], cost[n] := m, weight((m, n)) + cost[m].$
- 9: Update *n* in *Q* such that *n* has priority cost [*n*] in *Q*.

10: **return** *path, cost.*

Correctness: for every node t

- \triangleright path represents a shortest path from s to t of cost cost [t]; or
- $▶$ there exists a node $u \in Q$ with priority cost [u] such that a shortest path from s to t goes through u and the shortest path from s to u has cost $cost[u]$.

 \blacktriangleright The all-pairs shortest path problem:

Give a directed edge-weighted graph $G = (N, \mathcal{E})$, find a shortest path (if any) between every pair of nodes $(s, t) \in N \times N$.

\blacktriangleright The single-sink shortest path problem: Give a directed edge-weighted graph $G = (N, \mathcal{E})$ and sink $t \in \mathcal{N}$ find a shortest path (if any) from any node $s \in \mathcal{N}$ to t.

\triangleright Shortest paths on *undirected weighted graphs*:

 \blacktriangleright The all-pairs shortest path problem:

Give a directed edge-weighted graph $G = (N, \mathcal{E}),$ find a shortest path (if any) between every pair of nodes $(s, t) \in N \times N$. Solution: Run SSSP-DIJKSTRA for each node.

 \blacktriangleright The single-sink shortest path problem:

Give a directed edge-weighted graph $G = (N, \mathcal{E})$ and sink $t \in \mathcal{N}$ find a shortest path (if any) from any node $s \in \mathcal{N}$ to t. Solution: Reverse edges in G and run SSSP-Dijkstra with source t.

▶ Shortest paths on *undirected weighted graphs*: Solution: interpret each undirected edge as two directed edges.

Problem: The source-sink shortest path problem

Problem: The source-sink shortest path problem

Give a directed edge-weighted graph $G = (N, \mathcal{E})$ and source and target nodes s, $t \in N$, find a shortest path (if any) from s to t .

 \triangleright We can run SSSP-DIJKSTRA to find the path from s to t, and stop as soon as we remove t from the queue Q .

Problem: The source-sink shortest path problem

- \triangleright We can run SSSP-DIJKSTRA to find the path from s to t, and stop as soon as we remove t from the queue Q .
- \triangleright Downside: before removing t from Q, SSSP-Dijkstra might consider many edges that go into the "wrong direction" (away from t).

Problem: The source-sink shortest path problem

- \triangleright We can run SSSP-DIJKSTRA to find the path from s to t, and stop as soon as we remove t from the queue Q .
- \triangleright Downside: before removing t from Q, SSSP-Dijkstra might consider many edges that go into the "wrong direction" (away from t).
- ▶ Sometimes we can *estimate* the minimum cost of a shortest path between two nodes. For example: straight-line distance between two points on a map.

Problem: The source-sink shortest path problem

- \triangleright We can run SSSP-DIJKSTRA to find the path from s to t, and stop as soon as we remove t from the queue Q .
- \triangleright Downside: before removing t from Q, SSSP-Dijkstra might consider many edges that go into the "wrong direction" (away from t).
- ▶ Sometimes we can *estimate* the minimum cost of a shortest path between two nodes. For example: straight-line distance between two points on a map.
- ▶ *Optimization*: use these estimates to guide the choice of eligible edges.

Problem: The source-sink shortest path problem

Give a directed edge-weighted graph $G = (N, \mathcal{E})$ and source and target nodes s, $t \in N$, find a shortest path (if any) from s to t .

- \triangleright We can run SSSP-DIJKSTRA to find the path from s to t, and stop as soon as we remove t from the queue Q .
- \triangleright Downside: before removing t from Q, SSSP-DIJKSTRA might consider many edges that go into the "wrong direction" (away from t).
- ▶ Sometimes we can *estimate* the minimum cost of a shortest path between two nodes. For example: straight-line distance between two points on a map.
- \triangleright *Optimization:* use these estimates to guide the choice of eligible edges.

Such a strategy leads to the A^* search algorithm.

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-HighLevel($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: path[n], $cost[n] := m$, weight $((m, n)) + cost[m]$.
- 5: return path,cost.

Shortest and longest paths in directed acyclic graphs

Algorithm SSSP-HighLevel($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: path[n], $cost[n] := m$, weight((m, n)) + cost[m].
- 5: return path,cost.

Idea: process nodes in topological order
Idea: process nodes in topological order

We process node *n after* determining the shortest path from *s* to *m* for all $(m, n) \in \mathcal{E}$.

Algorithm SSSP-DAG($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: **for all** $n \in \mathbb{N}$ in topological order (and that follow *s*) **do**
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$

Algorithm SSSP-DAG($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all $n \in \mathcal{N}$ in topological order (and that follow s) do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$

Algorithm SSSP-DAG($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all $n \in \mathcal{N}$ in topological order (and that follow s) do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$

Algorithm SSSP-DAG($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all $n \in \mathcal{N}$ in topological order (and that follow s) do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$

Algorithm SSSP-DAG($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all $n \in \mathcal{N}$ in topological order (and that follow s) do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$

Algorithm SSSP-DAG($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all $n \in \mathcal{N}$ in topological order (and that follow s) do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$

6: return path,cost.

Topological order: n_4 , n_6 , A , n_1 , n_8 , n_2 , n_7 , n_5 , n_9 , n_0 .

Algorithm SSSP-DAG($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all $n \in \mathcal{N}$ in topological order (and that follow s) do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$

Algorithm SSSP-DAG($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all $n \in \mathcal{N}$ in topological order (and that follow s) do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$

Algorithm SSSP-DAG($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all $n \in \mathcal{N}$ in topological order (and that follow s) do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$

6: return path,cost.

Topological order: n_4 , n_6 , A , n_1 , n_8 , n_2 , n_7 , n_5 , n_9 , n_0 .

Algorithm SSSP-DAG($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all $n \in \mathcal{N}$ in topological order (and that follow s) do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$

6: return path,cost.

Complexity

- $\blacktriangleright \Theta(|N|)$ to initialize path and cost.
- $\blacktriangleright \Theta(|N| + |\mathcal{E}|)$ for topological sort.
- $\triangleright \Theta(|N| + |\mathcal{E}|)$ for visiting each node and edge in topological order.

Algorithm SSSP-DAG($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all $n \in \mathcal{N}$ in topological order (and that follow s) do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$

6: return path,cost.

Complexity

- $\blacktriangleright \Theta(|N|)$ to initialize path and cost.
- $\blacktriangleright \Theta(|N| + |\mathcal{E}|)$ for topological sort.

 $\triangleright \Theta(|N| + |\mathcal{E}|)$ for visiting each node and edge in topological order. Total: $\Theta(|N| + |\mathcal{E}|)$.

Algorithm SSSP-DAG($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all $n \in \mathcal{N}$ in topological order (and that follow s) do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$

6: return path,cost.

We observe that this method has no issues with *negative weights*.

Algorithm SSSP-DAG($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all $n \in \mathcal{N}$ in topological order (and that follow s) do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$

6: return path,cost.

We observe that this method has no issues with *negative weights*.

Longest paths in a directed acyclic graph?

For every edge $(m, n) \in \mathcal{E}$, replace weights weight((m, n)) by $-\text{weight}((m, n))$ and then compute the shortest paths with respect to these *negated* weights.

 \rightarrow The longest path becomes the path with the most negative cost.

Algorithm SSSP-DAG($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all $n \in \mathcal{N}$ in topological order (and that follow s) do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$

Algorithm SSSP-DAG($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all $n \in \mathcal{N}$ in topological order (and that follow s) do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$

Algorithm SSSP-DAG($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all $n \in \mathcal{N}$ in topological order (and that follow s) do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$

Algorithm SSSP-DAG($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all $n \in \mathcal{N}$ in topological order (and that follow s) do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$

6: return path,cost.

Topological order: n_4 , n_6 , A , n_1 , n_8 , n_2 , n_7 , n_5 , n_9 , n_0 .

 n_0 ? ∞ n_1 ? ∞ n_2 A -5 $A \mid A \mid 0$ n_4 | ? | ∞ n_5 | ? | ∞ n_{6} | ? | ∞ n_7 ? ∞ n_8 | A | -1 n_9 ? ∞

Algorithm SSSP-DAG($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all $n \in \mathcal{N}$ in topological order (and that follow s) do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$

Algorithm SSSP-DAG($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all $n \in \mathcal{N}$ in topological order (and that follow s) do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$

Algorithm SSSP-DAG($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all $n \in \mathcal{N}$ in topological order (and that follow s) do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$

6: return path,cost.

Topological order: n_4 , n_6 , A , n_1 , n_8 , n_2 , n_7 , n_5 , n_9 , n_0 .

Algorithm SSSP-DAG($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all $n \in \mathcal{N}$ in topological order (and that follow s) do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$

Algorithm SSSP-DAG($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all $n \in \mathcal{N}$ in topological order (and that follow s) do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: path[n], $cost[n] := m$, $weight((m, n)) + cost[m]$.

6: return path,cost.

We observe that this method has no issues with *negative weights*.

Longest paths in a directed acyclic graph? The *longest path* in $\Theta(|N| + |\mathcal{E}|)$.

Algorithm SSSP-DAG($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for all $n \in \mathbb{N}$ in topological order (and that follow s) do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$

6: return path,cost.

We observe that this method has no issues with *negative weights*.

Longest paths in a directed acyclic graph? The *longest path* in $\Theta(|N| + |\mathcal{E}|)$.

This only works for directed acyclic graphs:

Determining whether a longest path without node repetition of cost k exists in a graph is an NP-complete problem: no practical algorithms known to solve this problem!

- \triangleright SSSP-Dijkstra requires non-negative weights.
- \triangleright SSSP-DAG requires a directed acyclic graph.

- ▶ SSSP-DIJKSTRA requires non-negative weights.
- ▶ SSSP-DAG requires a directed acyclic graph.

Problem

Given a directed edge-weighted graph $G = (N, \mathcal{E})$ and source node $s \in \mathcal{N}$. For every target node $t \in \mathcal{N}$,

- \triangleright either detect that there is a negative-cost cycle on a path from s to t; or
- \triangleright find a shortest path (if any) from s to t.

- \triangleright SSSP-DIJKSTRA requires non-negative weights.
- ▶ SSSP-DAG requires a directed acyclic graph.

Problem

Given a directed edge-weighted graph $G = (N, \mathcal{E})$ and source node $s \in \mathcal{N}$. For every target node $t \in \mathcal{N}$,

- \triangleright either detect that there is a negative-cost cycle on a path from s to t; or
- \triangleright find a shortest path (if any) from s to t.
- \triangleright We cannot "simply" eliminate negative weights by adding a sufficiently-positive number: this will distort path lengths of paths consisting of many edges.

Algorithm SSSP-HighLevel($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: while $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 4: path[n], $cost[n] := m$, weight((m, n)) + cost[m].
- 5: return path,cost.

Algorithm SSSP-BELLMAN-FORD($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for $i = 1$ upto $|N| 1$ do
- 4: **for all** $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$
- 6: return path,cost.

Algorithm SSSP-BELLMAN-FORD($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for $i := 1$ upto $|N| 1$ do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$
- 6: if there is an eligible edge then
- 7: Found a negative-cost cycle.
- 8: return path, cost.

Algorithm SSSP-BELLMAN-FORD($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for $i := 1$ upto $|N| 1$ do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: path[n], $cost[n] := m$, $weight((m, n)) + cost[m]$.
- 6: if there is an eligible edge then
- 7: Found a negative-cost cycle.
- 8: return path, cost.

Theorem Algorithm SSSP-Bellman-Ford is correct.

Algorithm SSSP-BELLMAN-FORD($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for $i := 1$ upto $|N| 1$ do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: $path[n], cost[n] := m, weight((m, n)) + cost[m].$
- 6: if there is an eligible edge then
- 7: Found a negative-cost cycle.
- 8: return path, cost.

Theorem

Algorithm SSSP-Bellman-Ford is correct.

Proof

Invariant: If there is a shortest path $sn_1 \ldots n_{i-1}$ of $i - 1$ edges, then cost and path represent a shortest path from s to n_{i-1} .

 $i := 1$.

 $i := 2.$

 $i := 3$.

 $i := 4.$

 $i := 5, \ldots, 9$.

Shortest paths and negative weights

As there are eligible edges: there exists a negative-cost cycle.

Shortest paths and negative weights

Algorithm SSSP-BELLMAN-FORD($G = (N, \mathcal{E})$, weight, $s \in \mathcal{N}$):

- 1: path, cost := $[n \mapsto ? \mid n \in \mathcal{N}]$, $[n \mapsto \infty \mid n \in \mathcal{N}]$.
- 2: $path[s], cost[s] := s, 0.$
- 3: for $i := 1$ upto $|N| 1$ do
- 4: for all $(m, n) \in \mathcal{E}$ with $cost[m] + weight((m, n)) < cost[n]$ do
- 5: path[n], $cost[n] := m$, $weight((m, n)) + cost[m]$.
- 6: if there is an eligible edge then
- 7: Found a negative-cost cycle.
- 8: return path, cost.

Complexity: Θ ($|N||\mathcal{E}|$).

Consider a currency exchange where one can exchange some currencies X for currency Y at exchange rate $r(X, Y)$. For example $r(CAD, EUR) = 0.68$.

Consider a currency exchange where one can exchange some currencies X for currency Y at exchange rate $r(X, Y)$. For example $r(CAD, EUR) = 0.68$.

Consider a currency exchange where one can exchange some currencies X for currency Y at exchange rate $r(X, Y)$. For example $r(CAD, EUR) = 0.68$.

Consider a currency exchange where one can exchange some currencies X for currency Y at exchange rate $r(X, Y)$. For example $r(CAD, EUR) = 0.68$.

Consider a currency exchange where one can exchange some currencies X for currency Y at exchange rate $r(X, Y)$. For example $r(CAD, EUR) = 0.68$.

Consider a currency exchange where one can exchange some currencies X for currency Y at exchange rate $r(X, Y)$. For example $r(CAD, EUR) = 0.68$.

Consider a currency exchange where one can exchange some currencies X for currency Y at exchange rate $r(X, Y)$. For example $r(CAD, EUR) = 0.68$.

The arbitrage problem

Is there a sequence of currencies C_1, \ldots, C_n, C_1 such that exchanging X units of C_1 for C_2 , exchanging C_2 for C_3, \ldots , exchanging C_{n-1} for C_n , and exchanging C_n back to Y units of C_1 yields a profit $(Y > X)$.

Find a cycle C_1, \ldots, C_n, C_1 such that

 $r(C_1, C_2) \times r(C_2, C_3) \times \cdots \times r(C_n, C_1) > 1$ and is as large as possible.

The arbitrage problem

Is there a sequence of currencies C_1, \ldots, C_n, C_1 such that exchanging X units of C_1 for C_2 , exchanging C_2 for C_3, \ldots , exchanging C_{n-1} for C_n , and exchanging C_n back to Y units of C_1 yields a profit $(Y > X)$.

Find a cycle C_1, \ldots, C_n, C_1 such that

 $log(r(C_1, C_2)) + log(r(C_2, C_3)) + \cdots + log(r(C_n, C_1)) > log(1)$

and is as large as possible.

The arbitrage problem

Is there a sequence of currencies C_1, \ldots, C_n, C_1 such that exchanging X units of C_1 for C_2 , exchanging C_2 for C_3, \ldots , exchanging C_{n-1} for C_n , and exchanging C_n back to Y units of C_1 yields a profit $(Y > X)$.

Find a cycle C_1, \ldots, C_n, C_1 such that

 $log(r(C_1, C_2)) + log(r(C_2, C_3)) + \cdots + log(r(C_n, C_1)) > 0$

and is as large as possible.

The arbitrage problem

Is there a sequence of currencies C_1, \ldots, C_n, C_1 such that exchanging X units of C_1 for C_2 , exchanging C_2 for C_3, \ldots , exchanging C_{n-1} for C_n , and exchanging C_n back to Y units of C_1 yields a profit $(Y > X)$.

Find a cycle C_1, \ldots, C_n, C_1 such that

 $(-\log(r(C_1, C_2))) + (-\log(r(C_2, C_3))) + \cdots + (-\log(r(C_n, C_1))) < 0$

and is as small as possible.

The arbitrage problem

Is there a sequence of currencies C_1, \ldots, C_n, C_1 such that exchanging X units of C_1 for C_2 , exchanging C_2 for C_3, \ldots , exchanging C_{n-1} for C_n , and exchanging C_n back to Y units of C_1 yields a profit $(Y > X)$.

Find a cycle C_1, \ldots, C_n, C_1 such that

$$
(-\log(r(C_1, C_2))) + (-\log(r(C_2, C_3))) + \cdots + (-\log(r(C_n, C_1))) < 0
$$

and is as small as possible.

Solution

Use SSSP-BELLMAN-FORD with weight((m, n)) = $-\log(r(m, n))$ and find a negative cycle!